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(ABSTRACT) 

Refractive index discontinuities in fiber optic transmission systems are known to 

cause deleterious effects. Non-negligible return losses associated with connectors and 

splices in present day systems cause intermittent error bursts and bit-error-rate floors in 

gigabit per second systems. These are attributed to the interferometric conversion of laser 

phase noise into signal-dependent intensity noise. This relative intensity noise (RIN) is 

substantially higher than the intrinsic RIN of the laser. The power spectral density of the 

RIN and its impact on the performance of incoherent on-off keying digital systems are 

calculated. 

The combined effects of this noise and other degradations present in the system are 

studied using a simple model. It is shown that even though RIN is a bounded degradation, 

it, particularly in conjunction with other impairments, results in high and sometimes 

unacceptable power penalties. Previous analyses are extended to include the effects of 

multiple reflections from a single pair of reflectors, the effects of a multiplicity of reflection 

points and the combined effects of reflection-induced noise and other impairments. It is 

shown that the effect of multiple reflections, although having only a small influence on the 

reflection induced noise power, changes the distribution of the noise and has more serious 

system effects. In the case of a multiplicity of reflection points it is shown that for as few 

as four reflection points, the Gaussian approximation gives results in good agreement with 

results calculated from a Gram-Charlier series approximation to the actual distribution 

function. Power penalties as a function of reflection coefficient are calculated and 

compared using several different approximations for the distribution of the interferometric 

noise. The methodology presented, although applied specifically to reflection induced 

noise, is applicable to a broader class of problems in which there are other signal dependent 

noise phenomena.
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1.0 Introduction 

The performance of single mode optical fiber systems may be affected by 

interference effects resulting from reflections that may occur at fiber joints such as 

connectors and endfaces [1]. These reflectors are essentially refractive index discontinuities 

along the fiber path. For example, an airgap between two connector endfaces can reflect as 

much as 22.4 % of the incoming power back towards the transmitter. If these reflections 

come back into the laser cavity, they result in a number of deleterious effects which include 

the shifting of the center frequency of the laser. The effects of reflections into the laser 

Cavity are minimized by including an optical isolator in the transmitter package. This thesis 

considers the effects of multiple reflections within the fiber path itself. Such reflections 

result in a delayed signal that interferes with the direct signal. This interference 

phenomenon results in the conversion of laser phase noise into intensity noise. 

Reflection-induced noise (also called relative intensity noise or RIN) in a fiber 

communications system is basically the result of interferometric conversion of the laser 

phase noise into intensity noise by the refractive index discontinuities in the system 

downstream of the isolator. The study of interferometric conversion of laser phase noise 

into intensity noise is not new, as the work of Armstrong [2], and Edgar and Weidel [3], to 

name a few, shows. However, the study of the system effects of such noise is relatively 
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new ((3] - (6]) and has attained increased importance as a consequence of the development 

of very high speed systems with bandwidths comparable to the linewidth of the laser. In 

prior lower bit rate systems, where the source spectral width was large compared to the bit 

rate, these effects are generally negligible, since the receiver filters out much of this noise. 

However, as the bit rate increases, and as the source linewidth decreases, the effects of this 

noise become more significant. Since it is difficult to avoid reflections at connectors and 

splices, and there may be many such discontinuities in the fiber path, this has become a 

major concern in the system design and physical deployment of fiber networks. Hence 

there is a need to understand and assess the impact of this phenomenon on the performance 

of fiber systems. 

The intent of this thesis is two-fold. One is to examine the effects of RIN in detail, 

considering it as a specific impairment in a fiber optic communications system. We first 

present the basic theory explaining RIN and summarize results from the literature. This is 

for a simple model that considers only a single pair of reflectors in the system. We next 

extend this model to consider the effect of other impairments in the system and also 

generalize the theory to explain discrepancies between the theoretical predictions of the 

simple model and experimental results. We also generalise the theory to assess the impact 

of more than two such refractive index discontinuities in the system. 

The second motive behind this work is to develop simple analytical models to 

evaluate the impact of signal-dependent noise on a general communications system. RIN is 

a typical example of such a noise process. We use RIN as a specific case and test the 

approximate methods we develop with exact calculations in special cases. The general idea 

behind trying these various approaches is that in many situations it is difficult to derive an 

exact analytical expression for the probability density function of signal dependent noise. 

Further, it is even more difficult to evaluate the error probability and thus the power penalty 

in such a situation - the integrals normally are at least two-dimensional and in general are 

not amenable to an analytical solution. (Power penalty is defined as the increase in signal 

input power required to achieve the same bit-error-rate performance of the system as in the 

absence of the impairment.) While numerical methods can be and have been adopted to 

estimate the error probability and hence the power penalty when the distribution of the 
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interference is known, there is some interest in trying to simplify the analysis by 

approximating the incompletely known probability density function by other simpler 

functions which may give fairly accurate results over a class of distributions. Some of 

these approaches are used to analyse this phenomenon of reflection induced noise and they 

may be extrapolated to handle a wider class of problems. Our motive is to try to gain some 

insight into the conditions under which different approximations may be used to model a 

physical noise process. 

It is important to note that although it is difficult to obtain accurate estimates of the 

actual probability of error, power penalty is in general a less sensitive function of the shape 

of the pdf and may be more easily approximated. In a typical power limited fiber 

communication system, we are generally more interested in the power penalty caused by an 

impairment than in the change in the error probability at a given power level. Owing to the 

steepness of the error probability vs. power curves, good approximations to the power 

penalty may be achieved without accurate calculations of error probability. 

Chapter two essentially summarizes the existing theory of RIN from the literature. 

The process of the interferometric conversion of the laser phase noise into intensity noise is 

explained, using a simple model. The mathematics describing the random variations in the 

laser phase are presented. Basically, the analysis is done with the laser assumed to be 

operating in a CW condition. 

In chapter three, the impact of this noise on a fiber communications system using on- 

off keying is considered. The initial part of this chapter again presents results from the 

literature. In the latter part of the chapter, the approximations to the probability density 

function of RIN developed by us are presented. In this chapter, only a single pair of 

reflections are considered and all other impairments in the system are neglected, with the 

exception of the receiver thermal noise, of course. | | 

Chapter four deals with the extensions to the basic model that are made to consider 

other impairments and a multiplicity of reflectors in the system. Again, the actual results 

computed with these extensions are used as a basis to test the results calculated with the 

approximations developed. 

In chapter five, the unmodulated (CW) laser is considered again. We present there 
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the outline of a model for the laser linewidth that qualitatively explains the discrepancies in 

the power spectrum of RIN that have been reported between theory and experiment [6]. 

In chapter six, we take a closer look at the physical causes of the reflections and 

relate them with the parameters of the models developed. | 

Chapter seven includes a summary of work done, conclusions drawn and 

suggestions for future work. 
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2.0 Basic Theory 

In this chapter, the theory developed in the literature ((2] - [6]) is summarised. The 

process of the interferometric conversion of the laser phase noise into intensity noise is 

explained by considering a pair of refractive index discontinuities as a Fabry-Perot 

interferometer. Some knowledge of the laser source modelling is imperative in 

understanding RIN. An outline of the model describing the random phase fluctuations of 

the laser source is presented. Lastly, the expressions for the autocorrelation function and 

the power spectral density of RIN are presented. It must be noted here that the effects of 

RIN are significant only in single mode systems. Even though RIN is present in a 

multimode fiber system, the effects of other impairments like mode-partition noise etc. are 

far more significant in determining overall system performance (3]. 
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2.1 Interferometric noise from two reflections 

A schematic of a fiber transmission line containing a number of refractive index 

discontinuities such as those occurring at connector endfaces, splices or interfaces between 

fiber pigtails and fiber optic components, including transmitters and receivers is indicated in 

Fig. 2.1 [6]. These interfaces constitute a number of Fabry-Perot interferometers which 

convert the laser phase noise into excess intensity noise. 

The Fabry-Perot interferometer formed by two discontinuities is considered first. 

The characteristics of the interferometer are determined by the intensity reflection 

coefficients R, and Ry, the round trip delay time t, and the single pass intensity 

transmittance a. The delay time t equals 2nd / c where d is the distance between the 

discontinuities, n is the refractive index of the fiber and c is the speed of light in free space. 

The laser is assumed to be operating under continuous wave (CW) condition, for which the 

input optical field into the interferometer is described as [7]: 

e; (t) = Eg exp (Gj Mot + 9 (t)) +C.c (2.1.1) 

where Ep is the field amplitude, Wp is the laser center frequency, @(t) is the random phase 

which contains all deviations from a monochromatic wave. This is explained in more detail 

in the next section. The output of the interferometer may be approximated as the 

combination of a direct and a doubly reflected field : 

e(t) = Va e; (t) + a4 YRiRz e; (t-t) + c.c. (2.1.2) 

The reflection coefficients have been assumed to be sufficiently small so that terms 

of the order (R;.R») and higher have been neglected. It is also assumed here that the 

doubly reflected field is polarized in the same direction as the incident field. The intensity 

I(t) = le(t)I?_ is detected at the receiver. From equation (2.1.2) the expression for I(t) can be 

written as : 

Basic Theory 6
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(taken from ref.[6]) 
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I(t) = oS I[ exp (j (ot + (1) +R exp (j (wolt - 1) + G(t- D)) + 
(2.1.3) 

exp(-j (wot + 9(t))) + R exp (-j @o(t- 1) + o(t- D)) JI? 

When taking the magnitude squared of the right hand side of eq.(2.1.3), terms with 

frequency Wp and 20)) are neglected since they are filtered out by the detector. Here, R is 

an effective reflection coefficient which depends upon the transmittance factor a and 

polarization alignment of the two interfering fields as well as the reflection coefficients R, 

and R>: 

R = a YRR2 (2.1.4) 

The fields are, of course, vector fields and the above assumes that they are parallel. In 

practice, there may be some depolarization in the reflections in which case R will further be 

reduced. Further, as indicated by eq.(2.1.1), amplitude fluctuations of the laser source 

have been assumed to be negligible (explained in the next section). Equation (2.1.3) can be 

written as 

I(t) =oE3[ 1 + p(t,0)] (2.1.5) 

where p(t,t) is the interference term given by : 

O (t,t) =2R cos (Mot + D(t,T)) (2.1.6) 

Throughout this thesis, it is assumed that the transmittance @ = | i.e. losses are neglected 

(unless explicitly stated otherwise). The phase noise variable in this equation is defined as 

follows: 

® (t,t) = H(t) - H(t - 7) (2.1.7) 

To develop a better understanding of the equations developed so far, a brief outline on laser 
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source characterization is presented next. 

2.2 Laser source characterization 

In general, the emission field of optical sources vary with time in a random fashion 

and are therefore statistical in nature [8]. This randomness can have either a quantum 

origin, generated inside the cavity or it may be due to external random perturbations. For a 

given polarization state, the emission field fluctuates randomly, in both phase and 

amplitude with a possible correlation between them. However, due to the damping of the 

amplitude fluctuations by gain saturation, semiconductor laser sources operating well 

above threshold exhibit negligible intensity fluctuation at or near the lasing frequency. As 

a result, the dominant contribution to the line broadening comes from the randomness of 

the quantum phase fluctuations which are primarily caused by spontaneous emissions 

within the laser cavity. Hence, the emission field for a single longitudinal mode of the laser 

source can be described by : 

e(t) =Egexp G(@ot + 9(t)) (2.2.1) 

with Ep as the instantaneous amplitude which is assumed to be constant, Wp the center 

frequency and p(t) the time varying phase of the laser. 

