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ABSTRACT 

It is hypothesized that intense events such as crashes could influence driver behavior and driving 
risk. This study evaluated the influences of crash events on driver behavior and driving risk using 
data from the 100-Car Naturalistic Driving Study, which included 51 crashes from primary 
drivers. Two metrics were used to measure driver behavior and risk: the proportion of baselines 
where the drivers were engaged in complex and moderate secondary tasks and the intensity of 
the near-crashes (NCs) and safety-critical incidents (SCIs). For the distraction analysis, we 
sampled 882 6-second baseline epochs within 15-hour windows before and after crashes. Results 
from a mixed binomial regression model indicated that the percentage of baselines where drivers 
engaged in complex secondary tasks dropped after crashes (odds ratio = 0.54; 95% CI [0.32, 
0.93]). The driving risk analysis used the intensity of SCIs and NCs to measure the driving risk. 
Since there are typically more than one SCI and NC events before and after a crash, we 
developed four alternative recurrent event models to evaluate the influence of crashes based on 
actual driving time. The driving period was divided into several phases based on the relationship 
to crashes, and the intensities of these periods were compared. Results show a reduction in SCI 
intensity after the first crash (intensity rate ratio = 0.82; 95% CI [0.693, 0.971]) and the second 
crash (intensity rate ratio = 0.47; 95% CI [0.377, 0.59]) for male drivers. Females were observed 
to have a nonsignificant response to the first crash, but SCI intensity decreased after the second 
crash (intensity rate ratio = 0.43; 95% CI [0.342, 0.547]). This study indicated that crashes do 
have a positive effect on drivers’ behavior in terms of distraction and driving risk.  
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EXECUTIVE SUMMARY 

Driver behavior is a critical contributing factor to traffic safety. It is estimated that more than 
90% of crashes are associated with driver errors (Treat, 1980). A study by Curry, Hafetz, Kallan, 
Winston, and Durbin (2011) indicated that 95.6% of all teen-involved serious crashes were due 
to driver error.  

The current study investigated the influences of crashes on driving behavior and driving risk. 
The hypothesis was that drivers are more cautious after a crash, which is reflected in the 
following two aspects: (1) a reduction in the probability of distraction and (2) a reduction in the 
intensity of safety-critical incidents (SCIs) and/or near-crashes (NCs). We also explored how the 
observed effects change over time. Furthermore, we evaluated whether the potential reduction 
differs by demographic factors such as gender and age.  

Driving behavior was measured by the probability of distraction among randomly selected 
baseline samples occurring during a specific time period. Mixed binomial regression models 
were used to evaluate the factors that affect the probability of distraction. Driving risk was 
measured by the intensity of an SCI or NC. Since for a given crash, both SCIs and NCs can 
occur repeatedly before and after the crash, four intensity-based recurrent event models were 
developed to assess the change of SCI intensity and NC intensity before and after crashes. 

EVALUATING THE INFLUENCES OF CRASHES ON DRIVER DISTRACTION 

To evaluate driver behavior before and after crashes, a before–after time “window” was defined, 
e.g., 10 hours of driving time before and 10 hours after a crash. Within this window, random 
samples of 6-second baselines were identified from two sources. The first source is an existing 
baseline sample from a previous National Surface Transportation Safety Center for Excellence 
(NSTSCE) project, which contained 10,952 baseline samples. A detailed discussion of the 
baseline selection scheme is found in Guo and Hankey (2009). To increase the sample size close 
to crash time, 514 additional baseline samples were reduced within a 30-hour window around the 
crashes. Eventually, four samples were randomly selected within a 5-hour window. For the rest 
of the 30-hour window, two samples were selected in every 5-hour window. For each baseline, a 
rigorous data reduction protocol was used to extract driver behavior information. Data collection 
is illustrated in Figure 1.  

 
Figure 1. Chart. Before/after baseline sample collection illustration. 

Within the before and after windows, we used the percentage of baselines with moderate and 
complex secondary tasks to evaluate the influences of crashes on driver behavior. According to 
the visual and manual demand of the secondary task, baselines can be classified into four 
categories: (1) no distraction, (2) simple secondary task, (3) moderate task, and (4) complex 
secondary task. We adopted moderate and complex secondary tasks as indicators of high-risk 
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behavior and used the percentage of baselines with moderate and complex secondary tasks to 
measure the likelihood of the driver to engage in risky behavior.  

For each crash, the 15-hour windows before and after were considered as a matched pair, and the 
number of moderate and complex secondary tasks and total number of baselines were evaluated. 
Drivers were considered to have driven more cautiously if a larger proportion of moderate and 
complex secondary tasks occurred before the crash than after. Mixed effect binomial regression 
was adopted to (1) incorporate the correlation among observations from the same driver, and (2) 
to adjust for confounding effect (e.g., age and gender) through modeling.  

As illustrated in Figure 2, the distraction probability in general is lower during the before-crash 
period, especially in the initial 15 hours. The difference diminished as the time window increased 
in size and the percentage is almost equal after about 50 hours. This result suggests that drivers 
tend to be less engaged by distractions during the initial period after a crash but return to regular 
behavior after a certain time period. The confidence band is relatively wide, which could be due 
to the relatively small sample size.  

 
Figure 2. Graph. Crash influence on distraction proportion.  

RECURRENT EVENT APPROACH FOR EVALUATING THE INFLUENCES OF 
CRASH ON DRIVING RISK 

The literature suggests that safety-related conflicts, such as high g-force events and SCIs, are 
related to driving risk (Guo and Fang, 2013; Guo, F., Klauer, S. G., Hankey, J. M., and Dingus, 
T. A., 2010). In this study, we used the intensity of the SCIs and NCs to measure driving risk. 
Traditional analysis is based on event frequency, such as Poisson and negative binomial models, 
which requires arbitrarily defined time intervals and generally lacks statistical power. Therefore, 
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we adopted the intervals between events to measure the intensity. Since both SCIs and NCs 
occurred repeatedly before and after crashes, recurrent event models were adopted. Recurrent 
event models focus on the time to multiple events for a subject or cluster (Andersen & Gill, 
1982). An intensity-based recurrent event model was used by treating the number of SCIs and 
NCs over time as a counting process. Data setting is shown in Figure 3, where each horizontal 
line represents the driving time of one driver. Drivers were subject to different numbers of 
crashes, NCs, and SCIs at various time points through the entire study. The time to each crash, 
NC, and SCI was recorded. We focused on the actual driving time. Non-driving times when the 
vehicle was not in use were excluded. The driving period was divided into several phases based 
on the relationship to crashes: before first crash (coded as 0), between the first and second crash 
(coded as 1), and after the second crash (coded as 2).  

 
Figure 3. Chart. Data setting for intensity-based recurrent event model. 

To account for potential confounding and interacting effects, gender and the age of the driver 
when first enrolled in the study were also evaluated in the model. 

We developed four alternative models, including an Andersen-Gill (A-G) model, a stratified A-G 
model, a frailty model, and a stratified frailty model. A simulation study was conducted to 
examine the performance of the proposed models. Model comparison indicated that the stratified 
frailty models performed best for the data set and these were adopted for data analysis.  

RESULTS 

For illustration purposes, Figure 4 presents the ratio of SCI rate between the after-crash and 
before-crash windows across different window sizes. SCI rate is calculated as the number of 
SCIs per hour driving for each observed time window. As Figure 4 shows, male drivers show a 
stronger decrease pattern than female drivers as SCI rate is lower after crashes compared to the 
before window. The difference between before and after crashes gradually diminishes (ratio is 
close to 1) as window size increases. For most cases, the observed time period before or after a 
crash equals the chosen window size. However, the observed time period could also be shorter 
than the chosen window size because of the issue of overlapping or if not enough driving time 
records were available before or after that crash.  
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Figure 4. Graph. Ratio of SCI rate between after-crash and before-crash windows across 
window sizes. 

Table 1 provides an estimate of crash effect on SCI from the stratified frailty model. It can be 
seen that both first and second crashes influence male drivers. The intensity rate after the first 
crash is 0.82 times (95% CI [0.693, 0.971]) the rate before the first crash. The second crash has a 
bigger influence, reducing the intensity to 0.472 times (95% CI [0.377, 0.59]) that of before. The 
first crash does not show a significant influence on female drivers. However, after the second 
crash, the intensity rate is observed to be 0.432 times (95% CI [0.342, 0.547]). Age is not 
significant (p = 0.43). Estimation of variation among driver variation (𝜎𝜎) is 1.28 based on 
restricted maximum likelihood (REML) estimation. 

Table 1. Stratified frailty model crash effect estimation on SCI. 
Contrast Regression 

coefficient 
Intensity 
rate ratio 

Lower 
confidence limit 
of intensity rate 

ratio 

Upper 
confidence limit 
of intensity rate 

ratio 

Pr > ChiSq 

1 vs. 0 
Female 0.109 1.115 0.96 1.296 0.155 

2 vs. 1 
Female -0.839 0.432 0.342 0.547 <.0001 

1 vs. 0 
Male -0.199 0.820 0.693 0.971 0.021 

2 vs. 1 
Male -0.751 0.472 0.377 0.59 <.0001 

NCs were observed much less frequently than SCIs. There were four females who experienced 
two or more crashes in the study, as shown in Table 4. After careful examination, only one of 
them had at least one NC recorded after the second crash. The other three have the second crash 
as their last driving record. Consequently, estimation of the second crash effect for females 
depends heavily on one particular driver, which may lead to an individual crash influence rather 
than a population-wise effect. Thus, we decided to use time up to the second crash only and 
evaluate the first crash influence on NC.  
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The result is similar to that of SCI, as shown in Table 2. For male drivers, the intensity rate after 
the first crash is 0.52 times (95% CI [0.314, 0.874]) that before the first crash. Female drivers do 
not show a significant decreasing trend after the first crash. Estimation of 𝜎𝜎 is 0.93 based on 
REML estimation.  

