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ABSTRACT 

 

Investigation of momentum and heat transfer between the fluid and solid phase is critical to the 

study of fluid-particle systems. Dense suspensions are characterized by the solid fraction (ratio of 

solid volume to total volume), the particle Reynolds number, and the shape of the particle. The 

behavior of non-spherical particles deviates considerably from spherical particle shapes which 

have been studied extensively in the literature. Momentum transfer, to first-order, is driven by 

drag forces experienced by the particles in suspension, followed by lift and lateral forces, and 

also through the transmission of fluid torque to the particles. The subject of this thesis is a family 

of prolate ellipsoidal particle geometries of aspect ratios (AR) 2.5, 5.0 and 10.0 at nominal solid 

fractions (𝜑) between 0.1 and 0.3, and suspensions of cylinders of AR=0.25. The nominal 

particle Reynolds number (𝑅𝑒) is varied between 10 to 200, representative of fluidized beds.   

Fluid forces and heat transfer coefficients are obtained numerically by Particle Resolved 

Simulations (PRS) using the Immersed Boundary Method (IBM). The method enables the 

calculation of the interstitial flow and pressure field surrounding each particle in suspension 

leading to the direct integration of fluid forces acting on each particle in the suspension. 

A substantial outcome of the research is the development of a new drag force correlation for 

random suspensions of prolate ellipsoids over the full range of geometries and conditioned 

studied. In many practical applications, especially as the deviation from the spherical shape 



 
 

increases, particles are not oriented randomly to the flow direction, resulting in suspensions 

which have a mean preferential orientation. It is shown that the mean suspension drag varies 

linearly with the orientation parameter, which varies from -2.0 for particles oriented parallel to 

the flow direction to 1.0 for particles normal to the flow direction.  This result is significant as it 

allows easy calculation of drag force for suspension with any preferential orientation.  

The heat transfer coefficient or Nusselt number is investigated for prolate ellipsoid suspensions. 

Significantly, two methods of calculating the heat transfer coefficient in the literature are 

reconciled and it is established that one asymptotes to the other.   It is also established that unlike 

the drag force, at low Reynolds number the suspension mean heat transfer coefficient is very 

sensitive to the spatial distribution of particles or local-to-particle solid fractions. For the same 

mean solid fraction, suspensions dominated by particle clusters or high local solid fractions can 

exhibit Nusselt numbers which are lower than the minimum Nusselt number imposed by pure 

conduction on a single particle in isolation. This results from the dominant effect of thermal wakes 

at low Reynolds numbers. As the Reynolds number increases, the effect of particle clusters on heat 

transfer becomes less consequential.  

For the 0.25 aspect ratio cylinder, it was found that while existing correlations under predicted 

the drag forces, a sinusoidal function 𝐹𝑑,𝜃 = 𝐹𝑑,𝜃=0° + (𝐹𝑑,𝜃=90° − 𝐹𝑑,𝜃=0°)sin⁡(𝜃)⁡captured the 

variation of normalized drag with respect to inclination angle over the range 10 ≤ 𝑅𝑒 ≤ 300 and 

0 ≤ 𝜑 ≤ 0.3. Further the mean ensemble drag followed 𝐹𝑑 = 𝐹𝑑,𝜃=0° +
1

2
(𝐹𝑑,𝜃=90° − 𝐹𝑑,𝜃=0°). It 

was shown that lift forces were between 20% to 80% of drag forces and could not be neglected 

in models of fluid-particle interaction forces. Comparing the pitching fluid torque to collision 

torque during an elastic collision showed that as the particle equivalent diameter, density, and 



 
 

collision velocities decreased, fluid torque could be of the same order of magnitude as collisional 

torque and it too could not be neglected from models of particle transport in suspensions. 
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GENERAL AUDIENCE ABSTRACT 

 

Momentum and heat exchange between the fluids (air, water…) and suspensions of solid particles 

plays a critical role in power generation, chemical processing plants, pharmaceuticals, in the 

environment, and many other applications. One of the key components in momentum exchange 

are the forces felt by the particles in the suspension due to the flow of the fluid around them and 

the amount of heat the fluid can transfer to or from the particles. The fluid forces and heat transfer 

depend on many factors, chief among them being the properties of the fluid (density, viscosity, 

thermal properties) and the properties of the particles in the suspension (size, shape, density, 

thermal properties, concentration). This introduces a wide range of parameters that have the 

potential to affect the way the fluid and particles behave and move.  

Experimental measurements are very difficult and expensive to conduct in these systems and 

computational modeling can play a key role in characterization. For accuracy, computational 

models have to have the correct physical laws encoded in the software. The objective of this thesis 

is to use very high-fidelity computer models to characterize the forces and heat transfer under 

different conditions to develop general formulas or correlations which can then be used in less 

expensive computer models. Three basic particle shapes are considered in this study, a sphere, a 

disk like cylindrical particles, and particles of ellipsoidal shapes. More specifically, Particle 

Resolved Simulations of flow through suspensions of ellipsoids with aspect ratio of 2.5, 5, 10 and 
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cylinders with aspect ratio of 0.25 are performed. The Reynolds number range covered is [10, 200] 

for ellipsoids and [10, 300] for cylinders with solid fraction range of [0.1, 0.3]. New fluid drag 

force correlations are proposed for the ellipsoid and cylinder suspensions, respectively, and heat 

transfer behavior is also investigated.  
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Chapter 1 

Introduction 

 

In the study of dense fluid-particle systems, aside from the particle-particle and particle-wall 

interactions, the drag force induced by the fluid flow also plays a critical role in governing the 

motion of particles in the flow. To model such systems, Computational fluid Dynamics (CFD) 

has become an increasingly important tool for design compared to experiments which are 

comparatively very expensive to perform. Currently two methods: Two-fluid Model (TFM) and 

Computational Fluid Dynamics Coupled to Discrete Element Method (CFD-DEM) are 

frequently implemented to model such systems. The Eulerian-Lagrangian approach, CFD-DEM 

is not only able to capture the fluid-particle interactions, but also track the location, heat and 

mass transfer condition of each individual particle in the suspension. Therefore, it has become an 

important tool for modeling such systems. However, because the particles are treated as point 

masses and not resolved, accurate drag force and heat transfer correlations are fundamental for 

accurately predicting the momentum and heat exchange between the fluid and solid phase.  

Due to the simplicity of geometry and general applicability, early researchers mainly focused on 

an isolated spherical particle in the flow and proposed drag correlations for a wide range of 

Reynolds numbers. As natural and engineered particles possess various geometries, and spherical 

particle drag correlations may not be able to fulfill the accuracy requirement for drag prediction, 

investigations of other non-spherical particle geometries including cylinders, ellipsoids, cubes, 

plates, amongst others, have immerged. Among these many drag correlations in the literature, the 

drag correlation derived by Hölzer and Sommerfeld [1] has been widely implemented by 
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numerous researchers. In their correlation, sphericities in different orientations are used to 

represent orientational and geometry difference of particles in the flow, which theoretically has 

unlimited applicability to different particle geometries. In particle suspensions, in addition to 

particle geometry, each particle is surrounded by several other particles and the incoming flow 

experienced by each particle is affected by nearby particles. These effects are not captured in 

drag correlations for isolated particles, which has motivated studies in recent years to focus on 

flow through suspensions of non-spherical particles with different geometries. Among these 

studies, there is a lack of drag correlations for very elongated ellipsoids and low aspect ratio 

cylinders, or particle shapes that deviate significantly from the spherical shape. In addition, many 

researchers have observed that in practical systems, non-spherical particles may have different 

mean orientational preferences as the flow condition varies. Taking elongated ellipsoids as an 

example, in packed beds of these ellipsoids, they tend to lie with their rotational symmetry axis 

perpendicular to the flow maintaning minimum potential energy for the whole system. While in a 

fluidized bed, their orientation tends to be more randomly distributed. However, the effect of 

preferential orientation on the drag force experienced by either individual particle or the whole 

suspension has not been characterized in the literature.  

Heat transfer between the fluid and solid phase is another important factor since fluidized bed 

reactors are usually accompanied by heat exchange in the system. Though an increasing number 

of heat transfer correlations have emerged in recent years, their applicability is always limited to 

spherical or near-spherical particle gemoetries. There are two approaches for heat transfer 

coefficient calculation in particle suspensions. One defines a fluid mixed-mean temperature for 

each location in the flow direction and uses the average surface temperature of particles at that 

location to define the heat transfer coefficient.  The other approach defines a body conforming 
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shell around each particle of interest within which the fluid mean temperature is calculated to 

derive the heat transfer coefficient of each individual particle in the suspension. However, there 

is a lack of clarity in the literature regarding the difference or similarity between these two 

approaches.  

Though most studies have focused on deriving drag force correlations, which is by far the most 

consequential force in spherical systems, other fluid forces such as lift and lateral forces and 

induced fluid moments or torques could also play a consequential role on the translational and 

rotational motion of particles.  In the literature, rotational motions are almost entirely modeled 

through particle-particle and particle-wall collisions while fluid force induced torque are never 

considered, but which could also be playing a substantial role. Therefore, it is worthwhile to 

estimate the lift, lateral forces, and torques along different directions, and investigating their 

characteristics under different flow conditions and particle inclination angle (𝜃) to estimate their 

relative importance against drag and particle-particle or particle-wall collisional forces. 

Motivated by the general lack of research in the literature on fluid forces in non-spherical 

particle suspensions, the overall objective of this work is to characterize and develop general 

drag and heat transfer correlations, where appropriate, with applicability to various particle 

geometries. In addition, the relative importance of lift and torque while modeling the motion of 

the particles is also investigated. 

The following are the main contributions of the current work which are described in Chapters 2 

to 5.  

• Chapter 2: Development of a new drag correlations for prolate ellipsoid suspensions 

covering aspect ratios ranging from 1 (sphere) to 10 under Reynolds number range of 
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[10, 200] and solid fraction range of [0.1, 0.3]. This is the only correlation in the 

literature developed specifically for prolate-ellipsoids over the range of geometries and 

parameters specified. 

• Chapter 3: Development of a relationship between drag force and suspension 

preferential orientation for ellipsoidal particle suspensions of AR2.5 to 10.  This reduces 

the large number of characterizations necessary to calculate drag for an arbitrary 

orientational parameter to just two characterizations at each Reynolds number and solid 

fraction for each geometry.  

• Chapter 4: Heat transfer characterization of ellipsoidal particle geometries of AR2.5 to 

10 and establishing the relationship between two methods used in the literature to 

characterize the heat transfer coefficient. It is also established that the mean suspension 

Nusselt number, unlike drag force, is very dependent on the local solid fraction around 

each particle at low Reynolds number.   

• Chapter 5: Drag, lift, lateral force as well as torques along different directions on both 

isolated and suspensions of AR0.25 cylinders are also investigated. A new drag 

correlation is proposed after observing that there is no reliable correlation in the literature 

that can accurately capture variation of drag force on such paritlce suspensions. The 

relative significance of  lift, lateral force, and torque are also investigated with the 

observation that lift and pitching torque play important roles in governing the 

translational and rotational motion of particles in the flow. 

The work described in this dissertation has resulted in the following published and submitted 

peer-reviewed journal publications: 
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• Chapter 2: Cao, Z., Tafti, D.K. and Shahnam, M., 2020. Development of drag 

correlation for suspensions of ellipsoidal particles. Powder Technology, 369, pp.298-310.  

• Chapter 3: Cao, Z., Tafti, D.K. and Shahnam, M., Modeling drag force in ellipsoidal 

particle suspensions with preferential orientation. Powder Technology, 378, pp.274-287.  

• Chapter 4: Cao, Z. and Tafti, D.K., Convective Heat Transfer in suspensions of prolate 

ellipsoids. Submitted to International journal of mass and heat transfer in January 2021. 

• Chapter 5: Cao, Z. and Tafti, D.K., 2020. Fluid forces and torques in suspensions of 

oblate cylinders with aspect ratio 1: 4. International Journal of Multiphase Flow, 131, 

p.103394. 

• Appendix: Cao, Z. and Tafti, D.K., 2018. Investigation of drag, lift and torque for fluid 

flow past a low aspect ratio (1: 4) cylinder. Computers & Fluids, 177, pp.123-135. 
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Chapter 2 

Development of Drag Correlation for 

Suspensions of Ellipsoidal Particles  

  

2.1. ABSTRACT 

To model drag the current state-of-the-art is to use isolated non-spherical particle drag correlations 

modified by a solid fraction correlation that is based on experimental or simulation results of 

spherical particle suspensions. It is shown that this practice can lead to substantial inaccuracies 

when the particle geometry deviates significantly from a spherical geometry. In this paper particle 

resolved simulations (PRS) are conducted for ellipsoids of aspect ratio 5 (AR5) and 10 (AR10) in 

random suspensions with no preferential orientation. Simulations are performed for a Reynolds 

number Re = 10 to 200, and solid fraction 𝜑 = 0.1 to 0.3 and 0.1 to 0.2 for AR5 and AR10 

suspensions, respectively.  Combined with PRS data from past studies for spherical particle 

suspensions and ellipsoids with AR2.5, a drag correlation is developed for the mean drag force in 

suspension as a function of Re, 𝜑⁡, aspect ratio, and inclination angle 𝜃. 

Keywords: Particle suspensions; Particle-Resolved Simulation (PRS); prolate ellipsoids; drag 

correlation. 

2.2. INTRODUCTION 

Fluid drag forces acting on particles in suspension are of critical importance for capturing the 

dynamics of fluid-particle systems accurately. Due to the simplicity of the geometry and general 

applicability, an isolated spherical particle in the flow field has been widely investigated by a 

number of researches[2–4] and drag correlations have been derived with applicability to a broad 

range of Reynolds numbers [5–8]. Recently, with the increase in computational power and 

maturation of numerical techniques and methods in computational fluid dynamics (CFD), highly 
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resolved Particle Resolved Simulations (PRS) have been performed for non-spherical particles 

such as ellipsoids [9–12], cylinders [13–15], cubes [16,17], and other complex shapes. In addition 

to these works, that focus on a specific or on a series of similar geometries, there also       have 

been attempts in the literature that seek to develop a general correlation that can predict drag force 

on various non-spherical particles. One of the widely used correlation is that by Hölzer and 

Sommerfeld [1], who fitted 2061 experimental data points for different particle geometries and 

proposed a drag correlation with a mean deviation of 14.1%.  

Unlike the drag on an isolated particle that has been extensively studied in the literature, there are 

relatively fewer investigations that focus on particle suspensions. Ergun [18] derived a correlation 

for pressure drop over packed beds of particles based on a large number of experimental data. 

However, the accuracy decreases at low solid volume fractions (𝜑). Thus it is combined with the 

correlation derived by Wen and Yu [19] for 𝜑 less than 0.2. The combined drag model is widely 

used and provides reasonable drag results for flow through spherical particle suspensions [20]. 

Another widely used correlation is that derived by Di Felice [21] which is based on previous 

experiments on particle suspensions. In the last decade, these correlations have been augmented 

by computational investigations of fluid flow through particle suspensions. These have the added 

advantage of being able to calculate the flow field around each particle in suspension and hence 

directly calculate the fluid forces acting on the particle. Tenneti et al. [22] did particle resolved 

simulations of spherical particle suspensions covering a wide range of solid fractions and Reynolds 

numbers. They found that after normalization, the drag force due to the fluid viscous effect presents 

a weak power-law dependence on Reynolds number which disproved the previous notion that 

normalized viscous drag is independent of Reynolds number [23]. They also showed that the 

normalized pressure drag force varied linearly with Reynolds number. Using Lattice Boltzmann 
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simulations of spherical particle suspensions, Rong et al. [24] observed that drag force on 

individual particles fluctuated randomly around the mean with an approximate Gaussian 

distribution. Similar investigations have also been conducted for specific non-spherical particle 

suspensions. Rong et al. [25] did Lattice Boltzmann simulation for both oblate and prolate ellipsoid 

suspensions and based on the drag model of Di Felice [21], they proposed a new correlation that 

takes the variation in particle geometry into account. Chen and Müller [26] simulated flow in cubic 

particle suspensions and proposed a drag closure for the specific geometry. To evaluate the 

accuracy of drag correlations in the literature, He et al. [27,28] investigated fluid flow through 

suspensions of spheres and ellipsoids with aspect ratio of 2.5 by performing particle resolved 

simulations and found that drag correlation for isolated particles in the flow proposed by Hölzer 

and Sommerfeld [1] combined with particle suspension correlation of Tenneti et al. [22] provided 

drag results on the particles in the suspension with least deviation from the simulation data. 

For CFD combined with point-force models for particles such as the discrete element method 

(DEM), the general lack of available drag models for non-spherical particle suspensions is 

compensated for by combining drag correlations for isolated non-spherical particle in the flow 

with a correlation that accounts for the effect of particle density or solid fraction, 𝜑. This has been 

implemented for suspensions of cylinders [29–31], ellipsoids [32] and cuboids [33]. However, the 

experimental results of Vollmari et al. [33] observed that though such combinations of drag 

correlations can reasonably estimate the drag force on suspensions of spheres or particle 

geometries similar to spheres (sphericity close to unity) , much poorer accuracy was found while 

predicting drag force on suspensions of particles that deviated significantly from  a spherical 

geometry (such as very elongated or flat geometries).  
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The objective of this paper is to develop a general correlation for prolate ellipsoidal particles 

ranging in aspect ratios equal to unity (sphere) to 10.  In this work, particle resolved simulations 

are performed for fluid flow through suspensions of prolate ellipsoids with aspect ratio of 10 and 

5 (abbreviated as AR5 and AR10 ellipsoid), which is defined as the ratio between length of the 

particle along the axis of rotational symmetry and the diameter of the equatorial plane. Firstly, the 

applicability of drag correlations in the literature is evaluated by comparing with our simulation 

results. Then using drag data for spheres and ellipsoids of AR2.5 from our previous work [27,28], 

a new drag correlation is proposed that covers ellipsoids in suspension with aspect ratios from 1 

to 10, Reynolds number from 10 to 200 and low to intermediate solid fractions. 

2.3. NUMERICAL METHOD AND SIMULATION SETUP 

2.3.1. Governing equations 

The governing flow equations in the particle suspension are given by the incompressible, constant 

property, continuity and momentum equations.  These are solved in the framework of in-house 

CFD code – GenIDLEST (Generalized Incompressible Direct and Large Eddy Simulation of 

Turbulence) with the immersed boundary method (IBM).  The dimensionless forms of the 

governing equations have the following form: 

Continuity: 

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (2.1) 

 

Momentum: 
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𝜕𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(
1

𝑅𝑒
(
𝜕𝑢𝑖
𝜕𝑥𝑗

)) (2.2) 

 

The above equations are non-dimensionalized by: 

𝑢𝑖 =
𝑢𝑖
∗

𝑢𝑟𝑒𝑓
∗⁡ ; ⁡𝑥𝑖 =

𝑥𝑖
∗

𝑙𝑟𝑒𝑓
∗ ; ⁡⁡𝑝 =

𝑝∗ − 𝑝𝑟𝑒𝑓
∗

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡2 ;⁡ 

 𝜌 =
𝜌∗

𝜌𝑟𝑒𝑓
∗ ; ⁡𝜇 =

𝜇∗

𝜇𝑟𝑒𝑓
∗ ; ⁡⁡𝑅𝑒 =

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡ 𝑙𝑟𝑒𝑓
∗

𝜇𝑟𝑒𝑓
∗  (2.3) 

where the superscript (*)  represents dimensional variables. For the constant property assumption, 

𝜌 = ⁡𝜇 = 1. In the non-dimensionalization process, the superficial velocity of the flow 𝑈𝑠
∗ is taken 

as 𝑢𝑟𝑒𝑓
∗⁡  and 𝑙𝑟𝑒𝑓

∗ ⁡is the equivalent diameter of an equal volume sphere.  

The equations are solved using a collocated or non-staggered  finite-volume formulation with  

second-order central (SOC) difference discretization [34,35]. The variables including flow 

velocities, pressure and temperature are calculated and stored at computational cell center while 

mass fluxes are calculated and stored at the cell faces. A second order predictor-corrector 

formulation is implemented for time integration: first an intermediate velocity field is calculated 

in the predictor step, then a corrector step is carried out based on the calculated pressure field to 

satisfy the discrete continuity. 

2.3.2. Particle Geometry and Immersed Boundary Method 

In the present work, simulation for suspensions of ellipsoid with aspect ratio of 5 and 10 are 

performed and for deriving the new drag correlation, drag force data for spheres and ellipsoids 

with AR of 2.5 by He et al. [27,28] are also included to extend the applicability of the drag 
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correlation for different particle geometries. The body conforming surface meshes of the particles 

investigated are shown in Figure 2.1. From (a) to (d) are sphere, ellipsoid with AR2.5, ellipsoid 

with AR5, and ellipsoid with AR10. 

Particle surfaces are resolved by the Immersed Boundary Method (IBM).  Particle surfaces are 

defined by approximately 4000 (AR5 ellipsoid) and 7500 (AR10 ellipsoid) triangular elements. 

The much greater number of surface elements of the AR10 ellipsoid results from its relatively 

larger surface area and surface curvature.  A sharp interface indirect forcing method is used for the 

IBM in which fluid nodes adjoining the particle surface are identified as fluid IB nodes. Boundary 

conditions on the immersed boundary (IB) surface are implemented in the scheme by using probes 

normal to the IB surface passing through the IB nodes to determine the appropriate value at the 

fluid IB node to satisfy the boundary condition at the surface. Details of this implementation and 

validation can be found in the work of Nagendra et al. [36]. Further, grid independency for non-

spherical particles in isolation and suspensions can be found in Cao and Tafti [37], and He et al. 

[27,28]. 

                                                           

 

 

 

 

 

 
(b) (c) (d) (a) 
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Figure 2.1. Surface meshes of different particles that are investigated 

 

Forces on each individual surface element are calculated by: 

  𝐹⃗𝑒
∗ = 𝐹⃗𝑣𝑖𝑠𝑐𝑜𝑢𝑠

∗ + 𝐹⃗𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
∗  (2.4) 

And the total fluid-particle interaction force on each particle is calculated using: 

 𝐹⃗𝑠
∗ =∑𝐹⃗𝑒,𝑖

∗

𝑛

𝑖=1

 (2.5) 

The drag force, which is of main interest in this study, is defined as the component of the fluid-

particle interaction force in the mean flow direction. To find the effect of particle orientation with 

respect to the mean flow direction on drag force experienced by each particle, the angle between 

the particle’s rotational symmetry axis and the mean flow direction as shown in Figure 2.2  is used 

as the singular inclination angle to describe the orientation. 

 

Figure 2.2. Inclination angle of ellipsoid used to define orientation. 
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2.3.3. Computational domain and background mesh 

In this work, a rectangular computational domain is generated as is shown in Figure 2.3. The total 

length of the domain in the x- or flow direction is 30 non-dimensional units, out of which the 

ellipsoids are placed in the in the region of length 15 units, 5 units from the inlet plane. The size 

of the domain is kept to 10 units in the cross-stream, y- and lateral, z-directions.  The inlet velocity 

is set to the target superficial velocity, 𝑢𝑟𝑒𝑓
∗⁡ = 𝑈𝑠

∗ or U∞  = 1.0 in Figure 2.3. At the outlet, outflow 

or zero gradient conditions are imposed on the velocity and pressure fields. Periodic boundary 

conditions are specified in the y- and z- directions to simulate an infinite extent of the particle 

suspension in both directions.  

 

Figure 2.3. Computational domain and boundary conditions 

 

To supplement past grid independency studies [27,28,37], an additional grid independency study 

is conducted in this study for AR10 particles because of their extreme nature at the highest 

Reynolds number of 200 at a solid fraction of 0.20. Based on our previous investigations, two of 

the finest mesh spacings were investigated: 40 and 50 grid cells per equivalent spherical diameter, 

amounting to a total grid size of 128 and 250 million computational cells in the domain, 

respectively. With this study it is established that the calculated drag force on over 97% of the 
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particles had deviations of less than 2.5% between the two grid resolutions while the mean drag 

force over all particles in the suspension had a deviation of 1.0%, ascertaining grid convergence 

and the adequacy of the ⁡
1

40
⁡⁡grid spacing.  Thus all reported results are on a 

1

40
⁡grid. 

2.3.4. Generation of particle suspension 

To create the suspension of particles without overlap or orientational preference, a physical 

simulation engine – PhysX by Nvidia [38] is employed. During this stage each particle defined by 

a coarse surface mesh is introduced into the packing box with a random velocity. As more particles 

are introduced into the packing box, overlaps are detected by the PhysX engine and the collision 

operator moves the particles apart till no overlaps exist in the system.  This process is repeated till 

the desired solid fraction is reached and the system is in a stable state with no overlaps.  Figure 2.4 

shows an example of the AR10 particle suspension placed in the computational domain. 

 

Figure 2.4. Randomly placed particles in the computational domain. 
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To reach a desired solid volume fraction, with the pre-set region that accommodates the particles, 

specific number of particles are required, which is calculated by: 

 𝑁 =
6𝜑𝑉

𝜋𝑑𝑝
3  (6) 

In the equation, 𝑁 is the total number of particles in the domain.⁡𝜑⁡is the desired solid fraction and 

𝑉⁡ is the volume of the computational domain with a dimension of 15 × 10 × 10⁡ in x-y-z- 

directions, respectively. The number of particles for each solid fraction for different ellipsoid 

shapes are presented in Table 2.1. The difference in the number of  particles for the same 𝜑⁡is due 

to the different domain size implemented in the study of He et al. [27], which had a dimension of 

10 × 10 × 10. In this study, two separate and distinct random suspensions are generated for each 

solid fraction and particle geometry. Because of the large aspect ratio and the elongated shape of 

the AR10 particles, it was not possible to construct the suspension for 𝜑 > 0.2 without introducing 

preferential orientation of the particles. Since the objective of this study was to investigate random 

arrangements, the solid fraction of AR10 particles was limited to 0.2.  

 

Table 2.1. Number of particles required under different conditions 

𝝋 0.1 0.15 0.2 0.3 0.35 

Sphere 191 - 382 573 669 

AR2.5 ellipsoid 191 - 382 573 669 

AR5 ellipsoid 286 - 573 859 - 

AR10 ellipsoid 286 430 573 - - 
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To ascertain that the AR10 particles are indeed arranged in a random arrangement we make use of 

the following relationship for a random distribution of ellipsoids 

 
𝑁Δ𝜃

𝑁80°≤𝜃≤90°
⁡≈ 𝑠𝑖𝑛𝜃 (2.7) 

Here 𝑁Δ𝜃  are the number of particles present in the interval Δ𝜃 = 10°  about angle ⁡𝜃 , and 

𝑁80°≤𝜃≤90° are the number of particles in the interval⁡80° ≤ 𝜃 ≤ 90°. The expression states that in 

a random arrangement the number of particles in an interval centered at 𝜃 when normalized by the 

number of particles in an interval near 𝜃 = 90°  should approximately equal to⁡𝑠𝑖𝑛𝜃 [39]. The 

distribution of the normalized particle count for AR10 ellipsoids with respect to inclination angle 

is shown in Figure 2.5. In general, the distribution follows the reference sinusoidal curve for the 

three solid fractions investigated. The larger deviation at low solid fraction is a result of the less 

number of particles used for⁡𝜑 = 0.1. A similar distribution is also present for AR5 ellipsoids. 
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Figure 2.5. Variation of normalized particle count with inclination angle for AR10 suspensions 

 

 

2.3.5. Pre-processing of the drag data 

The drag forces are presented after being normalized by the Stokes drag on an isolated sphere of 

equivalent diameter, and is calculated as: 

 𝐹𝐷 =
𝐹𝐷
∗

3𝜋𝜇∗𝐷𝑒𝑞∗ 𝑈∞∗
 (2.8) 

Due to the developing nature of the flow in the x-direction, flow entrance and exit into and out of 

the particle suspension (located between x=5 and 20) influence the drag forces which will behave 

differently than in the core of the suspension.  Both, upstream effects at the entrance to the 

suspension and downstream effects at the exit from the suspension will impact the drag forces of 

particles located near the entrance and exit, respectively. Figure 2.6 shows an example of the 

normalized drag force on individual particles in the suspension for AR5, at Re=10 and⁡𝜑 = 0.1. 

The symbols represent the x-location of the particle center and it can be noted that drag on particles 

near the two ends exhibit different trends compared to the particles in the middle. Therefore, results 

are only presented for particles that lie in the core of the suspension devoid of entrance and exit 

effects whose centers lie between x = 7.5 to 17.5 for this case. This requirement reduces the sample 

size, however it is noted that the minimum particle sample size over all the solid fractions still 

consists of 310 particles over two random distributions which were simulated for each case.  
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Figure 2.6. Drag force on AR5 particles in the suspension at Re=10, 𝝋 = 𝟎. 𝟏,⁡with respect to 
their x location 

 

 

2.4. RESULTS AND DISCUSSION 

2.4.1. Drag results and comparison with literature 

In coarse grained simulations of particle mixtures, the particles are modeled as point masses and 

typically require a model for the drag force. For non-spherical particles in suspension, the drag 

force is calculated by using the drag force on an isolated particle at different orientations to the 

flow (isolated particle drag correlation) combined with a correlation that accounts for the solid 

volume fraction (suspension drag correlation). In the study of Zhou et al. [32,40], a combination 

of the isolated particle drag correlation of Hölzer and Sommerfeld [1] and the suspension 

correlation of Di Felice [21] that takes 𝜑 into consideration is used to calculate the drag force on 

ellipsoids with aspect ratio from 0.5 to 3.5 in the suspension. These correlations are listed in Table 

2.2. Due to the general applicability of Hölzer and Sommerfeld’s [1] correlation to different 

particle geometries, this combination has also been used for other particle geometries such as 
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cylinders [32,41], rod-like particles [30], cuboids [33] and plate-like particles [33]. Among these 

studies, Vollmari et al. [33] not only did simulations but also experiments for suspensions of 

particles with different geometries. On comparison, they observed that use of the combined 

isolated particle plus suspension correlation estimated the pressure drop in the suspension with 

reasonable accuracy for particles that had geometries similar to a sphere. Particles whose shape 

deviated considerably from that of a sphere, like cylinders with aspect ratio (height/diameter) 3.5 

and elongated cuboids with dimension of⁡2𝑚𝑚 × 3𝑚𝑚 × 11𝑚𝑚, showed significant deviation 

from the experimental results. Their study demonstrated the inadequacy of estimating drag for 

particles in suspension when the geometry deviated substantially from a spherical geometry.  

In addition to these there have been other studies in the literature to either build isolated non-

spherical particle correlations at different orientations and Reynolds numbers as well as for 

particles in suspension. Recently Ouchene et al. (referred to as Ouchene henceforth) [11] did 

particle resolved simulations (PRS) for isolated ellipsoids with aspect ratios from 1.25 to 32 and 

derived a drag correlation with applicability in the Reynolds number of up to 240. Tenneti et al. 

(referred to as Tenneti henceforth) [22] proposed a correlation for spherical particles in suspension 

based on simulation results. Their drag model for suspensions when combined with the isolated 

particle drag model of Hölzer and Sommerfeld [1] was found to agree well with simulation results 

of He et al. [27] for ellipsoids with aspect ratio 2.5. Rong et al. [25] using LBM of flow through 

suspensions of ellipsoids with aspect ratio from 0.25 to 4 proposed a correlation based on the drag 

model of Di Felice [21], by considering not only Reynolds number and solid fraction, but also the 

sphericity of the particle. Drag correlations derived from these studies are listed in Table 2.2. In 

these correlations, 𝛾 represents sphericity of the particle, which is defined as the ratio between 

surface area of the volume equivalent sphere and the surface area of the non-spherical particle of 
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interest. 𝛾⊥ and 𝛾∥ respectively are the crosswise and lengthwise sphericity defined by Hölzer and 

Sommerfeld [1]. 𝜔 is the aspect ratio of the ellipsoid and 𝐶𝐷 is the drag coefficient for fluid flow 

over an isolated particle. Both⁡𝐹𝑖𝑠𝑜 and 𝐹𝑑0 represents drag force under the condition that there is 

only one particle in the flow. It is noted that the suspension correlations of Di Felice [21] and Rong 

et al. [25] do not include the contribution of the mean pressure gradient in the suspension to the 

drag force, whereas Tenneti et al. [22] include the effect of the change in mean pressure towards 

the drag force. Since the current PRS calculations and those done previously by He et al. [27,28] 

include the contribution of the mean pressure gradient in the suspension towards the drag force,  

during application and use the correlations of Di Felice and Rong et al. are divided by (1 − 𝜑) for 

equivalency with the PRS data and the correlation of Tenneti et al. 

 

Table 2.2. Drag correlations in literature 

Author Drag correlation Applicability 

Hölzer and 

Sommerfeld[1] 

𝑐𝐷 =
8

𝑅𝑒

1

√𝛾∥
+

16

𝑅𝑒

1

√𝛾
+

3

√𝑅𝑒

1

𝛾
3
4

+ 0.42 × 100.4(−𝑙𝑜𝑔𝛾)
0.2 1

𝛾⊥
. 

𝐹𝑑0 = 𝑐𝐷 ∙
1

2
𝜌𝑈∞ ∙

𝜋𝐷𝑒𝑞
2

4
 

Single particle in 

the flow field with 

arbitrary geometry 

 

Ouchene et al. 

[42] 

𝑐𝐷 = 𝑐𝐷,𝛼=0° + (𝑐𝐷,𝛼=90° − 𝑐𝐷,𝛼=0°) ∙ 𝑠𝑖𝑛
2(𝛼), 

𝑐𝐷,𝛼=0° =
24

𝑅𝑒
[𝐾𝛼=0°(𝜔) + 0.15𝜔−0.80𝑅𝑒0.687 + (𝜔 −

1)0.63
𝑅𝑒0.41

24
], 

𝑅𝑒 < 240, 

𝜔 ∈ [1, 32], 

Single ellipsoid in 

the flow 
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𝑐𝐷,𝛼=90° =
24

𝑅𝑒
[𝐾𝛼=90°(𝜔) + 0.15𝜔−0.54𝑅𝑒0.687 + 𝜔1.043(𝜔 −

1)−0.17
𝑅𝑒0.65

24
], 

𝐾𝛼=0°(𝜔) = (
8

3
)𝜔−

1

3[
−2𝜔

𝜔2−1
+

2𝜔2−1

(𝜔2−1)
3
2

ln⁡(
𝜔+√𝜔2−1

𝜔−√𝜔2−1
)]−1, 

𝐾𝛼=90°(𝜔) = (
8

3
)𝜔−

1

3[
𝜔

𝜔2−1
+

2𝜔2−3

(𝜔2−1)
3
2

ln⁡(𝜔 + √𝜔2 − 1)]−1. 