The phase is usually assumed to undergo a random walk process [9]. More 

specifically, it is a common assumption to take the Wiener-Levy random process as a 

statistical model for the random phase fluctuations of the laser light. This model explains 

many of the important properties involving the phase. 

According to the Wiener-Levy model [10], the phase itself is a non-stationary zero 

mean Gaussian random process whose autocorrelation function is given by : 
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(@ (t1).@(t2)) = § min (t,t2) (2.2.1) 

where t, and t are two arbitrary time instants, “min” denotes the smaller of the arguments 

and € is a proportionality constant determined by the particular physics of the process being 

considered. In addition, the Wiener-Levy process has the important property that although 

the process itself is non-stationary, the first increments are stationary and independent. The 

first increment is nothing but the phase difference : 

P(t) = P - Ht-7) (2.2.2) 

Hence, (t,t) is also a zero-mean Gaussian process, with a probability density function 

given by: 

® ] o” po (®) = bee (-5S— )     

The variance 62(t) is given by: 

o? (2) =((9(t) - g(t-2))”) 

Using eq.(2.2.1), this is evaluated to give : 

o* (t) = t& + (t-)& - 2& min (t,t- 1) 

= E itl 

The coherence time of the laser is defined by : 

o* (t) = el 

Basic Theory 
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Hence, 

= 1 2.2.6 g t (2.2.6) 

It is readily shown that the power spectrum of the field emitted by the laser is given by : 

E3 Av 

2 

(f- fy + OY 
P(f) = 

where 

Av = —lL (2.2.7) 
2NT 

Note that Av is the full width half maximum (FWHM) linewidth of the laser and fg is the 

center frequency of the laser. This corresponds to a laser power spectral density function 

having a Lorentzian line shape. In the development of these expressions, the effects of 

relaxation oscillations on the laser lineshape have been neglected. Using these formulas, the 

autocorrelation and the power spectral density of the interference term p(t,t) are evaluated 

in the next section. The Wiener-Levy model is equivalent to assuming that the 

instantaneous frequency fluctuations Ot) are a white noise Gaussian process. In practice, 

high frequency phenomena (relaxation oscillations) affect the spectral line shape [11], and 

as will be shown in chapter five, low frequency thermal phenomena may also affect the 

spectral shape of RIN. 
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2.3 Power spectral density of RIN : 

The interference term p(t,t) defined in eq.(2.1.6) shows how the random 

fluctuations in phase are converted into intensity fluctuations called Relative Intensity Noise 

(RIN). The noise spectral density is calculated from the Fourier transform of the 

autocorrelation function R(t,t) : 

R(t,t) =( p (1,7). p (1 +t, t)) (2.3.1) 

= E[p (t,t). p(t, +t, t) ] 

Time averages are equated to ensemble averages since the process is assumed to be 

ergodic. The autocorrelation function R(t,t) is then given by : 

R (t,t) = E[{R exp((@ot + (t) - P(ty - T)) + R exp(-j(@ot + H(t) - H(t}-T))}. 
. 3.2) 

{R exp(j(Wot + M(ti +t) - M(ty+t - T)) + R exp(-j(@ot + Pty +t) - P(t, +t-T)) }] 

= E[Rexp(j (Mot + P(ty) - P(t; - T) + P(t + ty) - P(t + ty - T)) 
2 ; (2.3.3) 

+R exp Gj (P(t + t1) - P(t + tr - T) - O(t1) + MP(ti-t)) ] + c.c. 

These random variables p(t,,t) and p(t,+t,t) are statistically independent if the ime 

intervals over which the phase difference is taken are disjoint [7]. Noting further that : 

E [exp (90) - (t- =) ] = exp(-&) (2.3.4) 

the autocorrelation function can be easily evaluated to give : 
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R (t,t) = 2 R?{ exp (- 2xAvi{t| [1+ COS 2WoT. exp (-4nAv(t -[t])), [t] <t 
(2.3.5) 

exp ( - 2xAvt ) [ 1+ cos 2w@ot ] It] >t 

The power spectral density is obtained by taking the Fourier transform of R(t,t) : 

RIN (f) = | R (t,t) exp ( - jot ) dt (2.3.6) 

After subtracting the d.c. term, RIN(f) is found to be : 

RIN (f) = 4R? [—_4v— ]. { sin2(wot).{ 1 + e4mAvt . 2 e2Avtcos2nft | 

™ “f? + (Av) (2.3.7) 
+ cos%(aot).[1 - e4navt - 2 e-2nave AY sindnte J } 

From this expression, it can be shown that the maximum conversion of phase noise to 

intensity noise occurs when the direct and doubly reflected fields interfere in quadrature, 

i.e. 

Qt = (n+>)n (2.3.8) 

For this case, in the limit of 2xAvt << 1, 

RIN (f) > 18 Rav <2 sinc? ft (2.3.9) 
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Thus, in the limit of small phase fluctuations, RIN is proportional to Av. In this limit, very 

narrow linewidth lasers exhibit less interferometric intensity noise. However, for longer 

delay paths t, with 2Avt >> 1, the interfering terms combine incoherently. For this case, 

RIN(f) approaches a functional dependence given by : 

  RIN (f) = AR [—4°], — @2navt >> 1) (2.3.10) 
f2 + (Av) 

independent of the phase offset ot. Eq.(2.3.7) is plotted [6] and is shown in Fig. (2.2) 

for R, = Ry = 6%, Av = 43 MHz, and the delay t = 50 ns. It is generally the incoherent 

case that is encountered in practice. In the above example, 2mAvt = 13.5. A delay of 50ns 

corresponds to a distance between reflectors of 5 meters, not atypical for fiber jumpers. 

2.4 Integral of Relative Intensity Noise : 

From eq.(2.3.7), it is seen that the interferometric noise is frequency dependent and 

is proportional to signal power. The impact of this noise on system performance will 

depend on the total integral of RIN(f) over receiver bandwidth. For very wide linewidth 

sources such as LEDs, the power spectral density of the intensity noise is small, as is the 

integrated noise power. For low speed systems, the receiver bandwidth too is small and 

most of the noise is filtered out. For high bit rate systems however, where the system 

bandwidth is substantially greater than the source linewidth, the integral of RIN can be 

large, substantially impacting system performance. It can be seen that RIN(f) decreases 
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rapidly for f >> Av. In fact, in the incoherent case (2nAv t >> 1), over 90 % of the noise 

power is contained in the frequency band 0 < f < 6.3 Av. In the high bit rate case, 

8° = { RIN(f) df (2.4.1) 
0 

1 - exp (- 4tAvt), @ot = (n+ son 

= 2R2 (2.4.2) 
1 + exp (- 42 Avt) - exp (- 2mAvt), Wot = nt 

The normalized integral 8° / 2R? is plotted in Fig.(2.3) for the two cases mentioned 

in eq.(2.4.2) corresponding to the phases of the direct and doubly reflected fields 

interfering in quadrature and in phase respectively. For both cases, the integral of RIN 

rapidly approaches a value of 2R* when Avt 2 1, corresponding to incoherent 

interference. This is the condition most generally encountered in present DFB laser direct 

detection schemes. 
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3.0 System Penalties 

3.1 Introduction 

Interferometric intensity noise is a signal dependent noise which can lead to 

performance degradations in fiber systems, and can even cause bit error ratio (BER) floors. 

A BER floor is said to occur when the error probability asymptotes towards a non-zero 

value. Even arbitrarily large increases in the input signal power do not result in lower error 

rates. In chapter 2, the noise spectral density of RIN was calculated for the case of an 

unmodulated laser. To estimate system penalties resulting from interferometric noise, a 

typical fiber transmission system based upon binary on-off keying (OOK) of the laser 

transmitter is considered. Non-return-to-zero (NRZ) formatted data is considered, with the 

laser pulse waveform for an isolated “one” given by : 

a(t) =1 , 0<t<T 
} (3.1.1) 

=0 , otherwise 

where T is the bit duration. Other line coding schemes influence the statistics of RIN 

differently. This is discussed in greater detail in chapter six. In the case of two reflectors, 
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i.e. one reflection term, the electrical current at the receiver, which is proportional to the 

- optical intensity, is given by: 

id) = { Ela +viy] +n } Oh (3.1.2) 

where proportionality factors are suppressed, h,(t) is the receiver impulse response 

function and v(t) is the RIN term given by: 

v(t) = 2 Ya(t) a(t- t) R cos (wot + D(t,t) ) (3.1.3) 

(see eq. (2.1.6)) Here, n(t) is an additional noise term that represents the receiver thermal 

noise. 

The interference term v(t) depends upon the product a(t). a(t - t) and therefore upon 

the data sequence. Only very high bit rate systems and narrow linewidth sources are 

considered so that all of the interferometric noise is assumed to fall within the receiver 

bandwidth. Hence the effect of the receiver impulse response function will not be 

considered any further in the analysis. Further, only the case of incoherent interference is 

considered, for which the argument of the cosine function in eq.(3.1.3), (at + ®(t,7)), 

may be treated as a_ uniformly distributed random variable. As will be shown later, the 

probability density function (pdf) of the interferometric noise is distinctly non-Gaussian. 

Nevertheless, in order to compute power penalties from this noise, it is convenient to 

approximate the noise as having a Gaussian pdf. This approximation leads to a closed form 

expression for the power penalty, and for small penalties provides relatively good estimates 

(determined by comparison with actual penalty). However, in order to compute large 

performance degradations or BER floors, the actual pdf should be used. The analysis has 

been carried out using both pdfs and is presented in the next two sections. 

The remainder of this chapter deals with the various approximations to the 

distribution of the interferometric noise made for reasons explained in chapter 1. 

The signal at the receiver decision point may be written in the following general 

form: 
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y = a+xRatn (3.1.4) 

where R is the reflection coefficient, n is the signal independent Gaussian noise, and x is 

the random variable representing the interferometric noise in the on-state. This formalism 

incorporates all the randomness of the phenomenon into the variable x which is 

independent of R and a. It will be assumed that the decision threshold is set at the value in 

the absence of signal dependent noise (a/2), although some improvement in performance 

may be achieved [13] by adjusting the threshold if the statistics of the signal dependent 

noise are known. This is discussed further in section 4.1. The noise is assymmetric and 

therefore the errors are dominated by those in the on-state. The error probability can then 

be expressed as : 

Pe = prob. { xRa+n <-a} 
L 2 (3.1.5) 

= prob. {x>b (1-207 ) } 

where 07 is the variance of the thermal noise. Or, 

P = 1 ue F 1 1-H wl. E x | du exp( >? {sar uy} (3.1.6) 

where & =a / 20 is the signal to thermal noise amplitude ratio, u=n/o represents a 

zero mean unit variance Gaussian random variable and 
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F(E) = [« p(x) = prob. (x>&) (3.1.7) 

1e F(-°) =1, F(0)=1/2, F(e) =0. This is depicted graphically in fig.(3.1). 

For R = 0, Px is given by the integral of the tail of the Gaussian distribution. For 

R # 0, Pg is given by the integral of the product of F and the p.d.f of the zero-mean unit 

variance Gaussian distribution. Clearly, P, is critically dependent on the tail of F 

extending towards the peak of the Gaussian. 

Basically, in each of these next sections, the random variable x is approximated 

differently. 

3.2 Analysis with Gaussian approximations : 

The received signal is of the form : 

y (t) = a(t) + xRa(t) + n(t) (3.2.1) 

where a(t) is given by eq.(3.1.1), x(t) is the noise term assumed to have a Gaussian 

distribution, and n(t) is the thermal noise term, which is a zero mean Gaussian process. 

