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ABSTRACT

A finite element method is employed for solving two- and three-dimensional
incompressible flows. The formulation is based on a segregated solution method.
In this segregated formulation, the velocities and pressures are uncoupled and the
equations for each are solved one after the other. This segregated solution method
is numerically compared to the penalty method and to previous reported data to
determine its validity. Next an iterative solution method which employs an element—
by—element data structure of the finite element method is developed. Two types
of iterative methods are used. For a symmetric stiffness matrix, the conjugate
gradient method is used. For an unsymmetric stiffness matrix, the bi-conjugate
gradient method is used. Both iterative solution methods make use of a diagonal
preconditioning method (Jacobi preconditioning). Several problems are solved using
this segregated method. In two—dimensions, flow over a backward facing step and
flow in a cavity are investigated. In three-dimensions, the problems include flow
in a cavity at Reynolds number 100 and 1000, and flow in a curved duct. The

simulation compares very well with previously reported data, where available.



This segregated solution method is combined with hierarchical basis functions
in order to develop a p-adaptive solution method. These basis functions are
based on Chebyshev polynomials and extend up to fifth order. An error estimate
is developed based on the difference between two different solutions at varying
polynomial orders. This error estimate is used to spatially converge a solution
for two-dimensional flow over a backward facing step. As the error indicator
decreases to zero, the numerical data obtained from the finite element simulation
compares favorably with experimental data. This p—adaptive solution method is
then extended to three—dimensional problems.

Flow over a three-dimensional backward facing step is then simulated. As
hoped, the error indicator correctly shows which elements in the grid need further
enrichment. Several weakness of the adaptive methodology are shown through the
use of this example. From the weakness of the adaptive methodology, new areas of
possible research present themselves. Several suggestions as to possible solutions to

these weakness are given in the conclusions of this work.
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Chapter 1

Introduction

1.1 Motivation

Computational Fluid Dynamics (CFD) is now accepted as a useful quanti-
tative and qualitative design tool. Within the aerospace industry CFD has
become very prevalent, replacing water or wind tunnel experiments with a
sort of numerical wind tunnel. This transition is due to several things; rel-
ative cost, setup time, and a wealth of information provided by the CFD
solutions. However, engineers who do not possess extensive numerical exper-
tise tend to assume that an aesthetically pleasing solution is accurate and
even exact. Such assumptions can lead to catastrophic results in the final
design. Researchers recognize this dilemma and have attempted to address
the problem by developing many different forms of adaptive algorithms.
The goal of adaptive algorithms is very simple, alter the mesh in such a

way as to provide a solution whose error is below a predetermined level. This



error can be approximated in several ways. One of the most common ways
of determining the error is based on the assumption that an exact solution
will be obtained on a refined mesh. The difference between the fine grid
solution and the coarse grid solution is assumed to be the error. As long as
the numerical scheme is consistent, this assumption of error analysis is valid.

Adaptive methods appear in the literature in basically three forms; r-
methods, h-methods, and p-methods. R-methods move existing grid points
around in the domain to obtain a more accurate solution. The h-methods
simply add new nodes to the mesh. The p-methods maintain the existing
mesh and increase the polynomial order of the approximation. These adap-
tive algorithms are based on increasing the subspace of admissible functions
used to represent the numerical solution. This increase in the subspace of
admissible functions is closely related to a Fourier series solution of a partial
differential equation. As with the Fourier series solution, extending the solu-
tion subspace to include more admissible functions insures the solution will
approach the exact solution in the limit. Use of these r, p, and h adaptive
schemes have shown improvements in solution accuracy.

While each of the three adaptive schemes increase the accuracy of the
solution, there are several differences to each method. These differences are
best exposed by trying to solve developed flow in a pipe where the exact
solution is quadratic in 7, and constant in the direction of the flow. The
r-method is the most computationally efficient, in that the data structure
remains intact. However, this method will only provide a small increase
in accuracy. If linear elements are used in the h-method, the number of

elements must go to infinity to obtain the exact solution. In this developed



flow example, one element of second order could obtain the exact solution.
Consequently, the p-adaptive approach will obtain the exact solution where
the r- and h-adaptive methods have failed.

While the p-method looks like the answer to any adaptive approach, it
is not without problems. The element matrices developed in the p-method
become very large; this creates a problem as the bandwidth of the global
matrices become large and solution efficiency deteriorates. Also, as the poly-
nomial order increases, the numerical integration time required for each el-
ement becomes very costly. Another problem with p-methods can be seen
when a discontinuity exists within the domain, the p-method then shows a
Gibbs like phenomenon around the discontinuity. All of these problems with
the p-method have spawned off new research in the areas of shape function

selection, iterative solvers, and combining p-methods with r- or h- methods.

1.2 Present Research

The focus of the present research is the development of a three-dimensional p-
adaptive capability, in incompressible flows. A computational tool with this
capability could be used in many situations to develop an accurate solution
for internal and external flows.

In Chapter 2, a literature review is performed. The purpose of the litera-
ture review is to obtain an understanding of the current state of the adaptive
finite element method that is applied to fluid mechanics problems. The liter-
ature review will also place the current work in a proper perspective by elab-

orating on gaps and/or future trends in the current state of the art. This



literature review takes place in several phases. The first phase examines
the variational formulation for incompressible flow. Secondly, the solution
methods are covered, including both direct and iterative methods. Next, the
hierarchical element formulation is covered including the p-adaptive meth-
ods. And finally, error analysis within the context of hierarchical element
formulations is covered.

In Chapter 3, the actual problem is formulated with both segregated
and penalty formulation. A computational comparison is drawn between
the two methods, by using a banded solution method. These formulations
are for moderate Reynolds number using time dependent analysis to obtain
the steady state response. This analysis takes place for two-dimensional
structured grids. A parametric study is done to show how the bandwidth
effects the solution time of both formulations.

In Chapter 4, a comparison between the frontal and iterative solution
methods is made. Several three-dimensional examples are solved using this
iterative method. These examples include three-dimensional cavity flow, and
three-dimensional flow through a curved duct.

In Chapter 5, the segregated formulation is extended to include p-adaptive
elements. The p-adaptive elements are based on a hierarchical element for-
mulation. Using a simple error estimate, the solution is carried out until
a specified tolerance is reached within each element. Several examples are
solved using this p-adaptive element formulation. The examples include two
and three-dimensional flow over a backward facing step.

Chapter 6 presents a discussion and conclusions. This chapter elaborates

on the strengths and weakness of the p-adaptive methodology. This chapter



also suggests directions for future work in this area.



Chapter 2

Literature Review

2.1 Remarks

In recent years an enormous amount of work has been done in the area of
computational fluid dynamics (CFD). The scope of this work is varied in the
assumptions used to obtain the governing differential equations. Depending
on the preconceived knowledge of the flow, one can narrow the applicability
of the solution to include only the desired effects. For example, if one were
interested in very slow flow, a Stokes flow simulation wotld be in order. For
this reason, the scope of the present work must be well defined in order to
properly assess the current state of the art within that sub-area of CFD.
The extent of the present work involves the steady state solution of the
incompressible Navier-Stokes equations in two and three-dimensions. The
numerical approach contains a hierarchical p-adaptive finite element formu-

lation. Only work directly related to the topic at hand is included for review



in this chapter.

2.2 Finite Element Formulation

Simulating incompressible flows with the finite element method has proven
an enormous challenge over the years. The major difficulty to such an en-
deavor is the actual form of the continuity equation. The reason for such
difficulty is the absence of a pressure term in the continuity equation. Hence,
the continuity equation is viewed as a constraint applied to the momentum
equations.

One of the most common methods used in finite elements for simulation
of incompressible fluid flow is the penalty method. Some of the earliest work
in the penalty method was carried out by Babuski [1, 2], Reddy [3, 4], Hughes
[5], and Marshall [6].

Another common method used to solve incompressible flows involves the
replacement of the continuity equations with the Poisson equation for pres-
sure. This type of approach was first used by Harlow and Welch [7] in con-
junction with the marker in cell (MAC) method. Chorin [8] developed a sim-
ilar approach to solve the incompressible Navier-Stokes equations. Chorin’s
[8] method, called pressure projection, seeks a velocity field which satisfies
the continuity constraint at the end of each step. The work of Harlow and
Welch [7] and Chorin [8] spurred a large quantity of work within the finite
difference, finite element, and control volume communities. The complete de-
scription of these methods, which are still in prominent use today, are given

by Patankar [9]. An excellent display of the capability of pressure projection



methods is shown by Patankar et. al [10]. The pressure projection and Pois-
son equation method are still used today by the finite difference, element, and
control volume communities. Comini and Del Giudice [11, 12] used the ideas
of Chorin and Patanker to develop a finite element method using a pressure
correction scheme. The scheme is based on a pseudo-transient method for
obtaining the steady state solution to the incompressible Navier-Stokes equa-
tions. Kim and Chung [13] used this method to predict the flow of turbulent
diffusion flames in two-dimensions. Sohn, Kim, and Chung [14] performed a
comparison between the segregated approach of Comini and Del Giudice, and
the standard mixed approach [15] within the finite element context. Their
analysis showed that the segregated approach required more iteration to con-
vergence. However, there is no mention of the respective times required for
obtaining each solution.

To date, there have been no computational comparisons of the segre-
gated and penalty methods for the solution of incompressible flow. Although
the comparison of Sohn, Kim, and Chung [14] has shown an advantage of
segregated over mixed methods, the penalty formulation requires less com-
putational effort than the mixed methods due to the problem size reduction
[15]. A comparison would seek to answer the following questions: Does the
segregated approach hold any advantage over the penalty method for the so-
lution of the incompressible Navier-Stokes equations? And if so, under what
conditions? Finally, there are no published works using the segregated meth-
ods within a three-dimensional context. There are no formulation problems
either in using this method in three-dimensions. However, it may be that

numerical limitations exist.



2.3 Solution Methods

Through the use of finite element methods, a continuous system is broken
into a discrete system by using a variational statement. This process yields

a system of equations of the form:

[K]{=} = {b}. (2.1)

In the early years of the finite element method, it was known that the form of
the system matrix [K] played a significant role in the solution time needed for
a particular problem. Approximately 70 to 90 % of the required computer
time to obtain a solution is taken by an equation solver. This spawned a
large amount of research into the solution of systems of equations. Some of
the research was devoted to examining the structure of the system matrix
[K] in order to increase computational speed. This was accomplished by
using banded solution schemes and nodal renumbering algorithms. Other
work focused on the task of finding a solution method which would drop the
operation count. The earliest success was obtained using a combination of

these methods.

