Establishing Software Development Process
Control: Technical Objectives, Operational
Requirements, and the Foundational Framework

James D. Arthur, Richard E. Nance, and Osman Balci

TR 92-40

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

August 3, 1992

Establishing Software Development Process Control:
Technical Objectives, Operational Requirements
and the Foundational Framework

James D. Arthur, Richard E. Nance and Osman Balci
Virginia Tech
Blacksburg, VA 24061

Abstract

To produce and maintain product quality one must control the development and maintenance
processes through the collection, examination and analysis of both process and product indicators.
Process indicators provide measures that reflect the effectiveness of software development and
maintenance activities. Product indicators provide measures that indicate the extent to which
desirable, quality attributes are present (or absent) in the product (documentation and code). This
Paper proposes a foundational framework for establishing control over the software development
process. Critical objectives stressed within this framework include: (a) the complementary
integration of maintenance and development activities, (b) the identification and definition ofa
(semi-) automated data collection and analysis process which employs quality indicators that are
definitively linked to the existence of process and product attributes, and {c) the formulation and
use of control methods that are designed to work within the defined automated process and to
provide decision support capabilities. The significance and necessity of these objectives are
established through an examination of the Abstraction Refinement Model, the

Objectives/Principles/Attributes Framework and the Software Quality Indicator concept.

1. PPOBLEM IDENTIFICATION AND SIGNIFICANCE

The critical natore and long life expectancy of today’s complex software Systems mandate the production of quality
software products, and in particular, those that exhibit maintainability and reliability [PARDSS5). Consistent with
that mandate is a recognized need by the software engineering community to establish a controlled software

development and maintenance process that (a) encourages the synthesis of quality products through feed-back control

optimal aliernatives, Current atlempts (o assess or predict product quality through the use of product metrics alone
have met with significant criticism, Such efforts provide "after-the-fact™ quality information, and have been described
s being narrowly focused and providing measures that are often based on questionable metrics [KEAJ86]. Other
research efforts have focused primarily on identifying the potential of 4 process to produce a quality product by
questioning the existence of particular capabilities and characteristics of the development process. The implications

being, that a process exhibiting such Capabilities and characteristics will assure the production of a quality product,

* process indicator measures that reflect the effectiveness of both software development and maintenance
activities, and

* product indicator measures that convey the extent to which quality attributes are observed in the product.

together, represent the definitional and developmental foundation. Section 4 discusses operational requirements
derived from the technical objectives, and describes how those requirements are realized in an environment tailored for

process control. Finally, a summary is provided in Section 5.

2. TECHNICAL OBJECTIVES

Consistent with our contention that both process and product indicators are crucial (o establishing a controlled

software development {and maintenance) process, we siate three common-made observations, and identify the crucial

questions underlying them. Answers to these questions are found in the set of technical objectives reflecting the

needs and requirements of a controlled process supporting software evolution, i.e, development ard maintenance,

Observation 1: The mainienance activity represents a substantial portion of a product’s life-cycle cost
[HALDS8]. To better understand and control aitendant activities the maintenance process must be recognized as
an integral part of the software development effort.

Question: How do we establish a foundation Jor tracking process and product status throughout software
development gnd maintenance activities?

Technical Objectives:

* Recognize software as evolving from development, (o acceptance, deployment and maintenance,

* Construct a model of the software development process that reflects pertinent standards and procedures,
and

* Extend the model to depict the evolution of software and, specific requirements thereof,

Observation 2: Model abstractions support the characterization of "real world" objects and relationships among

them, As such, they provide a fundamental basis for understanding and a blueprint for implementation,

Question: Utilizing the sofiware evolution model, how do we design and implement g metrics-based

compuler tracking system?

Technical Objectives:

* Augment the model to include triggers and alerters to announce the need for human intervention and
interaction, and
* Design a (semi-)automated system that embeds the evolution model and that maximizes Total Quality

Management (TQM) objectives, while Tecognizing pragmatic constraints mposed by the existing
development process.

Qhﬂﬁlﬂﬁlm_li To be useful, data collection and metric computations must be accompanied by powerful
analytical techniques to support decision and control processes.

Question: Wgy statistical process control methods can be defined tha complement the computer tracking

System, emphasize the product quality, and are consistent with the TOM philosophy?