Let 1; and [tp denote the expectation values, and 6,2 and op” the noise variances 

of the signal y(t) for “ones” and “zeros” respectively. Let D be the decision threshold to 

which y(t) is compared. | 

The decision rule is then given by [12]: 

choose hypothesis Hy (a(t)=0)if y < D, 

choose hypothesisH, (a(t)=1)ify > D, 

The probability that the decision will be in error ( i.e. the error probability ) Pr is 
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then given by : 

PE = i prob. { vtn <D | H } + + prob. { vt+tn>D | Ho } (3.2.2) 

where it is assumed that there is equal (1/2) probability for transmitting a zero and a one. 

For Gaussian - distributed noise, the probability of error can be expressed as : 

~latt-D La, P-Ho 
Pe = 2 CG ) + 2 ) (3.2.3) 

where : 

_ ~ l _ x2 
aca) = [ ae oxP ( 7) ax (3.2.4) 

The shot noise due to the signal itself is negligible for PIN receivers. In the absence 

of other signal dependent noise sources, the noise variances for y(t) are the same for both 

““ones” and “‘zeros”’: 

of} = of} = (2?) (3.2.5) 

where < n2> is the variance of the thermal noise. The optimum decision level is then 

midway between the expectations 1, and [p. For the case where there is no intersymbol 

interference : 

Ho = 0, hy = B,D = ot (3.2.6) 

The interferometric noise represented by x in eq.(3.1.3) affects only the “1” bits. Assuming 
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that the threshold is not reoptimized, ie. D = 1/2 even in the presence of the 

interferometric noise, the probability of error P, is given by : 

= 1La¢ Pty 4 Lact Pe = 3Q(55-) + FQ) (3.2.7) 

The case of reoptimized thresholds is discussed in [13]. The noise variance o,? for 

“ones” can be determined from equations (3.1.2) and (3.1.3) as follows : 

(y) = MW, 

of = (x2)- (y}? G28) 
= ( (EG (a(t) +2 ¥ a(t) a(t- 1) R cos (wot + (t,2)))?) 

Now, <cos?(.)> = 0.5. Further, successive symbols are assumed to be independent 

because the time delay t is assumed to be fairly large ( corresponding to incoherent 

interference) so that: 

(a(t) a(t-t)) = ( a(t-t)) = , (3.2.9) 

since a(t) = 1 only. Hence 0,” can be written as : 

Of = % + 2E§ (a (t- 1))(R?) (3.2.10) 

of + p?(R?) 
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For moderate power penalties, P, will be dominated by the first term in eq.(3.2.7) (the 

error term due to “ones”). From eq.(3.2.7) and (3.2.10), the power penalty incurred in 

maintaining a probability of error= 10° is determined as follows : 

= 1 Hi = 9 Pg 7 Q¢ 30; ) = 10 (3.2.11) 

Let 

HL 
20) k 

where k is such that Q (k) = 2.10%. The value of k which satisfies this equation is 

found from standard statistical tables and approximately equals 6.0. From eq. (3.2.10), 

py 
  =k (3.2.12) 
2V a+ U3 | R2) 

or, after some algebra, 

2 
Pi. __k’ (3.2.13)   

403 1-4k¥R2 

The power penalty P is defined to be the increase in optical signal power necessary to 

maintain a given error probability (10-9 in this case) : 
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  P = 10 log ( (0) 

~ : 2 
L-4k'\R (3.2.14) 

=- 5 log (1- 4kXR?) ) 
=-5log (1- 144(R?) ) 

for k = 6.0. 

If the decision threshold is reoptimized, i.e. no longer fixed at 1/2, it can be shown 

that the power penalty is given by [13]: 

P = - 10 log (1 - 36(R?)) (3.2.15) 

The quantity <R*> is the expectation of R? defined in eq. (2.1.4). If the loss between the 

two reflection points is minimal, as assumed, and the polarizations of the direct and doubly 

reflected fields are aligned, then : 

(R2)'? = YRYR2 (3.2.16) 

For randomly aligned polarization states and arbitrary transmittance B, 

(3.2.17) (R27 - 1B YR, Ro 

An examination of eq. (3.2.14) reveals that it predicts an infinite power penalty i.c.a BER 

floor at10~? for: 
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(R?) 2 = 85% 

which gives some idea as to the maximum allowable reflectivities in systems. The 

dependence of reflection coefficient on physical parameters of splices and connectors is 

discussed in chapter six. 

3.3 Analysis with actual pdfs : 

Although the Gaussian approximation is useful in that it simplifies the analysis, 

produces closed form expressions for the power penalties and even provides good 

estimates for small penalties, it is not useful in estimating BER floors. The Gaussian 

approximation is a pessimistic one because of the infinite tail. However, as will be shown, 

the pdf of the interferometric noise does not extend to infinity, in fact it is sharply bounded 

by the limits t 2 for the case of a single pair of reflectors. The expression for the pdf of the 

interferometric noise is derived below. 

The interferometric noise term is given by eq. (2.1.6) : 

x(t) = 2 cos (Wot + D(t,T)) (3.3.1) 

where (t,t) is the difference in the phase at times t and t-t respectively (described by 

eq.(2.1.7)) and recognising the fact that R has been decoupled from x. Assuming © 

incoherent interference, @(t,t) is taken to be a random variable uniformly distributed over 

[- %, % J so that y(t) = wot + ® is also uniformly distributed. The p.d.f of x is calculated as 

follows: 
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= -1 x 

w(t, T) - a) 2 (3.3.2) 

Hence, from basic probability theory [10], 

px (x) p(y) 

    (3.3.3) 

V4 - x2 

Hence, the interferometric noise is distinctly non-Gaussian - it is bounded and has 

maximum probability of being at one of the two extremes +2. The probability of making a 

decision error is written as an expectation over conditional probabilities [6] i.e. 

Pe = E[P. (dt) | (3.3.3) 

where d, (the signal data sequence), ® and t are the random parameters. The receiver 

filtering process is approximated as an integration over one bit interval and so the 

conditional probability P, depends on one bit of the direct sequence and at most two bits of 

the delayed sequence a(t - Tt) and is given by : 

P, = Q[ re ( + 4R aj, cos ® ) | (3.3.4) 

where i = 0 or 1 denotes the direct pulse, j and k = O or 1 denotes the two overlapping 

delayed pulses. The random parameters ijk are determined as follows: 
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T, represents the offset time of the clocks of the direct and delayed data sequences 

normalized to the bit duration. 

aijk = Y a(t) a(t- tT) ® h,(t) 

agjik = 9 5 aiop = 9; AtiIg=% ; 

aig) =(1-%) 5 agq,=1. 

Considering all possible combinations, the probability of error is given by : 

* 1 
1 

-1 1 Bi . PE 2a] «| dt, Q Loa (1+4Rix,cos®)] (3.3.5) 
age ~ 0 

Power penalties as a function of R have been evaluated numerically [6], by determining for 

non-zero R the increase in signal power required to produce the same error probability as 

achieved when R = 0. Power penalties computed using both the Gaussian and the actual 

pdfs are plotted in Fig (3.2) for comparison. It is evident that the the Gaussian 

approximation Is increasingly pessimistic for larger power penalties. 

3.4 Eye degradation approximation for RIN : 

The considerable literature on the calculation of error probability in the presence of 

intersymbol interference (ISI) is applicable to the problem at hand if reflections are 

considered to be a form of ISI. The effects of ISI are normally explained by an eye diagram 
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and the amount of degradation due to the ISI is represented by the size of the eye opening. 

A binary communications system is seen to have an error floor if there is a non-zero 

probability that the eye is closed. Basically, the performance of the system will never be 

better than this probability (this is an alternate way of saying that there is an error floor). If 

this probability equals zero, then an upper bound to P, ( which in turn gives an upper 

bound to the power penalty P ) is obtained by considering the worst case situation in which 

the eye degradation equals its maximum value. This is termed the “eye degradation” 

approximation. In terms of the mathematical formalism developed in section 3.1, the pdf 

of RIN is a delta function. The corresponding cumulative distribution function is sketched 

in fig.(3.3). There seems to be further reason to make such an approximation because the 

interferometric noise is bounded and has a maximum probability of being at one of the two 

extremes. Note that while this is true for two reflectors, it is not true in general. 

Let € be the fixed eye degradation. Then, if y is the received signal, 

a-€a + n y = 

= a(l-e€)+n 
(3.4.1) 

Assuming, as before, unipolar line symbols, the decision is set at D =a/2. Then, 

pe = LQ (>) +1Lq(-*) 1 
2 2 Ho 

Now, }; = a(1-€); Hg = 0; 

0; = 99 = <n2>., Hence, 

a(l-e)-a 
» 1g(—___2) = 1 - 4, Pp 5 QC Se ) 7 (5841 2e) ) (3.4.2) 

The power penalty is then approximately equal to -10 log (1 - 2). 
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When € = 2R, the power penalty 

= -10log(1-4R) (3.4.3) 

This has been plotted in Fig (3.4). 

It is seen from the figure that the eye degradation approximation results in slightly 

higher power penalties as compared to the actual distribution. However, it does provide 

much better estimates than the Gaussian approximation does. This appears to be a 

consequence of the fact that the pdf is bounded and rises extremely steeply at the extremes. 

Seeing that the eye degradation approximation of € = 2R provides a good estimate of 

the power penalty, but does not provide an exact match, there was some interest in finding 

out what sort of relationship between the eye degradation and the reflection coefficient R 

would result in power penalties that match the actual results exactly. A fourth order 

polynomial gave the best fit: 

Eerp = 0.00018 - 0.4549 R + 41.611R2 - 25.6754 R? + 514.0146 R4 (3.4.4) 

However, a much more interesting fit was a linear one : 

Exp = - 0.0308 + 2.0211R (3.4.5) 

This fit was very poor at very small values of R (in fact, the model breaks down for R < 

0.03 / 2.02). The power penalty has been plotted again in fig. (3.4) using this 

approximation. Comparing with the actual results, it is seen that there is very little 

difference between the two. This is an interesting result - an interferometric noise having a 

bounded probability density function can be approximated by an effective eye degradation 

which is linearly related to the maximum value of the interferometric noise. 

The idea behind trying this curve fitting approach is to see if there is any simple 

relationship between the cumulative distribution function of the signal dependent noise and 

this effective eye degradation. We feel that if such a relationship could be found, the 

analysis of complex noise problems will be simplified. However, we could find no such 
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obvious relationship. We think that the steepness of the distribution function at the ends is 

in some way responsible for this simple relationship between the reflection coefficient and 

the effective eye degradation. 

It may be of interest, as a suggestion for future work, to determine whether the 

power degradations resulting from other ISI distributions can be similarly fit using an effec 

tive eye degradation. 

3.5 Uniform approximation for pdf of RIN 

The eye degradation approximation assumes that the pdf of the RIN is a delta 

function at the extreme. Although the eye degradation approximation is useful when the 

maximum RIN is much less than the signal, it is not useful when the value of the noise is 

comparable to the signal level. Hence there is a need to approximate the noise by other 

distributions. In this section, we approximate the RIN by a uniform distribution. We return 

to the formalism developed in section 3.1. 

The function F is approximated by a straight line going through : 

Jt (1- = Py = 110-9 3.5.1 F{ ( a “0.)} = Po 5 | (3.5.1) 

where @ is the signal to thermal noise amplitude ratio, u is the normalized thermal noise 

variable, ug corresponds to that value of the normalized thermal noise which satisfies 

eq.(3.5.1) and F(.) is given by eq.(3.1.7). Since F is assumed to be an even function, 

F(O) = 1/2. This representation of F is plotted in Fig. (3.5). From the figure, it is evident 

that F reaches the value 1 at 2a - ug. The equation for the straight line F is given by : 
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_ __u-ug 

~ 2(a-uo) , 

The probability of error is given by : 

Pe = Q(2a- uo) + 

201 Ug (u - ug) —l_ du exp (- 4) 
¥20 Ju 2 “2 (G- ug) 

The integral is evaluated as follows : 

- 1 pa 
Pi Xa TE 

. = exp (-2A= YO") + (20- ug) Q(20- uo ) | v20 

But, for small Pr, ug is large, in whic 

v2n 

Denoting the argument of F by «,, i.e. 