2.3.1 Direct Solution Methods

Direct solution methods have developed into three distinct categories. These
three categories commonly used in the finite element method are banded
methods, profile or envelope methods, and frontal methods. The difference
between these methods is primarily that of data structure and implementa-

tion. Each of the methods are reviewed briefly with explanations.
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Figure 2.1: Example grid

Banded Solution Methods

Banded solution methods take advantage of the sparseness of the system
matrices. For any row in the matrix, only zeros will exist a certain distance
from the main diagonal. For example, if a grid as shown in Figure 2.1 were

generated, the corresponding global stiffness matrix would become:



0

The half bandwidth of such a system is four.
SGBFA within LINPACK [16], the storage of this matrix would be:

| ks1

0
0

k42
kso
ko2

ka3
k33
0
ks3
kg3
0
0
0

0

kg4

11

k15
kas
k3s
ks
kss
kes
kzs

kss
kos

kos

kog

kg

kos

kgg

(2.2)

For the routines SGBCO and

0

ksg

ksg |

(2.3)

This storage method usually requires less memory than the complete matrix.

The only exception to this rule is for matrices with bandwidths of comparable

size to the overall matrix dimensions.

LINPACK has developed into a standard by which other solution packages
are judged [17, 18]. LINPACK has also become a standard in benchmark-
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Table 2.1: LINPACK performance on a 100 x 100 matrix

Computer MFLOPS
CRAY XMP 24
IBM 3090 200 6.8
CONVEX C-1 29
Alliant FX/8 2.5
IBM 370/195 2.5
IBM 3033 1.7
NeXTstation 1.0
DEC 8650 0.96
VAX 11/780 FPA 0.13

ing computer systems [19]. In fact, the LINPACK computer benchmarking
method has become so prevalent, that at the present time (1993) most com-
puter venders use this benchmark in their advertising. A partial listing of
Dongarra’s [19] benchmarking report is included in Table 2.1. The NeXT
computer speed rating is included due to its use throughout this disserta-
tion [20]. Several words of caution must be stated for this comparison. The
LINPACK routines used in the comparison are DGEFA and DGESL and
the matrix size is 100 by 100. However, in the 300 by 300 matrix in Ta-
ble 2.2 there is a significant increase in performance in vector machines and
very small changes in the non-vector machines. From this, one may conclude

that even though the NeXT computer is close to the performance of some
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Table 2.2: LINPACK performance on a 300 x 300 matrix

Computer MFLOPS
CRAY XMP 257
IBM 3090 200 18
CONVEX C-1 8.7
Alliant FX/8 6.9
IBM 370/195 4.4
IBM 3033 2.5
VAX 11/780 FPA 0.11

high performance computers for low matrix size, it will be severely lagging
in performance for large matrix operations.

The LINPACK routines use a set of low level routines called BLAS [21], an
acronym for Basic Linear Algebra Subroutines. These subroutines are very
efficient due to their ability to perform operations on multi dimensional arrays
by using single dimension arrays. These BLAS routines may be replaced
with machine code versions on any specific machine in order to increase

computational speed.

Envelope Solution Methods

Although all the same, envelope solution methods go by several names: pro-
file, skyline, pipe, and variable bandwidth. This method makes use of one

fact; the bandwidth for any row may be different than the bandwidth of the
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system. In the example shown in Figure 2.1 the halfbandwidth is 4 for all
rows except for rows 7 and 3 where the halfbandwidth is 3. This can be seen
from equation 2.3 where a zero appears in column 7 of row 1, and column
3 of row 3. The skyline method uses this variable bandwidth in its storage
and solution method. A full explanation can be found in [22]. This method

will not be used in the present work.

Frontal Solution Methods

The development of the frontal solution method was spurred by the need to
solve large scale problems on small memory computer systems. Irons [23]
introduced the method in 1970. Hood [24] developed a frontal program for
solving unsymmetric matrices in 1976. Since 1976, several refined versions
of the program have appeared [25, 26]. The frontal method is very simple in
concept, its goal is the removal of any assembled degree of freedom as soon
as possible. The removed degrees of freedom are reduced and written to disk
storage for later back substitution. The equations held in memory during this
process are called the frontal equations. The basic algorithm loops through
the elements, from first to last, assemblying only the portion of the global
matrix associated with the present element. Next, the algorithm looks for
any completely assembled node. If an assembled node is found, that node
will be reduced and the equation related to the node will be written to disk
making room for another equation in the front. At the end of the element
loop, the algorithm goes through the equations previously written to disk

and performs a back substitution (the final phase of Gauss elimination). A
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Eliminated nodes

Active nodes presently in the front

Future nodes

Figure 2.2: Front and element numbering

graphical representation is shown in Figure 2.2. Here the assemble process
is currently in the element loop at element number 5. All nodes which have
been completely assembled will be eliminated (eliminated nodes). All nodes
which presently reside within the core of memory (active nodes presently in
the front) have not yet been completely assembled. Future nodes have not

yet been included, but will be as the element number in the loop increases.
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2.3.2 Nodal Renumbering

In an attempt to reduce the operation count early researchers developed
nodal renumbering schemes which produced a lower bandwidth and decreased
the solution time. Work began in the sixties to approach this problem when
Rosen [27] proposed a method for row column interchange to reduce the
bandwidth. This row and column interchange originated from the simple
fact that exchange of two nodes in any given mesh simply results in the ex-
change of relevant rows and columns in the global stiffness matrix. Later the
Cuthill-McKee algorithm [28, 29] used graph theory to obtain a reduction
in bandwidth. As solution algorithms began to change, from banded meth-
ods to profile methods, emphasis in renumbering methods changed also. It
was found that a simple change to the Cuthill-McKee algorithm could im-
prove a matrix profile without hurting its bandwidth [30]. This method
was called Reverse-Cuthill-McKee algorithm because the node numbering
scheme was simply reversed. Others [31, 32, 33] have developed an improved
method of node and element renumbering directed at a profile frontal mini-
mization. At the present, no method has been developed which can be shown
to substantially reduce the bandwidth or profile over that produced by the
Cuthill-McKee and Reverse-Cuthill-McKee algorithms.

2.3.3 Iterative Solution Methods

There is a large quantity of literature available on the iterative solution to
the set of equations represented by equation 2.1. The methods of primary

interest in the present study are the gradient methods. These methods can
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be understood through use of optimization methods [34, 35].

In finite element analysis, a continuous system is made discrete through
use of a limited number of independent functional representations over the
given domain. This yields a functional of the form:

I(IE,) = %x,-K,-j:cj - b,‘l‘,ﬁ (24)

After application of the boundary conditions this quadratic form becomes
positive definite. This functional reaches a minimum when its first variation
becomes zero.

oI (x;)

Combining these two equations yields a set of N equations and N unknowns.
Kij.'L'j = bi (2'6)

Within the gradient method the solution to these N equations is sought by

minimization of the original problem statement, r; = X; where,
I(Xi+ M) >I(X;) VY Ad; (2.7)

The generalized N dimensional minimization problem can be solved by the

following general steps.

1. Guess an initial position vector z;.
2. Use an appropriate methodology to find a new direction vector d;.

3. Use an appropriate 1-dimensional minimization method to minimize

I (z; + A\d;) with respect to A.
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4. Replace position x; with z; + Ad;

5. Check for convergence; if not converged, return to step 2.

One of the original methods proposed in 1847 by Cauchy [36] is the method
of steepest descent. In the method of steepest descent the direction vector

d; is chosen as follows:

_or
Ba:k'

Which means dj, is in the direction of steepest descent of I at point z;. Next

d, = (2.8)

A is found such that I (z; + Ad;) is minimized by:

ol (.’L‘,‘ + )\d,)

S =o. (2.9)

An example of this method is given for a two by two matrix by

1 8 —4 x 16
I(x,y)=§{w y}[_4 8}{y}—{w y}{4}~ (2.10)

If the starting point of (-1,0) is used, then di = (24,0) and a graphical repre-
sentation of the process is shown in Figure 2.3. One particularly disappoint-
ing feature of this method can be observed in Figure 2.3 where zigzagging
takes place. As the difference between the highest and lowest eigenvalue of
the matrix Kj; increases the zigzagging becomes more pronounced. As the
eigenvalue spectrum spreads the contour plot becomes more elliptic (the dif-
ference between the major axes and minor axes increases). However, if the
initial direction vector is chosen as an eigenvector this zigzagging will not

OocCcur.
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By requiring the d; vectors to be H-conjugate we obtain the conjugate
gradient method. The H-conjugate condition can be expressed as: d;H;;d; =

0 for ¢ # 3. Here,
i
v axiaxj

is called the Hessian matrix. Within the context of a quadratic functional,

(2.11)

the Hessian matrix is simply the stiffness matrix (H;; = Kj;). Using the same
example as before with the same starting point and direction, we require the

second direction vector to satisfy:

0={z y} oot (2.12)
—4 8]0

Hence, d;, = (1,2), as shown in Figure 2.4.
The use of conjugate gradient method for an N dimensional quadratic form
results in convergence to the exact solution in N iterations or less (only if
infinite precision is used) [37]. A complete description of these methods can
be found in the literature by Jennings [37], and Golub and Van Loan [18].
Most conjugate gradient methods are related to the methods of Hestenes and
Stiefel [38] which were developed in 1952. Since the time of Hestenes and
Stiefel, a large quantity of work in the area has been performed. Even today
this research area is very active. Fletcher, Reeves, Powell, and Davidson
[39, 40] played vital rolls in the early development of the conjugate gradient
methods. As a result, there are several methods which bear their names.
Some of these methods are in wide use today. Fried [41] first suggested use
of these gradient methods for solution of a finite element system matrix.
Jennings [42] showed a theoretical relation between the error reduction e,

minimum and maximum eigenvalues Ay and A, and the required iterations k
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k< J G—’ll) In (%) (2.13)

Jennings described this equation as an upper bound for the convergence rate,

since it is solely based on the extreme eigenvalues. Jennings also looked into
the detail of preconditioning such that (%i'f) decreases, thereby increasing the
convergence rate.

The subject of unsymmetric matrices is handled by premultiplying the
system of equations by the transpose of the unsymmetric matrix. The ram-
ifications of such a procedure are two fold; possible destruction of sparsity
and decrease of the convergence rate. However, this method is very effective
as shown by Prakhya [43]. Axelsson [44] addressed unsymmetric matrices
by use of the Krylov sequence. Jea and Young [45] developed three forms
of Lanczos algorithms by using the idealized generalized conjugate gradient
methods. One of these Lanczos algorithms will be used in the present re-
search work. At the present time, little work has been performed using any of
these methods in the solution of the incompressible Navier-Stokes equations

that use the segregated approach.

2.3.4 Preconditioning

As stated previously Jennings [42] showed a theoretical relation between the
error reduction and condition number of the system matrix (%‘f) This gives

rise to a simple question, can we change the system:

(K] {z} = {b} (2.14)
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in some way such that the condition number will decrease thereby increasing
the convergence rate? The system is premultiplied by a preconditioner matrix

[M] as shown below:

[M][K]{z} = [M] {b} (2.15)

If [M] = [K]™" the condition number of the system matrix [M][K] is 1, and
the conjugate gradient method will take only one iteration to obtain an exact
solution (remember the equation given by Jennings is an upper bound on the
convergence rate). One may conclude that the closer [M] is to [K]™", the
quicker the conjugate gradient method obtains a solution. Obtaining this
matrix is the entire focus of the area of preconditioning. The basic idea is
to perform some type of operations on the matrix [K] in order to obtain
the matrix [M]. This will usually be an incomplete or approximate inverse
to [K]. One of the simplest methods is Jacobi preconditioning. In Jacobi

preconditioning we alter the equation in the following way.

