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(ABSTRACT)

The loop tack test measures the tack (instant grip) of an adhesive. An analytical model of

this test seems to be lacking and is the subject of this research.  The strip is investigated

using several mathematical formulations, and the solutions are obtained numerically.

The loop is created from a flexible elastic strip that is bent into a teardrop shape, with its

ends clamped together.  The strip is tested in a cycle, in which the loop is first pushed

onto the surface, compressing the adhesive.  Then the loop is pulled up, and gradually

debonds from the substrate.  The loop is assumed to be nonlinearly elastic and

inextensible.

The mechanics of the loop tack test are studied in order to determine the impact of

various factors on adhesive performance.  These factors include the stiffness of the

backing, the stiffness and thickness of the adhesive, the elongation of the adhesive before

debonding, and the contact time.

The relationship between the applied force and the vertical deflection of the loop’s ends

is determined, as well as that between the applied force and the contact length.  Also, the

maximum “pull – off” force needed to remove the substrate from the loop is obtained

from the results.  Shapes of the loop during the cycle are found.

This research will increase understanding of the behavior of the adhesive and backing

during the loop tack test.  With the computer model that has been developed, any set of

parameters and conditions can be analyzed, and improvements can be made in the test

procedure.
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Chapter 1

Introduction and Literature Review

1.0 Introduction

Adhesives are everywhere.  The vast applications of adhesives in our everyday lives are

not even recognized.  Where did these adhesives come from and how have they come to

play such an important role in our lives?  The first adhesives came from the surrounding

environment.  Spider webs, plant and asphaltic materials that trap insects, birds and small

mammals are several examples of sticky things in nature (Keimel, 1994).  From man’s

earliest times, some sort of adhesive was used.  In Biblical times, when Noah built the

ark, he used an adhesive or sealant to seal and waterproof the ship.  Also, in the

construction of the Tower of Babel it is thought that bitumen was used as mortar.  As

history continues, there are even more examples of the beginning of adhesive technology.

The historic Egyptians used crude animal and casein glue to laminate wood for bows and

furniture, while the Greeks and Romans mixed lime with volcanic ash and sand to create

a material still known as pozolanic cement (Keimel, 1994).  From these humble

beginnings, of using natural resources, the adhesive technology that we have today was

born.

1.1 Pressure Sensitive Adhesives

This thesis focuses on one particular type of adhesive: pressure sensitive adhesives

(PSA’s). Pressure sensitive adhesives, also known as permanent-tack adhesives, are

defined as adhesives that are able to develop measurable adhesion to a surface simply

upon contact or by the application of a light pressure.  Generally, no chemical reaction

takes place between the adhesive and adherend, no curing of the adhesive is necessary,

and no solvent is lost during the adhesion process (Creton and Leibler, 1996).  The

Pressure Sensitive Tape Council (PSTC) determined that pressure sensitive adhesives

should characteristically display the following properties (Pocius, 1997):

1. Aggressive and permanent tack

2. Adheres with no more than finger pressure
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3. Requires no activation by any energy source

4. Has sufficient ability to hold onto the adherend

5. Has enough cohesive strength to be able to be removed cleanly from the adherend.

There are several general categories of PSA’s, which include:

1. Removable adhesives –These are PSA’s for which a high compliance is required in

order to establish contact very easily, but conversely low adhesion is necessary.  In

addition, the separation must be completely adhesive to avoid residue of the adhesive

layer on the substrate.  The most widely known example is the Post-It  note1.

2. General-purpose, semi-permanent adhesives – This is the most common type of

adhesive.  Medium compliance and relatively good adhesion are characteristic.  There

is no long-term resistance to the environment because the lifetime use is typically a

few months. The adhesive is considered to be permanent if, upon removal the backing

fails before the adhesive bond. Examples of this type include standard office tape and

labels.

3. Permanent, semi-structural adhesives – These adhesives exhibit very high adhesion

and creep resistance, as well as good resistance to the environment.  For this

application, the PSA’s ease of application is the motivation to use it as a substitute for

more conventional adhesives (Creton and Leibler, 1996).

The advantages of using pressure sensitive adhesives include that there is no storage

problem, no mixing or activation is necessary in bond formation, no waiting is involved

in this bond formation, and often the bond created by the PSA is readily reversible.

Disadvantages of using pressure sensitive adhesives include that the adhesive strength,

especially for peeling and shearing, is low, bonds cannot be easily formed on unsuitable

or rough surfaces, and pressure sensitive adhesives are expensive in terms of cost per unit

bond area (Aubrey, 1992).

                                               

1 Post-It note is a registered trademark of the 3M Corporation
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1.1.1 History

The first use of natural rubber-based “tacky” adhesives on a backing is credited to Henry

Day, who was issued United States patent number 3,965 in 1845.  James Corbin of the

Minnesota Mining and Manufacturing Co. (now 3M), in a 1952 paper entitled, “Practical

Applications of Pressure-Sensitive Adhesives,” wrote that 1925 is considered to be the

birthdate of the pressure-sensitive industry.  Prior to that time, both cloth-backed surgical

tapes and cloth-backed friction tapes for use by electricians were in limited use (Keimel,

1994).

The first formulations of pressure sensitive adhesives used natural rubber-based adhesive.

Natural rubber chemically is poly(cisisoprene) and is obtained from the Hevea rubber

plant as a natural latex. This rubber served as the basis for most, if not all, of the early

PSA products and dominated the market until after World War II (Goulding, 1994).

Chemical solutions for PSA labels and tapes are primarily blends of rubber and

tackifying materials such as resins.  The low molecular weight polysobutylenes find use

as permanent tackifiers and modifiers, while the higher molecular weight products serve

as rubbery base materials.  Tackifiers and modifiers often enhance tack and softness; they

can also contribute to adhesion by improving wetting of the substrate (Hammond, 1982).

Natural rubber-based PSA’s are still used in pressure sensitive adhesive tape (PSAT)

applications, including masking tape, and exhibit excellent removability after painting

and baking.  Tapes and adhesives containing natural rubber were widely used because

this material is relatively inexpensive and can achieve a high peel strength. One flaw of

the product is that the adhesive has a tendency to yellow and to crosslink, becoming

brittle, making it unstable to long-term exposure to the environment (Pocius, 1997).

After World War II, the adhesive formulation changed.  As the price of solvents

increased and as the environmental opposition to the use of solvents mounted, adhesives

without natural rubber and solvents were put on the market.  There were a large number

of elastomers, such as synthetic rubber and other polymers now available, which made

way for water-based and hot-melt type adhesives.

The largest application areas for pressure sensitive adhesives include packaging tapes and

insulation, followed by self-adhesive labels.  Other applications of these adhesives
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include: self-adhesive floor tiles, adhesives for décor papers and flypapers, gloss

lamination (application of thin films of polyester or polyolefin over printed paper to

enhance gloss and protect print), and disposable diapers (Pizzi and  Mittal, 1994;

Goulding, 1994).

1.1.2 Testing Procedures

Testing products creates a standard by which to determine if one product is better than

another in accomplishing the task that it was created for. One adhesive consultant,

Chemsultants, had an article on their web page about benchmark testing.  This article

defined benchmark testing as a reference point for comparing current products and

judging future products or services. The article went on to say that testing should serve as

a tool that provides insight into the strengths and weaknesses of current technology and

should be used as a baseline for future decisions and growth.  Continuing, the article

named four qualities of good benchmark testing.  In summary, these qualities include that

testing must be objective and quantifiable in a reproducible manner. Also, the properties

being tested must be significant, in other words there should be a reason for conducting

the test.  Furthermore, the product tested must be representative of its group, a properly

documented random sample (Eppink and Frye, 1999).

PSA testing must be performed under controlled conditions in order to produce accurate

results.  The geometry of the PSA must be maintained throughout the test, in order to

generate reliable results. It is also critical that the proper equipment and environmental

conditions are used for each test to assure that variables that negatively impact data are

minimized (Eppink and Frye, 1999).

Tack, peel, and shear strength are the main characteristics that PSA’s are tested for.

Testing these characteristics provides an understanding of how quickly and how firmly

the adhesive will stick and how strongly it will resist any applied shear forces.  There are

tests to measure each of these quantities.  Peel strength is the resistance of a tape joint to

peeling under specified conditions (Aubrey, 1992).  Usually this property is tested using

either the 90 or 180 degree peel test.  In the 180° peel test, the PSA tape is applied to the

stiff adherend, the tape is then folded back over itself, forming a long tab.  The top of the

stiff adherend is clamped into a tensile testing machine, and so is the end of the long tab.
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After achieving this initial configuration, the adhesive tape is then pulled off at 180°.

Though the test is named the 180° test, the actual angle of peel depends on the backing

stiffness and thickness. The 90° peel test is conducted in a similar fashion to the 180°

test, except that an angle of 90° is maintained throughout the test.

Shear strength is the ability of the adhesive to withstand creep, which is regarded as the

increase in strain with time after stress is suddenly applied and maintained constant

(Hammond, 1982).  This quality is usually tested using a set-up where a standard area of

the coated film is bonded to a steel plate or standard cardboard.  A fixed load is applied

and the time till failure is recorded.  This test can be conducted at various temperatures,

depending on the properties needed in the final application (Pizzi and Mittal, 1994).  This

test gives little information about the intrinsic properties of the adhesive because there are

at least three possible modes of failure.  The adhesive may undergo a true shear failure.

However, the tape may also lift intact from the plate or peeling may occur from the

unloaded end of the tape, due to low adhesion accompanied by a turning moment induced

from elastic deformation of the backing (Aubrey, 1992).

The measurements of peel and shear depend greatly on the amount that the adhesive wets

the surface.  Because of this, one author suggests that the roll-down methodology be

used.  This requires the tape to be laid down on the substrate with little or no applied

pressure.  A roller of known weight and dimensions is rolled over the tape at a specified

rate and a pre-determined number of times up and down the tape. Roll down controls the

degree the PSA wets the substrate, and should give more accurate measurements of the

specific quantity being measured (Pocius, 1997).

1.2 What is Tack?

In the various applications for PSA’s the adhesive must make intimate contact with the

adherend and must be capable of wetting it out in order to be effective in “sticking”

(Johnston, 1983a).  For this reason, the measurement of tack and the factors affecting its

behavior have been studied and analyzed.  Tack is defined as wet grab, quick stick, that

which allows a pressure sensitive adhesive to adhere to a surface under very slight

pressure (Pressure Sensitive Tape Council), initial adhesion, finger tack, thumb tack,

quick grab, quick adhesion, and wettability (Johnston, 1983a).  The American Society for
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Testing and Materials (ASTM) defines tack as the force required to separate an adherend

and adhesive at the interface shortly after they have been brought rapidly into contact

under light load of short duration (Johnston, 1983a).  Another definition of tack defines

tack as the property whereby an adhesive will adhere tenaciously to any surface it comes

in contact with, under light pressure.  The strength of the bond will be greater under

increasing pressure (Hammond, 1982).  Tackiness can be classified into two groups: the

wetting against the solid body to be taped, and the resistance against the detachment of

the tape from the taped solid body (Kamagata et al., 1970). In addition to having so many

definitions of tack, there are also several different forms of tack.  These forms are as

defined in the following:

Cohesive Tack – involves the bulk flow of one or both materials during separation, and

applies to materials like printing inks, paints, syrups, and is dependent on the internal

strength of the adhesive (Hammond, 1982).  Any resistance to separation is governed by

viscous flow according to the Stefan equation (Aubrey, 1992).

 Adhesive Tack – involves a separation at the original interface between the materials.

This kind of tack applies particularly to pressure sensitive adhesives, although such

adhesives may display cohesive tack under extreme conditions of rate or temperature

(Aubrey, 1992).

Autohesive Tack – involves two elastomeric materials of essentially the same

composition and is considered to be the specific adhesion of the adhesive to itself, which

is often referred to as the true tack or building tack (Hammond, 1982).  In this case

separation may be either adhesive (usually after short times of contact) or cohesive

(usually after long times of contact).  Autohesive tack is important in the use of contact

adhesives and in plying together rubber surfaces, for example in the manufacture of tires

(Aubrey, 1992).

1.2.1 Factors Influencing Tack

 Anyone can tell someone else whether or not a material in question is “sticky,” but

actually testing is not that simple and requires accurate measurements. Tack

measurements are necessary because they indicate the bonding and unbonding processes
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that an adhesive experiences, and how successful the material tested should be in

practical applications. One reason tack must be measured is because the control of tack is

essential in many bonding processes.  Too great a tack may cause nearly as many

problems as too low of a tack (Duncan et al., 1999).  Though tack is a necessary quantity

to know in order to determine whether or not an adhesive is acceptable for certain

applications, it is often difficult to quantify because there are many factors that influence

its measurement.

Some of the factors that influence tack are the adhesive used, contact load, dwell time,

adherend temperature, humidity, and the adhesive’s flow characteristics (Hu et al., 1998).

Creton and Leibler (1996) attempted to better understand the dependence of tack on the

pressure and contact time, and to relate quantitatively the results to the molecular

structure of the adhesive and the roughness of the substrate.  In drawing conclusions from

their research, the data suggests that tack is dependent on these variables, and that the

tack force is directly proportional to the true area of contact.  These findings are

substantiated by other findings in the literature.  Gay and co-authors determined that

surface roughness and true area of contact are crucial to determine the quality of contact

and thereby the intensity of adhesion (Gay et al., 1999).

