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CHAPTER 4

TIME-DEPENDENT LABEL-CONSTRAINED SHORTEST PATH

PROBLEM WITH APPLICATION TO TRANSIMS

In contrast with the former case of constant travel times, suppose now that the link delays

are time-dependent functions. Specifically, for each (p, q) ∈ A , suppose that we have a time-

dependent link delay function d pq (t )  that specifies the travel time on link (p, q), given a starting

time t at the corresponding tail node t.  This function d pq  might be a general real valued function

defined on a continuum of time over some horizon interval H (dpq : H ⊆ R → R) , or it might be

some discretized approximation from some experimental or simulation output analysis, being

defined as

d pq : H ≡ {0, ∆, 2∆, ..., K∆} → {0, ∆, 2∆, ..., ′ K ∆}

for some discretized time duration ∆ and integer ′ K , and some suitably large integer K such that

the characterization of the delay function beyond the time K∆  is not of practical interest.

In either case, let us define

T = some upper bound on the length (total delay) of any acceptable path in the solution to the

underlying problem.
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Note that we use this additional parameter T to control the degree of exploration of the

network and to fathom or weed out the examination of paths that do not have delays below this

threshold T.  Also, it is well known that there exists a time-space static equivalent network

representation for this problem.  In this representation, each node is replicated as {i, t} for all

possible values of t ∈ H  when we could be at node i.  Furthermore, for each (i, j) ∈ A , given a

possible starting time t < T  at node i, where t ∈ H , this representation would construct an arc

{(i, t), ( j , t + dij (t))}  having a fixed delay of dij (t) , such that t + dij( t) ≤ T , where note that

t + dij( t)  then also belongs to H by our assumption.

Similar to the time-independent case, we also have labels associated with each arc taken

from some alphabet set ∑, and we are given a language L defined on regular expressions that is

comprised of a set of acceptable words (sequence of arc labels on acceptable paths).  Suppose

further that as before, we are given (or have constructed) the corresponding graph GL . The Time-

Dependent Label-Constrained Shortest Path Problem (TDLSP) then is to find a time-dependent

shortest path P* in G from O to D among all paths P from O to D (i.e., P ∈℘)  for which

LPl ∈)( , where )(Pl  is the sequence of alphabet labels on the path P.

The procedure we develop dynamically generates a reduced-size time-space network

implicitly, using a minimal number of time-based node replications, while simultaneously finding

the TDLSP from O to D.  This is done within the framework of a dynamic programming routine

that is similar in concept to the procedure of Figure 4.  Figure 5 describes the proposed procedure.

Here, time-expanded replicates ),,( ltp  of each node p ∈ N  are automatically created only for
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specific, necessary values of times t, and labels l based on possible visitation times and label

sequences.

In this process, we develop the node sets Ns  for s = 0, 1,...,S as in Figure 4, but maintain

an additional time component for each node, along with the predecessor or DOWN s (⋅)  list for

each stage s in order to facilitate a back-tracing of the generated paths.  Moreover, since we are

not interested in pursuing paths having total delays that exceed T, and all delays are nonnegative,

we trim off nodes for which the delay exceeds T.

Furthermore, as before, the nodes investigated for the final stage S correspond only to the

terminal node D. Note that termination might occur prior to stage S either because no time-

dynamic label constrained path is realizable that has a total delay less than or equal to the

specified limit T, or within such a limit, the nodes at some earlier stage all correspond to the

terminal node D.

Remark 3.  Observe that when we perform the operation )},,{(11 ltiNN ss ∪← ++ , if the node

),,( lti  already exists in Ns+1 , we revise its )(1 ⋅+sDOWN  index as stated in the procedure;

however, we could have left this index the same.  Hence, only some alternative equally attractive

choice of a partial path and label sequence is being maintained.    £
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Remark 4.  Note that the general procedure does not assume the first-in-first-out (FIFO) or

consistency assumption whereby for each link (p, q) ∈ A , if we enter the link at an earlier time

then we would also exit the link at a relatively earlier time (see Kaufman and Smith (1993)).