𝐹𝑑0 = 𝑐𝐷 ∙
1

2
𝜌𝑈∞ ∙

𝜋𝐷𝑒𝑞
2

4
 

 

Di Felice[21] 𝐹𝑑 = 𝐹𝑑0𝜀
−𝜒⁡    (𝜀: void fraction, equals to (1 − 𝜑)), 

𝜒 = 3.7 − 0.65exp⁡[−
(1.5−𝑙𝑜𝑔𝑅𝑒)2

2
]. 

Packed beds of 

spherical particles 

validated for 

particle similar to 

sphere. 

 

Tenneti et al. 

[22] 

𝐹(𝜑, 𝑅𝑒) =
𝐹𝑖𝑠𝑜

(1−𝜑)3
+ 𝐹𝜑(𝜑) + 𝐹𝜑,𝑅𝑒(𝜑, 𝑅𝑒), 

𝐹𝜑(𝜑) =
5.81𝜑

(1−𝜑)3
+ 0.48

𝜑1/3

(1−𝜑)4
, 

𝐹𝜑,𝑅𝑒(𝜑, 𝑅𝑒) = 𝜑3𝑅𝑒(0.95 +
0.61𝜑3

(1−𝜑)2
). 

 

0.01 ≤ 𝑅𝑒 ≤ 300, 

0.1 ≤ 𝜑 ≤ 0.5, 

Spherical particle 

suspensions. 

Rong et al. [25] 𝐹𝑑 = 𝐹𝑑0𝜀
−𝛽(𝜀,𝑅𝑒)−𝜆(𝛾,𝑅𝑒), 

𝛽(𝜀, 𝑅𝑒) = 2.65(𝜀 + 1) − (5.3 − 3.5𝜀)𝜀2exp⁡[−
1

2
(1.5 −

log𝑅𝑒)2], 

Packed beds of 

ellipsoids, 

 𝜔 ∈ [0.25, 4]. 
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𝜆(𝛾, 𝑅𝑒) = (1 − 𝛾){𝐵 − 𝐴 ∙ exp⁡[−0.5(3.5 − log⁡ 𝑅𝑒)2]}, 

𝐴 = 39𝛾 − 20.6, 

𝐵 = 101.8(𝛾 − 0.81)2 + 2.4. 

 

To evaluate the applicability of these correlations under different Re, 𝜑⁡and particle geometries, 

comparison of drag force calculated from particle resolved simulation and the combination of 

different isolated particle and suspension correlations is shown in Figure 2.7 and Figure 2.8 of drag 

force versus particle inclination angle in suspension. Isolated particle drag correlation of Hölzer 

and Sommerfeld [1] for general non-spherical particles and that of Ouchene et al. [11] specific to 

ellipsoidal particles, and suspension correlations due to Di Felice [21], Tenneti et al. [22] and that 

due to Rong et al. [25] are considered. Four combinations are evaluated, Hölzer-Felice, Hölzer-

Tenneti,  Hölzer-Rong and Ouchene-Rong. Figure 2.7 are the results for AR2.5 ellipsoid and 

Figure 2.8 corresponds to AR10 ellipsoid. Each green dot in the figures represents a particle in the 

suspension while each red dot represents the mean drag force of the particles within an inclination 

angle range of 5°. In general it can be observed that for both aspect ratios all the correlations always 

underestimate the drag force at Re=10. Out of the different combinations, the Hölzer -Tenneti 

combination is able to capture the mean variation reasonably well for AR2.5 particles but fails for 

the AR10 particles with large under predictions. The Ouchene-Rong combination, on the other 

hand does a reasonable job for AR10 particles but under predicts for the AR2.5 suspension. At 

Re=200, Hölzer-Felice and Hölzer-Tenneti (HT) provide reasonably accurate estimation of the 

mean drag force for AR2.5 suspensions but tend to under predict the drag for the AR10 suspension. 

This agrees well with the conclusion drawn by Vollmari et al. [33] that while predicting drag force 

on particles with geometry similar to that of a sphere, the combination of isolated non-spherical 
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particle drag correlation and spherical suspension drag correlation can provide reasonable 

estimation of the drag force for particles in a fluidized bed at  relatively high Reynolds number in 

the intermediate flow regime. At Re=200, for AR10 particles there is no single combination that 

can predict mean drag for different solid fractions – at solid fraction 0.1, the Hölzer-Rong 

combination is best whereas at solid fraction 0.2, Ouchene-Rong gives the best agreement. Rong’s 

correlation is the only particle suspension drag correlation that takes the effect of particle geometry 

into consideration. In fact for AR10 particles which deviate substantially from the spherical shape 

(sphericity of 0.59), results using the Ouchene-Rong correlation show the best overall agreement 

with the PRS data. On the other hand, the Hölzer-Tenneti combination shows the best overall 

agreement for the AR2.5 suspensions. The results for AR2.5 conform to the results of He et al. 

[27] who also found that best agreement with PRS data was given by the Hölzer-Tenneti combined 

correlation. 

  

      (a) Re=10, 𝛗 = 𝟎. 𝟏                                             (b) Re=10, 𝛗 = 𝟎. 𝟑𝟓 
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       (c) Re=200, 𝛗 = 𝟎. 𝟏                                   (d) Re=200, 𝛗 = 𝟎. 𝟑𝟓 

Figure 2.7. Comparison of drag force between PRS results and correlations in literature for 
AR2.5 ellipsoid suspensions. H: Holzer[1], O: Ouchene[11], F: Di Felice[21], T: Tenneti[22], R: 
Rong[25]. 

 

                          

                            (a) Re=10, 𝛗 = 𝟎. 𝟏                                                   (b) Re=10, 𝛗 = 𝟎. 𝟐 
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                                  (c) Re=200, 𝝋 = 𝟎. 𝟏                                    (d) Re=200, 𝝋 = 𝟎 

Figure 2.8. Comparison of drag force between PRS results and correlations in literature for 
AR10 ellipsoid suspensions. H: Holzer[1], O: Ouchene[11], F: Felice[21], T: Tenneti[22], R: 
Rong[25]. 

 

The fact that in Figure 2.8 the Rong et al. [25] suspension correlation developed for packed beds 

of ellipsoidal particles gives the best overall agreement for AR10 suspensions, conforms to the 

conclusions of Vollmari et al. [33]  that using suspension correlations developed for spherical 

particles are inadequate as the particle geometry deviates significantly from that of a sphere. Figure 

2.9 provides additional insight into this observation by studying the x-directional flow velocity at 

different planes for AR2.5 (a) – (d) and AR10 (e) – (h) at Re = 10 and solid fraction 0.1. It can be 

observed that in spite of the same solid fraction, due to the very elongated shape of the AR10 

ellipsoids, a much greater disturbance is induced in the flow field compared to the AR2.5 

ellipsoids. This is because, although these two particles have an identical volume, the AR10 

ellipsoid has a much larger surface area that results in more prominent blocking of the incoming 

flow. As a result, the interstitial fluid velocity is higher resulting in higher drag on the particles.  
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Figure 2.9. Flow field of AR2.5 and AR10 ellipsoid suspension at Re = 10, 𝝋 = 𝟎. 𝟏. 

 

A more quantitative measure of the effect of particle geometry on drag in suspensions can be 

obtained by calculating the ratio of the PRS calculated mean drag force per particle in suspension 

for a given Reynolds number and solid fraction to the weighted isolated particle drag force 

weighted by number of particles in a given inclination angle range calculated by the following 

summation.  

 𝐹̅𝑑0 = ∑ 𝐹𝑑0,𝜃 ∙ 𝑘𝜃

90°

𝜃=0°

 (2.9) 

In the equation, 𝐹𝑑0,𝜃⁡is the isolated particle drag force (normalized by Stokes drag) at inclination 

angle⁡𝜃⁡calculated using the isolated particle correlation of Ouchene et al. [11] shown in Table 2.2 

and 𝑘𝜃 ⁡is obtained from the theoretical randomly packed suspension, which is the fraction of the 

(e) (f) (g

) 

(h

) 
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total number of particles at inclination angle of 𝜃, which can be shown to be 𝑠𝑖𝑛𝜃. The weighted 

mean is used to mimic the fraction of particles with the corresponding inclination angle in the ideal 

randomly oriented suspension - more specifically the fraction of particles with inclination angle 

within every⁡5°⁡is used as 𝑘𝜃.The ratio between the computed mean drag force per particle in 

suspension (𝐹̅𝑑⁡)⁡and the weighted mean isolated particle drag force (𝐹̅𝑑0)⁡is calculated for each 

solid fraction and particle geometry and the results are shown in Figure 2.10. The ratio gives a 

measure of the degree to which the presence of the particles in suspension affects the mean drag. 

In the unlikely scenario that the suspension does not influence the drag on a particle, then the ratio 

would assume a value close to unity. Any deviation from unity quantifies the effect of the 

suspension on the average drag force felt by an individual particle in suspension. An increasing 

ratio indicates that the mean drag per particle in suspension deviates more and more from the mean 

drag acting on an isolated particle. A strong dependence of the ratio on Reynolds number and solid 

fraction can be observed. If the shape of the particle were not a strong factor in influencing 

suspension drag, the ratio would be the same for a given Re and solid fraction across all the particle 

geometries (AR=1 to 10).  However, it is observed that the drag ratio is dependent on the particle 

aspect ratio as well and it increases with aspect ratio. Figure 2.10 affirms the earlier observation 

that using spherical particle suspension drag correlations to estimate the drag force on non-

spherical particle suspensions leads to increasing errors as the particle shape deviates from that of 

a sphere.  These results demonstrate the importance of considering the effect of particle geometry 

while proposing suspension drag correlations. 
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Figure 2.10. Ratio between suspension and isolated particle mean drag force (Light blue: 
Sphere; Red: AR2.5 Ellipsoid; Blue: AR5 Ellipsoid; Green: AR10 Ellipsoid) 

 

2.4.2. Development of mean drag correlation 

Since the analysis above demonstrates that it is hard to find a closure in the literature that can 

provide reasonably consistent predictions of the drag force for ellipsoidal particle suspensions, 

here we propose a new correlation for ellipsoids with aspect ratio of 1.0 to 10. There are two basic 

requirements imposed on the particle suspension drag correlations: when ⁡𝜑 → 0 , the drag 

correlation should reproduce the drag force on an isolated particle in the flow; and the drag 

correlation should be able to predict the correct drag for spherical suspensions as well (AR1). It is 

the intent of the final correlation to predict the mean drag over the full ensemble of the suspension 

as well as the variation of drag with inclination angle in suspension. In order to achieve this end 
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objective, the drag correlation is developed as a combination of isolated particle drag combined 

with or modified by a suspension drag correlation. A pre-existing isolated particle drag correlation 

is used and the development focuses on the suspension correlation based on PRS data. First an 

ensemble mean drag correlation is developed taking into consideration the Re number, the solid 

fraction, and the particle geometry. This is then modified further by introducing the dependence 

of particle inclination in suspension. 

To build the suspension drag correlation for the ellipsoidal particles a form similar to Di Felice’s 

[21] correlation with parameters modified to match our simulation results is used.  Combining this 

with isolated particle drag correlation, the new drag force correlation is written as: 

 𝐹𝑑 = 𝐹𝑑0𝜀
−𝛼(𝑅𝑒,𝜀)−𝛽(𝜔,𝜀) (2.10-a) 

 

𝛼 = 4.988(𝜀 + 0.5139) − (3.175

− 1.493𝜀)𝜀2exp⁡(−
1

2
(1.5 − 𝑙𝑜𝑔10(𝑅𝑒))2)

− 0.5884 × 𝑙𝑜𝑔10(𝑅𝑒) 

(2.10-b) 

𝛽(𝜔, 𝜀) = A × 𝜀3 + 𝐵 × 𝜀 + 𝐶 

{
𝐴 = 0.5201𝜔2 + 6.094𝜔 − 11.74
𝐵 = −1.713𝜔2 − 3.467𝜔 + 12.65
𝐶 = 1.056𝜔2 + 0.4316𝜔 − 4.168

 

(2.10-c) 

 

In the equation, 𝜀⁡is the void fraction of the suspension given⁡by⁡𝜀 = 1 − 𝜑. 𝐹𝑑0 is calculated 

using the drag correlation of Ouchene et al. [11,12] (Table 2.2) which covers the range of Re and 

aspect ratios investigated in this paper. Since Ouchene et al.’s isolated particle correlation for 𝐹𝑑0 
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is sensitive to the inclination angle  of the ellipsoid with respect to the flow direction, the mean 

isolated particle drag (𝐹𝑑0)⁡is calculated using Eqn (2.9). ⁡For spheres (AR1), 𝐹𝑑0 = 𝐹𝑑0⁡is the 

drag force for an isolated spherical particle in the flow, which is calculated using the drag 

correlation of Ouchene et al. [11,12] (Table 2.2) which in the limit as AR → 1 reduces to [43]: 

 𝐶𝐷,𝑠𝑝ℎ𝑒𝑟𝑒 =
24

𝑅𝑒
(1 + 0.15𝑅𝑒0.687) (11) 

           

                               (a)  𝛗 = 𝟎. 𝟏                                                                     (b) 𝛗 = 𝟎. 𝟐   

            

                               (c)  𝛗 = 𝟎. 𝟑⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                             (b) 𝛗 = 𝟎. 𝟑𝟓   
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Figure 2.11. Comparison of ensemble mean drag force between developed correlation {𝑭𝒅𝟎⁡- 
Eqn 2.10} (Solid lines) and PRS results (Symbols). Spherical particle correlation of Tenneti et al. 
[22] (Dashed lines) is also shown for comparison; Green: Sphere; Blue: AR2.5; Grey: AR5; 
Orange: AR10. 

 

Comparison of PRS results and the correlation is shown in Figure 2.11. To benchmark the 

proposed drag correlation in Eqn (10) it is compared to the spherical suspension correlation of 

Tenneti et al. [22] in Figure 2.11. It can be observed that Eqn (10) is in good agreement with 

Tenneti et al. [22] for spherical suspensions but deviates considerably as the aspect ratio of the 

particles increases. The discrepancies between Eqn. (10) and Tenneti et al. at high Reynolds 

number and higher solid fractions for spherical suspensions was also observed by He et al. [27]. 

Tenneti et al. [22] noted in their paper that their PRS on which their correlation is based always 

predicted lower drag than previous works at Re=200. In Figure 2.11 a strong dependence of the 

ensemble mean drag force on aspect ratio, emphasizing the importance of including the effect of 

particle geometry for different non-spherical particle suspensions. The mean deviation of Eqn. 

(2.10) with PRS results for AR2.5, AR5 and AR10 ellipsoids are 3.24%, 4.96% and 2.24% while 

relative deviation for the spherical suspension is 2.82%. The small errors indicate that the ensemble 

mean drag force of ellipsoids with aspect ratio range from 1 to 10 can be well captured by the 

current correlation within the Reynolds number and solid fraction range investigated.  

Since drag force is also a strong function of particle orientation or inclination angle (see Figure 2.7 

& Figure 2.8), it is desirable to be able to predict the mean drag force on a particle at a given 

inclination in suspension. As a first approximation this can be accomplished by using 𝐹𝑑0,𝜃 instead 

of 𝐹𝑑0 in Eqn. (2.10-a) for each inclination angle. These results are presented in Figure 2.12 (a), 

(c) and (e) at the lowest solid fraction investigated for AR2.5, AR5 and AR10 ellipsoid, 
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respectively, and Figure 2.12 (b), (d), (f) for the highest solid fraction for these particles. The drag 

correlation performs reasonably well compared to the PRS results. The mean relative deviation of 

the three ellipsoid shapes over all inclination angles, Re and 𝜑⁡investigated are 5.78%, 7.47% and 

7.43% for AR2.5, 5, and 10, respectively. More specifically, the agreement is better at lower solid 

fractions, however, at relatively higher solid fractions, significant deviation starts to appear near 

0°⁡and⁡90°. This suggests that for a dilute particle-fluid system, scaling the isolated particle drag 

force at different 𝜃⁡by the same factor is reasonable for particles in suspension but this becomes 

less accurate when the solid fraction increases.  

    

             (a) AR2.5 𝛗 = 𝟎. 𝟏                                            (b) AR2.5 𝛗 = 𝟎. 𝟑𝟓 

   

                           (c) AR5 𝛗 = 𝟎. 𝟏                                                         (d) AR5 𝛗 = 𝟎. 𝟑 
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                           (e) AR10 𝛗 = 𝟎. 𝟏                                              (f) AR10 𝛗 = 𝟎. 𝟐 

 

Figure 2.12. Comparison of drag force dependence on inclination using drag correlation 
{Ouchene⁡(𝐓𝐚𝐛𝐥𝐞⁡𝟐. 𝟐), 𝑭𝒅𝟎,𝜽 + ⁡𝑬𝒒𝒏. 𝟐. 𝟏𝟎} with PRS results. 

 

The observations in Figure 2.12 suggest that further sensitization of the suspension correlation in 

Eqn (2.10) to inclination angle could potentially increase accuracy. Error analysis demonstrated 

that the deviation from PRS data had a strong dependence on solid fraction and aspect ratio of the 

ellipsoids, with a weak dependence on the Reynolds number. Therefore, a modification term for 

𝜃⁡that is a function of 𝜑⁡and AR is proposed and the final drag correlation has the following form: 

 𝐹𝑑 = 𝐹𝑑0,𝜃𝜀
−𝛼(𝑅𝑒,𝜀)−𝛽(𝜔,𝜀) ∙ 𝜔(𝑎1∙𝜃+𝑎2)(1−𝜀)

𝑎3
 (2.12-a) 

 {

𝑎1 = 0.0011𝜔2 − 0.0161𝜔 + 0.0277

𝑎2 = −0.0405𝜔2 + 0.6296𝜔 − 0.9672

𝑎3 = −0.087𝜔2 + 1.2092𝜔 − 2.0161

 (2.12-b) 

With the additional term 𝜔(𝑎1∙𝜃+𝑎2)(1−𝜀)
𝑎3 ⁡included in the drag correlation, comparison between 

PRS and correlation results are shown in Figure 2.13. The correlation now shows better agreement 

with PRS data at high solid fractions when previously it did not without the modification.  On the 
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other hand, cases like Re=200, 𝜑 = 0.35⁡seem to have larger deviation at 90°⁡than without the 

modification term for⁡𝜃. But there is better agreement for⁡𝜃 ≤ 60°. As a result, the weighted 

deviation, which is based on the proportion of particles under different inclination angles, changed 

from 6.41% to 7.11%. As for the overall deviation for the 3 particle geometries investigated, the 

mean deviation become 3.90%, 5.74% and 5.20% for AR2.5, 5, and 10, respectively. To 

summarize, the proposed drag correlation is reported in Table 2.3. 

 

Table 2.3. New drag correlation for ellipsoids/sphere suspensions under different conditions 

Drag Correlation Applicability 

𝐹𝑑 = 𝐹𝑑0,𝜃𝜀
−𝛼(𝑅𝑒,𝜀)−𝛽(𝜔,𝜀) ∙ 𝜔(𝑎1∙𝜃+𝑎2)(1−𝜀)

𝑎3
 

𝛼 = 4.988(𝜀 + 0.5139) − (3.175

− 1.493𝜀)𝜀2exp⁡(−
1

2
(1.5 − 𝑙𝑜𝑔10(𝑅𝑒))2)

− 0.5884 × 𝑙𝑜𝑔10(𝑅𝑒) 

𝛽(𝜔, 𝜀) = A × 𝜀3 + 𝐵 × 𝜀 + 𝐶 

{
𝐴 = 0.5201𝜔2 + 6.094𝜔 − 11.74
𝐵 = −1.713𝜔2 − 3.467𝜔 + 12.65
𝐶 = 1.056𝜔2 + 0.4316𝜔 − 4.168

 

{

𝑎1 = 0.0011𝜔2 − 0.0161𝜔 + 0.0277

𝑎2 = −0.0405𝜔2 + 0.6296𝜔 − 0.9672

𝑎3 = −0.087𝜔2 + 1.2092𝜔 − 2.0161

 

𝑅𝑒 ∈ [10,200] 

1 ≤ 𝜔 ≤ 10 

0.1 ≤ 𝜑 ≤ 0.35 

(sphere and 

AR2.5 ellipsoid) 

0.1 ≤ 𝜑 ≤ 0.3 

(AR5 ellipsoid) 

0.1 ≤ 𝜑 ≤ 0.2 

(AR10 ellipsoid) 
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             (a) AR2.5 𝛗 = 𝟎. 𝟏                                            (b) AR2.5 𝛗 = 𝟎. 𝟑𝟓 

 

(b) AR5 𝛗 = 𝟎. 𝟏                                                         (d) AR5 𝛗 = 𝟎. 𝟑 

 

                           (e) AR10 𝛗 = 𝟎. 𝟏                                           (f) AR10 𝛗 = 𝟎. 𝟐 
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Figure 2.13. Comparison of drag force dependence on inclination using new drag correlation 
{Ouchene (𝐓𝐚𝐛𝐥𝐞⁡𝟐. 𝟐), 𝑭𝒅𝟎,𝜽 + 𝑬𝒒𝒏. 𝟏𝟐} with PRS results. 

 

2.5. SUMMARY AND CONCLUSIONS 

The lack of drag correlations for non-spherical particles in suspension makes it difficult to 

accurately estimate the force on particles in studies that require drag closure to model the fluid-

particle dynamics. The current state-of-the-art is to combine isolated non-spherical particle drag 

correlations and a correlation that takes solid fraction into account, which is based on experimental 

or simulation results of spherical particle suspensions. It is shown that this practice can lead to 

substantial inaccuracies when the particle geometry deviates significantly from a spherical 

geometry, thus motivating the work in this paper which aims to include the effect of particle 

geometry on drag correlations in suspension. In this study random suspensions (no preferential 

orientation) of ellipsoids with aspect ratios ranging from 1 (sphere) to 10 are considered in a 

Reynolds number range from 10 to 200, and solid fractions ranging from 0.1 to 0.35. 

In order to achieve this end objective, an incremental approach is taken in the development of the 

drag correlation. During this exercise, the drag correlation is developed as a combination of 

isolated particle drag combined with or modified by a suspension drag correlation. In all instances 

pre-existing isolated particle drag correlation are used and the development focuses on the 

suspension correlation based on particle resolved simulation data. In this process, an ensemble 

mean drag correlation is developed for these particles in suspension taking into consideration the 

Re number, solid fraction and aspect ratio. Then the resulting mean drag correlation is modified 

further by introducing the dependence of particle inclination in suspension. The final correlation 

has a maximum mean deviation of approximately 6% from PRS data. 
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Chapter 3  

Modeling Drag force in ellipsoidal particle 

suspensions with preferential orientation 

  

3.1. ABSTRACT 

High aspect ratio ellipsoidal particle suspensions exhibit preferential orientation under the action 

of external forces and in the presence of walls. The preferential orientation of the particles has a 

large effect on the drag force experienced by the suspension. In this paper particle resolved 

simulations are conducted on ellipsoidal particles of aspect ratio 10 and 2.5 in the Reynolds number 

range 10 ≤ 𝑅𝑒 ≤ 200  and solid fractions 0.10 ≤ 𝜑 ≤ 0.30 . An orientational order parameter 

−2.0 ≤ 𝑆 ≤ 1 is used to define the preferential orientation of the suspension. It is shown that in 

spite of up to 400% variation in mean drag force with 𝑆, a simple linear relationship between 𝑆 =

⁡−2 and 1 can describe the variation of drag force. This is a significant finding which establishes 

that only two data points at 𝑆 = −2 and 1 are needed to define mean drag at any preferential 

orientation exhibited by the suspension. It is also shown that the inclination dependent mean drag 

is quite independent of S at low Reynolds number and solid fraction but shows increasing 

dependence at higher values.  

Keywords: Particle suspensions; Particle-Resolved Simulation (PRS); prolate ellipsoids; drag 

correlation; preferential orientation. 

3.2. INTRODUCTION 
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The fluid drag force acting on particle assemblies and suspensions is consequential to the design 

and operation of many static and dynamic particle systems. In many of these systems, particles are 

often treated as spherical in shape in spite of their non-sphericity. This is because drag correlations 

for single spherical particles [2–6,8,44] as well as spherical particles in suspension [18–22] are 

readily available and relatively easy to use.  For non-spherical particles in isolation, not only does 

the Reynolds number influence drag but also the orientation of the particle with respect to the flow 

direction [45,46]. Recently, experiments have been augmented with Particle Resolved Simulations 

(PRS) for single ellipsoids [9–12] and cylinders[13–15] of different aspect ratios, and cubes 

[16,17] at different orientations to the flow to characterize the orientation dependence. Extensions 

of drag correlations to non-spherical particle suspensions have been limited. Common practice in 

the literature has been to combine single particle correlations with suspension correlations 

developed for spherical particles [21,22].  Recently taking advantage of increased computational 

power, PRS for different non-spherical particle shapes in suspension have been conducted. He et 

al. [27,28] performed PRS of flow over randomly oriented suspensions of ellipsoids wih aspect 

ratio of 2.5 and observed the significant variation of drag force experienced by individual particles 

under different inclination angles. They showed that at a given Reynolds number and solid fraction 

the mean drag force varied with orientation angle, but there was also considerable scatter of 

inidividual particle drag about the mean drag at a given orientation angle. A broader aspect ratio 

range of 0.25 to 4,which included oblate as well as prolate ellipsoids, was investigated by Rong et 

al.[24,25] using the Lattice Boltzmann Method (LBM) for flow through a packed bed generated 

by Discrete Element Method (DEM). With the observed different preferental orientation for oblate 

and prolate ellipsoids, they demonstrated that drag in these suspensions is quite different from 
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suspensions that have particles randomly or uniformly oriented. However, this phenomenon was 

not explicitly investigted in their study. 

 Buchalter and Bradley [47] simulated the process of pouring hard particles into a three-

dimensional container and observed that oblate particles in the packed bed tended to have their 

rotational symmetry axis parallel to the direction of gravity, while for prolate ellipsoids, the 

rotational symmetry axis was preferably perpendicular to the direction of gravity. A similar 

phenomenon was observed by Zhou et al.[40] where they demonstrated that this was consistent 

with the general understanding of minimizing system potential energy. On the other hand, in 

fluidized beds, the preferential orientation behavior is different. Detailed orientational distribution 

was studied in CFD-DEM simulations of Ma and Zhao [31]. They found that in a packed bed of 

disks with aspect ratio (defined as the ratio between height to diameter) of 1/8, nearly 45% of 

particles rested with their rotational symmetry axis parallel to the direction of gravity, whereas 

only 8% of the particles tended to rest with their rotational symmetry axis perpendicular to the 

direction of gravity, respectively. As the fluidization started and stabilized, an inverse trend was 

observed with nearly 60% of the particles orienting their axis perpendicular to the flow with very 

few to no particles orienting their axis parallel to the direction of flow. For prolate rod-like particles 

with aspect ratio 3, Ma et al. [29] observed that approximately 45% and 1% of the particles were 

found to rest with their rotational symmetry axis oriented perpendicular and parallel to the flow, 

respectively. Under fluidized conditions, these two ratios changed to around 22% and 10%, 

respectively. The influence of non-spherical particle orientation distribution on the momentum 

transfer between fluid flow and particle suspensions has been reported by Vollmari et al. [33]. 

They performed both CFD-DEM simulations and experiments of air flow over packed beds of 

elongated cylinders with aspect ratio of 3.5. They found large differences in pressure drop when 
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the particles were predominantly positioned with their symmetry axis parallel to the flow versus 

perpendicular to the flow. However, they did not perform any detailed investigation of the flow 

field and drag force as influenced by the particle orientation distribution. 

While preferential orientation would seem to be the more prevalent and natural condition than 

random arrangements in static as well as fluidized beds, particularly for large aspect ratio particles, 

there has been no attempt in the literature to investigate the relationship between drag forces 

experienced by a randomly oriented suspension versus drag force in a preferentially oriented 

suspension. Buchalter and Bradley [47] defined an orientational order parameter with respect to 

the flow direction for both prolate and oblate spheroids. The parameter encapsulates the full range 

from parallel-to-flow rotational symmetry axis to perpendicular-to-flow orientations and is 

straightforward to calculate. It has been used by researchers [48,49] performing DEM simulations 

to quantify the orientational preference for different non-spherical particles. Other researchers, like 

Woodcock and Naylor [50] use eigenvalue analysis of the 3D orientation data to quantify the 

orientational preference of the particle suspensions. While this provides quantification of the 

relative orientation of particles with respect to each other, it does not quantify the relative 

orientation with respect to the flow direction. Bezrukov and Stoyan [51] implemented an 

orientation correlation function (OCF), which is a generalization of the definition in a planar case 

[52]. By calculating the relative orientation for a particle of interest with respect to the surrounding 

particles, local alignment can be well quantified. However, similar to the eigenvalue analysis of 

Woodcock and Naylor [50], flow direction is not taken into account. 

In summary, there is clear evidence in the literature that preferential orientation of non-spherical 

particles in suspension is the norm rather than the exception. All past work in the literature on 

quantifying drag force in suspensions assume a random arrangement of particles with no 
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preferential orientation. As we will show in this paper this assumption can lead to large errors in 

specifying the drag force in a suspension with preferential orientation.  Thus it would follow that 

to predict drag forces accurately, drag correlations should not only be function of geometry, 

Reynolds number, and solid fraction, but also preferential orientation. This study focuses on this 

aspect for prolate ellipsoidal particles. Our objective is to establish a relationship between drag 

and preferential orientation, preferably one that is simple and general. In order to establish the  

effect of preferential orientation on suspension drag, in this work PRS is performed for flow 

through suspensions of prolate ellipsoids with aspect ratios of 10 and 2.5. Solid fractions from 0.1 

to 0.3 and Reynolds numbers from 10 to 200 are considered. The orientational order parameter 

defined by Buchalter and Bradley [47] is used to quantify the ensemble preferential orientation of 

the particle suspensions. 

3.3. NUMERICAL METHOD AND SIMULATION SETUP 

3.3.1. Governing equations 

All the simulations performed in this work are using an in-house CFD code – GenIDLEST 

(Generalized Incompressible Direct and Large Eddy Simulation of Turbulence) [34,35]. The 

dimensionless form of the governing equations formulated using Cartesian tensor notation are: 

Continuity: 

 𝜕𝑢𝑖
𝜕𝑥𝑖

= 0  (3.1) 

 

Momentum: 
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𝜕𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
{
1

𝑅𝑒
(
𝜕𝑢𝑖
𝜕𝑥𝑗

)} 
    

(3.2) 

 

where the variables are non-dimensionalized by: 

𝑢𝑖 =
𝑢𝑖
∗

𝑢𝑟𝑒𝑓
∗⁡ ; ⁡𝑥𝑖 =

𝑥𝑖
∗

𝑙𝑟𝑒𝑓
∗ ; ⁡⁡𝑝 =

𝑝∗ − 𝑝𝑟𝑒𝑓
∗

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡2 ;⁡ 

𝜌 =
𝜌∗

𝜌𝑟𝑒𝑓
∗ ; ⁡𝜇 =

𝜇∗

𝜇𝑟𝑒𝑓
∗ ; ⁡⁡𝑅𝑒 =

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡ 𝑙𝑟𝑒𝑓
∗

𝜇𝑟𝑒𝑓
∗  

Variables with superscript (*) represent dimensional values. 𝑢𝑟𝑒𝑓
∗⁡  is the undisturbed or superficial 

flow velocity which can also be represented by 𝑈∞
∗ . 𝑙𝑟𝑒𝑓

∗  is specified as the diameter of the sphere 

that has an equivalent volume of the ellipsoid. The flow is assumed to be incompressible with 

constant properties. Properties of air at 300K are taken for the fluid in the domain. 

The governing equations are discretized using second-order central differencing scheme on a non-

staggered grid topology. Fluid velocities, pressure and temperature are calculated and stored at the 

computational cell center whereas the mass flux is calculated and stored at cell faces. A semi-

implicit method is implemented for time integration that treats the viscous terms with Crank-

Nicolson formulation and the convection terms with Adams-Bashforth method. Firstly, an 

intermediate velocity field is calculated by a predictor step, then it is corrected in the corrector step 

using the calculated pressure field to satisfy discrete continuity. A preconditioned BICG-STAB 

method is implemented to solve the pressure equation. 
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3.3.2. Particle Geometry and Immersed Boundary Method 

The particle geometries of interest are ellipsoids of 2.5 and 10 aspect ratio which is defined as the 

ratio between length along the rotational symmetry axis and diameter of the particle’s largest 

circular cross-section. Eq. (3) is used to generate the particle geometry. For an aspect ratio of 10, 

a = 2.32, b = c = 0.232 and for aspect ratio 2.5, a = 0.921, b = c = 0.368 are used to give the desired 

aspect ratio and volume equivalent sphere diameter of unity. During the simulation, each particle 

is characterized by an inclination angle⁡𝜃, which is the angle between the particle’s rotational 

symmetry axis and the undisturbed flow direction that ranges from 0° to 90°. Fig. 3. 1. depicts the 

inclination angle and surface mesh for aspect ratio 10 particle. 

 𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1 (3) 

 

 

Fig. 3. 1. Particle surface mesh and definition of inclination angle 

The Immersed Boundary Method (IBM) is employed to resolve the particle surfaces. In this 

framework, the computational domain is discretized into a structured Cartesian mesh. The 

treatment of the cells adjacent to the immersed particle surfaces is modified such that the 

computation is able to detect the immersed surface. To represent the location and curvature of the 
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particle surface, a mesh composed by 7538 triangular elements (2172 elements for aspect ratio 

2.5)  is generated for each particle as shown in Fig. 3. 1.. More details about the IBM procedure 

and implementation of boundary conditions can be found in the work of Nagendra et al. [36]. 

Hydrodynamic forces induced by fluid pressure and shear stresses at the surface are calculated at 

each triangular element of the particle surface mesh along the three primary orthogonal directions 

in the global 𝑥 − 𝑦 − 𝑧 Cartesian coordinate system [27,28]. As is shown in Eq. (4), drag force on 

the particle is obtained by the sum of the x-directional force over all surface elements. 𝑛⁡is the total 

number of surface elements of the particle and 𝑓𝑖𝑥
∗  is the x-directional hydrodynamic force on the 

𝑖th element. 

 
𝐹𝑑
∗ =∑𝑓𝑖𝑥

∗

𝑛

𝑖=1

 (3.4) 

 

The drag force is further normalized by the Stokes drag which is calculated by: 

 
𝐹𝑑 =

𝐹𝑑
∗

3𝜋𝜇𝑟𝑒𝑓
∗ 𝑈∞

∗ 𝑑𝑝∗
 (3.5) 

In this equation, 𝑑𝑝
∗ ⁡is the volume-equivalent sphere diameter.  

