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Action Recognition with Knowledge Transfer

Jinwoo Choi

(ABSTRACT)

Recent progress on deep neural networks has shown remarkable action recognition performance

from videos. The remarkable performance is often achieved by transfer learning: training a model

on a large-scale labeled dataset (source) and then fine-tuning the model on the small-scale labeled

datasets (targets). However, existing action recognition models do not always generalize well on

new tasks or datasets because of the following two reasons. i) Current action recognition datasets

have a spurious correlation between action types and background scene types. The models trained

on these datasets are biased towards the scene instead of focusing on the actual action. This scene

bias leads to poor generalization performance. ii) Directly testing the model trained on the source

data on the target data leads to poor performance as the source, and target distributions are different.

Fine-tuning the model on the target data can mitigate this issue. However, manual labeling small-

scale target videos is labor-intensive. In this dissertation, I propose solutions to these two problems.

For the first problem, I propose to learn scene-invariant action representations to mitigate the scene

bias in action recognition models. Specifically, I augment the standard cross-entropy loss for action

classification with 1) an adversarial loss for the scene types and 2) a human mask confusion loss for

videos where the human actors are invisible. These two losses encourage learning representations

unsuitable for predicting 1) the correct scene types and 2) the correct action types when there is no

evidence. I validate the efficacy of the proposed method by transfer learning experiments. I trans-

fer the pre-trained model to three different tasks, including action classification, temporal action

localization, and spatio-temporal action detection. The results show consistent improvement over

the baselines for every task and dataset. I formulate human action recognition as an unsupervised



domain adaptation (UDA) problem to handle the second problem. In the UDA setting, we have

many labeled videos as source data and unlabeled videos as target data. We can use already exist-

ing labeled video datasets as source data in this setting. The task is to align the source and target

feature distributions so that the learned model can generalize well on the target data. I propose 1)

aligning the more important temporal part of each video and 2) encouraging the model to focus on

action, not the background scene, to learn domain-invariant action representations. The proposed

method is simple and intuitive while achieving state-of-the-art performance without training on a

lot of labeled target videos. I relax the unsupervised target data setting to a sparsely labeled target

data setting. Then I explore the semi-supervised video action recognition, where we have a lot

of labeled videos as source data and sparsely labeled videos as target data. The semi-supervised

setting is practical as sometimes we can afford a little bit of cost for labeling target data. I propose

multiple video data augmentation methods to inject photometric, geometric, temporal, and scene

invariances to the action recognition model in this setting. The resulting method shows favorable

performance on the public benchmarks.



Action Recognition with Knowledge Transfer

Jinwoo Choi

(GENERAL AUDIENCE ABSTRACT)

Recent progress on deep learning has shown remarkable action recognition performance. The

remarkable performance is often achieved by transferring the knowledge learned from existing

large-scale data to the small-scale data specific to applications. However, existing action recog-

nition models do not always work well on new tasks and datasets because of the following two

problems. i) Current action recognition datasets have a spurious correlation between action types

and background scene types. The models trained on these datasets are biased towards the scene

instead of focusing on the actual action. This scene bias leads to poor performance on the new

datasets and tasks. ii) Directly testing the model trained on the source data on the target data leads

to poor performance as the source, and target distributions are different. Fine-tuning the model

on the target data can mitigate this issue. However, manual labeling small-scale target videos is

labor-intensive. In this dissertation, I propose solutions to these two problems. To tackle the first

problem, I propose to learn scene-invariant action representations to mitigate background scene-

biased human action recognition models for the first problem. Specifically, the proposed method

learns representations that cannot predict the scene types and the correct actions when there is no

evidence. I validate the proposed method’s effectiveness by transferring the pre-trained model to

multiple action understanding tasks. The results show consistent improvement over the baselines

for every task and dataset. To handle the second problem, I formulate human action recognition as

an unsupervised learning problem on the target data. In this setting, we have many labeled videos

as source data and unlabeled videos as target data. We can use already existing labeled video

datasets as source data in this setting. The task is to align the source and target feature distributions



so that the learned model can generalize well on the target data. I propose 1) aligning the more

important temporal part of each video and 2) encouraging the model to focus on action, not the

background scene. The proposed method is simple and intuitive while achieving state-of-the-art

performance without training on a lot of labeled target videos. I relax the unsupervised target data

setting to a sparsely labeled target data setting. Here, we have many labeled videos as source data

and sparsely labeled videos as target data. The setting is practical as sometimes we can afford a

little bit of cost for labeling target data. I propose multiple video data augmentation methods to

inject color, spatial, temporal, and scene invariances to the action recognition model in this setting.

The resulting method shows favorable performance on the public benchmarks.
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Chapter 1

Introduction

Understanding human action from videos has been a fundamental and longstanding problem in

computer vision. Developing an effective video action recognition approach can lead to many

interesting real-world applications such as autonomous driving, health care, surveillance, sports

analytics, content-based video search, video recommendation system, augmented/virtual reality,

entertainment, etc.

Recently, convolutional neural networks (CNN) have shown impressive performance on the video

action recognition task. For example, state-of-the-art 3D CNNs can achieve ∼ 80% top-1 accuracy

on the Kinetics-400 [80] dataset which consists of diverse 400 action classes [18, 43, 145, 170].

The reason for the current success is the availability of a massive amount of labeled training data.

The Kinetics-400 dataset consists of 240K labeled training videos with the ∼ 10 seconds average

length. With this massive amount of labeled videos, we can learn good action representations.

However, in the real world, we could have new video data of interest according to the applications.

We desire models to recognize what is going on in the new videos. Therefore, we need to train

a model on the new dataset. However, it is prohibitively expensive to manually label a massive

amount of training videos of every new video dataset due to the high labeling cost for videos.

A widely used solution in computer vision is transfer learning. i.e., We transfer the knowledge

learned from the already existing and labeled training videos, which we call the source dataset, to

the new dataset, which we call the target dataset, of our interest. We train a model on the source

video dataset. Then we use the model weights trained on source data as an initialization of the

1
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target fine-tuning. By transfer learning, we can leverage large-scale source data to boost target

performance even if the target data is relatively smaller than the source data. For example, ResNet-

101 [62] trained on the large-scale, labeled source dataset ImageNet [35], can be transfered to

Pascal VOC object detection [40], which is smaller scale. The transfer learned ResNet-101 shows

high mean average precision of 76.4% on the VOC 07 split and 73.8% on the VOC 12 test split.

Similarly, in video domain, Kinetics-400 pre-trained models [18, 43, 145, 170] are transfered to

UCF-101 [140], HMDB-51 [85] which are small-scale target datasets. The transfer learned video

recognition models achieve high accuracy on the target, e.g., R(2+1)D-RGB achieves 96.8% top-1

accuracy on the UCF-101, 74.5% top-1 accuracy on the HMDB-51.

However, transfer learning existing action recognition models may not always generalize well on

the new tasks and datasets because of two problems. i) The source dataset, e.g., Kinetics, is biased

towards the scene, objects, and human appearance [95]. The models trained on these datasets are

biased towards the scene instead of focusing on the actual action. This scene bias leads to poor

generalization performance. ii) Directly testing the model trained on the source data on the target

data leads to poor performance as the source, and target distributions are different. Fine-tuning the

model on the target data can mitigate this issue. However, labeling a relatively small-scale target

dataset is still labor-intensive, as humans need to watch videos thoroughly. In this dissertation, I

tackle these two problems hampering video action recognition models’ generalization performance.

To tackle the problems, I address the following three major topics.

Mitigating scene bias in action recognition [28]. Human activities often occur in specific scene

contexts, e.g., playing basketball on a basketball court. Training a model using existing video

datasets thus inevitably captures and leverages such bias (instead of using the actual discriminative

cues). The learned representation may not generalize well to new action classes or different tasks.

In this work, we propose to mitigate scene bias for video representation learning. Specifically, we

augment the standard cross-entropy loss for action classification with 1) an adversarial loss for
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scene types and 2) a human mask confusion loss for videos where the human actors are masked

out. These two losses encourage learning representations that are unable to predict the scene types

and the correct actions when there is no evidence. We validate the effectiveness of our method by

transferring our pre-trained model to three different tasks, including action classification, temporal

localization, and spatio-temporal action detection. Our results show consistent improvement over

the baseline model without debiasing.

Unsupervised domain adaptation for video action recognition [29, 30]. We address the problem

of domain adaptation in videos for the task of human action recognition. Inspired by image-based

domain adaptation, we can perform video adaptation by aligning the features of frames or clips

of source and target videos. However, equally aligning all clips is sub-optimal as not all clips are

informative for the task. As the first novelty, we propose an attention mechanism which focuses on

more discriminative clips and directly optimizes for video-level (cf. clip-level) alignment. As the

backgrounds are often very different between source and target, the source background-corrupted

model adapts poorly to target domain videos. To alleviate this, as a second novelty, we propose to

use the clip order prediction as an auxiliary task. The clip order prediction loss, when combined

with domain adversarial loss, encourages learning of representations which focus on the humans

and objects involved in the actions, rather than the uninformative and widely differing (between

source and target) backgrounds. We empirically show that both components contribute positively

towards adaptation performance. We report state-of-the-art performances on two out of three chal-

lenging public benchmarks, two based on the UCF and HMDB datasets, and one on Kinetics to

NEC-Drone datasets. We also support the intuitions and the results with qualitative results.

Semi-supervised learning for video action recognition. We tackle the video action recognition

task in a low-data regime, where only a small amount of labeled examples are available during

training. Recent semi-supervised learning methods show improved accuracy by enforcing the pre-

diction consistency on a large amount of unlabeled data. One of the critical factors is to design
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strong, diverse data augmentation strategies that capture the various visual invariances. Compared

to the image domain, data augmentations for videos are under-explored. Applying data augmen-

tation strategies for images to each video frame individually without considering the temporal

structure of videos leads to sub-optimal performance. In this work, we investigate data augmen-

tation strategies for the video domain from several different perspectives, including photometric,

geometric, temporal, and actor/scene. We show that our proposed data augmentation strategy fits

into the state-of-the-art SSL framework [139] and leads to promising performance on the UCF-101

and HMDB-51 datasets in the low labeled data regime.

The rest of the dissertation is organized as follows. Chapter 2 starts with the problem of scene

bias in action recognition, which is a problem of source datasets in transfer learning. In Chapters

3 and 4, I tackle the problem of mitigating the target data’s high labeling cost by formulating the

problem as unsupervised learning on the target data. Then I relax the unsupervised setting to a

semi-supervised setting in Chapter 5. I conclude remarks in Chapter 6.