However, when such an assumption holds true, we do not need to maintain duplicate nodes of the

type ),,( 1 lti  and ),,( 2 lti  for t1 < t2  at any stage; the latter node is dominated by the former and

can be dropped from consideration. Figure 5 states this modified rule in the main processing

block. In particular, note that for the time-independent case, we have

d pq (t ) ≡ dpq ∀ t ∈ H, ∀ (p, q ) ∈ A .  Hence, the consistency assumption holds true, and the

procedure of Figure 5 can be applied under this revision.   £

Observe that in an actual implementation of the procedure of Figure 5, we would number

the distinct nodes (i, t, l) generated in the process consecutively as k = 1, 2, 3, …, maintaining a

list that equates each such index k to the corresponding triplet-node indicator (i, t, l), along with

its corresponding stage. Furthermore, we can maintain a one-dimensional array DOWN (⋅), where

DOWN (k1) = k2 for a node (k1) = (i, t, l) at stage s + 1 and a node (k2) = (i', t', l') at stage s

corresponds to DOWNs+1 (i, t, l) = (i', t', l') in Figure 5.

It is also worthwhile to note that the routine of Figure 5 is an extension to the partition

shortest path procedure PSP (see Glover et al. (1985 a, b)) that considers, time-dynamic travel

times as well as label-sequence requirements. Sherali (1991) describes the relationship between

PSP and a dynamic programming routine, where the states and decisions at any stage in the latter

correspond to the set of possible nodes that can be arrived at (called NEXT in PSP), and the set of

nodes from which this arrival occurs (called NOW in PSP), respectively. A similar relationship of
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the procedure of Figure5 to a dynamic programming routine, and consequently, to a PSP

approach is evident in the present context. Some insights into this relationship are detailed below.

Relationship between the Partitioned Shortest Path (PSP), the Dynamic Programming (DP),

and the Proposed Algorithms for Solving TDLSP

Sherali [1991] has established a theoretical equivalence between the PSP algorithm, and a

dynamic programming (DP) approach. Consider the following definition of stages, states, and

decisions for a forward-recursive dynamic programming formulation of the problem of

determining shortest simple paths from a root node r to all the other nodes of a network (N, A),

having node set N =  {1, …, n} and arc set A. Let cij be arbitrary costs associated with the links (i,

j)∈A. Let stage k represents a point in the DP algorithmic process when we are k steps away from

the root node r. Hence, the DP algorithm can have at most  n-1 stages. At any stage k, the state

variable sk is represented by a set of corresponding nodes reachable from r in k steps, and the

immediate predecessors of this set of nodes constitute the set of possible decisions  dk.

At any stage k, suppose that we denote by NOW a list of current (decision) nodes, and we

let NEXT represent a list of successor nodes of the nodes in NOW. Note that the nodes in NOW

are reachable within k steps. The DP algorithm updates the k-step SP information for the nodes in

the list NOW to the (k+1)-step SP information for the corresponding nodes in the list NEXT at

each stage. At the end of each stage k, we put the current list NEXT of stage k equal to the list

NOW of the following stage (i.e. NOWk+1 ß NEXTk).
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The difference between the PSP and DP algorithms is that at any stage k, the DP algorithm

simultaneously considers all the nodes in NOW, and finds the corresponding list NEXT for this

set of nodes, while, the PSP algorithm selects a node in NOW one at a time, and finds its

successor nodes to form the list NEXT. The PSP algorithm adds any successor node when its

label is updated to the list NEXT one at a time, unless if the node is still present in NOW.

Hence the main difference between the PSP and the DP algorithms occurs when some node in the

list NOW revises a successor node, which is still in the current list NOW. The DP algorithm

will consider the revised labels/costs/total times of the node at the subsequent stage, while the

PSP algorithm uses the revised labels continuously within the stage itself, and does not add such

a node to the list NEXT. Hence, at the subsequent stage, the PSP algorithm will not contain this

node again in the list NOW (unless its label gets revised after it has been processed in NOW),

whereas in the DP algorithm, this node will still reappear in the subsequent list NOW. However,

Sherali [1991] shows that there exists a sequence of selecting nodes in NOW for scanning at any

iteration in the PSP algorithm such that for this sequence of selecting nodes in NOW, the PSP

algorithm is precisely the foregoing DP algorithm.