A critical parameter in IBM is the background grid resolution compared to the size of the object 

that is immersed in the grid. A number of investigations preceding this study have validated the 

grid resolution and the overall methodology used in this paper. In He et al. [27], drag force results 

for suspensions of spheres and ellipsoids of aspect ratio 2.5 were tested at different grid resolutions 

and with past work in the literature. Predictions of drag forces with grid resolution of 30, 40 and 
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50 cells per volume equivalent spherical diameter (dimensionless equivalent diameter is always 

unity) were evaluated. It was found that the maximum difference between the three grids was about 

2%. Spherical particle suspension results were compared with the correlation developed by Tenneti 

et al. [22] using particle resolved simulations. The predictions showed very good agreement with 

the correlation for Re< 200. At Reynolds number of 200, the predicted drag force was 5%~10% 

higher than the correlation. Tenneti et al. [22] have noted that their predictions, from which the 

correlation is built, consistently predicted a lower drag at Re=200 than that reported by other 

researchers. In a closely related heat transfer study of 2.5 aspect ratio ellipsoidal suspensions, He 

and Tafti [53] showed that the mean Nusselt number and its standard deviation varied by 2% and 

4%, respectively between 30, 40 and 50 cells per equivalent diameter.  In yet another study by Cao 

and Tafti [37] on single cylinders of aspect ratio 0.25, grids of 1/30, 1/40 and 1/50 were compared 

for the prediction of the drag coefficient over the range of 𝑅𝑒 up to 300 and particle inclination 

angles from 0 to 90 degrees.  It was found that the difference in drag coefficient was bounded to 

within 4% between 1/30 and 1/50 and to within 2% between 1/40 and 1/50 grids. In addition to 

the grid independency study, the IBM predictions of drag coefficient for flow over a sphere in the 

10 ≤ 𝑅𝑒 ≤ 300  range were compared to past correlations [5,7], and to body-fitted grid 

calculations. Maximum differences were bounded to within 5%.  

In all of these past investigations using the IBM method for single particles and particles in 

suspension, we have established that 40 cells per equivalent diameter captures the physics 

accurately up to Re = 300.  

 



47 
 

3.3.3. Computational domain and mesh 

The 3D computational domain used in this study has a dimension of 30 × 10 × 10 in 𝑥 − 𝑦 − 𝑧 

directions, respectively. Flow is in the x-direction with a constant homogeneous velocity specified 

at the inlet boundary and a zero gradient condition at the outflow. As shown in Fig. 3. 2, particles 

are located in the region between the two dashed lines, at a distance of 5 units from the inlet and 

10 units from the outlet. Periodic boundary conditions are specified in the y- and z- directions to 

simulate an infinite extent of the suspension in both directions.   

 

Fig. 3. 2. Computational domain and boundary conditions 

 

A sufficiently refined mesh is necessary to resolve the fluid flow in the region between particles 

especially at relatively high solid fraction and Reynolds number. To supplement past grid 

independency studies [27,28,37], an additional grid independency study is conducted at the highest 

Reynolds number of 200 at a solid fraction of 0.20 for aspect ratio 10 particle suspension. Based 

on our previous investigations, two of the finest mesh resolutions were investigated: 
1

40
⁡and⁡

1

50
, 

which amounted to a total grid size of 128 and 250 million computational cells in the domain, 

respectively. With this study it is established that the calculated drag force on over 97% of the 

particles had deviations of less than 2.5% between the two grid resolutions while the mean drag 
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force over all particles in the suspension had a deviation of 1.01%, ascertaining grid convergence 

and the adequacy of the ⁡
1

40
⁡⁡grid spacing. Thus all reported results are on a 

1

40
⁡grid. A total of 186 

calculations are conducted in this study. 

3.3.4. Generation of Particle Suspension  

A physical simulation engine PhysX by Nvidia [38] is used to create the particle suspension [27]. 

During this process each particle defined by a coarse surface mesh is introduced into the packing 

box with a random velocity. As more particles are introduced into the packing box, overlaps are 

detected by the PhysX engine and the collision operator moves the particles apart till no overlaps 

exist in the system. To maintain periodicity in the y- and z- directions, if any particle exists at a 

given location on one side of a periodic boundary, it is replicated on all sides that are periodic with 

that location. This process is repeated till the desired solid fraction is reached and the system is in 

a stable state with no overlaps. Fig. 3. 3 shows different views of a particle suspension created 

from PhysX.  

           

 

Fig. 3. 3. Ellipsoid suspensions created using the physics engine PhysX 
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To reach a desired solid volume fraction within the pre-set region that accommodates the particles, 

the number of particles are calculated by: 

 𝑁 =
6𝜑𝑉

𝜋𝑑𝑝
3  (3.6) 

In the equation, 𝑁 is the total number of particles in the domain.⁡𝜑⁡is the desired solid fraction and 

𝑉⁡is the volume of the computational domain over which the particles are spread. For the same 𝜑, 

depending on the actual x- directional length taken by the particle suspension, the exact number of 

particles may vary. For a random arrangement the number of particles for 𝜑 = 0.1, 0.15⁡and 0.20 

are  286, 430 and 573, respectively for aspect ratio 10 particles.  

3.3.5. Definition of Orientational Order Parameter 

In this study, to investigate the influence of particle orientation with respect to flow on the drag 

forces, the Orientational Order Parameter defined by Buchalter and Bradley [47] is used to quantify 

the overall particle orientation distribution in the suspensions. It is represented by S and is 

calculated using: 

 

𝑆 =
3

2
[
1

𝑁
∑cos(2 (𝜃𝑖 −

𝜋

2
))

𝑁

𝑖=1

−
1

3
] (3.7) 

In this equation, 𝜃𝑖  is the inclination angle of the  𝑖𝑡ℎ  particle while N is the total number of 

particles in the suspension. Fig. 3.4 shows two special cases with extreme S values. The incoming 

flow is in the 𝑥 −⁡direction and Fig. 3.4 (a), (b) shows the arrangement when all particles are 

perpendicular to the flow with an inclination angle of 90°. However, there is no restriction on the 

particle orientation in the 𝑦 − 𝑧  plane, as can be seen in Fig. 3.4 (b), particles are randomly 
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oriented in the 𝑦 − 𝑧 plane with some inevitable local alignment. The S value for this case assumes 

the maximum value of 1.0. Conversely when all particles are aligned with the flow direction with 

an inclination angle of 0°, as shown in Fig. 3.4 (c), (d), the S value for the suspension will reach 

its minimum value of  -2.0. Due to the monotonic increasing nature of the cosine function in Eq. 

(7) as 2(𝜃 − 𝜋/2) increases from -180° to 0°, an increasing S value indicates that particles are 

preferentially oriented towards a larger orientation angle. A value of S = 0 indicates that the 

distribution is random with no preferential orientation.  

                                                        

                              (a)                                                                                 (b) 

                                                                                               

                              (c)                                                                                    (d) 

 



51 
 

Fig. 3. 4. 𝒛 −directional view of suspensions with all particles (a) perpendicular and (c) 

parallel to the flow and  𝒙 −directional view of suspensions with all particles (b) 

perpendicular and (d) parallel to the flow. 

 

3.4. RESULTS AND DISCUSSION 

3.4.1. Analysis of pressure and velocity distribution at different 𝑅𝑒, 𝜑 and S 

Fig. 3. 5 shows the pressure and velocity distribution in suspensions with S = -2, 0.21, and 1.0, 

𝑅𝑒 = 50  and⁡𝜑 = 0.2. The dimensionless pressure field on the particle surfaces as well as a planar 

view of the 𝑥 − 𝑧 mid-plane and a planar 𝑥 − 𝑧 view of the streamwise velocity is shown. At S = 

-2.0, by virtue of the particles being aligned parallel to the flow, the dimensionless pressure varies 

from 0.0 at the inlet to approximately -12.0 downstream of the suspension. At the same time the 

velocity field is quite ordered as the flow channels through the suspension. At the other extreme, 

at S = 1.0 all the particles are aligned normal to the flow but with arbitrary orientations in the 𝑦 −

𝑧 plane. This results in blocking the incoming flow and a pressure drop of approximately 30 

dimensionless units is 2.5 times that at S = -2.0. Compared to the two extreme arrangements, S = 

-2.0 and 1.0, S = 0.21 represents a near-random arrangement with some preferential orientation 

towards higher orientation angles. This leads to a tortuous flow path with accelerating and 

decelerating regions of velocity and high pressure drop. Note that for S = 1.0, because of the 

ordered arrangement, less number of particles can be used in a smaller x-distance to construct the 

suspension for a given solid fraction. Thus, in spite of the pressure drop per particle being the 

highest at S = 1.0, the overall pressure drop through the suspension is slightly less than that for S 

= 0.21 which has more particles spread across a larger x-distance.  
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                         (a)                                                                          (b) 

 

                   

                       (c)                                                                         (d) 

                     

                    (e)                                                                                    (f) 

 

Fig. 3. 5. Pressure distribution on particle surfaces and x-z mid-plane and u velocity at x-z 

mid-plane of the flow field with (a-b): S = -2.0, (c-d): S = 0.21 and (e-f): S = 1. 
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To encapsulate the effect of 𝑅𝑒,⁡𝜑, and S on the flow field, we look at the Probability Density 

Function (PDF) of velocity fluctuations in the suspension defined by 

 𝑢′ =
𝑢 − 𝑢𝑚
𝑢𝑚

 (8) 

where  𝑢𝑚  is the volumetric mean streamwise velocity of the fluid within the fully developed 

region as defined in Section 3.3.2. As a baseline, the PDF distribution of 𝑢’  for a random 

distribution of particles (S ~ 0) for 𝑅𝑒⁡ = 10 and 200 at 𝜑 = 0.1, 0.15⁡and 0.20 are presented in 

Fig. 3.6. A peak at/near 𝑢’ = −1.0 can be found for all the cases which is caused by the low 

velocity boundary layers that are formed on the particles. Additionally, as 𝑅𝑒 decreases from 200 

to 10, a larger positive tail with 𝑢’ > 1.5 develops that is caused by the combined effect of thicker 

boundary layers and large recirculating regions at 𝑅𝑒 = 10, resulting in more frequent occurrence 

of negative as well as larger positive velocities from mass conservation principles. As the solid 

fraction increases, for both 𝑅𝑒⁡ = ⁡10 and 200, the peaks at 𝑢’ = −1 increase, and because of the 

greater flow blockage with less void space, flow channeling effects lead to more high flow velocity 

regions. As a result, large positive excursions from the mean velocity also increase.  
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Fig. 3. 6 Distribution of 𝒖′ at different 𝑹𝒆 and 𝝋 of randomly oriented suspensions 

Having established the baseline trends for random arrangements, Fig. 3.7 compares the effect of 

the orientation parameter, S, on the PDF of velocity fluctuations. 𝑅𝑒⁡ = 10 and 200 and 𝜑 = 0.1, 

0.15 and 0.2 are compared for S = -1, ~0, and ~0.5. S = -1 correspond to suspensions in which the 

rotational symmetry axis of the particles is predominantly aligned with the flow direction, S = 0 

has no preferential orientation, and S = 0.5 describes a suspension predominantly aligned in a 

direction normal to the flow. In general, the orientation parameter has a much larger effect on the 

flow field as 𝑅𝑒 increases. At 𝑅𝑒 =10 and 𝜑 = 0.1, the orientation parameter has little influence 

on the PDF distribution with peak occurrences between -0.4 and -0.2. This is because at 𝜑 = 0.1, 

the particles are not in close proximity to each other and in the viscosity dominated flow the change 

in particle orientation does not have a large influence on the velocity field. As 𝜑 increases to 0.15 

and to 0.2, increasing S shifts the PDF to the left signaling the presence of more energetic wakes 

with larger and more frequent negative fluctuations. The velocity field is much more sensitive to 

the orientation parameter at 𝑅𝑒 = 200  at all solid fractions. As S increases from -1 to ~0.5, 

independent of the solid fraction, the peak in the PDF at 0.2 ≤ 𝑢’ ≤ 0.4  decreases with a 

corresponding increase in large positive fluctuations 𝑢’ > 1. This trend is very similar to that 

observed when 𝜑 increases, i.e. the overall velocity fluctuations in the suspension increase in 

magnitude as the particle orientation changes from aligned to the flow field to perpendicular to the 

flow field. 
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                                 (a) 𝜑=0.1                                                          (b) 𝜑=0.15 

 

(c) 𝜑=0.2 

Fig. 3. 7. PDF distribution of 𝒖′ at different 𝑹𝒆, 𝝋 and S. 

 

3.4.2. Fully-Developed Drag force 

Drag force on individual particles in a suspension with 𝜑 = 0.2, 𝑅𝑒⁡ = ⁡50 and S = 0.21 is shown 

in Fig. 3.8 (a) as a function of x-distance. Each point in the figure represents a particle in the 

domain and is located at the geometric centroid of a particle. The large scatter in drag forces at a 
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given x-location is a result of the randomness of the particle distribution and its effect on the 

pressure and velocity field surrounding each particle. It can also be observed that the mean drag 

calculated over some interval ∆𝑥 is not uniform with 𝑥 but is high at the entrance and exit regions 

of the suspension. This is because the flow experienced by these particles is not typical of the flow 

experienced by a particle deep in the suspension. We denote these as entrance and exit effects 

much like in the hydrodynamics of internal flows and only obtain force data from within the 

suspension in the “fully-developed” region (dashed lines in Fig. 3.8 (a)). Fig. 3.8 (b) presents the 

drag force data that is extracted for further analysis with the observation that the mean drag force 

has a near constant value with x. For the rest of the cases, we observed that the cut off length of 2 

on either side is enough for most particle suspensions to effectively eliminate end effects from the 

drag force. The decrease in sample size is countered by doing multiple simulations at a given S or 

in the vicinity of the same S whenever possible. At least 2 different suspensions are calculated for 

the cases with 𝑆 ≈ 0. The calculated mean drag force for these different cases at the same solid 

fraction and Reynolds number are all within 6% of each other. This gives us sufficient confidence 

that the number of particles used for each case to analyze the behavior of drag forces are 

statistically significant and meaningful.  
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                            (a)                                                                        (b) 

 

Fig. 3. 8. Drag force on individual ellipsoids in the suspension (a) original data (b) after 

filtering out data from ellipsoids near inlet and outlet regions. 

 

3.4.3. Variation of Drag Force with Orientation Angle at Different S 

As shown in Section 3.3.1 the preferential orientation of particles has a large impact on the flow 

through the suspension. To further investigate its influence on drag force experienced by particles 

in the suspension, drag on particles at a given inclination angle is first investigated. i.e., under the 

same conditions of Re and 𝜑, how will the composite S-value affect the mean drag experienced by 

particles inclined at a given angle 𝜃 to the flow? Drag results corresponding to the suspensions 

presented in Fig 3.5 are shown in Fig. 9 for 𝑅𝑒 = 10; ⁡𝜑 = 0.10 − ⁡0.20 and in Fig. 10 for 𝑅𝑒 =

200; ⁡𝜑 = 0.10 − 0.20. Each symbol in the left column represents a particle in the suspension and 

the right column plots the mean drag within a ±5°⁡range. At each solid fraction, drag results with 

three different S values are presented to show how the overall particle orientation preference 

influences the drag on individual particles.  

In general, as the orientation angle increases, the drag force increases with increasing variation in 

magnitude. At 𝑅𝑒 = 10 in Fig. 3.9, the results indicate that at 𝜑=0.1 and 0.15, mean drag force for 

a particle at a given orientation is quite independent of the suspension’s preferential orientation (S 

value) – i.e., a particle oriented at angle 𝜃⁡will experience the same approximate drag force 

irrespective of the preferential orientational bias of the full suspension. However, this changes 

at ⁡𝜑=0.2 which shows that the mean drag is not only dependent on the individual particle 
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orientation but also on the orientational bias of the full suspension – larger the S value, larger is 

the mean drag force experienced by the particle at any given particle orientation angle.  

 

  

(𝑎)⁡𝜑=0.1 

  

(𝑏)⁡𝜑=0.15 
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(𝑐)⁡𝜑=0.20 

Fig. 3. 9. Variation of drag force on particles in the suspension at 𝑹𝒆 = 𝟏𝟎. 

 

Fig. 3.10 at 𝑅𝑒 = 200 shows the same approximate trend at 𝜑=0.1 and 0.15, while the sensitivity 

to S at 𝜑 = 0.2 is somewhat larger than at 𝑅𝑒 = 10. The overall behavior can be explained by 

the observation that at low solid fractions and Reynolds numbers, the relative void space 

between particles is large enough that the effect of neighboring particle orientations is not as 

strongly felt. This situation changes as the solid fraction and Reynolds number increase and the 

flow perturbation created by neighboring particles propagates through the suspension. Since a 

particle aligned perpendicular to the flow creates the largest perturbation, the influence of 

increasing suspension S-value will increase the drag force felt by a particle independent of its 

inclination angle.  
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(𝑎)⁡𝜑=0.1 

  

(𝑏)⁡𝜑=0.15 

  

(𝑐)⁡𝜑=0.20 

Fig. 3. 10. Variation of drag force on particles in the suspension at Re=200 
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The mean deviation of orientation dependent drag force between suspensions at 𝑆 ≈ 0.5 and 𝑆 ≈

−1.0 from the drag force at 𝑆 ≈ 0 is expressed as: 

 𝑑𝑒𝑣,𝜃 =
|𝐹𝑑𝜃,𝑆 − 𝐹𝑑𝜃,𝑆≈0|

𝐹𝑑𝜃,𝑆≈0
× 100% (3.8) 

and tabulated in Table 3.1. At low solid fraction 𝜑=0.1, the differences are bounded within 10%, 

which increases to about 12% at 𝜑=0.15 and to 22% at 𝜑=0.20. 

Table 3. 1. Percentage mean deviation of orientation dependent drag at 𝑺 ≈ 𝟎. 𝟓⁡⁡and ≈
−𝟏. 𝟎 compared to a random suspension 𝑺 ≈ 𝟎. 𝟎. 

    Re 𝜑=0.1 𝜑=0.15 𝜑=0.2 

10 

S=-0.952 7.0 12.3 7.0 

S=0.523 7.5 10.0 15.0 

50 

S=-0.998 7.4 8.5 10.5 

S=0.564 8.2 10.6 15.7 

200 

S=-0.782 10.5 8.6 15.4 

S=0.675 8.8 11.7 22.0 

 

 

3.4.4. Variation of Ensemble Mean Drag Force with S value of the suspension 

In Lagrangian methods of representing the solid phase as point-mass particles such as Discrete-

Element Method (DEM) and Euler-Euler methods such as the Two Fluid Model (TFM), it is the 

ensemble mean drag force that is mostly modeled based on local particle Reynolds number and 

solid fraction. In this section, the ensemble mean drag force of the suspension is related to the 
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orientational order parameter, S. Fig. 3.11 shows the variation of ensemble mean drag force with 

respect to S at Re=50 at different solid fractions. Each point in the plot represents the average drag 

force over all particles in the suspension. It can be observed that there is a strong positive 

correlation between the ensemble mean drag force and the S value – as S varies from -2.0 to 1.0 

the drag force increases almost monotonically barring some local fluctuations. This is consistent 

with the expectation that particles parallel to the flow will have less drag force than particles 

perpendicular to the flow. The relative difference between the cases with S = 1.0 and S = -2.0 also 

varies at different solid fractions. Using the drag at S = -2.0 as reference, the relative difference 

between 𝑆 = −2.0 and 𝑆 = 1.0  at 𝜑 = 0.10 is 206%. It increases to 216% at 𝜑 = 0.15 and to 

227% at ⁡𝜑 = 0.20 . The more than tripling of the drag force indicates that while modeling 

ensemble mean drag force of ellipsoidal particle suspensions, not only should the solid fraction 

and Reynolds number be considered, but due consideration should also be given to the overall 

suspension orientational preference. 

Most importantly, from Fig. 3.11 an approximate linear relationship is observed between drag 

force and S. In order to construct the relationship one option would be to do a linear least-squares 

fit through all the data points, or the other option, which is taken, is to constrain the line to pass 

through the two end points at S = -2.0 and S = 1. The usefulness of the second option is significant 

as it greatly simplifies the task of constructing the dependence for other geometries using PRS – it 

would suffice to only perform two simulations at S = -2.0 and at S = 1.0 for a given Reynolds 

number and solid fraction to define the dependence of drag force on S. The linear function passing 

through the two end points is shown by the dashed lines in Fig. 3.11 (note that when more than 

one data point is available at the end points, the mean value is used). The linear approximation at 

𝜑 = 0.1 has an R2 value of 0.9631, at⁡𝜑 = 0.15 the R2 becomes 0.9744, and at⁡𝜑 = 0.2, it is 
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0.9894. The mean relative deviations of the linear approximation are 4.56%, 4.52% and 4.04% for 

solid fraction at 0.10, 0.15 and 0.20, respectively.  

           

 

Fig. 3. 11. Variation of ensemble mean drag force with respect to S value of suspension at 

Re = 50. 

 

Fig. 3.12 shows the results of drag force at Re = 10. Compared to Re = 50, the increase in drag 

force is smaller (100%) between S = -2.0 and 1.0 and the linearity of the correlation between 

ensemble mean drag force and S is somewhat weaker. The mean relative deviation of the line fit 

with PRS is 5.96%, 6.85% and 8% for solid fractions of 0.10, 0.15 and 0.20, respectively. From 

the figure it can be observed that the linear fit tends to under-predict the drag force especially for 

𝑆 < 0.0. The deviation from linearity will be discussed further in the next section. 
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Fig. 3. 12. Variation of ensemble mean drag force with respect to S value of suspension at 

Re = 10. 

 

Fig. 3.13 shows the results of mean drag force versus S for Re = 200. As the Reynolds number 

increases, the effect of the orientational parameter on the mean drag force increases – the drag 

increases by over 400% compared to particles oriented parallel versus normal to the flow direction. 

Once again the linear fit approximates the variation quite well with some over prediction at S 

values near zero. The mean relative deviations are 5.22%, 5.91% and 5.86% for φ = 0.10, 0.15, 

and 0.20, respectively.  
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Fig. 3. 13. Variation of ensemble mean drag force with respect to S value of suspension at 

Re = 200.  

It is noted that although the ensemble mean drag force is well represented by a linear trend with S, 

there is some scatter in the mean drag force at near-identical values of S. This is a result of 

statistical variance caused by different arrangements of a finite number of particles for each 

simulation (even for near-identical S-values).  

 

3.4.5. Contribution of Pressure and Viscous Drag forces  

Though the variation of the ensemble mean drag force of the suspension is approximately linear 

with S, it is informative to investigate the effect of S on pressure and viscous drag in light of the 

observation that the deviation from linearity is most at low Re when viscous forces are important.  

The effect of preferential orientation on normalized pressure and viscous forces which make up 

total drag is investigated in Fig. 3.14 for all cases. At all Reynolds numbers normalized pressure 

drag increases monotonically with S whereas viscous drag exhibits a different behavior in which 

after an initial sharp increase between −2 < 𝑆 < ⁡−1.5 the normalized drag increases minimally 
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for 𝑆⁡ > ⁡−1.5 in all the cases. Contrary to this trend normalized pressure drag exhibits a near 

linear increase. At 𝑅𝑒⁡ = ⁡10 and  𝑆⁡ = ⁡−⁡2.0, viscous drag contributes between 70 – 80% of the 

total drag for all solid fractions, decreasing to between 40 − 50% at 𝑆 = 1.0. Thus at 𝑅𝑒 = 10, 

because the viscous forces are significant and do not follow a linear variation with S, the total drag 

force shows the largest deviations from a linear relationship in Fig. 3.12. At 𝑅𝑒 = 50 and 200 

however, the contribution of viscous forces to total drag steadily decreases and the total drag 

variation shows better agreement with the assumed linear variation with S. It is observed that at 

𝑅𝑒 = 200 and 𝜑 = 0.15⁡and⁡0.20 the pressure drag starts deviating from the linear relationship. 

However the total drag in Fig. 3.13 still maintains a fairly linear variation with S.   

        

(a) Re=10 
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(b) Re=50  

     

(c) Re=200 

 

Fig. 3. 14. Variation of ensemble mean pressure and viscous drag force with respect to S 

value of suspension. 

 

3.4.6. Effect of Ellipsoid Aspect Ratio  

The above results establish the existence of an approximate linear correlation between mean drag 

force for suspensions of elongated ellipsoids with aspect ratio 10 and the suspension orientational 

preference. In order to establish that the linear relationship is not peculiar to the elongated high 

aspect ratio particles and to establish the generality of this trend, the relationship is tested for aspect 

ratio 2.5 particle suspensions for 𝑅𝑒 =10, 50, 100 and 200 and  𝜑 = 0.1, 0.2 and 0.3 and the results 

are shown in Fig. 3.15. The results show that the linear variation between 𝑆 = −2 and 𝑆 = 1 

predicts the drag force with a mean error of 4.4%, 7.5% and 6.8% for 𝜑 = 0.1,⁡⁡ 0.2 and 0.3, 

respectively, thus establishing the generality of the linear trend for prolate ellipsoidal suspension 

up to aspect ratio 10. 
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                   (a) Drag force at 𝜑 = 0.10         (b) Drag force at 𝜑 = 0.20 

 

             (c) Drag force at 𝜑 = 0.30       

Fig. 3. 15. Variation of ensemble mean drag force with respect to S value of aspect ratio 2.5 

ellipsoidal suspension. Symbols: PRS predictions; dash line: linear fit between 𝑺 = −𝟐 and 

1.0. 
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3.5. SUMMARY AND CONCLUSIONS 

The paper develops a broadly applicable simple relationship between suspension preferential 

orientation and drag force by performing 186 particle resolved simulations on suspensions of 

ellipsoidal particles with aspect ratio 10 and 2.5 for Reynolds numbers from 10 to 200 and solid 

fractions ranging from 0.10 to 0.30.  An orientational parameter S is used such that it varies from 

-2.0 for all particles aligned with the flow to 𝑆 = 1.0 for all particles lying normal to the flow 

direction with 𝑆 = 0 specifying a random orientation in suspension. It is shown that to characterize 

the variation of suspension drag with orientational preference it is sufficient to specify the 

normalized drag force at S = -2.0 and S = 1.0 at each Reynolds number and solid fraction. By using 

a linear variation of drag with S between these two values, the drag at any preferential orientation 

parameter can be obtained. It is established that for the high aspect ratio ellipsoids the linear fit 

satisfies PRS results with mean deviation of less than 6% and for the low aspect ratio suspension 

to within 10%. These errors are miniscule in comparison to the large variation in drag forces 

experienced at different preferential orientations. It may not be unreasonable to deduce that the 

linear relationship would be a good approximation for any aspect ratio between 2.5 and 10.  

This study has two major findings with respect to modeling drag in DEM-CFD and TFM 

simulations. 

1. If the ensemble mean particle drag is to be used to model the drag force on a particle in 

suspension then the mean drag need only be calculated at 𝑆 = −2.0 and 𝑆 = 1 for a 

given Reynolds number, void fraction, and aspect ratio. Using these two values the mean 

drag force can be calculated for any other suspension with preferential orientation to 

within 10%.  
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2. If a correlation describing the variation of drag with orientation angle is available for a 

random suspension (𝑆 = 0) then at low solid fractions (𝜑 ≤ 0.15)⁡and low Reynolds 

numbers (𝑅𝑒 ≤ 50) this relationship can be directly used to predict the orientation based 

drag (within 10-12%) on a particle at the same orientation existing in a suspension with 

𝑆 ≠ 0. However, as Reynolds number and solid fraction increase the drag is 

overpredicted for 𝑆 < 0 and underpredicted for 𝑆 > 0 independent of the orientation 

angle of the particle by as much as 20%. 
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Chapter 4  

Convective Heat Transfer in suspensions of 

prolate ellipsoids 

  

4.1. Abstract 

Particle Resolved Simulations (PRS) using the Immersed Boundary Method (IBM) are performed 

for flow through suspensions of ellipsoids with aspect ratios of 2.5, 5, and 10 for solid volume 

fractions from 0.1 to 0.3 in the Reynolds number range from 10 to 200. The mean Nusselt number 

increases as 𝑅𝑒1/2⁡but shows only a weak dependence on the aspect ratio while increasing between 

10-15% with an increase in solid fraction from 0.1 to 0.3. Two common practices of calculating 

Nusselt number in past literature are reconciled. It is shown that the suspension mean Nusselt 

number based on individual particles, by definition is always greater than or at the least equal to 

the Nusselt number based on the internal developing flow analogy. It is established that for 𝑅𝑒 ≤

50, the suspension heat transfer coefficient is very sensitive to the spatial distribution of particles 

or local-to-particle solid fractions. For the same mean solid fraction, suspensions dominated by 

particle clusters or high local solid fractions can exhibit Nusselt numbers which are lower than the 

minimum Nusselt number imposed by pure conduction on a single particle in isolation. This results 

from the dominant effect of thermal wakes at low Reynolds numbers. As the Reynolds number 

increases to 100 and beyond, the effect of particle clusters on heat transfer becomes less 

consequential. Unlike heat transfer, particle clustering has an insignificant effect on mean fluid 

forces such as drag. 

Keywords: Heat transfer; Ellipsoidal particle suspensions; Particle Resolved Simulations; 

Immersed Boundary Method (IBM) 

4.2. Introduction 

Heat transfer in particle suspensions in packed as well as fluidized beds play an important role in 

many industrial processes. To investigate the heat transfer between fluid flow and 
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suspensions/packed beds of spherical/non-spherical particles, particle-resolved numerical 

simulations have become the de facto method for a growing number of researchers. To model these 

systems, different approaches of calculating the heat transfer coefficient or Nusselt number have 

been proposed. Tenneti et al. [54] used the internal developing flow analogy by imposing a 

constant temperature on the particle surface. Analogous to internal flow in a pipe or duct, the 

thermal state of the flow undergoes a region of development followed by a fully-developed region 

considering that the thermal environment in a homogeneous random mixture of particles would 

reach a statistical mean over many particles at a given streamwise location. Similar to that observed 

in internal flow, a rapidly decreasing Nusselt number is followed by a statistically constant Nusselt 

number in the fully-developed region. The Nusselt number is calculated based on the heat flux at 

the particle surface averaged over multiple particles and a reference fluid temperature based on the 

mixing cup [55] or mixed mean temperature [53] at each 𝑥 − location. Using the Immersed 

Boundary Method (IBM), Tenneti et al. [1] simulated fluid flow through suspensions of spherical 

particles for solid fractions (𝜑) of 0.2 and 0.4 with Reynolds number range of [1, 100]. In a follow-

up investigation [56] with extended 𝜑 range from 0.1 to 0.5, they proposed a new heat transfer 

correlation for spherical particle suspensions. Based on the same Nusselt number calculation 

approach, Tavassoli et al. [57] investigated the same 𝑅𝑒 range of [1, 100] for spherical particle 

suspensions with 𝜑 from 0.1 to 0.5 and good agreement was observed with the results of Tenneti 

et al. [54]. Aside from particle suspensions, Singhal et al. [58] simulated a packed beds of spheres 

in the Reynolds number range of [9, 180] and developed a correlation for Nusselt number.  As for 

research on non-spherical particles, ellipsoid suspensions with aspect ratio 2.5 under solid fraction 

range of [0.1, 0.35] with⁡𝑅𝑒⁡of [10, 200] have been simulated by He and Tafti [53]. They  modified 

Gunn’s [55] Nusselt number correlation, to develop a correlation for the 2.5 aspect ratio ellipsoidal 

suspension.  Singhal et al. [59] simulated flow over packed beds of cylinders with aspect ratios 2, 

4, and 6 and proposed a general heat transfer correlation applicable to packed beds of not only 

cylinders, but also spherical particles. Simulation results for spherocylinders with aspect ratio of 

2, 3 and 4 for 𝜑 ∈ [0.1, 0.6] from Tavassoli et al. [60] indicated that with the sphere equivalent 

particle diameter chosen as reference length, spherical particle heat transfer correlation [55] is also 

applicable for suspensions of spherocylinders. 

While the above method expresses Nusselt number as a function of the streamwise distance, it 

does not define the Nusselt number for individual particles. This is an important quantity because 
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individual particle heat transfer could vary substantially from the mean value obtained over many 

particles. Therefore, instead of using the mixing cup temperature as the reference temperature, 

Chen and Müller [61] defined a cubic box of size 3d (d – diameter) around each spherical particle 

in the suspension (their cubic domain size varied from ~4d to ~7d to accommodate different solid 

fractions with 54 to 61 particles) and used the mixed mean temperature of the fluid within the box 

as reference temperature to calculate the Nusselt number for each particle. They [61], under fully-

developed conditions (periodic boundary conditions in all three directions) compared their results 

with those derived by Tavassoli et al. [57]  and Sun et al. [56] using the mixing cup temperature.  

Tavassoli et al. [57] used  a cubic domain of size ranging from  ~4d to ~7d with 54 particles under 

developing flow conditions. Sun et al. [56] also used a cubic domain of size ~4d to ~7d with 

number of particles ranging from 61 to 161 under fully-developed conditions (periodic in all three 

directions). On comparison, Chen and Müller observed good agreement with Tavassoli et al. [57] 

for 𝜑 = 0.1⁡and⁡0.3. For 𝜑 = 0.5, significant deviation appeared which was attributed to the 

possible underestimation of the thermal developing region in the Nusselt number calculation by 

Tavassoli et al. [57], resulting in higher values. On comparing their results with Sun et al. [56], 

Sun et al.’s predictions were lower over the whole range of 𝜑 and Re. This was attributed by Chen 

and Müller to the invalidity of the assumed similarity used by Sun et. al. [56] between a thermally 

fully-developed pipe flow with isothermal walls and a packed bed.  In contrast, using thermally 

developing flow, He and Tafti [53] observed that their Nusselt numbers calculated using the 

mixing cup temperature agreed well with Sun et al. [56] up to Re=100 indicating that there could 

be other factors contributing to the deviation of Chen and Müller [61] with Tavassoli et al. [60] 

and Sun et al. [56]. 

Following this, Chen and Müller [62] investigated heat transfer in a suspension of cubic particles 

and concluded that a box size of 3𝑑𝑝, where 𝑑𝑝 is the cube’s volume equivalent sphere diameter, 

is representative enough of the surrounding fluid for estimating the heat transfer coefficient. 

Besides, it was found in their paper that with⁡𝑅𝑒⁡and Nu defined based on the hydraulic and Sauter 

diameter of the particle, respectively, their proposed correlation is not only applicable for cubes, 

but also ellipsoids [53] and cylinders [59]. Furthermore, by implementing the same method for 

Nusselt number calculation and choosing a cubic box of size 5𝑑 as suggested in the literature [63–

65], Lu et al. [66] investigated the correlation between the heat transfer rate and the local flow 
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velocity around the particles in the suspension and concluded that there was no correlation between 

the two quantities. In yet another study to investigate the local heat transfer coefficient on the 

particle surface, Kravets and Kruggel-Emden [67] introduced a different procedure for Nusselt 

number calculation in a spherical suspension which can be regarded as a hybrid of the above 

mentioned two methods. In their calculation, they used the cup mixing temperature as the fluid 

reference temperature, and calculated the local Nusselt number at each lattice node defining the 

particle surface making it possible to investigate not only the Nusselt number of each particle in 

the suspension, but also the local heat transfer rate on the particle surface at different polar angles. 