The relevant publication list for this dissertation is as follows:

• (Chapter 2) Why Cant I Dance in the Mall? Learning to Mitigate Scene Bias in Action

Recognition [28], NeurIPS 2019. (Poster)

• (Chapter 3) Unsupervised and Semi-Supervised Domain Adaptation for Action Recognition

from Drones [29], WACV 2020. (Video)

• (Chapter 4) Shuffle and Attend: Video Domain Adaptation [30], ECCV 2020. (Video)

• (Chapter 5) What Makes A Good Data Augmentation for Semi-Supervised Video Action

Recognition?, under submission to CVPR 2021.

https://papers.nips.cc/paper/8372-why-cant-i-dance-in-the-mall-learning-to-mitigate-scene-bias-in-action-recognition.pdf
https://papers.nips.cc/paper/8372-why-cant-i-dance-in-the-mall-learning-to-mitigate-scene-bias-in-action-recognition.pdf
https://filebox.ece.vt.edu/~jinchoi/files/sdn/NeurIPS_2019_Action_Poster.pdf
http://openaccess.thecvf.com/content_WACV_2020/papers/Choi_Unsupervised_and_Semi-Supervised_Domain_Adaptation_for_Action_Recognition_from_Drones_WACV_2020_paper.pdf
http://openaccess.thecvf.com/content_WACV_2020/papers/Choi_Unsupervised_and_Semi-Supervised_Domain_Adaptation_for_Action_Recognition_from_Drones_WACV_2020_paper.pdf
https://www.youtube.com/watch?v=Lj-FylnEboQ&feature=youtu.be&t=1279&ab_channel=ComputerVisionFoundationVideos
http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123570664.pdf
https://drive.google.com/file/d/1teHqN6kdUnpkp018r01jAX73VKymlNpM/view


Chapter 2

Mitigating Unwanted Biases in Source Data

Figure 2.1: Quiz time! Can you guess what action the (blocked) person is doing in the four
videos? Even though we cannot see a human actor, we can easily predict the action by considering
where the scene is. Training a CNN model from these examples may lead to a strong bias toward
recognizing the scene or the objects present in the video as opposed to paying attention to the
actual action the person is doing. In this work, we show that learning video representation with
debiasing leads to improved generalization to novel classes and tasks.

2.1 Introduction

Convolutional neural networks (CNNs) [18, 145, 162, 170] have demonstrated impressive perfor-

mance on action recognition datasets such as the Kinetics [80], UCF-101 [140], HMDB-51 [86],

and others. These CNN models, however, may sometimes make correct predictions for wrong rea-

sons, such as leveraging scene context or object information instead of focusing on actual human

actions in videos. For example, CNN models may recognize a classroom or a whiteboard in an

input video and predict the action in the video as giving a lecture, as opposed to paying attention

to the actual activity in the scene, which could be, for example, eating, jumping or even dancing.

Such biases are known as representation bias [95]. In this chapter, I focus on mitigating the effect

of scene representation bias [95]. Following Li et al. [95], I define the scene representation bias of

5
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a dataset D as

Bscene = log[M(D,ϕscene)/Mrand]. (2.1)

Here, ϕscene is a scene representation; M(D,ϕscene) is an action classification accuracy with a scene

representation ϕscene on the dataset D; Mrand is a random chance action classification accuracy on

the dataset D. With this definition, I can now measure the scene representation bias of the UCF-

101 [140] dataset by computing the log ratio between two accuracies: 1) the action classification

accuracy of ResNet-50 backbone pre-trained on the Places365 dataset [188] on UCF-101: 59.7%.

2) the random chance accuracy on UCF-101: 1.0%. To get the first accuracy, a linear classifier is

trained on UCF-101 on top of the Places365 pre-trained ResNet-50 feature backbone. As an input

to the linear classifier, I use a 2,048 dimensional feature vector extracted from the penultimate layer

of the ResNet-50 feature backbone. The scene representation bias of UCF-101 is log(59.7/1.0) =

4.09. A completely unbiased dataset would have log(1.0/1.0) = 0 scene representation bias. Thus,

the UCF-101 dataset has quite a large scene representation bias.

The reason for a scene representation bias is that human activities often occur in specific scene

contexts (e.g., playing basketball in a basketball court). Figure 2.1 provides several examples.

Even though the actors in these videos are masked-out, I can still easily infer the actions of the

masked-out actors by reasoning about where the scene is. As a result, training CNN models on

these examples may capture the biases towards recognizing scene contexts. Such strong scene bias

could make CNN models unable to generalize to unseen action classes in the same scene context

and novel tasks.

In this chapter, I propose a debiasing algorithm to mitigate scene bias of CNNs for action under-

standing tasks. Specifically, I pre-train a CNN on an action classification dataset (Mini-Kinetics-

200 dataset [170] in the experiment) using the standard cross-entropy loss for the action labels. To
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Figure 2.2: Motivation of the proposed debiasing algorithm. (Left): A man is singing in a base-
ball field. However, representations with certain bias toward the scene may predict the incorrect
action e.g., , playing baseball. (Right): A person (masked-out) is swimming in a swimming pool.
A model is capable of predicting the correct action i.e., swimming even without looking at the ev-
idence. Video representations that make correct (or incorrect) predictions by leveraging the scene
bias may not generalize well to unseen action classes and tasks.

mitigate scene representation bias, I introduce two additional losses: (1) scene adversarial loss that

encourages a network to learn scene-invariant feature representations and (2) human mask confu-

sion loss that prevents a model from predicting an action if humans are not visible in the video. I

validate the proposed debiasing method by showing transfer learning results on three different ac-

tivity understanding tasks: action classification, temporal action localization, and spatio-temporal

action detection. The debiased model shows the consistent performance improvement of transfer

learning over the baseline model without debiasing across various tasks.

I make the following three contributions in this chapter.

• I tackle a relatively under-explored problem of mitigating scene biases of CNNs for better

generalization to various action understanding tasks.

• I propose two novel losses for mitigating scene biases when pre-training a CNN. I use a

scene-adversarial loss to obtain scene-invariant feature representation. I use a human mask

confusion loss to encourage a network to be unable to predict correct actions when there is

no visual evidence.

• I demonstrate the effectiveness of the method by transferring the pre-trained model to three
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Figure 2.3: Overview of the proposed approach for learning debiased video representation.
Here, our goal is to learn the parameters θ f for the feature extractor ϕ by pre-training it on a large-
scale video classification task. Our training involves three types of losses. First, we use a standard
cross-entropy loss LCE for training action classification. Second, we impose a scene adversarial
loss LAdv so that one cannot infer the scene types based on the learned representation. Third, we
prepare additional videos by detecting and masking out the humans using an off-the-shelf human
detector. We apply an entropy loss LEnt on the predicted action class distributions of the human-
masked-out videos. Our intuition here is that the model should not be able to infer the correct
action without seeing the evidence.

action understanding tasks and show consistent improvements over the baseline.

2.2 Related Work

Mitigating biases. Mitigating unintended biases is a critical challenge in machine learning. Ex-

amples include reducing gender or age biases for fairness [2, 13, 83, 160], easy-example bi-

ases [137, 163], and texture bias of image CNNs for improved generalization [49]. The most

closely related work to ours is on mitigating scene/object/people biases by resampling the original

dataset [95] to generate less biased datasets for action recognition. In contrast, I learn scene-
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invariant video representations from an original biased dataset without resampling.

Using scene context. Leveraging scene context is useful for object detection [17, 31, 37, 105],

semantic segmentation [90, 100, 105, 183], predicting invisible things [82], and action recognition

without looking at the human [63, 152]. Some work have shown that explicitly factoring human

action out of context leads to improved performance in action recognition [164, 184]. In contrast

to prior work that uses scene contexts to facilitate recognition, my method aims to learn represen-

tations that are invariant to scene bias. I show that the debiased model generalizes better to new

datasets and tasks.

Action recognition in video. State-of-the-art action recognition models either use two-stream

(RGB and flow) networks [44, 133] or 3D CNNs [18, 58, 145, 162, 170]. Recent advances in this

field focus on capturing longer-range temporal dependencies [157, 158, 167]. Instead, my work

focuses on mitigating scene bias when training these models on existing video datasets. My debi-

asing approach is model-agnostic. I show the proposed debiasing losses improve the performance

on different backbone architectures: 3D-ResNet-18 [58] and VGG-16 network [135].

Video representation transfer for action understanding tasks. Many recent CNNs for action

classification [18, 58, 145, 162, 170], temporal action localization [34, 127, 173, 176, 185], and

spatio-temporal action detection [8, 53, 59, 68, 77, 112, 118, 119, 120, 136, 166, 191] rely on

pre-training a model on a large-scale dataset such as ImageNet or Kinetics and finetuning the

pre-trained model on the target datasets for different tasks. While Kinetics is a large-scale video

dataset, it still contains a significant scene representation bias [95]. In light of this, I propose to

mitigate scene bias for pre-training a more generalizable video representation.

Adversarial training. Domain adversarial training introduces a discriminator to determine where

the data is coming from. It has been successfully applied to unsupervised domain adaptation [47,

149] and later extended to pixel-wise adaptation [14, 26, 66] and multi-source adaptation [65].
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Building upon adversarial training, recent work aims to mitigate unintended biases by using the

adversary to predict the protected variables [160, 180] or quantify the statistical dependency be-

tween the inputs and the protected variables [1]. My work uses a similar strategy for mitigating

scene bias from video representation. Unlike existing work where the protected variables are given

(demographic information such as gender, age, race), the ground truth scene labels of my training

videos are not available. To address this, I propose to use the output of a pre-trained scene classifier

as a proxy.

Artificial occlusion. Applying occlusion masks to input images (or features) and monitoring the

changes at the output of a model has been used to visualizing whether a classifier can localize

objects in an image [178], learning object detectors from weak image-level labels [7, 93, 94, 137],

improving robustness of object detectors [163], and regularizing model training [50]. I adopt a

similar approach by masking out humans detected by an off-the-shelf object detector. My focus,

however, differs from existing work in that I aim to train the model so that it is unable to predict

the correct class label.

2.3 Method

2.3.1 Overview of the method

Pre-training. I show an overview of the proposed approach for learning debiased video represen-

tations in Figure 2.3. My goal is to learn parameters θ f of a feature extractor G by pre-training

it on a large-scale video classification dataset. Given a video and the corresponding action label

(x,y) ∈ X×Y, where X is a video dataset and Y is the action label set with N classes, I extract

features using a CNN denoted as Gθ f with parameters θ f . Note that my method is model-agnostic

in that I can use any 3D CNN or 2D CNN as my feature extractor. I feed the extracted features
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into an action classifier fθA with parameters θA. I use a standard cross-entropy loss for the action

classifier for penalizing the incorrect action predictions as follows.

LCE =−E(x,y)∼(X,Y)

N

∑
k=1

yk log fθA(Gθ f (x)). (2.2)

In addition to the cross-entropy loss in (2.2), I propose two losses for debiasing purpose: 1) scene

adversarial loss LAdv, and 2) human mask confusion loss LEnt. I impose a scene adversarial loss to

encourage learning scene-invariant representations. The scene adversarial loss penalizes the model

if it could infer the scene types based on the learned representation. The human mask confusion

loss penalizes the model if it could predict the actions when the humans in the video are masked-

out. For this loss, I first detect humans in the input video and mask-out the detected humans. I then

extract features of the human-masked-out video. I feed the features into the same action classifier.