Technical Objectives:

* Identify control methods for tailoring the embedded model to reflect organizational preferences,

* Define quality indicators for analyzing the implications of maintenance decisions and alternatives, and

* Within the software evolution model, identify fundamental relationships between indicator measures
and product quality to facilitate reasoning about alternative scenarios and to promote understanding of

quality and productivity implications at both technical and management levels.

The technical objectives stated above outline a kolistic approach to establishing and maintaining control of the
software development process. Integral parts of that approach are: (a) recognition that the development and
maintenance processes are inextricably tied together, (b) the formulation of a model that succinctly captures the
dependencies among and within phases of the development cycle, (c) the design of a (semi-)automated, metrics-based
computer tracking system, and (d} the definition of process control methods that support technical and managerial

decisions.
3. THE FOUNDATION FOR INTEGRATED DEVELOPMENT

The crafting of a controlled software development process requires that the execution of all technical objectives be
guided by an integrated development approach which promotes understanding and reasoning at various levels of
abstraction. In particular, this crafiing activity requires a well-defined sct of capabilitics (or requirements), and a
foundation on which to realize those capabilities. Elements crucial to such a foundation are: (a) a framework that
Justifiably links prescribed activities to the achievement of desirable software engineering qualities and that supports
a definitive process for evaluating alternatives among these activities, (b) a model that describes the integral
relationship between software development and maintenance, and (c) a measurement approach that directly links
measurable properties of the process and product to non-measurable concepts. This section describes each of these
essential elements and discusses their particular contributions toward establishing a controfled software development

process.
3.1 A Characterization of the Software Development Process

In the late 1800s Lord Kelvin recognized the crucial role of metrics in the management process. Stated in
paraphrased form, his contention is that "you cannot manage what you cannot measure." Today, metric-based
analysis appears to be the most promising approach to controlling the software development process. Unfortunately,
many metrics currently in use are non-intuitive, non-instructive, and lack that fundamental basis for understanding
the implications of one measurement value as compared to another. While we too propose the definition and use of

meftrics, we do so within a guiding framework that embraces intuitive measures and provides a basis for reasoning

OBJECTIVES

Maintainahility
Correctness
Reusability
Testability
Reliability
Porabitity
Adaptability

ERINCTPLES

Hierarchical Decomposition
Functional Decompoesition
Information Hiding
Stepwise Refinement
Structured Programming
Lite-Cycle Verification
Concurrent Documentation

PRODUCT

ATTRIBUTES

Reduced Coupling
Enhanced Cohesion
Reduced Complexity
Well-Defined Interfaces
Readability

Ease of Change
Traceability

Visibility of Behavior
Early Error Detection

Figure 1
THlustration of the Relationship Among Objectives, Principles, Atiributes
in the Software Development Proces

about the implication and ramifications of those measures grounded in software engineering concepts. That guiding

framework, called the "Objectives/Principles/Attributes Framework," is discussed below.

3.1.1 The ObjectivesiPrinciplesiAttributes F ramework

The Objectives/PﬁncipIes/Attributes (OPA) framework [ARTI90] characterizes the raision d'etre for software
engineering; that is, it embodies the rationale and Justification for software engineering. As illustrated in Figure 1,
the framework enunciates definitive linkages among project level objectives, software engineering principles, and

desirable product attributes. In particular, it advances the following rationale for software development:
* aset of objectives can be defined that correspond to project level goals and objectives,

* achieving those objectives requires adherence to certain principles that characterize the process by which the

product is developed, and

OBJECTIVES " PRINCIPLES ATTRIBUTES

Concurrent Cohesion

Documentation

Adaptability
Camplexity
Correctness

Coupling

\/
Decomposition '/
' [/ Early Error Detection

Maintainability

. Information
rtabilit;
Po ¥ Hiding Ease of Change
Life Cycle Readability
Reliability Verification
Traceability
o S 1
Reusabiliry Rgxc:m
Visibility of Behavior
. Structured
Testability Programming Well-Defined nterfaces
Figure 2

Linkages Among the Objectives, Principles and Attributes

* adherence to a process governed by those principles should result in a product that possesses attributes
considered to be desirable and beneficial.

