Figure 85. The *Poisson ratio* (Π_R) evaluated at the y^+ locations given in the legend at all of measurement stations in the $Re_\theta = 23200$ flow as a function of the *spectral ratio* (Φ_R). The dashed lines connects the values of Π_R evaluated at $y^+ = 50$ at all of the measurement stations. The solid line shows one-to-one correlation. **Figure 86.** The "best fit" parameters used to measure the degree of high frequency spectral collapse with Π_R evaluated at various y^+ locations within the $Re_\theta = 5940$ flow — (1) The correlation coefficient between $\Phi_R / \Pi_R (y^+)$ and y^+ , and (2) The range of spectral values (Φ^+ / Π_R) at $\omega^+ = 1$ among the measurement stations. The solid line shows the range of Φ^+ at $\omega^+ = 1$ among the measurement stations *without* Π_R applied. **Figure 87.** The "best fit" parameters used to measure the degree of high frequency spectral collapse with Π_R evaluated at various y^+ locations within the $Re_\theta = 23200$ flow — (1) The correlation coefficient between $\Phi_R / \Pi_R (y^+)$ and y^+ , and (2) The range of spectral values (Φ^+ / Π_R) at $\omega^+ = 1$ among the measurement stations. The solid line shows the range of Φ^+ at $\omega^+ = 1$ among the measurement stations *without* Π_R applied. Figures 192 **Figure 88.** Spectral power density of p (Re_{θ} = 7300 (2-D); 5940 (3-D)) normalized using τ_{w} as the pressure scale, v/u_{τ}^{2} as the time scale, and Π_{R} evaluated at y^{+} = 50. The numbers in the legend denote the measurement station. Note that Π_{R} = 1 for 2-D flow. **Figure 89.** Spectral power density of p (Re_{θ} = 23400 (2-D); 23200 (3-D)) normalized using τ_W as the pressure scale, v/u_{τ}^2 as the time scale, and Π_R evaluated at y^+ = 50. The numbers in the legend denote the measurement station. Note that Π_R = 1 for 2-D flow. **Figure 90.** Relationship between Body Axis (BA) coordinate system and Body Surface (BS) coordinate system. Insert: Schematics of pinhole and cylindrical pressure transducer mount attached to double-convex curvature LDV window. **Figure 91.** Variation of displacement thickness (δ^*), friction velocity (u_τ), and Reynolds number (Re_θ) with ϕ position: \diamondsuit , $\alpha = 10^\circ$, x/L = 0.600; \bigcirc , $\alpha = 10^\circ$, x/L = 0.772; Δ , $\alpha = 20^\circ$, x/L = 0.600; \square , $\alpha = 20^\circ$, x/L = 0.772. The solid symbols immediately above the ϕ -axis denote the location of primary separation (Wetzel *et al.*, 1998). The open symbols immediately above the ϕ -axis denote the approximate location of the shed vortex core. The letters R, V, and S denote the location of reattachment, secondary vortex core, and secondary separation, respectively, for $\alpha = 20^\circ$, x/L = 0.772. Figures 196