As shown in Figure 2.3 (dotted line), the weights of the feature extractor θ f and action classifiers

θA for the human mask confusion loss are shared with those for the action classification cross-

entropy loss. I maximize the entropy of the predicted action class distributions when the input is

a human-masked-out video. I provide more details on each of the two losses and the optimization

process in the following subsections.

Transfer learning. After pre-training a CNN with the proposed debiasing method, I initialize the

weights of the feature extractor, θ f for downstream target tasks: action classification, temporal

action localization, and spatio-temporal action detection. I remove the scene prediction and the

human-masked action prediction heads of the network i.e., θA, θS. Then I finetune θ f and the

task-specific classification and regression parameters on the target datasets.
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2.3.2 Scene adversarial loss

The motivation behind the scene adversarial loss is that I want to learn feature representations

suitable for action classification but invariant to scene types. For example, on Figure 2.2 left, I

aim to encourage a network to focus on a singer in the video and to predict the action as singing.

I do not want a network to classify the video as playing baseball because the network recognizes

that the scene is a baseball field. To enforce the scene invariance criterion to the network, I learn a

scene classifier fθS with parameters θS on top of the feature extractor Gθ f in an adversarial fashion.

I define the scene adversarial loss as,

LAdv =−E(x,p)∼(X,P)

M

∑
m=1

pm log fθS(Gθ f (x)). (2.3)

Here I denote a scene label as p ∈ P, and the number of scene types by M. The loss (2.3) is

adversarial in that the parameters of the feature extractor θ f maximize the loss while the parameters

of the scene classifier θS minimize the loss.

Pseudo scene label. Most of the action recognition datasets such as Kinetics and UCF-101 do not

have scene annotations. In this work, I obtain a pseudo scene label p̃ ∈ P̃ by running Places365

dataset pre-trained ResNet-50 [188] on the Kinetics dataset.

2.3.3 Human mask confusion loss

I show the motivation for using the human mask confusion loss on the right of Figure 2.2. If every

human, (who is swimming in this example), in the input video is masked out, I aim to make the

network unable to infer the true action label (swimming). I denote a human-masked-out video as

xhm ∈ Xhm. I define the human mask confusion loss as an entropy function of the action label
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distributions as follows.

LEnt =−Exhm∼Xhm

N

∑
k=1

fθA(Gθ f (xhm)) log fθA(Gθ f (xhm)). (2.4)

Both of the parameters of the feature extractor θ f and the action classifier θA maximize (2.4) when

an input is a human-masked-out video xhm. My intuition here is that models should not be able to

predict correct action without seeing the evidence.

Human mask. To mask-out humans in videos, I run an off-the-shelf human detector [61] on the

Kinetics dataset offline and store the detection results. During training, I load the cached human

detection results. For every human bounding box in a frame, I fill in the human-mask regions with

the average pixel value of the video frame, following the setting from Hendricks et al.[2].

2.3.4 Optimization

Using all three losses, I define the optimization problem as follows. When an input video is an

original video x without human masking, the optimization is

L(θ f ,θS,θA) = LCE(θ f ,θA)−λLAdv(θ f ,θS),

(θ ∗
f ,θ

∗
A) = argmin

θ f ,θA

L(θ f ,θ ∗
S ,θA),

θ ∗
S = argmax

θS

L(θ ∗
f ,θS,θ ∗

A). (2.5)

Here λ is a hyperparameter for controlling the strength of the scene adversarial loss. I use the

gradient reversal layer for adversarial training [46]. When an input video is a human-masked-out
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video xhm, the optimization is

(θ ∗
f ,θ

∗
A) = argmax

θ f ,θA

LEnt(θ f ,θA). (2.6)

For every iteration, I alternate between the optimization (2.5) and (2.6).

2.4 Experimental Results

I start with describing the datasets used in my experiments (Section 2.4.1) and implementation

details (Section 2.4.2). I then address the following questions: i) Does the proposed debiasing

method mitigate scene representation bias? (Section 2.4.3) ii) Can debiasing improve generaliza-

tion to other tasks? (Section 2.4.4, Section 2.4.5) iii) What is the effect of the two proposed losses

designed for mitigating scene bias? What is the effect of using different types of pseudo scene

labels? (Section 2.4.6)

2.4.1 Datasets

Pre-training. I pre-train my model on the Mini-Kinetics-200 dataset [170]. Mini-Kinetics-200

is a subset of the full Kinetics-400 dataset [80]. Since the full Kinetics is very large and I do

not have sufficient computational resources, I resort to using Mini-Kinetics-200 for pre-training a

model. The training set consists of 80K videos and the validation set consists of 5K videos.1 To

validate whether my proposed debiasing method improves generalization, I pre-train models with

debiasing and another model without debiasing. I then compare the transfer learning performances

of the two models on three target tasks: 1) action classification, 2) temporal action localization, 3)

spatio-temporal action detection.

1As the sources of Kinetics dataset are from YouTube videos, some of the videos are no longer available. The exact
number of training videos I used is 76,103, and the number of validation videos is 4,839.
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Action classification. For the action classification task, I evaluate the transfer learning perfor-

mance on the UCF-101 [140], HMDB-51 [86], and Diving48 [95] datasets. UCF-101 consists of

13,320 videos with 101 action classes. HMDB-51 consists of 6,766 videos with 51 action classes.

Diving48 [95] is an interesting dataset as it contains no significant biases towards the scene, object,

and human. Diving48 consists of 18K videos with 48 fine-grained diving action classes. I use the

train/test split provided by Li et al.[95]. Videos in all three datasets were temporally trimmed. I

report top-1 accuracy on all thee splits of the UCF-101 and the HMDB-51 datasets. The Diving48

dataset provides only one split. Thus I report the top-1 accuracy on this split.

Temporal action localization. Temporal action localization is a task to not only predict action

labels but also localize the start and end time of the actions. I use the THUMOS-14 [75] dataset as

my testbed. THUMOS-14 contains 20 action classes. I follow Xu et al. [173]’s setting for training

and testing. I train my model on the temporally annotated validation set with 200 videos. I test my

model on the test set consisting of 213 videos. I report the video mean average precision at various

IoU threshold values.

Spatio-temporal action detection. Given an untrimmed video, the task of spatio-temporal action

detection aims to predict action label(s) and also localize the person(s) performing the action in

both space and time (e.g., an action tube). I use the standard JHMDB [73] dataset for this task.

JHMDB is a subset of HMDB-51. It consists of 928 videos with 21 action categories with frame-

level bounding box annotations. I evaluate models on all three splits of JHMDB. I report the frame

mean average precision at the IoU threshold 0.5 as my evaluation metric.

2.4.2 Implementation details

I implement my method with PyTorch (version 0.4.1). I choose 3D-ResNet-18 [58] as my fea-

ture backbone for Mini-Kinetics-200 → UCF-101/HMDB51/Diving48, and Mini-Kinetics-200 →
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THUMOS-14 experiments because open-source implementations for action classification [58] and

temporal action localization [159] are available online. I use a 3 channels × 16 frames × 112

pixels × 112 pixels clip as my input to the 3D-ResNet-18 model. I use the last activations of the

Conv5 block of the 3D-ResNet-18 as my feature representation Gθ f (x).

For the spatio-temporal action detection task, I adopt the frame-level action detection code [136]

based on the VGG-16 network [135]. I use a 3 channels × 1 frame × 300 pixels × 300 pixels

frame as my input to the VGG-16 network. I use the fc7 activations of the VGG-16 network as

my feature representation Gθ f (x).

I use a four-layer MLP as my scene classifier, where the hidden fully connected layers have 512

units each. I choose λ = 0.5 for the gradient reversal layer [46] using cross-validation. I set the

batch size as 32 with two P100 GPUs. I use SGD with a momentum of 0.9 as my optimizer. I set

the weight decay as 0.00001. The learning rate starts from 0.001, and I divide it by 10 whenever

the validation loss saturates. I train my network for 100 epochs. I use the validation loss on

Mini-Kinetics-200 for model selection and hyperparameter tuning. When I conduct the transfer

learning on the target datasets of the target tasks, I follow the same hyperparameter settings of

Hara et al. [58], Wang and Cheng [159] and Singh et al.[136] for action classification, temporal

action localization, and spatio-temporal action detection, respectively.

2.4.3 Scene classification accuracy

On the Mini-Kinetics-200 validation set, my scene classifier achieves an accuracy of 29.7% when

training the action classification without debiasing (i.e., , with standard cross-entropy loss only).2

With debiasing, the scene classification accuracy drops to 2.9% (the accuracy of random guess is

0.3%.) The proposed debiasing method significantly reduces scene-dependent features.

2Since there are no ground truth scene labels in the Mini-Kinetics-200 dataset, I use pseudo labels to measure the
scene classification accuracy.
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Table 2.1: Transfer learning results on action classification. The video representation trained us-
ing the proposed debiasing techniques consistently improves the accuracy on new datasets. For
HMDB-51 and UCF-101, we show the average accuracy of all three test splits. All methods but
TSN use a clip length of 16. In the first block, we list the accuracies of the other methods.

Method Backbone HMDB-51 UCF-101 Diving48

C3D [164] C3D [144] - 82.3 -
Factor-C3D [164] C3D [144] - 84.5 -
RESOUND-C3D [95] C3D [74] - - 16.4
TSN [157] BN-Inception 51.0 85.1 16.8

3D-ResNet-18 [58] 3D-ResNet-18 53.6 83.5 18.0
3D-ResNet-18 [58] + debiased (ours) 3D-ResNet-18 56.7 84.5 20.5

2.4.4 Transfer learning for action classification

Table 2.1 shows the results on transfer learning for action classification on other datasets. As

shown in the last two rows of Table 2.1, my debiased model consistently outperforms the base-

line without debiasing on all three datasets. The results validate that mitigating scene bias can

improve generalization to the target action classification datasets. As shown in the first block of Ta-

ble 2.1, action-context factorized C3D (referred to as Factor-C3D) [164] also improves the baseline

C3D [144] on UCF-101. The accuracy of Factor-C3D is on par with my debiased 3D-ResNet-18.

Note that the model used in Factor-C3D is 2.4× larger than ours. I also compare my method with

RESOUND-C3D [95] on the Diving48 dataset. All the videos in the Diving48 dataset share similar

scenes. My proposed debiasing method shows a favorable result compared to [95]. I show a large

relative improvement (14.1%) on the Diving48 dataset since it has a small scene representation

bias of 1.26 [95].

Relative performance improvement vs. scene representation bias. Figure 2.4 illustrates the re-

lationship between relative performance improvement from the proposed debiasing method and the

scene representation bias (defined in [95]). I measure the scene representation bias defined as (2.1)

and the relative improvement of each split of the HMDB-51, UCF-101, Diving48 datasets. The
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Figure 2.4: A strong negative correlation between relative performance improvement and
scene representation bias. We measure the scene representation bias defined as (2.1) and the
relative improvement of each split of the HMDB-51, UCF-101, Diving48 datasets between models
trained without and with the proposed debiasing method. The Pearson correlation is ρ = −0.896
with a p-value 0.006, highlighting a strong negative correlation.