Underlying this rationale is a natural set of relations, depicied in Figure 2, that link individual objectives to one or
more principles, and each principle to one or more attributes. For example, t0 achieve maintainability one might
employ the principle of information hiding in the development process. In turn, employing information hiding will

result in a product that exhibits a well-defined interface,

A natural question at this point is: How does one determine if, and to what extent, a product possesses desirable
attributes? The answer lies in the observation of product propertics, i.e. observable characteristics of the product,
For example, the use of global variables indicates that a module interface is not well-defined [DUNHS80, p. 149].
The number of global variables used relative to preferable forms of communicatiohs, ¢.g. parameter passing,
indicates the extent to which the interface is ill-defined. |

In "bottom-line” parlance: (1) the achievement of software engineering objectives is directly linked to the use of

specific principles, (2) as a consequence of using these principles desirable attributes are induced in the product, (3)

by observing product properties to determine the extent 10 which desirable attributes exist in the product, one can

ascertain the extent to which particular principles are governing the development process, and in turn, the extent to

which stated software engineering objectives are achieved. To date, we have defined and substantiated (through

published results of independent researchers) 33 linkages among the seven prominent software engineering objectives

and nine principles, 24 linkages among principles and attributes, and 84 property/aitribute pairs [ARTI87].

3.1.2 Contributions of the OPA Framework to C ontrolling the Software Development Process

Controlling the soffware development process necessitates a systermatic approach to assessing product and process

conformance to acceptance standards. How, then, does the OPA framework support such an approach?

M

@

3

Through iis property/attribute pairs and linkages relating artributes (o principles and principles to objectives, the
OPA framework sSupports a well-defined, systematic approach to examining product and process quality. In
particular, observable product properties, directly linked to attributes, provide a basis for evaloating the product,
Similarly, observable characteristics and trends of the process support ProCess assessment, e.g. requirements
change following the software specification review indicates a lack of early error detection [YUTJ. 88, p. 1268],
the creation and usc of software development folders promote traceability and visibility of behavior IMCM1I87,
p. 707.

The OPA approach provides a rigorous framework for: (a) relating acceptance criteria based on attributes to
software engineering principles and objectives, and (b) defining acceptance levels based on measures reflecting
the achievement of objectives, adherence to principles and realization of attributes, That is, the extent to which
a product or process exhibits desirable attributes indicates the use of particular software engineering principles
and the likelihood of achieving desirable software engineering objectives. Assessing process and product
conformance to accepiance standards based on attribute, principle and objective measures provides a well-defined

feedback mechanism for controlling the software developinent process.

Finally, the OPA characterization of the software development process provides a basis for interpreting process
and product quality measures, and thereby, permits effective process control. For example, if one observes a
value indicating the achievement of a software engineering objective, and that value is not consistent with
€xpectations, then contributing principles are examined {based on the defined linkages among objectives and
principles) for anomalous valyes, Similarly, the linkages among principles and atiributes point to candidate
attributes to be examined for suspect values. Finally the atiribute/property relations enable the identification of
the most prominent process or product characteristic(s) influencing the original objective value. The
identification of an anomalous attribute/property pair indicates the misuse (or non-use) of a critical software

engineering principle. The points where this principle is most apparent in the process become the prime

candidates for attention. With appropriate reporting one can also determine the offending product component.

Detecting anomalous process characteristics follows 2 similar progression.
3.2 Process and Product Examination Through Direct, Yet Intuitive, Measures

Economic and social indicators are based on the thesis that intangible, qualitative conditions can be indirectly
assessed by measurable quantitative characteristics [CARET9, pp. 9-11]. Controlling the software evolution process
mandates that we too must be able to measure the unmeasurable, e.g. traceability, the use of concurrent
documentation, and the achievement of portability. In support of such measures, a concept analogous to the
economic and social indicators is advanced in the OPA framework: Software Quality Indicators. Software Quality
Indicators arc embodied in the OPA framework through attribute/property relationships. For example, an intangible
attribute of the development process, like early error detection, can be indirectly assessed through measurable
properties, like the changing of requirements after the software specification review. For clarification purposes we
note that our use of the term "Software" in "Software Quality Indicators” is not intended to be restrictive, but

applicable to both process and product quality indicators.
3.2.1 A Characterization of Software Quality Indicators

A Software Quality Indicator (5QI) is a variable whose value can be determined through direct analysis of product or
process characteristics, and whose evidential relationship to one or more attributes is undeniable [ARTIE7, p. 25].

