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Abstract. The large deformation of a whirling elastic cable is studied. The ends of the cable are
hinged but otherwise free to translate along the rotation axis. The nonlinear governing equations
depend on a rotation-elasticity parameter J. Bifurcation about the straight, axially rotating case
occurs when J > nx. Perturbation solutions about the bifurcation points and matched asymptotic
solutions for large J are found to second order. Exact numerical solutions are obtained using
quasi-Newton and homotopy methods. '

1. Introduction and formulation. The whirling of long, slender materials occurs in the manu-
facture and winding of cables and strings. It is also important in the study of deployable, flexible
space structures, such as the rotation of long cables connecting two satellites (e.g., [1, 2]). This
paper is an in-depth analysis of such a flexible rotating cable or slender rod.

Consider an originally straight cable of length £ rotating axially with angular velocity (2. The
ends of the cable are hinged to the rotation axis. When  is larger than some critical value, the
cable may deform due to centrifugal forces as shown in Figure la. For relatively stiff cables the
situation is very similar to the whirling of shafts, the linear stability of which has been studied
much earlier (e.g., [3, 4]). For our problem, the finite deformation characteristics are needed.

Let the deformed cable be contained in a rotating z',y" plane. Let the origin be at one end
with the z'-axis along the rotation axis. Consider a small elemental segment ds' whose arc length
distance is ' from the origin (Figure 1b). The force acting on this segment is F' — 4/, where F' is
the vertical force experienced at the ends and u' is the net centrifugal force from the origin to s'.

i

u = f py' dd, ) (1)
0
where p is the mass per unit length of the cable. A moment balance on ds’ gives
m=m+dm + (F' — v')ds' cos§. (2)

Since the cable is thin, the local moment m is proportional to the local curvature and deformation
is due mostly to bending,

m = EI—. (3)



Normalize the variables as follows:
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Egs. (1-3) yield

a6 4

m-;-(F«J u)c_osﬁ:O, (5)
du

—_ =0 ]
de Y, u({)) 3 . . ( )

where J = QY2f(p/EI}* is an important nondimensional parameter representing the relative
importance of rotation to flexural rigidity. The Cartesian coordinates are related by

- oY
I, = cos 8, 2, = sin 6. (7)
The boundary conditions are
df
(O =30 =0, Lo=0, ®)
dé
s=0, =0 (%)

Egs. (5-9) are to be solved for given J. There are six boundary conditions for the fifth degree
differential equations plus one unknown constant F'.

2. Analysis of the bifurcation neighborhood. For small 4, u, y, Eqs. (5-7) linearize to

d*6 4 du dy
@-FF—J'H.-—O, E;—y,' -;—9. (10}
Fliminate u, ¥ and let 8 = ¢. The eigenvalue problem is
dto 4
i Jfp =10 (11)
with the boundary conditions
do, . B, db,_ . Bp
20 = 20 = 20 =20 =0 (12)
The general solution to Eq. (11) is
¢ = c1 8in(Js) + cp cos(Js) + ca sinh{Js) + ¢4 cosh(Js). {(13)
The boundary conditions give
ci=¢3=0, cpsinJ = ¢gsinh J = 0. (14)

2



| Since the coefficients in Eq. {13) are not all zero, the eigenvalues are

J =nnr, n=123,... (15)

and the eigenfunctions are
¢ = cos(nws), n=1,2,3,... (16)

Observe that the cable is approximately sinusoidal in shape and crosses the rotation axis at the
points s = 0, 1/n, 2/n, ..., 1, where the curvatures are also zero. Thus it suffices to consider only
the n = 1 case. The higher modes can always be constructed from the n = I case by multipiying
all lengths by a factor of 1/n. This characteristic also holds for the original nonlinear problem.

In order to investigate the bifurcation properties near J = «, set

J=r+é, 8 = efo + €6 + O(c°) (1)
u = eug + Suy + O(%), F=cop+ oy + 0(65), (18)
& = zg + €1 + Ofc*), y = eyo + €1 + O(°). {19)

Egs. (5-9) yield the successive equations

&6y dug
P - + og — 7r4u0 ={, d.s = Yo, | (20)
dzg dye '
o g e (21)
dé df
—(0) = —2(1) = u0(0) = 20(0) = 0(0) = 10(1) = 0, (22)
d*6, 2
EST+01 4 uo"—‘ﬂ"{ul——?ﬂ(ao—?’ ’LL()) O (23)
duy dy; 8
& o g Th @4
d‘.’ﬂl 1
- = 3% (25)
dﬁ df
et ) = 1(1) = u1(0) = z1(0) = 9, (0) = 41 (1) = 0. | (26)
The solution to the zeroth order problem Egs. (20-22) is )
o = e¢ = ccos(ms), (27)
ap = 1, g = w—62(1 — cos(7s)), (28)
To = 8, Yo = i—sin(rs). (29}

Here ¢ is an undetermined amplitude, characteristic of eigenvalue problems. To determine ¢, the
next order perturbation is studied.