Their calculated Nusselt number is validated in [68] through comparisons with correlations 

[55,60,69] in literature.  

In past work, most heat transfer investigations have been performed in spherical particle 

suspensions with a few in non-spherical particle suspensions such as sphero-cylinders of aspect 

ratio 2 to 4 [60], packed beds of cylindrical particles [59], and by Chen and Müller [62] for square 

super-ellipsoid suspensions. The current paper extends the investigation of He and Tafti [53] for 

an aspect ratio 2.5 ellipsoidal suspension by covering a broader range of geometries. In this paper 

we investigate the heat transfer coefficient in random suspensions of ellipsoids by repeating some 

of the calculations of He and Tafti [53] , albeit in a larger domain with more particles, and with 

additional aspect ratios 5 and 10. The Reynolds number range covered is 10 to 200 and solid 

fractions vary from 0.1 to 0.3. The relationship between particle based Nusselt number and the 

Nusselt number derived through an analogy with the fully developed flow assumption borrowed 

from internal flows is investigated in detail together with the effect of particle distribution on heat 

transfer characteristics of the suspension. 

4.3. Numerical method and simulation setup 

4.3.1. Governing equations 

Under the assumption of constant property, incompressible flow, the governing equations are 

solved in the framework of an in-house CFD code – GenIDLEST (Generalized Incompressible 

Direct and Large Eddy Simulation of Turbulence) using the Immersed Boundary Method (IBM). 

The equations describing mass, momentum, and energy conservation are solved in their 

dimensionless form given by  
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Continuity: 

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (4.1) 

Momentum: 

 
𝜕𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(
1

𝑅𝑒
(
𝜕𝑢𝑖
𝜕𝑥𝑗

)) (4.2) 

Energy: 

 
𝜕T

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑢𝑗𝑇) =

𝜕

𝜕𝑥𝑗
(

1

𝑅𝑒 ∙ 𝑃𝑟
(
𝜕𝑇

𝜕𝑥𝑗
)) (4. 3) 

 with the following non-dimensionalizations 

𝑢𝑖 =
𝑢𝑖
∗

𝑢𝑟𝑒𝑓
∗⁡ ; ⁡𝑥𝑖 =

𝑥𝑖
∗

𝑙𝑟𝑒𝑓
∗ ; ⁡⁡𝑝 =

𝑝∗ − 𝑝𝑟𝑒𝑓
∗

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡2 ; ⁡𝑡 =
𝑡∗𝑢𝑟𝑒𝑓

∗⁡

𝑙𝑟𝑒𝑓
∗  

 𝑇 =
𝑇∗ − 𝑇𝑟𝑒𝑓

∗

𝑇0
∗ ; ⁡⁡𝑅𝑒 =

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡ 𝑙𝑟𝑒𝑓
∗

𝜇𝑟𝑒𝑓
∗ ; 𝑃𝑟 =

𝑐𝑝𝑟𝑒𝑓
∗ 𝜇𝑟𝑒𝑓

∗

𝑘𝑟𝑒𝑓
∗   

where superscript (*) represents dimensional variables. In the process of non-dimensionalization, 

the superficial fluid velocity 𝑈𝑖𝑛
∗  is taken as 𝑢𝑟𝑒𝑓

∗⁡  and diameter 𝑑𝑒𝑞
∗  of the ellipsoid’s volume 

equivalent sphere is taken as 𝑙𝑟𝑒𝑓
∗ . 𝑇𝑟𝑒𝑓

∗  is the inlet flow temperature 𝑇𝑖𝑛
∗ , and 𝑇0

∗ = 
𝑞𝑠
′′∗𝑙𝑟𝑒𝑓

∗

𝑘𝑟𝑒𝑓
∗ , where 

𝑞𝑠
′′∗is the uniform heat flux applied at the particle surface. 

The governing equations are solved using a collocated or non-staggered finite volume formulation 

with implementation of second-order central (SOC) difference discretization scheme [34,35]. 

Variables including flow velocities, pressure and temperature are calculated and stored at 

computational cell center whereas fluxes are calculated and stored at cell faces. A predictor-

corrector formulation is used for time integration of the velocity: an intermediate velocity field is 

calculated in the predictor step followed by a pressure correction applied to the velocity field to 

satisfy discrete continuity. 
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4.3.2. Particle generation and immersed boundary method (IBM) 

The ellipsoidal particle shape investigated in this research is generated using: 

 (
𝑥

𝑎
)
2

+ (
𝑦

𝑏
)
2

+ (
𝑧

𝑐
)
2

= 1 (4.4) 

Prolate ellipsoidal particles are investigated with aspect ratio 2.5 (abbreviated as AR2.5), 5 (AR5) 

and 10 (AR10) with sphericities (ratio of surface area of equal volume sphere to particle surface 

area) ranging from 0.887 to 0.593, respectively. The number of elements used to resolve the 

surface area of each particle ranges from 2100 to 7500 as shown in Table 4.1. It is noted that the 

element size is commensurate with the background grid resolution and the number of elements 

increase as the surface area of the particle. The particle surface grids are shown in Fig. 4.1 for the 

three aspect ratios. 

Table 4. 1. Geometry and surface grid specification of ellipsoidal particles. 

Aspect ratio (AR) AR2.5 AR5 AR10 

(a,b,c) in Eqn. 4 (0.92,0.37,0.37) (1.46,0.29,0.29) (2.32,0.232,0.232) 

Sphericity (Φ) 0.887 0.735 0.593 

Surface elements 2172 4176 7538 

 

                                   

        (a)AR2.5                                       (b) AR5                                                (c) AR10 

 

Fig. 4. 1. Surface meshes of ellipsoid with aspect ratio of 2.5, 5 and 10. 
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The particles defined by their individual surface meshes are immersed in a background multi-block 

volume mesh composed of structured non-uniform orthogonal cells. The IBM method is 

implemented in generalized coordinate system and is fully described in Nagendra et al. [36]. It 

uses a sharp-interface indirect forcing method. In this implementation, no additional forcing term 

is used in the governing equations. Instead, solution to the governing equations is suitably modified 

at grid nodes that lie in the immediate vicinity of the immersed surface. The major steps in the 

implementation can be listed as follows: (1) identify the location of the immersed surface and 

designate surrounding nodes as fluid or solid; fluid nodes immediately adjacent to the IB surface 

are labelled as IB nodes (2) solve the governing equations at all nodes in the domain except at the 

IB nodes, and (3) apply a special treatment to reflect the presence of an immersed surface with 

specified boundary conditions at the IB nodes.  

In (1) above, three primary node types are defined – fluid, solid and IB. The fluid and solid node 

definitions are trivial – any node that lies in the fluid region is a fluid node and if not, it is a solid 

node. An IB node, on the other hand, is any fluid node that lies in the immediate vicinity of the 

immersed boundary. To implement the boundary conditions in step (3) two probes are projected 

into the flow field, on lines normal to the IB surface and passing through the IB nodes [22,23]. In 

the context of the present study, no slip, no penetration Dirichlet boundary conditions are 

implemented at the IB surface for the velocity field in the momentum equations, and Neumann 

conditions for the solution of the pressure Poisson equation and the energy equation. Similarly, to 

determine the Nusselt number, the particle surface temperature is obtained at each surface element 

centroid by projecting a normal into the flow and using temperature values at two probe locations 

to satisfy the constant heat flux boundary condition at the surface. 

4.3.3. Simulation setup 

Ellipsoidal particle suspensions from Cao et al. [70] are directly adopted in this work. An  identical 

rectangular computational domain of size 30×10×10 in the 𝑥−, 𝑦 −,  and 𝑧 − directions is 

employed as shown in Fig. 4.2. In each calculation, 286, 430, 573, and 859 randomly distributed 

particles are placed between 5 ≤ 𝑥 ≤ 20⁡ for solid fractions 𝜑 = 0.1, 0.15, 0.2⁡𝑎𝑛𝑑⁡0.3 , 

respectively. Solid fractions 𝜑 = 0.1, 0.2⁡𝑎𝑛𝑑⁡0.3  are calculated for AR2.5 and AR5 particle 

shapes whereas 𝜑 = 0.1, 0.15⁡𝑎𝑛𝑑⁡0.2 are calculated for AR10 particle shapes. For each case, four 

Reynolds numbers 𝑅𝑒 = 10, 50, 100, 𝑎𝑛𝑑⁡200 are calculated. Each condition is simulated for two 

independent particle arrangements and the average results are reported.  
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Fig. 4. 2. 3D view of the computational domain 

 

An incoming flow with homogeneous dimensionless 𝑥 −velocity and temperature of 1.0 and 0, 

respectively, is specified at the entrance to the domain. At the outlet, zero gradients of pressure, 

velocity, and temperature are used. Periodic boundary conditions in y- and z- directions simulate 

a particle suspension with infinite extent in these two directions. Fig 4.3⁡presents the distribution 

of solid fraction (defined as ratio of solid cells over total number of cells at a given 𝑥 −location) 

and mean inclination angle of particle (𝜃,⁡defined as the angle between the major axis of particle 

and streamwise 𝑥 −direction). Also shown for comparison are the corresponding distributions of 

He and Tafti [53] for AR=2.5 particle suspensions. In all cases the local solid fraction fluctuates 

about the intended nominal mean value. There are no perceptible systemic differences between He 

and Tafti [53] and the current suspensions with the exception that in He and Tafti [53] the 

suspension extends 10 units in 𝑥⁡versus 15 units in the current work. In the random suspensions 

generated, the mean inclination angle is expected to be 57.3 degrees which is closely reproduced 

in all particle arrangements over the length of the region. However, there are local variations in 

mean orientation angle.  In the current suspensions, all solids are contained within  5 ≤ 𝑥 ≤ 20. 

Because of the high aspect ratio particles, this results in particles being placed at high inclination 

angles in the entrance and exit regions of the suspension followed by lower angular orientations in 

the interior. This requirement was not enforced by He and Tafti [53] thus allowing particles with 

major axis more closely aligned with the 𝑥 −direction. 

 



79 
 

 
(a) AR=2.5 

 
(b) AR=5.0 

 
AR=10.0 

 

Fig. 4. 3. Void fraction and average inclination angle distribution of particles along 

𝒙 −direction. (Dash lines and empty symbols represent suspensions of He and Tafti [53] for 

AR2.5 particles.) 
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No slip velocity boundary conditions and constant dimensionless heat flux, 𝑞𝑠
′′ = 1 are specified 

at the particle surface.  Although constant temperature has been widely implemented by previous 

researchers [54,56–60], it has been reported by Sun et al. [56] and confirmed by our own 

experiments [53] , that under relatively high solid fractions and low Reynolds numbers, the fluid 

temperature develops quickly to approach the particle surface temperature. As this happens, not 

only does the fluid - solid temperature difference approach zero but so does the heat flux from the 

surface resulting in spurious numerical noise in the calculation of the heat transfer coefficient. 

Previous works typically have used much smaller domain lengths in the flow direction. For 

example, Tavassoli et al. [57] and Chen and Müller [62] mostly use a fixed number of particles 

(54 to 61) and vary the domain size to simulate different solid fractions. As a consequence, their 

domain length in the flow direction decreases as the solid fraction increases thus mitigating the 

issue of the fluid temperature approaching the particle temperature. On the other hand, a smaller 

domain used with the thermally developing flow assumption as in Tavassoli et al. [57], could also 

increase the likelihood that the calculated heat transfer coefficients will include effects from the 

thermally developing region. Similarly, under the thermally fully-developed periodic flow 

assumption (Sun et al. [56]), a small domain size in the flow direction could admit solutions in 

which the temperature field remains spatially correlated over the periodic length and the thermal 

wake of a particle could unduly influence its own thermal environment.  For these reasons, in the 

current study, a much larger domain is used to accommodate a statistically significant number of 

particles and to ascertain that the heat transfer is indeed reported in the thermally fully-developed 

region1. To avoid temperature saturation, a constant heat flux boundary condition is specified at 

the particle surface.  As discussed in He and Tafti [53], the average Nusselt number calculated 

from these two boundary conditions presents reasonable agreement at different Reynolds numbers.  

4.3.4. Nusselt number definitions  

One method used in the literature [54], which we will denote Method A, is based on the analogy 

between heat transfer in a statistically homogeneous particle suspension and convective heat 

 
1 It will be shown in the results that the thermally fully-developed region is never fully achieved at Re=10 and 
phi=0.1 in spite of the large streamwise length of suspension. 
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transfer of internal flow.  In this, a mixed mean fluid temperature is defined along the flow 

direction (𝑥) which is calculated using: 

 

𝑇𝑚𝑓(𝑥) =
∬ |𝑢(𝑥⃗)| ∙ 𝑇(𝑥⃗)𝜌𝑑𝑦𝑑𝑧
𝐴

∬ |𝑢(𝑥⃗)|𝜌𝑑𝑦𝑑𝑧
𝐴

 

 

(4.5) 

Note that in Eqn 4.5, the absolute velocity is used to prevent negative contributions to the sum. 

The average particle surface temperature 𝑇𝑚𝑠(𝑥) is calculated as follows  

 𝑇𝑚𝑠(𝑥) =
1

∑ Ω𝑛
𝑁𝑥
1

∑Ω𝑛𝑇𝑠(𝑥, 𝑛)

𝑁𝑥

𝑛=1

 (4.6) 

  

where 𝑁𝑥denotes the number of surface elements over multiple particles whose centroid lies within 

𝑥 ± 1/80 and Ω𝑛  is the area of the surface element. Using Eqns. (4.5) and (4.6) the Nusselt 

number is calculated as 

 𝑁𝑢𝐴(𝑥) =
𝑞𝑠
′′

𝑇𝑚𝑠(𝑥) − 𝑇𝑚𝑓(𝑥)
 (4.7) 

where 𝑞𝑠
′′ =

𝑞𝑠
′′∗

𝑘𝑟𝑒𝑓
∗ 𝑇𝑜

∗

𝑙𝑟𝑒𝑓
∗

= 1 is the dimensionless heat flux applied at the particle surface. The average 

Nusselt number 𝑁𝑢𝐴is calculated by taking the arithmetic mean of 𝑁𝑢𝐴(𝑥) over the 𝑥 −range of 

interest which can be written as: 

 𝑁𝑢𝐴 =
𝑞𝑠
′′

𝑇̅𝑚𝑠 − 𝑇̅𝑚𝑓

 (4.8) 

where  
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 𝑇̅𝑚𝑓 =
∭ |𝑢(𝑥⃗)| ∙ 𝑇(𝑥⃗)𝜌 ∙ 𝑑∀𝑥∀𝑥

∭ |𝑢(𝑥⃗)| ∙ 𝜌 ∙ 𝑑∀𝑥∀𝑥

 (4.9) 

and  

 𝑇̅𝑚𝑠 =
1

∑ Ω𝑛
𝑁
1

∑Ω𝑛𝑇𝑠(𝑥, 𝑛)

𝑁

𝑛=1

 (4.10) 

where ∀𝑥 is the volume of the domain and 𝑁 are the total number of surface elements spread over 

all particles in the 𝑥 −range of interest. 

Method A does not allow the specification of  the heat transfer coefficient associated with 

individual particles, so Chen and Müller [61] to investigate the local heat transfer coefficient for 

each individual particle in the suspension used a different method by calculating the fluid mixed 

mean temperature near the particle. They did that by associating a volume surrounding each 

particle over which the fluid mixed mean temperature is calculated. The method, which we refer 

to as Method B is implemented in our case by using an ellipsoidal shaped shell of thickness 𝛿 

around each particle defined as: 

 (
𝑥

𝑎 + 𝛿
)
2

+ (
𝑦

𝑏 + 𝛿
)
2

+ (
𝑧

𝑐 + 𝛿
)
2

= 1 
  

(4.11) 

The bulk mean fluid temperature within this shell of volume⁡∀𝑏 is calculated by: 

 𝑇𝑝𝑓(𝑛𝑝) =
∭ |𝑢(𝑥⃗)|𝑇(𝑥⃗)𝜌 ∙ 𝑑∀𝑏∀𝑏

∭ |𝑢(𝑥⃗)|𝜌 ∙ 𝑑∀𝑏∀𝑏

 
  

(4.12) 

together with the average particle surface temperature 

 

𝑇𝑝𝑠(𝑛𝑝) =
1

∑ Ω𝑛
𝑁𝑒
1

∑Ω𝑛𝑇𝑠(𝑛)

𝑁𝑒

𝑛=1

 
    

(4.13) 
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where 𝑛𝑝 is the particle number and 𝑁𝑒 is the total number of surface elements on particle 𝑛𝑝 and 

Ω𝑛 is the surface area of each element. 

 The Nusselt number of each individual particle in the suspension is then calculated as: 

 𝑁𝑢𝐵(𝑛𝑝) =
𝑞𝑠
′′

𝑇𝑝𝑠(𝑛𝑝) − 𝑇𝑝𝑓(𝑛𝑝)
 (4.14) 

Note that because of the nature of the definition of the heat transfer coefficient in Eqn. 4.14, the 

conditions local to a particle may result in extremely high or negative Nusselt numbers if  𝑇𝑝𝑠 ≤

𝑇𝑝𝑓 . It is quite likely and physical that in the shell of thickness 𝛿 around the particle of interest, 

the mixed mean temperature of the fluid may be greater than or nearly equal to the particle surface 

temperature because of the influence of other particles in the vicinity. This scenario becomes more 

prominent at low 𝑅𝑒 and high 𝜑 but is admissible and physical in the context of calculating the 

average Nusselt number over all particles given by 

 𝑁𝑢𝐵 =
1

1
𝑁
∑ (1/𝑁𝑢𝐵(𝑛𝑝))
𝑛𝑝=𝑁

𝑛𝑝=1

 (4.15) 

While both methods of calculating Nusselt number (𝑁𝑢𝐴, 𝑁𝑢𝐵) have been used in the literature, 

no study has established a formal relationship between the two definitions.  In fact, Eqns. 8 and 15 

become identical if the hypothetical shell size (𝛿) around each particle is chosen such that ∀𝑏in 

Eqn 4.12 approaches ∀𝑥  in Eqn 9 for each particle. As will be shown later, this leads to the 

condition that 𝑁𝑢𝐵 ≥ 𝑁𝑢𝐴.  

4.3.5. Grid independency study and validation 

The background grid used in this work has been adopted from our previous investigations of 

hydrodynamic forces and heat transfer in particle suspensions [27,28,53,71]. Noting that 

suspension heat transfer prediction is derived from individual particles in suspensions, grid 

qualification on an isolated particle is a valid means for establishing grid independency of the 

suspension.  

Cao and Tafti [37] validated heat transfer predictions on an isolated spherical particle with other 

IBM calculations [72,73], with their own body conforming grid calculations, and empirical 
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correlations in the literature [74].  The result in Fig. 4.4 shows excellent agreement with other IBM 

calculations and correlations with deviations of less than 5%. For the IBM calculations they tested 

a resolution of 1/40 (or 𝑑𝑒𝑞/40)⁡and 1/20 and found that at Re=200, the predicted Nusselt number 

at 1/20 resolution was within 3.3% of the 1/40 resolution.  

Accompanying fluid force calculations on an isolated cylindrical shaped particle with aspect ratio 

of 0.25, Cao and Tafti [37] also simulated heat transfer for different Reynolds numbers and particle 

inclination angles. Grid resolutions of 1/30, 1/40 and 1/50 of the particle’s volume equivalent 

sphere diameter were tested. Using the particle Nusselt number derived from grid spacing of 1/50 

as reference, the maximum deviation for meshes with 1/30 and 1/40 resolutions was 3.30% and 

1.83%, respectively.  

For the high aspect ratio AR10 ellipsoid, which is the most extreme geometry investigated in this 

paper, grid independency studies are done on a single particle placed parallel (inclination 0 within 

a domain size of 24 × 15.5 × 15.5) and perpendicular (inclination 90 within a domain size of 

20 × 17.5 × 13.5) to the flow for three background grid resolutions of 1/40, 1/60 and 1/80 at the 

highest Reynolds number used in this investigation, Re=200.  The results presented in Table 4.2, 

show that the 1/40 grid resolution is within 2% of the Nusselt number using 1/80 grid resolution 

for both orientations.  

Finally to supplement the single particle grid independency study, an additional grid independency 

study is also conducted on a suspension of AR10 particles at 𝜑 = 0.2 and 𝑅𝑒=200.  Both 𝑁𝑢𝐴 and 

𝑁𝑢𝐵 are calculated for the suspension on backgrounds grids of 1/40 and 1/50 resulting in 128 

million and 250 million total grid sizes, respectively. A relative deviation of 2.37% is observed in 

𝑁𝑢𝐴. For individual particle 𝑁𝑢𝐵 ,⁡92% of the particles present deviations of less than 5%, with a 

mean deviation in 𝑁𝑢𝐵⁡of 2.48%. 
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Fig. 4. 4. Validation of Nusselt number for an isolated sphere in uniform flow. 

Based on the numerous grid independency studies done, balancing both computational efficiency 

and simulation accuracy, a grid resolution of 1/40 is employed between 5 ≤ 𝑥 ≤ 20 to resolve the 

particles with a total grid of size of 128 million cells over a domain size of 30 ×10 ×10 for the PRS 

results presented in this paper.  

Table 4. 2. Nusselt number (𝑵𝒖⁡ = ⁡𝒉∗𝒅𝒆𝒒
∗ /𝒌∗)⁡prediction for single AR10 ellipsoid in 

uniform flow at Re=200. 

Volume grid (∆) 

Surface grid size (N)  

1/40 

7538  

1/60 

7538 

1/80 

28500 

% difference 

Parallel to flow,  0 6.47 6.50 6.56 <1.5% 

Normal to flow, 90 12.05 11.85 11.85 1.7% 

 

4.4. Results and Discussion 

4.4.1. Flow and Thermal fields within particle suspensions 

The general characteristics of the velocity and temperature field are first investigated. As the flow 

traverses the suspension, the random particle locations and orientations give rise to strong 

interstitial flow accelerations and decelerations which influence energy transport and heat transfer. 
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Fig. 4.5(a) shows 𝑥 −directional flow velocity fluctuation in AR10 ellipsoid suspensions at 𝜑 =

0.2, Re=10 and 200 which is calculated using: 

 𝑢′ =
𝑢 − 𝑢𝑚𝑒𝑎𝑛

𝑢𝑚𝑒𝑎𝑛
 (4.16) 

where 𝑢𝑚𝑒𝑎𝑛  is the mean fluid velocity through the particle suspension. It can be seen that at 

Re=10, the flow is dominated by viscous effects resulting in thick boundary layers on particle 

surfaces. Consequently, continuous, bridged low velocity regions can be found especially within 

particle clusters. At Re=200, the bridged low velocity regions are replaced by channels of higher 

velocity fluid between particles as the boundary layers become thinner. Interestingly, Re=10 

exhibits larger extreme deviations from the mean than does Re=200. These features of the velocity 

field are more generally characterized by studying the Probability Density Functions (PDF) of 

𝑢′distribution in the three-dimensional computational domain.  

      

  (a)⁡𝑥 − 𝑦 planes of the 𝑥 −directional flow velocity fluctuation (left: Re=10, right: Re=200) 

  

                (b)⁡𝑥 − 𝑦 planes of fluid temperature fluctuation (left: Re=10, right: Re=200) 

(a) (b) 

(a) (b) 
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                   (c) Probability Density Function of 𝑢′(left) and 𝑇’ (right) distribution 

Fig. 4. 5. Flow velocity and temperature fluctuations within AR10 ellipsoid suspensions. 

The PDFs of 𝑢′distribution for AR10 ellipsoid suspensions under different flow conditions are 

presented in Fig. 4.5(c). Both, effects of Reynolds number and solid fraction are shown. 

Comparing the effect of Reynolds number at 𝜑 = 0.2,   Re=10 has a higher probability of 

producing large fluctuations,  −1 < 𝑢′ < 0 and  𝑢′ > 1.5 than  Re=200. At Re=200, the extreme 

fluctuations are tempered and somewhat homogenized and are concentrated at and near zero (the 

mean value) much more so than at Re=10. These trends are consistent with the observations made 

in a single 𝑥 − 𝑦 plane in Fig 4.5 (a). The same general trends are reflected at the lower 𝜑 = 0.1 

between Re=10 and 200. As the solid fraction decreases to 𝜑 = 0.1, less of the fluid volume is 

affected by the presence of particles and thus the probability of fluctuations at or near zero (mean 

value) increases for both Reynolds numbers.  

Since the temperature field is largely influenced by the velocity field, the fluid temperature 

fluctuations defined as: 

 𝑇′ =
𝑇 − 𝑇𝑚𝑓(𝑥)

𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛
 (4.17) 

where 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡 represent the spatially averaged inlet and outlet fluid temperatures and  𝑇𝑚𝑓(𝑥) 

is the mixed mean temperature defined in Eqn. 4.5. Fig. 4.5(b) presents 𝑇′ slices at 𝑥 − 𝑦⁡planes 

identical to Fig 4.5 (a) to facilitate comparison.⁡Generally, regions of negative or low velocity 

fluctuation are correlated to regions of high positive temperature fluctuation at a given 
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𝑥 − location, and vice versa. Regions of high positive temperature fluctuations surrounding 

particles result in heat transfer coefficients lower than the mean at a given 𝑥 −location. Thus at 

Re=10, the preponderance of negative velocity fluctuations in particle wakes and particle clusters 

at 8 < 𝑥 < 10 and 14 < 𝑥 < 16 results in the local temperature being higher than the mixed mean 

temperature. Conversely, high velocity regions resulting from flow acceleration in the interstitial 

spaces results in temperatures lower than the mixed mean temperature. As⁡𝑅𝑒⁡increases to 200, the 

trends remain the same with the notable differences that the range of temperature fluctuations 

about the mean increase. This is due to the combined effect of thinner thermal boundary layers and 

extended high temperature wakes that significantly influence the fluctuations about the mixed 

mean. Notably, this is contrary to velocity fluctuations which reduce with increase in Reynolds 

number from Re=10 to 200. 

For a more complete picture, PDFs of 𝑇′over the whole computational domain are presented in 

Fig. 4.5(c). The 𝑥 − 𝑦 planar trends observed in Fig 4.5 (b) are confirmed by the volume PDFs. 

As⁡𝑅𝑒⁡increases from 10 to 200, the temperatures spread out to larger values as the fluctuations 

intensify, with less concentration near the mixed mean at 𝑇′ = 0. As 𝜑 decreases to 0.1, there are 

less pronounced differences between the two Reynolds numbers. For both Re=10 and 200, the 

frequency of large positive and negative fluctuations increases because of the relative sparsity of 

the particles and the weaker mixing. 

4.4.2. Nusselt number predictions 

Method A assumes similarity with heat transfer in internal flow and calculates the evolution of the 

fluid mixed mean temperature 𝑇𝑚𝑓(𝑥) and the particle surface temperature  𝑇𝑚𝑠(𝑥) to obtain the 

Nusselt number 𝑁𝑢𝐴(𝑥) using Eqn. 4.7. As the flow traverses the heated suspension of particles, 

both  𝑇𝑚𝑓(𝑥) and 𝑇𝑚𝑠(𝑥)⁡increase with 𝑥. Based on the analogy with internal flow subject to a 

constant heat flux boundary condition, a fully-developed state is reached when (𝑇𝑚𝑠(𝑥) −

𝑇𝑚𝑓(𝑥)) reaches a constant value. Examples of development of these temperatures is presented in 

Fig 4.6 for AR2.5 and AR10 ellipsoid suspensions at Re=10 and Re=200 for the lowest and highest 

solid fractions investigated, respectively. Unlike internal flows we note that while the development 

of 𝑇𝑚𝑓(𝑥) is smooth because of the large sample size (400×400 fluid cells in each y-z plane), the 

development of 𝑇𝑚𝑠(𝑥)⁡fluctuates about a linear increase because of a limited and changing sample 
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size of particle surface elements at any given 𝑥 −location. Comparing the two Reynolds numbers, 

Re=10 and 200, we find that the fully-developed state is never completely achieved at Re=10 and 

𝜑 = 0.1, whereas at Re=200, in spite of the perturbations superimposed on the linear increase, 

there is a discernable classical fully-developed region in which ⁡𝑇𝑚𝑠(𝑥) − 𝑇𝑚𝑓(𝑥)⁡ remains 

approximately constant. In spite of the large extent of the suspension in the flow direction, the lack 

of clear convergence to a fully-developed regime is most evident at low Reynolds numbers. 

 

(a) AR2.5, Re=10, 𝜑=0.1                                  (b) AR2.5,Re=10, 𝜑=0.3 

 

     

                           (c) AR10, Re=200, 𝜑 =0.1                         (d) AR10, Re=200, 𝜑 =0.2 

Fig. 4. 6. Variation of 𝑻𝒎𝒇(𝒙) and 𝑻𝒎𝒔(𝒙) in suspensions of AR2.5(a-b) AR10 ellipsoids (c-

d). 

The spatial development of 𝑁𝑢𝐴(𝑥) for ellipsoid suspensions is presented in Fig. 4.7. In all cases 

it is observed that the high Nusselt number in the initial development region of the suspension 
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decays to what could be considered the fully developed value. However, the rate of decay does not 

show any strong consistent trend with AR, Re, or 𝜑 except possibly that the development length 

is consistently higher for AR10 suspensions over AR2.5 and 5.0 particles. On the other hand, 

similar trends in developing length observed over all⁡𝑅𝑒⁡for a given suspension, indicates that 

particle arrangement may be a dominant factor in the evolution of 𝑁𝑢𝐴(𝑥). It is noted that in spite 

of the large length of the domain in the flow direction, and the large number of particles and 

multiple particle arrangements, 𝑁𝑢𝐴(𝑥) in many of the cases does not settle to a stationary value 

representative of a fully-developed thermal region. Therefore for consistency, to specify the mean 

Nusselt number 𝑁𝑢𝐴at a given condition, a subset of the 𝑁𝑢𝐴(𝑥) distribution between 𝑥 = 9 and 

15 is used for all cases as indicated by the dashed lines in  Fig. 4.7.  

      

                              (a)AR2.5, 𝜑=0.1                                                (b)AR2.5 𝜑=0.3 

      

                          (c)AR5, 𝜑=0.1                                                        (d)AR5, 𝜑=0.3 
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                            (e)AR10, 𝜑 = 0.1                                              (f)AR10, 𝜑 = 0.2 

Fig. 4. 7. 𝑵𝒖𝑨 for ellipsoid suspensions using results from one (AR2.5) and two (AR5 and 

AR10) independent random particle arrangements. 

Individual particle Nusselt numbers (Method B) is calculated by using the average surface 

temperature of a particle with the mixed mean fluid temperature in a shell of finite-width 

surrounding the particle (Eqns. 4.12-4.14). Examples of  𝑁𝑢𝐵  on individual AR10 particles is 

presented in Fig 4.8 for a shell size of  = 1.5𝑑𝑒𝑞 around each particle at Re=10 and 200 and 𝜑 =

0.2. Also shown are the corresponding PDFs of the normalized deviation from the mean value of 

Nusselt number. Because of the inherent randomness in the suspension and the large influence of 

interstitial flow on thermal fields around each particle, there are large variations in the calculated 

Nusselt numbers which are represented at the location of the particle geometric center. As stated 

earlier in section 2.4, very large or negative 𝑁𝑢𝐵 can result on individual particles. Approximately 

30% of the cases run had between 1% to 3% of the particles with very large (more than 5 times 

the mean) and negative values. These values are not plotted in Fig 4.8  nor are they included in the 

construction of the PDFs. Studying the PDFs which specify the variation about the mean, for both 

Reynolds numbers the PDFs are positively skewed, much more so at Re=10 at which many 

particles experience values as large as 1.5 to 2 times the mean value. At Re=100, the individual 

particle Nusselt numbers experience comparatively less fluctuations about the mean value and the 

distribution is more uniform. This leads to the conclusion that 𝑁𝑢𝐵 is much more sensitive to the 

particle arrangement at low⁡𝑅𝑒⁡than at higher Re. 

Unlike 𝑁𝑢𝐴 , the distribution of 𝑁𝑢𝐵  is quite insensitive to 𝑥 −location, i.e., entrance and exit 

effects are barely perceptible. This is because even though the geometric center of the particle is 
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located near the entrance or exit, because of the high aspect ratio, the AR10 particle extends over 

a range of 𝑥 −values and thus any sharp variations in the local mixed mean fluid and surface 

temperatures are smoothed out when averaged over the outer shell surrounding the particle and 

over the particle surface, respectively. Taking advantage of this inherent smoothing, particles with 

geometric centers between⁡8 < 𝑥 < 17 are used for defining the mean Nusselt number 𝑁𝑢𝐵 ⁡at 

each condition.  

  

                        (a) 𝑁𝑢𝐵 ,⁡Re=10                                                  (b) PDF of  𝑁𝑢𝐵 ,⁡Re=10                                                                            

 

                         (c) 𝑁𝑢𝐵, Re=200                                                     (d) PDF of 𝑁𝑢𝐵 ,⁡Re=200                                                                         

Fig. 4. 8. 𝑵𝒖𝑩 for AR10 ellipsoid suspensions for 𝝋 = 𝟎. 𝟐 with corresponding PDF 

distribution. Dash line shows the mean values in (b) and (d). 
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An important parameter in determining the particle Nusselt number, 𝑁𝑢𝐵 , is the size of the shell 

over which the fluid mixed mean temperature 𝑇𝑝𝑓 is calculated. For very thin shells the fluid and 

surface temperature approach each other and under constant heat flux conditions lead to high 

Nusselt numbers. As the shell size increases, the calculated temperature is more representative of 

the surrounding fluid temperature, however progressively more of the presence of other particles 

is also included in the calculation of the fluid temperature. This is similar to calculating the fluid 

mixed mean temperature at any given 𝑥 −location – where the effect of other particles on the fluid 

temperature is implicitly included in the reference fluid temperature. To show that as the shell size 

gets larger, the mean particle Nusselt number ⁡𝑁𝑢𝐵  approaches 𝑁𝑢𝐴 , different shells sizes of 

𝛿/𝑑𝑒𝑞 ⁡= ⁡0.1, 0.3, 0.5, 1, 1.5⁡and 2 are tested (Eqn. 4.11). These results are presented in Fig. 4.9 

showing the effect of  on the mean Nusselt number, 𝑁𝑢𝐵,⁡for AR10 ellipsoid suspensions at 

different⁡𝑅𝑒⁡and 𝜑. At  = 0.1, the predicted mean Nusselt number starts at a high value, but drops 

sharply by  = 0.5, gradually decreasing further as the shell size increases. In the limit that the 

shell size approaches the volume of the fluid domain, 𝑁𝑢𝐵  approaches 𝑁𝑢𝐴  as both become 

equivalent. Similar trends are also observed for AR2.5 and AR5 ellipsoid suspensions (not shown).  