Crucial in this working definition is that

= the value is directly measurable through the analysis of the software development process or ﬁroducts of that

process, e.g. programs and documentation, and

* SQIs are always attribute/property pairs

denoting updeniahle relationships, and

indicative of the presence or gbsence of one or more attributes,

Consider, for example, an SQI based on code analysis: coupling through the use of structured data types (CF/SDT).
The property in this SQI is the use of structured data types, and the attribute is coupling. One can argue that the use
of a structured data type as a parameter argument has a detrimental impact on module coupling. That is, structured
data types allow the consolidation of related data items. When passed as a parameter, however, rarely is every data
item in the structure accessed by the called module. Consequently, these extraneous items unnecessarily increase the
coupling between the calling and called modules. [TRODS8I, p. 115). A candidate measure is the ratio of the number

of structured data type used as parameters relative to the total number of parameters. Note that (a) the value is

Time

-
Requirements Detailed CSC Integration Mainienance
Analysis Design and Testing
Preliminary Coding and CSCI
Design Unit Testing Testing
f’""r'J’"”""”""J’J’I"""'""‘""""W_"”’
/ ;
/ ‘
/ s /|
‘ /
' ’
’ /
b”'l""'l””'l”””’”"’I:l”"”‘l"’l”"’a
IDEAL
Fif o & - r .y s "
Assessment of | Assessment of
', [EROCESS _? PRODUCT
Figure 3

Exploiting both Process and Product Indicators

directly measurable, (b) the SQI is an atribute/property pair, (c) the relationship described between the use of
structured data types and coupling is undeniable (and intuitive), and (d) the stated SQI can indicate the presence {or

absence) of coupling between two modules.

As described above, because the use of structured data types can impose unnecessary coupling, module
maintainability is reduced. Paradoxically, one might also argue that the use of structured data types have a positive
impact on module maintainability. In particular, because structured data types allow one 1o group related objects
together, they promote cohesion (whicﬁ promoies a more maintainable module [CONSS86, p. 108]). What then
allows us to distinguish between a beneficial use of a property and a detrimental one? The answer is the association
with an attribute; that is, the attribute/property pair denotes the SQI, and not the property alone. This observation is

crucial because it points to the fact that indicators can be used 1o ¢confirm the beneficial contribution of a property in

one instance and the detrimental effect in another. Ideally, we would like to have many confirming angd contrasting
SQIs 10 capture a holistic view, and to convey how well we are (or are not) carrying out the development process.
Coupled with the linkages within the OPA framework {through the attributes) we can reason, from a software
engineering standpoint, (a) why particular values are being reported, and (b) how to correct deficiencies to effect

improvement.

In addition to the characteristics outlined and implied by our working definition, SQIs should also be

* simple, understandable and easily related to attribute(s),
* targeted at process activities, design information and implementation products, and

* asobjective as possible,

3.2.2 Controlling the § oftware Development Process Through Software Quality Indicators

process-related activities, and (b) to base decisions for effecting process improvement, Because software evolution
begins with requirement specification activities and continues throughout the life of the product (including attendang
maintenance activities), SQIs must embrace both process and product measures and minimally must admit to semi-

automatic computation.

(1) As illustrated in Figure 3, we propose the use of SQIs throughout the product software life cycle. Initial SQ1
measures must reflect process-oriented characteristics because little, if any, product is available, As development
continues and products become more readily available, SQI measures should expand correspondingly to reflect
product-oriented qualities. Preliminary work in the SQI domain suggests.that process, documentation and code
indicators are needed [ARTI91, p. 5].

* Process indicators exploit byproducis of process activities and trend data, They fall into one of three
categories: phase independent, phase dependent and phase spanning. Development instability as related to
early error detection, requirements volatility as it affects traceability and cohesion, and the creation of
software development folders relative to traceability are representative SQIs of each category, respectively.