Continuing, the factor that seems to affect tack the most is the adhesive and backing,

together as a system.  Most adhesion properties are influenced by the nature and

thickness of the adhesive and backing film layers and by the stiffness or flexibility of the

tape backing.  This makes the results obtained not only intrinsic properties of the

adhesive, but they become properties of the composite tape system (Aubrey, 1992; Satas,

1989).

Tack is considered a viscoelastic property because sometimes the adhesive being tested

may tend to act like a liquid even though it is a solid, creating a time dependence.  A

viscoelastic liquid is one that after deformation partially returns to its original shape when

an applied stress is released (Fox and McDonald, 1992).  The tack of natural rubber is

determined by the response of a viscoelastic material to deformation under the effect of

pressure, and the adhesive thickness is an important parameter.  The minimum coating

weight of an adhesive is determined by that thickness which will allow sufficient
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viscoelastic response to form adequate tack properties; thickness is also important for

elastic behavior (Hammond, 1982).  Tack is essentially a measure of viscous flow under

conditions of fast strain rates and low stress magnitudes, while shear adhesion measures

viscous flow at low strain rates and intermediate stress magnitudes (Hammond, 1982).

This current research ignores viscoelastic effects, but they are important to predict the

dependence of the tack energy on contact time and debonding speed.

Tack is also a process in which, for a high tack value and high peel strength, a polymer

must dissipate a large amount of deformation energy during debonding.  Researchers

suggest that this energy dissipation is connected with the formation and growth of fibrils

during bond separation.  Fibrillation seems to be crucial to the peel strength and the tack

of polymers to be used as pressure sensitive adhesives.  A three-step process, fibrillation,

includes the formation of fibrils, their deformation, and their debonding.  As a

viscoelastic phenomenon fibrillation strongly depends on temperature and the rate of

separation (Zosel, 1998).  This characteristic is not directly covered by this current

research, but its effects have been seen.

1.2.2 History of Measuring Tack

One of the first tests developed to measure tack was the Thumb Tack Test.  During this

test the operator presses his or her thumb against the adhesive surface and then removes

it.  The sensation to the operator is used to judge the tack of the adhesive.  After time, the

operator develops an “educated” thumb and is able to differentiate between various

grades of adhesives with accuracy.  However, this test is not effective because the results

depend on the experience level of the operator doing the testing.  Though the test

distinguishes that one adhesive is “stickier” than another, the contact area is uncontrolled

and the test may not indicate how the tape will perform in practical use

(Johnston, 1983a).

The Matibes Ball Tack Test evolved out of the concept behind the Thumb Tack Testers.

Here a steel ball is suspended in an annulus from a strain gauge.  The adhesive being

tested is brought into contact for 2 to 3 seconds, which raises the ball from the annulus,

so that the applied pressure is the weight of the ball.  Next, the adhesive is moved away

from the ball at a rate of 12 in./min until the ball returns to the annulus.  The force
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required to separate is taken as the tack value.  The disadvantage of this method is that

the contact area varies, depending on the ease of adhesive deformation (Johnston, 1983).

There are various forms and methods for the loop tack test as it has developed over the

years.  One of the predecessors of the modern-day loop tack test came around 1950, with

the use of the Loop or Strip Testing Method.  In this test the set-up included a hinged

metal box with a smooth lid.  The lid was contacted with 1 square inch of the tape.  After

about 5 seconds the box lifted.  Weights were added and the process repeated until the

tape could not lift the box.  The total weight recorded would be a measure of the tack.

This method was not readily accepted because it is long and tedious, and the results are

questionable (Johnston, 1983a).

Another predecessor of the loop tack test is the Self-Pressure Tack Tester developed by

Nichiban.  In this test 1 in. x 12 in. samples of tape are layered into a circular loop, hung

on a peg, and attached to a tensile tester’s upper jaws.  A horizontal test plate mounted in

the lower jaws is raised until the loop and test plate touch, then immediately separated at

12 in./min.  The force required to separate the loop from the test plate is recorded as a

measurement of tack.  Problems with this method include that the control of area and

dwell time is poor, and the flexibility of the backing affects the results (Johnston, 1983a).

The next testing method is the Morgan Quick Stick Test.  During this test, the ends of a

1in. x 5 in. strip of tape are brought together with the adhesive exposed using a ¾ in. x

2½ in. strip of tape to secure the ends together.  This sealed end is mounted in the upper

jaws of a tensile tester while the lower jaws hold a 1/16 in. thick horizontal stainless steel

plate.  The lower jaws are raised at 50 in./min until 1 in.2 of the loop contacts the steel

plate.  The lower jaws are then immediately removed at 12 in./min, and the force required

to separate the lower and upper jaws is considered to be the tack value.  This testing

method shares the same disadvantages as the Nichiban Method as mentioned above

(Johnston, 1983a).

Another test is the Chang Test, which is a modified 90° Peel Test, also known as the

Kreck Test, by Kendall Co.  Here a 1 in. x 12 in. to 15 in. strip of tape is laid without

pressure onto a standard stainless steel test panel. The panel is mounted into a test jig,

which ensures that the tape remains at a constant 90° when stripped from the panel at
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12 in./min.  Because the tape must maintain an angle of 90°, the jig must move the test

panel at the same rate as the tape is being stripped.  The Chang Test differs from the 90°

peel test because the tape is laid on the test panel without any applied pressure, then

peeled immediately at 90° (Johnston, 1983a).

One of the problems with the Chang Test can be seen with a Bond Stress Analyzer

device, which is used in conjunction with a standard adhesion tester.  With this

equipment, it is possible to see the spectrum of forces at work, ahead of and following the

point of peel. The Bond Stress Analyzer shows an area of compression just behind the

peel, which results in automatic pressure application of the tape to the test panel, no

matter how small the initial application pressure.  This compression is in the nature of

peeling and is affected by the degree of flexibility of the backing, so what is happening is

that the tape is effectively applying itself to the panel with pressure immediately

following the peel zone.  In effect it becomes a 90° adhesion test (Pizzi and Mittal, 1994),

and the additional pressures applied to the adhesive may affect the accuracy of the

results.

Other tests that were used to examine the tack of an adhesive include Frank Wetzel’s

modification of the Controlled Rate of Extension Tester, and the Polyken Probe Tack

Tester.  Wetzel proposed a probe tack testing device that could be fit to the standard

Controlled Rate of Extension tester.  In this proposal, Wetzel used a 1/16 in. diameter

brass probe attached to a known weight of 10 grams, which was then mounted in a metal

housing so that it could slide freely vertically.  An adhesive sample was mounted on a

horizontal plate in the lower jaws of the tensile tester, and the probe unit was mounted in

the upper arm attachment.  The sample was brought into contact with the probe so that

the full weight of the sliding probe assembly rested on the adhesive surface.  The sample

was then held for a controlled period of time and then withdrawn at a controlled rate.

Usually the best results were found with a dwell time of 1 sec and a rate of contact and

removal of 20 in./min, approximately 1 cm/sec.  For the results to be gathered accurately,

it was essential that a high-speed recorder or oscilloscope be used to observe the

behavior.  For the first time with the implementation of this test, there was an apparatus

that could be used as a research tool  (Johnston, 1983b).
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Though the Wetzel apparatus gave fairly reliable results, the test was abandoned and

replaced by the Polyken Probe Tack Tester, developed by Hammond of Kendall.  It is

considered to be a redesign of the Wetzel method into a relatively simple, inexpensive

portable unit.  For this case the probe is attached to a force gauge, and the adhesive

sample being tested is attached to an annular weight to control the applied pressure.  The

dwell time and the rate of the test correspond with Wetzel’s method, but the test area is

approximately ten times larger.  A Kendall Tester was developed for research

investigations, and several types of testers have been developed along this same theme

(Johnston, 1983b).

1.2.3 The Main Tests

There have been and still are many tests that measure tack.  From those, there are three

tests that are the most popular, as shown through their wide use and acceptance in the

industry.  The modern-day probe tack test is conducted by bringing the probe into contact

with the adhesive tape, which is attached over an annular weight (giving contact

pressure), maintaining contact for a pre-determined dwell time and then pulling off at the

set separation speed.  For this test, the tack measurement is defined as the maximum

force measured while separating the surfaces.  Tack usually increases with contact

pressure and dwell time, and the value is expected to improve as the adhesive spreads

(Duncan et al., 1999).  Mechanical probe tack tests are intended to be simulations of

thumb or finger tack tests (Satas, 1989).  For the probe tack test, it is difficult to

accurately control the variables: probe material and finish, probe diameter and shape,

load on probe, thickness of adhesive, dwell time, rate of debonding of probe from the

adhesive, and test temperature (Aubrey, 1992).  One of the benefits of the probe tack test

is that the effect of the tape backing is eliminated because the tape is either rigidly affixed

to a steel plate or mounted on an annular ring of known weight (Pocius, 1997).

Another test commonly used to measure tack is the Roller Ball Test. There are several

variations of this test, but each test operates on the same basic principles, with results

being influenced by the adhesive thickness, the bonding of the adhesive to the backing,

and the backing stiffness.  A section of adhesive is placed on a ramp inclined at a

predetermined angle.   A single steel ball, or a series of steel balls with increasing
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diameters one at a time, is released down the ramp.  Tack of the adhesive is indicate by

the distance the balls travel on the adhesive layer before stopping. The shorter the

distance the ball travels, the greater the tack; the longer the distance, the lower the tack.

Besides determining the tack, this test serves as an indicator of the softness and mass of

the adhesive. The test is quick and easy to perform, but is not intended as an investigative

tool, since the results do not correlate well with application results, and the test is

unreliable for water-based systems (Roberts, 1997; Pizzi and Mittal, 1994).  The rolling

ball tack test was developed when most pressure-sensitive adhesives were composed

from natural rubber and tackifying resins.  With such adhesives, there is an approximate

relation between rolling ball and thumb tack.  For adhesives containing synthetic

elastomers or single component adhesives, however, the results of rolling ball and thumb

tack tests are not comparable.  Many functional adhesives synthesized from acrylates and

other monomers do not stop the ball in the maximum prescribed length of tape and thus

have no apparent rolling ball tack (Hammond, 1982).

The loop tack test is another test that measures the tack of an adhesive and is the focus of

this research. The test is set up with a 1 in. wide strip of backing, coated with adhesive.

The strip is folded into a loop configuration with the adhesive exposed.  This loop is then

placed in a machine, a tensile tester, where it is pushed downward at a constant speed, the

industry standard being 300 mm/min.  The loop contacts the substrate, and wets out to a

length of about 1 in..  The loop is then pulled upward at the same speed as it went

downward, until it debonds from the substrate.  The maximum force required to debond

the loop is recorded as the tack value. Of the organizations that govern testing, several

use the loop tack test as their means of measuring tack.  These include American Society

for Testing and Materials (ASTM), Tag & Label Manufacturers Institute (TLMI), and

FINAT.  The FINAT procedure follows the same process as mentioned above, but the

specific language of the testing procedure includes the provision that the substrate be

glass, while the other testing procedures use highly polished (non-rough) metal surfaces,

such as aluminum, as the standard substrate. Unlike other tests, the loop tack test allows

the combined behavior of the adhesive and the backing to be measured, since the stiffness

of the backing material significantly affects the results.  Advantages of the loop tack test

include that it can be used over a wide range of adhesive types and is best for
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distinguishing modes of failure (Eppink and Frye, 1999).  Some disadvantages of the

loop tack test are that even in a single test, the loop tested is subject to variable peel

angles and contact times.  The results of the test also suffer from the large influence of

the stiffness or flexibility of the tape backing on the magnitude of the force measured.  A

cause of this influence is the compression zone that presses the adhesive into contact with

the adherend just ahead of the zone where the tape is being peeled off, and the magnitude

of the compression force depends on the backing properties. Loop tack tests have the

advantage of requiring only simple fixtures mounted on standard tensile testers.  Though

tedious, the loop tack test is quite easy to carry out, and is somewhat reproducible.  Loop

tack tests can very effectively assess the tack of adhesives on film or sheet (paper)

backings for applications that are closely approximated by test conditions.

1.3 Summary

There are many ways and formulations used to measure and determine tack.  Quantifying

tack often frustrates the industry, because tack is defined and measured in many, usually

incomparable ways for different industrial applications.  Therefore, measured values are

often not transferable between applications, leading to retesting of the same properties

(Duncan et al., 1999).  There is very little consistency throughout the industry regarding

the best way to measure tack.  This is best shown from the results of Roberts’ round-

robin lab experiment, that had thirteen laboratories all test the same adhesives using the

loop tack test.  From this experiment it was found that, in most test cases, different labs

achieved the same classification of the tack of an adhesive, but the manners in which this

value was achieved varied tremendously.  Since there are few specific instructions in the

testing procedures and there is often confusion on which method is more accurate, there

has been some discussion of creating a more standard practice of measuring tack so that

experiments can be reproduced from lab to lab with consistent results (Roberts, 1999).

Many of the topics discussed in this chapter came as the result of laboratory testing.