[B] {y} = {d} (2.16)
Where,
[1B] = [Q7" [K]{QI™ (2.17)
{v} = Q] {=} (2.18)
{d} =[QI™" {8} (2.19)
Qi; = VK 6. (2.20)

This effectively places unity on the diagonal of [B] and all non-diagonal terms

in [B] are less than one. Other forms of preconditioning include: incomplete
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Cholesky, incomplete block, and domain decomposition methods [37, 46].
While these ideas are effective they will not be included in the present re-

search. Only Jacobi preconditioning is used in the present work.

2.3.5 Element-by-Element Structure

One of the advantages of using the conjugate gradient methods comes from
the construction of the global matrices themselves. In the finite element
method, one constructs the global matrices by adding contributions from

each individual element matrix into the global matrix.

(K] = ; [K€] (2.21)

Matrix vector operation using this global matrix can be performed as shown

below.
K] ) = (1) (0 (222)
Or keeping up with the indices,
N
(o) = K1 0} = (S 1T 03 (2.23)

This equation implies a three level loop given by,

Do e = 1 to Nelements

Do i = 1 to Nnodes per element
Do j = 1 to Nnodes per element
v(g(i)) = K(e,1,j) * u(g(i))

EndDo j
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EndDo i
EndDo e .

Here the g(i) vector is a steering vector used to direct the local node i to
the global node g(i). By using the conjugate gradient method, the only
required operation for equation solution is a matrix vector multiplication.
Hence, the global matrices never need be assembled. With this in mind, an
element by element solution scheme may be devised based on element matrix
times global variable multiplication. A very important feature occurs within
the conjugate gradient methods, these methods have no sensitivity to either
nodal or element numbering methods. Remember, the frontal method is very
sensitive to element numbering, and profile or banded solution methods are
very sensitive to nodal numbering methods. Conjugate gradient methods
need no element or nodal reordering for efficient solution of the system ma-
trices. Such a method is perfect for an adaptive method where new degrees
of freedom are added at will. The frontal or profile solver would need a
complete reordering of the elements or nodes to obtain an efficient solution
scheme. While this can be done, if several levels of adaptation take place,
the time required to reorder the nodes and elements would be very restrictive

and perhaps impossible.

2.4 Hierarchical P-Element Formulation

Much attention has been given, as of late, to the accuracy of general numer-

ical solutions. In order to assure a numerical solution is in fact accurate,
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one must have some other semi-exact solution in which a comparison can be
made. If the numerical formulation is consistent, a solution on a fine mesh
will be closer to the exact solution than that of a coarse mesh solution. With
this in mind, a practicing engineer has the simple task of generating succes-
sively finer grids and obtaining solutions on these grids until the difference
between two successive solutions is minimal. At this point the engineer can
effectively use the solution as a design tool. Unfortunately, this process is
often impossible due to time and financial constraints, and the engineer must
sacrifice his professional reputation in the design process.

A relatively new finite element procedure has been developed to address
the problem of solution accuracy. Instead of remeshing the domain succes-
sively, we allow each element to increase its number of degrees of freedom in
some manner. This method will obtain solutions which approach the exact
solution in the limit. Upon adding the new degrees of freedom, the existing
basis functions are kept, and the solution from the previous step can conve-
niently be used as an initial guess for the next solution. If the element basis
functions are constructed in this way, the matrix contributions for any pre-
vious degree of freedom are embedded within the present element matrices,
and convergence to the exact solution is guaranteed through the inclusion
principle (Meirovitch [47]). The p-element formulation seeks to increase the
number of degrees of freedom by increasing the polynomial order while re-
taining existing basis functions. This type of finite element formulation has
been termed hierarchical formulation. Zienkiewicz et. al introduced this con-
cept as early as 1971 [48], but the concepts were not put into a useful form

until 1976 by Peano et. al [49, 50]. By 1981, a theoretical basis for the p-
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element method was established by Babuska et. al [51, 52]. In 1984, Patera
et. al produced a spectral element method for fluids [53, 54, 55].

There are many similarities between p-element and spectral element ap-
proaches. The spectral element methods use Chebyshev polynomials and
collocation to develop the equations. By contrast, the p-element method
is more general, allowing for any acceptable weighted residual method, any
higher order polynomial type, and Gauss integration techniques.

Several problems presently exist within the frame work of p-element for-
mulations. Originally, published results seemed to indicate hierarchical p-
element formulation reduced the condition number of the global stiffness
matrix, as compared to Lagrange isoparametric elements of the same or-
der [56, 57, 58]. This being true, one may justifiably assume that even
though the two element formulations Lagrange isoparametric and hierarchi-
cal p-element, are based on the same set of monomials from Pascals triangle,
how one actually chooses the basis function plays a significant role in deter-
mining the condition number of the global stiffness and mass matrices [59].
Knowing these facts, one may conclude that not all p-element formulations
produce well conditioned matrices. In fact, many times, p-element formula-
tions give worse conditioned matrices than an equivalent Lagrange element
formulation. In the present work, a p-element formulation will be developed
in both two and three-dimensions. At the present time, there have been
very few usages of p-element formulations in incompressible flows, and no
usage of the p-element method for incompressible flows in three-dimensions.
It is the goal of this research to step into this area by developing a three-

dimensional capability using the p-element formulations for the simulation
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of three-dimensional incompressible flows.

2.5 A Posteriori Error Analysis

The use of hierarchical basis functions delivers another advantage in the area
of error analysis. A typical numerical analyst will go through a simple pro-
cess to obtain an accurate numerical solution. First obtaining a solution on
a course grid, then a fine grid, and finally comparing the two. The ana-
lyst would quit when two subsequent solutions did not differ by a specified
amount. During this process, it is implied that the latest solution is very
close to the exact solution, and if a consistent numerical scheme is devised
this assumption is valid. If this process is carried out using hierarchical

elements, then
4

T=Y UT, (2.24)

=1
4 ' n
T =Y U,Th+Y &, (2.25)
=1 =5

where T is the solution to the standard finite element problem, and T" is the
solution using hierarchical element enrichment. The difference between the
two solutions is
4 n
E=T'-T=3Y 0 (TI-T.) + . (2.26)
i=1 i=5
Hence the difference between the two solutions can be observed by simply

plotting £ over the domain. This plot can give guidance as to where in the

domain further refinements need to take place.
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2.6 A Priori Error Analysis

In a posteriori error analysis it is implied that the error between the two most
recent solutions gives a measure as to future error trends. Although this
may be true, we seek to know future trends in the error without knowledge
of the past error trends (a priori). This can be done within the context of
hierarchical finite elements, by obtaining an incomplete solution to the fine

grid solution and comparing this solution to the coarse solution.

2.7 Contributions

In this section an enumeration of possible contributions is made. In the work
of Comini and others [11, 12, 13, 14] only two-dimensional flow is considered.
In fact, at this time no three-dimensional analysis using this particular for-
mulation has appeared in the literature. This is not due to any formulation
difficulties, so the transition to three-dimensions should be straight forward.
No work has been performed using this formulation in conjunction with p-
adaptive procedures (in two or three dimensions). In the literature for this
particular formulation, no iterative solution methods have been used, only
direct inversion methods. The present work seeks to fill these gaps in the

literature.



Chapter 3

Problem Formulation

3.1 Governing Equations

In order to obtain a set of governing equations, attention must be directed
to a set of dynamical force balance equations. Using an Eulerian description

of motion these equations can be written as shown below.

Opu;  dpuiu; y
ot + oz; _pf'+(9xj (3.1)

Where rhos is the fluid density and u; is the fluid velocity. If the fluid in
question is homogeneous, isotropic, and Newtonian then the stress o;; can

be written as a function of the strain rate by
0ij = — (P — Aewx) 8 + 2pe;. (3.2)
The strain rate ¢;; can be expressed as:
1 {0u; Ouj
== =4+ =) 3.3
€ 2(axj+ax,-) (3.3)

30
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The Eulerian form of the mass continuity equation can be expressed as shown

below.
dp Opu;
b? t a.’L‘,'

If the flow is incompressible then the co-moving derivative of the density (%‘f

=0 (3.4)

is zero and the mass continuity equation is reduced to

gz—: == 0. (3.5)
This situation occurs often in the physical world. Examples include; low
speed flow of air and other gases, and the flow of water or other liquids.
Using this form of the continuity equation, the constitutive equations may

be reduced to:

0i; = —pbi; + 2pe;;. (3.6)
Substituting the constitutive relations into the momentum equations for a
constant property fluid (p = C) yields

Bu, pu Ou; g Bp 0%y
Pat TP, =Pl gr T Haz00;

(3.7)

These two sets of equations, continuity and momentum, can be solved in a
variety of ways. One approach is to solve the momentum equations subject
to a constraint applied to the velocity field such that the mass continuity is
satisfied. This constraint is actually applied through the pressure. By forcing
the pressure to obtain the correct distribution over the domain, the velocities

will satisfy both the momentum and mass continuity simultaneously.
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3.1.1 Penalty Formulation

The penalty method seeks satisfaction of the continuity equation through an
actual constraint applied to the momentum equations. If the pressure and

velocity gradients are related by

. 8uk
P="T5 (3.8)

Where 7 is an specified large number, the continuity equation will be satisfied
in an approximate sense. In order to implement this idea a weighted residual

statement of the momentum equations is sought.

3u, an a(f]z
]ﬂau,-( B gy ki axj)dﬂ_.o (3.9)

Carrying out an integration by parts yields:

ou; ou; O0du;
/Q [5ui (p—gt— +pu]-—a—$; - pf) +0jim— 5 J dQ) — / bu;ojn;dl’ =0 (3.10)

Substituting in the constitutive equations gives:
Ou; Ou; Qbu; Ou;  Ou;\ Obu;
Su; ; — - 2 “ [ dQ
/9[“( at+"fa ”f) Poz TH (8:1:J+61:,~) axj}

- / 5u,-crj,-nde‘ =0 (311)
r

Inserting the penalty pressure terms gives:
Ou; 8 Ouy Odu; Ou; Ou;\ Obu;
5 ; : i i 7 1
/ [u ( at S+ 8 pf) T oz 0, +ﬂ(8a:j+8xi) 8xj]dﬂ

- /F(Suiajmde‘ =0 (312)

In order to obtain reasonable approximations for the velocities, the penalty

terms must be made singular through reduced integration methods. The
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main advantage of using the penalty method is the reduction in problem
size. In the mixed method the velocities and pressures become the depen-
dent variables whereas in the penalty method only the velocities become the

dependent variables.

3.1.2 Segregated Formulation

The segregated approach to solving the Navier-Stokes equations treats the
pressure-velocity coupling in a different way. The method presented and
used in this work is that of Comini and Del Guidice [11, 12]. This method
uses a pseudo transient approach to obtain the steady state solution. The
method adjusts the pressure field at the end of each time step such that mass

continuity is satisfied. The dependent variables are written as:
w; = uy + u (3.13)

p=p +p". (3.14)
The superscript (*) terms are estimated values, and the superscript (') terms
are corrected values. Substituting these relations into the momentum equa-
tion, where u? is the velocity at time level n, the following linearized mo-

mentum equations result:

our N Ou; " ou? i Ou; of, op* Op + 0%u; N 0%
ot TP TP 7 9x; P 7 9 pli Ox; Oxz; uaxjaa:j ﬂaxjaa:j
(3.15)

!