Algorithm TDLSP proceeds similar to the DP interpretation of the PSP algorithm because

of the need to keep a precise track of the number of steps in order to enforce the constraint on the

label sequence. However, the algorithm TDLSP does not define the lists NOW and NEXT

explicitly. It defines the node set Ns as a collection of reachable nodes (i, t, l) at stage s, where i

denotes the nodes’ number/name, t denotes the arrival time to the node i, and l denotes the label

used to arrive at the node i. The set Ns is revised in the algorithmic process from stage s to stage

s+1. Based on the above discussion, it is evident that the set Ns represents the list NOW, and the
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set Ns+1 represents the list NEXT in accordance with their usage within the PSP and the DP

algorithms.
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Input: Graph G (N, A) having arcs with specified time-dependent delay functions and labels, a language L
(admissible label sequence list), a starting node O and a terminal node D.

Construct the label-graph GL  and determine the number of stages S as in Section 2.

Initialize N0 = {(O, 0, s0 )}, and Ns = ∅ ∀ s = 1, ...,S .  Let s = 0.

For each sNlti ∈′′′ ),,(  in turn, perform the following.

• If ′ i ≡ D , and if ( ′ ,∅)  is an arc in GL  from Stage s to Stage s + 1, let   Ns +1 ← Ns +1 ∪{( D, ′ t , ∅)}
and put ),,(),,(1 ltitDDOWN s ′′′=∅′+ .

• Else, scan FS( ′ i )  in G.  (If s = S – 1, scan only for i ≡ D ∈ FS( ′ i )  in the following.)
For each i ∈ FS( ′ i ) , if the label on the arc ( ′ i , i)  in G is l such that the arc ),( ll ′  exists in GL

from Stage s to Stage s + 1, then compute t = ′ t + d ′ i , i( ′ t ) .  If t ≤ T , let Ns +1 ← Ns+1 ∪

)},,{( lti , and put ),,(),,(1 ltiltiDOWN s ′′′=+ .

Modification under the consistency assumption:  Whenever an ),,( lti  is generated for introduction into
Ns+1 , if there already exists an ),,( lti  in Ns+1 , let Ns+1  include the one of this pair that has the smaller
time value, and store the corresponding predecessor in the DOWN s+1(⋅)  list.

  s ← s + 1

sNlti ∈∃ ),,( s = S ? Ns = ∅  ?
 with i ≠ D ?

Trace via DOWN lists for Pick :min{arg),,( tltD ∈∗∗ }),,( sNltD ∈ .

each sNltD ∈),,(  and Trace via DOWN (⋅)  lists from ),,( ∗∗ ltD  to
discard those nodes from Ns obtain the corresponding path in G.
for which the corresponding
label sequence is not in L.

Output:  Path in G from O to D having
total delay t∗.

 Ns = ∅  ?

Output: The language has no
acceptable words, or there does
not exist a path having total
delay ≤  T.

Y

N

N
Y

NY N Y

Figure 5.  Flow-Chart for the Algorithm to Solve the TDLSP
Problem.
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Example 2 (Inconsistent or Non-FIFO Delays)

Consider the following graph G with delay functions and arc labels as shown.

1

2

4

3

a

a

b

c

b

2
1

7–2t
2

1

Note that all the links have time-independent delays, except for link (3, 4) for which

d34(t) = 7 − 2t .  Hence, if we arrive at node 3 at time t = 2, it would put us at node 4 at time 2 +

3 = 5, while arriving at node 3 at a later time t = 3, would put us at node 4 at time 3 + 1 = 4, i.e.,

earlier than in the former case.  Suppose also that the specified language is L = {abc, ac}, so that

the non-label constrained shortest path 1 → 2 → 4  is infeasible. Let us also assume that T ≥ 5,

and note that S = 3.  The graph GL  is given as follows.