There have been several attempts to look at the loop tack test from a more mathematical

standpoint.  Authors such as Duncan and Hu explored the use of finite element analysis to

predict the stresses and deflections in the loop tack test.  Crosby and Shull (1999) also

tried to create a numerical method to compare with laboratory results.  These models
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seem to focus more on the stress and strain in the testing system.  The research in this

thesis focuses on the physical factors that affect the loop tack test.  The model created

seeks to predict the behavior of the loop throughout the test without having to run the

actual test, by specifying the parameters of a particular tape to be tested.
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Chapter 2

Objectives and Formulations

Though there are many descriptions of the loop tack test in the literature, there are few

attempts at an analytical model of the system. This research seeks to create a method by

which the loop tack test can be analyzed and various factors affecting the test’s outcome

can be examined, in order to increase understanding of the behavior of the adhesive and

backing during the loop tack test.

2.1 System Assumptions

This research develops a computer model program by which a set of parameters and

conditions can be analyzed, and seeks to obtain an accurate description of what will

happen in actual lab tests.  Several assumptions were made in generating the analysis

program.  The first is that the system is elastic. This assumption means that after going

through the cycle of the test, the loop will return to its initial configuration. Another

assumption that was made was that debonding occurs at a certain elongation of the

adhesive.  This elongation of the adhesive is dependent on the maximum pressure

encountered at a location.  It was also assumed that as the loop is bent, it maintains a

continuous slope, and the strip is inextensible.  Also, the weight of the loop is ignored,

and the adhesive, when on the substrate, is modeled as an elastic foundation.

An elastica is defined by Antman and Pierce (1990) as “an unshearable incompressible

column for which the bending couple depends linearly on the curvature.”  In the first part

of this thesis, the adhesive strip will be an elastica by this definition.  However, in the last

cases treated, the relationship between the bending moment and curvature will be

nonlinear, but the strip may still be referred to as an elastica.

2.2 Computer Model

The model for this problem is solved numerically using the computer program

Mathematica.  A series of programs have been written using the shooting method.  The

shooting method is a numerical method, in which certain values are known and other

values are unknown.  Guesses are made for some of the unknown values, while the

program solves for the others.  Taking the initial guesses and known values, the program
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shoots towards an answer that will solve the system of equations.  Many times the

program would shoot toward the “wrong” answer, illustrating how there are sometimes

multiple solutions to the problem, but there is only one that will correctly solve the

problem from a physical point of view, and be consistent with the compiled data.

Described here is the original formulation of the model; modifications will be mentioned

as changes are made in the program.  In Figure 2.1 the loop is shown in its initial

configuration.  Due to the symmetry of the loop, it is possible to analyze half of the loop

as shown in Figure 2.2.  The variables that are listed in the figure stand for the following:

R  represents the equal and opposite vertical forces that act on the half of loop in the

middle position;

MA is the moment at A, at the bottom of the loop;

MC is the moment at C, at the top of the loop;

P is the horizontal force acting on the loop;

H is the total height of the elastica);

S is the arc length;

Figure 2.1. Teardrop Shaped Elastica
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  Figure 2.2. Half of Elastica to be Analyzed
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θB  is the angle of the elastica tangent with the horizontal at what is termed point B,

which is the point of separation between the elastica and the substrate;

X, Y  are the horizontal and vertical coordinates, respectively

The dimensional equations governing the system are as follows:

E is the modulus of elasticity and I is the moment of inertia of the cross section.  In

creating this model, the values were nondimensionalized so that the units would not be

involved. All following descriptions and figures are in terms of nondimensional

quantities.  These quantities are as follows:

After nondimensionalizing each variable, the equations that define the problem are as

follows:

EI

LM
m

EI

LM
m

L

H
h

EI

ML
m

EI

RL
r

EI

PL
p

L

Y
y

L

X
x

L

S
s C

C
A

A ========= ,,,,,,,,
22

θsin=
ds

dy

θcos=
dS

dX

(2.1-2.4)

(2.5-2.13)

(2.14-2.17)

θsin=
dS

dY

θθ cossin RP
dS

dM −−=M
dS

d
EI =θ

θcos=
ds

dx

θθ cossin rp
ds

dm −−=
m

ds

d =θ



18

      
r r

2r

Figure 2.4.  Teardrop Shape with Contact Length
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Figure 2.3. Loop with Point Load Acting

2.3 Overview of Test Cases

From this foundation, several formulations of the original problem create the work and

analysis for the bulk of this thesis.  These cases are put forth here as an overview of the

cases that will be further explained as the body of the thesis continues.

2.3.1 First Example – Point Contact

The first case verified that the program was

working and that the expected results were

achievable. This first example portrays the loop

right before debonding from the substrate.  Here

the loop has only a single point of contact (in

profile) left to release before the loop tack test

would be finished in the pulling part of the cycle.

As shown in Figure 2.3, the loop is acted upon by

one force with an equal and opposite reaction.

This force is termed 2r, and acts at the center of the loop.

2.3.2 Second Example – Flat Contact

While in the initial stages of the computer

analysis, experimental work on the loop tack

test in the laboratory displayed the loop’s

configuration throughout the entire testing

cycle.  During this experiment, it became

apparent that the first model of the loop was too

round because the elastica in the laboratory

experienced a localized curvature near the peel

front, and became almost triangular in shape

during the pulling phase of the cycle.  With this in mind, the second formulation of this

problem was created.  This was a formulation, in the computer model, which seemed to

emulate the pattern set by the lab specimens. This example changed from the first one in

that now instead of having the vertical reaction, 2r, acting directly in the center of the



19

loop, it is separated into two individual forces, r, acting a specified contact length, 2b,

apart, as seen in Figure 2.4.

2.3.3 Third Example - Pushing and Pulling

Even though the loop was now achieving a triangular shape, it still followed the trends of

its predecessor and did not achieve the results that were shown in the laboratory

experiments.  Therefore, the next formulation for the experiment abandoned the forced

triangulation of the second example.  This third example changed two factors of the

programs that were analyzed by Mathematica.  The first of these is that now the adhesive

was no longer seen as being on the outside of the elastica, but the adhesive was analyzed

as being on the substrate, with the backing pushing into the adhesive mass. This is an

equivalent analysis to having the adhesive on the loop, as shown in Figures 2.5 and 2.6.

 The second change that took place with the third formulation was that the analysis now

included the whole cycle of the loop tack test.  Previously, the other two examples

included only pulling the elastica from the substrate.  Now the loop experiences both the

pushing into the substrate and then pulling up from it.

2.3.4 Fourth Example – Adding Contact Time Dependence

The fourth and last formulation that will be covered in this thesis is a further

extrapolation of the third example.  This example looks at the elastica in the same way as

the previous one but is more realistic, because it takes the adhesive’s time of contact with

the substrate into account. This creates a system in which the longer the adhesive is in

d

h

B

Figure 2.5. Loop with Idealized Foundation

u

B

Figure 2.6. Loop Pulling up From Foundation
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contact with the substrate, the harder it should be to remove that part of the loop from the

substrate.

Each of these components models a specific characteristic of the loop tack test.  Each

method of looking at the problem develops its own solutions and trends that will give

better insight into understanding the behavior of the backing and adhesive during the loop

tack test.
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Figure 3.1.  Loop with Point Load Acting

Chapter 3

Point Contact

Figure 3.1 illustrates the basis for the first example.  The model duplicates the loop tack

cycle right before the loop leaves the substrate, because it is in this time frame where the

tack force may be at its peak value. As given in

chapter two, the first example follows the

nondimensionalizing equations numbered 2.5

through 2.13, and also adheres to the preliminary

shooting method equations 2.14 through 2.17.  In

addition, there are a few boundary conditions that

constrain the loop’s behavior and they are as

follows:

At s=0: x=0, y=0, θ=0, m=mA (unknown).

At s=1: x=0, y=h (unknown), θ=π/2,

m=mC (unknown)

These boundary conditions ensure that the loop will maintain the proper configuration

during the running of the computer model.  This represents the loop’s restraints during

the actual lab test, where it is held in the jaws of the tensile tester or whatever machine is

testing the loop.  As mentioned before, it is obvious when the program shoots towards the

wrong answer because the graph produced violates the boundary conditions, causing the

loop to lose the proper orientation.

3.1 Shooting Method

All of the boundary conditions listed above followed by “unknown” in the parentheses

are values the program will determine.  In this example, r is a pre-determined value that

represents the force acting on the loop.  As r increases, the force acting on the loop

increases.  The values entered for p and mA are guesses.  With the initial guesses and the

predetermined values, the program solves for the actual values, which in most cases

differ from the initial guesses.  The solution for the unloaded configuration, r=0, is

known from previous research (Plaut et al., 1999), and is used as the guess for the first
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run of the program.  The value that is given as the answer, by the computer program, can

then be used as the initial guess for the next entered r value.  This process continues until

the program will no longer solve using the previous answer as the next guess.  Once this

option for guessing becomes ineffective, certain steps must be taken to make guesses.

One method of guessing was to use an extrapolation program that would estimate the

next value.  If that option did not work, then the next step was to formulate guesses

according to the current numerical trends the data was following.  For this example, the

program computed the values of p, mA, mC, h, xmax, w, which is 2 xmax, and the loop’s

shapes.

Starting with an r value of zero, the program was run until it was too difficult to generate

numbers, which occurred at an r value of 151. As the r value increase the loop becomes

taller and narrower.  With modifications to the program it may be possible to continue the

investigation, but the available data gives no indication of a debonding point, meaning

that this analysis could be approaching infinity.  In order to give an idea of the type of

data that the program returns, Table 3.1 lists a sample of the data returned for the

beginning and ending values of r.

Table 3. 1 – Sample Data from First Example

3.2 Results

The graphs that were generated from the collected data display the program’s responses

within the computer model.  Figure 3.2 is a graph of height, h, versus pulling force, r.

This graph proves that as the loop’s vertical pulling force increases, the loop’s height

continues to increase as well.  This result is expected and illustrates that the program is

following the predicted trend.  The graph seems to anticipate more results, in that it looks

as though it is at the point where it is coming to a plateau, and

r p mA h mC w
0 9.91181 5.38413 0.848616 -3.02719 0.408428

151 21.3843 18.6489 0.95325 -1.7356 0.176947
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gives no indication of a debonding point, showing that as h is asymptotically approaching

one, the r value is approaching infinity.

Figure 3.3 is a graph of the negative moment at point C, at the top of the loop, mC, versus

the force, r.  It shows that the moment decreases in magnitude, indicating that this region

of the loop is experiencing less moment as it is being pulled upward.  This makes sense

because at point C, at the top of the loop, the tape should become straighter, because it is

being pulled up and the loop is becoming narrower.
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Figure 3.3.  Bending Moment at Point C versus Force
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Figure 3.4 is a graph of the bending moment at A, mA, versus force, r. Unlike the previous

graphs, this graph shows an increase in the absolute value of the moment at point A, at

the bottom of the loop.  As the bottom of the loop achieves a higher curvature, the

moment there increases.  From equation 2.16, it is known that moment is proportional to

the curvature.  Due to this fact, curvature increases as the force is increased, meaning that

the moment at A increases.

Figure 3.5 shows the width, w, versus the force, r, where w is the total nondimensional

width of the elastica that is in contact with the substrate.  This graph indicates that the

total width of the loop touching the substrate is decreasing as the loop is being pulled

upward.  This is expected and is consistent with the first graph, Figure 3.2, because as the

loop is being pulled up it becomes taller, which would indicate that less of its length

should be in contact with the substrate in the actual loop tack test.

Figure 3.6 is a graph of horizontal force, p, versus vertical force, r.  This graph shows that

as the vertical force r increases, so does the horizontal force, p.  This indicates how the

loop is pushing against itself.  As the horizontal force increases, it gives an indication that

the loop is coming closer together and is changing shape.
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Figure 3.4. Bending Moment at A versus Force
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Each of these graphs gives an indication of a value that is important in the development

of this computer model.  Thus far, the trends that were anticipated are shown by the

current data.  As the analysis continues, it will be observed whether or not this trend

continues.

In addition to these graphs, the loop shapes that Mathematica generates as a part of its

analysis are also of interest.  Like the graphs, the shapes in Figures 3.7 through 3.10

illustrate the different stages that the loop experiences as it is pulled upward.  These

diagrams are helpful in visualizing how the loop changes throughout the pulling process.
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       Figure 3.9. Loop with r = 50     Figure 3.10. Loop with r = 100

Figure 3.7. Loop with r = 0
Figure 3.8. Loop with r = 25
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3.3 Transition

Like the laboratory testing that was conducted, it can be seen that these shapes do follow

the expected trends as a “real” loop would experience under actual experimental

conditions.  The loop is no longer a floppy teardrop shape, but progresses from this initial

shape to a narrower shape that gives the indication that the loop is slowly being pulled

from the substrate.  Unlike the laboratory results, which exhibited a localized curvature at

the peel front, as the loop is pulled from the substrate, these diagrams are rather round.

The localized curvature will be accounted for, to some extent, in the next formulation of

the problem.
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Figure 4.1.  Loop Pulling Up From
Substrate
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Figure 4.2. Teardrop Shape with Contact Length

Chapter 4

Flat Contact

Concurrently with the beginning of this computer analysis, there were also laboratory

experiments of the loop tack test being conducted.  Upon visiting the laboratory and

watching several runs of the test, it was observed that the loop experiences localized

curvature at the peel fronts as it is being pulled from the substrate, as illustrated in Figure

4.1.  Unlike the results coming from the computer,

which showed the loop remaining round for the

complete process, the experiments showed that the

loop achieved a triangular shape during the test.