Assuming the term g—:% approaches zero as the solution approaches conver-
7

gence, the following momentum equations are obtained.

ou:  Ou, du op* 9p O%u;

4 p—t X _pyn - —
ot T ot P 83:]-+pf Oz; 83:,'+'u8:vj8:1:j

(3.16)



34

The fact that u; does not appear in these equations does not affect the final
steady state solution to these equations, since all correction terms disappear

in a converged solution. These equations are split into two solution steps as

follows:
ou; 20Ul 8p* O%ul
= .1
arr i 9z, .t M zs0s, (3.17)
Bu 8p
= 1
8t 63:, (3.18)
Taking the divergence of the last of these equations yields:
2 '
d Ou, 0 Ou; . 0p (3.19)

Por. ot Potor, 0z,

The continuity constraint is enforced at each time step by setting the diver-

gence of the final velocity to zero.

oD _ D"*'-D* D*+D -D"

ot At At (3:20)
Where,
aui
D=—. 3.21
3z, (3.21)
Using equation 3.19 and 3.20 the p equation can be written as:
o*p ¥
p__ p0u (3.22)

Ozp0xr At Oz

The solution takes place first by satisfying the momentum equations, then
the velocities are adjusted such that the continuity is satisfied. The final
velocity field does not satisfy the momentum equations unless u; = 0.

The solution proceeds in the following way:

1. Guess a pressure p*.
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2. Solve the momentum equations for ;.

ou’ ou’ dp* 0?u;
IO g § . — d 3.23
TR o L e vy (323)
3. Solve for the pressure correction p .
o%p p our
= —— 3.24
Bxkaxk At Ba:,- ( )
4. Solve for the velocity corrections u;.
ou, op
il P 3.25
ot Ba:i ( )
5. Update the variables.
w;p = u; +u} (3.26)
p=p +p° (3.27)

6. If the solution has not reached steady state go back to step (2).

At this point no reference has been given to a solution scheme, therefore
either a finite difference, finite element, or control volume method may be
applied to these series of solution steps equally well. For the present research

only a finite element method will be used to solve this set of equations.

3.1.3 Segregated vs. Penalty Formulation

One may justifiably ask, “What is the advantage, if any, to using the segre-
gated method over the penalty method?”. To answer this question, several
examples follow which may shed some light on the differences between the

two methods. The conditions for comparison are as follows:
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e The connectivity is run through the Cuthill-McKee renumbering se-

quence in order to minimize the bandwidth of the system of equations.
e All problems are run on a NeXTstation 68040 computer at 25 Mhz.

¢ Only problems requiring less than 14 megabytes are run. This prevents

the computer from relying on swap space.

o All solutions in this section use the LINPACK routines. The routines

used depend on the type of equations being solved.

¢ All solutions are stepped through time until the convergence criterion

specified by equation 3.28 has been satisfied.

N (ur — u2t1)? 4 (o0 — ort1)?
2iz1 [(“z U )2 + (v, 2' ) ] < 0.1At (3.28)
£ [+ ()]

¢ Only two dimensional flow will be considered for this comparison.

The penalty formulation for fully implicit time integration of the element

equation 3.12 becomes:

11 12 n+l n <
[BL [B*] {{u}} z[[M] IO]H{U}} +{{F}}.(3.29)
(B [B¥]] | {v} [0] [M]] | {v} {Fv}
Where,

[BY] = [M]+ At{2u[S"] + p[S?] + 7 [S"]p, + p[Al}
(B = At{u[S?" +7[5}

[B%2] = [M]+ At{[SY] +21[S%] + 7[SP]; + p[A]}
M] = p[S™)].

(3.30)



37

The subscript RI in these equations refers to the reduced integration terms.

The elemental form of these matrix equations are shown below.

v, v\ .,
Ayj _./m\p (u—a—+ 8y)d9 (3.31)
W [ 000U ~ ~
S = o 92, 9z, ——dQ® where 1=z and z2=y (3.32)
- /9 pfo0idQC + ﬁ t,0;dT* (3.33)
- /ﬂ pf, Ui + fr t,0;dT (3.34)

Equation 3.29 represents one matrix equation to be solved at each time step.
Once this equation is assembled, the bandwidth becomes twice plus one of the
corresponding bandwidth of a single variable problem. This fact will become
important in the direct comparison of penalty vs. segregated methods. The
solution process for the segregated method is similar to that of the SIMPLE
method [9]. Within the context of fully implicit finite element methods the

solution proceeds as follows:
1. Guess an initial pressure distribution P*.

2. Solve each momentum equation.

o [M] + pAt[A] + pat [K|| {w} =

(3.35)
—At[CT (P} + At {R7} + p[M] {u}"

[o[M] + pAt[A] + pat [K]] {v*} =

(3.36)
—At[CY]{P"} + At{R} + p[M] {v}"
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3. Solve the pressure correction to enforce continuity.
(K] {P'} = -L I} + [ {v )]
4. Solve the velocity corrections.
[M]{i} = -[c*]{r}
(M) {v'} =-[c"]{P}
5. Update velocities and pressures.
{}™ = {w}+ae{ur)
{0} = {r}+ar{s}
(P} = {P}+{F}
6. Test for convergence, if not converged, then:
{w}={u}™
{} = {o}""
{Fy={p}"

Return to Step 2.

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

The elemental level components of the matrices are defined as follows:

(5] = [s7] + (5]

: _ AT
cz= [ w52 dn

T

(3.46)

(3.47)



39

o,

v = [ 9,2% 40 3.48
¢t = [, Vg (3.48)

Ou
e [ 9, 2% gre . dQ° 3.49
R /pe‘l"andr +p/m\11,fxdﬂ (3.49)

ov
v— [ 9,2% gre o, dO° 3.50
R = [ wglar +p/m\1:fy Q (3.50)

Programming

Solving these sets of matrix equations for both the penalty and segregated
methods can be very challenging. In this section a brief description of the
matrix solution methods is given. The routines used for both of the finite
element methods are the LINPACK routines [16]. In the penalty method
the [A] matrix changes each iteration. This gives rise to a change in the
complete system matrix each iteration. Since the system matrix changes each
iteration, the matrix must be factored and solved during each iterative step.
The system matrix is also unsymmetric, requiring the LINPACK routine
DGBFA to factor the system matrix and DGBSL to obtain a solution from
the factored set of equations. In the segregated solution scheme there are
five solution steps within each iteration, two momentum, one pressure, and
two velocity corrections. However, on closer examination, the one pressure
and two velocity correction equations are linear and symmetric. Therefore,
the pressure and velocity correction equations do not change each iteration.
For this reason the [K [] and [M] need only be factored once, before the time
loop. The LINPACK routine DPBSL is used to accomplish this task. Once in
the time loop, the system matrices associated with the u* and v* momentum

equations, are factored using the routine DGBFA and subsequently solved
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using DGBSL. Since the [K’] and [M] equations are previously factored,
only a short amount of time is used to obtain solutions to P', u', and v'.
The size of the segregated system equations are one-half the size of the
corresponding penalty formulation. Therefore, one would expect quicker so-
lution time per system of equations. Yet, there are five systems of equations
in the segregated formulation, verses one in the penalty. In the segregated
method only two factorizations occur within each time step, along with five
back substitutions. All of the LINPACK routines used are banded equation
solvers. Hence, it is instructive to notice the bandwidth characteristics of
both formulations. The bandwidth of the penalty method system equations

are related to the segregated system of equations by:

hbw, = ndim * hbw, + 1. (3.51)

hbw, = halfbandwidth for penalty
hbw, = halfbandwidth for segregated (3.52)
ndim = dimension of the problem, two in this case

The halfbandwidth quoted throughout this chapter is for one degree of free-

dom per node.

Cavity Problem

The cavity problem has been used for years as a validation problem for incom-
pressible flows. Work began as early as 1966 [60] on numerically predicting
flow in a cavity. Since that time, numerous investigations have been per-
formed on this problem. A particularly complete study was performed by

Ghia and Ghia [61]. In their work, grids with as many as 66,000 nodes and



41

20 x 20 = 400 elements 30 x 30 = 900 elements
441 nodes 961 nodes
half bandwidth = 61 half bandwidth = 91

Figure 3.1: Grids for cavity examples

Reynolds numbers as high as 10,000 were calculated. They included a table
of centerline velocity values for each set of flow conditions. In the present
example, grids with 961 and 441 nodes are calculated. This is only a com-
puter hardware limitation and not a formulation limit. The grids are shown
in Figure 3.1. The boundary conditions for the cavity problem are shown
in Figure 3.2. The boundary conditions at the singular points on the upper
corners of the domain are shown as: v = 1, and v = 0. The initial condi-
tions within the cavity are zero velocities. The half-bandwidth specified in
Figure 3.1 is for a single degree of freedom per node only.

The computer timing results are shown in Tables 3.1, 3.2, 3.3, and 3.4.
As shown in these tables, the segregated solution method is very competi-
tive with the penalty method as far as computer time is concerned. At low
Reynolds numbers the penalty method performs better than the segregated

method. This better performance is due to a simple fact; in equation 3.37 as
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!

\ u=0 v=0 /

Figure 3.2: Cavity boundary conditions

Table 3.1: Segregated runs on a 30x30 cavity

Re | computer time/step #of | At | computer time | Computer time | Computer time
Linpack (sec) time steps Overhead (sec) | Linpack (sec) | Overall (sec)
100 12.54 28 1 179.84 351.18 531.02
100 12.55 27 2 175.38 338.95 514.33
1000 12.30 65 1 398.42 799.20 1197.62
1000 12.30 52 2 322.38 639.84 962.22




Table 3.2: Penalty runs on a 30x30 cavity

Re | computer time/step #of | At | Computer time | Computer time | Computer time
Linpack (sec) time steps Overhead (sec) | Linpack (sec) | Overall (sec)
100 41.29 14 1 110.83 578.11 688.94
100 40.80 8 2 74.51 326.38 400.89
1000 40.91 59 1 376.30 2413.84 | 2790.14
1000 40.71 34 2 228.28 1384.11 1612.39
Table 3.3: Segregated runs on a 20x20 cavity
Re | computer time/step # of At | Computer time | Computer time | Computer time
Linpack (sec) time steps Overhead (sec) | Linpack (sec) | Overall (sec)
100 2.88 26 1 68.92 74.81 143.73
100 2.89 25 2 67.25 72.16 139.41
1000 2.83 65 1 163.69 183.64 347.33
1000 2.74 52 2 129.39 142.31 271.70
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Table 3.4: Penalty runs on a 20x20 cavity

Re | computer time/step #of | At | Computer time | Computer time | Computer time
Linpack (sec) time steps Overhead (sec) | Linpack (sec) | Overall (sec)
100 7.98 13 1 38.47 103.70 142.17
100 7.97 8 2 28.17 63.78 91.95
1000 8.04 72 1 161.77 578.73 740.50
1000 8.08 40 2 94.38 323.28 417.66

p becomes small, so too does the right hand side of the P’ equation, and, as
a result, the P’ distribution is very small. This results in a slow convergence
of the pressure which in turn slows the convergence of the entire system of
equations. In fact, if one attempts to solve for Reynolds number equal to
zero by setting p = 0, equation 3.37 will give P* = 0 throughout the domain,
and the segregated solution method will never converge. This problem does
not exist if the equations are written in non-dimensional form [11]. How-
ever, the penalty method can converge in one iteration for Reynolds number
equal to zero. At higher Reynolds numbers, the segregated method tends to
out perform the penalty method. At all Reynolds numbers, the amount of
time spent within the LINPACK subroutines is much less for the segregated
method than for the penalty method.