Table 2. Stratified frailty model crash effect estimation on NC. 
Contrast Regression 

coefficient 
Intensity 
rate ratio 

Upper confidence limit 
of intensity rate ratio 

Lower confidence limit 
of intensity rate ratio 

Pr > ChiSq 

1 vs. 0 
Female -0.117 0.89 0.551 1.438 0.6333 

1 vs. 0 
Male -0.646 0.524 0.314 0.874 0.0134 

SUMMARY AND CONCLUSION 

This study evaluated the influences of crashes on driver distraction behavior and the driving risk 
using 100-Car NDS data. The results indicate that drivers’ engagement in moderate and complex 
secondary tasks tends to be lower after crashes, especially within a 15-hour driving time window. 
However, this decreasing effect tends to diminish over time and no difference is observed after 
50 hours.  

As measured by the intensity of SCIs and NCs, female and male drivers showed different 
responses to crashes. Male drivers responded to both the first crash and the second crash with 
lower SCI and NC intensity after each crash. Female drivers showed no significant response to 
the first crash but did show decreased SCI intensity after the second crash.  

This study suggests that crashes do have positive effects on drivers’ behavior in terms of both 
distraction and aggressive driving. However, the effect diminished quickly after crashes at about 
50 hours. Further study of how to prolong this improvement in safe behavior will benefit both 
safety education and efforts to develop corresponding safety countermeasures.  

The study is limited by the relative small number of crashes (51 crashes) as well as mild crash 
severity. With a larger NDS data set, such as the Second Strategic Highway Research Program 
(SHRP 2) NDS data, we hope to find more concrete evidence of the influences of crashes on 
driver behavior and potentially the influences of crash by severity.  
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

Driver behavior is a major contributing factor to traffic safety. It has been estimated that more 
than 90% of crashes are associated with driver errors (Treat, 1980). Curry, Hafetz, Kallan, 
Winston, and Durbin (2011) concluded that 95.6% of all teen-involved serious crashes were due 
to driver error.  

Studies have shown that driving risk decreases with increased driving experience (Waller, Elliot, 
Shope, Raghunathan, & Little, 2001; Kaneko and Jovanis, 1992; Chipman, 1982). Previous 
studies on driver experience are typically based on measures from years of driving and/or 
mileage (e.g., Waller et al., 2001; Chipman, 1982; Levy, 1990). For example, Waller et al. 
(2001) used time duration since licensure as the measurement of experience, and Kaneko and 
Jovanis (1992) considered the number of years of experience of drivers from a national less-than-
truckload firm as a factor. Experience based on years or mileage of driving includes the effects 
of many factors. For example, drivers are more mature and engage in fewer risky behaviors, they 
learn more skills and are able to deal with more complex situations, or they learn lessons from 
drastic crash events. In addition, using time and the amount of driving as a measurement of 
experience is commonly associated with age-related changes (af Wahlberg, 2012). Thus, with 
experience measures it is difficult to isolate the effects of a specific associated factor.  

It is hypothesized that crash experience would lead to reduced driving risk. The rationale is that 
drivers will learn from their collision events (crashes) and change their behavior 
correspondingly, thus reducing driving risk. From a psychological point of view, Lucas (2003) 
showed that drivers who had been involved in a motor vehicle accident reported significantly 
greater worries about driving than did drivers who had not been in an accident.  

There are limited studies directly linking crash experience with observed driving risk. Lin, 
Huang, Hwang, Wu, and Yen (2004) evaluated the association between crash experience and 
risk-taking behavior among students in Taiwan and found no significant association. Crash 
experience was measured by self-reported crash history prior to the study, crash frequency, time 
elapsed since the last crash, and crash severity. af Wahlberg (2012) compared the behavior of 
bus drivers between drivers with and without crash experience over a three-year period. 
Repeated measurements of speed-change behaviors were collected and a steady decline in speed 
change over time was observed within the crash group but was determined not to be due to 
crashes. A similar pattern was observed for the no-crash group. Rajalin and Summala (1997) 
studied the effect of fatal accidents on surviving drivers’ subsequent driving behavior based on 
self-reported driving behavior. The study showed that light-vehicle drivers typically returned to 
their “normal” driving behavior within a few months, while heavy-vehicle drivers tended to be 
more cautious in terms of driving mileage. The majority of existing studies are based on self-
reported driving behavior, including risk-taking score, speed change, and amount of driving. 
However, there is limited research using objective measures of driving behavior such as driving 
data collected in situ, specifically naturalistic driving data. 

1.1 NATURALISTIC DRIVING STUDY AND RISK ANALYSIS 

Naturalistic driving study (NDS) provides an innovative way to access traffic safety and driving 
behavior data (Dingus et al., 2006) and thus makes exploring the relationship between crash 
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experience and driving behavior and risk accessible. Participant vehicles are instrumented with 
data acquisition systems (DASs) that include cameras and various sensors to continuously 
monitor the driving process. The video images and kinematic measures can provide not only the 
exact driving behavior, vehicle kinematic, and driving environmental information, but also the 
sequence and precise time for each sub-event.  

Among many advantages of NDS, the video recordings can be used to assess driver behaviors 
that were difficult to retrieve before. In the present study, distraction pattern was evaluated as 
driving behavior. A high frequency of distraction and/or more complex non-driving-related tasks 
was considered indicative of distracted driving behavior. To be more specific, secondary tasks, 
such as communications, entertainment, information gathering, and navigation not required to 
drive, were used to measure distraction. The secondary tasks were categorized into three levels: 
complex (C), moderate (M), and simple (S), based on whether the task requires multiple steps, 
multiple eye glances away from the forward roadway, and/or multiple button presses. Detailed 
categorization of distraction can be found in Table 3 (Guo and Hankey, 2009). 

Table 3. Definition of distraction. 
Simple secondary tasks Moderate secondary tasks  Complex secondary tasks 

1. Adjusting radio  1. Talking/listening to 
handheld device  

1. Dialing a handheld device 

2. Adjusting other devices 
integral to the vehicle  

2. Handheld device-other 2. Locating/reaching/answering 
handheld device 

3. Talking to passenger in 
adjacent seat  

3. Inserting/retrieving CD 3. Operating a personal digital 
assistant (PDA) 

4. Talking/singing: no 
passenger present  

4. Inserting/retrieving cassette 4. Viewing a PDA 

5. Drinking  5. Reaching for object (not 
handheld device) 

5. Reading 

6. Smoking  6. Combing or fixing hair 6. Animal/object in vehicle 
7. Lost in thought  7. Other personal hygiene 7. Reaching for a moving object 
8. Other simple tasks  8. Eating 8. Insect in vehicle 
 9. Looking at external object  9. Applying makeup 

NDS also provides alternative ways to measure driving risk. Specifically, several types of safety-
related events can be identified through kinematic signatures of the vehicle and confirmed 
through visual inspection of video recordings. Crash, near-crash (NC), and safety-critical 
incident (SCI) are the major categories used. A crash is defined as any contact with an object, 
either moving or fixed, at any speed in which kinetic energy is measurably transferred or 
dissipated. Crashes include a participant’s vehicle making contact with other vehicles, roadside 
barriers, and objects on or off the roadway, pedestrians, cyclists, or animals. A near-crash is 
defined as any circumstance requiring a rapid, evasive maneuver by the participant (or his/her 
vehicle) or any other vehicle, pedestrian, cyclist, or animal to avoid a crash. The crashes and NCs 
were identified through a multiple-step process of automatic trigger identification, followed by 
visual confirmation by experts as described in Dingus et al. (2006). A safety-critical incident is 
defined as an unexpected event resulting in a close call or requiring fast action (evasive 
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maneuver) on the part of a driver to avoid a crash (Dingus et al., 2006). These safety-related 
events represent non-desired safety conditions that should be avoided and are widely used in the 
literature as a surrogate of crash for measuring driving risk (Guo and Fang, 2010) and are 
adopted in this report.  

1.2 STUDY OBJECTIVES AND DATA 

The current study sought to investigate the influence of crashes on driving behavior and driving 
risk. The objective was to evaluate whether drivers are more cautious in terms of frequency of 
distraction and whether the SCI frequency decreases after a crash. Furthermore, we were also 
interested in whether male and female drivers respond to crashes differently. 

Distraction changes constantly during driving. Although NDS makes the entire driving record 
available, it is not possible to reduce all video recordings by visual inspection and keep track of 
distraction. Guo and Hankey (2009) proposed an analysis framework based on a case-cohort 
approach. Under this analysis framework, a random sampling scheme for baseline reduction led 
to approximation of odds ratio to event rate ratio. This random sampling scheme is stratified by 
drivers, and the number of samples for each driver is proportional to the valid moving hours or 
miles traveled. The random samples also present the general behavior of drivers under normal 
driving conditions, and thus can be used to evaluate driver distraction.  

Data for the analyses were drawn from the 100-Car NDS. The 100-Car NDS was the first 
instrumented vehicle study undertaken with the primary purpose of collecting large-scale 
naturalistic driving data. Data were collected from 241 primary and secondary driver participants 
in northern Virginia. About 2,000,000 vehicle miles and 43,000 hours of driving are recorded in 
total. This study used data from 107 primary drivers. Three types of safety-related events were 
identified and used in this study, including 51 crashes, 610 NCs, and 6,659 SCIs. Crash 
distribution across drivers by their demographic information is given in Table 4. 