After witnessing the laboratory experiments, an

attempt was made to create a model that would allow

for the localized curvature seen in the actual lab

experiments.

The new variable that is introduced in this part of the

analysis is b, which is half of the contact length in

nondimensional terms.  It is half the distance that the

elastica is wetted out on the substrate surface. The

contact length now separates the vertical forces acting on the loop, pulling down on the

bottom, as shown in Figure 4.2.  The loop is

assumed to be flat in the contact region.

4.1 Simple Model of Peeling

An attempt was made to model the high localized

curvature by simplifying the system into its most

basic parts, as shown in Figure 4.3, in non-

dimensional terms. This process will be called the

simple peeling procedure and was devised so that

an idea of what was happening in the system could

be more easily determined.
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Figure 4.3. Simplified Peeling Model

Since the loop in the lab portrayed a triangular

shape during the pulling off portion of the loop

tack test, initially it was thought that modeling

the loop as a triangle would be a way to better

understand what was going on in this particular

situation.  With the loop as a triangle, it was

assumed that the lift-off point, B, moves inward

when the horizontal component of the pulling

force at that point reaches a certain value J.  This

value J is the value of the force that causes lift-

off at point B.  This happens until r reaches an ultimate value of rU.  For this case, and all

others, the nondimensional length of the loop is two.

The equations that cover this methodology of analysis include

                              
b

b

−
=

1
sinα                                     

b

h

−
=

1
cosα

     
h

b=αtan

where  bh 21−=  and 2/)1( 2hb −=

                       from  b2 + h2 = (1-b)2

Point B will move inward when J
h

rb =  or when

b

b

J

r 21−=
21

2

h

h

J

r

−
=

These values can be plotted for the data range of 0 < h < 1, and 0 < b < 0.5, as shown in

Figures 4.4 and 4.5.  Using the data from the laboratory experiments, when the shape is

almost triangular, there can be a plot of height, h , versus force, and if that curve looks

like the r/J curve, then J can be estimated.  Using the Mathematica program there were

several graphs that indicate how the r/J graphs should look.  This simple model was

(4.1-4.3)

(4.4-4.5)
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abandoned because the two curves that were obtained do not follow the same form, as

will be seen in later chapters.

4.2 Ramberg-Osgood Model

The next step in moving forward was to create a new type of analysis.  Previously, the

analysis was simply a linear elastic analysis.  From the laboratory experiments, it was

observed that the material did not act like a linearly elastic beam, but it was more likely

that the material “softened” as the test was being performed.  Because of this nonlinearly

elastic behavior, the program was modified to try and take the high localized curvature

region into effect. This was done by keeping the basics of the model that were discussed

in chapter two, and by adding a nonlinear part to the program.  This was accomplished

with the use of the Ramberg-Osgood nonlinear theory, and relating the curvature to the

bending moment as follows:

Here, β and n are positive constants, and EIo is the initial bending stiffness.  The

constants can be modified in order to indicate how the material being tested deforms.

The quantity EIo is used to nondimensionalize the rest of the variables that are not

lengths, as follows:

n
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The nondimensional form of 
^

β is

With this in mind, the formula is now

where n is greater than one.

Values of β and n were determined by trying to use values that would give an acceptable

curve shape.  Equation 4.18

                                                y = x + βxn  (4.18)

was plotted in order to verify which values for β and n would be appropriate.  Figures 4.6

through 4.9 illustrate the results that were obtained.  From these plots it was originally

determined that the best values would be n=2 and β=1.5.  However, there were some

difficulties with this configuration, which created problems within the program and
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Figure 4.10. Model of Loop System Used in Analysis

prevented it from working properly.  Therefore, after several test runs to measure how the

program reacted to different numbers, it was decided that the best values to use would be

n=3 and β=0.01, which are the values that are used throughout the research.

4.3 Results

Since the modified version of the peel model

was unsuccessful, a model similar to the one

discussed in Chapter 3 was used.  As can be

seen in Figure 4.10, this model is very

similar to the previous one.  The main

difference is that now the contact length is

taken into account and is specified.  It is

assumed that the tape in the region of the

contact is flat.  For a fixed b, values of p and

mB are varied till the conditions at s = 1-b

are satisfied with sufficient accuracy.  This

model is constrained by the following

boundary conditions.

At s= 0:  x = 0, y = 0, θ = 0, m=mB

At s=1-b:  x = -b, θ  = π/2
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For fixed b, values p and mB are varied until the conditions at s = 1-b are satisfied with

sufficient accuracy.   Included are the results for the two cases of b values, b=0.1 and b=

0.2, that were analyzed.  Both of these cases follow the same general trend and will be

discussed together.

Figures 4.11 and 4.12 plot the graphs for the height, h, versus the force, r.  These graphs

show the same trend that was experienced in the first example.  As the r force increases,

the height of the loop increases as well.  Once again, as was anticipated, the loop is

successfully pulled up from the substrate.  What is interesting is that the set of data with
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b= 0.1 is able to achieve a significantly greater height than with b=0.2, most likely

because there is less of the elastica’s length that is in contact with the substrate for the

b = 0.1 case.

Figures 4.13 and 4.14 depict the moment at point B, mB, versus the force, r, and once

again continue the previous trend started in the preceding example.  As the r value

increases, so does the absolute value of mB. There may be a number of reasons why the

moment at this point increases, but it is most likely because as the tape is pulled up, and

the loop is coming closer together, and the moment at the edges is increasing.  This

would verify that the curvature at the peel fronts would be increasing, since the moment

is increasing, causing a greater bending in this area.

Figures 4.14 and 4.15 show the mC graphs.  These graphs are interesting because these

graphs appear to be quite different.  The graph for b=0.1 seems to follow the same trends

as before, in that as r is increasing the mC magnitude is decreasing; eventually near the

higher r values this graph does show an upward trend, which was not seen in the data of

chapter 3.  The graph corresponding to b = 0.2 does follow the trends set by the other

graphs for this same data, but the mC value begins to increase at a much lower r value.  It

is uncertain why this occurs.  The trend shown in the b = 0.2 graph shows that the

moment magnitude at first starts to decrease with the increase in r, but after reaching a

certain minimum point, the graph starts to move in the opposite direction.  It is possible

that this is because of the greater amount of the elastica that is on the substrate.  Last of
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all, Figures 4.17 and 4.18 present graphs of the horizontal force, p, versus the vertical

force, r.  For both the b = 0.1 and 0.2 cases there is the same trend that existed previously.

As the r value increases, so does the p value. The curve for b=0.2 has a greater slope than

for b=0.1, possibly because the p force experiences a greater change over the same set of

r force values.
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As shown in Figures 4.19 through 4.24, the shapes of the loop display a localized

curvature at the lift-off points, as was the goal of this model.  However, the figures show

that the loops have this localized curvature throughout the duration of the loop tack cycle.

This should not occur in practice, because what was observed in the laboratory was a

localized curvature near the completion of the loop tack cycle.  There is a significant

difference between the shapes for the case where b = 0.1 and where b = 0.2.  As is

noticed through the shapes, the cases with b = 0.1 are taller as they progress throughout

the process and these loops also become narrower that the other set, because of the

difference in contact length.

4.4 The Next Step

This example did an adequate job of beginning to look at the localized curvature

experienced by the system.  There are still some issues needing to be addressed, that

could not be taken into account with this model.  The next model seeks to address the

loop tack test as a whole, by looking at both the pushing and pulling parts of the test and

by adding some features that will make the analysis more realistic.
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Figure 4.18. Horizontal Force versus Vertical Force, b=0.2
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Figure 4.22. Loop with r = 0,
b = 0.2

Figure 4.23. Loop with r = 50,
b = 0.2

Figure 4.24. Loop with r = 130,
b = 0.2

Figure 4.19. Loop with r = 5,
 b = 0.1

Figure 4.20. Loop with r = 50,
b = 0.1

Figure 4.21. Loop with r = 100,
b = 0.1
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Chapter 5

Pushing and Pulling

5.1 Introduction

The examples that have been looked at thus far have been investigative tools to better

understand the behavior of the loop tack test.  Both of the previous examples focus on

pulling the elastica from the substrate.  Now, the complete cycle is observed from

beginning to end: pushing into the substrate and then pulling up from the substrate.  This

analysis is conducted viewing the adhesive as being on the substrate plate, while the

backing pushes down into the adhesive mass, an equivalent analysis case to what was

used before.

The nondimensional variables that are introduced in this section of the research are d, u,

g, k, sC, and um.  These variables are as follows:

d is the distance that the elastica will push down into the adhesive foundation.

u is the distance above the adhesive foundation level to the point where there are no

longer any fibril structures hanging onto the elastica, point B.

k represents the relative stiffness of the adhesive and the backing.  The dimensional

stiffness of the adhesive foundation is denoted K, in units of force per length squared, and

k is defined by k= KL4/(EI), where E is the initial modulus of elasticity of the backing, I

is the moment of inertia of its cross section, and L is half the length of the loop.  If the

cross section has width W and depth Hb, then I = Hb
3W/12.  Also, if the adhesive has

width W, thickness Ha, and modulus of elasticity Ea, then K=EaW/Ha, and k =

u

B

Figure 5.2. Pulling Phase

d

h

B

Figure 5.1.  Pushing Phase



39

X

Y

θ

p

p

A

r

C

-gA

mC

B
s

mA

η

ξ

z
φ

Figure 5.3. Loop Model for this Model Formulation

12EaL
4/(EHaHb

3).  For example, if L = 45 mm, E = 1,000 MPa, Hb  = 0.13 mm,

Ha = 0.025 mm, and Ea = 0.15 MPa, then k = 1.3 x 108.  This means that the greater the k

value, the less stiff the loop being tested.

 Two different k values, k equal to 106 and k equal to 104, were investigated. Because the

k value represents the stiffness of the adhesive and backing, the results from both of these

analyses will give an indication of the role that stiffness plays in this test.

sC is the length of the elastica measured from point B to point C.

um represents the maximum deflection experienced for a certain r value.

g is the vertical force in the loop between points A and B, with value gA at A.

 The nonlinear elastic analysis of the Ramberg-Osgood analysis is maintained for this

program as well as for the rest of the research.

5.2 The New Model

The loop is divided into two parts.  The first

is from point A to point B, and the second

part of the loop is from point B to point C,

as can be seen in Figure 5.3. The bottom

part of the loop, from point A to point B, is

the part of the loop that is in contact with

the foundation.  The upper part of the loop,

from point B to point C, is the part of the

elastica above the foundation.  The loop

was split because the equations in each section are somewhat different.   In the section

from A to B, the arc length from B is z, the horizontal axis is ξ, the vertical axis is η, and

the angle of the tangent from the horizontal is φ, with positive senses shown in Figure

5.3.  At B, s = x = y = z = ξ = η = 0 .  The equations that govern this formulation of the

problem are as follows:

3mm
ds

d βθ += (5.1-5.3)θcos=
ds

dx θsin=
ds

dy
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In this formulation b, k, and β are given quantities, while the values p, q, θB, mB, and sC

are each entered as guesses, and will be solved for by the program.  Following are the

loop’s boundary conditions for this problem:

At s=0:  x=0; y=0; θ=θB; m=mB

At z =0: ξ=0; η=0; φ=θB; m=mB; g=-r

At s=sC:  x=-b; θ=π/2;

At z=1-sC: ξ=b; φ=0; g=0

Next, the lengths are scaled to unity using these two equations:

Cs

s
s =
~

      
Cs

z
z

−
=

1

~

For 0≤ 
~

s ≤1, and 0≤
~

z ≤1

~

1

sd

d

sds

d

C

= ~)1(

1

zd

d

sdz

d

C−
=     (5.12-5.13)

and the governing equations are:

θcos~ Cs
sd

dx =                       θsin~ Cs
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~ mms
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d
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(5.10-5.11)

(5.14-5.22)

(5.4-5.9)
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b = 0.2

uM(0.20)

uM(0.19)

uM(0.02)uM(0.0)

          Figure 5.4. Concept of um for Debonding

Also, 0~ =
sd

dsC  and sC should be treated as a constant.

The variable that represents both 
~

s  and 
~

z  is t in the computer program.  In the

first five equations

                                             
Cs

s
t =  (5.23)

and in the other equations

                                            
Cs

z
t

−
=

1
  (5.24)

The boundary conditions for the example change to the following, now that s and

z are represented by t:

At t = 0: x=0, y=0, θ=θB, m=mB, sC= sC, ξ=0, η=0, φ=θB, m=mB, g=-r

At t = 1: x=-b, θ=π/2, ξ=r, φ=0, g=0

These equations govern for both the pushing

and pulling parts of the model.  Adding the

numerical factor, um distinguishes the

pulling part of the model from the pushing.

This value um is determined by the

maximum deflection experienced for a

certain b value. Adding um makes it so that

the pull off condition at point B is dependent

on the maximum pressure that was felt at the

location during pushing and the previous

pulling, and represents the stretched length

of the adhesive at which debonding occurs.  This pressure  creates a resistance of the

adhesive so that it is harder to pull the elastica up than it was to push down, and also

makes it more difficult to pull up the adhesive as the peel front moves toward the middle.

The equation for um is assumed to be um=j*max η(b), where j is a constant and will be

equal to 5.  That is, the adhesive is assumed to debond at a location when it reaches a
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length that is five times the maximum compressed distance (max η) that occurred at that

location (see Figure 5.4).  Some numerical results are presented in Appendix A.