Ten process indicators are currently being examined for their effectiveness in predictin g product quality

* Documentation quality indicators aitest 1o document accuracy, completeness and usability. For example,

STD-2167A,

* Code indicators relate software engineering attributes to code properties. For example, the use of packages

in Ada program allows us to assess functional cohesion. To date, we have identified over 100 code

10

indicators, 66 of which have been automated. Our investigation of code indicators has focused on Ada,
CMS-2 and Pascal.

(2) Experience has shown that process-related assessment must, to a large extent, be automated. Because our
proposed approach to controlling the software development process utilizes many contrasting and confirming
SQIs, the data items required to compute them are simple and easily obtained. Subsequently, automated data
collection is facilitated, as is the metric computation associated with each SQI. As mentioned above, we
currently have a prototype Ada analyzer and report generator that employs 66 code indicators. A feasibility study
addressing the automation of document quality indicators is underway; a portion of that study has included the
development of a prototype document analyzer that extracts the necessary data items for a subset of the document
quality indicators,

3.3 Integrating the Maintenance Activity into the Software Development Life Cycle

Descriptions of software evolution are referred to as "life-cycle” models. These models try to represent the process
by which software systems evolve. Included are the activities that recur throughout the life of a system (hence, the
term “cycle”). Technically, these models should make no distinction between development and maintenance; rather:
they should focus instead on the abstract activities that occur in both, Unfortunately, the conventional train of
thought has been to "completely” specify development phases and activities, and then address maintenance as an "add-

n" (if at all). The deemphasis on maintenance is representative of a lack of understanding of what maintenance
means This is especially disconcerting when even the most conservative estimates project that software
maintenance contributes 30%-70% of the life-cycle costs [HALDSS, p. 236].

Clearly, our contention that maintenance should be considered as an integral part of the life-cycle process and share
the same priority as other life- -cycle phases is supported. Increased understanding of the maintenance activity, better
risk assessment capabilitics, and enhanced quality control process are only some of the potential benefits. The
Abstraction Refinement Model [NANRS9] discussed below characterizes the inherent linkage between maintenance
and development, and provides a basis for reasoning about the benefits of merging the two "activities” within a

model of software evolution.

3.3.1 A Characterization of the Abstraction Refinement Model

The Abstraction Refinement Model (ARM) characterizes the inherent dependency of the maintenance function on the
software development activities through the required documentation produced in the development process. For

simplicity, consider software development originating from a set of software specification requirements. One can

view the development process as a sequence of steps along some path leading to the realization of program P, This

11

{a) {b)
Figure 4
Resolution of Program Abstraction Through Development Activities

path is marked by transformations, taking a prior abstract specification to a less abstract (more concrete)
specification. At cach step, however, alternative resolutions are possible. Many of the alternatives are not
consistent with the requirements and are not taken, while other alternatives are acceptable and simply imply different

paths (approaches) leading to the same realization of program P,

Figure 4a illustrates the stepwisc progression towards P where successive nodes along a path represent increasingly
refined abstractions of the requirements and the arcs represent transitions to accomplish refinement. That path,
starting at node R, is constructed through design decisions that effect refinements of higher level specifications to
realize specifications at a lower level. By capiuring (a) design decisions in the documentation of the development
process and (b) the refinement changes induced by the design decision, reusability of the refined component is
accommodated. This recorded set of decisions and changes is often referred to as the gystem context for a node (or
refined program component) [NEIJ84, p. 565]; each refined representation has its own unique system coniext, As

outlined next, the system context plays an important role in software maintenance.

Software maintenance can be characterized as a transformation of program P to P', Figure 4b illustrates the desire to
move from the concrete representation P to P'. All too often maintenance programmers invoke the "blind
transformation” approach to maintenance. That is, the maintenance programmer attempts to realize P' from actions
on P, neglecting any predecessors of P (like L} whose system context is the same for both P and P*. An example

of such an attempt is the correction of a program using only the source code and internal documentation.