 

(a) 𝑁𝑢 at 𝜑=0.1                                                      (b) 𝑁𝑢 at 𝜑=0.15 
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(c) 𝑁𝑢 at 𝜑=0.2 

Fig. 4. 9. Variation of  𝑵𝒖𝑩 of AR10 ellipsoid suspensions versus shell size, 𝜹. 

To expand on the relationship between 𝑁𝑢𝐵 and 𝑁𝑢𝐴 further, Fig. 4.10 presents both quantities at 

different Reynolds numbers and solid fractions for AR2.5, AR5 and AR10 geometries. The vertical 

range bars on 𝑁𝑢𝐴  represent the standard deviation in the thermally fully-developed region 

between 9 ≤ 𝑥 ≤ 15. 𝑁𝑢𝐵 is plotted at shell size 𝛿/𝑑𝑒𝑞 = 0.5⁡and the shaded region represents 

the admissible possible values of  𝑁𝑢𝐵  as the shell size increases with the lower bound given by 

𝑁𝑢𝐴. As Reynolds number increases, the Nusselt number increases approximately as Re1/2.  The 

difference between 𝑁𝑢𝐵|0.5 and 𝑁𝑢𝐴 is nearly 100% at 𝑅𝑒 = 10 but reduces to between 15%-20% 

at 𝑅𝑒 = 200 for the different cases investigated. 

 

            (a)𝐴𝑅2.5,⁡𝜑 = 0.1                          (𝑑)𝐴𝑅5,𝜑 = 0.1                     (𝑔)𝐴𝑅10, 𝜑 = 0.1               
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          (b)𝐴𝑅2.5,⁡𝜑 = 0.2                       (e)𝐴𝑅5, 𝜑 = 0.20         (h)𝐴𝑅10, 𝜑 = 0.15 

   

            (c)𝐴𝑅2.5,⁡𝜑 = 0.3                      (𝑓)𝐴𝑅5,𝜑 = 0.3        (𝑖)𝐴𝑅10, 𝜑 = 0.2 

 

Fig. 4. 10. Comparison of 𝑵𝒖𝑨 and 𝑵𝒖𝑩 for AR2.5 (a-c), AR5  (d-f) and AR10 (g-i) ellipsoid 

suspensions at different⁡𝑹𝒆⁡and 𝝋.  

4.4.3. Comparison with correlations and past results 

Both, NuA and NuB are quite independent of the shape of the particle, i.e., there are no strong 

trends with changing aspect ratio of the ellipsoids over the range of⁡𝑅𝑒⁡and ⁡𝜑 investigated in this 

study. Note that the default length scale in the Reynolds number and Nusselt number is based on 

the volume equivalent diameter, thus when expressed in this form, the shape or geometry is 

subsumed in the volume equivalent diameter. The results are in agreement with Tavassolli et al. 

[60] who also observed that heat transfer coefficients were quite independent of the aspect ratio of 

sphero-cylinders ranging from 2 to 4. This is quite unlike hydrodynamic forces such as drag and 

lift which exhibit a strong dependence on shape and increase with aspect ratio or deviation from 

sphericity. On the other hand, the Nusselt number increases slightly (between 15-20%) as 𝜑 

changes from 0.1 to 0.3. Chen and Muller [62] modified a spherical suspension correlation, to 

develop a correlation for non-spherical particles by explicitly accounting for the shape of the 
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particle in the definition of the Nusselt number by defining, 𝑁𝑢𝑆 =
ℎ∗𝑑𝑠

∗

𝑘∗
, where the Sauter 

diameter, 𝑑𝑠
∗ = Φ𝑑𝑒𝑞

∗ , with Φ defining the sphericity of the particle shape.  

 

𝑁𝑢̅̅ ̅̅ 𝑠 = Φ[2 + 0.77𝜑 + 0.64𝜑2

+ (0.6 + 1.1𝜑)𝑅𝑒𝐷ℎ
0.5𝑃𝑟1/3 (

3𝜑

2(1 − 𝜑)Φ
)
0.5

] 

(4.18) 

where the Reynolds number is based on the hydraulic diameter given by 𝐷ℎ
∗ =

4(1−𝜑)∀∗

Ω∗
. Here ∀∗⁡is 

the volume of the suspension domain and Ω∗ is the total surface area of the particles in the volume 

∀∗. Fig. 4.11 compares the present predictions with the correlation. 

       

                                   (a) AR2.5                                                          (b)AR5 

 

(c)AR10 

 

Fig. 4. 11. Comparison of predictions with correlation of Chen and Muller [62]. 
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Nusselt number values obtained from the correlation agree quite well with the current predictions  

for 𝑅𝑒𝐷ℎ > 100 but tend to over predict the values at lower Reynolds numbers, Re=10 and 50 

(based on sphere equivalent diameter). On comparing the current predictions with the results of 

He and Tafti for AR2.5 particles, it is observed that He and Tafti [53] systemically predict higher 

values of Nusselt number at Re=10 and 50. In order to identify the source of these differences we 

checked the reproducibility of the He and Tafti [53] results by using their particle distribution in 

the software version used to compute the current cases and found exact reproducibility of their 

𝑁𝑢𝐴⁡distribution. This was followed by additional tests of using one of the current distributions of 

AR2.5 𝜑 = 0.1 suspension and truncating its streamwise extent from 5 ≤ 𝑥 ≤ 20  to  5 ≤ 𝑥 ≤ 15 

and to 10 ≤ 𝑥 ≤ 20   by selectively removing particles to make the suspensions have a 

development length of 10𝑑𝑒𝑞
∗   as in He and Tafti [53]. In addition to these modifications to the 

existing suspension, a new suspension is created without strictly restricting the solid phase to 5 ≤

𝑥 ≤ 20  as in He and Tafti (only particle centers are restricted to lie between 5 ≤ 𝑥 ≤ 20). The 

resulting Nusselt number distribution 𝑁𝑢𝐴 distributions are shown in Fig. 4.12. It is noted that 

none of the suspensions reach a truly fully-developed state. While 𝑁𝑢𝐴 decreases continuously 

with 𝑥′ for the original suspensions in this study, He and Tafti’s and the new suspension, while 

not decreasing continuously, do not reach a nominal constant value characteristic of a fully –

developed regime either. In spite of making the above modifications in the original suspension and 

generating a new suspension, the current results consistently under predict the Nusselt number 

compared to He and Tafti [53].   
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Fig. 4. 12. Distribution of 𝑵𝒖𝑨(𝒙
′) for different particle suspensions at Re=10 and 𝝋 = 𝟎. 𝟏. 

 

To further investigate the systemic under prediction at low Reynolds number, Fig. 4.13(a) presents 

the orientation distribution of particles in suspension and the calculated local solid fraction as 

perceived by individual particles in the suspension. In a random ellipsoidal suspension the 

following relationship between number of particles and inclination angle 𝜃 is satisfied  

 
𝑁Δ𝜃

𝑁80°≤𝜃≤90°
⁡≈ 𝑠𝑖𝑛𝜃 (4.19) 

Here 𝑁Δ𝜃  are the number of particles present in the interval Δ𝜃 = 10°  about angle ⁡𝜃 , and 

𝑁80°≤𝜃≤90° are the number of particles in the interval 80° ≤ 𝜃 ≤ 90°. Both distributions follow the 

trends of a random arrangement within the limits imposed by the smaller sample size of particles 

at 𝜑 = 0.1. He and Tafti show more scatter with fewer particles in the mid-range of inclination 

angles between 30° ≤ 𝜃 ≤ 70°, whereas the current distribution shows less scatter with more 

particles between 70° ≤ 𝜃 ≤ 80°. The more illuminating result is the PDF distribution of local 

solid fraction, 𝜑𝑙𝑜𝑐 in Fig. 4.13 (b), which is calculated by finding the ratio of grid cells designated 

as solid to the total number of grid cells in an envelope or ellipsoidal shell size of 1.5𝑑𝑒𝑞
∗  

surrounding each particle in the suspension. We find that compared to He and Tafti, the current 

suspension has more clusters of particles (indicated by the PDF skewed towards higher 𝜑𝑙𝑜𝑐 ) in 

spite of the randomness and same mean solid fraction in both distributions.  

This leads to the conclusion that the lower predicted Nusselt numbers in the present study are due 

to the effect of thermal wakes which engulf many of the particles in close proximity to each other. 

At low Reynolds numbers, the thermal wakes are particularly strong but diminish in spatial extent 

as the Reynolds number increases. Notably, particle clustering only affects the heat transfer 

coefficient but has very little effect on fluid forces, such as drag, within the variations imposed by 

the randomness of the suspension,. Fig. 4.14 presents the calculated normalized drag force on 

individual particles for the two distributions. The present results exhibit a larger range of drag 

values because of the larger variation in local solid fraction experienced by individual particles. 

However, unlike the heat transfer coefficient, the mean suspension drag is only marginally 

different within 3% of each other at 4.43 for He and Tafti and 4.31 for the present arrangement. 
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(a) Particle inclination angle distribution 

   

(b) PDF of local solid fraction  

 

Fig. 4. 13. Comparison between present AR2.5 suspension and that of He and Tafti [53] 

(left: 𝝋 = 𝟎. 𝟏, right: 𝝋 = 𝟎. 𝟑)  
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Fig. 4. 14. Comparison of individual particle normalized drag between present suspension 

and that of He and Tafti [53] at Re=10 and 𝝋 = 𝟎. 𝟏 . Normalization is done with Stokes 

drag on an equivalent diameter sphere. 

4.5. Conclusions 

In this study, Particle-Resolved Simulations (PRS) are performed to calculate the Nusselt number 

through random suspensions of ellipsoidal particles of aspect ratio 2.5, 5 and 10, solid fractions 

between 0.1 and 0.3, and Reynolds number in the range 10 to 200.   

The mean Nusselt number based on the equivalent diameter of the particle increases with Reynolds 

number roughly to the ½ power. It shows only a weak dependence on the aspect ratio while 

increasing between 10-15% with an increase in solid fraction from 0.1 to 0.3. Both these trends 

are in sharp contrast to fluid drag forces which increase with increase in aspect ratio and solid 

fraction.  

Two Nusselt numbers are defined and calculated, one analogous to developing internal flow (𝑁𝑢𝐴) 

as a function of the streamwise distance and another based on individual particles, 𝑁𝑢𝐵. It is shown 

that by definition the suspension mean 𝑁𝑢𝐵 is always greater than or equal to the mean 𝑁𝑢𝐴 and 

that it approaches 𝑁𝑢𝐴 as the fluid mixed mean temperature pertaining to a particle is calculated 

over a larger volume of the suspension.  
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It is shown that at 𝑅𝑒 ≤ 50, the suspension heat transfer coefficient is very sensitive to the spatial 

distribution of particles or local-to-particle solid fraction. This is because of the strong thermal 

wakes that form at low 𝑅𝑒  in the presence of clusters of particles and the role the wakes play in 

reducing the heat transfer coefficient. Because of this effect, the Nusselt number (based on 

equivalent diameter) can drop below the nominal minimum limiting value of 2.0 used in most 

correlations that is imposed by conduction heat transfer in the absence of any convection. Notably, 

the effect of particle clustering and hydrodynamic wakes, while influencing individual particle 

fluid forces, do not have any substantial effect on suspension mean fluid forces such as drag. 

4.6. ACKNOWLEDGEMENTS 

Ze Cao’s research was supported in part by an appointment to the U.S. Department of Energy 

(DOE) Postgraduate Research Program at the National Energy Technology Laboratory 

administered by Oak Ridge Institute for Science and Education. The authors would like to 

acknowledge the computational resources provided by Advanced Computational Research (ARC) 

at Virginia Tech. 

 

 

 

 

 

 

 

 



102 
 

Chapter 5  

Fluid forces and torques in suspensions of 

oblate cylinders with aspect ratio 1:4 

  

5.1. ABSTRACT 

Fluid forces and torques in a random stationary suspension of oblate cylinder-like particles of 

AR0.25 are investigated in the Reynolds number range 10 ≤ 𝑅𝑒 ≤ 300 and solid fraction range 

0.1 ≤ 𝜑 ≤ 0.3 using Particle Resolved Simulations with the Immersed Boundary Method (IBM). 

While existing correlations were found to grossly under predict the drag forces, a sinusoidal 

function 𝐹𝑑,𝜃 = 𝐹𝑑,𝜃=0° + (𝐹𝑑,𝜃=90° − 𝐹𝑑,𝜃=0°)sin⁡(𝜃)⁡captured the variation of normalized drag 

with respect to inclination angle over the range 10 ≤ 𝑅𝑒 ≤ 300 and 0 ≤ 𝜑 ≤ 0.3. Further the 

mean ensemble drag followed 𝐹𝑑 = 𝐹𝑑,𝜃=0° +
1

2
(𝐹𝑑,𝜃=90° − 𝐹𝑑,𝜃=0°). Lift forces varied between 

20% and 80% of drag forces over the range of Reynolds numbers studied. Comparing the pitching 

fluid torque to collision torque in an elastic collision showed that as the particle equivalent 

diameter, density, and collision velocity decrease, fluid torque can be of the same order of 

magnitude as collisional torque and cannot be neglected. 

5.2. INTRODUCTION 

The collective dynamic behavior of particles in suspension is strongly dependent on their 

interaction with each other and with the interstitial fluid flow. Particle-particle interactions are 

nominally dominated by collision forces, whereas particle-fluid interactions are dominated by the 

fluid forces. The particle-particle interaction can be modeled based on solid mechanics that 
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resolves collision and momentum exchange for both spherical and non-spherical particles (Zhu et 

al., 2007, 2008; Zhou et al., 2011). For the fluid-particle interaction, due to the various flow 

conditions and particle geometries encountered, there is no general formulation available. Because 

of the simplicity afforded by the spherical shape assumption, initial experimental and 

computational work in characterizing fluid forces has mostly been done for single (Turton and 

Levenspiel, 1986; Flemmer and Banks, 1986; Clift et al., 1978) and suspensions of spherical 

particles (Ergun, 1952; Wen and Yu, 1962; Tenneti et al., 2011). Most of these studies have 

focused on developing drag force correlations. In the last decade, because of the limitation of the 

spherical shape assumption, investigations on the effect of non-sphericity on fluid forces have 

gained considerable attention. Among the various particle geometries, ellipsoids and cylinders are 

commonly chosen because of their defined geometry compared to irregular shaped particles and 

in their ability to mimic particles from plate-like to fiber-like shapes by varying their aspect ratios 

(AR). One of the important enabling technologies has been the increase in computational power 

which has made Particle Resolved Simulation (PRS) possible. Using PRS fluid forces can be 

directly integrated on the particle surface. Zastawny et al. (2012) used PRS to derive correlations 

for drag, lift force and torque on single particle under different inclination angles in the 

intermediate Reynolds number range for ellipsoids with aspect ratio of 1.25 and 2.5 and 

spherocylinders of aspect ratio of 5. Similarly, Richter and Nikrityuk (2013) simulated flow over 

single ellipsoid with aspect ratio of 2 and demonstrated through statistical analysis, that there exists 

an apparent sin-square relation between the drag force and the particle inclination angle, which 

was later found to be applicable for ellipsoids with aspect ratio up to 32 in the study of Ouchene 

et al. (2016). Vakil and Green (2009) simulated flow over an individual cylinder with aspect ratio 

range of [2, 20] with 1 ≤ 𝑅𝑒 ≤ 40 and proposed a drag correlation. When it comes to the study of 
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particle suspensions, only a few studies can be found in the literature. He et al. (2017) did PRS for 

flow within suspensions of ellipsoids with aspect ratio of 2.5 and tested the ability of existing 

correlations to predict the drag force of the suspension. They found that the combination of the 

Hölzer and Sommerfeld's (2008) correlation for an isolated non-spherical particle in the flow and 

the correlation of Tenneti et al. (2011) to include the effect of solid fraction provided the best 

estimation of suspension drag force. Similarly, Sanjeevi and Padding (2019) simulated flow 

through suspensions of spherocylinders with aspect ratio of 4 and they found that similar to single 

prolate spheroids, the drag of particles in the suspension also approximately followed the sin-

squared distribution with respect to their inclination angles. In addition to drag force, lift as well 

as torque on prolate particles in suspension have been investigated by He and Tafti (2018) and 

Sanjeevi and Padding (2019).  

As for oblate particles, based on previous computational and experimental results, Militzer et al. 

(1989) developed a drag correlation for a single ellipsoid in the flow with minimum aspect ratio 

of 0.2. A much lower aspect ratio of 0.05 for cylindrical shaped particle (disk) was studied by 

Unnikrishnan and Chhabra (1991) through free falling experiments and they also proposed a drag 

correlation that is applicable in the range 0.2 ≤ 𝑅𝑒 ≤ 180. However, both of these studies didn’t 

include the effect of particle orientation, which is found to play an important role in determining 

the drag force in the study of Zastawny et al. (2012). In addition to prolate shapes, Zastawny et al. 

(2012) also simulated flow over an oblate ellipsoid with aspect ratio of 0.2 and derived drag, lift 

and torque correlations with particle inclination angle included. Similarly, an ellipsoid with aspect 

ratio of 0.25 was included in the study of Ke et al. (2018) and they proposed a drag correlation 

over an aspect ratio range of 0.25 ≤ 𝐴𝑅 ≤ 2.5. A more general study was carried out by Hölzer 

and Sommerfeld (2008) that proposed a drag correlation based on 2061 experimental data of 
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various particle geometries. When it comes to investigations of oblate particle suspensions, though 

researchers like Eshghinejadfard et al. (2019) and Fonseca and Herrmann (2004) performed PRS 

for flow through oblate ellipsoidal suspensions, neither of them explicitly presented the drag force 

results in their work. The lack of drag correlations for non-spherical particle suspensions in the 

literature has resulted in a trend of combining isolated or single non-spherical particle drag 

correlations with spherical suspension drag correlations in coarse-grained simulations (Gan and 

Zhou, 2016; Shrestha et al., 2019; Ma and Zhao, 2018). The applicability of this was evaluated by 

Vollmari et al. (2016) through comparison with experimental results. They concluded that the 

accuracy of this practice was compromised as the particle geometry deviated substantially from a 

spherical geometry. 

In light of the scarcity of fluid force formulations for oblate particle shapes in suspension, the 

current investigation contributes to the literature by formulating fluid force and torque results in a 

stationary suspension of particle of cylindrical shape with aspect ratio 0.25 (AR0.25) in a Reynolds 

number range⁡10 ≤ 𝑅𝑒 ≤ 300 and sold fraction 0.1 ≤ 𝜑 ≤ 0.3. Firstly, select drag correlations 

from the literature most applicable to the AR0.25 cylinder geometry are compared against the PRS 

results. It is shown that inevitable preferential orientation in suspension correlations derived from 

packed bed experiments leads to under prediction of PRS drag in a random orientation. A new 

drag correlation is proposed that covers both isolated AR0.25 cylinder and suspensions with much 

better agreement with the PRS data. This is followed by an investigation of the difference in 

velocity and pressure fields and in drag force for particles of the same sphericity, which is used to 

characterize particle non-spherical shape in drag correlations. Finally, the variation of lift and 

lateral forces, as well as torque is investigated and their relative magnitude with respect to drag 

forces are calculated.  
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5.3. SIMULATION METHOD AND SETUP 

5.3.1. Governing Equations 

The dimensionless governing equations given the fluid under incompressible and constant property 

assumption are written as: 

Continuity: 

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (5.1) 

Momentum: 

 
𝜕𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(
1

𝑅𝑒
(
𝜕𝑢𝑖
𝜕𝑥𝑗

)) (5.2) 

 

The above equations are non-dimensionalized by: 

𝑢𝑖 =
𝑢𝑖
∗

𝑢𝑟𝑒𝑓
∗⁡ ; ⁡𝑥𝑖 =

𝑥𝑖
∗

𝑙𝑟𝑒𝑓
∗ ; ⁡𝑝 =

𝑝∗ − 𝑝𝑟𝑒𝑓
∗

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡2 ;⁡ 

 𝜌 =
𝜌∗

𝜌𝑟𝑒𝑓
∗ ; ⁡𝜇 =

𝜇∗

𝜇𝑟𝑒𝑓
∗ ; ⁡𝑅𝑒 =

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡ 𝑙𝑟𝑒𝑓
∗

𝜇𝑟𝑒𝑓
∗  (5.3) 

Variables with superscript (*) represents dimensional variables. In the process of non-

dimensionalization, superficial approach flow velocity 𝑈∞
∗  is taken as 𝑢𝑟𝑒𝑓

∗⁡  and diameter 𝑑𝑝
∗  of the 

sphere that has an equivalent volume as the AR0.25 cylinder is chosen to be 𝑙𝑟𝑒𝑓
∗ . The governing 

equations are solved using an in-house CFD code – GenIDLEST (Generalized Incompressible 
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Direct and Large Eddy Simulation of Turbulence) with Immersed Boundary Method (IBM) 

implemented to perform the PRS simulations. 

The governing equations are solved based on a non-staggered finite-volume formulation using 

second-order central (SOC) differencing scheme [34,35]. The fluid velocity and pressure are 

calculated at computational cell centers while the mass fluxes are solved and stored at cell faces. 

The time integration is done by a predictor-corrector formulation: the predictor step calculates an 

intermediate velocity which is then modified in the corrector step based on the calculated pressure 

field to satisfy discrete continuity. 

5.3.2. Particle Definition and Immersed Boundary Method 

The AR0.25 cylindrical particle is created based on the super-ellipsoid equation that is written as: 

 (|𝑎 × 𝑥|𝑟 + |𝑏 × 𝑦|𝑟)
𝑡/𝑟

+ |𝑐 × 𝑧|𝑡 = 1 (5.4) 

In this equation, x, y and z represent coordinates in the Cartesian coordinate system with a, b and 

c correspondingly controlling the semi-diameters of the particle in the respective directions. The 

exponentials, r and t adjust the surface curvature of the particle. In this work, r and t are specified 

as 2 and 20 for the cylindrical geometry. a, b and c are chosen to be 1.438, 1.438 and 5.752 

respectively to derive the desired aspect ratio of 0.25 with the particle volume equivalent spherical 

diameter of unity. As is shown in Fig. 5.1, the particle aspect ratio is defined as the ratio between 

the height (ℎ) along its rotational symmetry axis and the diameter (𝑑) of its circular cross section. 

A local coordinate system is defined for each individual particle in the suspension, as can be seen 

from Fig. 5.1, 𝑥′ is defined along the direction of the superficial approach flow velocity 𝑈∞. The 

𝑦′ is specified within the plane that contains both 𝑥′ and the cylinder rotational symmetry axis 𝑙′ 

and perpendicular to 𝑥′. 𝑧′ is perpendicular to 𝑥′ − 𝑦′ to make a right-handed coordinate system. 
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Fig. 5. 1. Particle geometry with local coordinate system and surface mesh. 

 

Following our previous work using the Immersed Boundary Method (IBM) on a single cylindrical 

particle of AR0.25 in the same Reynolds number range (Cao and Tafti, 2018), the surface of each 

particle in the suspension is resolved with 11698 triangular elements and placed in the background 

volume grid. The no slip boundary condition on each particle in the suspension is implemented by 

the IBM boundary treatment. Probes passing through the fluid IB nodes and normal to the surface 

are projected into the flow. The interpolated flow variables at the probes are used with the specified 

boundary condition at the surface and Taylor series expansions to calculate the variable value at 

the IB node which acts as the boundary condition. Following Cao and Tafti (2018), second-order 

accurate boundary conditions are used in this investigation. More detailed discussion is given in 

the original paper by Nagendra et al. (2014) and specifically to PRS in subsequent investigations 

by He et al. (2017), He and Tafti (2018), and Cao and Tafti (2018).  

In our previous work on spherical and ellipsoidal particle suspensions (He et al., 2017; He and 

Tafti, 2018), and Cao and Tafti (2018) on a single particle of the same shape as used to construct 

the suspension in this study, the background grid is constructed to have a resolution of 1/40 cells 
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(40 cells per equivalent sphere diameter). In Cao and Tafti (2018), grids of 1/30, 1/40 and 1/50 

were compared for the prediction of the drag coefficient over the full range of Reynolds numbers 

and particle inclination angles. It was found that the difference in drag coefficient was bounded to 

within 4% between 1/30 and 1/50 and within 2% between 1/40 and 1/50 grids. Additionally by 

using the same three grid spacings, He et al., (2017) simulated flow through suspensions of spheres 

at solid fraction of 0.1 for a Reynolds number range from 10 to 200, and reported a maximum 

deviation of the ensemble mean drag force of around 2% between 1/30 and 1/50 grids and 1.6% 

between 1/40 and 1/50 grids. The grid spacing of 1/40 and 1/50 was also evaluated by Cao and 

Tafti (2020) for suspensions of ellipsoids with aspect ratio of 10 at 𝜑 = 0.2. They found that 97% 

of particles had deviations less than 2.5% and the deviation of the ensemble mean drag was 1.01% 

between the two grids.  

In addition to the grid independency study, the IBM predictions of drag coefficient for flow over 

a sphere in the 𝑅𝑒 range [10,300] were compared to past correlations (Clift et al., 1978; Brown 

and Lawler, 2003), and to body-fitted grid calculations. Maximum differences were bounded to 

within 5%. Validation has also been done by He et al. (2017) for spherical suspensions for 0.1 ≤

𝜑 ≤ 0.45 and 10 ≤ 𝑅𝑒 ≤ 200 by comparing with the suspension drag correlation proposed by 

Tenneti et al. (2011) based on their simulation for flow through sphere suspensions. Good 

agreement was observed from the comparison indicating the current simulational setup and IBM 

framework is not only able to calculate the drag on isolated particle in the flow, but also the drag 

on suspensions of particles. Therefore, considering both computational efficiency and simulation 

accuracy, a grid spacing of 1/40 is finally chosen for this research. 

The fluid-particle interaction force is calculated for each surface element using: 
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 𝐹⃗𝑒
∗ = 𝐹⃗𝑣𝑖𝑠𝑐𝑜𝑢𝑠

∗ + 𝐹⃗𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
∗  (5.5) 

In Eq. (5.5), 𝐹⃗𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
∗  and 𝐹⃗𝑣𝑖𝑠𝑐𝑜𝑢𝑠

∗  are the forces due to pressure and viscous effect. Then, the total 

force on an individual particle is calculated by: 

 𝐹⃗𝑠
∗ =∑𝐹⃗𝑒,𝑖

∗

𝑛

𝑖=1

 (5.6) 

The drag force is defined as the component of the total fluid-particle interaction force in the 

direction of 𝑈∞
∗ , while the lift force is defined along 𝑦′ as shown in Fig. 5. 1. The lateral force is 

part of the fluid-particle interaction force with direction of 𝑧′. All of the three force components 

are normalized using the Stokes drag as: 

 𝐹 =
𝐹∗

3𝜋𝜇∗𝑑𝑝∗𝑈𝑠∗
 (5.7) 

In addition to the forces that are responsible for the translational movement of the particles in the 

flow, torques along the three directions of the local coordinate system are also calculated to 

investigate the rotational motion of particles induced by the fluid flow. In this case, similar to the 

calculation of hydrodynamic force, torque on each surface element is calculated using: 

 𝑇⃗⃗𝑒
∗ = |𝑟|𝑒 × 𝐹⃗𝑒

∗ (5.8) 

where |𝑟|  is the distance and 𝑒  is the unit vector with direction pointing from the particle 

geometrical center to the centroid of the surface element. 𝑇⃗⃗𝑒
∗ is the elemental contribution to total 

torque 𝑇⃗⃗∗ which is obtained by integrating over all the elements on the surface of the particle. The 

normalized torque 𝑇⃗⃗ is expressed as:  
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 𝑇⃗⃗ =
𝑇⃗⃗∗

3𝜋𝜇∗𝑑𝑝∗𝑈𝑠∗ ∙
𝑑𝑝∗

2

 (5.9) 

 

5.3.3. Background Grid and Particle Suspension Generation 

The domain employed in this simulation has dimension of 30 × 10 × 10 in 𝑥 − 𝑦 − 𝑧 directions, 

respectively, as shown in Fig. 5.2. A uniform velocity with dimensionless value of unity in the +𝑥 

direction is specified at the inlet with a zero gradient of both pressure and velocity imposed at the 

outlet. Periodic boundary conditions are specified in 𝑦 − and 𝑧 − directions to simulate an infinite 

extent of the suspension in these directions. Particle suspensions are placed in the middle region 

with dimension of 15 × 10 × 10 with the number of particles for a specified solid volume fraction 

𝜑 calculated using: 

 𝑁 =
6𝜑𝑉

𝜋𝑑𝑝
3  (5.10) 

In Eq. (5.10), 𝑑𝑝 is the non-dimensional volume equivalent sphere diameter with value of unity. 

𝑉 is volume of the domain that contains the particles, which is 15 × 10 × 10 in this study. With 

solid fraction of 0.1, 0.2 and 0.3 investigated, the corresponding number of particles are 286, 573 

and 859, respectively. Two unique but random cylinder suspension arrangements are created for 

each solid fraction. 
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Fig. 5. 2. 3D computational domain 

 

With the known amount of particles required for each solid fraction, particle suspensions are 

generated using a physical simulation engine – PhysX by Nvidia (Nvidia). During this process, 

particles approximated by a coarse grid are successively placed in the packing box with random 

velocities. During this process, particle overlaps are detected and resolved in PhysX by assigning 

opposing velocities to the particles to separate them. This process is repeated till the desired solid 

fraction is reached and particles in the domain achieve equilibrium without any overlap. An 

example of the particle suspension and its location in the computational domain is shown in Fig. 

5. 3.  
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Fig. 5. 3. 3D view of the particle suspension in the computational domain. Every fifth grid 

line is shown. 

 

To confirm the random orientation of particles in the suspension we show that the inclination 

angle, 𝜃 = 90° − 𝛾 , where 𝛾 ≤ 90° is the angle made by the unit vector along the rotational 

symmetry axis with the 𝑥-axis, follows sin(𝛾) or cos(𝜃) distribution [50]. The particle count 

within each ∆𝜃 = 10° interval normalized by the total number of particles shown in Fig. 5.4(a) is 

found to satisfy the desired cos(𝜃) distribution. In contrast, Fig. 4(b) shows the corresponding 

distribution of a suspension which is preferentially oriented perpendicular to the flow that will be 

discussed later. 
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       (a) Randomly oriented suspensions                    (b) Preferably oriented suspension 

Fig. 5. 4. Normalized orientation distribution of different suspensions. 

 

To further demonstrate the random distribution of cylinders in the suspensions, the orientation 

tensor 𝑺 is calculated by: 

 𝑺 =< 𝜶⃗⃗⃗𝑇 𝜶⃗⃗⃗ > (5.11) 

where 𝜶⃗⃗⃗ is the unit vector along the rotational symmetric axis of the cylinder and <⁡> represents 

dyadic mean over all particles in the suspension. In a 3D randomly oriented suspension (isotropic), 

the diagonal components of the tensor should have values of 1/3 with the off-diagonal values as 0. 

It was found that this condition was satisfied within⁡0.33 ± 0.01 for 𝜑 =0.2 and 0.3. The largest 

deviation from isotropy was observed for  𝜑 =⁡0.1 as 0.37. This is attributed to the sparsity of the 

packing and the small sample of particles. Conversely, for the preferably oriented suspension in 

Fig. 5.4, the diagonal components, 𝑆11 = 0.487 > 𝑆22 = 0.24 ≈ 𝑆33 = 0.27, indicate that the 

particle axes are not only preferentially aligned with the 𝑥-axis (flow direction), but also randomly 

oriented when projected on the 𝑦 − 𝑧 plane. 
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A total of 30 calculations were performed to cover the range of 𝑅𝑒, 𝜑,⁡and particle arrangements. 

For 𝑅𝑒 ≤ 100, the flow through the suspension remained steady, but exhibited unsteadiness for 

𝑅𝑒 ≥ 200 . Under these conditions, the simulations are run till the time-averaged drag force 

reaches a constant value, then the averaged drag force of each individual particle in the suspension 

is taken for further analysis. 

5.4. RESULTS AND DISCUSSION 

5.4.1. Pre-processing of PRS Results 

Because the suspension experiences flow entrance and exit effects, the fluid forces experienced by 

the particles at the entrance to and exit from the suspension are different than those encountered 

by particles in the core of the suspension. The drag force on individual particles in the suspension 

at 𝑅𝑒=200, 𝜑=0.3 is presented in Fig. 5. 5 versus the streamwise distance 𝑥. The calculated drag 

force on particles in the entrance and exit regions is smaller than in the center of the suspension. 

This is due to the particles experiencing a different flow and also the fact that PhysX during the 

generation of the suspension has a tendency to place particles at lower inclination angles near the 

entrance and exit. In order to eliminate these effects from the desired calculation of mean forces 

in a random suspension, only particles whose geometric centers lie between 𝑥 = 8 and 17 are 

included in the force calculations for further analysis.  
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Fig. 5. 5. Variation of drag force on particles at different x- locations. 

 

5.4.2. Analysis of Suspension Drag Force 

Based on the pre-processed drag data, ensemble mean drag force of each suspension is calculated 

and the results are presented in Fig. 5. 6 (a). The ensemble average drag force increases with 

Reynold number as well as solid fraction. A notable trend is the near-linear increase in normalized 

total drag with Reynolds number for all solid fractions. This observation is supported by the 

variation of pressure drag and viscous drag on the particles. Pressure drag exhibits a super-linear 

trend with Reynolds number and dominates the total drag as 𝑅𝑒 increases making up 83% of the 

total at 𝑅𝑒 = 300. Viscous drag, on the other hand exhibits a sub-linear increase with Reynolds 

number and increases only slightly after 𝑅𝑒 = 200.  
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Fig. 5. 6. (a) Variation of ensemble mean drag force for different Re and 𝝋. (b) Comparison of 

pressure drag (dash line) and viscous drag (dash-dot line). (Red: 𝝋 = 𝟎. 𝟏; Green: 𝝋 = 𝟎. 𝟐; 

Blue: 𝝋 = 𝟎. 𝟑) 

 

In the absence of specific correlations for suspension of particles of different non-spherical shapes 

there is a trend in the literature to use single particle non-spherical particle drag correlation 

modified for a suspension of particles (Felice, 1994). While the single particle drag correlation 

used is relatable to the non-spherical particle shape and inclination in some form [1], the 

modification for suspension is usually derived from correlations developed for spherical particle 

suspensions [31,33,86]. In this study, the accuracy of these combined correlations is evaluated 

versus the PRS drag data. For that purpose we obtain the single particle drag from the widely used 

correlation developed by Hölzer and Sommerfeld (2008) (referred to as Hölzer henceforth) and 

the suspension correlations from Di Felice (1994), Tenneti et al. (2011) and Rong et al. (2015). 