1 
2R (I 

Then, 

ug = a(l-e) ; 

System Penalties 

h case, 

a exp (- 4B) - up Qua) = ae 

40 ) 

a 

2a -ug 

exp (- 4) - uy Qo) 

a(1+e) 

2 
u 

exp(-> 
ug 

(3.5.2) 

(3.5.3) 

(3.5.4) 

(3.5.5) 
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where € = 2RK. 

  
  

  

Then, 

Pp, = —1 exp(- a? (1-e)’ _ exp (- a? (1 +6)" 5 
37; ay) 2 2 a-¥20 ; 5 £) (1 +6) (3.5.6) 

+€ 
exp ( - a?+_—-) 

= 2 5 {(1+e2)? sinh ae + 2 cosh ae } 
¥2n are (1 - €*) 

As €- 0, 

2 
exp (-%) 

12> — 2 oe = Qa) (3.5.7) 
¥2n are 

which is the result in the absence of reflections. 

Setting P} = 1/2 10° 9, and using equation (3.5.6), it is possible to compute power 

penalties as a function of e. Once a value for « has been fixed, the penalties can be 

computed directly as a function of R, since R and « are simply related. kK is a parameter 

that is determined directly from the probability density function of the random variable x. F 

has been approximated as a straight line, which essentially means that the pdf of the noise 

has been approximated by a uniform distribution. 

Now, F,(k) = 1/2 10°? ie. the probability thatx > K =0.5 (1079). For all 

practical purposes then, x is arandom variable that is uniformly distributed from - k to 
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+. The parameter must be independendently determined from the nature of the noise. 

It is known that the interferometric noise is bounded at + 2 (R has been decoupled 

from the noise in this formalism) amd further, the variance of the interferometric noise = 

2. | 

This suggests two different methods to fix a value of K. 

One way is to equate the bounds of the uniform approximation to the bounds of the 

actual distribution, i.e. K = 2. 

The other way is to choose « such that the variances of the two distributions are 

equal. The variance of a uniform bounded distribution is easily calculated to be «2 /3 from 

which x is calculated to be equal to the square root of 6 which equals 2.449. Using these 

two values of «, the power penalties are plotted in fig. (3.6) as a function of R, the 

reflection coefficient. 

The graph shows that the value of « corresponding to the matching bound results in 

power penalties that are very close to the actual results while the value of « corresponding 

to matching the variance provides poorer results, but nevertheless better than the Gaussian 

approximation. This is probably a consequence of the steepness of the actual p.d.f and the 

fact that the errors are largely caused by the region near the extremity of the probability 

density function. Further, the approximation of the bounded p.d.f by other bounded p.d.fs 

provides better results than the Gaussian approximation with its infinite tail. 
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3.6 Quadratic approximation for the pdf 

The straight line approximation may be considered as the first term in a polynomial 

approximation. We consider next a cubic approximation to F which corresponds to a 

quadratic approximation to the probability density function; i-.e., the p.d.f is of the form 

f,(x) = ag+azx? (3.6.1) 

Any approximation made has to satisfy thé basic characterisitic of the p.d.f of the 

interferometric noise - that the p.d.f is an even function ( all the odd moments are zero). 

Hence, in the quadratic approximation, there is no first order term in x. 

For any function to be a possible probability density function, it must have these two 

fundamental properties : 

1) area under the curve must equal unity, i.e. 

{ f,(x)dx = 1 

ii) f,(x) must be non-negative everywhere : 

f,(x) 20 forallx€ (-™*, °) 

Any polynomial approximation for the pdf of the interferometric noise therefore must 

satisfy these two criteria. There is, obviously, more than one possible polynomial that 

meets all of the above requirements, which means that the coefficients ag and a> are not 

unique, but are a function of the conditions of the problem. We decided to impose the 

following conditions upon the quadratic approximation for the p.d_f : 

i) The bounds on the quadratic approximation are the same as those on the actual 

p.d.f, which equals + 2. 

ii) The variance of the two p.d.fs are the same. 
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Thus, with the quadratic approximation both these conditions may be satisfied 

simultaneously whereas with the uniform approximation only one of the conditions may be 

satisfied. 

Using these conditions, the coefficients ag and ay are calculated to be: 

ag = 3/32; ag =15/128. 

The probability of error is then given by : 

2 

- LL ue 3.415 ,2 PE ae du exp( 5? , dx (35 + 33") (3.6.2) 

sp 

~ 2 = Az {sew ee {0.5 - #1 “a - mm id --2)°} 

The power penalty is numerically obtained from this expression and is plotted in fig. (3.7). 

It is seen from figures (3.6) and (3.7) that the penalty obtained with this approximation 

provides a very good estimate to the actual penalty. There is not a significant difference 

between using this approximation and the uniform approximation with the same bounds. In 

the case of this specific distribution, owing to the steepness of the p.d.f, we think that any 

pdf that has the same bounds will provide a fairly good estimate of the power penalty. In 

general, however, we anticipate that a quadratic p.d.f will provide a better approximation 

over a wider class of distrtibutions than the uniform distribution will. 

It must be reemphasized at this point that there is more than one possible quadratic 

approximation for the pdf. The coefficients ag and a> can also be obtained by setting higher 

order moments equal. For example, in this case, ay and a> could have been obtained by 
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setting the second and fourth order moments equal and letting the bounds of the distribution 

be different. However, for bounded distributions, the bounds play an important role in 

determining the error probability, and it is more useful to approximate bounded 

distributions by other distributions having the same bounds. 

In this chapter, the impact of RIN on system performance has been explained.We 

have made a number of approximations for the p.d.f of RIN. Power penalties have been 

computed with each of these approximations. We see that the results from these 

approximations match those with the exact calculations fairly well. In fact, one of the key 

results of this thesis is that when the p.d.f of a noise process is a bounded one, other 

simple bounded p.d.fs, and even an eye degradation, are very good approximations. A 

natural question is how good these approximate methods are for non-bounded 

distributions. It is shown in Appendix B that these approximations are not applicable in all 

situations. We show there that the quadratic approximation, which is bounded, is not 

useful in describing an exponential distribution, which has a tail extending to infinity. 

The analysis in this chapter has been done under several simplifying assumptions. 

Key among them are the assumptions that RIN and thermal noise are the only sources of 

degradations and that there is only pair of reflection points in the system. In practice, 

neither of these conditions is likely to be satisfied. In the next chapter, some of these 

restrictions are lifted. 
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4.0 Extensions of the model 

In chapters two and three, the basic theory explaining the phenomenon of RIN and 

its impact on system performance was presented. The analysis was made with two major 

assumptions which are reiterated here : 

1) the reflectivities at the discontinuities are small, as a result of which higher order 

terms in the reflection coefficient,corresponding to multiple passes, are neglected. 

ii) RIN is the only impairment in the system, besides the receiver thermal noise, of 

course. 

Further, for simplicity, only one pair of reflectors was assumed to be present in the 

system. However, in practice, in any fiber system, there are more than two refractive 

index discontinulties, i.e. there are more than two reflectors in the system. Also, typically 

there are other impairments in the system. Sodhi [13] has shown that power penalties are 

not additive. Further, even though the reflectivities have been assumed to be small, there 

actually exist multiple reflections at any pair of reflectors. While these added reflections 

have a small impact on noise power, they have a significant impact on the tails of the 

distribution, and as mentioned previously, it is the tails that have the greatest impact on the 

error probability and the power penalty. Hence, there is a need to relax the assumptions 
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made in the previous chapters and to generalize the theory to take into account all of these 

factors. 

Another reason for investigating these other effects is that there exist some 

discrepancies between the experimental results and the theoretical predictions for the power 

penalties (Fig. (2.2), [6]). Some of these phenomena, individually or in concert, may 

explain these discrepancies. 

In the following sections, each of these factors is considered individually and its 

impact on system performance assessed. In section 4.1, we assume a finite extinction ratio 

as a typical impairment present in a fiber system. Section 4.2 deals with multiple reflections 

at a single pair of reflectors, while the effect of a multiplicity of reflection points is 

considered in section 4.3. 

4.1 Combined effect of an extinction ratio and RIN 

In an OOK system, ideally, there is no optical power output from the laser when a 

“zero” is transmitted. However, with aging etc. the laser does not completely shut off when 

a zero is to be transmitted. It transmits a small but finite fraction of the power outputted 

when a one is transmitted. The ratio of the power transmitted during a “one” to that during 

a zero is called the extinction ratio, which is designated as 1/e, so that large extinction ratios 

correspond to small values of €. 

In the presence of an extinction ratio 1/e, the electrical current at the receiver is given 

by (eq.( 3.1.2 )): 

it) = EB {a(t) +v(t) } + nc) (4.1. 1a) 

when a “one’”’ is transmitted and 
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i(t) = EQ} {ea(t) + ev(t) } + np (4.1.1b) 

when a zero is transmitted, instead of i(t) equaling only the thermal noise when a zero is 

transmitted. Here, v(t) is the interferometric noise term given by eq.(3.1.3): 

v(t) = 2Y¥a(t).a(t- 7) Ros (@ot + P(t,t)) 

The symbols in all these equations are as defined in chapter 3. 

To simplify the analysis, a Gaussian distribution is assumed for RIN. As discussed 

in chapter 3, this is generally a conservative assumption. 

The means and the variances 11, Up, 312, S92 of i(t) are calculated to be, following 

procedures similar to those in section 3.2: 

Hi=Ep?, w= eb) 

5;2= <I*>- <I>* = o,° + 1)2R2; G9" = 6,7 + Lo2R? ; (4.1.2) 

2 where Oo, is the variance of the receiver thermal noise. 

In this case, the receiver decision threshold D is no longer the same i.e. it is no 

longer at [1;/ 2. Because the finite extinction ratio is a phenomenon that, while being a 

degradation, is not random in nature - the degradation is fixed and deterministic (it may 

change slowly with time). Hence, the effects are sought to be minimized by reoptimizing 

the decision threshold. Now, the probability of error is given by (eq.(3.2.3 )) : 

D- Lo 
00 ) 
  

-D Pe = FQ A=) + La 

It may be shown [12] that the error probability is very nearly minimized when there is an 

equal probability of “zero” and “one” errors occurring, which then gives : 
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Wi-D _ D-bo Ly, (4.1.3) 
0) Oo 

where kj is the argument of the Q function. Using eq.(4.1.2), 

Hi-D D - Ho =k (4.1.4) —_—_—_—_—_—_—_—SEE — ee... ee ee a ] 

VoR+uiR? Vox+e?utR? 

or, 

bi (1-e) = k (4.1.5) 
V of +? R2 4+ V of + e271? R2 

Letting 1 -€ =b, and after some algebra , 

2 Oy b/ky (4.1.6) Hi = 

( (by - PGs] - aR? yi" 

For € = 0 and R = 0 (i.e. in the absence of RIN and extinction ratio), 11 “=2 6, ky. 

Then, to maintain the same error probability, i.e. the same k, the power penalty P is given 

by : 
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P = 10log mr 
1 

(4.1.7) 
  10 log b > a 

KE (LG) - R2(1+e%)] - Rie?} 

To maintain a 10-9 error probability, kj = 6.0. Then, the power penalty as a function of € 

and R is given by : 

Pe,R) = 10log b ; mA) 

36 {{(B)° - R2(1+e2)] - Ree} 
  

Note that for € = O this reduces to eq. (3.2.15). The differential power penalty, given by 

P(e,R) - P(e,0), where P(e,R) is given by eq.(4.1.8), is plotted as a function of R in Fig. 