Pearson correlation is ρ =−0.896 with a p-value 0.006, highlighting a strong negative correlation

between the relative performance improvement and the scene representation bias. My results show

that if a model is pre-trained with debiasing, the model generalizes better to the datasets with less

scene bias, as the model pays attention to the actual action. In contrast, if a model is pre-trained

on a dataset with a significant scene bias e.g., Kinetics without any debiasing, the model would

be biased towards certain scene context. Such a model may still work well on target dataset with

strong scene biases (e.g., UCF-101), but does not generalize well to other less biased target datasets

(e.g., Diving48 and HMDB-51).

2.4.5 Transfer learning for other activity understanding tasks.

Temporal action localization Table 2.2 shows the results of temporal action localization on the

THUMOS-14 dataset. Using the pre-trained model with the proposed debiasing method consis-
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Table 2.2: Transfer learning results on temporal action localization task: THUMOS-14 dataset.
The evaluation metric is the video mAP at various IoU threshold values. The video representation
trained using the proposed debiasing techniques consistently improves the performance on the new
task. In the first block, we list the mAPs of the state-of-the-arts.

IoU threshold

Method Inputs Backbone 0.1 0.2 0.3 0.4 0.5 0.6 0.7 avg.

TAL-Net [19] RGB+Flow I3D 59.8 57.1 53.2 48.5 42.8 33.8 20.8 45.1
SSN [185] RGB+Flow InceptionV3 66.0 59.4 51.9 41.0 29.8 19.6 10.7 39.8
R-C3D [173] RGB C3D 54.5 51.5 44.8 35.6 28.9 - - -
CDC [127] RGB C3D - - 40.1 29.4 23.3 13.1 7.9 -

R-C3D [159] RGB 3D-ResNet-18 48.6 48.6 45.6 40.8 32.5 25.5 15.5 36.7
R-C3D [159] + debiased (ours) RGB 3D-ResNet-18 50.2 50.5 47.9 42.3 33.4 26.3 16.8 38.2

Table 2.3: Transfer learning results on spatio-temporal action detection. The evaluation metric is
the frame mAP at the IoU threshold of 0.5. We list the frame mAP of the state-of-the-arts for
reference.

Method Backbone Inputs Pre-train JHMDB (all splits)

ACT [77] VGG RGB+Flow ImageNet 65.7
S3D-G [170] Inception (2D+1D) RGB+Flow ImageNet+FullKinetics 75.2

ROAD [136] VGG RGB ImageNet+MiniKinetics 32.5
ROAD [136] + debiased (ours) VGG RGB ImageNet+MiniKinetics 34.5

tently outperforms the baseline (pre-training without debiasing) on all the IoU threshold values.

My result suggests that a model focusing on the actual discriminative cues from the actor(s) helps

localize the action.

Spatio-temporal action detection Table 2.3 shows spatio-temporal action detection results. With

debiasing, my model outperforms the baseline without debiasing on the JHMDB dataset. The re-

sults in Table 2.2 and 2.3 validate that mitigating scene bias effectively improves the generalization

of pre-trained video representation to other activity understanding tasks.
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Table 2.4: Effect of debiasing using different
pseudo scene labels generated from the off-the-
shelf classifier.

HMDB-51
Pseudo label used split-1 split-2 split-3 avg.

None (w/o debiasing) 52.9 55.4 52.6 53.6
Hard label 54.8 54.2 54.6 54.5
Soft label (ours) 56.4 55.9 56.4 56.2

Table 2.5: Effect of using different losses for re-
ducing scene bias. Both losses improve the per-
formance in transfer learning.

Loss HMDB-51
LAdv LEnt split-1 split-2 split-3 avg.

× × 52.9 55.4 52.6 53.6
× ✓ 55.0 55.3 55.1 55.1
✓ × 56.4 55.9 56.4 56.2
✓ ✓ 56.4 57.3 56.5 56.7

2.4.6 Ablation study

I conduct ablation studies to justify the design choices of the proposed debiasing technique. Here

I use the Mini-Kinetics-200 → HMDB-51 setting for the ablation study.

Effect of the different pseudo scene labels. First, I study the effect of pseudo scene labels for

debiasing in Table 2.4. Compared to the model without using scene adversarial debiasing, using

hard pseudo labels improves transfer learning performance. Using soft pseudo labels for debiasing

further enhances the performance. I attribute the performance improvement to many semantically

similar scene categories in the Places365 dataset. Using soft scene labels alleviates the issues of

committing to one particular scene class. In all the remaining experiments, I use pseudo scene soft

labels for scene adversarial debiasing.

Effect of the two different losses. Next, I ablate each of the two debiasing loss terms: scene

adversarial loss (LAdv) and human mask confusion loss (LEnt) in Table 2.5. I observe that both

losses improve the performance individually. Using both debiasing losses gives the best results

and suggests that the two losses are regularizing the network in a complementary fashion.

2.4.7 Class activation map visualization

To further demonstrate the efficacy of my debiasing algorithm, I show class activation maps

(CAM) [187] from models with and without debiasing in Figure 2.5. I show the CAM overlayed
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baseline ours baseline ours baseline ours

sword fencing smoke drink kick sword

mixing cutting in kitchen high jump javelin throw uneven bars balance beam

Figure 2.5: Class activation maps (CAM) on the HMDB-51 (first row) and UCF-101 (second
row) datasets. The words underlined in blue are correct predictions, and those in red with no un-
derline are incorrect predictions. The video representation using the proposed debiasing algorithm
focuses more on the direct visual cues (i.e., the main actors) rather than the surrounding scene
contexts.

over the center frame (the eighth frame out of the sixteen frames) of each input clip. I present the

results on the HMDB-51 and UCF-101 datasets. I observe that without debiasing, a model predicts

the incorrect classes because the model focuses on the scene instead of human actors. However,

with debiasing, a model focuses on human actions and predicts the correct action classes.

2.5 Conclusions

I address the problem of learning video representation while mitigating scene bias. I augment the

standard cross-entropy loss for action classification with two additional losses. The first one is an

adversarial loss for scene class. The second one is an entropy loss for videos where humans are

masked out. Training with the two proposed losses encourages a network to focus on the actual

action. I demonstrate the effectiveness of my method by transferring the pre-trained model to three

target tasks.

As I build my model upon relatively weak baseline models, my model’s final performance still

falls behind other state-of-the-art models. In this work, I only addressed one type of representation
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bias, i.e., scene bias. Extending the proposed debiasing method to mitigate other kinds of biases

e.g., objects and persons for human action understanding is an interesting and important future

work.



Chapter 3

Unsupervised Learning with Target Data,

Part I

3.1 Introduction

People create large amounts of digital video data recently. Such data comes from many sources

e.g., surveillance videos, personal videos, commercial videos, and etc. Many of videos are human-

centered. Automatic analysis of videos, e.g., for indexing and searching, is thus an interesting and

critical problem. It is also very challenging due to its unconstrained nature and sheer scale. Human

action recognition is one of the tasks, in this genre, which has gained substantial attention in recent

years [18, 129, 133, 145]. Most of such works have addressed third-person videos while there are

some works on egocentric videos as well [42, 138, 175].

Drones are becoming more popular and readily available for purchase in the consumer market.

Similar to the existing human-borne camera videos, it is desirable to automatically analyze drone-

captured videos. However, drone-captured videos present distinct challenges due to continuous

and typical motions, perspectives, and distortions. Thus they are very different from human-borne

camera videos (Fig. 3.1a).

In this chapter, I focus on an unsupervised video domain adaptation setting. I aim to leverage the

23
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‘hugging’
(a) Domain differences due to viewpoint, appearance, and background

(b) Label set differences due to different classes in the two domains
‘yoga’ ‘canoeing’ ‘shaking hands’ ‘exchange backpack’

Source dataset (Kinetics) Target dataset (Drones)

‘hugging’

Figure 3.1: Action recognition from drone videos. Transferring knowledge learned from existing
action recognition datasets is challenging as they contain mostly third-person videos. We address
two challenges, i.e., domain difference (a) due to visual variation as well as (b) due to different
label sets, in the two domains.

existing large-scale annotated datasets of third-person videos1, to help perform action recognition

on challenging drone-captured videos. Since acquiring and annotating videos in any new domain is

an expensive and time-consuming task, under such domain adaptation settings, I aim to minimize

the annotation efforts.

The large domain differences between the source domain of third-person videos and the target

domain of drone-captured videos (Fig. 3.1a), motivate us to also investigate the case of semi-

supervised domain adaptation [54]. In the semi-supervised domain adaptation setting, I assume

that a limited amount of annotated target data is available during training in contrast to the unsu-

pervised domain adaptation setting.

In addition to the case where both source and target have the same label sets, I also address the

1I refer to existing action recognition datasets such as Kinetics and UCF-101 as third-person datasets while noting
that they may contain some other perspective videos, e.g., first person, as well.
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challenging setting where the label sets are different (Fig. 3.1b). To reduce the domain gap be-

tween source and target data, I employ a domain classifier and adversarial loss in the both problem

settings, i.e., same and different label sets. I use standard cross-entropy loss in the same label set

setting, while I use an embedding-based framework in the different label sets case. The input in the

latter case is agnostic of the specific class annotations of the training examples. I care only about

dis-/similarities between examples, i.e., if they belong to different/same classes irrespective of the

particular classes. By employing an embedding-based method, my classifier can generalize to new

categories in the target domain.

I also propose to do both full video-based as well as instance-based adaptation. The full video-

based method has the merit that exploits correlated context while the instance-based approach is

motivated by the argument that focusing on the actor itself is more critical for better performance.

To evaluate the presented methods, I also propose a novel dataset of human actions captured by

drones: NEC-DRONE. The NEC-DRONE dataset consists of 5250 videos. I evaluate the proposed

method on this challenging dataset and show that I can successfully perform domain adaptation

from mostly third-person videos to drone-captured videos. I further evaluate the proposed method

on a publicly available Charades-Ego dataset [130]. I show qualitative results on the NEC-DRONE

dataset to better understand the behaviors of the methods.

To summarize, I make the following three contributions of this work.

• I introduce a new problem of unsupervised and semi-supervised domain adaptation for action

recognition from drones with two settings, i.e., same and different source and target label

sets.

• I propose a new dataset, NEC-DRONE, containing 5250 videos for action recognition from

drones.

• I explore the problem with thorough experiments and show significant improvements with

the proposed method.
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3.2 Related Work

Drone-based video datasets. A few drone-based video datasets have been proposed [6, 106, 117,

189]. However, there is only one dataset for drone-based human action recognition that I are aware

of – the OKUTAMA-ACTION dataset [6]. The OKUTAMA-ACTION dataset is an outdoor dataset,

and it is 43 minutes total while ours (NEC-DRONE) is 256 minutes. The number of actors is 9

vs. 19 actors (ours), and actions are 12 vs. 16 actions (ours). To the best of my knowledge, the

proposed dataset is the largest drone-captured dataset for human action recognition.