Tenneti et al. proposed a suspension drag correlation for spheres based on their PRS results. He et 

al. (2017) found that combining the Hölzer-Tenneti correlations gave reasonable predictions of 

drag in suspensions of ellipsoids with aspect ratio of 2.5. [25] performed particle resolved 

simulations for packed beds of ellipsoids in the aspect ratio range between [0.25, 4] and proposed 

a geometry-specific suspension drag correlation based on the model of Felice (1994). The different 
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drag correlations are listed in Table 5. 1. Among the variables used, 𝛾 is the sphericity, 𝛾⊥ is the 

crosswise sphericity defined in the research of Hölzer and Sommerfield. Three combinations are 

tested Hölzer-Di Felice (HF), Hölzer-Tenneti (HT) and Hölzer-Rong (HR) and the results are 

shown in Fig. 5.7 of predicted drag force versus particle inclination angle. The PRS results are 

plotted by taking the mean drag of particle in ±5° interval about a given inclination.  

 

Table 5. 1. Drag correlations in literature 

Author Drag correlation Applicability 

Hölzer and 

Sommerfeld 

(2008) 

𝑐𝐷 =
8

𝑅𝑒

1

√𝛾⊥
+
16

𝑅𝑒

1

√𝛾
+

3

√𝑅𝑒

1

𝛾
3
4

+ 0.42 × 100.4(−𝑙𝑜𝑔𝛾)
0.2 1

𝛾⊥
. 

𝛾: 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦. 

 

𝐹𝑑0 = 𝑐𝐷 ∙
1

2
𝜌𝑈∞ ∙

𝜋𝐷𝑒𝑞
2

4
 

Single particle in 

the flow field with 

arbitrary 

geometry 

 

Felice (1994) 𝐹𝑑 = 𝐹𝑑0𝜀
−𝜒⁡  (𝜀: void fraction, equals to (1 − 𝜑)), 

𝜒 = 3.7 − 0.65exp⁡[−
(1.5−𝑙𝑜𝑔𝑅𝑒)2

2
]. 

Packed beds of 

spherical particles 

validated for 

particle similar to 

sphere. 

 

Tenneti et al. 

(2011) 

𝐹(𝜑, 𝑅𝑒) =
𝐹𝑖𝑠𝑜

(1−𝜑)3
+ 𝐹𝜑(𝜑) + 𝐹𝜑,𝑅𝑒(𝜑, 𝑅𝑒), 

𝐹𝜑(𝜑) =
5.81𝜑

(1−𝜑)3
+ 0.48

𝜑1/3

(1−𝜑)4
, 

0.01 ≤ 𝑅𝑒 ≤

300, 

0.1 ≤ 𝜑 ≤ 0.5, 



119 
 

𝐹𝜑,𝑅𝑒(𝜑, 𝑅𝑒) = 𝜑3𝑅𝑒(0.95 +
0.61𝜑3

(1−𝜑)2
). 

 

Spherical particle 

suspensions. 

[25] 𝐹𝑑 = 𝐹𝑑0𝜀
−𝛽(𝜀,𝑅𝑒)−𝜆(𝛾,𝑅𝑒), 

𝛽(𝜀, 𝑅𝑒) = 2.65(𝜀 + 1) − (5.3 −

3.5𝜀)𝜀2exp⁡[−
1

2
(1.5 − log𝑅𝑒)2], 

𝜆(𝛾, 𝑅𝑒) = (1 − 𝛾){𝐵 − 𝐴 ∙ exp⁡[−0.5(3.5 −

log⁡ 𝑅𝑒)2]}, 

𝐴 = 39𝛾 − 20.6, 

𝐵 = 101.8(𝛾 − 0.81)2 + 2.4. 

Packed beds of 

ellipsoids, 

Aspect ratio ∈

[0.25, 4]. 

 

It can be observed in Fig. 5.7 that all three correlations under predict the PRS data. The relative 

deviation, which is calculated by: 

 𝑑𝑒𝑣 =
|𝐹𝐷,𝑃𝑅𝑆 − 𝐹𝐷,𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛|

𝐹𝐷,𝑃𝑅𝑆
× 100% (5.12) 

reaches more than 50% for 𝑅𝑒 = 10⁡for the HF correlation. The other two correlations, HT and 

HR, are slightly better but still exhibit significant deviation in the range from 20% to 40% for 

𝑅𝑒 = 10.⁡Using the suspension correlation of Tenneti (Tenneti et al., 2011) (HT) results in the 

largest deviation compared to the correlation of [21] (HF) and Rong et al. (2015) (HR) particularly 

at higher 𝑅𝑒 > 10. The inaccurate predictions of these models for the oblate cylindrical particle 

of this study are not due to inherent shortcomings of the suspension models but more due to the 

fact that they are applied outside of their domain of validity. For example, the Tenneti [22] 

correlation was developed for suspensions of spherical particles, and in fact it was shown by He 
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et al. (2017) that the HT combination gave reasonable predictions of the drag force in suspensions 

of ellipsoids with aspect ratio 2.5 which are closer to the spherical shape. Similarly, Sanjeevi and 

Padding (2019) while modeling drag on suspensions of spherocylinders with aspect ratio of 4, 

found that the suspension drag correlation derived for spherical particles by Tang et al. (2015) was 

sufficiently accurate for 𝑅𝑒 ≥ 100 with 𝜑 ≤ 0.3. However, as the particle shape deviates from 

that of a sphere, the applicability of spherical suspension correlations becomes progressively 

tenuous – this is in spite of having a reasonable prediction of single non-spherical particle drag.  

Fig. 5.7 shows that the correlations of both Di Felice (1994) and Rong et al. (2015) give similar 

drag force distributions with significant underestimation comparing with the PRS results. While 

this can be expected from Di Felice’s correlation which is for spherical particle suspensions, 

Rong’s correlation is expected to do better since it includes flow through suspension of 0.25 aspect 

ratio ellipsoids. However, it does not do any better than Di Felice in predicting the PRS results. A 

closer look at Rong el al.’s work reveals that their correlation was developed for packed beds. In 

the packed bed configuration, the 0.25 aspect ratio ellipsoids are preferentially oriented with their 

rotational symmetry axis parallel to gravity and the flow velocity [21], whereas the suspension in 

this work has random orientation. To investigate the influence brought by particle preferential 

orientation on the drag force, another AR0.25 cylinder suspension under solid fraction of 0.3 was 

generated with particles having a tendency of aligning their rotational symmetry axis parallel to 

the flow direction. Its normalized orientation distribution is shown in Fig. 5.4(b). The simulated 

drag force along with the correlation results are presented in Fig. 5.8. A much better agreement 

can be observed compare with the results shown in Fig. 5.7. More specifically, the drag predictions 

from the combination of Hölzer [1] and [25] (HR) show an average deviation of 36.0%, 22.3%, 

15.5% and 14.0% for 𝑅𝑒 = 10, 50, 100 and 200, respectively for the randomly oriented suspension 
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in Fig. 5.7. While for the suspension with preferential orientation the deviation is much less at 

15.0%, 8.2%, 12.5% and 9.8%.  

   

                            (a) 𝜑 = 0.1                                                      (b) 𝜑 = 0.2 

 

              (c) 𝜑 = 0.3                                

Fig. 5. 7. Comparison of drag force between the PRS results and drag correlations (red: 

𝑹𝒆=10; green: 𝑹𝒆=50; blue: 𝑹𝒆=100; grey: 𝑹𝒆=200; orange: 𝑹𝒆=300.) 
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Fig. 5. 8. Comparison of PRS drag force with drag correlations using preferentially aligned 

suspension. (same color legend as Fig. 5.7). 

 

The implication that by preferentially orienting the rotational symmetry axis in the flow direction 

for the AR0.25 cylinders reduces the drag force is counter-intuitive if one considers that this 

configuration maximizes the frontal area of the particle and that drag should increase. However, a 

closer look at the flow field in the suspension in Fig. 5.9 explains why this is the case. Fig. 5.9 

plots the 𝑥 −directional velocity for an arbitrary 𝑦 − 𝑧  slice in the random and preferential 

suspensions. It can be seen that particles in the relatively ordered packing show significant 

alignment with their rotational symmetry axis approximately parallel to the flow direction. Taking 

particle 1 to 5 as examples, they experience a normalized drag force of 113.7, 16.4, 13.8, 102.9 

and 37.0, respectively, indicating that even at similar inclination angles, particles that lie in the 

wake (2,3, and 5) of another particle (1 and 4) experience significantly smaller drag forces than 

the leading particles because of the large blocking effect. As a result, oblate particle suspensions 

that possess preference towards large inclination angles may not necessarily experience high drag 

forces as a whole.  
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          (a) Randomly oriented suspension               (b) Preferably oriented suspension  

 

Fig. 5. 9. Particle distribution and the flow velocity in the two suspensions. 

 

The trends in Fig. 5.7 and Fig. 5.8 show that the inclination angle has a large influence on the drag 

force. Conventionally, the effect of inclination angle is only included in the single particle drag 

correlation leaving the suspension correlation to scale the orientation dependent single particle 

drag by a constant factor which is only dependent on 𝑅𝑒 and 𝜑 (suspension correlation). The 

trends in Fig. 5.7 show that this may not be adequate for the oblate cylinders of AR0.25 

investigated in this study. At solid fractions 𝜑 ≤ 0.2, the deviation between the correlations and 

PRS data increases with increasing 𝜃, while at 𝜑 = 0.3, the deviations become approximately 

independent of 𝜃 . The observations imply that a constant scaling of single particle drag 

independent of orientation, as is conventional practice in suspension correlations, may not be 

sufficient to accurately capture the orientation dependent drag in suspensions of oblate-shaped 

particles. In other words, suspension correlations may need to include the effect of 𝑅𝑒, 𝜑, and 𝜃 .  
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As demonstrated in Fig. 5.7 the drag forces on the AR0.25 cylinder suspension has a strong 

dependence on 𝜃. Happel and Brenner (1983) found that within the Stokes flow regime, the drag 

coefficient of an isolated particle in the flow can be calculated using: 

 𝐶𝑑,𝜃 = 𝐶𝑑,𝜃=0° + (𝐶𝑑,𝜃=90° − 𝐶𝑑,𝜃=0°)𝑠𝑖𝑛
2⁡(𝜃) (5.13) 

Ouchene et al. (2016) found that Eq. (5.13) described the drag on isolated prolate ellipsoids with 

aspect ratios up to 32 and 𝑅𝑒 < 240 based on their PRS results. Sanjeevi and Padding (2017) 

reached the same conclusion for prolate ellipsoids up to 𝑅𝑒=2000. They also found that Eq. (5.13) 

was valid for oblate ellipsoids of AR0.25 with relative deviation less than 10%. Our previous study 

[37] found that for an isolated AR0.25 cylinder, Eq. (5.13) predicted the drag coefficient for 𝑅𝑒 ≤

50 within 10% but the deviations increased for 𝑅𝑒 ≥ 100. Sanjeevi and Padding, (2019) found 

that Eq. (5.13) was valid even for a suspension of spherocylinders with aspect ratio of 4 under 

solid fractions up to 0.5. However, there is no research in the literature that correlates the drag of 

oblate particle suspension with inclination angle. In this study, Eq. (5.13) was not able to capture 

the variation of drag on AR0.25 cylinders with inclination angle 𝜃 in the suspension. 

In light of the above observations, in this work a correlation for the AR0.25 cylindrical geometry 

as a function of 𝑅𝑒 , 𝜑 , and 𝜃 , applicable to a single isolated particle in flow as well as to 

suspensions (0 ≤ 𝜑 ≤ 0.3) is derived. Further investigation reveals that a sinusoidal variation 

with inclination angle 𝜃  can capture the variation of drag force on both single particle and 

suspensions of the AR0.25 cylinders. Notably the 𝑠𝑖𝑛(𝜃) variation closely follows the variation of 

the frontal area with 𝜃 and points to a bluff body like behavior of drag force. 

Based on these findings the drag force correlation is sought in the form:  
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 𝐹𝑑,𝜃 = 𝐹𝑑,𝜃=0° + (𝐹𝑑,𝜃=90° − 𝐹𝑑,𝜃=0°)𝑠𝑖𝑛⁡(𝜃) (5.14) 

where 𝐹𝑑,𝜃=0° and 𝐹𝑑,𝜃=90° is the drag force at inclination 𝜃 = 0° and 90°, respectively formulated 

as: 

 𝐹𝑑,𝜃=0° = (𝑎1𝑅𝑒
𝑏1 + 𝑐1(1 − 𝜑)) ∙ (1 − 𝜑)𝑑1 + 𝑒1(1 − 𝜑) (5.15) 

 𝐹𝑑,𝜃=90° = (𝑎2𝑅𝑒
𝑏2 + 𝑐2𝜑) ∙ (1 − 𝜑)𝑑2 + 𝑒2(1 − 𝜑)(𝑅𝑒 ∙ 𝜑 + 𝑓2(1 − 𝜑)) (5.16) 

 

The correlation is valid in the range 0 ≤ 𝜑 ≤ 0.3,  10 ≤ 𝑅𝑒 ≤ 300 , and 0° ≤ 𝜃 ≤ 90° . Drag 

forces for an isolated particle (𝜑 = 0), were obtained from a companion study [37]. However, to 

develop the correlation, accurate PRS values of 𝐹𝑑,𝜃=0°  and 𝐹𝑑,𝜃=90°⁡are needed. 𝐹𝑑,𝜃=0° is not 

readily available in suspension since there may not be any particles inclined exactly at 𝜃 = 0° to 

the flow in the suspension (the inclination dependent drag calculated at 𝜃 = 5° uses PRS data for 

particles between 0° < 𝜃 < 10°). The same is true for 𝐹𝑑,𝜃=90°⁡with the added challenge that in a 

random arrangement there are few particles in the range between 80° < 𝜃 < 90° (see particle 

distribution function in Fig. 5.4(a)). As a result the mean drag force plotted at 𝜃 = 85° for particles 

in the range 80° < 𝜃 < 90° in Fig. 5.7, particularly for 𝜑 ≤ 0.2, does not follow the same trend 

as for 𝜃 < 85°⁡but has a much higher value due to the small sample size. Because of these reasons, 

drag at 𝜃 = 0° and 𝜃 = 90° of the particle suspensions are extrapolated based on a least-squares 

curve fit of PRS results in the interval 𝜃 ∈ [5°, 85°]. Using this technique, the coefficients 𝑎 

through 𝑓 are listed in Table 5.2.  

Comparison of the correlation with the PRS results in Fig. 5.10 shows that the 𝑠𝑖𝑛⁡(𝜃) function 

can reasonably capture the variation of drag with respect to 𝜃 with little deviation. The mean 
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relative deviation for an isolated cylinder is 7.54% considering all Re studied. For suspensions, the 

relative deviation weighted by the theoretical particle number ratio as shown in Fig. 5.4(a) are 

5.39%, 4.53% and 2.75% for 𝜑 = 0.1, 0.2 and 0.3, respectively. The largest deviation appears at 

𝑅𝑒 = 10 for isolated particle with a value of 14%. This is because of the large range of fitted PRS 

drag values (2 – 130) and the difficulty of fitting a function with equal relative sensitivity at the 

high and low end of the range of values. As the drag at 𝑅𝑒⁡= 10 for isolated particle possesses the 

smallest values, the relative deviation becomes more significant. Except for this case, the 

deviations over all the 𝜑 and Re studied are less than 10%. 

                         

           (a) Isolated cylinder (𝜑 = 0.0)                                       (b) 𝜑 = 0.1 
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                           (c) 𝜑 = 0.2                                                      (d) 𝜑 = 0.3 

Fig. 5. 10. Comparison between PRS data and developed correlation in Eq. (14)-(16). (for 

legend see Fig. 7) 

 

Table 5. 2. Parameters for Eq. (5.15) and Eq. (5.16). 

 𝐹𝑑,𝜃=0° 𝐹𝑑,𝜃=90° 

𝑎 0.1143 0.03304 

𝑏 0.7029 1.14 

𝑐 3.347 21.41 

𝑑 -5.1 -3.028 

𝑒 -1.803 0.7951 

𝑓  3.126 

 

Eq. (5.14) – (5.16) can be readily extended to a correlation for the mean ensemble drag by 

integrating the mean drag force 𝐹𝑑,𝜃 (Eq. (5.14)) weighted by the theoretical particle fractional 

distribution given by 𝑐𝑜𝑠𝜃⁡over the interval from 0 →
𝜋

2
⁡to give 

 𝐹𝑑 = 𝐹𝑑,𝜃=0° +
1

2
(𝐹𝑑,𝜃=90° − 𝐹𝑑,𝜃=0°) (5.17) 

Comparison with the PRS results fitted with a line is presented in Fig. 5.11. Both the drag values 

and linear relationship with Re are well replicated by the correlation with a maximum relative 

deviation of 7% appearing at 𝑅𝑒 = 300 , 𝜑 = 0.1 . The mean deviation over all the cases 

investigated is 3.6%.  
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Fig. 5. 11. Ensemble mean drag force calculated using Eq. (15) – (17). (Red: 𝝋 = 𝟎. 𝟏; 

Green: 𝝋 = 𝟎. 𝟐; Blue: 𝝋 = 𝟎. 𝟑) 

 

5.4.3. Parameterizing Non-spherical Particles 

In past research, non-spherical particles have been classified using parameters such as aspect ratio 

and sphericity. Aspect ratio has mostly been used for classifying rotationally symmetric particles 

like cylinders [15,78,89] and ellipsoids [11,81]. Besides having the ability to describe particles 

from very elongated to very flat shapes, aspect ratio provides no detailed information about the 

geometry of the particle and needs an additional classifier pertaining to the type of particle like 

cylinder or ellipsoid, etc. Thus aspect ratio by itself is not a unique identifier. Sphericity, defined 

as the ratio between surface area of the volume equivalent sphere and the particle of interest, is 

usually employed for irregular shaped particles [6,90,91] and characterizes the deviation of the 

particle from the spherical shape. However, it cannot distinguish between different particle shapes. 

This has often been pointed to in the literature as a shortcoming of using sphericity in drag 

correlations for non-spherical particles. To elucidate further on this aspect, here we compare drag 



129 
 

force between a prolate ellipsoid of aspect ratio 5 with the oblate cylindrical shape of this study, 

having nearly the same sphericity of 0.735 and 0.718, respectively. The drag force, velocity and 

pressure fields are investigated for a representative case at 𝑅𝑒 = 200 and 𝜑 = 0.3 for the two 

geometries. 

Fig. 5.12 compares the drag force of individual particles (blue dots) and mean drag force within 

inclination angle range of ±5° (red dots) in the two suspensions. It is observed that in spite of the 

two shapes having the same sphericity, the drag force experienced by the AR0.25 cylinder is much 

larger than AR5 ellipsoids at the same inclination over the whole range of angles. Not only is the 

mean drag force higher, but the relative variation or scatter from the mean is also much larger for 

the cylinder AR0.25 suspension. 

   

     (a) Drag in AR0.25 cylinder suspension        (b) Drag in AR5 ellipsoid suspension  

Fig. 5. 12. Comparison of the particle drag force in AR5 ellipsoid and AR0.25 cylinder 

suspensions at 𝑹𝒆=200, 𝝋=0.3 

 

The larger variation in drag force can be understood by investigating the fluctuating velocity and 

pressure fields in the two suspensions. The normalized fluctuating velocity field (𝑢′) is computed 
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by subtracting the volume-averaged mean interstitial velocity (𝑢𝑚) within 5 ≤ 𝑥 ≤ 20 from the 

total velocity (𝑢) as  

 𝑢′ =
𝑢 − 𝑢𝑚
𝑢𝑚

 (5.18) 

The Probability Density Function (PDF) of 𝑢′⁡is plotted in Fig. 5.13. The range of 𝑢′ for both 

geometries ranges from -1.5 to 1.5. However, there are considerable differences in the respective 

PDF distributions. The occurrence of velocity in the range from -0.5 to 0.5 is much higher for the 

AR5 ellipsoids indicating a flow with smaller excursions around the mean value, whereas the 

occurrence of velocity outside of this range is more probable for the AR0.25 cylinders indicating 

more prevalent flow acceleration and deceleration. From the geometry perspective these results 

are consistent with the expectation that the AR0.25 cylinders will cause more abrupt blockages 

with stronger accelerations around the particle and stronger wakes.  

 

     

                         (a) AR5 ellipsoid                                         (b) AR0.25 cylinder 

Fig. 5. 13. PDF of 𝒖′of the flow in AR5 ellipsoid and AR0.25 cylinder suspensions. 𝑹𝒆 =
𝟐𝟎𝟎 and 𝝋 = 𝟎. 𝟑. 
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Pressure fluctuations follow the same trends as the velocity fluctuations about a mean value. The 

pressure fluctuations are calculated by subtracting the mean pressure at a given x-location to 

account for the near-linear drop in mean pressure from the local pressure as  

 𝑝′ = 𝑝 − 𝑝𝑥,𝑚 (5.19) 

 Note that pressure is normalized by 𝜌∗𝑈∞
∗2. The PDF of 𝑝′  for the two particle suspensions are 

shown in Fig. 5.14. The general PDF distribution between the two geometries is similar to that 

observed for 𝑢′.⁡The AR5 particle suspension has a narrower spread with the largest probability of 

occurrence between -1 and 0 (mean value), whereas the probability of fluctuations outside this 

range are higher for the AR0.25 cylinders. This is consistent with the observations made earlier 

about the AR0.25 cylinders creating much stronger wakes with lower velocities and pressures 

more dominant in the flow through the suspension.  

This section categorically shows that the use of sphericity to differentiate particle geometries while 

developing drag models is insufficient. Therefore, additional parameters characterizing the particle 

shape and orientation with respect to flow, such as those used by Hölzer and Sommerfeld (2008) 

who incorporated lengthwise and crosswise sphericity are necessary to formulate fluid forces. 

 

                          (a) AR5 ellipsoid                                        (b) AR0.25 cylinder 
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Fig. 5. 14. PDF of the pressure fluctuation in AR5 ellipsoid and AR0.25 cylinder 

suspensions. 𝑹𝒆 = 𝟐𝟎𝟎 and 𝝋 = 𝟎. 𝟑. 

 

5.4.4. Analysis of Lift, Lateral Forces and Torque 

As demonstrated in previous research [28,39], both fluid lift and pitching torque play an important 

role in the momentum transfer between the fluid and the particle phase for prolate ellipsoidal 

particles. To investigate these effects on AR0.25 cylinders in suspension, both lift and lateral force 

on each individual particle in the suspension defined in the local-to-particle coordinate system (see 

Fig. 5.1) are calculated and results under two representative conditions are presented in Fig. 5.15. 

Each blue dot in the figure represents a particle in the suspension while the red dots represent the 

mean for particles within ∆𝜃 ± 5° of 𝜃 . Individual particles exhibit strong positive and negative 

variations in lift and lateral forces. While the inclination dependent mean lift varies substantially 

with inclination angle, the mean lateral force is close to zero as it should be in a random 

arrangement.  

  

                (a) Lift at 𝑅𝑒 = 10, φ=0.1                        (b) Lateral force at 𝑅𝑒 = 10, φ=0.1 
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             (c) Lift at 𝑅𝑒 = 300, φ=0.3                       (d) Lateral force at 𝑅𝑒 = 300, φ=0.3 

Fig. 5. 15. Variation of lift and lateral force on individual AR0.25 cylinders at different 𝑹𝒆 

and 𝝋. 

 

Fig. 5.16 shows the variation of mean normalized lift force as a function of inclination angle for 

all the cases calculated. It is noted that the lift force increases with Reynolds number and solid 

fraction. Interestingly, the maximum lift force is experienced at 𝜃 = 35°⁡at 𝜑 = 0.1⁡which shifts 

to 𝜃 = 45°⁡at 𝜑 = 0.3. This trend is in contrast to that found by Cao and Tafti (2018) for a single 

isolated cylinder. In that study, it was found that at 𝑅𝑒 = 10 the lift force was symmetric about 

𝜃 = 45°⁡where it reached a peak value. At higher Reynolds numbers up to 300, the peak in lift was 

still observed at 𝜃 = 45°⁡but the distribution of lift became somewhat asymmetrical. This was 

attributed to the respective non-symmetrical contributions of shear and pressure forces to lift. 

However, in suspension the distribution of lift is far from a symmetric distribution, much more so 

than a single particle. Even when the peak appears at 𝜃 = 45°⁡, there is a sharper drop-off in lift 

for 𝜃 > 45° for all Reynolds numbers. To investigate this trend further, representative pressure 

induced and shear induced lift forces are plotted in Fig. 5.17 against inclination angle. The plot 

reveals that the mean lift generated by shear forces is always negative over all inclination angles 

and the lift force is dominated by pressure forces which are asymmetric about the peak value. 
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Surveying the full range of 𝑅𝑒  and 𝜑  it is found that at 𝑅𝑒 = 10, the magnitude of pressure 

contribution to peak lift is about 3 to 4 times the magnitude of peak shear induced negative lift at 

𝜃 = 35°.⁡This increases to 23, 12 and 10 times at 𝑅𝑒 = 300 for 𝜑 = 0.1, 0.2, and 0.3, respectively. 

Notably, the negative contribution of shear to peak lift increases as the solid fraction increases due 

to the larger flow accelerations/decelerations in the flow field at higher solid fractions that induce 

larger velocity gradients. 

 

   

                              (a) 𝜑=0.1                                                        (b) 𝜑=0.2 

 

                              (c) 𝜑=0.3 

Fig. 5. 16. Variation of lift force on the AR0.25 cylinders under different 𝑹𝒆 and 𝝋 
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                       (a) 𝑅𝑒 = 10, 𝜑=0.1                                        (b) 𝑅𝑒 = 300, 𝜑=0.3 

Fig. 5. 17. Variation of pressure and shear contribution to lift force on AR0.25 cylinders. 

 

In most all studies which model particles as point masses, only drag force is considered and all 

other directional fluid forces are neglected. To investigate the significance of lift force under 

different conditions, the ratio calculated using: 

 𝑟 =
|𝐹𝑙(𝜃)|

𝐹𝑑(𝜃)
 (5.20) 

with respect to particle inclination angle is presented in Fig. 5.18. The results indicate that as 𝑅𝑒 

increases, effect of 𝐹𝑙 becomes increasingly prominent as it assumes values from up to 20% of the 

drag at 𝑅𝑒=10 to 60% of the drag at 𝑅𝑒=300. This implies that inclusion of lift forces will result 

in more vigorous motion of the particle resulting in stronger mixing in the system. The effect of 

solid fraction on the lift-to-drag ratio is weak – as the solid fraction increases, there is a slight 

decrease in the ratio. Finally, considering the effect of particle inclination, moderate increase of 

the ratio can be observed reaching a maximum near 35°  followed by an approximate linear 

decrease as θ becomes larger than 35°, finally reducing to near 0.1 among all the 𝑅𝑒  and φ 

investigated. To summarize, while modeling the momentum exchange between the flow and the 
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particles in suspension, lift force has a non-negligible effect especially at relatively high Reynolds 

numbers and low particle inclination angles.  

  

                     (a) Results at 𝜑=0.1                                         (b) Results at 𝜑=0.2 

 

(c) Results at 𝜑=0.3  

Fig. 5. 18. Ratio of lift-to-drag force ratio at different 𝑹𝒆 and 𝝋 

 

In dense fluid particulate systems, in current practice, angular momentum transfer is exclusively 

modeled through particle-particle collisional dynamics. While this is a good approximation for 

spherical particles, fluid moments or torques imparted by fluid forces could potentially create 

comparable moments in non-spherical systems. To investigate this aspect, normalized fluid torques 

along the three principle axes of the local coordinate system (Fig. 5.1) are calculated and shown 

in Fig. 5.19. Both 𝑇𝑥′ and 𝑇𝑦′ have near-zero mean values resulting from the random distribution 
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of the particle orientations. They both exhibit opposite trends with respect to the inclination angle. 

𝑇𝑥′ has maximum variation at low angles whereas the variations in 𝑇𝑦′ increases with inclination 

angle. The mean pitching torque, 𝑇𝑧′ has a non-zero negative mean value with respect to inclination 

angle and exhibits the same trend as the lift force. It varies significantly with respect to 𝜃, 𝜑 and 

𝑅𝑒 and is analyzed further.  

  

                     (a) 𝑇𝑥′ at 𝑅𝑒=10, 𝜑=0.1                                (b) 𝑇𝑥′ at 𝑅𝑒=300, 𝜑=0.3 

  

                     (c) 𝑇𝑦′ at 𝑅𝑒=10, 𝜑=0.1                             (d) 𝑇𝑦′ at 𝑅𝑒=300, 𝜑=0.3 
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                    (e) 𝑇𝑧′ at 𝑅𝑒=10, 𝜑=0.1                               (f) 𝑇𝑧′ at 𝑅𝑒=300, 𝜑=0.3 

Fig. 5. 19. Variation of directional torque with inclination angle. 

 

The results of mean 𝑇𝑧′ versus inclination angle are shown in Fig. 5.20 for all the cases. The results 

show that similar to both lift and drag, pitching torque increases with respect to 𝑅𝑒 and 𝜑 and it 

follows trends similar to that followed by the lift force. Similar to the observation for lift force, the 

maximum torque appears near 𝜃 = 35° at 𝜑 = 0.1, and shows a tendency of shifting to larger 

inclination angles as 𝜑 increases, peaking at 𝜃 = 45° at 𝜑 = 0.3.  

  

                      (a) Results at 𝜑=0.1                                        (b) Results at 𝜑=0.2 
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(c) Results at 𝜑=0.3  

Fig. 5. 20. Variation of pitching torque at different 𝑹𝒆 and 𝝋 

 

In order to estimate the relative importance of fluid torque in relation to collisional torque, the 

collisional torque is estimated using Hertz theory (Stronge, 2000) at the elastic limit. In the absence 

of a known collision force, the normal collision force of a sphere of diameter 𝑑𝑝
∗ ⁡colliding with a 

flat surface is estimated by the yield stress acting over a contact area just before it enters the plastic 

regime. To mimic the maximum elastic torque produced in the AR0.25 cylinder geometer, the 

normal force is applied at a radius 𝑟∗ = ⁡𝑑𝑝
∗/2 which is the largest moment arm about the particle 

local 𝑧 −axis. The calculated torque is further normalized using Eq. (5.9) and the ratio between 

maximum fluid torque and collisional torque for 500⁡𝜇𝑚 ≤ 𝑑𝑝
∗ ≤ 5000⁡𝜇𝑚 at 𝑅𝑒 = 300, 𝜑 =

0.3 shown in Fig. 5.20(c) is presented in Fig. 5.21. Three bed materials of interest are tested, soft 

wood (white pine), hard wood (white oak), and sand.   5.3 gives the relevant properties. 

 Table 5. 3 Mechanical properties of the three materials 

 
White Pine [93–

95]  

White Oak 

[93,95] 
Sand [96] 

Poisson Ratio 0.33 0.618 0.3 
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Young’s Modulus (𝑀𝑃𝑎) 8500 12300 20000 

Yield Stress (𝑀𝑃𝑎) 3.5 9.1 400 

 

 

Fig. 5. 21. Ratio between fluid torque and collisional torque for different materials 

 

It is found that for sand particles, the collision torque is between 5 to 6 orders-of-magnitude larger 

than the fluid torque, whereas for soft and hard wood the fluid torque is competitive with collision 

torque and even up to 10 times larger for soft wood at 𝑑𝑝
∗ = 500⁡𝜇𝑚. Generalization of the trends 

in Fig 5. 21 lead to the conclusion that fluid torque is competitive with collision torque for small 

diameter, lower density particles colliding at low velocities. Therefore, although neglecting fluid 

torque may be justifiable in many systems, it cannot be neglected in all non-spherical systems. 

However, we note that not all collisions will reach the elastic limit and while collisional torque 

only acts for a very short time interval, fluid torque is persistent over the flight of the particle. Fig. 

5.21 should be viewed with these assumptions in mind. Nevertheless, it does give an order of 

magnitude estimate of the relative importance. 
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5.5. CONCLUSIONS 

Fluid forces in a suspension of oblate cylinder-like particles of AR0.25 is investigated in the range 

10 ≤ 𝑅𝑒 ≤ 300  and 0.1 ≤ 𝜑 ≤ 0.3  using particle resolved simulations. The following major 

conclusions are made.  

1. Existing single particle drag correlation (Hölzer and Sommerfeld, 2008) combined with 

suspension correlations for spherical (Tenneti et al., 2011) as well as AR0.25 ellipsoidal 

particles (Rong et al., 2015) under predict the PRS drag force between 20% to 40% over 

the full range of 𝑅𝑒 and 𝜑 investigated. It is shown that the Rong et al. suspension 

correlation, developed for a fixed bed of particles with preferential orientation, agrees 

much better with PRS done in a suspension of similar preferential orientation. Unlike 

prolate spheroids, preferential orientation near 90°of the oblate cylindrical geometry 

results in lower drag force because of large wake sheltering effects in the suspension. 

2. A sinusoidal function 𝐹𝑑,𝜃 = 𝐹𝑑,𝜃=0° + (𝐹𝑑,𝜃=90° − 𝐹𝑑,𝜃=0°)𝑠𝑖𝑛⁡(𝜃)⁡was found to capture 

the variation of normalized drag with respect to particle inclination angle over the range 

10 ≤ 𝑅𝑒 ≤ 300 and 0 ≤ 𝜑 ≤ 0.3. It is also shown that the mean ensemble normalized 

drag force can be expressed as a linear function given by 𝐹𝑑 = 𝐹𝑑,𝜃=0° +
1

2
(𝐹𝑑,𝜃=90° −

𝐹𝑑,𝜃=0°). Therefore, only two values of drag force, at 𝜃 = 0° and 𝜃 = 90° are needed at a 

given (𝑅𝑒, 𝜑) to define the ensemble mean and inclination dependent drag. 

3. By comparing the drag force and the statistical nature of flow and pressure field of oblate 

AR0.25 cylinder geometry of the current work to a suspension of prolate ellipsoids, it is 

shown that in spite of having nearly the same sphericity, considerable differences exist in 

the flow structure and drag force between the two. Thus it is concluded that sphericity by 
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itself is not a good indicator of drag force on non-spherical particles and its use in drag 

correlations may not be correct.  

4. Comparison of fluid forces and torque on the AR0.25 cylinders in different directions 

indicates that lift and pitching torque are the most prominent in addition to drag force. 

The lift force is 20% of the drag force at 𝑅𝑒=10 and reaches up to 80% of the drag force 

at 𝑅𝑒=300 under inclination angle less than 35. Pressure contribution to lift force 

dominates even at 𝑅𝑒 = 10. Unlike the lift force on prolate particle suspensions that can 

be scaled using a 𝑠𝑖𝑛⁡(𝜃) ∙ 𝑐𝑜𝑠⁡(𝜃) distribution, the lift force in the current study exhibits 

asymmetries about its peak value and drops off faster as 𝜃 increases beyond the peak 

location. It is shown that the pitching torque follows the same trend with inclination angle 

as lift force. Comparing the pitching fluid torque to collision torque in an elastic collision 

shows that as the particle equivalent diameter, density, and collisional velocity decrease 

fluid torque can be of the same order of magnitude as collisional torque and cannot be 

summarily neglected. 