(4.1) for different values of ©. The curves indicate that there is an additional power penalty 

due to the extinction ratio which increases rapidly with R. The graphs also indicate that the 

maximum allowed R for a BER floor decreases with increasing € ; for example, 

Rmax = 0.16 fore =0, and R,., = 0.11 for € = 0.2. 

As indicated in the previous chapter, an alternative to treating the RIN as Gaussian 

distributed is to use an eye degradation approximation. In this case, if € is the equivalent 

eye-degradation resulting from RIN, and €, is the degradation associated with finite 

extinction ratio, then the total power penalty is given by : 

P = -10log(1-2(€+€))) = -10log(1-4R -2e)) (4.1.9) 

Extensions of the model 49



P
E
N
A
L
T
Y
 

(D
B)

 

    
  qT 

0.09 0.12 0.15 

REFLECTION COEFFIGENT 

Fig. 4.1 Power penalty vs. reflection coefficient R for 
different values of extinction ratio 1 / 

Extensions of the model 50



Hence, the incremental power penalty due to the additional degradation is given by : 

P = -10log(1-4R-2e,) + 10log(1-4R) (4.1.10) 

With the Gaussian approximation, the incremental power penalty due to the 

additional degradation is given by P(e€,R) - P(0,R) where p(e,R) is given by eq.(4.1.8). 

This and eq.(4.1.10) are plotted in fig.(4.2). Examination of this plot indicates that for the 

range of parameters considered, the effect of additional degradations is less under the eye 

degradation approximation than it is under the Gaussian approximation. However, in both 

cases the penalty caused by reflections is greater when there are other impairments present 

in the system. This is at least qualitatively consistent with the measurements of Gimlett and 

Cheung [6]. Thus, other degradations, as given by the parameter €;, may be a partial 

cause of the experimental degradations being larger than calculated by the previous 

theories. 

4.2 Effect of multiple reflections 

All of the prior analysis assume that the reflection induced noise is a result of a 

double reflection as shown in fig. (2.1). However, in reality, there are multiple reflections. 

As stated before, while the effects of these multiple reflections on noise power may be very 

small, it is not immediately obvious that the power penalties are also equally insensitive to 

this effect. In fact, this effect may be the more fundamental cause of the discrepancy 

between the theoretical and experimental results of Gimlett and Cheung [6]. There is, 

hence, some interest in seeing whether considering the effect of multiple reflections helps in 

resolving these discrepancies in the published results. In this section, an outline of the 

analysis of the effect of multiple reflections is presented. In a bid to keep the analysis 

simple, we have assumed that all other impairments in the system are absent. 
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We have shown in section 3.2 that the power penalty for RIN is easily calculated to 

P=-5 log (1 - 144 R2) 

under the assumptions that the pdf of RIN is Gaussian and that higher order terms of R are 

negligibly small. Just to see how good that approximation is, a next higher order term is 

considered : 

v(t) = 2 ¥ a(t) a(t- 7) R cos (Wot + P(t, T)) + R2a(t - 7) (4.2.1) 

where v(t) is the expression for the interferometric noise. Then, the power penalty is found 

to be: 

P=-5log(1- 144(R2+R4/4)) 

For all values of R of interest, the difference between these two power penalties is indeed 

negligibly small. 

We have seen, however, (section 3.4) that for bounded interference the eye 

degradation approximation gives better results (compared to the exact calculation for two 

reflectors) than the Gaussian approximation. Consequently, we next consider the effect of 

multiple reflections approximated as an eye degradation. Initially only two pairs of 

reflections are considered. The electric field at the output of the interferometer is then given 

by: 

e(t) = e; (t) +Re; (t- 1) + Re; (t- 21) 

where e;(t) is the input field given by eq.(2.1.1). The intensity is given by : 

i(t) = le(t) 2 

= e;*(t) + R2 ej? (t- t) + R4 e:? (t - 21) + 2Re; (t) e; (t- 1) + 2R7 (the; (t- 27) 

+ 2R3 e: (t- t) e; (t- 21) (4.2.1) 
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Neglecting terms of degree higher than R2, we have : 

i(t) = e;? (t) + 2Re; (t)e; (t- t) + R? e:? (t- 1) + 2R2 e; (1) e; (t - 21) (4.2.2) 

The last three terms describe the interference terms. In the incoherent regime, these terms 

are essentially uncorrelated. The peak magnitude of the degradation, relative to the signal, 

is bounded by 2R + 3R2. Setting this equal to the maximum eye degradation gives : 

€=2R + 3R? (4.2.3) 

The power penalty P is then given by, according to eq.(3.4.3), 

P - 10 log (1 - 2e) 

- 10 log (1 - 2(2R + 3R2)) (4.2.4) 

Similarly, considering the effects of three pairs of reflections, neglecting terms of 

degree R4 and higher, the multiple reflections are estimated by an eye degradation given 

by: 

€ = 2R+3R2+4R3 (4.2.5) 

In the general case then, with an infinite number of reflections, 

€ = 2R+3R2+ 4R3+...4+ mR™I! +... (4.2.6) 

This is easily evaluated to give an effective eye degradation described by : 

Ex = R(2-R)/(1-R)* (4.2.7) 

The power penalty is then given by : 

P = - 10 log (1-2 &,) 

Extensions of the model — 54



= - 10 log {1-2R (2-R)/(1-R)*} (4.2.8) 

The effect of multiple reflections on power penalty is compared with that of a double 

reflection , with both being approximated as eye degradations, by plotting eq.(4.2.8) and 

(3.4.3) in fig. (4.3). It is seen that the effect of multiple reflections is fairly significant for 

not-too-small values of R. It follows from equations (3.4.3) and (4.2.8) that the effect of 

multiple reflections (using the eye degradation approximation) is to result in an effective 

reflection coefficient given by : 

Rep = €e¢/2 = R(2-R)/2(1-R)? (4.2.9) 

For very small values of R, Reg = R. But as R increases, there is a slight difference 

between Rog and R. 

In this section, we have shown that while making a Gaussian approximation for the 

probability density function of RIN, the effect of multiple reflections is negligibly small. 

However, while making an eye degradation approximation, the effects are not that small. 

For reasons mentioned earlier, we feel that an eye degradation approximation is a more 

reasonable one to make in this situation. Hence, multiple reflection effects may indeed be 

one Cause, among many, which explains the discrepancies between theory and experiment. 

4.3 Effect of a multiplicity of reflection points 

The analysis of RIN presented thus far is logically extended to consider, instead of 

just two, a multiplicity of reflectors in any fiber system. In this section, we consider the 

effect of three and four reflectors in the system. Gimlett and Cheung [6] have considered 

this effect. However, they made a simple Gaussian approximation for the probability 
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density function of RIN. The pdf of RIN is indeed Gaussian when the number of reflectors 

is large. However, for a smaller number of reflection points, the pdf is not Gaussian. For 

this case of a few reflection points (typically three or four), we have attempted to 

approximate the pdf by a uniform distribution and a quadratic distribution, following the 

techniques developed in chapter 3. Further, we have also approximated the actual 

probability density function of RIN by using a Gram Charlier series approximation. The 

Gaussian approximation has also been used and these various approximations are 

compared to one another. 

A fiber transmission line having N refractive index discontinuities (i.e. N reflectors) 

is considered. The resultant electric field at the output of the last reflector is given by : 

Cou(t) =  ein(t) + YRaq1 ein (t- T21) + YR31 ein (t - 731) 
(4.3.1) 

+ YR32 ein (t- 132)... + YRij ein(t - Tj) + 

where only double reflections are considered. Here, Tij is the round trip delay time for the 

i and j" discontinuities, and Rj; is a generalized reflection coefficient defined by Rj; = Bj; 

(RjR)) 0.5 where Bj; is the transmittance between the two discontinuities. Once again, 

polarisation effects have been neglected and for simplicity, so have the losses, i.e. Bi =] 

for all i and j. The input field e;, is described by eq. (2.1.1). The light intensity detected at 

the receiver is then given by, as a simple extension of eq.(2.1.3): 

N i-1 

i() = Ew {1+ 2% Y Rycos ( wory + Ot, 4) } (4.3.3) 
i=2j=1 

The variable P(t, Tj) is essentially a phase difference given by : 
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P(t, Tj) = P(t) - P(t- Ti) 

As was done in chapter 2, we assume that the interference is incoherent - the situation 

most commonly encountered in practice. When 2nAv 1; >> 1 and 2nAvl tj - q1>>1 

(where Av is the laser linewidth), i # k, j # 1, all terms combine incoherently. Following 

the analysis in section 3.2, the power spectral density for RIN in this case (i.e multiplicity 

of reflection points with incoherent interference) is expressed as : 

N_ i-l 

RIN() = saat > > R (4.3.4) 
® | 2 + (Ad) Ji=2 jal 

This expression indicates that the magnitude of the RIN increases rapidly with the number 

of discontinuities. 

Next, the effect of a multiplicity of reflectors on system penalties is considered. As 

in chapter 3, a binary on-off keying scheme with NRZ formatted data is considered. The 

laser pulse wave form is given by eq.(3.1.1) : 

a(t) =1, O0<t<T 

=Q , otherwise 
(4.3.5) 

where T is the bit duration. Again, following the formalism developed in chapter 3, the 

signal at the receiver decision point is of the form : 

y = a +xRa +n 

The conditions and the assumptions made in chapter 3 still hold here i.e. the noise is 

asymmetric and so the errors are dominated by those in the “one” state, but the receiver 

decision threshold is still the same. The error probability can then be expressed by 

equations (3.1.5) and (3.1.6). For convenience, eq.(3.1.6) is repeated here : 
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- lL _u2 _l_(;.u Pe = = | duexp(-4-)F {ar a} (3.1.6) 

where all the terms have the same meaning. Hence, 

F(E) = [« p(x) = prob. (x>&) (4.3.6) 

as in chapter 3. Once again, as in chapter 3, we make different approximations for the 

probability density function of the random variable x which represents the interferometric 

noise due to a multiplicity of reflectors. For the case of a single pair of reflectors, the 

variable x was given by : 

x =2 cos (Wot + P(t, T)) (4.3.7) 

In the case of N reflectors there are N(N -1) /2 interferometric terms which are given by : 

X = 20S (WoT21+P(t,t21)) + 2 cos (WoT31+P(t,T31)) + 

... +2 cos(Motijt+D(t,tij) +... 
(4.3.7) 

where Tj has the same meaning mentioned earlier. The analysis is first done with a 

Gaussian approximation for the probability density function of RIN. 

In the Gaussian case, which Gimlett and Cheung [6] have considered, the power 

penalties are obtained by simply extending the result given in eq.(3.2.14) to account for the 
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many terms : 

N i-1 

P = -Slog[ 1-144 > > RE J (4.3.8) 
i=2j=1 

We have assumed that polarization effects are negligible. However, in a multiple reflector 

situation, that may not always be true. For randomly aligned polarizations, the average 

value of Ri = 0.5 B (R, Rj). In that case, the power penalty is reduced by a factor of 

two. Again, in a multiple reflector situation, the transmittance B may not = 1 i.e. there 

may be a some losses, in which case the power penalty reduces further. Eq.(4.3.8) is 

plotted in fig.(4.4) [6]. Examination of the figure shows that the power penalty increases 

rapidly with the number of reflectors. Also shown in the figure is a curve considering a 0.5 

dB loss between adjacent reflection points (curve c). It is seen that even for reflections as 

small as 1 %, significant penalties or BER floors occur if many such reflections are present 

in the fiber path. The presence of losses, however, helps to reduce the adverse impact of 

multiple reflection points. 