0 1 2 3

s a b c

  c φ

0

Stages :

GL

The algorithm of Figure 5 would proceed as follows, where the arrows depict the

corresponding DOWN (⋅)  relationships established at each stage.
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Initialization: N0 = {(1, 0, s0 )}, where O ≡ 1, and Ns = ∅  for s = 1,2,3.

s = 0: N0 = {(1, 0, s0 )}          
(2, 2, a)

(3, 2, a)

 
 
 

  

 
 
 

  
= N1

s = 1: N1 =
(2, 2, a)

(3, 2,a )

 
 
 

  

 
 
 

  

(4, 3,b )

(3, 3,b)

(4, 5, c)

 

 
  

 
 
 

 

 
  

 
 
 

= N2

s = 2: N2 =

(4, 3, b)

(3, 3, b)

(4, 5, c)

 

 
  

 
 
 

 

 
  

 
 
 

(4, 4,c)

(4, 5,∅)

 
 
 

  

 
 
 

  
= N3

s = 3:

With D ≡ 4 , we identify ),,( ∗∗ ltD  as (4,4,c).  Tracing via DOWN (⋅)  produces the

following path (in reverse order).

   0    1    2    3

1,0,s 2,2,a 3,3,b 4,4,c0

Stages :

Hence, the path 1 → 2 → 3 → 4 having a label sequence abc and total delay of t∗ = 4

solves the given TDLSP problem.
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Remark 5.  Note that if we had specified T = 4, then the node (4,5, c) ∈ N2  would have been

suppressed at Stage s = 1, and so, N3  would only have inherited (4,4,c) at Stage s = 2.

Alternatively, with T = 3, N2  would again have dropped (4,5,c) at s = 1, while we would have

obtained N3 = ∅  at s = 2.  The procedure would have terminated with an infeasibility indication.

Decreasing T further would have yielded an infeasibility indication at an earlier stage.    £

Example 3.  (Consistent or FIFO Delays):

For the sake of illustrating the application of Figure 5 to solve a time-independent label

constrained shortest path problem, consider Example 1 under the language specification of Case

(ii), and assume that T = 9.  The value of S is 4, and the graph GL  is shown below.

Stages :             0           1           2           3              4

s0 a b

c d

d e

GL

The procedure of Figure 5 would proceed as follows, noting the modification stated under

the consistency assumption.

Initialization: N0 = {(1, 0, s0 )}, where O ≡ 1, and Ns = ∅  for s = 1,...,4.

s = 0: N0 = {(1, 0, s0 )}          
(2, 2, a)

(3, 5, a)

 
 
 

  

 
 
 

  
= N1

s = 1: N1 =
(2, 2, a)

(3, 5, a)

 
 
 

  

 
 
 

  

(3, 4, b)

(4, 5, b)

 
 
 

  

 
 
 

  
= N2
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s = 2: N2 =
(3, 4, b)

(4, 5, b)

 
 
 

  

 
 
 

  

(5, 5,c)

(4, 8,d )

(5, 7,c) ←  eliminate

 

 
  

 
 
 

 

 
  

 
 
 

= N3

s = 3: N3 =
(5,5, c)

(4, 8, d)

 
 
 

  

 
 
 

  

(6,8,d )

(6, 9, e)

 
 
 

  

 
 
 

  
= N4

s = 4: Terminate with ),,( ∗∗ ltD  = (6,8,d).  Tracing backwards using the DOWN (⋅)  list yields

   Stages :  0 1 2 3 4

  1,0,s 2,2,a 3,4,b 5,5,c 6,8,d0

This yields the optimal TDLSP 1 → 2 → 3 → 5 → 6  in G, with the label sequence abcd,

and having a total delay equal to t∗ = 8.

Remark 6  (Choice of T and Curtailing Computations).  If we know some feasible path to the

TDLSP problem, then using its delay as the value of T, we can reduce the extent of computations

performed.  This motivates the use of a quick heuristic to derive an initial feasible solution.

Furthermore, in large-scale applications, we could partition the graph into sections depending on

the choice of O and D, and require the nodes within each section to be visited by a certain time.