5.6. ACKNOWLEDGEMENTS 

The authors would like to acknowledge the computational resources provided by Advanced 

Computational Research (ARC) at Virginia Tech. 

 

 

 

 

 



143 
 

References 

 

[1] Hölzer, A., and Sommerfeld, M., 2008, “New Simple Correlation Formula for the Drag 

Coefficient of Non-Spherical Particles,” Powder Technol., 184(3), pp. 361–365. 

[2] Roos, F. W., and Willmarth, W. W., 1971, “Some Experimental Results on Sphere and Disk 

Drag,” AIAA J., 9(2), pp. 285–291. 

[3] Bailey, A. B., and Hiatt, J., 1971, “Free-Flight Measurements of Sphere Drag at Subsonic, 

Transonic, Supersonic, and Hypersonic Speeds for Continuum, Transition, and near-Free-

Molecular Flow Conditions.” 

[4] Achenbach, E., 1972, “Experiments on the Flow Past Spheres at Very High Reynolds 

Numbers,” 54, pp. 565–575. 

[5] Clift, R., Grace, J.R., Weber, M. E., 1978, “Bubbles, Drops and Particles,” J. Fluid Mech., 

94(04), p. 795. 

[6] HAIDER, A., and LEVENSPIEL, O., 1989, “Drag Coefficient and Terminal Velocity of 

Spherical and Nonspherical Particles,” 58, pp. 63–70. 

[7] Brown, P. . P., and Lawler, D. F., 2003, “Sphere Drag and Settling Velocity Revisited,” J. 

Environ. Eng., 129(March), pp. 222–231. 

[8] Turton, R., and Levenspiel, O., 1986, “A Short Note on the Drag Correlation for Spheres,” 

Powder Technol., 47, pp. 83–86. 

[9] Zastawny, M., Mallouppas, G., Zhao, F., and van Wachem, B., 2012, “Derivation of Drag 

and Lift Force and Torque Coefficients for Non-Spherical Particles in Flows,” Int. J. 

Multiph. Flow, 39, pp. 227–239. 

[10] Kishore, N., and Gu, S., 2011, “Effect of Blockage on Heat Transfer Phenomena of 

Spheroid Particles at Moderate Reynolds and Prandtl Numbers,” Chem. Eng. Technol., 

34(9), pp. 1551–1558. 



144 
 

[11] Ouchene, R., Khalij, M., Arcen, B., and Tanière, A., 2016, “A New Set of Correlations of 

Drag, Lift and Torque Coefficients for Non-Spherical Particles and Large Reynolds 

Numbers,” Powder Technol., 303, pp. 33–43. 

[12] Ouchene, R., Khalij, M., Tanière, A., and Arcen, B., 2015, “Drag, Lift and Torque 

Coefficients for Ellipsoidal Particles: From Low to Moderate Particle Reynolds Numbers,” 

Comput. Fluids, 113, pp. 53–64. 

[13] Shenoy,  a. R., and Kleinstreuer, C., 2008, “Flow over a Thin Circular Disk at Low to 

Moderate Reynolds Numbers,” J. Fluid Mech., 605(2008), pp. 253–262. 

[14] Yang, J., Liu, M., Wu, G., Liu, Q., and Zhang, X., 2015, “Low-Frequency Characteristics 

in the Wake of a Circular Disk,” Phys. Fluids, 27(6). 

[15] Chrust, M., Dauteuille, C., Bobinski, T., Rokicki, J., Goujon-Durand, S., Wesfreid, J. E., 

Bouchet, G., and Dušek, J., 2015, “Effect of Inclination on the Transition Scenario in the 

Wake of Fixed Disks and Flat Cylinders,” J. Fluid Mech., 770(2015), pp. 189–209. 

[16] Saha, A. K., 2004, “Three-Dimensional Numerical Simulations of the Transition of Flow 

Past a Cube,” Phys. Fluids, 16(5), pp. 1630–1646. 

[17] Saha, A. K., 2006, “Three-Dimensional Numerical Study of Flow and Heat Transfer from 

a Cube Placed in a Uniform Flow,” Int. J. Heat Fluid Flow, 27(1), pp. 80–94. 

[18] Ergun, S., 1952, “Fluid Flow through Packed Columns,” Chem. Eng. Prog., 48, pp. 89–94. 

[19] Wen, C., and Yu, Y., 1962, “Mechanics of Fluidization,” Chem Eng Prog Symp, 62, pp. 

100–111. 

[20] Gidaspow, D., 1986, “Hydrodynamics of Fiuidizatlon and Heat Transfer: Supercomputer 

Modeling,” Screen, 39(1), pp. 1–23. 

[21] Felice, R. D. I., 1994, “THE VOIDAGE FUNCTION FOR FLUID-PARTICLE 

INTERACTION SYSTEMS,” Int. J. Multiph. Flow, 20(I), pp. 153–159. 

[22] Tenneti, S., Garg, R., and Subramaniam, S., 2011, “Drag Law for Monodisperse Gas-Solid 

Systems Using Particle-Resolved Direct Numerical Simulation of Flow Past Fixed 



145 
 

Assemblies of Spheres,” Int. J. Multiph. Flow, 37(9), pp. 1072–1092. 

[23] Hill, R. J., Koch, D. L., and Ladd, A. J. C., 2001, “The First Effects of Fluid Inertia on 

Flows in Ordered and Random Arrays of Spheres,” J. Fluid Mech., 448(2001), pp. 243–

278. 

[24] Rong, L. W., Dong, K. J., and Yu, A. B., 2013, “Lattice-Boltzmann Simulation of Fluid 

Flow through Packed Beds of Uniform Spheres: Effect of Porosity,” Chem. Eng. Sci., 99, 

pp. 44–58. 

[25] Rong, L. W., Zhou, Z. Y., and Yu, A. B., 2015, “Lattice-Boltzmann Simulation of Fluid 

Flow through Packed Beds of Uniform Ellipsoids,” Powder Technol., 285, pp. 146–156. 

[26] Chen, Y., and Müller, C. R., 2018, “Development of a Drag Force Correlation for 

Assemblies of Cubic Particles : The Effect of Solid Volume Fraction and Reynolds 

Number,” Chem. Eng. Sci., 192, pp. 1157–1166. 

[27] He, L., Tafti, D. K., and Nagendra, K., 2017, “Evaluation of Drag Correlations Using 

Particle Resolved Simulations of Spheres and Ellipsoids in Assembly,” Powder Technol., 

313, pp. 332–343. 

[28] He, L., and Tafti, D., 2018, “Variation of Drag, Lift and Torque in a Suspension of 

Ellipsoidal Particles,” Powder Technol., 335, pp. 409–426. 

[29] Ma, H., Xu, L., and Zhao, Y., 2016, “CFD-DEM Simulation of Fluidization of Rod-like 

Particles in a Fluidized Bed,” Powder Technol. 

[30] Ma, H., Zhao, Y., and Cheng, Y., 2019, “CFD-DEM Modeling of Rod-like Particles in a 

Fluidized Bed with Complex Geometry,” Powder Technol., 344, pp. 673–683. 

[31] Ma, H., and Zhao, Y., 2018, “Investigating the Fluidization of Disk-like Particles in a 

Fluidized Bed Using CFD-DEM Simulation,” Adv. Powder Technol., 29(10), pp. 2380–

2393. 

[32] Zhou, Z. Y., Pinson, D., Zou, R. P., and Yu, A. ., 2009, “CFD-DEM SIMULATION OF 

GAS FLUIDIZATION OF ELLIPSOIDAL PARTICLES,” CFD-DEM SIMULATION OF 



146 
 

GAS FLUIDIZATION OF ELLIPSOIDAL PARTICLES, pp. 1–6. 

[33] Vollmari, K., Jasevičius, R., and Kruggel-Emden, H., 2016, “Experimental and Numerical 

Study of Fluidization and Pressure Drop of Spherical and Non-Spherical Particles in a 

Model Scale Fluidized Bed,” Powder Technol., 291, pp. 506–521. 

[34] Tafti, D. K. D. K., 2001, “GenIDLEST: A Scalable Parallel Computational Tool for 

Simulating Complex Turbulent Flows,” ASME-PUBLICATIONS-FED, pp. 347–356. 

[35] Tafti, D. K., 2010, “Time-Accurate Techniques for Turbulent Heat Transfer Analysis in 

Complex Geometries,” Comput. fluid Dyn. heat Transf., 41, pp. 217–264. 

[36] Nagendra, K., Tafti, D. K., and Viswanath, K., 2014, “A New Approach for Conjugate Heat 

Transfer Problems Using Immersed Boundary Method for Curvilinear Grid Based Solvers,” 

J. Comput. Phys., 267, pp. 225–246. 

[37] Cao, Z., and Tafti, D. K., 2018, “Investigation of Drag, Lift and Torque for Fluid Flow Past 

a Low Aspect Ratio (1:4) Cylinder,” Comput. Fluids, 177, pp. 123–135. 

[38] Nvidia, “NVIDIA PhysX SDK 3.3.4 Documentation.” 

[39] Sanjeevi, S. K. P., and Padding, J. T., 2019, “Hydrodynamic Forces on Assemblies of Non-

Spherical Particles: Orientation and Voidage Effects.” 

[40] Zhou, Z. Y., Pinson, D., Zou, R. P., and Yu, A. B., 2011, “Discrete Particle Simulation of 

Gas Fluidization of Ellipsoidal Particles,” Chem. Eng. Sci., 66(23), pp. 6128–6145. 

[41] Vollmari, K., Oschmann, T., Wirtz, S., and Kruggel-Emden, H., 2015, “Pressure Drop 

Investigations in Packings of Arbitrary Shaped Particles,” Powder Technol., 271, pp. 109–

124. 

[42] Arcen, B., Ouchene, R., Khalij, M., and Tanière, A., 2017, “Prolate Spheroidal Particles’ 

Behavior in a Vertical Wall-Bounded Turbulent Flow,” Phys. Fluids, 29(9). 

[43] Schiller, L., and Neumann, A., 1933, “Fundamental Calculations in Gravitational 

Processing,” Zeitschrift Des Vereines Dtsch. Ingenieure, 77, pp. 318–320. 



147 
 

[44] Brown, P. P. . P. P. . P., and Lawler, D. F., 2003, “Sphere Drag and Settling Velocity 

Revisited,” J. Environ. Eng., 129(3), pp. 222–231. 

[45] Carranza, F., and Zhang, Y., 2017, “Study of Drag and Orientation of Regular Particles 

Using Stereo Vision , Schlieren Photography and Digital Image Processing,” Powder 

Technol., 311, pp. 185–199. 

[46] Bagheri, G., and Bonadonna, C., 2016, “On the Drag of Freely Falling Non-Spherical 

Particles,” Powder Technol., 301, pp. 526–544. 

[47] Buchalter, B. J., and Bradley, R. M., 1994, “Orientational Order in Amorphous Packings of 

Ellipsoids,” Epl, 26(3), pp. 159–164. 

[48] Gong, J., and Liu, J., 2017, “Effect of Aspect Ratio on Triaxial Compression of Multi-

Sphere Ellipsoid Assemblies Simulated Using a Discrete Element Method,” Particuology, 

32, pp. 49–62. 

[49] Gan, J., and Yu, A., 2019, “DEM Study on the Packing Density and Randomness for 

Packing of Ellipsoids,” Powder Technol., pp. 12–18. 

[50] Woodcock, N. H., and Naylor, M. A., 1983, “Randomness Testing in Three-Dimensional 

Orientation Data,” J. Struct. Geol., 5(5), pp. 539–548. 

[51] Bezrukov, A., and Stoyan, D., 2007, “Simulation and Statistical Analysis of Random 

Packings of Ellipsoids,” Part. Part. Syst. Charact., 23(5), pp. 388–398. 

[52] Stoyan, D., and Stoyan, H., 1994, “Fractals, Random Shapes, and Point Fields: Methods of 

Geometrical Statistics,” Wiley. 

[53] He, L., and Tafti, D. K., 2017, “Heat Transfer in an Assembly of Ellipsoidal Particles at 

Low to Moderate Reynolds Numbers,” Int. J. Heat Mass Transf., 114, pp. 324–336. 

[54] Tenneti, S., Sun, B., Garg, R., and Subramaniam, S., 2013, “Role of Fluid Heating in Dense 

Gas-Solid Flow as Revealed by Particle-Resolved Direct Numerical Simulation,” Int. J. 

Heat Mass Transf., 58(1–2), pp. 471–479. 

[55] Gunn, D. J., 1978, “Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds,” Int. 



148 
 

J. Heat Mass Transf., 21(4), pp. 467–476. 

[56] Sun, B., Tenneti, S., and Subramaniam, S., 2015, “Modeling Average Gas-Solid Heat 

Transfer Using Particle-Resolved Direct Numerical Simulation,” Int. J. Heat Mass Transf., 

86, pp. 898–913. 

[57] Tavassoli, H., Kriebitzsch, S. H. L., van der Hoef, M. A., Peters, E. A. J. F., and Kuipers, J. 

A. M., 2013, “Direct Numerical Simulation of Particulate Flow with Heat Transfer,” Int. J. 

Multiph. Flow, 57, pp. 29–37. 

[58] Singhal, A., Cloete, S., Radl, S., Quinta-Ferreira, R., and Amini, S., 2017, “Heat Transfer 

to a Gas from Densely Packed Beds of Monodisperse Spherical Particles,” Chem. Eng. J., 

314, pp. 27–37. 

[59] Singhal, A., Cloete, S., Radl, S., Quinta-Ferreira, R., and Amini, S., 2017, “Heat Transfer 

to a Gas from Densely Packed Beds of Cylindrical Particles,” Chem. Eng. Sci., 172, pp. 1–

12. 

[60] Tavassoli, H., Peters, E. A. J. F. J. F., and Kuipers, J. A. M. M., 2015, “Direct Numerical 

Simulation of Fluid-Particle Heat Transfer in Fixed Random Arrays of Non-Spherical 

Particles,” Chem. Eng. Sci., 129, pp. 42–48. 

[61] Chen, Y., and Müller, C. R., 2019, “Lattice Boltzmann Simulation of Gas-Solid Heat 

Transfer in Random Assemblies of Spheres: The Effect of Solids Volume Fraction on the 

Average Nusselt Number for Re ≤ 100,” Chem. Eng. J., 361(February 2018), pp. 1392–

1399. 

[62] Chen, Y., and Müller, C. R., 2020, “Gas-Solid Heat Transfer in Assemblies of Cubes for 

ReV ≤ 100,” Chem. Eng. Sci., 216, p. 115478. 

[63] Link, J. M., Cuypers, L. A., Deen, N. G., and Kuipers, J. A. M., 2005, “Flow Regimes in a 

Spout-Fluid Bed: A Combined Experimental and Simulation Study,” Chem. Eng. Sci., 

60(13), pp. 3425–3442. 

[64] Deen, N. G., Kriebitzsch, S. H. L., van der Hoef, M. A., and Kuipers, J. A. M., 2012, “Direct 

Numerical Simulation of Flow and Heat Transfer in Dense Fluid-Particle Systems,” Chem. 



149 
 

Eng. Sci., 81, pp. 329–344. 

[65] Jackson, R., 1997, “Locally Averaged Equations of Motion for a Mixture of Identical 

Spherical Particles and a Newtonian Fluid,” Chem. Eng. Sci., 52(15), pp. 2457–2469. 

[66] Lu, J., Peters, E. A. J. F., and Kuipers, J. A. M., 2019, “Direct Numerical Simulation of 

Fluid Flow and Dependently Coupled Heat and Mass Transfer in Fluid-Particle Systems,” 

Chem. Eng. Sci., 204, pp. 203–219. 

[67] Kravets, B., and Kruggel-Emden, H., 2017, “Investigation of Local Heat Transfer in 

Random Particle Packings by a Fully Resolved LBM-Approach,” Powder Technol., 318, 

pp. 293–305. 

[68] Kravets, B., Rosemann, T., Reinecke, S. R., and Kruggel-Emden, H., 2019, “A New Drag 

Force and Heat Transfer Correlation Derived from Direct Numerical LBM-Simulations of 

Flown through Particle Packings,” Powder Technol., 345, pp. 438–456. 

[69] Wakao, N., Kaguei, S., and Funazkri, T., 1979, “Effect of Fluid Dispersion Coefficients on 

Particle-to-Fluid Heat Transfer Coefficients in Packed Beds: Correlation of Nusselt 

Numbers.,” KGK Kautschuk Gummi Kunststoffe, 34(3)(1–2), pp. 325–336. 

[70] Cao, Z., Tafti, D. K., and Shahnam, M., 2020, “Development of Drag Correlation for 

Suspensions of Ellipsoidal Particles,” Powder Technol., 369, pp. 298–310. 

[71] Cao, Z., and Tafti, D. K. K., 2020, “Fluid Forces and Torques in Suspensions of Oblate 

Cylinders with Aspect Ratio 1:4,” Int. J. Multiph. Flow, 131, p. 103394. 

[72] Wittig, K., Richter, A., and Golia, A., 2014, “CD and Nu Closure Relations for Spherical 

and Nonspherical Particles,” Gasif. Process. Model. Simul., pp. 73–104. 

[73] Richter, A., and Nikrityuk, P. A., 2013, “New Correlations for Heat and Fluid Flow Past 

Ellipsoidal and Cubic Particles at Different Angles of Attack,” Powder Technol., 249, pp. 

463–474. 

[74] Ranz, W. E., and Marshall, W. R., 1952, “Evaporation from Drops - Part 1,” Chem. Eng. 

Prog., 48, pp. 141–148. 



150 
 

[75] Zhu, H. P., Zhou, Z. Y., Yang, R. Y., and Yu, A. B., 2007, “Discrete Particle Simulation of 

Particulate Systems: Theoretical Developments,” Chem. Eng. Sci., 62(13), pp. 3378–3396. 

[76] Zhu, H. P., Zhou, Z. Y., Yang, R. Y., and Yu, A. B., 2008, “Discrete Particle Simulation of 

Particulate Systems: A Review of Major Applications and Findings,” Chem. Eng. Sci., 

63(23), pp. 5728–5770. 

[77] Flemmer, R. L. C., and Banks, C. L., 1986, “On the Drag Coefficient of a Sphere,” Powder 

Technol., 48(3), pp. 217–221. 

[78] Vakil, A., and Green, S. I., 2009, “Drag and Lift Coefficients of Inclined Finite Circular 

Cylinders at Moderate Reynolds Numbers,” Comput. Fluids, 38(9), pp. 1771–1781. 

[79] Militzer, J., Kan, J. M., Hamdullahpur, F., Amyotte, P. R., and Al Taweel, A. M., 1989, 

“Drag Coefficient for Axisymmetric Flow around Individual Spheroidal Particles,” Powder 

Technol., 57(3), pp. 193–195. 

[80] Unnikrishnan, A., and Chhabra, R. P., 1991, “An Experimental Study of Motion of 

Cylinders in Newtonian Fluids: Wall Effects and Drag Coefficient,” Chem. Eng. Process. 

Process Intensif., 30(1985), pp. 61–67. 

[81] Ke, C., Shu, S., Zhang, H., Yuan, H., and Yang, D., 2018, “On the Drag Coefficient and 

Averaged Nusselt Number of an Ellipsoidal Particle in a Fluid,” Powder Technol., 325, pp. 

134–144. 

[82] Eshghinejadfard, A., Hosseini, S. A., and Thévenin, D., 2019, “Effect of Particle Density in 

Turbulent Channel Flows with Resolved Oblate Spheroids,” Comput. Fluids, 184, pp. 29–

39. 

[83] Fonseca, F., and Herrmann, H. J., 2004, “Sedimentation of Oblate Ellipsoids at Low and 

Moderate Reynolds Numbers,” Phys. A Stat. Mech. its Appl., 342(3–4), pp. 447–461. 

[84] Jieqing Gan, Zongyan Zhou,  and A. Y., 2016, “CFD–DEM Modeling of Gas Fluidization 

of Fine Ellipsoidal Particles,” VTT Publ., 62(504), pp. 3–194. 

[85] Shrestha, S., Kuang, S., Yu, A., and Zhou, Z., 2019, “Bubble Dynamics in Bubbling 



151 
 

Fluidized Beds of Ellipsoidal Particles,” AIChE J., 65(11), pp. 1–17. 

[86] Gan, J., Zhou, Z., and Yu, A., 2016, “Particle Scale Study of Heat Transfer in Packed and 

Fluidized Beds of Ellipsoidal Particles,” Chem. Eng. Sci., 144, pp. 201–215. 

[87] Happel, J., and Brenner, H., 1983, “Low Reynolds Number Hydrodynamics,” Englewood 

Cliffs NJ, 40(1), pp. 25–45. 

[88] Sanjeevi, S. K. P., and Padding, J. T., 2017, “On the Orientational Dependence of Drag 

Experienced by Spheroids,” J. Fluid Mech., 820(May), p. R1. 

[89] Hölzer, A., and Sommerfeld, M., 2009, “Lattice Boltzmann Simulations to Determine Drag, 

Lift and Torque Acting on Non-Spherical Particles,” Comput. Fluids, 38(3), pp. 572–589. 

[90] Ganser, G. H., 1993, “A Rational Approach to Drag Prediction of Spherical and 

Nonspherical Particles,” Powder Technol., 77(2), pp. 143–152. 

[91] Wang, Y., Zhou, L., Wu, Y., and Yang, Q., 2018, “New Simple Correlation Formula for the 

Drag Coefficient of Calcareous Sand Particles of Highly Irregular Shape,” Powder 

Technol., 326, pp. 379–392. 

[92] Stronge, W. J., 2000, Impact Mechanics. 

[93] Green, D. W., Winandy, J. E., and Kretschmann, D. E., 1999, “Mechanical Properties of 

Wood,” Mater. Res. Soc. Symp. - Proc., 546, pp. 213–218. 

[94] Modena, C., Lourenco, P. B., and Roca, P., 2004, Structural Analysis of Historical 

Constructions-2 Volume Set: Possibilities of Numerical and Experimental Techniques-

Proceedings of the IVth Int. Seminar on Structural Analysis of Historical Constructions. 

[95] Clauser, H. R., Donald, E., and Manning, A. V., 1975, Industrial and Engineering 

Materials. 

[96] Yu, K., and Tafti, D., 2016, “Impact Model for Micrometer-Sized Sand Particles,” Powder 

Technol., 294, pp. 11–21. 

[97] Bailey, A. B., 1931, “Sphere Drag Coefficients for a Broad Range of Mach and Reynolds 



152 
 

Numbers,” 10(11), pp. 1436–1440. 

[98] Barati, R., Neyshabouri, S. A. A. S., and Ahmadi, G., 2014, “Development of Empirical 

Models with High Accuracy for Estimation of Drag Coefficient of Flow around a Smooth 

Sphere: An Evolutionary Approach,” Powder Technol., 257, pp. 11–19. 

[99] Ui, T. J., Hussey, R. G., and Roger, R. P., 1984, “Stokes Drag on a Cylinder in Axial 

Motion,” Phys. Fluids, 27(4), p. 787. 

[100] Marchildon, E. K., Clamen, A., and Gauvin, W. H., 1964, “Drag and Oscillatory Motion of 

Freely Falling Cylindrical Particles,” Can. J. Chem. Eng., 42(4), pp. 178–182. 

[101] Fernandes, P. C., Risso, F., Ern, P., and Magnaudet, J., 2007, “Oscillatory Motion and Wake 

Instability of Freely Rising Axisymmetric Bodies,” J. Fluid Mech., 573(2007), pp. 479–

502. 

[102] Auguste, F., Fabre, D., and Magnaudet, J., 2010, “Bifurcations in the Wake of a Thick 

Circular Disk,” Theor. Comput. Fluid Dyn., 24(1–4), pp. 305–313. 

[103] Yow, H. N., Pitt, M. J., and Salman,  a. D., 2005, “Drag Correlations for Particles of Regular 

Shape,” Adv. Powder Technol., 16(4), pp. 363–372. 

[104] Rosendahl, L., 2000, “Using a Multi-Parameter Particle Shape Description to Predict the 

Motion of Non-Spherical Particle Shapes in Swirling Flow,” Appl. Math. Model., 24(1), pp. 

11–25. 

[105] Cleary, P. W., 2010, “DEM Prediction of Industrial and Geophysical Particle Flows,” 

Particuology, 8(2), pp. 106–118. 

[106] Guan, Y., Guadarrama-Lara, R., Jia, X., Zhang, K., and Wen, D., 2017, “Lattice Boltzmann 

Simulation of Flow Past a Non-Spherical Particle,” Adv. Powder Technol., (April), pp. 1–

9. 

[107] Richter, A., and Nikrityuk, P. A., 2012, “Drag Forces and Heat Transfer Coefficients for 

Spherical, Cuboidal and Ellipsoidal Particles in Cross Flow at Sub-Critical Reynolds 

Numbers,” Int. J. Heat Mass Transf., 55(4), pp. 1343–1354. 



153 
 

[108] Jones, D. A., and Clarke, D. B., 2008, “Simulation of Flow Past a Sphere Using the Fluent 

Code,” p. 35. 

[109] Pearson, J. R. A., 1966, Low Reynolds Number Hydrodynamics. 

[110] In, K. M., Choi, D. H., and Kim, M. U., 1995, “Two-Dimensional Viscous Flow Past a Flat 

Plate,” Fluid Dyn. Res., 15, pp. 13–24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



154 
 

Appendix A 

Investigation of drag, lift and torque for fluid 

flow past a low aspect ratio (1:4) cylinder  

(Published at Computers & Fluids, volume: 177, pp.123-135.) 

Abstract 

Non-spherical objects exist in many multiphase applications but there is very limited data available 

on the fluid forces acting on these different shapes.  This work derives correlations for drag, lift 

and torque coefficients for a single low aspect ratio 1:4 cylinder (tablet shaped object) placed at 

different incidence angles to the approach flow using direct numerical simulations (DNS). An 

Immersed Boundary Method (IBM) is used for deriving the force coefficients for 10 ≤ Re≤ 300 

and incidence angles 0 ≤  ≤90. The method is validated by comparisons to existing data on 

spheres, to results from a body conforming grid, and through a grid independency study.  The flow 

around the cylinder remains steady till Re=200  ≤30. The general correlation of Hölzer and 

Sommerfeld [1] for non-spherical particles, over predicts the drag coefficient for 0 <  < 90 and 

the degree of over prediction increases with Reynolds number. The lift coefficient has a symmetric 

distribution about the maximum value at  =45 at Re=10 but develops asymmetries in  as 

Reynolds number increases. Contributions of pressure force and shear to drag and lift for each case 

is presented to provide a detailed view of the hydrodynamic forces on the object. The trends in the 

torque coefficient are similar to the lift coefficient reaching a maximum value near 45 degrees. 

Correlations based the Reynolds number and incidence angle are developed for drag, lift and 

torque coefficients. 
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Keywords: Low aspect ratio cylinder, drag coefficient, lift coefficient, torque coefficient, IBM 

Introduction and Literature Review  

Prediction of the behavior of fluid flow past objects of various shapes is of great relevance to many 

industrial processes such as gasification, combustion, refining and processing of chemicals and 

ores, drying feedstock, separation technologies, etc. It is also of importance in many natural 

systems undergoing erosion and sedimentation, transport of particulate matter in the atmosphere 

and oceans, etc.  Most early work in characterizing fluid-bluff body interaction was performed for 

spherical shape because of the geometrical simplicity [2–4,6,97]. The majority of early research 

characterized the drag force. Based on available experimental data in the literature, Clift et al.[5] 

developed a drag correlation for different ranges of Reynolds numbers. The Reynolds number is 

defined as 𝑅𝑒 =
𝜌∗𝑢∗𝑑0

∗

𝜇∗
. In the definition, 𝜌∗⁡is the density of the fluid, 𝑢∗⁡is the undisturbed 

approach flow velocity, 𝜇∗⁡is the dynamic viscosity of the fluid and 𝑑0
∗ ⁡is the equivalent spherical 

diameter. Later in 2003, Brown and Lawler[7] developed a single correlation to fit 480 

experimental data points with 178 of them being corrected for wall proximity effect for Reynolds 

number up to 2 ×105. Many other researchers have also proposed correlations for the drag on a 

sphere[6,8,77,98]. 

As computational fluid dynamics has matured and computational power has increased, 

computational research in characterizing drag over non-spherical objects has gained traction. 

Militzer et al.[79] developed a correlation for drag coefficient on a spheroid based on previous 

numerical and experimental results. Their correlation covered the Reynolds number range from 1 

to 200 and the spheroid aspect ratio(ratio between the axis of the spheroid that is parallel and 

perpendicular to the axis of rotational symmetry) from 0.2 to 5. Kishore and Gu[10] did 
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simulations for a spheroid with aspect ratio from 0.25 to 2.5 in the Reynolds number range from 1 

to 200 and developed a correlation with average error of ±5.8% to fit their simulation results. 

However, in both studies, the object is placed normal to the approach flow and no data is avaliable 

for the spheroid placed at an angle to the approach velocity. Zastawny et al. [9] developed a 

correlation for drag as well as lift and torque on a spheroid based on Direct Numerical Simulation 

(DNS) using the immersed boundary method (IBM). They considered the cases with different 

inclinations ranging from 0° to 90°. Similarly, Richter and Nikrityu [73] did simulations on a 

spheroid at varying incidence angles using a body conforming mesh for the object. Although the 

two studies mentioned above studied the behavior of the object in the flow field more 

comprehensively, Zastawny et al [9] only studied three aspect ratios of the spheroid: 0.2, 1.25 and 

2.5 while Richter and Nikrityu[73] only studied a spheroid with an aspect ratio of 2. To broaden 

the range of data available, Ouchene et al. [11] did simulations using DNS with a body conforming 

mesh for spheroids with aspect ratio ranging from 1 to 32 and derived a correlation for drag, lift 

and torque coefficient for incidence angles from  0° to 90° and Reynolds numbers from 1 to 240.  

For fluid flow past cylindrical objects, Ui et al. [99] performed free falling experiments for 

cylinders with aspect ratio (ratio between height and diameter of the cylinder) from 4 to 100 and 

disks with aspect ratio from 0.019 to 0.26. Sharma and Chhabra [80] did similar experiments for 

cylinders with aspect ratio from 0.05 to 2 at Reynolds number from 0.2 to 180. Although both Ui 

et al. [99] and Sharma and Chhabra[80]  studied the drag comprehensively for different cylinders, 

the orientation of the cylinder is always fixed with its axis of symmetry parallel to the motion of 

the cylinder. A notable factor in free falling experiments is that when a certain critical Reynolds 

number is reached, the wake becomes unstable and the cylinder starts oscillating [100,101], e.g. 

for a cylinder with aspect ratio of 1/3 studied by Fernandes et al [101], the critical Reynolds number 
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is around 167. Under such conditions, the results obtained for drag and other parameters will be 

different from that of a fixed non-oscillating object in the flow field. Among computational studies 

about stationary objects, Auguste et al. [102] performed DNS to investigate the dynamics in the 

wake of a disk with aspectio of 1/3, which is similar to the object studied in this research. Instead 

of forces and torque, they focused on identifying different bifurcations in the wake of the disk and 

the critical Reynolds number of transition of different bifurcations. Shenoy and Kleinstreuer [13] 

using a body conforming mesh to resolve the cylinder with aspect ratio of 0.1 derived not only the 

critical Reynolds number for different bifurcations, but also time dependent drag force on the 

object. Yang et al. [14] studied drag, lift and vortex shedding frequency characteristic for flow past 

a cylinder with aspect ratio of 0.2 at Reynolds number of 250, 300, 3000 and 1×104. All the three 

research works mentioned above studied the hydrodynamic forces with fixed orientation of the 

object. In the work of Chrust et al. [15], they did DNS simulations for a cylinder with aspect ratio 

of 1/6 at incidence angle ranging from 0° to 60°. Instead of forces and torque on the object, they 

focused on the influence of incidence angle on the vortex shedding behind the cylindrical object 

and discovered that a small inclination tends to promote vortex shedding, whereas the opposite 

effect is observed when incidence angle exceeds 20°. The drag, lift and torque on a cylinder at 

incidence angle from 0° to 90° has been investigated by Vakil and Green [78]. In their research 

slender cylinders with aspect ratio between 2 and 20 are investigated under Reynolds number range 

of 1 to 40. Considering research about cylinders with smaller aspect ratios, Hölzer and Sommerfeld 

[89] used Lattice Boltzmann simulations to calculate the drag, lift and torque coefficient on 

cylinders with aspect ratio of 1 and 1.5 at incidence angles from 0° to 90° in the Reynolds number 

range from 0.3 to 240. Yow et al. [103] collected experimental data of drag coefficient for object 

shapes including spheres, cubes, disks, and cylinders and developed a drag correlation while the 
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orientation of the object is fixed. Hölzer and Sommerfeld [1], based on drag data for various 

geometries, including spheres, spheroids, disks, plates, etc., proposed a drag correlation for non-

spherical objects that took the sphericity and orientation of the object into account and showd a 

mean error of 14.4% comparing to the 2061 experimental data points.  However, little research on 

hydrodynamics forces and torque on cylinders with aspect ratio less than 1 can be found in the 

literature.  

The literature review demonstrates the lack of hydrodynamic force data on low aspect ratio 

cylinders.  The current study investigated a low aspect ratio (0.25) cylindrical geometry. The super-

ellipsoidal geometry is constructed analytically with smooth edges to replicate a cylinder of aspect 

ratio 0.25 and takes on the shape of a tablet. The smoothed edges are a consequence of the 

analytical construction, which however more closely replicate the geometry of real cylindrical 

objects.  The Immersed Boundary Method (IBM) is implemented to specify boundary condition 

on the cylinder surface. The main objective of the current study is to derive drag, lift, and torque 

correlations for the cylinder at different incidence angles and Reynolds numbers to add to the 

existing database of forces acting on non-spherical objects. These can not only be used to develop 

better correlations for non-spherical objects but also add to our understanding of the behavior of 

non-spherical objects in suspension. 

Geometry, Governing Equations, and Numerical Method  

Object geometry model 

The cylinder geometry is constructed using the super-ellipsoid formula, which enables 

construction of spherical as well as non-spherical objects of different shapes [29,104,105]. This 

formula has a simple form and can be applied to create various geometries including traditional 
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geometries like a sphere, cube, ellipsoid and complex geometries like rod shaped objects [29] and 

the cylinder shaped objects studied in this research. The standard formula of a super-ellipsoid is 

written as: 

(|𝑎 × 𝑥|𝑟 + |𝑏 × 𝑦|𝑟)
𝑡/𝑟 + |𝑐 × 𝑧|𝑡 = 1  (A.1) 

where,⁡𝑥,⁡𝑦, 𝑧 represent the three coordinates in a Cartesian coordinate system. a, b and c represent 

semi-diameters of the object and  r and t control the surface curvature condition. In this research, 

to create the cylinder geometry, r and t are set to be 2 and 20, respectively. With the remaining 

parameters specified as: a = 1.438; b = 1.438; c = 5.752, the cylinder shaped object with aspect 

ratio of 0.25 and volume equivalent sphere diameter of unity is created. The geometry is shown in 

Fig. A.1. The aspect ratio is defined as h/d and the incidence angle θ is defined as the angle between 

the undisturbed flow direction and the transverse cross-section of the cylinder. 