For this study, 11,466 baseline samples were incorporated from two sources. The first source is 
an existing baseline sample from a previous National Surface Transportation Safety Center for 
Excellence (NSTSCE) project (Guo and Hankey, 2009), which contained 10,952 baseline 
samples. To increase the sample size close to crash time, 514 additional baseline samples were 
reduced within a 30-hour window around the crashes, which brought the total sample size to 882 
within this window. Among all baseline samples, 44% involve various levels of distraction, and 
40% are categorized as moderate or complex distractions. 

As discussed above, SCIs and NCs were used to measure driving risk. Average rate, average 
frequency of both SCI and NC by gender, age group, and total crashes are shown in Table 4, 
Table 5, and Table 6. Event rate is calculated as the ratio between overall frequency and total 
hours of driving. In general, SCIs occur 8 to 10 times more frequently than NCs across all groups 
of drivers. Higher SCI and NC rates are associated with drivers who experienced more crashes.  
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Table 4. SCI/NC rate, frequency, and driving time for 0 crash group. 

 

Females 
≤30 yrs. 
old (25 

subjects) 

Males 
≤30 yrs. 
old (24 

subjects) 

Females 
31 to 55 
yrs. old 

(12 
subjects) 

Males 31 
to 55 yrs. 

old (32 
subjects) 

Females >55 
yrs. old (5 
subjects) 

Males >55 
yrs. old (9 
subjects) 

Number of drivers 11 15 10 26 4 7 
SCI/NC rate^ 0.18/0.02 0.15/0.02 0.15/0.02 0.11/0.01 0.04/0.01 0.12/0.02 
Average SCI/NC*  57.4/4.6 45.8/4.5 35.8/3.8 49.9/2.4 8.8/1.3 39.1/5.7 
Average driving 
hours# 255 317 236 378 264 332 

Table 5. SCI/NC rate, frequency, and driving time for 1 crash group. 

 

Females 
≤30 yrs. 
old (25 

subjects) 

Males 
≤30 yrs. 
old (24 

subjects) 

Females 
31 to 55 
yrs. old 

(12 
subjects) 

Males 31 
to 55 yrs. 

old (32 
subjects) 

Females >55 
yrs. old (5 
subjects) 

Males >55 
yrs. old (9 
subjects) 

Number of drivers 10 3 2 4 1 2 
SCI/NC rate^ 0.27/0.03 0.26/0.02 0.41/0.04 0.22/0.03 0.16/0.06 0.14/0.03 
Average SCI/NC  71.2/7.2 36.0/2.7 175.5/19 99.5/12.3 5.0/2 53.5/6.5 
Average driving 
hours# 344 345 448 431 32 360 

Table 6. SCI/NC rate, frequency, and driving time for ≥2 crash group. 

 

Females 
≤30 yrs. 
old (25 

subjects) 

Males 
≤30 yrs. 
old (24 

subjects) 

Females 
31 to 55 
yrs. old 

(12 
subjects) 

Males 31 
to 55 yrs. 

old (32 
subjects) 

Females >55 
yrs. old (5 
subjects) 

Males >55 
yrs. old (9 
subjects) 

Number of drivers 4 6 — 2 — — 
SCI/NC rate^ 0.52/0.05 0.33/0.03  0.27/0.02   
Average SCI/NC  214.5/20.8 95.5/11  132/7.5   
Average driving 
hours# 415 359  489   

^: number of events per driving hour 
*: average number of events per driver 
#: average driving hours per subject 
—: no data 
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CHAPTER 2. EVALUATING THE INFLUENCES OF CRASHES 
ON DRIVER DISTRACTION 

In this study, driving behavior is measured by the probability of distraction in randomly selected 
baseline samples occurring over a specific time period. According to the visual and manual 
demand of the secondary task, baselines can be classified into four categories: (1) no distraction, 
(2) simple secondary task, (3) moderate task, and (4) complex secondary tasks. We adopted 
moderate and complex secondary tasks as indicators of high-risk behavior and used the 
percentage of baselines with moderate and complex secondary tasks to measure the likelihood of 
a driver to engage in high-risk behavior. Drivers were considered to have driven more cautiously 
if a larger proportion of moderate and complex secondary tasks occurred before a crash than 
after. 

2.1 COUNT-BASED APPROACH 

The count-based approach requires a predefined “window,” e.g., 10 hours of driving time. For 
each crash, the predefined before-and-after windows were considered as a matched pair, and the 
number of moderate and complex secondary tasks as well as the total number of baselines were 
evaluated. Data collection for this approach is illustrated in Figure 5.  

 
Figure 5. Chart. Before and after baseline sample collection. 

An appropriate length of the time for the window needs to be carefully selected. If crash 
experience acts as a short stimulation for drivers and only affects driving behavior temporarily, a 
large window size will mask the effect of the crash by including non-influenced data. On the 
other hand, a small window size will not be able to capture enough event data and thus lose 
power to evaluate crash influence.  

Window size selection is constrained by the overlapping problem, which refers to a situation 
where the time interval between two crashes is less than the window size. Ideally, window size is 
chosen to be smaller than the shortest time interval between two consecutive crashes for one 
driver. However, in the 100-Car NDS, one driver experienced two crashes within 1 hour of 
driving. Figure 6 shows a histogram of the time gaps between two consecutive crashes. Over 
75% of two successive crashes for one driver were at least 30 hours apart, so the current study 
begins with a window size of 15 hours. Crash effect based on other window sizes is investigated 
later. 
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Figure 6. Graph. Histogram of crash time intervals. 

An existing sample of 10,952 baselines was randomly sampled from the 100-Car data (Guo and 
Hankey, 2009). For each baseline, a rigorous data reduction protocol was used to extract driver 
behavior information. Among these baselines samples, only 952 fall in the 30-hour window 
around observed crashes. For the purpose of comparing distraction before and after a crash, we 
reduced an additional 514 baselines within a 30-hour driving window around crashes. With these 
additional data, the final sampling scheme, as illustrated in Figure 7, was as follows. Two 
samples were randomly selected within a 2-hour window before and after a crash, and two were 
randomly selected in the 2–5 hour window. For the rest of the 30 hours, two samples were 
randomly selected in every 5-hour window.  

 
Figure 7. Chart. Final baseline sampling scheme. 

Table 7 shows the total number of baseline samples from existing data and new data reduction 
across window sizes. There is a small proportion of double-counted samples in the table, due to 
overlapping windows between crashes. Baseline samples could be included in an after-crash 
window while being included in the before window of the next crash. Thus, the total number of 
baselines in Table 7 is larger than the total number of unique baselines that are identified from 
data reduction. Sampling rate, defined as the number of samples per hour, shows consistency 
between the before and after windows.  
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Table 7. Baseline sample distribution. 
Window 

size (hours) 
Guo and Hankey 

2009 sample 
New baseline 

reduction 
Total samples 

before 
Total sample 

after 
Sampling rate 

before 
Sampling rate 

after 
5 179 235 218 196 44 39 

10 326 320 336 310 34 31 
15 502 380 450 432 30 29 
20 669 425 559 535 28 27 
25 796 498 660 634 26 25 
30 952 551 773 730 26 24 
35 1097 552 864 785 25 22 
40 1246 558 949 855 24 21 
45 1345 559 1003 901 22 20 
50 1484 562 1076 970 22 19 
55 1604 563 1136 1031 21 19 
60 1706 564 1184 1086 20 18 

Table 8 compares the proportion of moderate and complex distractions among the baseline 
samples. It can be observed that female drivers had a higher distraction rate than male drivers. 
Figure 8 provides the ratio between the moderate and complex distraction proportions before and 
after a crash. The results indicate that drivers’ engagement in moderate and complex secondary 
tasks tends to be lower after crashes, especially within a 15-hour driving time window. However, 
this decreasing effect tends to diminish over time.  

Table 8. Proportion of moderate and complex distraction comparison. 
Window 

size 
(hours) 

Proportion 
distraction 

before – 
Female 

Proportion 
distraction 

before – 
Male 

Proportion of 
distraction 

after – Female 

Proportion 
of distraction 
after – Male 

Ratio of 
distraction 
percentage 

– Female 

Ratio of 
distraction 

percentage – 
Male 

5 26% (26/102) 14% (16/116) 25% (22/93) 15% (14/103) 0.93 1.09 
10 27% (41/158) 17% (28/178) 22% (32/153) 14% (21/157) 0.80 0.84 
15 27% (52/210) 18% (41/240) 19% (45/220) 13% (28/212) 0.72 0.76 
20 26% (60/259) 16% (47/300) 22% (61/268) 13% (35/267) 0.84 0.81 
25 26% (69/303) 15% (51/357) 23% (74/317) 12% (38/317) 0.87 0.81 
30 25% (79/353) 15% (61/420) 22% (82/360) 13% (48/370) 0.87 0.83 
35 25% (84/390) 15% (67/474) 21% (85/390) 13% (52/395) 0.85 0.84 
40 25% (95/434) 15% (73/515) 21% (91/418) 13% (59/437) 0.86 0.88 
45 25% (98/460) 15% (78/543) 21% (94/431) 13% (63/470) 0.87 0.87 
50 24% (104/500) 15% (81/576) 21% (96/462) 13% (68/508) 0.85 0.87 
55 24% (108/528) 14% (82/608) 20% (100/493) 13% (71/538) 0.86 0.89 
60 23% (113/555) 15% (88/629) 20% (103/518) 13% (76/568) 0.85 0.89 
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Figure 8. Graph. Ratio of distraction rate after vs. before by gender.  