A comparison to the previously reported data of Ghia [61] is shown in
Figures 3.3, 3.4, 3.5, and 3.6. At a Reynolds number of 100 the comparison

to Ghia’s work is reasonable. However, for a Reynolds number of 1000, the
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Figure 3.3: Cavity U velocity profiles at Re = 100

grids used in the present work were not fine enough to capture an accurate
solution. This inaccurate solution exists for both the penalty and segregated

solution methods.
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Figure 3.5: Cavity U velocity profiles at Re = 1000
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Figure 3.6: Cavity V velocity profiles at Re = 1000
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Backstep Problem

Flow over a backward facing step has become another major validation case
often chosen over the cavity case. This preference is due to the existence of
a singularity in the cavity flow, and the presence of a shear layer behind the
backstep.

Armaly et. al [62] studied this problem in extreme detail. He reported
laser-Doppler measurements for Reynolds numbers between 70 and 8000
thereby covering the laminar, transition, and turbulent regimes. Several au-
thors held GAMM-Workshop to produce a volume of work consisting of ex-
perimental and numerical prediction of flow over a backward facing step [63].

Case (iii) from this GAMM-Workshop is used here for comparison pur-
poses. The geometry, boundary conditions, and Reynolds number are shown
in Figure 3.7 The grid and data chosen for the simulation contains 1404
elements and 1512 nodes as shown in Figure 3.8. After use of the Cuthill
McKee algorithm, the halfbandwidth for single degree of freedom per node
is 49.

Ay
< 22 >
u=v=0
—\ u=4y (1-y) Re = 150 T
v=0 P=
= v >x 1.5
<— 3—> 0.5 }

A u=v=0

Figure 3.7: Backstep geometry
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Figure 3.8: Backstep grid
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Figure 3.9: U velocitys at x=3.8

Comparisons to the experimental data of Kueny and Binder [64] are
shown in Figures 3.9, 3.10, and 3.11. Both the penalty and segregated solu-
tions compare favorably with the experimantal data. The penalty solution
showed some problems downstream of the backstep. This problem could be
attributed to the difficulty in obtaining a constant downstream pressure of
zero. The work of Yagawa and Eguchi [65] may be consulted for further
information on this subject.

As seen in Table 3.5, the segregated method performed equally as well

as the penalty method. In fact the computer time required for a solution is
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Figure 3.10: U velocitys at x=>5.0
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Figure 3.11: U velocitys at x=7.0
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Table 3.5: Computer runs for two dimensional backstep

Method { Computer time/step #of | At | computer time | Computer time | Computer time
Linpack (sec) time steps Overhead (sec) | Linpack (sec) | Overall (sec)
Pen. 23.62 42 1 314.96 992.31 1307.27
Seg. 6.81 56 1 480.02 381.20 861.22
Pen. 24.43 22 2 185.37 537.52 722.89
Seg. 6.88 33 2 290.22 227.03 917.25

lower for the segregated method than for the penalty method. Both methods
performed very well when compared to the experimental data of Kueny and

Binder [64].

3.2 Numerical Comparisons

In this section, a numerical simulation of the cavity flow defined in Figure 3.2
is performed. This simulation is based on the segregated solution method
presented in previous section with an iterative solver, as described in the
next chapter. The goal of this section is quite different from previous sections
within this chapter. The goal is to obtain a solution which will correlate very
well with previously reported data. For this comparison the data of Ghia [61]
will be used. Five different grids were used in order to obtain a converged
solution. These grids are shown in Figures 3.12, 3.13, 3.14, 3.15, and 3.16.

Using these five grids the solution was obtained for a Reynolds number of
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Figure 3.12: 25x25 grid for cavity simulation
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Figure 3.13: 35x35 grid for cavity simulation
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Figure 3.14: 45x45 grid for cavity simulation
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Figure 3.15: 55x55 grid for cavity simulation




56

Figure 3.16: 75x75 grid for cavity simulation
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Figure 3.18: V velocity comparisons at Re=100
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Figure 3.20: V velocity comparisons at Re=1000
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100 and 1000. A comparison to the numerical solutions of Ghia [61] is shown
in Figures 3.17, 3.18, 3.19, and 3.20. As shown in these figures, the finite
element solution approaches the solutions of Ghia as each grid becomes finer.
This shows a convergence to the same solution as that obtain from Ghia. A

velocity vector plot for the 55 x 55 grid is shown in Figures 3.21, and 3.22.

3.3 Conclusions

The work of this chapter enforces the belief that the segregated method is
indeed a viable method of choice in the solution of incompressible fluid flow.
As compared to the penalty method, the segregated method requires less
time for higher Reynolds numbers, and more computer time for the lower
Reynolds numbers. Also, the segregated method requires less time within
the LINPACK routines for all cases per time step.

In the last section, the segregated solution method is used to converge
cavity flow to previously published data of Ghia [61]. This section shows the
ability of the method to converge on an increasingly finer mesh. Hence, the

method is shown to be consistent.



Chapter 4

Iterative Solutions

4.1 Matrix Condition Number

The condition number of a matrix plays a crucial role in the solution behavior
of an iterative scheme. The condition number is defined as the ratio of
the largest over the smallest eigenvalue of the matrix. As the condition
number becomes larger, iterative solution methods require larger amounts
of computer time. Iterative solution methods are far more susceptible to
high condition number matrices than are direct solution methods. Computer
time required to obtain a direct solution of a matrix is not a function of the
condition number. However, the accuracy of the direct solution of a matrix
is a function of the condition number. Hence, a direct solution may be able
to obtain an acceptable solution whereas an iterative solution method will
not be able to obtain a solution at all due to computer time limitations.

In the penalty method, the constraint portion of the system matrix is

62
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made singular by reduced integration techniques. This singular matrix is
multiplied by the large penalty number, and added to the remaining portion
of the system matrices. This procedure yields a system matrix which ap-
proaches a singular or ill conditioned matrix as the penalty number increases.
Iterative methods are very sensitive to this condition number as shown in
equation 2.13. Hence, as the condition number increases, so too does the
number of iterations required to obtain an acceptable solution. Carey et.
al [66] studied this problem of the penalty method and in his conclusions he
states; “Preconditioning is seen to be an itmportant and sensitive issue and
iterative performance for the linear problem is poor”. In reading through
this paper it becomes apparent just how difficult an iterative solution to the
penalized Navier-Stokes equations is to obtain. Actually, unless precondi-
tioning is used in one form or another, the iterative penalty solution will not
converge.

As an example, the 20x20 cavity problem is run at three different penalty
numbers, and the condition number is examined at each iteration to obtain
the plot in Figure 4.1. Reddy [15] suggests a penalty number of 1 x 106 < 103,
However, as the penalty number becomes large, the condition number of
the matrix increases and an iterative solution requires larger amounts of
computer time. For this reason the iterative penalty solution is not attempted
in the present work. Interested readers may find the work of Gunzburger [67]
and Reddy [68] of interest in relation to the iterative penalty methods.

The condition number for the various steps involved in the segregated
solution method is shown in Figure 4.2. Note in this figure that there is a low

condition number for the momentum and velocity correction equations, but
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Condition number vs. Iteration for 20x20 Cavity

106 7

Matrix Condition Number

T

10 3 i t
0 5 10 15 20

Iteration Number

Figure 4.1: Matrix condition verses iteration, penalty method

a relatively large condition number for the pressure correction equation. It is
expected that the pressure correction equation may supply more problems to
an iterative solution method than either the momentum or velocity correction
equations.

The present chapter is dedicated to the investigation of the use iterative
methods applied to the segregated finite element formulation. In this chapter
an investigation is carried out using several types of iterative methods to solve

each of the equations within the segregated solution method.
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Figure 4.2: Matrix condition verses iteration, segregated method

4.2 Iterative Methods

The iterative methods used in the present work are of the gradient type.
These methods can be looked at as a minimization of the norm of the residual,
r = Az—b, in some sense. The type of method used depends on the properties
of A. If A is symmetric and positive definite, then the standard conjugate

gradient method is used. If A is unsymmetric then the biconjugate gradient

method is used.
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4.2.1 Conjugate Gradient Method

The conjugate gradient method of Hestenes and Stiefel [38] is used for sym-

metric positive definite matrices. The algorithm is presented in equation 4.1.

{z%} = arbitrary
{r’}= {}={b} - (4] {=}
Dok= 0,1,2,3.4,...
() = )
A = {»} {v*} (4.1)
{er1) = {=*} + o {p}
1 = ) - 1]
%= )
{proi}= {1} -5 (o}

EndDo

4.2.2 Biconjugate Gradient Method

This method was displayed by Jea and Young [45] as a method for solving

nonsymmetrizable linear equations. This method is actually the “biconjugate
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gradient” method of Fletcher [69)].

{z°} = arbitrary

{#°} = arbitrary

{r’t= {%

= )

Do k= 1,2,3.4,...
{w} ={r'}
{#) = 14" {#")
{a*1} = {o*} + 2 {0t} (4.2)
{rnt}={r'} =2 {ut)
{roh = {r) - {at)
{pry={r} - {p}
() = () - e )

{} ir"t

A = 2{Uk_}‘; iﬁk}

rk

Ay

ay

EndDo

4.2.3 Preconditioning

Theoretical and numerical evidence show that these methods converge fairly
rapidly when the system matrix eigenvalues are clustered together on the real
axes. As seen in Figure 4.2, this is the case for the momentum and velocity
correction equations, but not the case for the pressure correction equation.
There is no guarantee that the momentum or velocity corrections equation

always has a small cluster of eigenvalues for every problem. This brings up
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the question of how to change the matrices such that the eigenvalues become
clustered without changing the system of equations. Answering this question
is the entire focus of preconditioning.