As mentioned earlier, the pdf of RIN tends to Gaussian if a large number of 

reflection points are present. However, if the number of reflectors are small, for example 

three or four, the pdf is not Gaussian. In that regime, the pdf has to be estimated. We 

adopt the techniques of chapter 3 here and approximate the probability density function 

with a uniform and a quadratic approximation. We discuss first the uniform approximation. 

As in section 3.5, we approximate the pdf by a random variable uniformly 

distributed from - kK to + «. The analysis is identical to that in section 3.5. The only 

question is how to determine the bounds of the distribution. Once again, the choice for kK is 

such that it satisfies one of the following two conditions : 

a) the bounds of the two distribution are the same 

b) the variance of the two distributions is the same. 
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It is to be noted that both these conditions cannot be satisfied simultaneously by a 

random variable which is uniformly distributed. The 3-reflector situation is first 

considered. In this case, there are 3 reflection terms. Using the formalism developed in 

section 3.5, each random variable is bounded at + 2. Hence, the random variable that is the 

sum of these three extends from -6 to + 6. As will be shown later, the variance of this 

random variable is 6. Matching the bounds of the two distributions results in K = 6. 

Using eq.(3.5.6), the power penalty is computed as a function of R. The power penalty 

with the Gaussian approximation is computed too, for comparison. It is seen that the 

uniform approximation with the matching bound gives poorer results than even the 

Gaussian approximation. Evidently, bound matching, which was so effective in the two- 

reflector situation, is no longer a good approximation. This is true for the four- reflector 

case too. Thus it seems that the pdf of the distribution is no longer as steep at the ends as it 

was in the two reflector case. 

Consider the 3-reflector case again, assuming now that the variances are matched 

rather than the bounds. The variance of a random variable uniformly distributed from -« to 

+ K 1s given by K2 / 3, Equating that to 6, which is the variance of this distribution, gives 

<= 6 => x= 718 = 4.2426 

The power penalty is plotted as a function of R, using this value of «, in fig. (4.5). The 

penalty with the Gaussian approximation is also plotted in the same figure. The uniform 

approximation gives a lower penalty as compared to the Gaussian, except for very small 

values of R. 

For the four-reflector situation, the variance is 12. Hence, kK = 6. The penalty is 

plotted as a function of R in fig.(4.6). The corresponding Gaussian case is plotted too. 

Once again, the uniform approximation provides a lower power penalty except at very 

small values of R. 

The reason that the variance matching technique is providing better results seems to 
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lie in the fact that the probability density function of the interferometric noise is no longer as 

steep as it was in the two-reflector situation. This is just stated now, but will be 

demonstrated later in this section. 

Having approximated the pdf by a uniform random variable, there is some interest in 

using the quadratic approximation of section 3.6 to see if that provides better results. In 

this case, however, just equating the bounds and the variances does not work because the 

pdf is not non-negative throughout. Hence,. an additional constraint is imposed. The 

quadratic expression representing the pdf is assumed to go to zero at the boundaries. 

Imposing this condition, however, it is not possible to find a quadratic expression that has 

both the bounds and the variance equal to those of the actual pdf. We decided that matching 

the variance is more important in this case. The pdf is then assumed to be of the form, as 

in section 3.6, 

f,(x) = agt ax? (4.3.9) 

defined from - kK to + kK, which are unknown just now. Using the condition that the pdf 

goes to zero at the extremes, 

ay + Ky ay = 0 => ag =- K2 a2 

This condition combined with the other two conditions that the area under the curve equals 

unity and that the variances are the same enables us to determine the coefficients ay and ay 

and the bound x. For the 3-reflector case, f(x) 1s then found to be : 

f(x) = 0.1369 - 4.56 (10)°3 x2 (4.3.10) 

with the bound Kk = 5.477. 

For the 4-reflector case, the pdf is found to be : 
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f,(x) = 0.0968 - 1.613 (10) 3x? (4.3.11) 

with the bound k = 7.746. 

With these two expressions, the respective probabilities of error are written similar to 

eq.(3.6.2), using which the power penalties are evaluated numerically. Figures (4.5) and 

(4.6) show the power penalties in these two cases, plotted once again as a function of R, 

the reflection coefficient, and the corresponding Gaussian and uniform approximations are 

also shown for comparison. This method is shown to provide the smallest power 

penalties. 

All these approximations make sense only if they are compared to the actual 

situation. In the following section, a method for estimating the actual probability density 

function is given. 

4.4 The Gram-Charlier Series approximation for the probability 

density function in the multiple reflector situation 

In this section, a technique for estimating the probability function of RIN in a 

multiple reflector environment is presented. To start off, we repeat eq. (4.3.7) which 

represents the interferometric noise term when there are N reflectors in the system. 

X = 200s (WoT21+P(t,t21)) + 2 cos (Wot31+P(t,T31)) + 

» 2. +2 COS(WoTij+P(t,T;j) +... 
(4.3.7) 
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The random variable x can also be written as : 

X=Xj) +XotXgt+... +X, (4.4.1) 

where each x; is also a random variable. Assuming incoherent interference, these random 

variable are iid : independent and identically distributed. The probability density function 

of each of these random variables is given by : 

px,(x) = —L.— (4.4.2) 
TV 4 - x? 

similar to section 3.3. Computing the probability density function of x is not trivial. Asn 

becomes large, the resultant probability density function of x tends to Gaussian, according 

to the Central Limit Theorem. However, for values of n less than say six or eight the 

Gaussian approximation is not very accurate. Note that six terms correspond to four 

reflectors. A method for estimating the p.d.f of x is presented below. 

The characteristic function of a random variable is defined to be : 

G (w) = E[exp (jax)] (4.4.3) 

where E[ . ] denotes the expectation operator. The characteristic function of x; is found to 

be: 

. 7 

G(@) = [. _ dx = ; exp (j@2cos(WoTt + D(t,T)) dB (4.4.4) 

which is evaluated to give : 

G(@) = Jo(20) 

where Jo(2@) is the zeroth-order Bessels’ function of the first kind. Now, the 
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characteristic function of the sum of a number of independent random variables is the 

product of their characteristic functions. Hence, the characteristic function for n reflection 

terms is given by: 

G(w) = { Jo (2M) }" (4.4.4a) 

Hence, the probability density function of x can in principle be obtained simply by taking 

the Fourier transform of its characteristic function and dividing the result by 2z : 

f,(x) = - | G(@) exp(-j@x)dw = Z| {Jo(2w)}"exp (-jax)dw (4.4.5) 

We do not believe that this can be done analytically. However, the moments of the 

distribution can be calculated from the characteristic function. Differentiating (4.4.3) n 

times, 

G™(w) =E {j® x" exp (jwx))} (4.4.6) 

or, 

G("X0) =j" E(x) =j® mp (4.4.7) 

Hence, 

mp = (-j)? G0) (4.4.8) 

The moments can then be used in a Gram Charlier series expansion [14] to approximate the 

probability density function of x : 

f(x) = a exp (-) E GHi(x) (4.4.9) 
v2n 

for a distribution having mean = 0 and variance = 1 (which assumption is modified later). 
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The basis functions of the expansion are the Tchebyeff-Hermite (T-H) polynomials, the 

first few of which are listed below : 

Ho(x) = 1 
H,(x) = x (4.4.10) 

Hx) = 71 

Higher order polynomials may be computed using the recursive relationship : 

Hy(x) - x Hya(x) + (K-DH,2(x) =0, =k 22 (4.4.11) 

The C, s are the coefficients of the series expansion and are expressed in terms of the 

moments : 

Co = 1 
Ci = mM) 

C, = A(mg-1) (4.4.12) 

The Gram Charlier series expansion for the pdf of a random variable x with mean p and 

variance o~ has the form: 

f,(x) = —lL—exp [ecto > 
j 

ate ci | (4.4.13) 

where the Cj S are given by formulae similar to those in (4.4.12) except that the moments 

are given by m,’ which are given by : 
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[™ " (4.4.14) 

In the case of 3 reflection points, i.e 3 reflection terms, the characteristic function of x is 

given by : 

G(w) = { Jo(2a) (4.4.15) 

The moments of x are computed by taking the derivatives of {Jo (2m) }3 at @ = 0. Going 

through the algebra, the moments of the function are as follows : 

90 

28920 
7 

m = 6; m 

me = 1860; mg 
(4.4.16) 

and all the odd moments are zero. Using these, the Cj s are computed. The expression for 

the probability density function of x is then given by : 

f(x) = ate exp(4 3) 1 = (185421 x- 19 44 4 26 || (4.4.17) 

With this expression, the probability of error can be fairly easily evaluated numerically, 

using eq.(3.1.6). Following this procedure, the power penalties incurred in maintaining an 

error probability of 10° have been evaluated and are shown in figure (4.5). 

The corresponding penalties assuming a Gaussian distribution have also been calculated 

and are shown in the same figure for comparison. As expected, the Gaussian 

approximation is more pessimistic. 

For four reflection points, number of reflection terms n = 6. The 

characteristic function of x is then given by : 
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G(@) = {Jo (2m)}® (4.4.18) 

Using a similar technique, the moments of the distribution and the coefficients of the 

Hermite polynomials have been calculated. The probability density function of x is found to 

be: 

  
  f(x) = 41 exp - X2){3328 + 23 x2 . 37 x4 4_X 

456 im 108 1296 (4.4.19) 

Once again, the power penalties are calculated and the calculations repeated for a Gaussian 

distribution. These are plotted in Fig.(4.6). Comparing the two figures, it is easily seen that 

as n increases, the power penalty calculated from the Gaussian distribution is close to that 

calculated from the actual distribution. 

A comment on the Gram-Charlier Series expansion method : an obvious question 

that arises while using this technique is the number of terms that need to be included. 

According to [14], this series is most useful while approximating the density functions of 

random variables that are the sums of independent random variables . Further, the series 

unfortunately does not converge uniformly. Hence including a larger number of terms does 

not automatically imply better results. A rule of thumb in practical applications is to 

consider around six terms. In this case, the odd moments are all zero. However, the fact 

they are zero are characteristic of the probability density function, even though at first sight 

it might appear that we have considered only four terms. 

Comparing the Gram-Charlier series approximation with the uniform and quadratic 

approximations, we see that as the number of reflectors increases, the results with these 

approximations become increasingly optimistic. That is, with an increasing number of 

reflectors, the resultant p.d.f becomes more Gaussian, as a result of which the uniform and 

quadratic approximations are no longer as useful in predicting the power penalties. This is 

illustrated in the case of three and four reflectors. For three reflectors, the uniform and 

quadratic approximations provide better results than the Gaussian approximation, relative to 

the exact calculation. However, for four reflectors, the resultant p.d.f becomes more 

Gaussian, and we see (fig.4.6) that the uniform and quadratic approximations in fact 

predict a lesser power penalty than the exact calculation. 
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5.0 Low frequency enhancements in the spectrum of RIN 

As mentioned in section 3.1, the experimental results of Gimlett and Cheung [6] 

show that there is a greater low frequency content in RIN than the calculations in that 

section predicted. These discrepancies can be noticed by examining figure (2.2). In this 

chapter, an outline of a model that at least partially explains these discrepancies is 

presented. The results in chapter 3, as well as prior literature, were calculated assuming a 

Lorentzian line shape for the laser linewidth. A Lorentzian line shape corresponds to an 

instantaneous frequency noise that has a white spectrum. We show here that a low 

frequency dip in the spectrum of the instantaneous frequency noise (possibly caused by 

thermally induced phase modulation) leads to an increase in the low frequency spectrum of 

reflection induced noise consistent with measurement. 
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5.1 Low frequency variations 

As mentioned earlier (section 3.1), the phase variations $(t) of a single longitudinal 

mode laser are typically modeled as a random walk process in which the phase change Ao 

over the time t has a density function which is a Gaussian with zero mean and variance 

given by 02(t) = t/ T, where 1, is the coherence time of the laser. In the frequency 

domain, this leads to the familiar Lorentzian shaped line with a full width half maximum 

(FWHM) linewidth Av given by : 

Av = 1/ 2nt,. This is also equivalent to taking do / dt (which can be termed the 

instantaneous frequency noise) to be a white noise Gaussian process with a two-sided 

spectral density given by 2xAv. This is proved in the following paragraph. 