2.2 MODELING BASELINE DISTRACTION USING MIXED BINOMIAL 
REGRESSION 

A formal statistical inference was conducted to investigate the influence of crashes on driver 
distraction. For each crash, the number of baselines in which drivers engaged in moderate and 
complex secondary tasks during the before and after period are considered as a matched pair. A 
crash effect is observed if a larger probability of moderate and complex secondary tasks occurs 
before a crash than after. Mixed binomial regression models are used to evaluate the factors that 
affect the probability of distraction. A mixed binomial regression model is adopted to (1) 
incorporate the correlation among observations from the same driver, and (2) to adjust for 
confounding effects, e.g. gender, through modeling. Gender effect allows distraction behavior 
between male and female to be discerned. The model is given as follows: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

1 − 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖
� = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2 ∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 + 𝜖𝜖𝑖𝑖 , 𝜖𝜖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2) 

where  
• 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is the total number of moderate and complex distractions for subject 𝑖𝑖 (where 𝑖𝑖 =

1, … , 107) in the before–after window of number j crash. Frequency follows a binomial 
distribution. 

• 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 is the total number of baseline samples in the associated window.  

• 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 is the probability of a moderate or complex distraction happening. 

• 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 indicates whether the distraction happens before or after a crash: 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 0 if it 
happens before, otherwise 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1.  

• 𝛽𝛽1 is crash effect and 𝛽𝛽2 is gender effect. 

• 𝜖𝜖𝑖𝑖 is a normally distributed random effect of mean 0 associated with each individual. 
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Results indicate that the percentage of baselines where drivers engaged in complex secondary 
tasks dropped after crashes. The maximum decrease occurred in the 15-hour window, with odds 
ratio = 0.54; 95% CI [0.32, 0.93]. Crash influence on distraction was also explored with varying 

window sizes, as shown in  
Figure 9. Distraction probability decreased after a crash, especially in the initial 15 hours. The 
difference diminished as window size increased and became negligible after 50 hours. This result 
suggests that drivers tend to engage less in distractions during the initial period after a crash but 
return to regular behavior after a certain time period. The confidence band is relatively wide, 
which is primarily due to the relatively small sample size.  

 
Figure 9. Graph. Crash influence on distraction proportion.  
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CHAPTER 3. INTENSITY-BASED RECURRENT EVENT APPROACH 

Compared to the event frequency–based approach, time to event, i.e., SCI and NC, does not 
require an arbitrarily defined time interval and could be more informative in estimating the 
intensity of the event. Cox’s proportional hazards model (Cox, 1972) is a commonly used 
method for time-to-event data and provides reliable estimates of survival times, as well as 
relative risk associated with risk factors. The majority of survival models are based on the 
assumption that there can be only one event for a subject. However, both SCIs and NCs were 
observed repeatedly for a given driver in the 100-Car NDS. As a result, a recurrent event 
approach, which focuses on the time to multiple events for any subject or cluster (Andersen and 
Gill, 1982), is more appropriate. Intensity-based recurrent event models treat the number of SCIs 
and NCs over time as a counting process. For the purpose of both modeling and statistical 
analysis, the concepts of intensity functions and counting process are illustrated with data setting 
as below. Without loss of generality, we show the setting for the SCI process first. A similar 
setting is expected for the NC process. 

Data setting is shown in Figure 10, where each horizontal line represents the driving record of 
one driver. Drivers were subject to different numbers of crashes, NCs, and SCIs at different time 
points throughout study. Thus, it was important to record all timestamps. We focused on the 
actual driving time. Non-driving time when the vehicle was not in use was excluded. As 
illustrated in Figure 10, the driving period was divided into several phases based on the 
relationship with crashes: before the first crash (coded as 0), between the first and second crash 
(coded as 1), and after the second crash (coded as 2). Driving period was taken into account as a 
covariate, working as an external and independent factor on SCI intensity. To account for 
potential confounding and interacting effects, gender and the age of the driver when first enrolled 
in the study were also evaluated. 

 
Figure 10. Chart. Data setting for intensity-based recurrent event model. 

Assume an individual driver 𝑖𝑖, who is under observation in  (0, 𝑆𝑆], experienced 𝑛𝑛𝑖𝑖 SCIs and 
𝑐𝑐𝑖𝑖 crashes in the entire study. Let 0 < 𝑡𝑡1 < 𝑡𝑡2 < ⋯ < 𝑡𝑡𝑛𝑛𝑖𝑖 and 0 < 𝑡𝑡𝑐𝑐1 < ⋯ < 𝑡𝑡𝑐𝑐𝑖𝑖 denote the event 
times and crash times respectively, where 𝑡𝑡𝑘𝑘 is time to the 𝑘𝑘𝑡𝑡ℎ SCI and 𝑡𝑡𝑐𝑐𝑘𝑘  is time to the 𝑘𝑘𝑡𝑡ℎ 
crash. In the 100-Car Study, only three drivers experienced more than two crashes. Thus, up to 
two crash effects are considered and 𝑘𝑘 takes values from 0, 1, and 2. In this data setting, crash is 
an external time-varying covariate that has influence on SCI rate, denoted as  crash(𝑡𝑡), with the 
following piece-wise constant function: 
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crash(𝑡𝑡) = �
0, 0 ≤ 𝑡𝑡 < 𝑡𝑡𝑐𝑐1
1, 𝑡𝑡𝑐𝑐1 ≤ 𝑡𝑡 < 𝑡𝑡𝑐𝑐2
2, 𝑡𝑡𝑐𝑐2 ≤ 𝑡𝑡 < 𝑆𝑆

. 

The associated counting process of SCI {𝑁𝑁(𝑡𝑡), 0 ≤ 𝑡𝑡} records the cumulative number of SCIs 
generated by the process. To be specific, 𝑁𝑁(𝑡𝑡) = ∑ 𝐼𝐼(𝑡𝑡𝑘𝑘 ≤ 𝑡𝑡)∞

𝑘𝑘=1  is the number of events 
occurring over the time interval (0, 𝑡𝑡]. The intensity function of the process gives the 
instantaneous probability of an event occurring at t and is mathematically defined as: 

λ(𝑡𝑡|𝐻𝐻(𝑡𝑡)) = 𝑙𝑙𝑙𝑙𝑙𝑙
∆𝑡𝑡→0

𝑃𝑃𝑃𝑃 (∆𝑁𝑁(𝑡𝑡) = 1|𝐻𝐻(𝑡𝑡))
∆𝑡𝑡

 

where ∆𝑁𝑁(𝑡𝑡) = 𝑁𝑁(𝑡𝑡 + ∆𝑡𝑡−) − 𝑁𝑁(𝑡𝑡−) is the number of events in the interval [𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡] and 
𝐻𝐻(𝑡𝑡) = {𝑁𝑁(𝑠𝑠), 0 ≤ 𝑠𝑠 < 𝑡𝑡} represents the history of the process at time t. 𝐻𝐻(𝑡𝑡) can be considered 
as the mean of the cumulative number of events from (0, 𝑡𝑡). This intensity function is very 
general and accommodates various data structure, models, and dependences within cluster 
structures.  

In this study, we considered four alternative models, including an Andersen-Gill (A-G) model, a 
stratified A-G model, a frailty model, and a stratified frailty model. A simulation study was 
conducted to examine the performance of the proposed models. Model comparison indicated that 
the stratified frailty model performed best for the data set and thus it was adopted for data 
analysis.  

3.1 ANDERSEN-GILL (A-G) MODEL  

A commonly used and fundamental model in the recurrent event literature is the Poisson process 
model or Andersen-Gill (A-G) model (Andersen and Gill, 1982). It describes situations where 
events occur randomly in such a way that the number of events in non-overlapping time intervals 
are statistically independent. The overall intensity function of the Poisson process is: 

λ𝑖𝑖�𝑡𝑡�𝒛𝒛𝒊𝒊(𝑡𝑡)� = λ0(𝑡𝑡)exp (𝒛𝒛𝒊𝒊′(𝑡𝑡)𝜷𝜷) , 

where: 
• λ0(𝑡𝑡) is an arbitrary nonnegative integrable function.  

• 𝒛𝒛𝒊𝒊(𝑡𝑡) is a vector of fixed or time-varying external covariates and acts multiplicatively on 

the baseline. 

• 𝜷𝜷 is a vector of regression parameters of the same length as 𝒛𝒛𝒊𝒊(𝑡𝑡). 

The Poisson process model assumes that the probability of an event in [𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) depends on 𝑡𝑡 
but not on 𝐻𝐻(𝑡𝑡). All drivers share the same unstructured baseline function and are differentiated 
by covariates. Cumulative intensity, denoted as µ𝑖𝑖(𝑡𝑡) = ∫ λ𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡

0  is continuous and finite for 
all 𝑡𝑡 > 0 and can be explained as the average number of events occurring in time period (0, 𝑡𝑡]. 
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The estimation of coefficients (𝛽̂𝛽) can be derived from maximizing log partial likelihood (PL), 
which is given as follows: 

log(𝑃𝑃𝑃𝑃) = ∑ ∑ �𝒛𝒛𝒊𝒊′(𝑡𝑡)𝜷𝜷− ∑ exp (𝒛𝒛𝒌𝒌′ (𝑡𝑡)𝜷𝜷)𝑘𝑘∈𝑅𝑅𝑖𝑖𝑖𝑖 �𝑛𝑛𝑖𝑖
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1 , 

where 𝑅𝑅𝑖𝑖𝑖𝑖 contains all subjects who are at risk at given time 𝑡𝑡𝑖𝑖𝑖𝑖. Then, the baseline function can 
be estimated by inserting 𝛽̂𝛽 into log partial likelihood and is given in 

λ0� (𝑡𝑡) =
∑ 𝑌𝑌𝑖𝑖(𝑡𝑡)𝑚𝑚
𝑖𝑖=1 𝑑𝑑𝑁𝑁𝑖𝑖(𝑡𝑡)

∑ 𝑌𝑌𝑖𝑖(𝑡𝑡)exp (𝒛𝒛𝒊𝒊′(𝑡𝑡)𝜷𝜷�)𝑚𝑚
𝑖𝑖=1

 , 

where 𝑌𝑌𝑖𝑖(𝑡𝑡) indicates whether subject 𝑖𝑖 is under study at time 𝑡𝑡, and  ∑ 𝑌𝑌𝑖𝑖(𝑡𝑡)𝑚𝑚
𝑖𝑖=1 𝑑𝑑𝑁𝑁𝑖𝑖(𝑡𝑡) is the 

total number of SCIs observed at 𝑡𝑡. 