During pulling, equation 5.22 becomes equation 5.23, in order to indicate pulling, instead

of pushing.

                                                     ))(1(~ mC usk
zd

dg −−−= η  (5.23)

Another equation that was changed is internal to the program, and can be seen in the

version of this program in Appendix B.

5.3 Results

The results are now presented for the two cases analyzed, where k = 104 and k=106.  The

results follow the same trends as in previous chapters. The pulling and pushing graphs

have been combined, so the whole system can be seen together.  The loop was pushed

until b=0.2, which corresponds to the maximum achieved in the laboratory experiments

where the maximum contact length was 1 inch.  The first graphs are those of the force, r,

versus the height, h, shown in Figures 5.5 and 5.6. Even though the pushing is included in

the graph, there is little change in the trend of the results than what was previously

experienced with the other examples.  The pushing part is labeled and Figures 5.5 and 5.6

show that as the force is pushing the loop downward (r is decreasing) the height is

decreasing.  As the force begins to pull in the opposite direction the height of the loop

increases, until reaching a peak force value.  This is the trend that is expected. In looking

at the results for both sets of data, it can be seen that the less stiff elastica  (k = 106)

achieves a greater height, probably because there is a greater resistance to keep it on the

substrate.  The stiffer elastica (k = 104) does not achieve as high of a height, most likely

because the stiffer the elastica, the more likely it is to want to “pop” off from the

substrate. The less stiff elastica has a tendency to stay in contact with the substrate

longer, which may cause the greater tack value.
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If the vertical force r is controlled, then the loop separates from the substrate at the

maximum point of the plot of r versus h.  If the vertical deflection at the top of the loop is

controlled, then separation occurs when the curve has a vertical tangent (i.e., at the

greatest value of h on the curve).

Figures 5.7 and 5.8 are the graphs of the force, r, versus the contact length, b.  As was

witnessed before, as the force is pushing down, the contact length increases.  The contact

length goes to b=0.2. As the force begins to pull up, the contact length decreases.  These

trends are shown in the graph by the curve first going down with the increasing b values

and then the graph peaks and then returns to the initial value as the b value decreases,

although the loop separates from the substrate before that.
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If these experiments were to be conducted in the lab the peak would correspond to the

tack.  So, it is assumed that the peak shown in the previous Figures 5.5 through 5.8

corresponds to the tack force for the computer generated data.  In the lab data it was

found, there was often a plateau before this peak.  In the computer generated data there is

no plateau, and this may be because in the computer analysis there is no fibril structure

that is taken into account.  In the laboratory experiments the fibril existence may cause

the plateau because previous research suggests that fibril formation adds to the tack force

(Zosel, 1998)  From this data it can also be seen that the elastica with k = 106 achieves a

higher peak force than the one with k = 104.  This would indicate that the greater the

relative stiffness of the adhesive, the greater the tack force will be.

There are several other graphs that further show how the system is operating, and the

trends that are found within the system.  The first is mB versus b, seen in Figures 5.9 and

5.10.  This shows a similar trend for both systems.  As the contact length is increasing,

the mB value decreases during the pushing phase of the cycle and then begins to increase

as the loop is pulled upward, indicating that less moment is experienced at point B as the

loop is pulled upward.

Next, the graph of θB versus b, Figures 5.11 and 5.12, shows that as the contact length

increases, the angle that is experienced at the lift-off point B increases initially from zero

and then decreases for a short time before remaining constant. During pulling the angle

increases and after peaking, decreases until returning to the initial value.  It is interesting
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to note that the angle peaks at quite different values of contact length in the two cases

during pulling.

Continuing, Figures 5.13 and Figure 5.14 illustrate the next piece of data in the graphs of

the horizontal force, p, versus the contact length, b.   These graphs, like many of those

before it, show the same trend.  As the contact length increases, in the pushing phase, the

horizontal force, the p value, decreases and then begins to increase as the pulling phase

begins, till there is a maximum point, and then the p value again begins to decrease.

The graph for sc (the arc length of the part of the loop that is not in contact with the

foundation) versus contact length, b, is a straight line, for both pulling and pushing.  In

the k= 104 case there is a slight difference between the two, but for the most part, these
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values are essentially the same for a given contact length.

Figures 5.17 and 5.18 display the graphs of the magnitude of the bending moment at

point C, mC, versus the contact length, b.   This trend is different from what the rest of the

graphs are experiencing.  This is because as the contact length increases, in this case, the

value for the magnitude of the moment at point C increases until the peak value is

attained, and then as the contact length decreases the value decreases.

Another graph that is considered here involves the maximum contact pressure

experienced by the loop, determined by multiplying k times the maximum deflection,η.

From this graph it can be shown that the pressure experienced is relatively the same at the

end of the pushing phase (as b increases to 0.2) and the beginning of the pulling phase (as

b decreases from 0.2), but as the elastica is further along in the pulling process, the
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pressures continue to increase. This may be an indication of the compressive forces that

are at work within this system.  Since this pressure is found by looking at the maximum

deflection, these graphs suggest that the maximum deflection is experienced as the

elastica is being pulled up, which may be contrary to what one might think.  This is

similar to a peel test: as the top of the loop is pulled upward, part of the loop in contact

with the foundation may be pushed further into the foundation.

The computer generated shapes, as they go from pushing to pulling, are shown in Figures

5.21 through 5.28 for the case of k = 106 so that one can get an idea of what is going on

here. The shapes go through the whole cycle, starting at b=0.01 and running till the

maximum contact length value, b =0.2, in Figure 5.24, and then pulling till b = 0.01 (just

before the loop separates from the foundation).

5.4 Transition to the Next Chapter

Even though the current program continues to improve in modeling the loop tack test,

there are still concerns about points the model does not address.  Realizing that the nature

of pressure sensitive adhesives leads to viscoelastic behavior, the last model begins to

take time effects into account.  This will not be a substitute for viscoelastic behavior, but

is an initial stepping stone.
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          Figure 5.21. b= 0.01           Figure 5.22. b=0.05

     Figure 5.23. b=0.15

            Figure 5.24. b= 0.2     Figure 5.25. b= 0.15         Figure 5.26. b= 0.10

       Figure 5.27. b= 0.05
         Figure 5.28. b= 0.01
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Chapter 6

Addition of Contact-Time Dependence

6.1 Introduction

Chapter five’s formulation of the problem accomplished some things that were not being

done by the previous examples.  Pulling the elastica from the substrate was the focus of

the first two examples, while the last example focused on the whole loop tack test cycle.

One of the factors that influences the whole process of finding the right formulation is the

fact that the adhesive acts like a viscoelastic material.  As mentioned previously it is not

this research’s purpose to account for these viscoelastic effects, but this final example

attempts to lay the foundation for the elemental effects of this viscoelastic behavior.  For

this formulation of the problem, the pushing part of the problem is exactly the same as

discussed in chapter five and will not change, but there are changes in the pulling side of

the cycle.

6.2 Contact Time

An attempt is made to model the viscoelastic behavior by focusing on the contact time,

which is the amount of time the elastica is in contact with the substrate.  The basis for the

previous example was that as the peel front approaches the center of the loop, the more

difficult it should become to remove the elastica from the substrate.  Besides the simple

position of the peel front, now how long the adhesive has been in contact with the

substrate, the contact time, is taken into account.  The longer that a piece or section of the

adhesive has been in contact with the substrate, the “tougher” it should be to pull that

piece of the elastica from the substrate.

6.3 Dependence of Contact Time on Height

Contact time is incorporated by taking advantage of how h, the height, changes with time

at a given location.  If dt

dh
 is constant, then the change of |h| is proportional to the contact

time, at a given location.  In order to determine the contact for a particular b value, all of

the heights corresponding to the b value are recorded.



50

 For a given b, the three h values to be considered are:

hI – height at the initial contact. This is the height of the loop for a particular b value that

is recorded during the pushing part of the program.

hP – height at the end of pushing. This is the height recorded at the end of the pushing

cycle.  This value is always the same and is the value for b = 0.2.

hS – height during pulling.  This is the height the tape will achieve for a certain b value,

as it is being pulled up from the substrate.  This value is estimated and put into the

program, which then solves for the actual height value. It is assumed that the dwell time

between pushing and pulling is zero (or if it is not zero, that its effect is negligible), so;

∆h is the change in |h|:  ∆h = (hI-hP)+(hS-hP), or, ∆h = hI+hS-2hP.     (6.1)

The difference in height corresponds to the change in time.  The greater the ∆h, the more

time this section of the elastica has been in contact with the substrate, and should be more

difficult to pull off from the substrate.  There are a few changes that happen in the body

of the program; for those changes, please see Appendix B.  The equation for um changes

to um = (5 + 10∆h)max η.  The factor 10 was chosen so that the um value is not too small

but will make a significant difference now that the height value has been included in its

calculation.  Thus the stretched length of the adhesive when debonding occurs is assumed

to increase linearly with ∆h (and thus with the contact time).

6.4 Results

Here again two analyses were studied, one for k = 106 and the other for k = 104.  Many of

these graphs do not return to the original starting point.  Because the system is assumed

to be elastic, these graphs should come together and meet.  Due to the nature of the

program, the analysis was ended after reaching a point where the elastica has debonded

from the substrate.  This point was determined by the height of the elastica decreasing

from the maximum height achieved in the analysis.  In the laboratory experiments this is

where the analysis would have ended, and so these points are not included in the graphs.

The graphs for k = 106 are incomplete, because data for the graphs at smaller b values

was not obtained.  There could be several reasons why the program experienced difficulty
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in converging to the answers for these points.  The nature of the viscoelastic phenomenon

that is being taken into account with this model could be causing the barriers found

within the program.  The data that was obtained is plotted to give a sense of the trends

and characteristics for this k value.  Figures 6.1 and 6.2 are the graphs for the force r,

versus height, h.  Once again in this data we see the similar trends.  Like the other graphs,

this graph shows that as the force acting on the loop increases during pulling, the height

of the loop increases as well.  Figure 6.1 most closely follows the data that was obtained

in the laboratory experiments, please see Appendix C.

Figures 6.3 and 6.4 display the graph of force, r, versus contact length, b.  As the force is

pushing, the contact length, b, increases.  As the force begins to pull up, the contact

length decreases.

Also, Figures 6.5 and 6.6 show the graphs of the angle at point B, θB, versus the contact

length, b.  As the b value increases in pushing, this quantity shows small changes, but as
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the pulling part of the program begins, this angle shows increased change as the contact

length is decreased. It makes sense that the angle at B should act in this manner, because

while pushing, the angle at B does not change greatly.  However, once the pulling starts,

the angle does change significantly as the loop is pulled upward.  This trend is

accentuated by the fact that this program intentionally seeks to make it difficult to pull

the loop up, and that is why there is such a drastic change in the angle throughout the

pulling process.

The graphs for the horizontal force, p, versus the contact length, b, are shown in Figures

6.7 and 6.8.  These graphs show that as the contact length is increasing, the horizontal

force, like θB, does not exhibit extreme changes, but does decrease.  While being pulled

up, however, the horizontal force does increase until it peaks, and then begins decreasing

again.
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Figures 6.9 and 6.10 once again illustrate that sc is almost the same for pushing and

pulling, since it is almost a straight line and it is hard to distinguish between the pushing

and pulling sides of the graph.  The last two graphs are those for the moment at point B

and the moment at point C versus the contact length, b, shown in Figures 6.11 through

6.14.  These follow the same trends as before, except the graph of mB shown in Figure

6.14 has an interesting dip that is unexpected.  It is uncertain why the moment at B would

change like this and not follow the trends previously witnessed, and begun in Figure 6.13.

Figures 6.15 and 6.16 graph the pressure.  These graphs are almost identical to those in

chapter five; however, these graphs do end at higher pressure values.
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Some of the computer generated shapes, for k = 104, are shown in Figures 6.17 through

6.19 during pulling.  These give a general idea of the loop’s behavior.  The shapes are

much taller and narrower than the ones previously generated.

6.5 Comparison Between the Last Two Formulations

Though the last two formulations are not significantly different from each other, in how

they are formulated or in how the data is obtained, there are some significant differences

that can be seen when some of the graphs are superimposed as far as the values that were

achieved for the maximum tack forces.  As was previously stated, the pushing part of the

system remains the same as that from chapter five to chapter six.  The change comes in

the pulling side of the graph.  Figure 6.20 shows the graph of the force, r, versus height,

h.  The line labeled chapter five corresponds to the analysis achieved under that system of

analysis, and the same is true for the line labeled chapter six.  From this graph it can be

seen that there is a considerable increase in the maximum tack force that is achieved.

The consideration of contact time adds a significant amount to the maximum force the

system is able to achieve, based on the criteria for debonding that were assumed here in

these two chapters.

Also, Figure 6.21 shows another comparison between the results of the two chapters.

This figure illustrates the difference in the force achieved against the contact length, b.
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Here it is shown that there is a large increase in the peak force that is achieved.  It is

interesting that the peak force occurs at the same location but in this case is about three

times as great in chapter six as that achieved with the analysis in chapter five.