Action recognition. After the success of deep networks in the image domain, many works have

addressed action recognition in videos [5, 12, 18, 38, 44, 52, 74, 78, 79, 129, 132, 133, 144, 145,

157, 161, 162, 170]. This is in contrast to the earlier handcrafted features [153, 154].

Most of these methods use third-person videos to train their models. In this work, I show that

such third-person models do not accurately transfer to novel domains. I propose methods to make

models to generalize better using domain adaptation, utilizing a large amount of annotated third-

person data.

Cross-view modeling. Understanding object, scene, and action across different views has drawn

attention in computer vision. There have been works on aerial and ground view matching [98, 115],

albeit the tasks are not human action recognition. For human actions, recent approaches use multi-

stream networks to model first and third person videos jointly [3, 41, 128]. However, most of them

require a dataset of paired videos across views.

I also want to learn view-invariant representations. However, collecting paired videos across dif-

ferent views such as a drone view, a third-person view, and a first-person view is expensive. Thus,

I aim to leverage the existing labeled third-person videos while using only unlabeled target videos
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(from drones), for learning representations.

Domain adaptation. Many works have addressed the problem of domain adaptation for the case

of image classification [46, 54, 101, 104, 121, 125, 148, 150, 181] and object detection [25, 114,

174]. However, not much work has been done on domain adaptation for video-related tasks. A

few approaches deal with an image to video domain adaptation [101, 142]. My work is different

as I are interested in a video to video domain adaptation with the target videos being captured by

drones.

There are a few works on video domain adaptation [21, 71]. Similar to them, I also use the basic

adversarial learning framework. However, I are also dealing with more challenging problem setting

where I have different source and target label sets. I are also different in that I propose to use

instance-based domain adaptation as my NEC-DRONE dataset has more significant domain gap.

Open set domain adaptation. Open set domain adaptation is the setting where both source and

target datasets have ‘unknown’ classes, and unseen class examples are all classified together into

one ‘unknown’ category [15, 110, 122]. However, I are interested in classifying the unknown

examples in different novel classes in the target domain (e.g., ‘exchanging backpack’).

3.3 Approach

My aim is to do domain adaptation from a source domain where I have class annotated training

data (xs,ys) ∈ Xs ×Ys, where Ys is the source label set, and unannotated data or a very limited

amount of annotated data from the target domain (xt ,yt) ∈ Xt ×Yt with Yt being the target label

set. I address two cases of domain adaptation: (i) when the source and target label sets are the

same i.e., Ys = Yt , and (ii) when they are different i.e., Ys ̸= Yt . I partition the target annotated
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data into three parts, the usual train and test sets and a third support set (Xt
N ,Y

t
N). I use the support

set only in the case of unsupervised domain adaptation with different source and target label sets,

to do k-NN classification in the target domain. I report the target performances on the target test

set, which I again stress, has no overlap with the support set.

3.3.1 Overview of the architecture

My overall architecture (Figure 3.2) leverages the advances made in both video representations as

well as domain adaptation. The system takes a video with T frames, denoted as V = {v1,v2 . . .vT}

where vi ∈ Rh×w×c are the height h, width w, and c channel frames, as an input and splits it into

small, potentially overlapping, clips x = [v j,v j+1 . . .v j+L−1] where L is the clip length. Then I pass

the clips through a state-of-the-art video CNN, denoted as ψ(·) to obtain feature representations,

ψ(x) of the clips. I pass the clip features to a softmax with classification loss or an embedding-

based metric learning loss, as well as to a discriminator network with domain adversarial loss. I

describe the different cases in the following.

3.3.2 Same source and target label set

The first case is when the K classes are the same in the source and target domains i.e., Ys =

Yt (Figure 3.2a). Even in this case, the domain differences are substantial due to the various

challenges such as variations in appearance, perspective, motion, etc. In this case, the system

learns representations with a combination of cross-entropy loss for classification in the source

domain along with the domain adversarial loss, i.e., binary cross-entropy loss, between examples

of source and target domains. Formally, denoting the classifier by fC(·) with parameters θc, and
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the discriminator by fD(·) with parameters θd , I define the losses as,

LCE =−E(xs,ys)∼(Xs,Ys)

K

∑
k=1

ys,k log fC(ψ(xs)), (3.1)

LADV =−Exs∼Xs log fD(ψ(xs))

−Ext∼Xt log(1− fD(ψ(xt))). (3.2)

The optimization problem is then given by,

L (θ f ,θc,θd) = LCE(θ f ,θc)−λLADV (θ f ,θd),

(θ ∗
f ,θ

∗
c ) = arg min

θ f ,θc
L (θ ∗

d ), θ ∗
d = argmax

θd
L (θ ∗

f ,θ
∗
c ). (3.3)

where, θ f are the feature extractor parameters of ψ , and λ is a hyper-parameter for the trade-off

between the cross-entropy and the domain adversarial losses. I mark optimal parameters θ with a

symbol ∗ in a superscript.

The optimization learns a classifier by minimizing the classification loss, a discriminator by mini-

mizing the adversarial loss and a feature extractor by minimizing the classification loss and max-

imizing adversarial loss, to learn domain invariant and discriminative representations. I use the

gradient reversal layer [46] for adversarial training.

Semi-supervised adaptation. I also evaluate semi-supervised domain adaptation, where, in ad-

dition to the unlabeled target examples, some annotated target examples are available for training

as well. I use the target annotated examples with cross-entropy loss, and the target unannotated

examples with domain adversarial loss only.
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Figure 3.2: Overview of the proposed domain adaptation method. Our system takes a video as
an input and splits it into small clips. We pass these clips through a video CNN. (a) In the same
source and target label set setting, the clips features are input to a softmax with classification loss
as well as to a discriminator network with domain adversarial loss. At testing time, the system
takes a video as an input, split into multiple clips, pass the clips into the trained CNN to extract
features. The system then predicts labels with the source classification layer. (b) In a different
source and label sets setting, the clip features are input to an embedding based metric learning loss,
as well as to a discriminator network with domain adversarial loss. At testing time, the system
takes a video as an input, split into multiple clips, pass the clips into the trained CNN to extract
features. The system requires few labeled target examples at test time (a support set) to perform
k-NN classification.

3.3.3 Different source and target label sets

In the second case, the domain differences are due to the difference in labels sets i.e., Ys ̸= Yt

(Figure 3.2b) as well as the variations such as appearance, perspective, motion, etc. The source

and target label sets could be different with some or potentially no overlap. In this case, I propose

to learn embeddings of the videos which are agnostic of the specific classes but are aware of being

similar (when examples come from the same class) or dissimilar (when they come from different

classes). To do this I use a standard metric learning loss, i.e., the triplet loss [124], which takes a
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triplet of examples (xa,xp,xn) with xa being the anchor and xp,xn being the positive (same class

as anchor) and negative (different class than the anchor) examples respectively. In the embedding

space, the triplet loss forces the smaller distance between the anchor and the positive example by

a margin of δ , than the distance between the anchor and the negative example. Formally the loss

and optimization problem are given as,

LT RI =−E(xa,xp,xn)max(0,δ+

∥ψ(xa)−ψ(xp)∥2 −∥ψ(xa)−ψ(xn)∥2), (3.4)

L (θ f ,θd) = LT RI(θ f ,θd)−λLADV (θ f ,θd),

θ ∗
f = argmin

θ f
L (θ ∗

d ), θ ∗
d = argmax

θd
L (θ ∗

f ). (3.5)

In a minibatch, I sample examples from both the source as well as the target domain. All samples

contribute to minimizing the adversarial loss, while the samples from the source domain construct

the triplet examples and contribute to minimizing the triplet loss.

Once I have trained the network, the system classifies query examples, by first, obtaining the

embeddings from a forward pass of the base CNN, and then performing k-NN-based classification

in the embedding space, using the target support set (Xt
N ,Y

t
N).

Semi-supervised adaptation. I also evaluate semi-supervised setting in a different source, and

target label sets setting, similar to the same label sets setting. The two differences are, (i) I use the

cross-entropy loss for target classes as well, and (ii) I do not use the support set, as now the system

can directly do target class classification.
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‘leave backpack and go’ ‘sit on a chair’ ‘pick up phone’

‘shaking hands’ ‘pushing’ ‘exchanging backpack’

Figure 3.3: Sample frames from the NEC-DRONE dataset. We show two close-by frames per
video. The first row shows single person actions, while the second row shows two person actions.
Best viewed on screen, with zoom and color.

3.3.4 Video-based and instance-based adaptation

Since I are interested in human actions, the discriminative visual regions in the frames are expected

to be around humans. I could expect that focusing on the humans in frames would give better

performance by eliminating noise from the background. On the other hand, the background might

contain correlated elements which could potentially contribute to better recognition. Since both

the human foreground as well as the background have potential merits, I propose to do both ‘video-

based’ and ‘instance-based’ adaptation. In the video-based adaptation I give the full clip as the

input to the system, while for the instance-based case, I first perform human detection using a

state-of-the-art pre-trained human detector [61] and then feed only the human spatio-temporal

tube (i.e., a clip made by cropping out human from every frame) as an input the the system.

I independently train video-based and instance-based domain adaptation models. During testing,

I perform late-fusion of the two predictions from video-based and instance-based models. I em-

pirically show that both have advantages, especially when some amount of target annotated data

is available (semi-supervised setting), and their combination consistently improves over either of

them alone.
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3.4 NEC-DRONE Dataset

I propose a new dataset, NEC-DRONE, of videos taken from drones for the task of domain adap-

tation from third-person videos to drone videos. Figure 3.3 shows some examples. I collected the

dataset inside a school gym with 19 actors acting out their interpretations of 16 pre-defined actions

multiple times. The actions performed by the actors are in an unconstrained manner without any

close supervision.

The actions are both single as well as two-person actions. The partial motivation of defining the

actions was to keep surveillance scenarios in mind, e.g., two people getting together and exchang-

ing a backpack could be an interesting event to tag, or retrieve. There are 10 single person actions,

i.e., walk, run, jump, pick up a backpack and go, leave a backpack and go, sit on a chair, talk on a

mobile phone, drink water from a bottle, throw something, pick up a small object, and 6 two-person

actions, i.e., shake hands, push a person, hug, exchange a backpack, walk toward each other and

stay, stand together leave.

I recorded each action instance by two drones simultaneously flown in an unconstrained manner

by relatively new pilots. The videos in the dataset are from varied perspectives with the drones

flying at varying distances and heights from the actors. The drones used were ‘DJI Phantom 4.0

pro v2’ and the videos were recorded at 30 fps at a resolution of 1920× 1080 pixels. I manually

annotated the actions of all videos.

Finally I have a total of 5250 videos with a total of more than 460k frames. I split the videos into

1188 train, 437 val, and 454 test sets with labels, and 3171 videos without labels. I make sure that

the actors in the train, val and test sets are disjoint. I evaluate the performance on the dataset as

the mean class accuracy.

The proposed dataset is challenging for the following main reasons. First, view point is different

from typical action datasets, and it changes heavily over time due to the flying drone. Second,
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Table 3.1: Nearest neighbor test results (without learning any parameters) on the UCF-101 and the
NEC-DRONE dataset with pre-trained I3D features.