3.2 STRATIFIED A-G MODEL 

It is likely that subjects are sampled from subgroups of individuals with varying intensity 
functions. For example, drivers who experience more crashes in the same time period are more 
risky than others and may behave differently in terms of SCI rate. An effective way to 
accommodate this situation is to stratify the baseline function. Three levels (0 crash drivers, 1 
crash drivers, 2 crash drivers) were defined as strata. It is assumed that baseline functions vary 
among strata while coefficients are consistent. The stratification model is written as below: 

λ𝑟𝑟𝑟𝑟�𝑡𝑡�𝒛𝒛𝒓𝒓𝒓𝒓(𝑡𝑡)� = λ𝑟𝑟0(𝑡𝑡) exp(𝒛𝒛𝒓𝒓𝒓𝒓′ (𝑡𝑡)𝜷𝜷), 

where: 
• λ𝑟𝑟𝑟𝑟(t) is the intensity function for driver 𝑖𝑖 in stratum 𝑟𝑟. 

• λ𝑟𝑟0(𝑡𝑡) is the baseline function of stratum 𝑟𝑟.  

The estimation of coefficients (𝛽̂𝛽) can be derived from maximizing log partial likelihood, which 
is given as follows: 

log(𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠) = ����𝒛𝒛𝒓𝒓𝒓𝒓′ (𝑡𝑡)𝜷𝜷 − � exp (𝒛𝒛𝒓𝒓𝒓𝒓′ (𝑡𝑡)𝜷𝜷)
𝑘𝑘∈𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟

�
𝑛𝑛𝑟𝑟𝑟𝑟

𝑗𝑗=1

𝑚𝑚𝑟𝑟

𝑖𝑖=1

𝑅𝑅

𝑟𝑟=1

, 

where:  
• 𝑟𝑟 is an indicator of stratum level, 𝑟𝑟 = 1, … , R. 

• 𝑚𝑚𝑟𝑟 is the total number of drivers in stratum 𝑟𝑟. 

• 𝑛𝑛𝑟𝑟𝑟𝑟 is the number of SCIs for driver 𝑖𝑖 in stratum 𝑟𝑟. 

• 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 contains all subjects who are at risk at given time 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 in stratum 𝑟𝑟. 

Then, the baseline function can be estimated by inserting 𝜷𝜷� into log partial likelihood and is 
given in 
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λ𝑟𝑟0� (𝑡𝑡) =
∑ 𝑌𝑌𝑟𝑟𝑟𝑟𝑑𝑑𝑁𝑁𝑟𝑟𝑟𝑟(𝑡𝑡)
𝑚𝑚𝑟𝑟
𝑖𝑖=1

∑ 𝑌𝑌𝑟𝑟𝑟𝑟exp (𝒛𝒛𝒓𝒓𝒓𝒓′ (𝑡𝑡)𝛽̂𝛽)𝑚𝑚𝑟𝑟
𝑖𝑖=1

 , 

where 𝑌𝑌𝑟𝑟𝑟𝑟 indicates whether subject 𝑖𝑖 in strata 𝑟𝑟 is under study at time 𝑡𝑡. 

3.3 SHARED FRAILTY MODEL 

In applications involving multiple subjects, heterogeneity is often apparent and requires 
consideration. Heterogeneity describes, conditioning on covariates, the variation among 
individual intensity rate functions. In other words, there is more within-individual variation in 
event occurrence than is accounted for by a Poisson process. To capture the relation of the 
correlated observations, it has been considered that the event times of one subject share an 
unobserved effect (McGilchrist & Aisbett, 1991; Nielsen, Gill, Andersen, & Sorensen, 1992). 
This shared, individual random effect accounts for the variation beyond conditioning on 
covariates. 

The shared frailty model assigns a random effect,  𝜇𝜇𝑖𝑖, to each subject acting multiplicatively on 
the Poisson intensity model. Then, the general intensity function can be written as below: 

λ𝑖𝑖(𝑡𝑡|𝒛𝒛𝒊𝒊(𝑡𝑡), 𝜇𝜇𝑖𝑖) = 𝜇𝜇𝑖𝑖λ0(𝑡𝑡)exp (𝒛𝒛𝒊𝒊′(𝑡𝑡)𝜷𝜷), 

where the random terms, also known as frailty, 𝜇𝜇𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚 are taken to be independent and 
identically distributed (i.i.d) with mean and distribution function 𝐺𝐺(𝜇𝜇). Frailty gives the 
interpretation that individuals with 𝜇𝜇𝑖𝑖 > 1 tend to occur at a faster rate.  

There are many choices for distribution 𝐺𝐺(𝜇𝜇), including gamma, inverse Gaussian, lognormal 
(Wienke, 2010). In this report, lognormal distribution is primarily used, which means if one 
specifies 𝛾𝛾𝑖𝑖 = log(𝜇𝜇𝑖𝑖), then 𝛾𝛾𝑖𝑖~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎). Then the intensity can be written in the format: 

λ𝑖𝑖(𝑡𝑡|𝒛𝒛𝒊𝒊(𝑡𝑡), 𝛾𝛾𝑖𝑖) = λ0(𝑡𝑡)exp (𝒛𝒛𝒊𝒊′(𝑡𝑡)𝜷𝜷 + 𝛾𝛾𝑖𝑖). 

For the shared frailty model, there are two commonly used methods to obtain 𝛽̂𝛽: one is the 
expectation–maximization (EM) algorithm and the other is maximizing penalized partial log-
likelihood. Therneau, Grambsch, and Pankratz (2003) have proved that the E-M algorithm 
solution for lognormal shared frailty models is closely linked to penalized estimation. The 
logarithm penalized partial likelihood (PPL) is given below: 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑃𝑃𝑃𝑃𝑃𝑃) = ∑ ∑ �𝒛𝒛𝒊𝒊′(𝑡𝑡)𝜷𝜷 − ∑ exp (𝒛𝒛𝒌𝒌′ (𝑡𝑡)𝜷𝜷)𝑘𝑘∈𝑅𝑅𝑖𝑖𝑖𝑖 �𝑛𝑛𝑖𝑖
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1 − 1

2𝜎𝜎2
𝜸𝜸′𝜸𝜸, 

where 𝜸𝜸 = (𝛾𝛾1, … , 𝛾𝛾𝑚𝑚). The maximization of this approximate likelihood is a doubly iterative 
process that alternates between the following two steps: 

Step 1: For a fixed value of 𝜎𝜎2, find the best covariates estimation by maximizing the penalized 
partial log likelihood, 𝐿𝐿𝐿𝐿𝐿𝐿(𝑃𝑃𝑃𝑃𝑃𝑃).  
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Step 2: For fixed values of 𝜷𝜷 and 𝜸𝜸, calculate the REML estimation of 𝜎𝜎�2 = 𝜸𝜸′�𝜸𝜸�+𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑯𝑯𝟐𝟐𝟐𝟐
−𝟏𝟏)

𝑚𝑚
, in 

which 𝑯𝑯𝟐𝟐𝟐𝟐
−𝟏𝟏 is the inverse of the second derivative matrix associated with the frailty terms. 

3.4 STRATIFIED SHARED FRAILTY MODEL 

The stratified shared frailty model incorporates both varying baseline functions and among-
individual variation as a combination of the stratified A-G model and shared frailty model as 
follows: 

λ𝑟𝑟𝑟𝑟(𝑡𝑡|𝒛𝒛𝒓𝒓𝒓𝒓(𝑡𝑡), 𝛾𝛾𝑟𝑟𝑟𝑟) = λ𝑟𝑟0(𝑡𝑡)exp (𝒛𝒛𝒓𝒓𝒓𝒓′ (𝑡𝑡)𝜷𝜷 + 𝛾𝛾𝑟𝑟𝑟𝑟), 

where:  
• 𝒓𝒓 is an indicator of stratum level, 𝒓𝒓 = 𝟏𝟏, … ,𝐑𝐑. 
• 𝛌𝛌𝒓𝒓𝒓𝒓(𝒕𝒕) is the baseline function for stratum 𝒓𝒓. 
• 𝜸𝜸𝒓𝒓𝒓𝒓~𝑵𝑵(𝟎𝟎,𝝈𝝈) 𝒓𝒓 = 𝟏𝟏, … ,𝑹𝑹; 𝒊𝒊 = 𝟏𝟏, … ,𝒎𝒎𝒊𝒊 are independent frailty terms which explain 

possible correlation among events for an individual. 

𝛽̂𝛽 is estimated by a similar algorithm as discussed in Section 3.3. The penalized partial log-
likelihood for the stratified shared frailty model is: 

log(𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠) = ∑ ∑ ∑ �𝒛𝒛𝒓𝒓𝒓𝒓′ (𝑡𝑡)𝜷𝜷 − ∑ exp (𝒛𝒛𝒓𝒓𝒓𝒓′ (𝑡𝑡)𝜷𝜷)𝑘𝑘∈𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 � − 1
2𝜎𝜎2

𝜸𝜸′𝜸𝜸𝑛𝑛𝑟𝑟𝑟𝑟
𝑗𝑗=1

𝑚𝑚𝑟𝑟
𝑖𝑖=1

𝑅𝑅
𝑟𝑟=1 . 