There are fundamentally three forms of preconditioners; left, right, and

two—sided. If you start with the system

[Al{z} = {}. (4.3)

Then left preconditioning is obtained by:

(@17 [A]{=} = [Q]7" {8} (4.4)

Right preconditioning is obtained by:

([A1[Q™") [Q] {=} = {b}. (4.5)

And two-sided preconditioning is obtained by:

([Q217 [A1QA ™) (1Qr) {z}) = [Qc] ™ {b} . (4.6)

If [Q]™' = [4], then [Q]™'[A] = [A][Q]™" = [{], and all of the eigenvalues
are unity. In this case the conjugate gradient methods will converge in one
iteration. The goal in two sided preconditioning is to obtain [Q 7] ™" [A] [Q&] "
= [I]. In short, the goal is to obtain a matrix [@] which is an approximation
to [A] and is easy to invert. Omne of the simplest forms of preconditioning
is the Jacobi preconditioning. This method is also called scaling due to the

fact that the new matrix is unity on the diagonal, and less than one for all

off diagonal terms. The two-sided form of Jacobi preconditioning is:

(ID17% [A[D]7%) (ID)? {=}) = [D]™% {0} . (4.7)
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Where [D] is simply the diagonal of [A], je. D;; = Aqyi)6ij. In effect the
left and right preconditioners are, [QL] = [Qgr] = [D]"%. Other methods
include incomplete factorization methods, successive overrelaxation methods,
and polynomial methods. Only the Jacobi preconditioning method is used

throughout this work.

4.3 Direct vs. Iterative Solutions

Is the iterative method of solving equations any better than the direct method
of solving a set of simultaneous equations? This is an important question
when a programmer is faced with solving a large set of equations. In the

next section, results of several comparisons are presented.

4.3.1 3-D Cavity Flow

The three-dimensional cavity problem is run with several different grids. In
these runs the iterative preconditioner of the Jacobi type is used. Due to
the large computer core required for solving three-dimensional problems, a
frontal type solution is used as the direct solution method. The problem
chosen for comparison is that of a three-dimensional driven cavity flow. The
cavity is a cube with all side dimensions equal to one. The grids are of the
sizes, 10 X 10 x 5, 15 x 15 x 10, and 20 x 20 x 15. The flow is driven by a lid
at y=1.0 as shown in Figure 4.3. The singular points, where the top of the
cavity join the sides of the cavity, are assigned a velocity of u = 1, v = 0,

and w = 0. The grid shown in Figure 4.3 contains 6000 elements, and 7056
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Figure 4.3: 3-D cavity grid

nodes (20 x 20 x 15).

In order to make comparisons between the direct and iterative solution

methods the different size grids were run through 5 time steps. Such a test

is universal in the sense that, for any Reynolds number, the same number

of time steps will be required of the direct and iterative methods in order

to obtain the steady state solution. The iteration type solutions have one

parameter which determines if a solution is converged. The convergence
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COMPUTER TIME VS. NUMBER OF NODES FOR 3-D CAVITY
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Figure 4.4: Computer solution times

parameter in the following example is expressed in equation 4.8.

r;T;
<1078 4.8
bjbj C <10 ( )

Such high accuracy is important in obtaining good conclusions with regards
to computer timings. Figure 4.4 shows the computer times for each grid and
five time steps. The iteration method uses Jacobi preconditioning throughout
the simulation. The computer times (in seconds) were taken from a NeXT
computer. A further expansion of the plot of Figure 4.4 is shown in Fig-
ure 4.5. In both plots the nature of each solution method can be observed.
The numerical data seems to validate the theory that the iterative conju-
gate gradient methods tend to follow a linear path of convergence, where the

elimination methods tend to follow a nonlinear path [37] (see equation 4.9).

CPUjime = A x NF + B (4.9)

equations



72

COMPUTER TIME VS. NUMBER OF NODES FOR 3-D CAVITY
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Figure 4.5: Computer solution times, expanded

Where P = 1 for conjugate gradient methods, and P > 1 for direct elimina-
tion methods. (Note: A and B are constants). Such behavior has also been
shown previously by Reddy [68].

Results for a Reynolds number of 100 and 1000 are shown in Figures 4.6
thru 4.11. Figures 4.6 and 4.7 show the velocity vectors at the Z center-
line plane in the cavity. The velocity distribution looks much the same as
with two-dimensional flow. The Reynolds number 1000 flow tends to show
a much smaller boundary layer on the impinging wall than the Reynolds
number 100 case. Figures 4.8 and 4.9 also show this trend in the vortic-
ity profiles. The pressure force driving this flow down the impinging wall
is shown in Figures 4.10 and 4.15. The Reynolds number 1000 flow shows

a very large pressure gradient down the wall, as compared to the Reynolds
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number 100 flow. This same distribution can be seen from Figures 4.12 and
4.13. Figures 4.14 and 4.11 show surfaces of constant pressure. Every point
on the surfaces is of constant pressure. These isopressure surfaces show a
pressure distribution which is definitely three-dimensional in nature. Pres-
sure distributions such as these cause secondary recirculation zones at the
bottom back of the cavity. This secondary recirculation zone is a result of

the of a pressure gradient perpendicular to the direction of flow.



74

VELOCITY

R e e e e e e e e
i lwﬂ. nmx M __MM LHM %M‘MTM#«. \M NH\Jk\ m — KI% ;
S e e = i
J, e e === : AL \V L.)
i .].//I/.// ~ - -~ o~ \3\4\ \A\\gi
NN N Ra \\4\1\ r
j I \//;//////;//1 N J \4‘ T
man 7 NN jit ‘J.\E
,i ._" /- N NN NN N . ‘\ﬂg\ T
Hf i [ NN NN NN ,_ j\\.j‘;ﬁ%\g
,..fm | A W W N W W A R S N ,A;J.F i
d,f_ zw_ / . o ’ ’ / / VLV v ' ixrx[..H-Qrg ]
L A A A A A LG
i N N i
RN A A A i
il // A A A A A T
N \_ s 0000 ; .n,.J,”,:j,f
L I BRIyl
;__“ Ny s ittt
[hil —— e o s s s s iy
it f_. B ‘-/j/ | o
,:_‘m:__ e .Jzz./z?/ /,/
A ” e e T i e e e ——x - |1/J/r /./,17
e e o e T s e e St S === I
I==========s—=-——c g\
I S=== e =——=-
7 + —F : - — - — : .

100

0.5 for Re=

Figure 4.6: Velocity at Z



75

VELOCITY

1000

\\'

.

!7/4//7//// ~ o~
e .I’/////// NN

~

"

-y
N
—

1} I Vi s T i L 2 Z
— 1 3 s rd rd Fi
- T I rd 4 £ —
{ s —_ i 7 z P
- ra = s Y 7 7 Z
— I S rd 7 I £ -
H b N p— Fé y Z
ya T 3. 7 y - Z A
T s 7 v s ra b .
H i T rs ‘e T J—_4 11
——t I—7 7 va ya
T —. Ls s v 2z P a— 4 rd
3 1 7 v o
= N L~ S R 7 s v 1A
N — % ~ va

AN

| _ PR N
i ~ Lo RN RN il
| Vv ” AR A RA f
i T Y N N N W ]
] Voo 1
\ \ |
H / / \ \ \ \ . N \ ////a//”/ ,\XJJ
] / A W Y N N Py f v 4.‘J
M // / \ AN AN -~ - - / \ ‘ — ﬂ ” REERE S o
%.1 // NN N N . o A \ ‘ “ _ J...Axg
vig \ ////.’lll\\\\ \ \ \ \ M+
Hi 1 S S
" ////..!..llu.\.\\\\\\ / fy#
i ettt f;
; e e e e i el R 17..4
il T e e e e e e et o S ’ M J/
| S
y e e M .w .,.. wM;%..J..;JX 114
Tt e e =22t

1000

0.5 for Re=

Figure 4.7: Velocity at Z



76

3

2-CONPONENT OF VORTICITY

CONTOUR LEUVELS
Gt

orso -
2.09008
4, BB L

i
-20.0000
-18.0000 H
-16.0000
-14.0000 4
-12.0000
-10.0000
-8.00000
-6.00000
-4.,00000
-2.00000

0.00000 R
2.00000
4.00000 Gt
6.00000 g

Figure 4.8: Vorticity at Z=0.5 for Re=100



7

2-COMPONENT OF VORTICITY
— Re_z 1000

2 e % D o B

CONTOUR LEVELS; |7 >
74, #5008

308
2.50008 ‘
4, 00008 . L
5, 50088 e
7. G i

-20.0000 ¥

-18.5000 :

-17.0000 g

-15.5000

-14.0000

-12.5000

-11.0000

-9,5000

-8.00000

-6.50000

-5.00000

-3.50000

-2.00000 b

-0.50000 A1l
1.00000 AL
2.50000
4.00000
5.50000
7.00000

h
e W

T
3

) i
i

3

7 ? ; b 7 7 § : 1 %

Figure 4.9: Vorticity at Z=0.5 for Re=1000
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4.3.2 3-D Curved Duct Flow

The next example involves flow through a curved duct. The Reynolds number
based on the wetted perimeter is 900. The geometry is shown in Figure 4.16.

The dimensions of the duct are 1 by % The inlet and outlet sections of the
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Figure 4.16: Grid for duct flow
duct are 1.8 units long, and the radius of curvature of the duct is % units.

The grid size is 9 x 9 x 71, or 5751 nodes, and 4480 elements. The inlet
profile is a uniform distribution of velocity in the streamline direction, and

zero velocity otherwise.
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Figure 4.19: Pressure contours on duct walls
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The velocity down the center section of the duct is shown in Figure 4.17.
Isopressure surfaces are shown in Figure 4.18. The shape of the pressure
surfaces is a function of the distance down the duct. At the inlet and exit
to the duct the pressure surfaces are flat. However, at the beginning of the
curved portion of the duct, the pressure surfaces begin to distort and are no
longer flat. This variation in pressure can be seen further in Figure 4.19,
which shows a pressure variation perpendicular to the direction of flow. This
pressure variation causes secondary recirculation zones down the length of the
duct. This swirling flow can be seen in Figure 4.20, where a line of particles
are sent into a spiraling pattern as they flow down the duct. Figure 4.20
is produced by performing a 2"? order Runge-Kutta integration of particles
under the influence of the velocity field. Figure 4.21 is produced this same
way. In this figure the particles down the centerline of the duct are “pushed”

towards the outer side of the duct as they flow downstream.



Chapter 5

P-Adaptive Solution Method

In the traditional finite element method, higher order elements are obtained
through two types of interpolation, either Lagrange or Hermitian elements.
The reasons for the popularity among Lagrange and Hermitian element for-
mulations are the ease in which interelement continuity can be obtained and
the significance of the basis function coefficients. Any order element may be
traced back to Pascal’s triangle where all possible monomial combinations
are listed. If the basis functions are grouped into levels of increasingly higher
polynomial orders, these basis functions may be used in p-adaptive finite ele-
ment methods. In the present work tensor products of one dimensional basis
functions will be used to generate two and three dimensional basis functions.
With this in mind, it is instructive to look at a few one-dimensional examples.
In Figure 5.1 linear Lagrange basis functions are shown. Figures 5.2 and 5.3

show quadratic and cubic Lagrange basis functions.
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~1 0.5 0.5

Figure 5.1: Linear Lagrange basis functions

Figure 5.2: Quadratic Lagrange basis functions
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Figure 5.4: Linear basis functions
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Figure 5.5: Quadratic basis functions

—

Figure 5.6: Cubic basis functions
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Heiarachial basis functions prove very useful in the construction of the p-
adaptive basis functions. Three examples are shown in Figures 5.4, 5.5, and
5.6. The overall approach to obtain heiarachial basis functions is the same.
Start with the linear Lagrange basis functions, Figure 5.4, add a new basis
function which is zero at the ends of the element, and increases the polyno-
mial order by one. In this type of approach, all lower order basis functions will
directly exist in a higher order element. For example, the set of basis func-
tions in Figure 5.6 contain all basis functions existing in Figure 5.5. However,
in the Lagrange approach this embedding of the lower degree basis functions
within higher order basis functions does not exist. One advantage to such
an heiarachial approach is the ease in which higher order solutions may be
obtained. If a solution is obtained using linear basis functions throughout all
elements, then going to second order fuctional representation simply means
the addition of one polynomial degree per element. An approximate solution
will easily exist in the form of the linear solution plus zero times the quadratic
basis functions. Several forms of the heiarachial basis function exist. The
only requirements that added basis function must satisfy is they must be
zero at the ends of the elements, complete, and linearly independent.