Because the data for k=106 is not finished, no visual comparison is shown here.  Looking

at the figures in this chapter and comparing them with those in chapter five, it can be seen

that the graphs do follow similar trends.   The graphs created taking the contact time into

account, though not finished, are already achieving values significantly greater that the

maximums obtained in chapter five.

6.6 Transition to the Conclusions

These are the results that were generated from investigating the loop tack test through a

computer analysis instead of in the traditional laboratory methods.  There are several

conclusions that can be drawn from this research and there are also some things that can

be improved.  This research also brings up questions and concerns that it could not

answer and should be answered in subsequent research studies of other students.
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Chapter 7

Conclusions and Recommendations for Future Research

7.1 Summary

This concludes a body of work that seeks to investigate, through an analytical model, the

loop tack test and its defining features.  Several cases were investigated, using the

computer program Mathematica.  The beginning models looked at the system being

pulled from the substrate.  These models were investigative tools used to make sure that

the program was working and also to insure that the computer was producing results that

would be acceptable as representing results that could be obtained from an actual loop

tack test completed in the laboratory.  The first example sought to look at the loop right

before debonding from the substrate and the behavior it followed.  Secondly, in trying to

create a more realistic model, it was thought that the high localized curvature that was

seen in the laboratory should be included in the computer model, so that the results could

be truer to what was observed in the laboratory.

After investigating the pulling up of the elastica from the substrate, the attempt was made

to investigate the entire loop tack test cycle.  This included first pushing the elastica down

onto the substrate and then pulling the elastica from the substrate.  In doing this, the

essence of the loop tack test and the different events that occur within these pushing and

pulling cycles were captured.  In seeking to make these models more realistic, a

parameter, k, was added which would represent the relative stiffness of the adhesive and

backing.  The third and fourth example successfully explored what happens during the

course of the whole cycle.  These examples showed that it was possible to recreate the

whole loop tack cycle within the computer.  The fourth example also took into account

the contact time of the adhesive.  This was to help take into account that the longer the

adhesive is in contact with the substrate, the more difficult it should be to remove that

region of the elastica from the substrate surface.  This begins to look at some of the

viscoelastic effects that are present and also helps to take into account the fibril action

within the system.  This formulation seeks to introduce these factors, since these
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quantities are crucial to understanding the system’s behavior. This was made clear

through the results that were achieved, and looking at the comparison between the two

sets of data.  The fourth example did achieve greater values for the tack force, proving

that these characteristics can not be ignored and must be included in future analysis.

7.2 Results

For the most part throughout the data there were several main trends that existed from

model to model. The trends that the computer displayed were similar to those trends that

were expected from the laboratory results, suggesting that there is reason to pursue this

type of research in trying to find alternative methods in the testing and analysis of

pressure sensitive adhesives.  The research did give an indication of how the system

backing and adhesive acted as a whole.  The main factors that were shown were that the

relative stiffness of the adhesive and backing does matter and does make a difference in

the results that are achieved by the loop. This is crucial in determining what sort of

backing is used with what type of adhesive.  The shapes produced by the analysis gave a

realisitic visual representation of the changes caused by the forces acting on the loop

during the loop tack test.  This research gives the indication that there are many factors

involved with pressure sensitive adhesives that affect performance, such as the

viscoelastic properties and the debonding criterion.

7.3 Looking Forward

This work lays the foundation for future research, and there are several features that

warrant further consideration as research in this area is continued.  One of the things that

must be considered in future analysis is the time-dependent viscoelastic behavior, and

how time plays a crucial role in the procedure.  With this also, a further investigation

should be made into the importance and significance of the fibril structures that form

during the test.  The effects of dwell time and loading rate should be studied in the

dynamic analysis.  Different types of debonding criteria should be considered, with the

results compared to those of experimental tests.  Plasticity effects in the backing and

adhesive could be included.  Furthermore, since the deflection of the loop in chapters five

and six is not to exceed the thickness of the adhesive, it would be helpful for an analysis

to be conducted in which the relative stiffness parameter, k, depends on the amount of
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foundation deflection.  This k value would approach infinity as the deflection approaches

the nondimensional adhesive thickness.

Future research should include finding a way to be more specific about the properties of

the elastica.  Currently, in the research performed, there is little distinction between the

adhesive and the backing, here they work together as a unit.  It would be interesting to

study how they act together and independently of one another.

Also another area that needs to be explored would be what other sorts of analytical

techniques can be used to model this system in the computer.  The shooting method

works well, but does become rather sensitive in many cases, making it difficult to

complete the analysis.

This research proves that there is hope for a computer model that seeks to investigate and

model the loop tack test.  Ultimately the goal would be to create a program that might one

day be successfully incorporated into the testing practices of laboratories.
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Appendix A

In Chapter 5 the concept of um was introduced.  The equation that describes um is

um = 5*maxη(b).  This value is a result of the maximum downward deflection that is

experienced at a certain contact length value.  As the loop was pushed into the

foundation, the deflection values were recorded.  As the loop was pulled upwards these

values were once again recorded.  The maximum value for each considered contact

length sometimes occurred during the pushing phase; if the pulling deflection happened

to be greater, then the η was modified to take this into account.  Shown below is an

abbreviated version of the chart for k = 106 for the data collected in chapter five.

Table A. 1
Chart of pushing eta values
All eta values need to be multiplied by 1 E-5

b 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0 0

0.01 31 0
0.02 68 50.8 0
0.03 75 66.9 42.3 0
0.04 66 62.4 50.9 30.5 0
0.05 56 53.8 48.5 38.6 23 0
0.06 46 45.3 43.2 38.9 31.3 18.9 0
0.07 37 37.4 37.1 36.1 33.3 27.5 17 0
0.08 30 30.1 30.9 31.9 32.1 30.6 25.9 16.4 0
0.09 23 23.2 24.8 26.9 29.1 30.5 29.9 25.8 16.5 0

0.1 16 17 18.3 21.7 25.1 28.3 30.5 30.4 26.5 17.1 0
0.11 11 11.5 13.5 16.6 20.6 24.8 28.8 31.4 31.5 27.6 17.8 0
0.12 6.3 6.94 8.86 11.9 16 20.7 25.5 29.9 32.7 32.9 28.8 18.6 0
0.13 2.7 3.28 5.02 7.85 11.7 16.3 21.5 26.7 31.2 34.2 34.3 30 19.3 0
0.14 4.6 5.4 2.02 4.48 7.89 12.2 17.1 22.6 27.9 32.6 35.6 35.7 31.1 20 0
0.15 -1.8 -1.4 -1.7 1.86 4.74 8.45 13 18.1 23.7 29.2 33.9 36.9 36.9 32.2 20.7 0
0.16 -2.9 -2.6 -1.6 -5 2.25 5.32 9.18 13.8 19.1 24.7 30.3 35.1 38.2 38.1 33.2 21.3 0
0.17 -3.4 -3.4 -2.5 -1.4 4.04 2.81 5.95 9.88 14.6 19.9 25.7 31.4 36.3 39.4 39.3 34.2 22 0
0.18 -3.5 -3.4 -2.9 -2.1 -8.8 9.06 3.33 6.5 10.5 15.2 20.7 26.6 32.4 37.4 40.6 40.5 35.3 22.6 0
0.19 -3.4 -3.3 -3 -2.5 -1.7 -4.5 1.32 3.75 6.94 11 15.8 21.4 27.4 33.4 38.6 41.8 41.7 36.3 23.3 0

0.2 -3 -3 -2.8 -2.6 -2.1 -1.3 -0.1 1.6 4.04 7.27 11.4 16.4 22.1 28.3 34.4 39.8 43.1 43 37.4 24 0

Max. 75 66.9 50.8 38.8 33.2 30.5 30.4 31.3 32.7 34.1 35.6 36.9 38.1 39.4 40.6 41.8 43.1 43 37.4 24 0
Press. 750 669 509 389 333 306 305 314 327 342 356 369 382 394 406 418 431 430 374 240 0
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Table A.2

Calculations were also made for additional values of b in the range of 0<b<0.03 in
increments of 0.001.

From the data listed above, the deflection and the pressure are plotted, to give a better
indication of how η changes for varying values of b, as shown in the following graphs.

Figure A. 1.  Deflection versus Contact Length for Pushing

Chart of pulling eta values
All eta values need to be multiplied by 1 E-5

b 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0.2 -3 -3 -2.8 -2.6 -2.1 -1.3 -0.1 1.6 4.04 7.27 11.4 16.4 22.1 28.3 34.4 39.8 43.1 43 37.4 24 0

0.19 -4.5 -4.2 -3.3 -1.7 0.72 3.99 8.26 13.6 19.9 27 34.7 42.2 48.6 52.4 51.8 44.3 27 -3.7 -51 -120
0.18 -3.9 -3.3 -1.5 1.41 5.65 11.2 18.1 26.1 35 44.1 52.7 59.2 61.7 57.9 44.5 17.7 -27 -94 -187
0.17 -1.2 -3.4 2.14 6.26 12 19.3 27.9 37.5 47.3 56.1 62.7 64.8 59.6 43.7 13.1 -37 -111 -215
0.16 3.25 4.26 7.27 12.2 19 27.2 36.5 46.1 55 61.4 63.4 58.2 42.3 11.7 -38 -113 -216
0.15 3.63 4.8 8.26 13.8 21.2 29.9 39.1 47.7 53.9 55.8 50.5 34.7 4.15 -46 -119 -222
0.14 2.17 23.1 27.3 33.8 42.1 51.2 59.6 65.6 66.4 59 39.4 3.06 -55 -141 -259
0.13 3.77 39.3 43.6 50.1 57.8 65.1 69.9 69.4 60.2 37.7 -2.7 67 -161 -290
0.12 5.71 58.4 62.1 67.1 72.2 74.9 72.5 61.1 36.4 -7 -75 -174 -309
0.11 79.6 80.4 82.3 84.1 83.8 78.4 64.2 36.6 -10 -82 -184 -324

0.1 99.2 99.1 98 94.5 86.1 69.3 39.8 -7.7 79 -180 -317
0.09 117 115 110 99.1 79.7 48 -1 -73 -173 -307
0.08 143 139 126 103 65.7 8.93 -72 -184 -332
0.07 163 156 133 92.5 29.4 -61 -185 -347
0.06 178 165 127 60.5 -40 -179 -363
0.05 185 164 100 -11 -173 -392
0.04 166 130 20.7 -165 -431
0.03 66.7 1.24 -195 -517
0.02 -25 -361 -668
0.01 -722 -830

0

Max 185 165 133 103 86 78.4 72.4 69.4 66.4 61.4 63.4 64.7 61.7 57.8 51.7 44.3 43.1 43 37.4 24 0
Press.1856 1659 1335 1034 861 784 725 694 664 614 634 648 617 579 518 443 431 430 374 240 0
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Figure A. 3. Pressure versus Contact Length for Pushing

Figure A. 2. Deflection versus Contact Length for Pulling
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The horizontal axis in this case is labeled x and the values listed in the legend box

correspond to the contact length, or b value, which is the maximum value of x for

contact.  From the graphs, one can see how the pressure or deflection, in the contact

region, for one specific b value, changes as the loop is moving through its cycle of

pushing and pulling.

Figure A. 4. Pressure versus Contact Length for Pulling
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APPENDIX B - Mathematica Printouts 

Loop Tack Test - Point Contact 

Shooting Method to determine variables p (horizontal force) and ma (moment).

Definition of variables:

r = vertical force applied at fixed end of elastica (one side only)

gP = initial guess for parameter P, horizontal force applied at fixed end of elastica

gMA = initial guess for parameter MA, moment existing at center of  bent elastica

b = contact length (one half of elastica)

Shooting Method

c = 0

r = 0

b = 0

pi = N@pD

gP = 9.91

gMA = 5.38

de@y3_, y4_, P_D := 8y1’@tD == Cos@y3@tDD, y2’@tD == Sin@y3@tDD,
y3’@tD == y4@tD, y4’@tD == -P Sin@y3@tDD - r Cos@y3@tDD<

leftBC@MA_D := 8y1@0D == 0, y2@0D == 0, y3@0D == 0, y4@0D == MA<

soln := NDSolve@Flatten@Append@de@y3, y4, PD, leftBC@MADDD,
8y1, y2, y3, y4<, 8t, 0, 1 - b<, MaxSteps � 2200D

endpt@P_, MA_D := 8y1@tD, y2@tD, y3@tD, y4@tD< �.
First@NDSolve@Flatten@Append@de@y3, y4, PD, leftBC@MADDD,
8y1@tD, y2@tD, y3@tD, y4@tD<, 8t, 0, 1 - b<, MaxSteps � 2200DD �. t -> 1 - b;

endpt@
gP,

gMAD

Clear@P, MAD

rts := FindRootA9endpt@P, MADP3T ==
pi
þþþþþþþþ
2

, endpt@P, MADP1T == c - b=,

8P, 8gP, 0.99 gP<<, 8MA, 8gMA, 0.99 gMA<<, AccuracyGoal � 4, MaxIterations � 200E

rts

endpt@P �. rts, MA �. rtsD
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P = P �. rts

MA = MA �. rts

Print@P �. soln �. rtsD
Print@MA �. soln �. rtsD

8yy1@t_D, yy2@t_D, yy3@t_D, yy4@t_D< = 8y1@tD, y2@tD, y3@tD, y4@tD< �. First@solnD

List@P �. rts, MA �. rts,
Part@endpt@P �. rts, MA �. rtsD, 2D, Part@endpt@P �. rts, MA �. rtsD, 4DD

ParametricPlot@Evaluate@8yy1@tD, yy2@tD< �. soln �. rtsD, 8t, 0, 1<,
PlotRange -> All, AspectRatio -> Automatic, PlotPoints -> 1000D

numbers = TableForm@
Table@Evaluate@8yy1@tD �. soln �. rts, yy2@tD �. soln �. rts<D, 8t, 0, 1, .01<D,
TableHeadings -> 8None, 8"x", "y"<<D

numb = TableForm@Table@Evaluate@8yy1@tD �. soln �. rts<D, 8t, 0, 1, .01<D,
TableHeadings -> 8None, 8"x"<<D

pipe = Max@%D

w = 2 pipe
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Loop Tack Test - Flat Contact

Shooting Method to determine variables p (horizontal force) and MA (moment).