The change in phase Ag in time period T starting from any arbitrary time instant to is 

given by : 

to+T . 

Ad [ dt > (5.1.1) 
to 

where Ad(t) is also a zero mean Gaussian process. 

The variance < (Ao)? > is given by: 
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to+T 

(49)") = : { - dt de’ ( $(t) ot’) (5.1.2) 

But, for white noise, the autocorrelation < 6 (t) o(t” )> is, by definition, given by [12] : 

< 6 (t) O(t’ > = 2m (Av) &(t- t). 

Hence, the variance is given by : 

((a9)') = 2nAv { - dt 

lo (5.1.3) 
= 2nAvt, t20 

Replacing t by [dl on the night hand side of eq.(5.1.3) generalizes the result to apply for all 

t. 

In this simple model of phase variation, turn-on and turn-off transients have been 

neglected, which become increasingly important at high bit rates. Such effects are best 

handled by using the basic laser rate equations. These features are outside the scope of this 

thesis but this is an area of possible future work. 

In section 3.1, it was shown that for the case of a single interferometer, i.e. two 

reflectors, with a round trip delay between the reflectors long compared to the laser 

coherence time (i.e. the incoherent case), the power spectrum of the reflection noise is 

simply related to the power spectrum of the laser. There is good agreement between the 

theoretically predicted results and the experimentally obtained results except at very low 

frequencies (below about 10 MHz) where the measurements seem to indicate that a 

narrowband low frequency line is superimposed on the wideband Lorentzian line. A 
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plausible explanation for this phenomenon is given below. 

In the incoherent case, the power spectrum of the reflection induced noise reduces to 

the form (the details are given in Appendix A) , after scale factors have been neglected : 

P(@) = dt exp (- o°(t) - jut) (5.1.4) 

Note that t here is the running variable of integration and not a fixed time delay. The 

spectrum is independent of the delay time when the delay time is large compared to the 

coherence time of the source. P(w) is the Fourier transform of exp[-o7], while the optical 

spectrum is given by the Fourier transform of exp[- 07/2]. In other words, in the 

incoherent case, the spectrum of RIN is obtained by convolving the laser line spectrum 

with itself. Self-convolution of a Lorentzian spectrum results in a Lorentzian line 

spectrum. This shape preserving feature is not generally true for other line shapes. 

To explain the enhanced content of the low frequency component in RIN, we 

deviate from the Lorentzian line shape assumed for the laser. That is, we assume that the 

phase change and variance are not described by equations (5.1.1) - (5.1.3). Instead, we 

assume that the power spectrum of the instantaneous frequency of the laser is given by : 

Kas H(m) = 2x (Av) [1 - —% ] (5.1.5) 
w? + w 

The second term in this equation corresponds to a low frequency dip in the spectrum of the 

instantaneous frequency. This is assumed to be plausible because the spectrum of the 

instantaneous frequency is shaped by the FM response of the laser, which in turn is known 

_ to have a low frequency dip associated with thermal phenomena [15]. The parameter k (S$ 

1) determines the magnitude of the dip, and Wp is the comer frequency. 
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The Fourier transform of eq.(5.1.5) gives the autocorrelation function of the 

instantaneous frequency. The case k = 0 corresponds to the Lorentzian line shape, whose 

autocorrelation function is the delta function mentioned earlier in this chapter. The 

autocorrelation function h(t - t’) for general kK is given by the Fourier transform of 

eq.(5.1.5): 

h(t-t) = 2nAv &t) - nAvK@o exp (-ap|t-t}) 

From this, the variance 02(t) is found to be : 

t 

((Ag)?) = 2nAvt - arava | 
0 0 

or, 

2nAvK 
(1 - exp( -wdq))   ((49)') = 2nAv[1-x]}q + 

This expression has the following limiting forms : 

o*(t) = 2nAvd for add << 1 

2nAvK for @dq >> 1   o7(t) = 2nAv(1-«)}q + 

dt | dr’ exp [ -wdt - 1] 

(5.1.6) 

(5.1.7) 

(5.1.8) 

(5.1.9) 

In both these limits, the variance is linear in t. This leads to Lorentzian line spectra 

Low frequency enhancements 76



with a high frequency (small t) behavior determined by the linewidth Av, and a low 

frequency behavior determined by a reduced linewidth (1 - x)Av. However, for the 

deviations from the Lorentzian spectrum to be significant, x should approach unity and 

Wot, should not be too small. This is shown in fig.(5.1) where the power spectrum at zero 

frequency is plotted as a function of Wot, (denoted by ¥) for several values of K (the DC 

spectrum is normalized to unity for K = 0). The former condition implies that thermal phase 

modulation be comparable to the carrier induced effects (they are 180 degrees out of phase 

[15]), and the latter requires that the corner frequency, Wp/27, be comparable to, or greater 

than, the laser linewidth. This implies that significant low frequency deviatons from the 

Lorentzian spectrum may be expected only in lasers with linewidths of the order of 10 MHz 

or less. 

To illustrate the low frequency effects when the above conditions apply, o* is plotted 

in figure (5.2) as a function of t / t,, for various values of x, but for fixed Y= WoT,= 1. 

The power spectral density of RIN is calculated as follows : 

P(@) | dt exp( -07(t)) exp( -jat ) 

(5.1.10) 

= Te { du exp ( -o7(u)) exp (-jmt.u) 
oo 

where u is the normalized variable = t/t. Letting x = wt,, the expression for the power 

spectral density can be written in a form suitable for numerical evaluation, in the derivation 
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of which the evenness of the function o2(u) has been utilized : 

P(x) = { du exp( - (1-«)u) exp( - y (1 -exp(-yu)) )cosxu = (5.1.11) 
0 | 

Results obtained from the numerical evaluation of eq.(5.1.11) are plotted in fig.(5.3) as a 

function of x for various values of «K and for y= 1. It is easily seen that the above equation 

reduces to the Lorentzian line shape for k = 0. For « > 0, fig. (5.3) indeed indicates an 

increase in the noise at low frequency relative to that calculated from a single Lorentzian 

line, for example, when x = 0.8, there is a 4.2 dB peaking in the low frequency spectrum. 

5.2 Discussions 

Although it has been analytically shown that there is a connection between the low 

frequency rise in the spectrum of the reflection induced noise and a low frequency dip in 

the spectrum of the instantaneous frequency noise, a detailed analytical justification of the 

latter has not been provided. Hence, it would be very desirable to verify both analytically 

and experimentally the presumed relation between the instantaneous frequency noise and 

the FM response of the laser. Comparison of measurements with the same laser of 

reflection induced noise and the FM response would provide a test of the above 

supposition. If successful, this would then enable measurements of reflection induced 

noise to be used as a means of characterizing the FM response of single longitudinal mode 

lasers. 
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6.0 Physical modeling 

So far, the analysis of reflection induced noise has been done by considering a fixed 

reflectivity at the refractive index discontinuities along the fiber transmission line. The 

physical causes and nature of these discontinuities have not been considered in the analysis. 

The discrete reflectivities described by fixed numbers do not offer much insight into the 

physical nature of these reflectors, knowledge of which is essential to take measures to 

minimize their impact on system performance. Further, all the randomness in this 

phenomenon is described by the random variable x, in the formalism developed in chapter 

3. There are various factors that affect the probability density function of x. The coding 

scheme employed in the transmission system is one example. In this chapter, we touch on 

the relationship between the paramters in our model and physical paramters in actual 

systems. 
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6.1 Reflections from splices and connectors 

Optical energy is reflected towards its source at splices and connectors. The effects 

of a given reflection coefficient have been considered in some detail in the preceding 

chapters. In this section, we discuss the relation of reflection coefficients to some of the 

physical parameters characterizing splices and connectors. 

Splices are considered first. The amount of optical energy reflected from a non- 

fusion splice depends on three factors [16]: 

a) the quality of the fiber endface 

b) the closeness of the index matching to the fiber’s index of refraction 

c) the spacing between the two fiber ends. 

In particular, the degree of polish on the end of a fiber has a substantial effect on reflection 

even when the end is immersed in an oil whose index of refraction matches that of the fiber 

extremely well. Further, even in single mode systems, splices generate modal noise that 

affects the BER. This phenomenon has been extensively studied and can cause difficulties 

under certain circumstances. However, it can be eliminated fairly easily in practical 

systems [17]. The effects of these reflections is very small if the reflection coefficients are 

less than 1%. It is expected that coherent systems will require even lower levels of 

reflection. 

In the case of connectors, the situation is similar. To reduce the reflection effects, 

fiber joints are designed to have physical contact, are index matched, or have tilted endfaces 

[18]. In fiber joints designed for endface contact, an air gap between fiber endfaces may 

still exist due to either the non-perpendicularity of endfaces or the presence of contaminants 

or design tolerances. Also, in convex polished connectors, physical contact may occur 

away from the core owing to off-axis polishing. Recent work by Shah et. al [1] has shown 

that the polishing of fiber endfaces may substantially increase the refractive index of the 

surface from 1.47 to about 1.6. This region of higher index, about 0.15 microns deep, 

results in interference effects that can cause reflection losses of greater than 1.1 dB, which 
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is greater than the maximum specified loss for some connectors. Fig. (6.1) [18] shows the 

effect of small changes in the air gap length between two single mode fibers on the 

coupling efficiency of a connector having polished end faces. In the following section, an 

outline of the theory describing the influence of a random air gap on fiber transmittance is 

presented. 

6.2 Reflections from non contacting joints 

Wagner and Sandahl [19] have performed a detailed analysis of the transmission 

characteristics of fiber connections. Non contacting fiber connectors have a small air gap, 

which can be modeled by a Fabry-Perot cavity. Multiple reflections within the cavity 

produce interference effects which are observed as transmission fluctuations if either the 

fiber separation or the source wavelength is varied. These effects occur provided the fiber 

separation is less than the coherence length of the source. Since the air gaps cannot be 

predicted to be of a fixed length, statistical techniques must be employed in their analysis. 

The reflection coefficient for a Fabry Perot cavity is given by [20]: 

= 4R sin? (6.2.1) 

(1 -R)? + 4R sin?5 

where 

S=nAd /A, andR= (n-1/n+1)?. 

n is the refractive index of the fiber, A, the center wavelength of the laser, Ad is the width 

of the air gap, and R is the reflectivity of the boundary between the air and fiber endface. 

As mentioned, Ad is not fixed. Assuming that it is uniformly distributed, the probability 
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density function for a given reflectivity Reff is given by : 

V1 - Rmax (6.2.2) P = 

(Re) = Td - Rap¥ Ran Ras Ren) 
  

where R,.3, = 4R / (1 + R)*. Using this equation, Fishman et al [20] have found that for 

n = 1.45 to 1.57, the maximum reflection R,,,, varies from 12.6 % to 17.9 % and the 

mean reflection from 6.53 % to 9.3 %. The relation for the probability density function is 

used to derive a probability density function for the R used so far in this document, which 

has been defined to be the geometric mean of the reflectivities of the two discontinuities. In 

fact, it is the geometric mean of the reflectivities of two random air gaps. The resultant 

probability density function is a convolution integral that has been evaluated numerically. 