As with two—dimensional Lagrange elements, two—dimensional heiarachial
elements are formed from the tensor product of one-dimensional basis func-
tions. Such tensor products give nine basic node types. The first four nodes
will be on all four corners of the quadrilateral element. These four nodes
all have one degree of freedom per node, and give the four basis functions
of a linear Lagrange element as shown in Figure 5.7. The second type of

node positions are those along the side of the element. These nodes can
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Figure 5.7: First four two-dimensional basis functions
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Figure 5.8: Two-dimensional side basis functions

have many degrees of freedom. However, these degrees of freedom may or
may not have any physical meaning. Four of these basis functions are shown
in Figure 5.8. The basis functions on the other three sides can be seen by
mentally rotating the figures 90 degrees at a time in the plane of the element.
The final group of basis functions are those associated with only the internal
degrees of freedom. These basis functions come from the tensor products

of one-dimensional basis functions of second order or higher. Some of the
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Figure 5.9: Two-dimensional internal basis functions

endless numbers of these basis functions are shown in Figure 5.9

The available degrees of freedom are shown in Table 5.1. This table shows
the degrees of freedom for each node shown in Figure 5.10. From this table
can be seen the following: if the polynomial order of the basis function is
4" order, then nodes 1 to 4 have one degree of freedom; nodes 5 to 8 have
3 degrees of freedom; and node 9 has 9 degrees of freedom. The actual
degrees of freedom for nodes 5 to 9 may not hold any physical significance.
However, one can choose to give them significance by selecting the higher
order basis function to be such that the derivatives are given at the side and
center nodes. Throughout this work the nodal degrees of freedom will not be

given any specific physical significance. The basis functions used are those
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Figure 5.10: Two-dimensional nodal numbering
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Table 5.1: Degrees of freedoms vs polynomial order

Node number
Order |1 (2|3]|4|5]|6|7|8] 9
1 1/1(1](1|0(0|0|0O|O
2 1|{1|1|1|1]1)1]1|1
3 1{1]11112(2|2|2]| 4
4 1]1(1({1{3|3[3|3|9
) 11111 (4(4|4(4]16
6 1(1|1({1{5]|5|5]|5]|25
111]1]1
suggested by Devloo [70].
1
=3 (1-9 (5.1)
1
br=35(1+8) (52
o =T (€) — 2 (&) — (=1)" 1 (§). (5.3)
Where T, (£¢) is the Chebyshev polynomials defined by:
T(§)=1 ~ (5.4)
h=¢ (5.5)
Tos (5) =2¢T, (f) — T (6) Vn2>2 (5'6)

These basis functions (up to fifth order) are shown in Figure 5.11. This
type of functional representation has been used to a considerable extent in

the area of spectral methods [71].
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Figure 5.11: Chebyshev basis functions
5.1 Interelement continuity

In order to obtain an optimal representation of the given dependent variable
over the domain, each element must be capable of obtaining its own polyno-
mial level. This brings up the question: “How should two adjacent elements
have differing polynomial order, while maintaining interelement continuity?”.
This can be answered by allowing the adjoining elements to have the same
number of degrees of freedom at the joining side node. For example, two
elements side by side are shown in Figure 5.12. The element on the left is
of order 2 and the element on the right is of order 5. From Table 5.1 we
see for order 2 the side nodes has 1 degree of freedom, and for order 5 the
side nodes have 4 degrees of freedom. To assure interelement continuity we
must assign the joining node between the two elements to have the same
number of degrees of freedom. In the present work all lower order elements

will be increased up to the higher order elements. In the example shown in
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P=5
@

Common Side (P=5)

Figure 5.12: Two adjacent elements

Figure 5.12, the common node will be assigned 4 degrees of freedom. The
functional variation of such an example is shown in Figure 5.13. This plot
shows the velocity corrections at time equal to 20 seconds. In order to dy-
namically change the degrees of freedom during a particular run, the data

structure of Demkowicz and Oden is used [72].

5.2 Backstep Flow

In this section flow over a backstep is investigated. The geometry and con-
ditions of Figure 3.7 are used. The grid for this particular case is shown

in Figure 5.14. Notice the difference between this grid and the one used in
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Figure 5.13: Example of interelement continuity



104

S |
T
| I T |
Figure 5.14: Grid for backstep problem

2 1 l 1 1 1 1 1 1 1 1 1 1 1

1 ; 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 |1 1 1

1L

b fliad b | = |

[ [ S

[T 115 ROR P Y
o fmfe] = [ | -

el = | = | -
[59 99 IS RORS i Y
mlele| = [~ | -
s fosfrs] = | = | =
(Y [SYIS) prous IV IS
[SY IS ROy o
(9% 5 Y e o

EEI 51 IR I
[ [OY 1V IR QORI

Figure 5.15: Grid with polynomial orders (step 1)

Figure 3.8 (Chapter 3) is that the grid used in this example is very coarse.
The first step of this backstep solution is the selection of polynomial
orders. The lowest possible values are selected, giving the polynomial order
shown in Figure 5.15. In this figure the numbers within each element are
the polynomial orders. Note: the elements at the inlet were selected to be

second order to allow the exact parabolic inlet distribution to be specified.

Through the adaptive process, the grids in Figures 5.16 and 5.17 were
obtained. Notice the increase in the polynomial order of the elements. The
velocity vectors from the first solution are shown in Figure 5.18. These

velocity vectors are in the vicinity of the backstep and are shown at each
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Figure 5.16: Grid with polynomial orders (step 2)

2

Figure 5.17: Grid with polynomial orders (step 3)
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Figure 5.18: Velocties over backstep

node within the elements. In Figure 5.18 the general quantitative nature of
the flow can be seen. However, the solution may not be as exact as expected.
So a very good question is: “What elements need their polynomial order
increased to obtain a more accurate solution?”. To answer this question an
error estimate must be obtained within each element. This in turn will supply
a guide to polynomial refinments. There are two equally valid approaches
to obtain an error estimate. The a priori method seeks to obtain an error
analysis before the next solution is completely finished, while the a posteriori
method seeks to estimate the errors after the next solution step is taken. In
the present example, the a priori error is the difference between two solutions,
the first being complete, and the second being an incomplete solution with
an increase in the polynomial order. The a posteriori method is executed
by comparing the difference between two successive complete solutions. This
process of convergence can be seen in Table 5.2. These tables can be seen
in graphical form in Figures 5.19, and 5.20. In the table and figures
the Lo error per unit area is shown. This error is actually the L, measure
between the two solutions, either an incomplete one (a priori) or a complete

one (a posteriori). With these facts in mind we proceed to display the errors
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Table 5.2: Ly error per unit area

Ly per unit area

Solution Step 1 2 3
U || 0.205539 | 0.021029 | 0.011045
A priori | V |[ 0.051994 | 0.012853 | 0.005635
P || 32.49240 | 1.196550 | 1.023490
U || 0.575857 | 0.093857
A posteriori | V | 0.078205 | 0.015796
P || 41.38130 | 8.534350

L2 Error

A priori Error

b : —&— U velocity

] ‘ —b— V velocity | :

5 —8— Pressure |

o, S — "

]

1 2 3
Solution Step

Figure 5.19: A priori errors
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Figure 5.20: A posteriori errors

graphically. Figures 5.21, 5.22, and 5.23 show the a priori errors in u—velocity.
Notice the error decreases as the polynomial order increases. Figures 5.24,
5.25, and 5.26 show the a priori errors in v—velocity and Figures 5.27, 5.28
and, 5.29 show the a priori errors in pressure. Notice all these errors decrease

as the polynomial order increases.
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Figure 5.21: A priori errors in U, (step 1)
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Figure 5.22: A priori errors in U, (step 2)
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Figure 5.23: A priori errors in U, (step 3)
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Figure 5.24: A priori errors in V, (step 1)



111

Error V

X

Figure 5.25: A priori errors in V, (step 2)
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Figure 5.26: A priori errors in V, (step 3)
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Figure 5.27: A priori errors in P, (step 1)
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Figure 5.28: A priori errors in P, (step 2)
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Figure 5.29: A priori errors in P, (step 3)
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With these errors a desicion about further refinements can be made, if
needed. The a posteriori error analysis is simply the difference between
solutions. This error analysis method is a bit more realistic in the sense that
the differences are real. The errors are the differences between two converged
solutions. These errors are shown in Figures 5.30, 5.32, 5.34, 5.31, 5.33, and

5.35. Notice the decrease in the overall error through the enrichment process.

The velocity vector representations of the first and second solutions are
shown in Figure 5.18 and Figure 5.36. In order to add validity to the
overall numerical method, the work of Kueny and Binder [64] is used for a
comparison in Figures 5.37, 5.38, and 5.39. Notice that as the polynomial

order is increased, the solution converges to the experimental solution.

5.3 Three Dimensional Backstep

By extending this method to the third dimension, several limitations become
evident. It is the goal of the author to show these limitations in order to spur
new research work into these areas. The problem chosen is that of flow over
a three-dimensional backstep. The geometry of the configuration is shown
in Figure 5.40. The Reynolds number based on the inlet perimeter is 400.
Two grids were developed, a fine grid and a coarse grid. The purpose behind
the development of two grids is comparative. The actual grids used in the
computation are shown in Figures 5.41, and 5.42. The grid in Figure 5.41
contains 621 elements, and is used to calculate the higher order solution.

The grid in Figure 5.42 contains 3960 elements, and is used to calculate the
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Figure 5.30: A posteriori errors in U (step 1)
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Figure 5.31: A posteriori errors in U (step 2)
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Figure 5.32: A posteriori errors in V (step 1)

Error Vv

x

Figure 5.33: A posteriori errors in V (step 2)
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Figure 5.35: A posteriori errors in P (step 2)

Figure 5.36: Velocities for solution step two
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Figure 5.37: Solution at x=3.8
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Figure 5.38: Solution at x=5.0
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linear solution using 8 noded brick elements. The inlet boundary conditions
are calculated assuming fully developed flow. Thus, the inlet profiles are

calculated using equation 5.7.