If the system context has been maintained during the development process (and subsequent maintenance activities)

then a more appealing approach is to apply reverse engineering procedures to move from P to L, and the forward

12

engineer to P'. Alternatively, one might also start with L to derive P', recognizing that L is the least common

abstraction of both P and P,

We recognize that pragmatics argue against the recording of all decisions and atiendant changes. Nonetheless, the
Absiract Refinement Model does allow one to examine a development process that includes maintenance and observe
the potential benefits that can be derived from recording decisions and changes. From a confrary perspective, the
ARM reveals the detrimental impact if the contextual needs for maintenance are ignored during development.
Moreover, the ARM underscores the importance of maintaining the system context rather than the implementation

alone.

3.3.2 The Necessity of Linking and Controlling Both Development and Maintenance Activities

Through the Abstraction Refinement Model we can view an ideal software development cycle that integrates both
maintenance and conventional development activities. The ideal integration may not be practical, but at least a goal
is set forth, and the ramifications of the gap that separates the existing development life-cycle from the ideal one are
conveyed. We do propose, however, to narrow that gap by pursuing a realistic life-cycle model that reflects
integration tempered by pragmatic constraints. As outlined below, the ARM is used as a guide for the development

of additional control mechanisms,

(1) The ARM emphasizes the importance of wacking and recording decisions and changes. Consequently,

development and maintenance activities that effect transformations should be monitored to insure adequate and

accurate recording of decisions.
(2} The characterization documentation from a system context perspective reveals the critical need to keep such
documentation current. Recognizing constraints imposed by storage and update costs, the ARM suggests a

risk assessment model that relates maintenance forms to the probabilistic availability of requisite

documentation commensurate with each form.

(3) Finally, because the ARM emphasizes the importance of adequate documentation, the necessity and utility of
document quality indicators in controlling the development process is illustrated.

4. REQUIREMENTS FOR AN INTEGRATED PROCESS CONTROL ENVIRONMENT

Guided by the technical objectives stated in Section 2, the use of software quality indicators within the

Objectives/Principles/Atiributes framework, and the employment of the Abstraction Refinement Model to link

13

software development and maintenance represent a holistic approach 1o establishing an integrated environment

tailored to process control. That control can only be realized, however, through

= the formulation of a model that (a) elevates maintenance to its proper place in the development life-cycle,

and {b) advances a framework embodied in fundamental software engineering concepts,

* the design of a (semi-)antomated computer tracking system that exploits software quality indicators to

provide measures that are intuitively linked to desirable software engineering attributes, and

* the development of brocess control methods and techniques that emphasize decision support, risk

assessment and reasoning about a software evolution process based on fundamental principles,

These three tasks reflect our perceptions of a necessary and sufficient approach to establishing a controlled software
development process through integrated instrumentation and feedback analysis. The three tasks cannot, however, be
performed in isolation. The execution of each task must reflect the needs and requirements of the others. The
remainder of this section addresses each task individually, relates each task to the SQI, OPA and ARM concepts, and

outlines requirements for their realization.
4.1 A Unified Model of Software Development and Maintenance

Integral to software evolution is a foundation that supports the tracking of process and product status throughout

development and maintenance phases. That foundation should permit the formulation of abstractions to hide
unnecessary details and thereby facilitate the examination of development and maintenance alternatives in a

controlled, manageable manner, providing a blueprint for implementation.

Establishing the foundation requires that development and maintenance phases first be integrated into a single,

cohesive model that promotes the recognition of maintenance requirements during development.

*» The proposed model should recognize the specific needs of both development and maintenance activities by
linking them through a common documentation set that records design decisions and alternatives. The
Abstraction Refinement Model (ARM) described in [NANRS9] and outlined in Section 3.3 specifically

addresses the necessity of and benefits derived from such an approach.

* The proposed model should support a characterization of the four maintenance forms relative to development

documentation needs and suggest risk assessment possibilities.

14

* The model should provide a basis for defining a maintenance process that both enunciates and employs

reverse and forward engineering principles.

In general, the model provides the framework for recognizing, defining and evolving a methodological approach that
permits a realization of the symbiotic relationship between development and maintenance activities throughout the

entire software life-cycle.
4.2 An Indicator-Based (Semi-)Automated Tracking System

Previous experience has shown the absolute necessity of a (semi-)automated tracking, data collection and report
generation system [NANRSS]. The Objectives/Principles/Attributes (OPA) characterization of software development
[ARTJ90] and the Software Quality Indicator concept [ARTIS7] ideally support the definition of and justification for
requisite measurement approaches and corresponding metrics. The model described above facilitates the examination
of both the development methodology and process to determine what metric data is needed, where such data is

available, and how 1o extract it..