For a fixed value of 𝜎𝜎2, the best covariates estimation is found by maximizing the penalized 
partial log likelihood 𝐿𝐿𝐿𝐿𝐿𝐿(𝑃𝑃𝑃𝑃𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠), and then for fixed values of 𝜷𝜷 and 𝜸𝜸, calculating the REML 

estimation of 𝜎𝜎�2 = 𝜸𝜸′�𝜸𝜸�+𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑯𝑯𝟐𝟐𝟐𝟐
−𝟏𝟏)

𝑚𝑚
,  where 𝑯𝑯𝟐𝟐𝟐𝟐

−𝟏𝟏 is the inverse of the second derivative matrix 
associated with the frailty terms. These two steps are performed iteratively until they converge. 

Then, 𝑅𝑅 baseline functions are estimated from the following equation: 

λ𝑟𝑟0� (𝑡𝑡) =
∑ 𝑌𝑌𝑟𝑟𝑟𝑟𝑑𝑑𝑁𝑁𝑟𝑟𝑟𝑟(𝑡𝑡)𝑚𝑚𝑟𝑟
𝑖𝑖=1

∑ 𝑌𝑌𝑟𝑟𝑟𝑟exp (𝒛𝒛𝒓𝒓𝒓𝒓
′ (𝑡𝑡)𝛽𝛽�+𝛾𝛾𝑟𝑟𝑟𝑟� )𝑚𝑚𝑟𝑟

𝑖𝑖=1
. 

3.5 MODEL FITTING EVALUATION 

Cox-Snell residuals are useful for checking the overall fitting of an intensity-based model. For 
the case of several counting processes with intensity λ𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1, … ,𝑚𝑚, Cox-Snell residuals can 
be defined as: 

r𝑖𝑖𝑖𝑖 = ∫ λ𝚤𝚤�(𝑠𝑠)𝑑𝑑𝑑𝑑, 𝑖𝑖 = 1, … ,𝑚𝑚;  𝑗𝑗 = 1, …𝑛𝑛𝑖𝑖 + 1𝑡𝑡𝑖𝑖,𝑗𝑗
𝑡𝑡𝑖𝑖,𝑗𝑗−1

, 

where: 
• 𝑡𝑡𝑖𝑖,0 and 𝑡𝑡𝑖𝑖,𝑛𝑛𝑖𝑖+1 are the start and stop times for subject i. 
• λ𝚤𝚤�(𝑠𝑠) is the estimated intensity function. 
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If the model is correct, then r𝑖𝑖𝑖𝑖 should behave like a censored sample from a unit exponential 
distribution. Thus, a plot of the estimated cumulative intensity rate of the residuals versus the 
residuals should be a straight line through the origin with a slope of 1. 
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CHAPTER 4. SIMULATION STUDY 

We conducted a simulation study to evaluate the performance of the alternative approaches. 
Simulation setup was analogous to the real situation and described as below: 

Step 1: Driving time for 50 drivers is generated from a normal distribution with a mean of 335 
and a standard deviation of 160, estimated from the 100-Car study. 

Step 2: For each driver, up to two crash times are generated based on the intensity function:  

λ𝑖𝑖(𝑡𝑡) =
1

150
 

The rate 1
150

 was selected based on the crash rate estimated from 100-Car data, which means we 
observed one crash in every 150 hours of driving history on average. Other baseline values were 
also examined, and the results were robust to the change in baseline rate. Due to space 
constraints, all of the results from other values are not included here. The generation of crash 
times assumed drivers performed similarly. Gender was not considered, nor any other external 
factor. Crash intensity was restricted to be constant over time. Crashes were considered to occur 
independently. If one driver had a crash time that was greater than the driver’s study time, then 
the crash time was censored. 

Step 3: After getting the censor time (total driving time) and crash time, the intensity function for 
each driver is assumed as follows: 

λ𝑟𝑟𝑟𝑟(𝑡𝑡) =
1
𝑐𝑐𝑟𝑟
∗ t𝑘𝑘𝑟𝑟−1 ∗ exp (𝛽𝛽1(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟 = 𝑀𝑀) + 𝛽𝛽2(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑡𝑡) = 1) + 𝛽𝛽3(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑡𝑡) = 2) + 

𝛽𝛽4(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑡𝑡) = 1)(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟 = 𝑀𝑀) + 𝛽𝛽5(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑡𝑡) = 2)(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟 = 𝑀𝑀) + 𝛾𝛾𝑟𝑟𝑟𝑟) 

where: 
• 𝒓𝒓 = 𝟏𝟏,𝟐𝟐,𝟑𝟑, which indicates stratum level. Drivers in level 1 do not experience any 

crashes, drivers in level 2 have only one crash, and drivers in level 3 have two crashes. 

• Baseline functions vary based on two parameters: scale parameter c and shape parameter 
k. They may differ from stratum to stratum, as denoted by 𝒄𝒄𝒓𝒓 and 𝒌𝒌𝒓𝒓. 𝒌𝒌𝒓𝒓 > 𝟏𝟏 indicates 
that the SCI rate increases over time; 𝒌𝒌𝒓𝒓 = 𝟏𝟏 corresponds to a constant rate; 𝒌𝒌𝒓𝒓 <
𝟏𝟏 represents decreasing trend.  

• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑡𝑡) is a time-varying crash impact indicator. It takes a value of 1 when t is 
between the first and second crash and 2 when t is larger than the second crash time. 

• 𝛽𝛽1 is gender effect; 𝛽𝛽2 is the first crash effect for female drivers; 𝛽𝛽3 is the second crash 
effect for female drivers;  

• 𝛽𝛽2 + 𝛽𝛽4 is the first crash effect for male drivers; 𝛽𝛽3 + 𝛽𝛽5 is the second crash effect for 
male drivers. 

• 𝜸𝜸𝒓𝒓𝒓𝒓~𝑵𝑵(𝟎𝟎,𝝈𝝈) 𝒓𝒓 = 𝟏𝟏, … ,𝟑𝟑; 𝒊𝒊 = 𝟏𝟏, … ,𝟓𝟓𝟓𝟓 are independent frailty terms. 
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In order to cover a wide range of parameter space, 24 settings of different baseline parameters (c 
and k) combinations, as well as different combinations of gender, and crash effects (𝛽𝛽1,𝛽𝛽2, 𝛽𝛽3) 
were tested in total. In each setting, 500 realizations were generated and two models were 
implemented: a stratified frailty model and a frailty model. Because of space limits, only figures 
and tables for selected scenarios are provided.  

Figure 11 shows a coverage probability (CP) comparison between two models, where three strata 
share the same shape parameter, k (set as 1), but different scale parameters, c. Seven setting 
results with assorted combinations of c are presented. Both models perform well, with an average 
CP around 95% and small bias (1% to 3% difference). The stratified frailty model does not show 
a great benefit over the frailty model because the variation among strata is proportional, and thus 
can be explained through frailty terms. Figure 12 shows results from another seven settings 
where three strata share the same scale parameter, c (set as 0.2), but different shape parameters, 
k. The stratified frailty model retains a CP of around 95% while the frailty model performs 
poorly, with the CP being as low as 20%. 
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Figure 11. Graph. Coverage probability comparison (I). 
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Figure 12. Graph. Coverage probability comparison (II). 

To evaluate model performance at different levels of standard deviation for frailty terms, two 
settings are shown in Table 9: one has frailty terms follow N(0,0.5), the other has frailty terms 
follow N(0,1). Baseline functions are set to be the same. This variance of frailty terms represents 
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a degree of heterogeneity among subjects. With higher levels of heterogeneity, we observed 
larger bias and empirical standard error for fixed effect estimation (𝛽𝛽1). Bias and empirical 
standard error for other effects remain similar. Compared to the low CP of the frailty model, the 
stratified frailty model has around a 95% CP for all effects. In Table 10, we test the performance 
of the stratified frailty model when there is no stratification. Three baseline functions are set with 
the same c and k. Although the stratified frailty model is more complicated than the situation 
requires, the 95% CP on average indicates a credible and stable estimation. 

Table 9. Simulation result (I), k = (.95, 1.1, 1.22), c = (0.2, 0.17, 0.15). 
  Stratified frailty model Frailty model 

Parameters True value Mean Bias SE% SEM^ CP* Mean Bias SE SEM CP 

𝛽𝛽1 -0.2 -0.198 0.002 0.159 0.173 95.8 -0.196 0.004 0.198 0.205 95.6 

𝛽𝛽2 0 -0.001 -0.001 0.059 0.062 94.8 0.04 0.04 0.06 0.059 89.4 

𝛽𝛽3 -0.6 -0.597 0.003 0.078 0.078 95.6 -0.485 0.115 0.085 0.074 66.6 

𝛽𝛽2 + 𝛽𝛽4  -0.2 -0.198 0.002 0.069 0.068 94.2 -0.154 0.046 0.071 0.066 87 

𝛽𝛽3 + 𝛽𝛽5  -0.7 -0.693 0.007 0.082 0.083 94 -0.576 0.124 0.089 0.079 66.4 

𝜎𝜎 0.5 0.464 -0.036 NA NA NA 0.621 0.121 NA NA NA 

Sample size  6397          

𝛽𝛽1 -0.2 -0.161 0.039 0.323 0.301 91.6 -0.211 -0.011 0.698 0.372 92.77108 

𝛽𝛽2 0 -0.003 -0.003 0.056 0.055 96 0.025 0.025 0.06 0.052 88.75502 

𝛽𝛽3 -0.6 -0.595 0.005 0.083 0.069 94.2 -0.505 0.095 0.079 0.065 67.67068 

𝛽𝛽2 + 𝛽𝛽4  -0.2 -0.202 -0.002 0.061 0.06 95.2 -0.173 0.027 0.062 0.057 89.55823 

𝛽𝛽3 + 𝛽𝛽5  -0.7 -0.691 0.009 0.087 0.073 95 -0.599 0.101 0.083 0.069 65.06024 

𝜎𝜎 1 0.937 -0.063 NA NA NA 1 0 NA NA NA 

Sample size  9112          

%: Empirical standard error 
^: Mean of standard error from Hessian matrix 
*: Coverage probability 
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Table 10. Simulation result (II), k = (1, 1, 1), c = (0.2, 0.2, 0.2). 
  Stratified frailty model Frailty model 