Definition of variables:

r = vertical force applied at fixed end of elastica (one side only)

gP = initial guess for parameter P, horizontal force applied at 

        fixed end of elastica

gMA = initial guess for parameter MA, moment existing at center 

            of bent elastica

b = contact length (one half of elastica)

Shooting Method

r = 5

c = 0

b = 0.1

n = 3

b = 0.01

pi = N@pD

gP = 15.19

gMA = 5.93

de@y3_, y4_, P_D := 8y1’@tD == Cos@y3@tDD, y2’@tD == Sin@y3@tDD,
y3’@tD == y4@tD + Hb * Hy4@tD^nLL, y4’@tD == -P Sin@y3@tDD - r Cos@y3@tDD<

leftBC@MA_D := 8y1@0D == 0, y2@0D == 0, y3@0D == 0, y4@0D == MA<

soln := NDSolve@Flatten@Append@de@y3, y4, PD, leftBC@MADDD,
8y1, y2, y3, y4<, 8t, 0, 1 - b<, MaxSteps � 2200D

endpt@P_, MA_D := 8y1@tD, y2@tD, y3@tD, y4@tD< �.
First@NDSolve@Flatten@Append@de@y3, y4, PD, leftBC@MADDD,
8y1@tD, y2@tD, y3@tD, y4@tD<, 8t, 0, 1 - b<, MaxSteps � 2200DD �. t -> H1 - bL;

endpt@
gP,

gMAD

Clear@P, MAD
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rts := FindRootA9endpt@P, MADP3T ==
pi
þþþþþþþþ
2

, endpt@P, MADP1T == c - b=,

8P, 8gP, 0.89 gP<<, 8MA, 8gMA, 0.89 gMA<<, AccuracyGoal � 4, MaxIterations � 1000E

rts

endpt@P �. rts, MA �. rtsD

P = P �. rts

MA = MA �. rts

Print@P �. soln �. rtsD
Print@MA �. soln �. rtsD

8yy1@t_D, yy2@t_D, yy3@t_D, yy4@t_D< = 8y1@tD, y2@tD, y3@tD, y4@tD< �. First@solnD

Print@yy1@1 - bDD
Print@yy3@1 - bDD

List@P �. rts, MA �. rts,
Part@endpt@P �. rts, MA �. rtsD, 2D, Part@endpt@P �. rts, MA �. rtsD, 4DD

ParametricPlot@Evaluate@8yy1@tD, yy2@tD< �. soln �. rtsD, 8t, 0, 1 - b<,
PlotRange -> All, AspectRatio -> Automatic, PlotPoints -> 1000D

patterns = TableForm@
Table@Evaluate@8yy1@tD �. soln �. rts, yy2@tD �. soln �. rts<D, 8t, 0, H1 - bL, .01<D,
TableHeadings -> 8None, 8"x", "y"<<D

numb = TableForm@Table@Evaluate@8yy1@tD �. soln �. rts<D, 8t, 0, H1 - bL, .01<D,
TableHeadings -> 8None, 8"x"<<D

pipe = Max@%D

w = 2 pipe

List@P �. rts, MA �. rts, Part@endpt@P �. rts, MA �. rtsD, 2D,
Part@endpt@P �. rts, MA �. rtsD, 4D, pipeD
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Loop Tack Test - Pushing Down

Shooting Method to determine variables p (horizontal force), mb (moment), qb(angle), sc(arc length), and q(vertical force).

Definition of variables:

q = vertical force applied at fixed end of elastica (one side only -referred to as r in the thesis body)

gP = initial guess for parameter P, horizontal forc�e applied at fixed end of elastica

gMb = initial guess for parameter Mb, moment existing at peel front of  bent elastica

r = contact length (one half of elastica) (referred to as b in the thesis body)

qb = angle at point B on the elastica

sc = arc length 

k = relative stiffness

Shooting Method

pi = N@Pi, 10D

r = 0.1

gP = 5

gqb = 0.03

gMb = 1.0

gq = 29

gsc = 0.90

k = 1000000

n = 3

B = 0.01

de@y3_, y4_, y5_, y7_, y8_, y9_, y10_, P_, q_D := 8y1’@tD == y5@tD * Cos@y3@tDD,
y2’@tD == y5@tD *Sin@y3@tDD, y3’@tD == y5@tD * Hy4@tD + HB * Hy4@tD^nLLL,
y4’@tD == y5@tD *HHq * Cos@y3@tDDL - HP * Sin@y3@tDDLL, y5’@tD == 0,

y6’@tD == H1 - y5@tDL * Cos@y8@tDD, y7’@tD == H1 - y5@tDL * Sin@y8@tDD,
y8’@tD == -H1 - y5@tDL * Hy9@tD + HB * Hy9@tD^nLLL,
y9’@tD == H1 - y5@tDL * HHP *Sin@y8@tDDL - Hy10@tD* Cos@y8@tDDLL,
y10’@tD == -H1 - y5@tDL * k * y7@tD<

leftBC@qb_, Mb_, sc_, q_D := 8y1@0D == 0, y2@0D == 0, y3@0D == qb, y4@0D == Mb,

y5@0D == sc, y6@0D == 0, y7@0D == 0, y8@0D == qb, y9@0D == -Mb, y10@0D == q<

soln :=

NDSolve@Flatten@Append@de@y3, y4, y5, y7, y8, y9, y10, P, qD, leftBC@qb, Mb, sc, qDDD,
8y1, y2, y3, y4, y5, y6, y7, y8, y9, y10<, 8t, 0, 1<, MaxSteps � 2200D
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endpt@P_, Mb_, sc_, qb_, q_D :=

8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD, y7@tD, y8@tD, y9@tD, y10@tD< �.
First@NDSolve@Flatten@Append@de@y3, y4, y5, y7, y8, y9, y10, P, qD,

leftBC@qb, Mb, sc, qDDD, 8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD,
y7@tD, y8@tD, y9@tD, y10@tD<, 8t, 0, 1<, MaxSteps � 2200DD �. t -> 1;

endpt@
gP,

gMb,

gsc,

gqb,

gqD

Clear@P, Mb, sc, qb, qD

rts := FindRootA9endpt@P, Mb, sc, qb, qDP3T ==
pi
þþþþþþþþ
2

,

endpt@P, Mb, sc, qb, qDP1T == -r, endpt@P, Mb, sc, qb, qDP6T == r,

endpt@P, Mb, sc, qb, qDP8T == 0, endpt@P, Mb, sc, qb, qDP10T == 0=,
8P, 8gP, 0.99 gP<<, 8Mb, 8gMb, 0.99 gMb<<, 8sc, 8gsc, 0.99 gsc<<,
8qb, 8gqb, 0.99 gqb<<, 8q, 8gq, 0.99 gq<<, AccuracyGoal � 10, MaxIterations � 200E

rts

endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD

P = P �. rts

Mb = Mb �. rts
sc = sc �. rts
qb = qb �. rts
q = q �. rts

Print@P �. soln �. rtsD
Print@Mb �. soln �. rtsD

Print@sc �. soln �. rtsD

Print@qb �. soln �. rtsD

Print@q �. soln �. rtsD

8yy1@t_D, yy2@t_D, yy3@t_D, yy4@t_D,
yy5@t_D, yy6@t_D, yy7@t_D, yy8@t_D, yy9@t_D, yy10@t_D< =

8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD, y7@tD, y8@tD, y9@tD, y10@tD< �. First@solnD

List@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rts,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 2D,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 4DD
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numbers = TableForm@
Table @8k, P �. soln �. rts, Mb �. soln �. rts, sc �. soln �. rts, qb �. soln �. rts,

q �. soln �. rts, Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 2D,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 4D<, 8u, u, u<D,

TableHeadings � 8None, 8"k", "P", "Mb", "sc", "qb", "q", "h", "Mc"<<D

bok2 = ParametricPlot@Evaluate@8yy1@tD, yy2@tD< �. soln �. rtsD,
8t, 0, 1<, PlotRange -> All, AspectRatio -> Automatic, PlotPoints -> 3000,

GridLines -> Automatic, PlotStyle -> 88Thickness@0.02D<<D

bok3 = ParametricPlot@Evaluate@8Hr - yy6@tDL, -Hyy7@tDL< �. soln �. rtsD,
8t, 0, 1<, PlotRange -> All, PlotPoints -> 3000,

GridLines -> Automatic, PlotStyle -> 88Thickness@0.02D<<D

patterns = TableForm@
Table@Evaluate@8yy1@tD �. soln �. rts, yy2@tD �. soln �. rts<D, 8t, 0, 1, .01<D,
TableHeadings -> 8None, 8"x", "y"<<D

patte = TableForm@
Table@Evaluate@8Hr - yy6@tDL �. soln �. rts, -Hyy7@tDL �. soln �. rts<D, 8t, 0, 1, .01<D,
TableHeadings -> 8None, 8"6", "7"<<D

patter = TableForm@Table@Evaluate@8yy1@tD �. soln �. rts<D, 8t, 0, 1, .1<D,
TableHeadings -> 8None, 8"x"<<D

lemon = Max@%D

w = 2 lemon

lily = HPart@endpt@P �. rts, d �. rtsD, 2D - dL

TableForm@
Table@8t, Evaluate@yy1@tDD, Evaluate@yy2@tDD, Evaluate@yy3@tDD, Evaluate@yy4@tDD<,
8t, 0, 1, .01<D, TableHeadings -> 8None, 8"t", "xb", "yb", "q", "Mb"<<D

numbers = TableForm@Table @
8k, xb, P �. soln �. rts, d �. soln �. rts, Part@endpt@P �. rts, d �. rtsD, 2D, lily<,
8u, u, u<D, TableHeadings � 8None, 8"k", "xb", "P", "d", "h", "hu"<<D

Print@wD
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chat = TableFormATableAEvaluateA9yy7A y
þþþþþþþþþþþþþþþþþþ
100 * r

E �. soln �. rts=E, 8y, 0, Hr * 100L, 1<E,

TableHeadings -> 8None, 8"y7"<<E

cha = TableFormATableAEvaluateA9Jyy6@1D - yy6A y
þþþþþþþþþþþþþþþþþþ
100 * r

EN �. soln �. rts=E,

8y, 0, Hr * 100L, 1<E, TableHeadings -> 8None, 8"y6"<<E
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Loop Tack Test - Pulling Up

Shooting Method to determine variables p (horizontal force), mb (moment), qb(angle), sc(arc length), and q(vertical force).

Definition of variables:

q = vertical force applied at fixed end of elastica (one side only -referred to as r in the thesis body)

gP = initial guess for parameter P, horizontal forc�e applied at fixed end of elastica                          

gMb = initial guess for parameter Mb, moment existing at peel front of  bent elastica

r = contact length (one half of elastica) (referred to as b in the thesis body)

um = represents the maximum downward deflection

qb = angle at point B on the elastica

sc = arc length 

k = relative stiffness

Shooting Method

pi = N@Pi, 10D

r = 0.2

maxh = 0.0004312

um = 5 * maxh

gP = 4.1448

gqb = 0.030375

gMb = 1.3461

gq = 30.18315

gsc = 0.7999

k = 1000000

n = 3

B = 0.01

75



de@y3_, y4_, y5_, y7_, y8_, y9_, y10_, P_, q_D := 8y1’@tD == y5@tD * Cos@y3@tDD,
y2’@tD == y5@tD *Sin@y3@tDD, y3’@tD == y5@tD * Hy4@tD + HB * Hy4@tD^nLLL,
y4’@tD == y5@tD *HHq * Cos@y3@tDDL - HP * Sin@y3@tDDLL, y5’@tD == 0,

y6’@tD == H1 - y5@tDL * Cos@y8@tDD, y7’@tD == H1 - y5@tDL * Sin@y8@tDD,
y8’@tD == -H1 - y5@tDL * Hy9@tD + HB * Hy9@tD^nLLL,
y9’@tD == H1 - y5@tDL * HHP *Sin@y8@tDDL - Hy10@tD* Cos@y8@tDDLL,
y10’@tD == -H1 - y5@tDL * k * Hy7@tD - umL<

leftBC@qb_, Mb_, sc_, q_D := 8y1@0D == 0, y2@0D == 0, y3@0D == qb, y4@0D == Mb,

y5@0D == sc, y6@0D == 0, y7@0D == 0, y8@0D == qb, y9@0D == Mb, y10@0D == q<

soln :=

NDSolve@Flatten@Append@de@y3, y4, y5, y7, y8, y9, y10, P, qD, leftBC@qb, Mb, sc, qDDD,
8y1, y2, y3, y4, y5, y6, y7, y8, y9, y10<, 8t, 0, 1<, MaxSteps � 2200D

endpt@P_, Mb_, sc_, qb_, q_D :=

8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD, y7@tD, y8@tD, y9@tD, y10@tD< �.
First@NDSolve@Flatten@Append@de@y3, y4, y5, y7, y8, y9, y10, P, qD,

leftBC@qb, Mb, sc, qDDD, 8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD,
y7@tD, y8@tD, y9@tD, y10@tD<, 8t, 0, 1<, MaxSteps � 2200DD �. t -> 1;

endpt@
gP,

gMb,

gsc,

gqb,

gqD

Clear@P, Mb, sc, qb, qD

rts := FindRootA9endpt@P, Mb, sc, qb, qDP3T ==
pi
þþþþþþþþ
2

,

endpt@P, Mb, sc, qb, qDP1T == -r, endpt@P, Mb, sc, qb, qDP6T == r,

endpt@P, Mb, sc, qb, qDP8T == 0, endpt@P, Mb, sc, qb, qDP10T == 0=,
8P, 8gP, 0.99 gP<<, 8Mb, 8gMb, 0.99 gMb<<, 8sc, 8gsc, 0.99 gsc<<,
8qb, 8gqb, 0.99 gqb<<, 8q, 8gq, 0.99 gq<<, AccuracyGoal � 10, MaxIterations � 200E

rts

endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD

P = P �. rts

Mb = Mb �. rts
sc = sc �. rts
qb = qb �. rts
q = q �. rts

Print@P �. soln �. rtsD
Print@Mb �. soln �. rtsD

Print@sc �. soln �. rtsD
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Print@qb �. soln �. rtsD