 

Fig. A. 1. 3D view of the tablet-like cylinder geometry 

 

Computational domain and boundary conditions 

The domain size is chosen such that the boundary conditions do not affect the flow field in the 

vicinity of the cylinder from that of a uniform approach flow. The domain used in the current study 
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is of size 30d0× 28d0× 28d0  (d0 is the volume equivalent sphere diameter of unity) and is presented 

in Fig. A.2.  The inlet and outlet boundaries are in the stream-wise directions with distance of 8d0 

and 22d0 from the cylinder. In the cross-stream direction, the four boundaries are assigned the free-

stream flow velocity at a distance of 14d0 from the cylinder. 𝑈∞
∗ ⁡represents the approach velocity 

in the x-direction.  In comparison, past studies of Guan et al. [106] used 12d0× 10d0× 10d0 to study 

the drag at Re between 0.01 and 3000 on different non-spherical shapes,  and Richter and Nikrityuk 

[107] used 28d0× 20d0× 20d0 for investigating drag on spherical as well as ellipsoidal objects in a 

Re range between 10 and 250.  

                     

                            (a) View from the x-y plane                                            (b) 3D view of the domain 

Fig. A. 2. View of the 3D domain and position of the cylinder 

 

Governing equations and computational method 

The calculation is based on our in-house code – GenIDLEST (Generalized Incompressible Direct 

and Large Eddy Simulation of Turbulence) [34][35]. It solves the unsteady incompressible Navier-

𝑈∞
∗   
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Stokes and energy equation. The constant property dimensionless governing equations formulated 

using Cartesian tensor notation are: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0  (A.2) 

𝜕𝑢𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(
1

𝑅𝑒
(
𝜕𝑢𝑖

𝜕𝑥𝑗
))  (A.3) 

where the variables are nondimensionalized by: 

𝑢𝑖 =
𝑢𝑖
∗

𝑢𝑟𝑒𝑓
∗⁡ ; ⁡𝑥𝑖 =

𝑥𝑖
∗

𝑙𝑟𝑒𝑓
∗ ; ⁡⁡𝑝 =

𝑝∗ − 𝑝𝑟𝑒𝑓
∗

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡2 ;⁡ 

𝜌 =
𝜌∗

𝜌𝑟𝑒𝑓
∗ ; ⁡𝜇 =

𝜇∗

𝜇𝑟𝑒𝑓
∗ ; ⁡⁡𝑅𝑒 =

𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡ 𝑙𝑟𝑒𝑓
∗

𝜇𝑟𝑒𝑓
∗  

In the nondimensionalization process, 𝑢𝑟𝑒𝑓
∗⁡  is the free stream or approach velocity of the fluid, i.e., 

𝑈∞
∗  .The reference length, 𝑙𝑟𝑒𝑓

∗  is the volume equivalent sphere diameter⁡𝑑0
∗  and 𝜌𝑟𝑒𝑓

∗ , 𝜇𝑟𝑒𝑓
∗ , are the 

properties of the fluid (air) at 300K. 

Eqs. (A.2)and( A.3) are discretized using a second-order accurate central differencing scheme on 

a non-staggered grid topology. Velocities, pressure and other scalar fields are calculated and stored 

at the cell center, whereas the mass flux is calculated and stored at cell faces. For time integration, 

a fractional step semi-implicit method is employed in which the viscous terms are treated implicitly 

by a Crank-Nicolson formulation and the convection terms explicitly with Adams-Bashforth. 

Firstly, a predictor step solves an intermediate velocity field and the corrector step uses the 

calculated pressure field to correct the velocity such that discrete continuity is satisfied. The 

pressure equation is solved using a preconditioned BiCG-STAB method. The preconditioner 

employed is a sub-structured Jacobi smoother. 
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Immersed Boundary Method (IBM) is employed to specify the boundary conditions on the cylinder 

surface in the flow field. The IBM has been developed and validated in Nagendra et al. [36] and 

applied to DNS of ellipsoidal object suspensions in [27]. In this implementation, there are two sets 

of meshes - the fluid background volume mesh which is structured and Cartesian in this case, and 

the triangular surface mesh of the cylinder immersed in the fluid mesh. 

The first step in the IBM procedure is to identify background nodes that lie in the fluid or solid 

region or at the interface between the two. A two-dimensional example is shown in Fig. A.3. Any 

node that lies in the fluid region is assigned to be a fluid node, whereas nodes inside the immersed 

boundary are assigned to be solid nodes. Moreover, nodes that lie in the immediate vicinity of the 

immersed boundary and have at least one face sharing a neighboring fluid node are marked as fluid 

IB nodes.   

 

Fig. A. 3. Identification of node type in the background mesh defined in IBM 
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Boundary conditions at the IB surface are implemented by assigning appropriate values to the IB 

node for the primitive variables. These values are calculated by assigning probes to each IB node, 

projected outward, normal to the IB surface. The distance between the probe and the fluid IB node 

is the length of the longest diagonal of the background mesh near the immersed boundary. 

Primitive flow variables at the probe are interpolated based on the values at surrounding fluid 

nodes. The interpolated value at the probe is used to obtain the appropriate boundary condition at 

the fluid IB node such that the boundary condition at the IB surface is satisfied. The IBM procedure 

has been shown to be second-order accurate in Nagendra et al. [36] .  

Fluid forces and torques are calculated using a procedure similar to that used for implementing the 

boundary conditions. For each surface element, a probe is assigned that lies along the surface 

element normal from the element centroid as shown in Fig. A.4. The same tri-linear interpolation 

method used for IB node probes (but with a different surrounding node stencil) is employed to 

determine the value of the desired primitive flow variable at the probe location.  

 

Fig. A. 4. Surface Pressure and shear stress (velocity gradient) calculation for force 

calculation (Left plot presents the pressure and right plot presents the velocity of the 

probe) 
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The force on each element consists of pressure and viscous forces. Under steady, no-slip, 

impenetrable condition at the cylinder surface, normal viscous stresses and pressure are the only 

contributors to the normal momentum transfer at the surface. Because the velocity normal to the 

object surface is small, the contribution of the gradient of normal velocity is neglected in the 

normal momentum balance to give  

𝜕𝑃

𝜕y′
|𝑠 = 0  (A.4) 

Taylor series expansion is implemented for pressure at probe 1 (𝑃1) and probe 2 (𝑃2) that are 

defined about pressure at immersed surface (𝑃𝑆). After eliminating⁡
𝜕2𝑃

𝜕𝑦′
2 |𝑠⁡and neglecting higher 

order terms, 𝑃𝑆⁡can be obtained by:  

𝑃𝑆 =⁡
𝑑1𝑑2(𝑑1−𝑑2)

𝜕𝑃

𝜕y′
|𝑠+𝑑2

2𝑃𝑃1−𝑑1
2𝑃𝑃2

𝑑2
2−𝑑1

2  (A.5) 

Shear stress is derived from the velocity gradient along the surface normal of each surface element. 

It is calculated by: 

𝜏 = 𝜇
𝑑𝑢⃗⃗⃗𝑥′

𝑑𝑦′
|
𝑆
= ⁡𝜇

u
𝑥′2

𝑑1
2−u

𝑥′1
𝑑2
2+(𝑑2

2−𝑑1
2)𝑢

𝑥′𝑠

𝑑1𝑑2(𝑑1−𝑑2)
𝑒𝑥′  (A.6) 

In Eq. (A.6), 𝑢𝑥′𝑠⁡is the tangential velocity at the immersed surface, which in this case is 

zero. Hence total hydrodynamic force applied on a single surface element can be calculated by: 

𝐹⃗𝑒 = (𝜏 − 𝑃𝑆 ∙ 𝑒𝑦′)𝐴𝑒  (A.7) 

The total force is the integration of forces on each element, i.e., summation of force on each surface 

element, the equation can be written as: 
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𝐹⃗ = ∑ 𝐹⃗𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒   (A.8) 

Definitions of drag, lift and torque coefficients are: 

Drag coefficient∶ CD =
𝐹𝐷
∗

1

2
𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡2 𝐴∗
 . (A.9) 

In this equation, 𝐴∗⁡is the cross-sectional area of equal volume sphere calculated by 
𝜋𝑑0

∗2

4
. 𝐹𝐷

∗  is the 

total force in the streamwise x-direction. 

Lift coefficient: 𝐶𝐿 =
𝐹𝐿
∗

1

2
𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡2 𝐴∗
.  (A.10) 

 𝐹𝐿
∗ is the force that lies in the plane formed by the x-axis and the axis of rotational symmetry of 

the cylinder in a direction perpendicular to the x-axis. In this study, the cylinder is only inclined 

about the z-axis, therefore the lift will be in the y-direction, i.e., along the y-axis as is shown in 

Fig. A.11. 

Torque coefficient: 𝐶𝑇 =
𝑇∗

1

2
𝜌𝑟𝑒𝑓
∗ 𝑢𝑟𝑒𝑓

∗⁡2 𝐴∗∙
𝑑0
∗

2

.  (A.11) 

Here 𝑇∗ is the pitching torque aligned with an axis perpendicular to both drag and lift. In this case, 

it is in the direction parallel to the z-axis. The calculation of non-dimensional torque is carried out 

using: 

𝑇⃗⃗ = ∑ (𝑟𝑒 × 𝐹⃗𝑒)𝑠𝑢𝑟𝑓𝑎𝑐𝑒  (13) 

where 𝑟𝑒 is the vector pointing from the cylinder’s center of mass to the center of the element.  
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Grid independence study and validation 

The grid needs to be fine enough to resolve the boundary layer formed near the cylinder surface. 

With the purpose of finding a reasonable grid size, three grids are chosen and the results of drag 

coefficient of the cylinder at different Reynolds number and incidence angle are presented to show 

the effect of grid size. The grid sizes are 1/30, 1/40 and 1/50. The near field distribution of the 

volume grid of size 1/40 is shown in Fig. A.5 including the mesh defining the surface of the 

cylinder. The surface grid and volume grid have approximately the same cell size. 

 

Fig. A. 5. Volume grid (green) distribution in the nearfield and surface mesh (black) distribution. 

 

Table A.1 shows the results for drag coefficient. It can be seen that at different Reynolds number 

and incidence angle, the drag coefficient derived from the three grid sizes have no significant 

discrepancy. Using the results from grid size of 1/50 as reference, the largest discrepancy for grid 
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size of 1/30 appears at Re=200, θ=90° with a value of 4.45%, with an average difference of 2.16%. 

For the grid size of 1/40, the largest discrepancy is 1.7% that appears at Re=10, θ=0°. The grid 

independency results from this study closely match the results from He and Tafti [27] who used 

the same grid densities in a suspension of ellipsoidal objects. It was found that the maximum 

difference between the three grids was about 2%.  To summarize, the grid independency results 

suggest that the three grid resolutions are within a range that can accurately capture the 

hydrodynamic boundary layers on the cylinder for the range of Reynolds numbers of interest in 

this study.  

Table A. 1. Drag coefficient of the flow past the cylinder at different conditions 

 

 
Re=10 Re=200 

Grid size 0° 30° 60° 90° 0° 30° 60° 90° 

1/30  4.443 5.019 6.028 6.420 0.748 1.215 1.862 1.987 

1/40  4.515 5.073 6.077 6.498 0.756 1.207 1.841 1.930 

1/50  4.593 5.104 6.117 6.531 0.763 1.203 1.829 1.902 

 

Further comparison of results from the literature and this study is necessary to validate the 

computational algorithm and domain defined in this study. Since drag coefficient of fluid flow past 

a single stationary sphere has already been comprehensively studied in the literature, separate 

simulations for spheres were done in order to do the validation. Based on experimental data in the 

literature, Clift et al. [5] developed a set of correlations for the drag coefficient on a single 
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stationary sphere in cross flow at different Reynolds number. Their correlations are shown in 

Eqs.(A.13) - .(A.16). 

𝐶𝐷 =
24

𝑅𝑒
(1 + 0.1315𝑅𝑒(0.82−0.05𝑤))             0.01 < 𝑅𝑒 ≤ 20      (A.13) 

𝐶𝐷 =
24

𝑅𝑒
(1 + 0.1935𝑅𝑒0.6305)  20 ≤ 𝑅𝑒 ≤ 260    (A.14) 

𝑙𝑜𝑔10⁡𝐶𝐷 = 1.6435 − 1.1242𝑤 + 0.1558𝑤2 260 ≤ 𝑅𝑒 ≤ 1500⁡ (A.15) 

In the equations above⁡𝑤 = 𝑙𝑜𝑔10⁡𝑅𝑒. Moreover, Brown & Lawler’s [7] correlation after 

eliminating wall effects can be written as: 

𝐶𝐷 =
24

𝑅𝑒
(1 + 0.150𝑅𝑒0.681) +

0.470

1+
8710

𝑅𝑒
  𝑅𝑒 ≤ 2 × 105   (A.16) 

Fig. A.6 shows the comparison of the results of this study using IBM and that of Clift et al. [5] and 

Brown & Lawler[7]. Computational results from Wittig et al. [72] using body conforming mesh is 

also presented. In order to further validate the correctness of our IBM calculation, we also 

performed simulations using a body conforming mesh around the sphere. From Fig. A.6 it can be 

seen that both current IBM and body conforming mesh show good agreement with the literature.  
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Fig. A. 6. Comparison of drag coefficient from the literature and results derived in this study 

using both IBM and body conforming mesh 

 

Data for the drag coefficient is shown in Table A.2. Using results derived in this study as reference, 

comparing with literature, the largest discrepancy for the simulations using a body conforming 

mesh is 4.47% while this becomes to 4.81% for IBM. Comparing to Brown & Lawler’s correlation 

[7], the average discrepancy with IBM is 2.16%. 

Table A. 2. Comparison of drag coefficient from literature and results in this study based on 

different methods 

 
Clift et al. 

[5] 

Wittig et 

al. [72] 

(IBM) 

Brown & 

Lawler[7] 

Current 

(Body 

conformin

g mesh) 

Current 

(IBM) 

Reynolds 

number 
CD CD CD CD CD 

10 4.258 4.312 4.128 4.321 4.287 
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50 1.574 1.577 1.516 1.576 1.574 

100 1.087 1.090 1.073 1.089 1.096 

200 0.7756 0.776 0.7933 0.7729 0.7899 

300 0.6527 - 0.6738 0.6626 0.6857 

 

Results and Discussion  

Flow Characteristics 

For the most part, in the range of Reynolds numbers investigated in this study, the flow remains 

steady around the cylinder as well in the wake. Velocity of the fluid in the free stream direction 

near the cylinder at Reynolds number of 50 is shown in Fig A.7.  From θ = 0° to 15° the flow 

remains attached to the cylinder surface. At θ ≥ 30°, the flow separates and large recirculation 

zones start to appear on the leeward side or wake of the cylinder. 

                

                                       θ=0°                  θ=15° 
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                                      θ=30°                              θ=45° 

 

                                      θ=60°                 θ=75° 

 

                                     θ=90° 

 

Fig. A. 7. U-velocity and streamlines of the fluid flow near the cylinder at Re = 50 and θ = 

0° to 90° 
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At Reynolds number of 200, the wake becomes unsteady for θ ≥ 30°. In Fig A.8, at θ =15°, two 

tubular vortex structures extend into the wake of the cylinder from the two lateral extremities of 

the tablet. These become unstable at θ=30° to form and shed ring shaped vortices in the wake. The 

size of the ring vortex increases from θ =30° to 60°, whereas from 60° to 90°, the opposite trend 

is observed. This is similar to the observation of Chrust et al. [15] of flow over a disk. This trend 

results from the projected area of the cylinder, which reaches a maximum at around 𝜃 = 75° and 

then decreases, which manifests in the flow structures as well.  

 

          θ=0°                                θ=15°                                                            θ=30° 

 

                                                             

                                      θ=45°                                                                             θ=60°             
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                                    θ=75°                                                                            θ=90° 

 

Fig. A. 8. Visualization of vorticity behind the cylinder at Re=200 

Due to the oscillation of the flow, hydrodynamic forces including drag and lift become unsteady 

and start to show periodic oscillations with time. Fig A.9 (a) shows the behavior of drag coefficient 

in time at Reynolds number of 200. It can be observed that at θ = 30°, the unsteady wake has 

insignificant effect on the drag coefficient which remains at a near constant value. At θ = 45°, the 

drag coefficient exhibits periodic fluctuations and at θ = 60°exhibits traces of chaos. At θ =75° and 

90°, the signal becomes chaotic. Interestingly, the characteristic frequency of oscillation decreases 

as the angle increases from 45° to 90°. Time dependent drag coefficient for Reynolds number of 

300 is presented in Fig A.9 (b). The flow remains steady at θ=0° and 15°. At θ =30°, the drag 

coefficient exhibits small periodic fluctuations which become chaotic for θ≥45°. 

To compare the results from different Reynolds number and incidence angle, the unsteady signal 

is averaged to get a representative value. Averaging is initiated by locating a probe in the wake of 

the cylinder and started when the velocity signal at the probe location reaches a stationary or quasi-

periodic state.  
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(a) Re=200 

 

(b) Re=300 

Fig. A. 9. Drag coefficient as a function of time at Reynolds number of 200 and 300 
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Drag Coefficient 

In this study, drag on the cylinder at different Reynolds numbers (10, 50, 100, 200 and 300) and 

incidence angles (0°, 15°, 30°, 45°, 60°, 75° and 90°) are calculated. There are two components 

that contribute to the total drag coefficient, i.e., drag resulting from pressure difference or form 

drag coefficient that is denoted as⁡𝐶𝐷_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, and drag resulting from viscous shear or friction 

drag coefficient that is denoted as 𝐶𝐷_𝑠ℎ𝑒𝑎𝑟. Contribution of pressure and shear to the total drag 

coefficient is shown in Fig A.10 (a) and Fig A.10 (b). As the Reynolds number increases, the 

percentage contribution of pressure drag to total drag increases because of the increase in the 

dynamic pressure which varies to the square of the approach velocity, whereas shear stresses vary 

linearly. Thus as the Reynolds number increases, pressure drag dominates the total drag. Friction 

drag contributes nearly 75% to the total drag at Re=10 and θ=0°, whereas pressure drag contributes 

nearly 95% at Re=300 and θ=90°.  

 The contribution of pressure drag also increases with incidence angle because an increase in 

incidence angle intensifies the pressure difference between the windward side on which the flow 

stagnates and the leeward side which experiences separation and low pressures. In addition, as the 

incidence angle increases, the projected area of the cylinder that is normal to the approach flow 

increases and reaches a maximum around an incidence angle of 75°, thus increasing the pressure 

contribution to the total drag and results in the drag coefficient at 75° to have a higher value than 

that of 90° at the higher Reynolds numbers in this study. This is shown in Fig A.11. In the Reynolds 

number range between 10 to 200, the drag coefficient decreases with increasing Re, whereas 

between Re of 200 and 300, the decreasing trend becomes less significant. Similar observations 

are also made for an ellipsoid of aspect ratio 2 as the Reynolds number approaches 200 [73]. The 

trend of the drag coefficient becoming independent of Reynolds number is commonly found with 
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bluff bodies. For example, the drag coefficient of a single sphere becomes independent of 

Reynolds number for Re greater than 800 till the critical Reynolds number [108], where it 

encounters the drag crises. 

 

(a) Pressure contribution to the total drag coefficient 

 

(b) Viscous contribution to the total drag coefficient 
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Fig. A. 10. Percentage contribution of pressure and viscous stresses to total drag under different 

conditions 

 

To provide context the computed results are compared to the correlation developed by Hölzer and 

Sommerfeld [1] who have used drag data for ellipsoids, plates, disks and other non-spherical 

geometries over a range of  Reynolds numbers and at different incidence angle to provide a  means 

of predicting the drag on any non-spherical object. In their formula, the variables are sphericity⁡φ, 

lengthwise sphericity φ∥ and crosswise sphericity⁡φ⊥. Their formula is: 

𝑐𝐷 =
8

𝑅𝑒

1

√φ∥
+

16

𝑅𝑒

1

√φ
+

3

√𝑅𝑒

1

φ
3
4

+ 0.42 × 100.4(−𝑙𝑜𝑔φ)
0.2 1

φ⊥
 (A.17) 

The sphericity, φ,⁡is the ratio between the surface area of the volume equivalent sphere and the 

surface area of the object. The crosswise sphericity, φ⊥ is the ratio between the cross-sectional 

area of the volume equivalent sphere and the object’s projected cross-sectional area perpendicular 

to the flow. And the lengthwise sphericity, φ∥ is the ratio between the cross-sectional area of the 

volume equivalent sphere and the difference between half the surface area and the mean 

longitudinal (i.e. parallel to the direction of relative flow) projected cross-sectional area of the 

object. A comparison of the drag coefficient between the value derived from their formula and the 

DNS simulation results of this study is shown in Fig A.11. It can be seen that the results of this 

study agree well with the results from Hölzer and Sommerfeld around incidence angles of 0° and 

90°, however there are differences at other incidence angles. The possible reason could be that in 

the data used by Hölzer and Sommerfeld for disks (similar to tablet) was biased towards these two 

positions. Since other incidence angles were not considered in building the correlation, the 

discrepancy increases at incidence angles between 0° and 90°.  
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To evaluate the accuracy of their correlation, the mean square error (MSE) between their predicted 

value and our simulation results is calculated with a value of 0.0583. The relative error, which is 

calculated using⁡ϵ =
|𝐶𝐷,𝑖𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

−𝐶𝐷,𝑖ℎö𝑙𝑧𝑒𝑟|

𝐶𝐷,𝑖𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

, has a maximum value of 47%. The mean relative error 

is 8.1% considering all the cases studied in our simulation. As a general formula which is 

applicable for various object geometries, this formula can provide a reasonable prediction for the 

drag on a tablet. However, a more precise correlation for the specific geometry is also necessary 

for research that requires higher accuracy for the drag data. To derive a more accurate correlation 

for the drag at various Reynold numbers and incidence angles, we start with the relationship in Eq. 

(A.18) for characterizing drag for bluff bodies at Reynolds numbers within the Stokes regime 

[109]. 

𝐶𝐷,𝜃 = 𝐶𝐷,𝜃=0° + (𝐶𝐷,𝜃=90° − 𝐶𝐷,𝜃=0°)𝑠𝑖𝑛
2𝜃            (A.18) 

Sanjeevi and Padding[88] found that while this relationship works well for prolate spheroids, it 

does not work well for oblate spheroids like the cylinder shape in this study. They found that while 

the discrepancies are small at low Re, these become significant as the Reynolds number increases. 

Comparing the current simulation results and Eq. (A.18), similar to the findings of Sanjeevi and 

Padding [88], the discrepancy is negligible at Re=10 and 50, but for Re from 100 to 300, the 

relative error increases from a maximum value of 13.8% to 18.9%. The distribution of relative 

error with respect to θ is approximately bell-shaped with a peak near 45° and decreases towards 

0° and 90°. Therefore, an extra term is added in our proposed formula to eliminate this discrepancy 

and the correlation has the form: 

𝐶𝐷,𝜃 = 𝐶𝐷,𝜃=0° + (𝐶𝐷,𝜃=90° − 𝐶𝐷,𝜃=0°)𝑠𝑖𝑛
2𝜃 + 0.1280𝑅𝑒0.2171 sin 𝜃 cos𝜃⁡            (A.19) 
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𝐶𝐷,𝜃=90° and 𝐶𝐷,𝜃=0° are predicted by the following relations: 

𝐶𝐷,𝜃=0° =
24.3350

𝑅𝑒
(1 + 0.2129𝑅𝑒0.6040) (A.20) 

𝐶𝐷,𝜃=90° =
24.2971

𝑅𝑒0.5795
+

0.0210

𝑅𝑒−0.6799
                             (A.21) 

The drag coefficient calculated using Eqs. (A.19) – (A.21) is shown in Fig A.11. It agrees very 

well with the original data. The mean relative error is 1.5% and the mean square error (MSE) is 

1.5 × 10−3.  
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Fig. A. 11. Drag coefficient on the cylinder. ( ) Simulation at Re=10; ( ) simulation at Re=50; (

) simulation at Re=100; ( ) simulation at Re=200; ( ) simulation at Re=300; solid line: 

Present correlation; dashed line: Hölzer and Sommerfeld’s correlation. (Same color represents 

the same Re.) 

 

Lift coefficient 

Lift force is defined as the force acting in the y-direction and has a finite value at angles other than 

0° and 90° when the flow and pressure distribution on the windward and leeward surfaces of the 

cylinder are different. Data on lift coefficient on  cylinder shaped object is not readily available in 

the literature. However, a similar geometry, oblate spheroid of aspect ratio 0.2 has been studied by 

Zastawny et al. [9] using IBM. In our simulation for the cylinder, lift coefficient due to pressure 

and shear are also calculated.  The results are shown in Fig A.12 (a) and Fig A.12 (b).  
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(a) Pressure lift coefficient 

 

(b) Shear lift coefficient 

Fig. A. 12. Lift coefficient from pressure and shear at different conditions 
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Both lift coefficients, that due to pressure and shear exhibit a bell shape, exhibiting zero values at 

 = 0 and 90, and reaching a maximum or minimum in the vicinity of 45 degrees. Whereas 

pressure creates positive lift, shear acts opposite to pressure and decreases the total lift. While 

pressure acts normal to the surface, shear acts tangentially and is predominantly directed in the –

ye y-direction. The trends in both lift forces (and by association, lift coefficients) are dependent 

on the magnitude of the net stresses (pressure and shear) acting on the cylinder as well the projected 

area available for the stresses to act on. As  increases from 0 to 90, while the projected area for 

pressure in the y-direction decreases, the pressure differential increases between the windward and 

leeward sides of the cylinder. Between 0 and 45, the increase in pressure differential dominates 

and overall pressure lift coefficient increases. As  increases from 45 to 90, the pressure 

differential between the windward and leeward side of the cylinder does not increase enough to 

compensate for the decrease in projected area, reducing the overall lift force and lift coefficient. 

On the hand, the projected area in the y-direction for shear stress increases from 0 to 90, however 

in this case, the flow becomes increasingly symmetric about the x-axis as  approaches 90, 

producing near equal amounts of positive and negative shear, thus reducing the overall shear force 

contribution to the lift coefficient. An additional factor which comes into play, is the shear force 

in recirculation zones on the leeward side act in the +ve y-direction, thus reducing the pre-

dominantly –ve shear force that acts on the windward side of the cylinder.  

The lift coefficient due to pressure and shear drop significantly from Re=10 to 50, and gradually 

thereafter. At Re=10, maximum negative lift due to shear is approximately 30% of the lift 

generated by pressure. However, at Re≥50, the friction attenuation of lift drops rapidly to between 

10%-15% of the positive lift generated by pressure. Fig A.13 shows the non-dimensional mean 



183 
 

pressure (non-dimensionalized by⁡𝜌
𝑟𝑒𝑓
∗ 𝑈∞

∗⁡2
) distribution near the cylinder’s surface at θ=45° for 

different Reynolds numbers. At Re=10, the stagnation pressure on the windward side is higher 

than that at Re=50, but the value and distribution does not change substantially for Re>50.  On the 

leeward side at Re=10, in spite of an attached boundary layer, there is a region of negative pressure 

at the leading edge as the flow accelerates in this region. As the Reynolds number increases, the 

boundary layer separates on the leeward side with the formation of a recirculation region which 

grows in size with the consequence that a more uniform low pressure region forms on the leeward 

side but with a higher value (less negative) than at Re=10.  The net result of non-dimensional 

pressure distribution on the windward and leeward sides leads to a sharp reduction in pressure lift 

coefficient from Re=10 to 50, followed by a gradual reduction for Re>50. As stated earlier, the 

onset of separation and recirculation on the leeward side introduce a component of shear force 

acting in the +ve y-direction, which together with the linear dependence of shear stresses on 

velocity lead to the sharp drop in negative shear lift coefficient for  Re ≥ 50. 

 

              (a) Re=10                                    (b) Re=50                                  (c) Re=100 
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          (d) Re=200                                     (e) Re=300 

Fig. A. 13. Pressure distribution around the cylinder at 𝜽 = 𝟒𝟓° 

 

Fig A.14 shows the total lift coefficient of the cylinder under different conditions. The overall 

trend shows a bell-shaped curve. The distribution is symmetric around incidence angle of 45° at 

Reynolds number of 10, but as the Reynolds number increases, the symmetry is broken. Research 

on flow over a two-dimensional flat plate [110] found similar characteristics for lift on the inclined 

flat plate. Since no reliable correlation for lift on a low-aspect ratio cylinder could be found in the 

literature, we derive a lift correlation for this shape. Based on linear theory in the Stokes regime 

[109], the lift coefficient can be expressed as: 

𝐶𝐿,𝜃 = (𝐶𝐷,𝜃=90° − 𝐶𝐷,𝜃=0°)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃                               (A.22) 

The result is shown in Fig A.14, it can be seen that the lift coefficient calculated by Eq. (A.22) is 

noticeably smaller than the simulation results from this study. Similar observation was made by 

Sanjeevi and Padding [88] for an oblate spheroid. To derive a lift coefficient correlation for the 

low-aspect ratio cylinder in this study, a simplified form of that used by Zastawny et al. [9] is used.  

Eq. (A.23) presents the new correlation for lift coefficient on tablet at different Re and θ.   

𝐶𝐿,𝜃 = (1.688 +
6.617

𝑅𝑒1.063
)(𝑠𝑖𝑛𝜃)0.8222(𝑐𝑜𝑠𝜃)0.9796 (A.23) 

The term within the parentheses presents dependence of lift on Reynolds number while the other 

two terms include the effect of the inclination. Comparing to the DNS simulation results calculated 

from this study, the relative error, which is calculated by: 
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ϵ =
|𝐶𝐿,𝑖𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

−𝐶𝐿,𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡
|

𝐶𝐿,𝑖𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 (A.24) 

has a mean value of 5.77% with a MSE of⁡1.90 × 10−3. The largest relative error appears at θ=75°, 

Re=50, which is 16%.  
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Fig. A. 14. Lift coefficient on cylinder. ( ) Simulation at Re=10; ( ) simulation at Re=50; (

) simulation at Re=100; ( ) simulation at Re=200; ( ) simulation at Re=300; solid line: 

Present correlation; dashed line: Results of Eq. (22). (Same color represents the same Re.) 

 

Pitching Torque Coefficient 

Torque appears when the non-spherical object is inclined or when symmetry is broken in the flow 

field. In this study, the cylinder is symmetrical with respect to both x-y plane and x-z plane while 

inclined at 𝜃 = 0° and⁡90°. Therefore, the flow remains symmetric around the cylinder and there 

is no torque while the flow is steady. At Re≥200 and θ=90°, the unsteady vortex shedding from 

the cylinder, generates instantaneous torque on the object with a zero mean.  Between 

0°<θ<90°, symmetry of the flow is broken and significant torque appears in the direction 

perpendicular to the x-y plane. As a representative case, Fig. A.13 for an inclination of  45°,⁡ shows 

the formation of a high pressure stagnation region on the windward side accompanied by 

separation and a low pressure region on the leeward side of the cylinder, leading to the generation 

of torque about the negative z-axis. The torque coefficient for the cylinder is shown in Fig. A.15. 

Similar to the lift coefficient, the variation of the torque coefficient is almost symmetric about an 

incidence angle of 45° at low Reynolds number but deviations from symmetry are observed as the 

Reynolds number increases. The correlation derived in this study for pitching torque coefficient is 

given by: 

𝐶𝑇,𝜃 = (19.28 −
15.93

𝑅𝑒−0.02476
)(𝑠𝑖𝑛𝜃)0.8929(𝑐𝑜𝑠𝜃)0.9769 (A.25) 

Similar to the lift correlation for the cylinder, the term in the parentheses parametrizes the 

dependence of torque on Re and the other terms characterize the influence of θ. The curve plotted 

using Eq. (A.25) is illustrated in Fig. A.15. Good agreement can be observed between the 
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correlation and simulation results. Excluding torque at θ = 0° and 90°, which are both 0, the mean 

relative error of the correlation is 4.7% and the largest relative error is 19.9%, which appears at 

Reynolds number of 200 and incidence angle of 15°. The MSE is⁡1.1 × 10−3. 

 

 

Fig. A. 15. Torque coefficient on the cylinder ( ). Simulation at Re=10; ( ) simulation at 

Re=50; ( ) simulation at Re=100; ( ) simulation at Re=200; ( ) simulation at Re=300; 

solid line: Present correlation. (Same color represents the same Re.) 
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Summary and Conclusion 

Fluid force data on non-spherical objects in the shape of a tablet or a low aspect ratio cylinder is 

not available in the literature. The current study uses direct numerical simulations to develop 

correlations for drag, lift, and pitching torque in the Reynolds number range between 10 to 300 at 

incidence angles between 0 to 90 on a cylinder with aspect ratio 1:4. An immersed boundary 

method is used for the simulations. It is validated by comparing results to past studies in the 

literature on spheres and also with a body-fitted grid. A grid independency study is used to show 

that 40 grid points per equivalent sphere diameter is sufficiently accurate to approximate the forces. 

The flow around the cylinder is steady till Re=200  < 30, after which it gets unsteady. As the 

inclination angle increases, large recirculation zone is formed on the leeward side of the cylinder 

which has a large influence on the forces acting on the object. As a result, the drag coefficient 

increases with incidence angle. The predicted drag coefficient is compared to the general 

correlation of Hölzer and Sommerfeld [1] for non-spherical objects. It is found that while the 

correlation compares well with the predicted drag coefficient at  =0 and 90, it does not predict 

the variation of drag coefficient at intermediate angles very accurately. These differences get 

accentuated as the Reynolds number increases.  

The lift coefficient has a symmetric distribution about the maximum value at  =45 at Re=10. 

However, as the Reynolds number increases the distribution becomes asymmetric. Pressure forces 

contribute positively to lift whereas shear forces reduce the lift force. The trends in the torque 

coefficient are quite similar to the lift coefficient reaching a maximum value near 45 degrees.  
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This study contributes to the literature by providing accurate drag, lift and torque coefficient data 

and correlations for a 1:4 aspect ratio cylinder for the full range of incidence angles up to Re=300.  

The correlations developed in this study can be used independently or provide additional force 

data to develop more general force correlations for non-spherical particles. These can also be used 

as foundational data to develop force correlations for random assemblies of this shape, which will 

be the focus of future studies.” 
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