Alternatively, we can specify a threshold value Ts  for each stage s, and maintain only those

sNlti ∈),,(  for which t ≤ Ts ∀ s = 1, ...,S .  By suitably choosing a progression of Ts -values, we

can curtail the computational effort, although this might mean a loss in finding an exact optimum.
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This feature will be further developed in this thesis, in concert with Euclidean Heuristic (see

Sedgewick et al. [1986])     £

We close this section by establishing the complexity of the procedure in Figure 5.

Proposition 1.  Given a graph G(N,A), and given the graph GL  corresponding to the language L,

let

r = maximum admissible word length in L (longest simple path in GL )

m = maximum number of nodes at any stage in GL .

Then under the consistency assumption, the procedure of Figure 5 is of polynomial-time

complexity O(rm3 | A |) .

Proof.  The number of stages enumerated is O(r).  For each stage s, any node i of G appears in

sNlti ∈),,(  at most m times.  Scanning the forward star of i and checking the at most m2  arcs in

GL  from stage s to stage s + 1 for each such repetition of i takes O(| FS(i) | m 3) time.  Summing

this over all possible nodes of G appearing at stage s gives a total complexity of O(m3 | A |) per

stage.  Hence, the overall process is of complexity O(rm3 | A |) , and this completes the proof.  £

Remark 7.  In the case of non-FIFO link delays, if τ is the maximum number of distinct values of

times for which it is possible to visit any node within the interval [0, T]  (for integer valued delay

functions, we can take τ ≡ T ), then the complexity of the algorithm of Figure 5 is

pseudopolynomial of order O(τrm 3 | A |).        £
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Time-Dynamic Chained Activity Route Planner

The key utility of the foregoing approach arises in the following context. Consider a

certain traveler starting at a home location at a certain time (t = 0), and wishing to go to the office

via label strings constituting a language of the type L = {(w...w,d ...d, r...r, w...w),

(w...w, d...d, b...b, w...w)}  where w, d, r, and b respectively represent walking, driving, rail (taking

trains), and taking buses. The words can be of various lengths, so long as they are admissible with

respect to the overall multi-modal transit network. This latter network can be conceptualized as a

layered network as shown in Figure 6, where the starting node O is represented by the home

location and the terminal node D is represented by the office location on the walking network, and

where there exist various process arcs (shown dotted) between appropriate possible and desirable

location connections from one layer to another.

Terminal
(office)
node D

Node O:
Home at
starting

time

Walking network

Driving
network

Rail network

Bus network

: Process arcs

: intra-layer network
  arcs

Figure 6:  Layered Multi-Modal Network.
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We can now apply the algorithm of Figure 5 to this network under time-independent or

time-dependent conditions, and in the latter case, under a non-FIFO or FIFO (consistency)

assumption. For example, given a node (iw , t, walk) at some stage s, representing that we have

reached location i at time t while walking (in the walking network), we might have possible

connecting arcs of the following type leading to states in stage s + 1, where iw  and id  respectively

represent location i in the walking and driving networks.

′iw, ′t ,  walk

iw, t,  walk

id , t,  process arc from w → d

Similarly, in the drive network, we might have the following types of connections from

one stage to the next.

id , t,  drive

′id, ′t ,  drive

ir , t,  process arc d → r

ib , t ,  process arc d → b

The key element here is an efficient implementation of the procedure of Figure 5, using

suitable node-set reduction schemes as described in Remark 6.
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Remark 8.  Note that the algorithm discussed thus far assumes that the time delay functions

dij (t)  are known for each link (i, j) in each of the layered networks.  Such information might be

gleaned experimentally or via a dynamic traffic assignment simulation process executed using

some OD trip matrices (e.g., see Hobeika, Sherali, and Sivanandan [1994] or Hobeika and Sherali

[1997]).  These delay values for each link can be stored in look-up tables (e.g. as estimated travel

times on an hourly or half-hourly basis) or be input as analytical statistically determined

functions. We can also assume that the FIFO or consistency condition holds, which is true for

most practical cases.     £