Dataset UCF-101 (vid.) NEC-DRONE (vid.) NEC-DRONE (inst.)

Acc(%) 72.3 8.2 10.8

due to the continuous and often erratic drone motion, the videos have jitters and motion blur.

Third, often the person(s) of interest are not centered and are relatively small. To the best of my

knowledge, the NEC-DRONE is the largest drone dataset for human action recognition. I plan to

release it publicly upon acceptance of the paper.

In Table 3.1, I show a significantly larger domain gap between Kinetics and the NEC-DRONE

dataset, compared to the domain gap between Kinetics and UCF-101. I perform a nearest neighbor

classification on the UCF-101 [140] and NEC-DRONE datasets. Note that I do not learn any

parameters. I use ℓ2 normalized mixed5c activations of the I3D network [18] pre-trained on

Kinetics as my feature.

Video-based nearest neighbor classifier can achieve 72.3% accuracy on UCF-101 dataset (split 1).

However, the video-based nearest neighbor can achieve only 8.2% accuracy on the NEC-DRONE

dataset. Using instance-based nearest neighbor, I can achieve 10.8% accuracy. This significant

difference is due to the large domain gap between the NEC-DRONE dataset and typical third-

person video datasets. Furthermore, the existing third-person video datasets such as UCF-101 and

Kinetics have correlated backgrounds for different actions. However, the NEC-DRONE dataset has

a similar background for all the actions. Thus the dataset is very challenging, as without capturing

the human motion, it is difficult to recognize the different human actions in the NEC-DRONE

dataset.
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3.5 Experimental Results

Abbreviations. I use the following abbreviations. DA: domain adaptation, UDA: unsupervised

domain adaptation, SSDA: semi-supervised domain adaptation, src.: source, tgt.: target, vid.:

video-based, inst.: instance-based, sup.: supervised finetuning.

Same label set for source and target. I use the Kinetics [80] dataset as the source dataset and the

NEC-DRONE dataset as the target dataset. Since the two datasets do not share the same classes, I

subsample the two datasets to obtain similar classes. I choose 13 classes from Kinetics [80] dataset

and 7 classes from the NEC-DRONE dataset which have similar actions to construct the source and

target datasets. See supplementary for the details.

Different label sets for source and target. When I work with different label sets settings, I

use the UCF-101 [140] as my source dataset. UCF-101 dataset is mainly a third-person dataset

and contains 13,320 videos from 101 action classes. The domain gap between the UCF-101 and

NEC-DRONE datasets is significant (as I also show quantitatively below) and the label sets of the

UCF-101 dataset and NEC-DRONE datasets are entirely disjoint. Hence this makes a challenging

and practical domain adaptation setting from third-person videos to drone-captured videos.

For both settings, I use labels for m target examples per class, in addition to the unannotated target

and annotated source examples, for semi-supervised adaptation.

Implementation details. I use state-of-the-art I3D network [18] as my base network for feature

extraction with L = 16 frame clip inputs for drone experiments and L = 32 frame clip inputs

for Charades-Ego experiments. I attach the domain discriminator to mixed5c layer of the I3D

network. I use a 4 layer MLP for domain classifier where the hidden fully connected layers have

4096 units each.

When aligning features at the instance-based, I extract the human tubes by running per frame
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detectors and making tracks based on the overlaps of the detections in the successive frames. I use

a Mask R-CNN [61] pre-trained on MS-COCO dataset [99] for person detection.

I set λ = 1.0 for the gradient reversal layer [46], δ = 0.5 for the margin parameter of the triplet loss

and the embeddings. I use a batch size of 10 and sample mini-batches as follows. In the case of

triplet loss only, 7 out of 10 examples are from anchor class, and the rest 3 are from different classes.

In the case of triplet loss with unsupervised domain adaptation, 5 (3 same class, 2 different classes)

out of 10 examples are source examples and rest 5 are target examples. I use SGD optimizer with

the momentum of 0.9. For the source pre-training and semi-supervised finetuning, I use an initial

learning rate of 10−4, and for the unsupervised domain adaptation training, I use an initial learning

rate of 10−6. I reduce the learning rate by 1/10 after 5 epochs.

Table 3.2: Correspondences between classes of the NEC-DRONE dataset and the Kinetics dataset
for the same label set for source and target setting.

Drone dataset class Kinetics dataset classes

walking marching
running jogging, running on treadmill
jumping high jump, jumping into pool
drinking water from a bottle drinking beer
throwing an object throwing axe, throwing ball, throwing discuss, shot put, javelin throw
shaking hands shaking hands
hugging hugging

I use the Kinetics dataset as source dataset and the proposed drone dataset as target dataset. Since

the two datasets do not share exactly the same classes, I subsample the two datasets to obtain

similar classes. I manually choose 13 classes from Kinetics dataset and 7 classes from my drone

dataset which have similar or closely related actions to construct the source and target datasets.

Table 3.2 gives the class correspondences between the classes of drone dataset and the Kinetics

dataset.
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Table 3.3: Action recognition accuracies (%) on the NEC-DRONE dataset (val set) in the same
source and target label sets case. m is the number of target annotated examples per class used
while training. As a reference, the full target supervised I3D performance is 76.7%.

Method m = 0 m = 3 m = 5 m = 10 m = 20

Inst. no DA 12.6 31.1 35.4 43.2 49.5
Inst. DA 16.5 31.6 39.3 41.3 52.4
Vid. DA 13.6 24.3 35.4 53.9 52.9

Vid. & inst. DA 15.1 32.0 41.8 54.9 58.3

3.5.1 Quantitative evaluation on NEC-Drone

Same source and target label sets. I first perform an ablation study of video-based DA and

instance-based DA and their combination with different number m of target annotated examples per

class used during training. I also include the results without any domain adaptation. Since it is an

ablation study, I perform experiments on the val set. The column where m = 0 is the unsupervised

domain adaptation setting while the columns where m > 0 are semi-supervised domain adaptation

settings.

The results show the contribution of different adaptation components. The video-based adaptation

achieves 13.6% in the unsupervised case, the instance-based achieves 16.5%, while the combina-

tion of the two gives 15.1%. The performances rise rapidly as even a small number of annotated ex-

amples from the target domain are provided during training. With only m = 3 examples the perfor-

mance of the combined method increases to 32.0% which further increases to 41.8%,54.9%,58.3%

on m = 5,10,20. The m = 20 performance of 58.3% is still far from the full target supervised per-

formance of 76.7%; in the latter case, the average number of examples per class is 80. I also note

that the combination of the video-based adaptation with the instance-based adaptation is always

greater than either of them indicating complementary information in the two methods.
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Table 3.4: Comparison of methods on the NEC-DRONE dataset (test set) in the same source and
target label sets setting, with m = 5 target annotated examples per class used in semi-supervised
adaptation. The classifier here is the multi-class source classifier.

Method Training data Acc (%) Gain(%)

Fully sup. labeled drone 69.3 N/A
Src. only Kinetics 13.6 0.0
Vid. DA Kinetics + unlabeled drone 27.2 100.0
Inst. DA Kinetics + unlabeled drone 29.4 116.1

Vid. & inst. DA Kinetics + unlabeled drone 32.0 135.2

Table 3.5: Comparison of methods on the NEC-DRONE dataset (test set) in the different source
and target label sets setting, with, m = 0 i.e., unsupervised domain adaptation, and n = 3 target
examples per class used as a support set at testing. The classifier is nearest neighbor in embedding
space.

Method Training data Acc (%) Gain (%)

Fully sup. labeled drone 68.3 N/A
Src. only UCF101 8.2 0.0
Vid. DA UCF101 + unlabeled drone 10.6 29.2
Inst. DA UCF101 + unlabeled drone 14.3 74.3

Vid. & inst. DA UCF101 + unlabeled drone 14.5 76.8

Table 3.4, third column, gives the final test performances of the same label set setting for the

different methods on the NEC-DRONE dataset for m = 5. I see that the video-based adaptation

improves the source only classifier from 13.6% to 27.2%, while the instance-based adaptation

achieves 29.4%. The combination of both gets the best performance of 32.0%. This is still quite

far from the target fully supervised value of 69.3% indicating that still, a large domain gap exists

even after semi-supervised adaptation.
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Table 3.6: Accuracies (%) on the NEC-DRONE dataset (test set) in the different source and target
label sets case. m is the number of target annotated examples per class used for training. In testing
time, we do not use any target examples as a support set. i.e., n = 0 setting.

Method m = 3 m = 5 m = 10 m = 20

Inst. DA 15.9 21.6 31.3 34.6
Vid. DA 12.8 18.7 29.1 34.4

Vid. & inst. DA 18.1 22.5 36.1 39.7

Different source and target label sets. Table 3.5 shows the results of the different methods for

the case of different source and target label sets. Here, I are using no target annotated examples

for training (m = 0). But I are using n = 3 target examples per class at testing as a support set.

The task is harder as I use a larger number of classes (all 16 classes present in the NEC-DRONE

dataset) compared to the same source and target label sets case, while I use only 7 classes due to

the constraint of finding similar classes. The full target supervised accuracy, in this case, is 68.3%

compared to 69.3% of the former.

The trends among the methods are similar to the previous case of the same source and target label

sets. The source only classifier performs very poorly at 8.2%, cf. 6.25% for a random chance

for this 16 class case. The contrast is much higher in this case compared to the previous as (i)

it is a harder setting where completely new classes are predicted, and (ii) in general embedding-

based methods perform lower than cross entropy-based 1-of-C class classifiers. Compared to the

source only classifier, the video-based method improves performance by 29.2% relatively, while

the instance-based method improves by 74.3% relatively. The combination of the two further

improves 76.8% relatively.

Table 3.6 gives the semi-supervised domain adaptation results for the setting when the source and

target label sets are different. I show the results for the different number m of target annotated

examples per class, used during training. The trend is similar to the Table 3.3. With a small
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number of annotated examples used during training, I can improve the performance compared to

the unsupervised domain adaptation (14.5% for m = 0 vs. 39.7% for m = 20).

3.5.2 Ablation study on the losses

Table 3.7 gives the performances with the instance only adaptation for different configurations of

the embedding-based framework in the different source and target label sets setting. If I use neither

the adversarial loss nor the triplet loss and use only the cross entropy loss, the performance is

10.8%. If I add adversarial loss, the performance improves by 25.9%, relatively. If I use triplet loss

only, I get 33.3% relative improvement over using cross entropy loss only. When both the triplet

and adversarial losses are taken into account the performance is improved by 74.0% compared to

cross entropy loss only. These results highlight two things. First, both the adversarial and triplet

losses are important for good performance. Second, triplet loss performs better than cross entropy

loss in the setting where the source and target label sets are different.

Table 3.7: Ablation study on the losses (val set) in the different source and target label sets
setting. Our instance-based domain adaptation method is used for the ablation study.