* As a preliminary step toward implementing the computer-based tracking system, the
development/maintenance model should be augmented to include triggers and annunciators to signal the need

for human assistance, interaction, and possible intervention.

* Model abstractions representing control resources should be mapped onto the development process to permit
the identification of critical points where constant monitoring is needed, e.g. where unchecked deviations

from established threshold values imply undesirable CONSEquences.

The design of a (semi-)automated system that embeds the development/maintenance model is the next logical step.

The system cannot, however, be developed in a vacuum,

* The design process should recognize the organization's approach to TQM for software-intensive projects,
while anticipating, but not being "blinded” by, pragmatic constraints imposed by the existing

development/maintenance process.

* Based on the Objectives/Principles/Attributes framework for software development, the appropriate set of
Software Quality Indicators (SQIs) should be identified and characterized. In particular, they must
definitively measure (a) the extent to which software engineering attributes are present (or absent) in the
process and product, (b) the use of selected software engineering principles in the development process, and

(¢) the achievement of desired software engineering objectives.

15

* 8QI definitions should employ (a) process measures reflecting an examination of process activities

characteristics and trends, and (b) product measures reflecting observable code and documentation properties.

* Measurement approaches should be justifiably linked to defining SQIs and the corresponding concepts they
purport to measure.

* Meirics supporting each measure should employ data items that confirm or refute the existence of desirable

process and product atiributes,

* Control points should be identified within the development/maintenance model where data collection and
SQI measurement is critical to achieving a holistic process/product assessment strategy. (Data collection

and SQI measures can be embedded at corresponding points in the software development process.)

Concurrent with the design phase must be the explicit recognition of Software Quality Assurance (SQA) and

Configuration Management (CM) roles in an environment that provides software development process control.

* An additional SQA activity should be added 1o utilize automatic feedback from product analysis to monitor
the process, leading to an established (or at least encouraged) CM activity that is tightly controlled,

4.3 Statistical Process Control Reflecting Objectives of a TQM Organization
Effective statistical process control within a software development environment is dependent on the identification of
control methods that complement the computer tracking system. We propose innovative control methods as an

integral part of the automated system described eartier,

* To augment decision Support capabilities of management and technical personnel, control methods should

be defined that clearly enunciate implications associaied with decision alternatives,

* Control methods should be defined to accommodate changes in the software development process and in

organizational priorities,
* Recognizing the interdependencies among development and maintenance activities and the necessity of an

integrated control environment, control methods must be defined which fit naturally into the software

evolution model embedded in the software development process.

16

* For productivity and human engineering purposes, control methods should incorporate terminology

preferences and reflect organizational policies,

* Control methods associated with maintenance activities should be designed 1o measure the quality level of
software components affected during maintenance. They should provide quantitative evidence indicating
whether the level! of quality has been retained or improved, and if not, at what cost. (Incidentally, this
“metrics-driven™ approach provides management with a tool for evaluating the effectiveness of the

mainienance organization.)

As evidenced in the above discussions, we argue for and advocate (1) a comprehensive model of software and
maintenance activities and (2) a compuicr tracking system and control methods based on the OPA framework, and on
the use of SQIs. These choices are intentional because the approach results in indicator measures that can be directly
linked to product quality through intuitive arguments, These characieristics encourage management and technical

personnel to question the "whys" of conventional wisdom and the "what ifs" of proposed changes,

5. SUMMARY

Achievement and retention of product quality requires controlling the development and mainienance processes
through the collection, examination and analysis of both process and product indicators. Process indicators provide
measures that reflect the effectiveness of software development and maintenance activities. Product indicators provide
measures that indicate the extent to which desirable, quality attributes are present (or absent) in the resulting product

(documentation and code),

Based on previous experience, we propose a foundational framework that can be used as a springboard for
establishing software development process control and provides a blueprint by which organizations can establish a

controlled software development process, In parlicular we advocate

* the formulation of a software development model that recognizes the importance of maintenance activities
in development life-cycle phases through a synergistic integration of development and maintenance
activities,

* the design of a (semi-)automated system that provides decision support capabilities through the use
definitive process and product indicators, and

* acharacteristic definition of control methods that provide the basis for establishing and maintaining process

control through quality feedback analysis and risk assessment.