Differentiate Eq. (23) twice and eliminate uy, g1 by Eq. (24). The result is

d'e
E‘S‘Tl b 71'491 = A(S), | (30)
4 2 2
_ a w 3 1 d Zd 6{)
o) = a0 - 08~ 5 [
= cx® (4 — wc*/2) cos(ms) — gcaﬂ‘i cos(3ms). : (31)

Since the function A is proportional to cos(ws) and cos(3ws), the particular solution for §; is
proportional to ssin(ms) and cos(3ms) respectively, the latter satisfying all the boundary conditions
since it is an eigenfunction ¢. However, the term ssin(ms) could not be made to satisfy the boundary
conditions, even with the aid of the homogeneous solutions. Thus the function A could not have
contained terms proportional to cos(ws). In other words, the integrability condition is

e=4/% (32)

I

Absorb the homogeneous solution for #4 into f since it has the same form. Thus Eq. (30)

V2

gives

6, = _W cos(3ws). | (33)
From Egs. (24, 25),

59
o] = 1—0 271', 7 (34)

1 {2 /1 21
= (E cos{37s) + 2 cos(ms) — E) s _ (33)
. 2 1
Ty = -— (:Irs + 3 sin(Qars)) , (36)

1 /273 . . '
= e =] — i 4+ b .

o RV (10 sin(3#s) 2sm(rs)> (37)

The normalized force at the ends is
F = cop + Eay + O®)

= (27;)3/2(.1 - )/ [1 + %(J -7+ ] : (38)

The maximum Jateral displacement occurs at s = 1/2:

b= ego(1/2) + €31(1/2) + O()
= (2/7 3T — m)1/? [1 - 51—0%(.1 ~7) + ] : (39)
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The maximum curvature or normalized moment is

M= _2—3(1/2) —eﬁﬂ(l/z) eadel (1/2) + O(%)
= 2/2n(J — =)t/ 1—56;(J—7r)+--- : (40)

The distance between ends is
a = zo(1) + €z1(1) + O(e*)
=1-2gome (41)

3. Asymptotic analysis for large J. Large J means large rotation rate, long length, high
density or low rigidity. We expect the cable to be hairpin-shaped with the maximum curvature

occurring at s = 1/2. Set

2
Jt= i 1. | (42)
Eq. (5) becomes singular: :
§%0"(s) + 2[u(1/2) — u(s)] cos@ = 0, (43)
where
F= ——-u(1/2) 8(1/2)=6"(1/2) = 0. (44)

The method of matched asymptotic expansions will be used. For the interior region, where 0 <
1/2 — s =.0(1), the cable is almost perpendicular to the rotation axis. Perturb about this state as

follows:

+ 6Hy(s) + 62 Hy(s) + - (45)

T
=g+
vs %H%(sw%(sn (40
g = 6X1(s)+ 8 Xa(s) + -, (47)
y = s+ 8Y1(s) + 6°Ya(s) + - . (48)

Substituting into Egs. (43, 6, 7) and utilizing the fact that w(0) = y(0) = z(0) = 0 gives that the
first and second order corrections are all zero. For the boundary layer region where 1/2- s = O{§)
set '

s = —;.— 5, t=001), (49)
0= ¢o(t) +8¢1(t) + O(8%), | (50)
= g — b (1) ~ Fua(t) + O(8%), (51)

= 66 (1) + 6265 (1) + O(6%), (52)
y= 5'- §m(t) + O(8). (53)
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Here the constant terms of Eqgs. (50, 52) are from matching with the interior solution. The general
matching condition is

Winterior = Wboundary layer (54)
. t— o0

s—1/2—-6%
where W represents 4, u, z, or y. Substitution of Eqs. (49-53) into Eqs. (43, 6, 7) yields the

successive equations

dvl 1

X | (35)
2 :
%g_?_ + 2[v1(t) — v1(0)] cos ¢ = 0, . (56)
dm _
7 = sindo, (57)
déy _
ke - €os ¢o, \ (58)
d'Ug .
"Et— = -1, (59)
2
dd:zz + 2[v2(t) — v2(0)] cos ¢o — 2 [v1 (1) — v1(0)] ¢1 sin ¢bo = 0, (60)
%% = ¢ sin ¢yp. (61)

The boundary conditions are ¢g(0) = ¢:1(0) = 0. Using the matching condition, as ¢ — oo,
do — /2, ¢1 — 0, 01 — 1/2, 09 — —t2 /2, — 1, & — 0, &2 — 0. The solution to Eq. (55) is

(62)

B | e

™" =

Eq. (56) becomes

d’ g

di? _
which with the boundary conditions constitutes a two-point boundary value problem. This problem
‘can be solved by simple shooting: guess a value for ¢)(0) and integrate Eq. (63) using a Runge-
Kutta algorithm; then adjust the initial value and repeat until the right hand boundary condition
is satisfied. This one-dimensional shooting yields ¢4(0) = 1.096606. Similarly Eqs. (57-61)
are successively integrated with the results m(0) = 0.60127, £&(0) = 1.2175, v2(0) = 0.2934,
#4(0) = —0.5570, £,(0) = 0.8248. Thus