Adversarial triplet Cross entropy Acc (%) Gain (%)

× × ✓ 10.8 0.0
✓ × ✓ 13.6 25.9
× ✓ × 14.4 33.3
✓ ✓ × 18.8 74.0

3.5.3 Quantitative evaluation on Charades-Ego

I compare the performance with other methods on a publicly available Charades-Ego dataset [130]

in Table 3.8. Please note that Charades-Ego is a paired dataset. Therefore every first person and

third person video is paired with its counterpart. My method does not require paired dataset, thus
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Table 3.8: Comparison of methods on the Charades-Ego dataset (first person test set). Note that
for the semi-supervised domain adaptation, we use x% of the target training data with labels and
use the rest of the target training data without labels for training.

Method Back-bone Pair sup. Train Test % of anno. tgt mAP (%)
[31] ResNet-152 ✓ 3rd + 1st 1st pair sup. 20.0

Src. only I3D × 3rd 1st 0 16.6
UDA I3D × 3rd + 1st 1st 0 17.9

SSDA I3D × 3rd + 1st 1st 10 20.4
SSDA I3D × 3rd + 1st 1st 20 21.9
SSDA I3D × 3rd + 1st 1st 30 22.8
SSDA I3D × 3rd + 1st 1st 40 23.1

Fully sup. I3D × 1st 1st 100 25.8

drink / shake hands walk / drink drink / throw

shake hands / hug walk / jump drink / jump

Figure 3.4: Effect of DA and inst. DA. (Top row) Examples misclassified by the method without
DA but are correctly classified with DA. (Bottom row) Examples that are misclassified with vid.
DA method but are correctly classified with the vid. & inst. DA. Ground truth/incorrect predictions
in green/red.
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Kinetics: ‘marching’ Drone: ‘walking’
Kinetics: ‘jumping into
pool’

Drone: ‘jumping’

Kinetics: ‘throwing’
Drone: ‘throwing an

object’
Kinetics: ‘drinking
beer’

Drone: ‘drinking
water’

Figure 3.5: Cross-domain retrieval results. For each of the 2×2 blocks, the first column shows
a frame of a query video from the Kinetics dataset. The rest of the columns show the top five
retrieved videos from the NEC-DRONE dataset. The correct/incorrect category level retrievals are
highlighted in green/red. Top row is with the video only model without domain adaptation and
the bottom row is the same model, but trained with domain adaptation. We show the class labels
in Kinetics and the corresponding classes from the NEC-DRONE dataset. Best viewed on screen,
with zoom and color.

more general than Actor and Observer [128]. Also note that the reported performance in [128] is

invalid because the authors evaluated on the wrong split2. Thus, I run the authors’ code and report

mAP on the valid test set, which is 20.0%. I obtain 17.9% mAP with my video-based unsupervised

domain adaptation. Using annotated target data improves performance. With only 10% of the la-

beled target data, my semi-supervised domain adaptation achieves 20.4% mAP, outperforming the

Actor and Observer. Both Actor and Observer and my semi-supervised domain adaptation method

use some level of supervision: Actor and Observer uses paired videos for supervision, while my

method uses x% of the target label for supervision. My semi-supervised domain adaptation method

is more general than requiring paired third-person and first-person videos. Therefore, my method

is more suitable for action recognition from novel domains where getting paired video dataset is

difficult e.g., drone-captured videos.

2
https://github.com/gsig/actor-observer/issues/7

https://github.com/gsig/actor-observer/issues/7
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3.5.4 Qualitative evaluation on NEC-Drone

I qualitatively demonstrate the contribution of domain adaptation in Figure 3.4, showing (i) mis-

classified examples when not using domain adaptation but are correctly classified with domain

adaptation (top row), (ii) examples where video only adaptation method fails but combined in-

stance and video-based adaptation method succeeds. I can observe the large domain gaps in terms

of the perspective and the area occupied by the actor in the example frames. While the typical

third-person videos have a direct perspective and almost centered actor as the major content of the

video, the videos in the proposed dataset have challenging perspectives and can also be taken from

far. The proposed method addresses these domain gaps and improves performance.

With my embedding-based method, I also obtain a common space where I can compare videos

from the source and target domains. To demonstrate it, I show the cross-domain action category

level retrieval results in Figure 3.5. Given a query from ‘marching’ action class of the Kinetics (first

column of the top-left block), I show the top nearest neighbors from the NEC-DRONE dataset. In

each block, the first and second row show the retrieval results without and with domain adaptation

respectively. I can observe that the domain adpated model can successfully retrieve ‘walking’ class

videos from the NEC-DRONE dataset despite a huge domain gap. Without domain adaptation, the

retrievals contain more irrelevant videos from other classes.

3.6 Conclusions

I addressed the task of human action recognition from drones in the setting where I do not have

any labeled examples of drone dataset, or I have only a few labeled examples. I further explored a

more challenging setting where the source and the target label sets are different. To deal with this

challenging setting, I proposed to use metric learning loss and unsupervised domain adaptation
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along with instance-level action recognition.

Since a challenging large dataset of drone videos for human action recognition did not exist, I

collected 5250 high-resolution videos from two drones with 16 predefined single person and two-

person actions. I empirically showed that a large domain gap exists between third-person video

datasets and the NEC-DRONE dataset. I will release the dataset upon acceptance to the community.

My work is among the first to show encouraging domain adaptation results on challenging video

domains. However, I also show that I are still far from the fully supervised classifier performances

in the target domain of drone videos, and hence, there is much room for improvement.



Chapter 4

Unsupervised Learning with Target Data,

Part II

4.1 Introduction

Recent computer vision-based methods have reached very high performances in supervised tasks [18,

61, 62, 70, 162] and many real-world applications have been made possible such as image search,

face recognition, automatic video tagging etc. The two main ingredients for success are (i) high

capacity network design with an associated practical learning method, and (ii) large amounts of

annotated data. While the first aspect is scalable, in terms of deployment to multiple novel scenar-

ios, the second aspect becomes the limiting factor. The annotation issue is even more complicated

in video-related tasks, as I need temporal annotation, i.e., I need to specify the start and end of

actions in long videos. Domain adaptation has emerged as an important and popular problem in

the community to address this issue. The applications of domain adaptation have ranged from sim-

ple classification [46, 101, 121, 148, 150, 181] to more complex tasks like semantic segmentation

[20, 26, 67, 146, 151, 182] and object detection [16, 25, 64, 69, 81, 190]. However, the application

on video tasks e.g., action recognition is still limited [21, 29, 71].

I address this less studied but challenging and practically important task of video domain adaptation

for human action recognition. I work in an unsupervised domain adaptation setting. That is, I have

annotated data for the source domain and only unannotated data for the target domain. Examples

45
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clip1: relevant clip2: relevant clip3: relevant

clip1: irrelevant clip2: irrelevant clip3: relevant

time

background: ‘gym’ background: ‘gym’ background: ‘gym’

background: ‘stair’ background:
‘living room’

background:
‘dining room’

Figure 4.1: Motivation. We do video domain adaptation and introduce the following two key com-
ponents: (Left): Clip attention. The top video and the lower video have the same action punching.
However, the lower video has only one relevant punching clip, while the top video has three rele-
vant punching clips. Our proposed attention suppresses features from irrelevant clips, improving
the feature alignment across domains. (Right): Clip order prediction. The top and bottom videos
are from different domains, but all capture the action fencing. However, the backgrounds are differ-
ent: the top domain has a gym as a background, and the lower domain has a dining room or a living
room or a stair as a background. Predicting the order of clip encourages the model to focus more
on the humans, not the background, as the background is uninformative for predicting temporal
order. Best viewed with zoom and color.

domains that I use in experiments include (human) actions from movies, unconstrained actions

from sports videos, YouTube videos, and even videos taken from drones.

I exploit two insights related to the problem and propose two novel adaptation components inspired

by them. First, I note that the existing domain adaptation methods, when applied directly to the

video adaptation task, sample frames or clips [21, 71], depending on whether the video encoding

is based on a 2D network, e.g., temporal relation network [186] or a 3D network, e.g., C3D [144].

I sample clips (or frames) and then average the final outputs from multiple clips at test time, fol-

lowing the video classification networks they are built upon. Performing domain adaptation by

aligning features for all sampled clips is suboptimal, as a lot of network capacity is wasted on

aligning clips that are not crucial for the task. In the worst case, it can even be detrimental if a

large number of unimportant clips dominate the learning loss and adversely affect the alignment

of important clips. For example, in Figure 4.1 left, both the top video from one domain and the

bottom video from another domain have the same action, punching. However, the bottom video
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contains a lot of clips irrelevant to punching. Aligning features from those irrelevant clips would

not improve the target performance much.

Second, this clip-wise training method is likely to exploit correlations in the scene context for

discriminating the action classes [28, 95, 96], e.g., in a formal sports-oriented dataset fencing

might happen in a gym only as shown in the top right three videos of Figure 4.1. However, in the

domain adaptation setting, the target domain might have vastly different scene contexts, e.g., the

same fencing might happen in a living room or dining room, as shown in the bottom right three

videos of Figure 4.1. When the source model uses the correlated gym information to predict a

fencing action, it may perform poorly on the same class in the target domain, which does not have

a gym scene. Similar scene context corruption issues have been identified for transfer learning, and

few works have addressed the problem of debiasing the representations explicitly [28, 164].

Based on the above insights, I propose Shuffle and Attend: Video domain Adaptation (SAVA)

with two novel components. First, I propose to identify and align important (which I define as

discriminative) clips in source and target videos via an attention mechanism. The attention mecha-

nism leads to the suppression of temporal background clips, which helps us focus on aligning only

the important clips. Such attention is learned jointly for video-level adaptation and classification.

I estimate the clip’s importance by employing an auxiliary network and derive the video feature as

the weighted combination of the identified important clip features.

Second, I propose to learn spatial-background invariant human action representations by employ-

ing a self-supervised clip order prediction task. While there could be some correlation between the

scene context/background and the action class, e.g., soccer field for ‘kicking the ball’ action, the

scene context is not sufficient for predicting the temporal clip order. In contrast, the actual human

actions are indicative of the temporal order, e.g., for ‘kicking the ball’ action the clip order follows

roughly the semantics of ‘approaching the ball’, ‘swinging the leg’ and ‘kicking’; if I shuffle the

clips, the actual human action representation would be able to recover the correct order, but the
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scene context based representation would be likely to fail.

Thus using the clip order prediction based loss helps us counter the scene context corruption in

the action representations and improves adaptation performance. I employ the self-supervised clip

order prediction task for both source and target. As this auxiliary task is self-supervised, it does

not require any annotation (which I do not have for target videos).

I provide extensive empirical evaluations to demonstrate the benefits of the proposed method on

three challenging video domain adaptation benchmark settings. I also give qualitative results to

highlight the benefits of my system.

In summary, my contributions are as follows.

• I propose to learn to align important (discriminative) clips to achieve improved representa-

tion for the target domain.

• I propose to employ a self-supervised task which encourages a model to focus more on actual

action and suppresses the scene context information, to learn representations more robust to

domain shifts. The self-supervised task does not require extra annotations.

• I obtain state-of-the-art results on the HMDB to UCF adaptation benchmark, and Kinetics

to NEC-Drone benchmarks.