Parameters True value Mean Bias SE% SEM^ CP* Mean Bias SE SEM CP 

𝛽𝛽1 -0.2 -0.206 -0.006 0.228 0.265 96.8 -0.207 -0.007 0.218 0.237 97 

𝛽𝛽2 0 -0.003 -0.003 0.086 0.086 95.4 -0.004 -0.004 0.082 0.08 93.6 

𝛽𝛽3 -0.6 -0.605 -0.005 0.121 0.116 94.2 -0.607 -0.007 0.106 0.104 94 

𝛽𝛽2 + 𝛽𝛽4  -0.2 -0.206 -0.006 0.1 0.097 94.6 -0.205 -0.005 0.092 0.091 96 

𝛽𝛽3 + 𝛽𝛽5  -0.7 -0.697 0.003 0.129 0.125 93.4 -0.698 0.002 0.115 0.113 93.8 

𝜎𝜎 0.75 0.714 -0.036 NA NA NA 0.729 -0.021 NA NA NA 

Sample size  3454          

%: Empirical standard error 
^: Mean of standard error from Hessian matrix 
*: Coverage probability 
 

In summary, the stratified frailty model is capable of accommodating possible variation among 
groups without losing power to test for effects of interest. If drivers behave differently with 
various risk levels, aggregating them together will mask the effect of crashes at the individual 
level. 
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CHAPTER 5. INTENSITY-BASED RECURRENT EVENT APPROACH RESULT 

In this chapter, we examine the influence of crashes on driving risk, which is measured by SCI 
and NC intensity (Guo and Fang, 2010). Crashes are considered an external factor that may 
influence driving risk. We explored the influence by comparing SCI rate in a specified window 
before and after a crash, analogous to the idea of comparing baseline data in Chapter 2. A higher 
SCI rate, in terms of number of events per hour driving, implies a larger driving risk. We applied 
four intensity-based models, discussed in Chapter 3, to the 100-Car data. An overall model 
fitting evaluation is provided for model comparison at the end of the chapter. 

5.1 EXPLORATORY DATA ANALYSIS 

Figure 13 illustrates the defined evaluation window before and after a crash that was applied to 
SCIs for exploratory data analysis. The number of SCIs and NCs in various window sizes before 
and after the occurrence of crashes were compared. For most cases, the observed time period 
before or after a crash was the same as the chosen window size. However, the observed time 
period may be shorter because of the issue of overlapping or if not enough driving data were 
available before or after that crash.  

 
Figure 13. Chart. Before/after crash SCI collection. 

Table 11 lists the ratios between the SCI rates of the before- and after-crash windows, varied 
across different window sizes. By comparing column 2 (or 3) to column 4 (or 5), we find that 
female drivers are associated with a higher SCI rate than male drivers. Figure 14 presents the 
SCI rate ratio after and before crashes, where SCI rate shows a tendency to be lower after crashes 
for male drivers within a 60-hour window. The amount of decrease diminishes as window size 
increases, which agrees with their distraction behavior. The influence of crashes on the SCI rate 
for female drivers varies from one window size to another. The decline in driving risk is not 
persistent. A similar analysis was also performed using calendar time, as shown in Figure 15. 
Within a window of between 6 days and 38 days, male drivers show a decreasing pattern 
comparable to the analysis using driving time. Female drivers incline to driving safer within a 
38-day window. 
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Figure 14. Graph. Ratio of SCI rate between after and before aggregated by driving hour. 

Table 11. SCI rate and SCI rate ratio between after and before window. 
Window size 

(hours) 
Before 
female  

After 
female 

Before 
male  

After 
male 

Rate ratio 
female 

Rate ratio 
male 

5 0.33 0.36 0.34 0.29 1.10 0.85 

10 0.42 0.40 0.32 0.24 0.95 0.77 

15 0.42 0.37 0.32 0.25 0.87 0.78 

20 0.38 0.38 0.34 0.25 1.01 0.74 

25 0.37 0.37 0.35 0.27 1.01 0.77 

30 0.38 0.39 0.34 0.29 1.04 0.83 

35 0.38 0.41 0.34 0.29 1.06 0.86 

40 0.40 0.41 0.33 0.29 1.04 0.87 

45 0.41 0.40 0.32 0.29 1.00 0.89 

50 0.41 0.40 0.31 0.29 0.97 0.93 

55 0.40 0.39 0.31 0.29 0.97 0.95 

60 0.40 0.40 0.30 0.30 0.99 1.02 
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Figure 15. Graph. Ratio of SCI rate between after and before window aggregated by 

calendar time. 

5.2 INTENSITY-BASED RECURRENT EVENT MODELING RESULT 

Three covariates are incorporated into the model: gender (G), age when the driver first enrolled 
in the study, and crash effect based on relationship with crashes (0 for before first crash, 1 for 
between first and second crash, and 2 for after second crash). In order to test and estimate each 
crash effect, the time period related to crash time was considered as a categorical variable. Since 
the study lasted for one year, age was considered to be constant.  

Figure 16 shows the empirical cumulative intensity plot of SCI and NC respectively by drivers 
with different numbers of crashes. The cumulative intensity function of t approximates the 
number of events in time interval [0, t]. The patterns of SCI and NC intensity functions are 
consistent in that drivers who experienced more crashes tended to have more events over time. It 
supports the idea that SCI, NC, and crash are consistent measurements of driving risk. In 
addition, empirical cumulative intensity functions based on crash levels are not completely 
proportional to each other, which reinforces the idea of stratifying drivers by number of crashes 
and allowing distinct baseline functions. The empirical cumulative intensity plot for SCI and NC 
by gender is given in Figure 17. Compared to males, females are observed with a higher number 
of SCIs and NCs consistently over time, analogous to the results from exploratory analysis. 
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Figure 16. Graph. Cumulative intensity function of SCI (left) and NC (right) stratified by 

number of crashes. 

   
Figure 17. Graph. Cumulative intensity function of SCI (left) and NC (right) by gender. 

A crash effects estimation on SCI using the A-G model, stratified A-G model, shared frailty 
model, and stratified shared frailty model is elaborated in Table 12. The stratified frailty model 
yields an intensity rate ratio of 0.8 (95% CI [0.693, 0.971]) between after the time of the first 
crash and before the first crash for male drivers. There is no significant first crash influence on 
female drivers, with an intensity rate ratio of 1.115 (95% CI [0.96, 1.296]). Unlike first crash 
effect, SCI risk drops sharply after the second crash for both female and male drivers, with a 
corresponding intensity rate ratio of 0.432 (95% CI [0.342, 0.547]) and 0.472 (95% CI [0.377, 
0.59]), respectively. The detailed stratified frailty model is as follows: 



25 

𝝀𝝀𝒓𝒓𝒓𝒓(𝒕𝒕|𝒙𝒙𝒓𝒓𝒓𝒓) = 𝝀𝝀𝟎𝟎𝒓𝒓(𝒕𝒕)𝒆𝒆𝒆𝒆𝒆𝒆 {−.𝟎𝟎𝟎𝟎𝟎𝟎𝒂𝒂𝒂𝒂𝒂𝒂𝒓𝒓𝒓𝒓 + 𝟎𝟎.𝟏𝟏𝟏𝟏(𝑮𝑮𝒓𝒓𝒓𝒓 = 𝑭𝑭) − 𝟎𝟎.𝟐𝟐(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓(𝒕𝒕) = 𝟏𝟏)
− 𝟎𝟎.𝟗𝟗𝟗𝟗(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓(𝒕𝒕) = 𝟐𝟐) + 𝟎𝟎.𝟑𝟑(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓(𝒕𝒕) = 𝟏𝟏)(𝑮𝑮𝒓𝒓𝒓𝒓 = 𝑭𝑭)
+ 𝟎𝟎.𝟑𝟑𝟑𝟑(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓(𝒕𝒕) = 𝟐𝟐)(𝑮𝑮𝒓𝒓𝒓𝒓 = 𝑭𝑭) + 𝜸𝜸𝒓𝒓𝒓𝒓} , 

where:  

• r = 0, 1, 2 indicates strata level based on the number of crashes.  

• 𝑖𝑖 denotes each individual in strata r.  

• crash(𝑡𝑡) is an indicator function defined in Chapter 3, revealing the relationship between 
time t and crash time. 

• 𝛾𝛾𝑟𝑟𝑟𝑟~𝑁𝑁(0,𝜎𝜎) is a shared random term associated with driver 𝑖𝑖 in strata r, accounting for 
correlation among events within a driver. The estimation of 𝜎𝜎 is 1.28 based on REML 
estimation. 

The shared frailty model shows a second crash effect comparable to the stratified frailty model. 
Post-crash intensity is significantly lower. However, in terms of first crash effect, it is not 
significant for male drivers. Other than that, intensity rate increases substantially. Models 
without frailty terms have larger standard errors, and thus wider confidence bands on the 
estimation, which leads to non-significant results. 

Table 12. Crash effect estimation on SCI. 