+tcos gy = 0, _ (63)

2/3
I 323' E _ 61(0) — 620a(0) + } = Ji E — 0.2934 (%) + O(J"*)} , (64)

1/3 1/3
M= %[456(0) +68L(0) 4+ = (%) [1.0966 — 0.5570 (%) + O(J‘S/a)} N ()

1/3 1/3
a=2[&(0)+860)+--] =2 (%) [1.2175 + 0.8248 (}21') + O(J"S/3)} , (66)

' 1 1/3 : _
= 6m(0) + - = 5~ 060127 (F) +O(J-%3). (67)
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4. Numerical integrdtion. Numerical integration of the original equations is necessary if J — 7
is neither large nor small. Define w = (F, 6(0)) and let 6(s;w), u(s;w), z(s;w), y(s;w) be the
solution of the initial value problem given by Eqs. (5-8) and using w. The original two-point
boundary value problem is equivalent to solving the nonlinear system of equations

Glw) = (-Z—i(l;w), y(l;w)) = 0. (68)

Algorithms for solving the nonlinear system Eq. (68) typically require partial derivatives
0G;/Ow;. Since G(w) is defined implicitly by the solution of a nonlinear ordinary differential
equation, these partials cannot be found analytically. Finite difference approximations could be
used, but for the same amount of work as a central difference, the partials can be calculated to the

same accuracy as G{w). This is done as follows: let

o6 a0 du fdx Oy
Z =16, ; )
( WOt 0 dw;’ dw;’ dw;’ Hw; Bwj) (69)
and consider the first order system
Z{ = Zz,
Zé = —(F - J4Z3) cos Zy,
Zh = Zs,
Z} = cos 7y,
Z{ = sin 7y,
S (70)
ZG = Z'Ts
Zy = (F = J*Z3) Zg sin Zy — (815 — J*Z3) cos Zy,
Zé = ZlOa |
Zy = —Zgsin Zy,
Z10 = Zgcos 23,
with the initial condition
Z(U)-:('ng,0,0,U,O,(ng,,0,0,0,0).“ (71)

By solving this system twice, for j = 1 and 7 = 2, all the partial derivatives 0G;f0w; can be
calculated, with an accuracy determined by the accuracy of the numerical solution to the above
initial value problem.

The nonlinear system Eg. (68) is solved by a combination of quasi-Newton methods [5] and
globally convergent homotopy methods [6, 7). Very briefly, the strategy is to use the globally
convergent and robust homotopy method to obtain a few solutions, and then use the inexpensive
{but only locally cdnvergent) quasi-Newton method to generate other solutions as J is slowly varied.
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5. Results and discussion. Figure 2 shows the normalized maximum moment M, occurring at
the midpoint, as a function of J. The perturbation solution about the bifurcation point is accurate
{within 5% error) for J less than 3.8. Similarly the asymptotic solution for large J is accurate for
J > 4.5. Figure 3 shows the maximum force occurring at the ends. The approximate solutions
compare fairly well in their respective ranges of validity. Figure 4 shows that the maximum width
a decreases and the maximum height b increases with J after bifurcation. Figure 5 shows some
cable configurations for different values of J. The cable is straight and rotates axially if J < =.
The boundary layer character becomes evident for large J.. These figures are important in the
design of rotating cables. If the cable has no flexural rigidity, EJ — 0 and J — 0. The chain
would double up into a thin hairpin and rotate perpendicular to the rotation axis.

This paper has used both direct numerical integration and perturbation methods to obtain
the solution. While direct numerical integration is more accurate, it does not show parametric
varjations. For example, M ~ (J — 7)}/? for small J — 7 and M ~ J%/3 for large J can not be
easily predicted by numerical integration. Also, if J is large, the term J* causes Eq. (4) to be
extremely stiff near s = 1/2, resulting in the direct numerical solutions becoming either expensive
or inaccurate. However, numerical integration was used to solve Eqs. {56-61). These integrations
are universal and independent of J, i.e., they can be performed once and for all.

The problem considered here is somewhat similar to the free rotation of an elastic ring about
a diameter [8]. There are, however, marked differences. The rotating ring does not bifurcate from
a critical rotation number J and thus the force and moment characieristics are quite different.
The procedure described here for the higher order perturbations about the bifurcation point and
the higher order large J asymptotic analysis should also be interesting to engineers and applied
mathematicians.
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Figure Captions

Figure 1. a} The coordinate system. b) The elemental length.

Figure 2. Normalized maximum moment as a function of J. Dashed lines are approximations.
Figure 3. Normalized force as a function of J. .

Figure 4. Maximum width ¢ and maximum height b.

Figure 5. Cable configurations for various J.
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