Print@q �. soln �. rtsD

8yy1@t_D, yy2@t_D, yy3@t_D, yy4@t_D,
yy5@t_D, yy6@t_D, yy7@t_D, yy8@t_D, yy9@t_D, yy10@t_D< =

8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD, y7@tD, y8@tD, y9@tD, y10@tD< �. First@solnD

List@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rts,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 2D,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 4DD

numbers = TableForm@
Table @8k, P �. soln �. rts, Mb �. soln �. rts, sc �. soln �. rts, qb �. soln �. rts,

q �. soln �. rts, Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 2D,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 4D<, 8u, u, u<D,

TableHeadings � 8None, 8"k", "P", "Mb", "sc", "qb", "q", "h", "Mc"<<D

bok2 = ParametricPlot@Evaluate@8yy1@tD, yy2@tD< �. soln �. rtsD,
8t, 0, 1<, PlotRange -> All, AspectRatio -> Automatic, PlotPoints -> 3000,

GridLines -> Automatic, PlotStyle -> 88Thickness@0.02D<<D

bok3 = ParametricPlot@Evaluate@8Hr - yy6@tDL, -Hyy7@tDL< �. soln �. rtsD,
8t, 0, 1<, PlotRange -> All, PlotPoints -> 3000,

GridLines -> Automatic, PlotStyle -> 88Thickness@0.02D<<D

patterns = TableForm@
Table@Evaluate@8yy1@tD �. soln �. rts, yy2@tD �. soln �. rts<D, 8t, 0, 1, .01<D,
TableHeadings -> 8None, 8"x", "y"<<D

patte = TableForm@
Table@Evaluate@8Hr - yy6@tDL �. soln �. rts, -Hyy7@tDL �. soln �. rts<D, 8t, 0, 1, .01<D,
TableHeadings -> 8None, 8"6", "7"<<D

patter = TableForm@Table@Evaluate@8yy1@tD �. soln �. rts<D, 8t, 0, 1, .1<D,
TableHeadings -> 8None, 8"x"<<D

lemon = Max@%D

w = 2 lemon

lily = HPart@endpt@P �. rts, d �. rtsD, 2D - dL
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TableForm@
Table@8t, Evaluate@yy1@tDD, Evaluate@yy2@tDD, Evaluate@yy3@tDD, Evaluate@yy4@tDD<,
8t, 0, 1, .01<D, TableHeadings -> 8None, 8"t", "xb", "yb", "q", "Mb"<<D

numbers = TableForm@Table @
8k, xb, P �. soln �. rts, d �. soln �. rts, Part@endpt@P �. rts, d �. rtsD, 2D, lily<,
8u, u, u<D, TableHeadings � 8None, 8"k", "xb", "P", "d", "h", "hu"<<D

Print@wD

chat = TableFormATableAEvaluateA9yy7A y
þþþþþþþþþþþþþþþþþþ
100 * r

E �. soln �. rts=E, 8y, 0, Hr * 100L, 1<E,

TableHeadings -> 8None, 8"y7"<<E

cha = TableFormATableAEvaluateA9Jyy6@1D - yy6A y
þþþþþþþþþþþþþþþþþþ
100 * r

EN �. soln �. rts=E,

8y, 0, Hr * 100L, 1<E, TableHeadings -> 8None, 8"y6"<<E
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Loop Tack Test - With Contact Time Pulling Up

Shooting Method to determine variables p (horizontal force), mb (moment), qb(angle), sc(arc length), and q(vertical force).

Definition of variables:

q = vertical force applied at fixed end of elastica (one side only -referred to as r in the thesis body)

gP = initial guess for parameter P, horizontal forc�e applied at fixed end of elastica                          

gMb = initial guess for parameter Mb, moment existing at peel front of  bent elastica

r = contact length (one half of elastica) (referred to as b in the thesis body)

um = represents the maximum downward deflection

qb = angle at point B on the elastica

sc = arc length 

k = relative stiffness

hi = height at inital contact

hp = height at end of pushing

hs = height during pulling (estimate)

Shooting Method

pi = N@Pi, 10D

r = 0.08

hi = 0.619378

hp = 0.448265

hs = 0.82

ht = hi + hs - 2 hp

maxh = 0.000664

um = H5 + 10 htL * maxh

gP = 11.2

gqb = 0.30

gMb = 5.40

gq = -4.0

gsc = 0.82

k = 1000000

n = 3

B = 0.01
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de@y3_, y4_, y5_, y7_, y8_, y9_, y10_, P_, q_D := 8y1’@tD == y5@tD * Cos@y3@tDD,
y2’@tD == y5@tD *Sin@y3@tDD, y3’@tD == y5@tD * Hy4@tD + HB * Hy4@tD^nLLL,
y4’@tD == y5@tD *HHq * Cos@y3@tDDL - HP * Sin@y3@tDDLL, y5’@tD == 0,

y6’@tD == H1 - y5@tDL * Cos@y8@tDD, y7’@tD == H1 - y5@tDL * Sin@y8@tDD,
y8’@tD == -H1 - y5@tDL * Hy9@tD + HB * Hy9@tD^nLLL,
y9’@tD == H1 - y5@tDL * HHP *Sin@y8@tDDL - Hy10@tD* Cos@y8@tDDLL,
y10’@tD == -H1 - y5@tDL * k * Hy7@tD - umL<

leftBC@qb_, Mb_, sc_, q_D := 8y1@0D == 0, y2@0D == 0, y3@0D == qb, y4@0D == Mb,

y5@0D == sc, y6@0D == 0, y7@0D == 0, y8@0D == qb, y9@0D == Mb, y10@0D == q<

soln :=

NDSolve@Flatten@Append@de@y3, y4, y5, y7, y8, y9, y10, P, qD, leftBC@qb, Mb, sc, qDDD,
8y1, y2, y3, y4, y5, y6, y7, y8, y9, y10<, 8t, 0, 1<, MaxSteps � 2200D

endpt@P_, Mb_, sc_, qb_, q_D :=

8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD, y7@tD, y8@tD, y9@tD, y10@tD< �.
First@NDSolve@Flatten@Append@de@y3, y4, y5, y7, y8, y9, y10, P, qD,

leftBC@qb, Mb, sc, qDDD, 8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD,
y7@tD, y8@tD, y9@tD, y10@tD<, 8t, 0, 1<, MaxSteps � 2200DD �. t -> 1;

endpt@
gP,

gMb,

gsc,

gqb,

gqD

Clear@P, Mb, sc, qb, qD

rts := FindRoot@8endpt@P, Mb, sc, qb, qDP3T == pi � 2,
endpt@P, Mb, sc, qb, qDP1T == -r, endpt@P, Mb, sc, qb, qDP6T == r,

endpt@P, Mb, sc, qb, qDP8T == 0, endpt@P, Mb, sc, qb, qDP10T == 0<,
8P, 8gP, 0.99 gP<<, 8Mb, 8gMb, 0.99 gMb<<, 8sc, 8gsc, 0.99 gsc<<,
8qb, 8gqb, 0.99 gqb<<, 8q, 8gq, 0.99 gq<<, AccuracyGoal � 10, MaxIterations � 200D

rts

endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD

P = P �. rts

Mb = Mb �. rts
sc = sc �. rts
qb = qb �. rts
q = q �. rts

Print@P �. soln �. rtsD
Print@Mb �. soln �. rtsD

Print@sc �. soln �. rtsD
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Print@qb �. soln �. rtsD

Print@q �. soln �. rtsD

8yy1@t_D, yy2@t_D, yy3@t_D, yy4@t_D,
yy5@t_D, yy6@t_D, yy7@t_D, yy8@t_D, yy9@t_D, yy10@t_D< =

8y1@tD, y2@tD, y3@tD, y4@tD, y5@tD, y6@tD, y7@tD, y8@tD, y9@tD, y10@tD< �. First@solnD

List@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rts,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 2D,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 4DD

numbers = TableForm@
Table @8k, P �. soln �. rts, Mb �. soln �. rts, sc �. soln �. rts, qb �. soln �. rts,

q �. soln �. rts, Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 2D,
Part@endpt@P �. rts, Mb �. rts, sc �. rts, qb �. rts, q �. rtsD, 4D<, 8u, u, u<D,

TableHeadings � 8None, 8"k", "P", "Mb", "sc", "qb", "q", "h", "Mc"<<D

bok2 = ParametricPlot@Evaluate@8yy1@tD, yy2@tD< �. soln �. rtsD,
8t, 0, 1<, PlotRange -> All, AspectRatio -> Automatic, PlotPoints -> 3000,

GridLines -> Automatic, PlotStyle -> 88Thickness@0.02D<<D

bok3 = ParametricPlot@Evaluate@8Hr - yy6@tDL, -Hyy7@tDL< �. soln �. rtsD,
8t, 0, 1<, PlotRange -> All, PlotPoints -> 3000,

GridLines -> Automatic, PlotStyle -> 88Thickness@0.02D<<D

patterns = TableForm@
Table@Evaluate@8yy1@tD �. soln �. rts, yy2@tD �. soln �. rts<D, 8t, 0, 1, .01<D,
TableHeadings -> 8None, 8"x", "y"<<D

patte = TableForm@
Table@Evaluate@8Hr - yy6@tDL �. soln �. rts, -Hyy7@tDL �. soln �. rts<D, 8t, 0, 1, .01<D,
TableHeadings -> 8None, 8"6", "7"<<D

chat = TableFormATableAEvaluateA9yy7A y
þþþþþþþþþþþþþþþþþþ
100 * r

E �. soln �. rts=E, 8y, 0, Hr * 100L, 1<E,

TableHeadings -> 8None, 8"y7"<<E

cha = TableFormATableAEvaluateA9Jyy6@1D - yy6A y
þþþþþþþþþþþþþþþþþþ
100 * r

EN �. soln �. rts=E,

8y, 0, Hr * 100L, 1<E, TableHeadings -> 8None, 8"y6"<<E
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APPENDIX C – LAB COMPARISON

Concurrently, with the analytical model that was developed, another student, Minh Le,

conducted laboratory experiments of the loop tack test.  In doing this research Ms. Le

studied loops of different material backings.  Her laboratory investigations began with

using 1” x 12” strips of film of either mylar or polypropylene.  The backings studied had

different thicknesses of 2 mil, 5 mil, and 10 mil.  The substrate used was a highly

polished stainless steel panel of dimensions 2” x 6”.  Data and results can be seen in her

report entitled, “Analysis of the Loop Tack Test Method for Pressure Sensitive

Adhesives.”

The second half of the research was conducted using metal feeler gauges of known

thicknesses, since the material properties were known.  These gauges had thicknesses of

4 mm, 5 mm, and 6 mm.  The metal feeler gauges had no adhesive on them, but the

adhesive was placed on the substrate and the feeler gauge was pressed down into the

adhesive.  This corresponds with the type of analysis conducted in the computer model as

in chapters five and six.

The laboratory measured quantities display similar trends to those found for the data

generated by the computer.  The laboratory data for the feeler gauges shows a pushing

down section, and a pulling up area.  This corresponds to the type of data that was seen in

the early chapters of this thesis.  Shown below is a summary graph (Figure C.1) of the

data found by Le.  This graph corresponds very closely to the graphs shown in chapter six

for k= 106 (Figure C.2).  The graph is of force, measured in newtons, versus distance,

measured in inches.  The force corresponds to r in the computer analysis.  The distance

here refers to the distance the machine-head travels in pushing down to the substrate.

This value corresponds to the h value, since the vertical distance traveled is related to the

height of the top of the loop.
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Steel Loops
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Figure C. 1. Force versus Distance – Laboratory Data

Figure C. 2. Force versus Height – Computer Data
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