Model Contrast Estimate Intensity rate 
ratio 

Lower 
confidence 

limit of 
intensity 
rate ratio 

Upper 
confidence 

limit of 
intensity 
rate ratio 

Pr > ChiSq 

A-G 1 vs. 0 Female 0.228 1.256 0.745 2.119 0.393 

A-G 2 vs. 1 Female 0.526 1.693 1.083 2.645 0.021 

A-G 1 vs. 0 Male 0.162 1.176 0.712 1.943 0.528 

A-G 2 vs. 1 Male 0.269 1.309 0.778 2.201 0.310 

Stratified A-G 1 vs. 0 Female -0.053 0.948 0.552 1.628 0.847 

Stratified A-G 2 vs. 1 Female 0.056 1.058 0.691 1.619 0.795 

Stratified A-G 1 vs. 0 Male -0.382 0.683 0.378 1.233 0.206 

Stratified A-G 2 vs. 1 Male -0.065 0.937 0.572 1.533 0.795 

Shared frailty 1 vs. 0 Female 0.145 1.156 1.017 1.314 0.027 

Shared frailty 2 vs. 1 Female -0.385 0.681 0.57 0.812 <.0001 

Shared frailty 1 vs. 0 Male -0.030 0.970 0.836 1.126 0.691 

Shared frailty 2 vs. 1 Male -0.337 0.714 0.598 0.852 0.000 

Stratified frailty 1 vs. 0 Female 0.109 1.115 0.960 1.296 0.155 

Stratified frailty 2 vs. 1 Female -0.839 0.432 0.342 0.547 <.0001 

Stratified frailty 1 vs. 0 Male -0.199 0.820 0.693 0.971 0.021 

Stratified frailty 2 vs. 1 Male -0.751 0.472 0.377 0.590 <.0001 
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Table 13 lists estimations of first crash effect on NC based on four models. NCs were observed 
much less frequently compared to SCIs. Four female drivers experienced two or more crashes in 
the study, as shown in Table 4. After careful examination, only one of them had more than one 
NC recorded after the second crash. The rest have the second crash as their last driving record. 
Consequently, the estimation of the second crash effect for female drivers depends heavily on 
one single driver, which may lead to an individual crash influence rather than a population-wise 
effect. Thus, we decided to use time up to the second crash only and evaluate the first crash 
influence on NC.  

As indicated by the stratified frailty model, the intensity rate after first crash is 0.52 times (95% 
CI [0.314, 0.874]) the before-crash intensity rate for male drivers. Female drivers do not show a 
significant decreasing trend after a crash. A similar crash influence was found for SCI data. 
Estimation of 𝜎𝜎 is 0.93 based on REML estimation. The detailed stratified frailty model is as 
follows: 

𝝀𝝀𝒓𝒓𝒓𝒓(𝒕𝒕|𝒙𝒙𝒓𝒓𝒓𝒓) = 𝝀𝝀𝟎𝟎𝒓𝒓(𝒕𝒕)𝒆𝒆𝒆𝒆𝒆𝒆 {−.𝟎𝟎𝟎𝟎𝟎𝟎𝒂𝒂𝒂𝒂𝒂𝒂𝒓𝒓𝒓𝒓 + 𝟎𝟎.𝟐𝟐𝟐𝟐(𝑮𝑮𝒓𝒓𝒓𝒓 = 𝑭𝑭) − 𝟎𝟎.𝟔𝟔𝟔𝟔(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓(𝒕𝒕) = 𝟏𝟏)
+ 𝟎𝟎.𝟓𝟓𝟓𝟓(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓(𝒕𝒕) = 𝟏𝟏)(𝑮𝑮𝒓𝒓𝒓𝒓 = 𝑭𝑭) + 𝜸𝜸𝒓𝒓𝒓𝒓} . 

The shared frailty model proposes a different crash influence compared to the stratified frailty 
model. Neither male nor female drivers reveal a remarkably lower post-crash intensity. Models 
without frailty terms have larger standard errors, and thus wider confidence bands on the 
estimation, which leads to non-significant results. 

Table 13. Crash effect estimation on NC. 

Model Contrast Estimate Intensity 
rate ratio 

Upper confidence 
limit of intensity 

rate ratio 

Lower confidence 
limit of intensity 

rate ratio 
Pr > ChiSq 

A-G 1 vs. 0 Female 0.206 1.228 0.712 2.120 0.460 

A-G 1 vs. 0 Male 0.284 1.329 0.816 2.163 0.253 

Stratified A-G 1 vs. 0 Female -0.359 0.698 0.378 1.289 0.251 

Stratified A-G 1 vs. 0 Male -0.545 0.58 0.329 1.024 0.060 

Shared frailty 1 vs. 0 Female 0.222 1.249 0.815 1.913 0.308 

Shared frailty 1 vs. 0 Male -0.140 0.870 0.558 1.355 0.537 

Stratified frailty 1 vs. 0 Female -0.117 0.890 0.551 1.438 0.633 

Stratified frailty 1 vs. 0 Male -0.646 0.524 0.314 0.874 0.013 

Figure 18 shows baseline intensity rate functions for SCI and NC estimated by the stratified 
frailty model. It can be concluded that intensity rate behavior among different strata is not 
identical, which supports the idea of stratification.  
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Figure 18. Graph. Baseline intensity rate estimation of SCI (left) and NC (right). 

5.3 MODEL FITTING EVALUATION 

The four models in the previous section do not reach an agreement on crash influence estimation, 
which makes model comparison important. As described in Section 3.5, Cox-Snell residuals 
have been widely used for overall model fitting evaluation. 

In the current study, the distribution of residuals for SCIs is heavy tailed compared to an 
exponential one distribution. For residuals larger than 6, the percentage varies from 1% to 2% 
from model to model. The probability associated with large (>6) Cox-Snell residuals is supposed 
to be 0.25% for an exponential one distribution. These extremely large residuals lead the fitting 
to depart from a straight line (Figure 20), which makes it hard to judge overall model fitting. 
Long intervals between two SCI events are the major source of the extreme residuals, such as a 
20-hour gap compared to a 5-hour gap on average. We have examined those long gaps and it is 
possible that this was caused by missing event identification during the data reduction process. 
For this reason, we present the distribution of extremely large residuals in Table 14 and set the 
upper limit of the residual to 6. Figure 19 includes Cox-Snell residual plots of residuals less than 
6 for four intensity-based models for SCI. It can be shown that the model fits reasonably well for 
the majority of data points.  

Table 14. Distribution of large Cox-Snell residuals. 
Quartile 95.0% 95.5% 96.0% 96.5% 97.0% 97.5% 98.0% 98.5% 99.0% 99.5% 100.0% 

A-G 3.39 3.61 3.90 4.16 4.69 5.38 6.04 7.34 9.67 16.16 88.95 

Stratified A-G 3.46 3.64 3.89 4.21 4.59 5.06 5.85 7.14 9.01 15.40 71.00 

Frailty 3.40 3.55 3.77 4.02 4.32 4.64 5.12 5.68 6.76 8.73 36.73 

Stratified 
frailty 

3.35 3.54 3.71 3.97 4.21 4.52 4.88 5.43 6.37 8.11 34.72 



28 

  
 (a) A-G model  (b) Stratified A-G model 

  
 (c) Frailty model  (d) Stratified frailty model 

Figure 19. Graph. Plots of Cox-Snell residuals for SCI with large residuals removed. 
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 (a) A-G model  (b) Stratified A-G model 

 (c) Frailty model  (d) Stratified frailty model 
Figure 20. Graph. Plots of Cox-Snell residuals for SCI. 

Plots of Cox-Snell residuals for NC are evaluated in Figure 21. The residual plots of the stratified 
frailty model are much closer to a straight line compared to the other three models, indicating the 
best model fitting.  
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 (a) A-G model  (b) Stratified A-G model 

 
 (c) Frailty model  (d) Stratified frailty model 

Figure 21. Graph. Plots of Cox-Snell residuals for NC. 
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CHAPTER 6. SUMMARY AND DISCUSSION 

This study evaluated the influences of crashes on driver distraction behavior and the driving risk 
using 100-Car NDS data. Driving behavior was measured by secondary driving tasks, and 
driving risk was measured through SCIs and NCs. Crash influence on driving behavior was 
evaluated with a count-based approach using a mixed binomial regression model. For testing 
influence on driving risk, SCIs and NCs were treated as counting processes and modeled through 
their intensity function. Four intensity-based models were evaluated and compared. The stratified 
frailty model fits the situation better than the other models and provides the best fit. 

The results indicate that drivers’ engagement in moderate and complex secondary tasks tends to 
be lower after crashes, especially within a 15-hour driving time window. This decreasing effect 
tends to diminish over time. Crash impact on NCs is similar for both males and females. This 
study confirmed that crashes have a positive effect on driver behavior. Drivers either learn from 
the crash experience or are more cautious while driving, which is reflected in the reduced SCI 
intensity within a short window after crashes. In addition, the results also indicate that female 
and male drivers showed different responses to crashes. Male drivers responded to both the first 
crash and the second crash with a lower SCI intensity after each crash. Females showed no 
significant response to the first crash but did show a decreased SCI intensity after the second 
crash. These findings provide crucial information for understanding drivers’ response to dramatic 
driving events and can be critical for developing safety education programs and safety 
countermeasures.   

The simulation study demonstrated that the stratified frailty model is capable of accommodating 
possible variation among groups without losing power to test for effects of interest. If subjects 
behave differently among various levels, aggregating them together will mask the effect at the 
individual level. We also observed robust performance of the stratified frailty model when 
subjects are not from different levels. 

There are a couple of limitations of this study. First, the individual driver risk variation might be 
confounded with the observed effect. Second, the study is based on a relative small number of 
crashes with mild crash severity. With larger NDS data sets becoming available, such as the 
Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study, more 
concrete evidence will be available on the impacts of crashes on driver behavior and potentially 
the impact of crashes by severity. 
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