The resulting distribution has a mean varing from 5.5 % to 8.3 % and a maximum varying 

from 12.6 % to 17.9 %, as the refractive index varies from 1.45 to 1.57. Thus for n = 

1.57, the mean reflection coefficient resulting from two lossless non-contacting 

connections is 8.3 %. The power penalty from RIN corresponding to this value of the 

mean reflection coeffcient is 1.4 dB (from fig. 3.2). Hence, a system with only two non- 

contacting connectors will have a mean power loss of 1.4 dB, neglecting jumper loss etc. 

This shows that the power penalties incurred are fairly heavy, and may be unacceptable in 

power limited fiber optic systems. 

All this shows that attention needs to be paid to the design of connectors and splices 

such that these reflections are minimized. It should be noted that these reflections can be 

minimized by using an index matching medium (fluid / gel) etc. between the fiber end faces 

and while this approach is common in the splicing of fibers, due to considerations like 

cleanliness and contamination, it is usually not used in demountable connectors. In such 

cases, however, the connectors can be polished at an angle such that the reflected power is 

not guided into the fiber. Drake [21] has studied various types of fiber end terminations and 

connections. He has listed some of the better terminations and connections - those which 

have low reflectance properties. The double-bulb connector, drawn in fig.(6.2), according 
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to him, is one type that has a low reflectance (less than 1%). 

6.3 Coding effects on RIN 

As mentioned previously (section 3.1), the statistics of RIN are influenced by the 

line coding schemes employed. The analysis thus far had been done with NRZ formatted 

data. Elrefaie et al [22] have considered return-to-zero formatted data and have evaluated 

the performance degradations due to RIN using computer simulation techniques. Basically, 

the single mode laser rate equations were solved numerically to obtain the statistics of the 

phase fluctuations. The simulations were done for both NRZ and RZ line coding schemes. 

It was found that the RZ performance was better by about 1.0 dB than NRZ at a error rate 

of 10-9. The power penalties are shown in fig.(6.3) as a function of the round trip delay 

between the joints. The power penalty of the NRZ system varies slowly with the delay time 

t, while the RZ penalty peaks only at values of t equal to an integer number of bits. For 

instance, in the case where both connectors have 8 dB return loss (i.e. a reflection 

coefficient of about 15%), at round trip delays equal to an integer number of bits, the 

power penalty of both NRZ and RZ systems is 3 dB. However, at offset delays, although 

the power penalty of the NRZ system remains at 3 dB, the RZ penalty is reduced to 1.5 

dB. The value of the return loss represents a worst case situation. For lightwave systems 

with multiple connectors, the RZ system penalty is found to be sensitive to the distance 

between connectors and in the worst case is equal to the NRZ system penalty. 
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7.0 Conclusions 

7.1 Summary 

Reflection induced noise in fiber optic systems due to the presence of refractive 

index discontinuities is an example of signal dependent noise in a communications system. 

It is an impairment that has always been present in fiber systems. However, it is only 

recently that there has been any significant interest in it - with the advent of high speed 

systems and narrow linewidth lasers. It is recognized as an important factor in determining 

overall system performance. 

The work in this thesis can be broadly divided into two categories : 

a) study of RIN as a specific impairment in a fiber communication system 

b) development of a methodology for evaluating the effects of signal dependent 

noise. 

This thesis, in addition to summarizing the broad literature on this subject, has made 

new contributions on the following topics : 
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i) multiple reflections at a single pair of reflectors 

ii) multiple reflectors in the system 

lii) presence of other impairments in the system 

iv) enhanced low frequency content in the spectrum of RIN. 

The effects of signal dependent noise in a communications system do not generally 

lend themselves to easy analytical solutions. Primarily, the probability density functions of 

the random variables representing such phenomena are not easy to evaluate. They, in 

general, do not fit into the Gaussian model which is much more amenable to analysis. A 

major part of this thesis has concerned itself with ways to estimate the probability density 

function and the corresponding power penalty in such situations. We have come up with a 

few simple models which have provided accurate estimates of the power penalty incurred in 

maintaining a nominal error probability. It must be reiterated here that while these 

approximations are not very useful in predicting actual error probabilities, the quantity that 

is often of greater interest, especially in power limited fiber systems, is the power penalty 

that must be paid to maintain a nominal error probability. 

7.2. Conclusions and principal contributions 

In chapter three, we show that a degradation like RIN that is bounded does not 

result in a BER floor. The uniform and quadratic approximations for the probability 

density function of RIN provide good estimates of the power penalty relative to an exact 

calculation. The analysis shows that as long as the approximation considered has the same 

bounds as the actual p.d.f, the power penalties are in excellent agreement, even though the 

shapes of the two distributions may be very different. In fact, owing to the steepness of 

the p.d.f of RIN, it has been approximated as an eye degradation equal to the maximum 

value of the noise, with good results. 

Conclusions 91



In the case of a multiplicity of reflectors in the system, the p.d.f of the resultant 

noise process cannot be evaluated analytically. However, since the moments may be 

calculated, the Gram-Charlier series method is used to estimate the p.d.f of the process. 

The power penalty incurred in maintaining a 10° error probability is then calculated. We 

have shown that the power penalties increase rapidly with the reflectivity R. We see that the 

reflectivities must be less than a few percent (2-3%) to ensure acceptable levels of 

degradation. Further, as the number of reflectors increases, the p.d.f of the resultant noise 

process tends to become more Gaussian, keeping with the predictions of the Central Limit 

Theorem. For three reflectors, there is a significant difference between the Gaussian 

approximation and the actual p.d.f (the Gram-Charlier series approximation). However, for 

four reflectors, there is not much difference between the two. As the number of reflectors 

increases, the uniform and the quadratic approximations also become increasingly 

inaccurate as the pdf tends to become Gaussian. 

The discrepancies between theoretically calculated and experimentally measured 

power penalties were sought to be resolved by considering effects that had been neglected 

in the literature. The effects of multiple reflections and the presence of an extinction ratio 

(or other fixed degradations) are two possibilities that at least qualitatively explain the 

discrepancies. We have shown that indeed these effects do result in higher power 

penalties, in keeping with the experimental results. 

The enhanced low frequency content in the spectrum of RIN observed in the 

literature is explained by postulating a low frequency dip in the spectrum of the 

instantaneous frequency noise, which is probably caused by thermal phase modulation. 

We show that this indeed indicates an increase in the noise at low frequency relative to that 

calculated from a laser with a purely Lorentzian line. . 

Finally, it may be noted that the power spectrum of RIN in a controlled incoherent 

situation (a Mach-Zehnder interferometer for example) provides a simple method to 

measure the linewidth of the laser without having to use complicated optical spectrum 

analyzers. 
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7.3 Suggestions for future research 

In this thesis, laser phase noise has been been characterized by some parameters that 

are assumed constant, independendent of the modulation. In practice, turn-on and turn-off 

transient effects are extremely important in gigabit per second systems. In this context, we 

fee] that the phenomenon of frequency chirp will have a major impact on RIN and is, in our 

opinion, worth looking into. 

Another area that needs investigation is the impact of RIN on FSK systems. With 

coherent systems becoming increasingly important, and with their intrinsic sensitivity to 

random phase variations, an effect like RIN warrants investigation.\Once again, these are 

primarily related to the physical modeling. The methodology presented in this thesis should 

be applicable. 

The impact of coding schemes needs to be looked at in greater detail. 

To model these and other effects, the laser rate equations should provide a logical 

Starting point and complex simulations may have to be performed to understand their 

impact on RIN. 

With regard to the wider problem of signal dependent noise, it is of interest to see 

how broadly the simple approximations developed in this thesis are useful. Specifically, it 

would be desirable to establish conditions under which the various approximations to the 

distribution of signal dependent noise are applicable. 
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Appendix A : Power spectral density in the incoherent 

case 

The autocorrelation function of RIN in the general case is given by eq.(2.3.5) which 

is reproduced here : 

R (t,t) = 2R?{ exp (- 2nAv{t| [1+ cos 2adot. exp (-4zxAv(t -|t|)), [t] <7 
(2.3.5) 

exp (- 2xAvt ) [ 1+ cos 2WoT | It| >t 

In the incoherent case, t >> 1,, i.e. the delay time is much greater than the coherence time 

of the laser. In this regime, the contribution to the autocorrelation function is mostly from 

the first term in eq. (2.3.5). This is proved as follows : 

In this regime, 2xAvt >> 1. Hence, exp (- 22Avt ) is negligible, which means that 

the contribution to the autocorrelation from the second line (when Itl > Tt) is negligible. 

Coming back to the first line, t >> t, , tT - Itl >> t, most of the time. And since there is an 

additional factor of 2 in the exponent, the contribution from that term too is not very 

significant. Hence, the autocorrelation function in the incoherent regime is given by the 

simpler expression : 

R(t,t) = exp(-27Avitl) (A.1) 

neglecting scale factors. 

The power spectral density of RIN is then written in the form: 
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P(w) = [ dt exp(-2rAvitl - jot) (A.2) 

which is similar to eq.(5.1.4) of chapter five, except for the change in the variable of 

integration. Hence, in the incoherent regime, the power spectral density of RIN is nothing 

but the Lorentzian line convolved with itself. 
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Appendix B : Approximation of an exponential probability 

density function by a quadratic 

In keeping with the emphasis placed on the approximation of the probability density 

functions of signal dependent noise in this thesis, we test our approximation against 

another known probability density function. We see how good a quadratic approximation 

is to an exponential probability density function. 

A two-sided exponential probability density function is given by [10] : 

Px(x) = exp(-Bixl) (B.1) 

whose variance is given by: 

= 2 (B.2) 
B 

In accordance with the formalism developed in chapter 3, the signal at the receiver 

decision point is given by : 

y =a+xRat+n (B.3) 

where x is the random variable having an exponential distribution. The probability of error 

is given by eq. (3.1.6) which boils down to the following expression in this case : 

_ 1 Ww B ee xp(-Bhxl B.4 Pg ix du exp( PY ae dx = exp(-Blxl) (B.4) 

2R 
00 
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This expression is evaluated to give : 

- B B Pe = foxp Ge Cl 5- n){1-Q@-s)} 
B , B . Lexp Gr ao +1))Q@+ >) +Q@) 

(B.5) 

In both these expressions, the symbols are as defined in chapter 3. The power penalties 

can then be evaluated numerically from eq.(B.5). 

We try to approximate the power penalty by a quadratic having the same variance as 

this exponential function. The p.d.f of the quadratic is given by : 

f,(x) = ag + ayx2, for -kK SOS«k (B.6) 

The unknown ap, a and « are calculated by matching the variance and ensuring that the 

other conditions mentioned in chapters 3 and 4 are satisfied : 

ay = 0.75 (7): ay = - 0.75 (By = =u (B.7) 

Choosing different values of B between 25 and 50 and for high values of R, we 

numerically evaluate the power penalty incurred in maintaining an error probability of 10° 

with this approximation. 

Comparing the results with the actual values obtained from eq.(B.5), we find that 

there is a poor match. We believe that the reason for the poor match is because the 

exponential has a very long tail, as a result of which there is an error floor. However, since 

the quadratic approximation is bounded, there is no error floor. Nevertheless, this tells us 

that the approximations we are considering are not valid in every case. Hence, there is 

some interest in finding out the conditions under which these approximations hold and also 

in finding other approximations that give satisfactory results in other circumstances. 
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