17

The synthesis of a software development and maintenance environment that exhibits desirable control characteristics,

however, must be built upon a foundation reflecting

* asystematic approach to assessing product and process conformance to acceptance standards: effectively, an
biectiv inciples/Antributes framework,
* product and process examination through direct, yet intuitive measures: like those represented by Software
uality Indicators, and finally,
* the inherent dependencies of maintenance activities on software development activities through
documentation produced in the development process: the precise quality represented by and embodied in the

Abstraction Refinement Model.

18

REFERENCES

[ARTI87] Arthur, J.D. and R.E. Nance, "Developing an Auatomated Procedure for Evaluating Software
Development Methodologies and Associated Products,” Technical Report SRC-87-007, Systems Rescarch
Center, Virginia Tech, Blacksburg VA, April 1987.

[ARTI90] Arthur, 1.D. and R.E, Nance, "A Framework for Assessing the Adequacy and Effectiveness of Software
Development Methodologies," Proceedings of the Fifteenth Annual Software Engineering Workshop, Process

Improvement Session, Greenbelt MD, December 1990,

[ARTI91] Arthur, J.D., Nance, RE., Bundy, G.N., Dorsey, E.V. and J. Henry, "Software Quality measurement:
Validation of a Foundational Approach,” Technical Report SRC-91-002, Systems Research Center, Virginia
Tech, Blacksburg VA, 1991,

[CARE79] Carmines, E.G. and R.A. Zeller, Reliability and Validity Assessment, Quantitative Applications in the
Social Sciences, J.L. Sullivan (Ed.), Sage Publications, Beverly Hills CA, 1979,

[CONS86] Conte, S.D., Dunsmore, H.E. and V.Y. Shen, Software Engineering Metrics and Models,
Benjamin/Cummings Publishing Co., CA, 1986,

(DUNH80] Dunsmore, H.E. and J.D. Gannon, "Analysis of the Effects of Programming Factors on Programming
Effort," Journal of Systems and Software, Vol. 1, No. 2, February 1980, pp. 141-153.

[HALD88] Hale, D.R. and D.A. Haworth, “Software Maintenance: A Profile of Past Empirical Research,” IEEE
Conference on Software Maintenance, Scottsdale AZ, October 1988, pp. 236-240.

{HUMWS7] Humphrey, W.S. and W.L. Sweet, "A Method for Assessing the Software Engineering Capability of
Contractors,” CMU/SEI-87-TR-23, Software Engineering Institute, Carnegie Mellon University, Pittsbargh

PA, September 1987,

[KEAJ86] Kearney, J.K., R.L. Sedlmeyer, W.B. Thompson, M.A. Grey and M.A. Adler, "Software Complexity
Measurement," Communications of the ACM, Vol. 29, No. 11, November 1986, pp. 1044-1050.

[MCMJ87] McManus, J.1., "The Heart of SQA Management: Negotiation, Compliance, Regression," Handbook of
Software Quality Assurance, G.G. Schulmeyer and J.I. McManus (Eds.), Van Nostrand & Reinhold, NY, 1987.

19

Blacksburg VA, December 1985,

[INANRS9] Nance, RE., Keller, B.J. and D,

Boldery, "Document Production Under
Technologies,'

Next Generation
" Technical Report SRC-89-001, Systems Research Center, Virginia Tech, Blacksburg VA,
February 1989,

from Reusable Components,"

spects of

Strategic Defenge Systems," Communications of the ACM, Vol.
28, No. 12, December 1985, pp. 1326-1335.,

(TRODS84] Troy, D.A. and S.H. Zweben, "Meas

uring the Quality of Structured Design,”
1981, pp. 113-120.

Vol. 4, No. 2, June

[YUTI88)] Yu, T, Shen, V.Y. angd H.E. Dunsmore,

"An Analysis of Several Software Defect Models,"
Transactions on Software Engineering,

IEEE
Vol. 14, No, 9, September 1988, pp. 1261-1270.

20