1: Coarse grid for three dimensional backstep

Figure 5.42: Fine grid for three dimensional backstep

)

(5.7

2

For the geometry at hand the solution becomes:

(5.8)

ey sin (i7)sin (j).

a
ijmA(i2

With this inlet profile we choose a pressure difference which gives a maximum
velocity of 1 (one) at the center of the inlet. With this inlet profile we may
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calculate the Reynolds number as shown in equation 5.9.

Re = Ye
P
U =10 (5.9)
I = 4.0

5.3.1 Solution
Fine Grid

The fine grid solution gives the U velocity contours as shown in Figure 5.43.
These contours are produced at various X locations down the length of the
backstep. At X=5.0 the flow has returned to a fully developed flow. This
phenomenona is attributed to the relatively low Reynolds number of the flow.

However, as with most flows over a backstep, there is a recirculation zone

Figure 5.43: U velocity contours, fine grid

just behind the step. In order to show this, U velocity contours are obtained
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for X = 3.2,3.4,3.6, and 3.8 as shown in Figure 5.44. This solution should
be approachable from the coarse grid solution by the use of higher order

elements.

Coarse Grid

The adaptive solution begins at a polynomial level equal to 1 throughout the
domain. This interpolation is equivalent to the standard eight noded brick
elements. The inlet boundary conditions are set such that the velocities at
the nodes correspond to values dictated by equation 5.8. The final solution
for polynomial level equal to 1 is shown in Figure 5.45. This solution is not
at the same level of accuracy as the solution with 3960 elements. However,
the general nature of the flow is captured.

The next step in the adaptive process is simply increasing the polynomial
order by 1, and repeating the solution process. It is instructive to look at a
plot of the a priori error in the u velocity at this point. This error plot is
obtained from the difference in the converged linear solution, and a one step
quadratic solution. This error plot may be seen in Figure 5.46. Figure 5.46
shows large errors at the center of each element. With these errors as a guide,
each element will be extended to include quadratic basis functions. This will
give 27 basis functions per element.

At each level the error indicator per element is determined. This error

indicator is based on the relation shown in equation 5.10.

(5.10)

7 - [, (6u? + 6v% + 6w?) d§d
vel = L (u? +v? + w?) dQ



123

U velocity @ X=3.2 U velocity @ X=3.4

Figure 5.44: U velocity contours behind backstep
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Figure 5.45: U velocity contours for step one

or in U velocity

Figure 5.46: A priori err
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Using this equation an error estimate for each element is determined. This
estimate may be considered to be a percentage change for each element.
Figure 5.47 shows the geometry for the coarse grid, where elements with

a ten percent or higher error are highlighted. @ This plot inticates that

Figure 5.47: High error elements for coarse grid

increasing the polynomial order of the elements just behind the step is in
order. However, for the moment, all elements are increased to second order,
and converged to the next solution. This gives the opportunity to observe
the a posteriori error as compared to the a priori error estimates. Converging
the second order solution gives the u velocity contours shown in Figure 5.48.
These contours are actually very similar to the contours shown in Figure 5.43.
However, at this stage of the convergence process the velocities are not correct
behind the backstep.

It is instructive to observe the a posteriori error analysis of the solution

between steps one and two. The a posteriori error contour plots of the
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city contour for step two

Figure 5.48: U velo

rror in U velocity

Figure 5.49: A posteriori e
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u velocity are shown in Figure 5.49. The error per element is shown in
Figure 5.50. This figure shows all elements with a twenty percent or greater
error in the velocity. Again the error seem to be mostly located just behind

the backstep. The error per element is shown in Figure 5.51. This figure

Figure 5.50: Elements with 20% or greater error

shows all elements with a thirteen percent or greater error in the velocity.
The next step in the convergence process is simply to increase the polyno-

mial level to 3 throughout the domain. This is where the actual limitations

of this method begins. The details of these limitations will be discussed in

the next section.

5.3.2 Polynomial Limitations

Up to this point very little has been said about the integration of the element
matrices. However, this is one of the major drawbacks of the p adaptive
method. To get a better feel for this limitation, Table 5.3 can be used to

observe the number of integration points required for each element integration
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Figure 5.51: Elements with 13% or greater error
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Table 5.3: Integration order for the mass matrix

Poly. Order Integration Points
Order | (mass matrix) | (1-D) | (2-D) | (3-D)
1 2 2 4 8
2 4 3 9 27
3 6 4 16 64
4 8 5 25 125
5 10 6 36 216
6 12 7 49 343
7 14 8 64 512
8 16 9 81 729
9 18 10 100 | 1000

for a typical mass matrix. This is still not the complete story. In Table 5.4

note not only the high number of integration points, but the increasingly high

number of basis functions which must be integrated, and the high number of

matrix terms. The column labeled ‘Function Evaluations’ can be explained

by observing the actual formula for Gauss integration. To integrate a three-
dimensional element we use the relation in equation 5.11.

1 1 1 n n n

[_1 /;1 /_1 f(z,y,2)dxdydz = ;;;wiijkf (26, Y5, 2k) (5.11)

The number of functional evaluations is simple, the number of times the

summation terms are evaluated multiplied by the number of functions to be
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Table 5.4: Integration for three dimensional mass matrix

Poly. Order Basis | Integration | Function
Order | (mass matrix) | functions points Evaluations
1 2 8 8 64
2 4 27 27 729
3 6 64 64 4096
4 8 125 125 15625
5 10 216 216 46656
6 12 343 343 117649
7 14 512 512 262144
8 16 729 729 531441
9 18 1000 1000 1000000
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evaluated.

To obtain a feel for the amount of computer time required, a simple com-
puter simulation was constructed. The runs consisted of one element. The
computer times were made nondimensional by the time required to construct
the matrices for an eight noded linear brick element. The actual time required
to construct this eight noded linear brick element on the NeXT computer was
1.7 seconds. The times are shown in Figure 5.52. One important note should
be made, the time given included the time required to read in and construct
the connectivity and to integrate linear portions of all of the matrices. How-

ever, the overhead time for one element should be very small. From this

Time Required to Construct Mass & Stiffness Matrices
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Figure 5.52: Times required at various polynomial orders

plot, the approximate time required to construct the 621 elements can be

determined. For a polynomial order of 5 the approximate time required to
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construct these matrices is 1864 hours or about 77 days. This time does not
include the time required to construct the convection portion of the matrix,

or the time required to solve the system of equations.



Chapter 6

Conclusion

An element by element iterative solution method has been developed us-
ing a segregated solution method for the incompressible Navier-Stokes equa-
tions. Using direct solvers, the segregated solution method is compared to the
penalty method for incompressible flows. The segregated solution methods
compare very favorably with the penalty methods. Next, iterative methods
are compared with direct solution methods. For large scale three-dimensional
problems, the iterative methods have a significant advantage over direct so-
lution methods. However, for thinly banded two-dimensional problems, the
iterative methods lose their advantages as far as computer solution times
are concerned. P adaptive element formulations are introduced at this point
in the work. These elements are free to reach a polynomial level indepen-
dent of all adjacent elements. Since the elements are hierarchical in form,
they can be conveniently used in error analysis and convergence strategies.

Both two and three-dimensional flow over a backward facing step is consid-

133



134

ered. The limitations of such element formulation were brought out in the

three-dimensional flow situations.

6.1 Segregated Formulation

The segregated solution method used is that of Comini and Del Giudice
[11, 12]. This segregated solution method gives direct solution times of the
same order as that of the times for the penalty formulation. In the context
of iterative solvers, segregated solution methods hold an advantage due to
their low conditioned matrices. By contrast, the penalty methods matrix

condition number is high making iterative solution methods very difficult.

6.2 Matrix Iterative Methods

As compared to direct solution methods, the conjugate gradient type meth-
ods hold a significant advantage over the direct methods. The use of such
methods have allowed problems which were previously restricted to a super-
computer to become solvable on high speed inexpensive workstations.

These iterative methods are classified as element by element methods.
The element by element methods never need assemble the global stiffness
matrix. Therefore, a large amount of computer storage is saved. In the
present work all symmetric matrices are solved using the conjugate gradient
method, and all nonsymmetric matrices are solved by use of the bi-conjugate
gradient method.

The number of iterations needed to obtain a converged solution is a func-
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tion of the condition number of the matrix. With this in mind, the need
for preconditioning becomes apparent. In this work the Jacobi or diagonal
preconditioning is used. This preconditioning, in effect, places unity on the
diagonal and less than unity on the off-diagonal terms. This type of precon-

ditioner is computationally very fast and efficient.

6.3 P Adaptive Methods

The use of p adaptive element formulations is inspired by the need to obtain
an accurate solution to a field problem. The hierarchical p formulation is
inspired by both the need to obtain an accurate solution to a field problem,
and the need to obtain a reasonable estimate of the error. The hierarchical p
formulation is developed by a telescoping series of higher order polynomials,
while retaining lower order functions.

The hierarchical p formulation is used in both two- and three-dimensions.
The formulation is implemented such that each element is allowed to reach
its own polynomial level independent of the other elements. The interelement
continuity is satisfied by increasing common element sides to the highest order
possible. The use of this adaptive methodology is shown to converge to the
exact solution in the two-dimensional backstep example. As the solution
approaches converegnce, the error indicators decrease with each increase in
polynomial order.

In three-dimensions, the problem of obtaining a converged solution is
very difficult. As the polynomial order increases, the number of required

functional evaluations for integration makes convergence through p adaptive
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methods restrictive. In the case shown, constructing the mass matrix for 621
elements takes on the order of 1864 hours for a workstation type computer.
Even for a supercomputer, which is 100 times faster, the computer time is in
the neighborhood of 20 hours. Adding to this the time required to construct
the other matrices and solve these matrices for each time step, the required

computer time for a complete steady state solution becomes restrictive.

6.4 Recommendations

It is obvious throughout this work that accuracy implies increased cost. This
fact is especially true for three-dimensional problems. For two-dimensional
problems, the order of the element shape functions does not produce an
impenetrable barrier to a solution. However, three-dimensional problems
do possess an impenetrable barrier to a solution. In fact, the amount of
computer time required to complete a solution with a small number of very
high order elements may be much larger than the time required to solve the
same problem with a very large number of linear elements. This comment is
made based simply on the amount of time required to integrate the higher
order shape functions and does not include the increased computational effort
required to solve the equations.

As with any new research area, there are many large stumbling blocks
which must be removed to advance the state of the art. Several extensions
to this work could be made in order to remove some of these stumbling
blocks. One very important research area is implementation of faster inte-

gration rules. Accomplishing this goal would have a large impact on the
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computational cost and make higher order approximations possible. An-
other important concern is the iteration performance for these higher order
elements. As the polynomial order increases, so too does the bandwidth of
the system of equations. Also, increasing the polynomial order increases the
bandwidth of the system matrix, which in turn slows the iterative conver-
gence. The condition of the matrix is also a concern. The ability to chose the
higher order element shape functions from a large space of functions gives
the freedom to chose the best functions based on the condition number of the
system matrices. The solution of the system matrices can also be improved
by use of an effective preconditioner. Using an effective preconditioner may

decrease the matrix solution time significantly.
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