4.2 Related Work

Action recognition. Action recognition using deep neural networks has shown quick progress

recently, starting from two-stream networks [133] to 3D [18, 144, 162] or 2D and 1D separable

CNNs [145, 170] have performed very well on the task. More recent advances in action recog-

nition model long-term temporal contexts [43, 162]. However, most models still rely on target
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supervised data when finetuning on target datasets. In contrast, I are interested in unsupervised

domain adaptation, where I do not have access to target labels during training.

Unsupervised domain adaptation for images. Based on adversarial learning, domain adaptation

methods have been proposed for image classification [46, 101, 121, 148, 150, 181], object detec-

tion [16, 25, 64, 69, 81, 190], semantic segmentation [20, 26, 67, 146, 151, 182], and low-level

vision tasks [116]. I also build upon adversarial learning. However, I work with videos and not

still images.

Unsupervised domain adaptation for videos. Unlike image-related tasks, there are only a few

works on video domain adaptation [21, 29, 71]. I also use the basic adversarial learning framework

but improve upon it by adding auxiliary tasks that depend on the temporal order in videos, (i) to

encourage suppression of spatial-background, and (ii) to focus on important clips in the videos to

align.

Self-supervision. Image based self-supervised methods work with spatial context, e.g., by solving

jigsaw puzzle [108], image inpainting [111], image colorization [89], and image rotation [51] to

learn more generalizable image representation. In contrast, video based self-supervised methods

exploit temporal context, e.g., by order verification [102], frame sorting [92], and clip sorting [171].

Recent video domain adaptation methods employ self-supervised domain sequence prediction [22],

or self-supervised RGB/flow modality correspondence prediction [107].

I make a connection between the self-supervised task of clip order prediction [171] and learning

a robust spatial-background decoupled representation for action recognition. I hypothesize (see

Section 4.1) that, in combination with adversarial domain adaptation loss, this leads to suppression

of domain correlated background, and simultaneous enhancement of the task correlated human

part in the final representation leading to better domain adaptation performance.

Attention. There are numerous methods employing attention model for image [48, 72] and
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video tasks [45, 52, 78, 84, 109, 131, 156, 172]. The most closely related work is the that by

Chen et al. [21]. While both the proposed method and Chen et al. [21] are based on attention, the

main difference is in what they attend to. Chen et al. [21] attends to temporal relation features

(proposed by Zhou et al. [186]) with larger domain gaps. In contrast, my proposed method attends

to discriminative clip features. The clips in the same video may have different discriminative con-

tent, e.g., leg swinging (more discriminative) vs. background clips (less so) in a video of ‘kicking a

ball’ class. The proposed method attends to more discriminative clips and focuses on aligning them.

Chen et al. [21] samples 2 ∼ 5 frames relation features and attends to the ones with a larger domain

gap measured by the entropy of the domain classifiers. However, the relation feature with a larger

domain gap might come from frames irrelevant to the action, aligning them would be suboptimal.

The proposed method addresses this problem. In another closely related work Pan et al. [109]

temporally align the source and target features using temporal co-attention and match their distri-

butions. In contrast, the proposed method argues that human-focused representation is more robust

to domain shifts, and captures it via self-supervised clip order prediction.

4.3 Method

I work in an unsupervised domain adaptation setting, where (i) I have annotated source data

(xs,ys) ∈ Xs × Ys, where Xs is the set of videos containing human-centered videos and Ys is

the actions label set, and (ii) unannotated target data xt ∈ Xt . The task is to train a model using all

the data, which performs well on the target data. Since the source data distribution, e.g., actions

in movies, is expected to be very different from the target data distribution, e.g., actions in sports

videos, the model trained on the source data only does not work well on target videos. The chal-

lenge is to design methods that can adapt a model to work on the target data, using both annotated

source data and unannotated target data. The method proposed here has, at a high level, three main
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Figure 4.2: Overview of SAVA. We employ standard domain adversarial loss along with two novel
components. The first component is the self-supervised clip order prediction loss. The second is a
clip attention based feature alignment mechanism. We predict attention weights for the uniformly
sampled clips from the videos and construct the video feature as a weighted average of the clip
features. Then we align the source and target video features. Best viewed with zoom and color.

components for adaptation: domain adversarial loss, clip order prediction losses, and an attention

module for generating video features.

Figure 4.2 gives an overview of the proposed method, which I call Shuffle and Attend Video do-

main Adaptation (SAVA). I start with uniformly sampling N clips, with L frames, from an arbitrary

length input video, as shown in the ‘process video block’ in the figure. I encode source and target

clips into clip features by an encoder network Ψ(·); which can be either the same for both or differ-

ent. Here I assume it is the same for the brevity of notation. Then I use the clip features for (i) the

clip order prediction network Ω(·), and (ii) constructing the video-level features using the attention

network Φ(·). The video-level features obtained after the attention network, are then used with (i)

linear action classifier, for source videos only, and (ii) domain classifier, for both source and target

videos, as shown in the left of the figure.

In total, there are three types of losses that I optimize, (i) domain adversarial loss, (ii) clip order

prediction loss for both source and target, and (iii) classification loss for source only. The clip order

prediction loss works with clip level features, while the other two work on video-level features. As

discussed in Section 4.1, the clip order prediction loss helps a model to learn a representation
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that is less reliant on correlated source data background. The attention network gives us the final

video feature by focusing on important clips. The domain adversarial loss helps a model to align

video-level features between source and target videos. All these are jointly learned and hence

lead to a trained system that gives aligned representations and achieves higher action classification

performance than the baselines. I now describe each of my proposed components individually in

detail in the following subsections.

4.3.1 Clip order prediction

As shown on Figure 4.1 (right), the source videos of the same class may have correlations with

similar background context [95], and the target videos of the same class might have a background

which is vastly different from the source background. While the source model might benefit from

learning representation, which is partially dependent on the correlated background, this would lead

to poor target classification. To address this problem, I propose to employ clip order prediction

(COP) to enable better generalization of the representation. COP would not be very accurate if

a model focuses on the background as the background might not change significantly over time.

However, the temporal evolution of the clip depends more on the humans performing actions, and

possibly the objects. Thus, if I employ the COP, the representation would focus more on the

relevant humans and objects, while relying less on the background.

I build my COP module upon the work by Xu et al. [171]. I show the illustration of the COP

network Ω in Figure 4.3. I incorporate an auxiliary network, taking clip features as input, to

predict the correct order of shuffled clips of an input video. I sample M clips, with L frames

each, from an input video and shuffle them. The task of the module is to predict the order of the

shuffled clips. I formulate the COP task as a classification task with M! classes, corresponding to

all permutation tuples of the clips, and consider the correct order tuple as the ground truth class. I
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concatenate clip features pairwise and pass them to a fully connected layer with ReLU activation

followed by a dropout layer. Then I concatenate all of the output features and use a final linear

classifier to predict the order of the input clips. Since this is a self-supervised task and requires

no extra annotation, I can use the task for the videos from source, target, or both; I evaluate this

empirically in Section 4.4.3.

4.3.2 Clip-attention based video-level features
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Figure 4.3: Clip order prediction network Ω (the layers
after Ψ).

As shown in the left side of Fig-

ure 4.1, all clips are not equally im-

portant (discriminative or relevant)

for predicting the action. Aligning

the irrelevant clip features is subopti-

mal, and it might even degrade per-

formance if they dominate the loss

cf. the important clips. Focusing on and aligning the important clips would lead to better adap-

tation and classification performance. To achieve such focus on important clips, I propose a clip

attention module. The attention module takes N number of clip features as inputs, and outputs N

softmax scores indicating the importance of each of them. The final video-level feature is obtained

by the weighted average of the clip features. Formally, given x1, . . . ,xN as the N clips from an

input video x, I obtain the video-level feature xv as

w = Φ(Ψ(x1), . . . ,Ψ(xN)), xv = xi(w,Ψ(x1), . . . ,Ψ(xN)) =
N

∑
i=1

wiΨ(xi), (4.1)

where, xi(·) is the weighted average function.

The attention module Φ(·) is a network that takes N clip features with D dimension as an input. It
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outputs the importance vector w ∈ RN , which is used for weighted averaging to obtain the video-

level feature. Thus, I can train the model end-to-end with the full domain adaptation system.

There can be multiple valid choices for the architecture of the attention module, e.g., a standard

feed-forward network which takes concatenation of the clip features as input, or a recurrent net-

work that consumes the clip features one by one. I explore two specific choices in an ablation

experiment in Section 4.4.3, (i) Multi Layer Perceptron (MLP) similar to Kar et al. [78], and (ii)

Gated Recurrent Units (GRU).

4.3.3 Training

I pre-train the attention module with standard binary cross-entropy loss, where I get the ground

truth attention vector as follows. The ground truth label is 1 if the clip is correctly classified by the

baseline clip-based classification network, and has confidence higher than a threshold cth, and 0

otherwise. The pre-training makes the attention module to start from good local optima, mimicking

the baseline classifier. Once pre-trained, the attention module can then either be fixed or can be

trained end-to-end with the rest of the network. Please note that I train the attention module only

on the source dataset as the training requires the ground truth action labels.

For the feature distribution alignment, I follow the well-known adversarial domain adaptation

framework of ADDA [150]. I define my losses as,

LCE =−E(xs,ys)∼(Xs,Ys)

K

∑
k=1

[ys,k log fC(xv
s)],

LADV fD
=−Exs∼Xs[log fD(xv

s)]−Ext∼Xt [log(1− fD(xv
t )],

LADVψt
=−Ext∼Xt [log fD(xv

t )], (4.2)

where fC is the linear source classifier and fD is the domain classifier. The video feature xv =
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xi(w,Ψ(x1) . . . ,Ψ(xN)) is the weighted average of clip level features, with weights w=Φ(Ψ(x1), . . . ,Ψ(xN))

obtained from the attention module. Then my optimization objective is as follows,

θ ∗
s ,θ ∗

fC ,θ
∗
Φ = argmin

θs,θ fC

LCE,θΦ,θ
∗
fD = argmin

θ fD

LADV fD
,θ ∗

t = argmin
θt

LADVψt
, (4.3)

where θs is the parameter of the source encoder Ψs(·), θ fC is the parameter of the source classifier

fC(·), θt is the parameter of the target encoder Ψt(·), and θ fD is the parameter of the domain

classifier fD(·).

I optimize this objective function in a stage-wise fashion [150]. I first optimize the source cross-

entropy loss LCE over the source parameters θs and θ fC with the annotated source data. Then

I freeze source model parameters θs and θ fC , and optimize the domain classification loss LADV fD

over the domain classifier parameter θ fD , and the inverted GAN loss LADVψt
over the target encoder

parameter θt with both the labeled source and the unlabeled target data.

Clip order prediction. I define the COP loss as follows.

LCOP =−E(x,y)∼(X,Y)

M!

∑
k=1

[yk log fO(ϕ)]. (4.4)

Here, fO is the linear classification function for the COP, ϕ = Ω(Φ(x1), ...,Φ(xM)) is the ReLU

activation of the MLP which takes M clip features as input. I can employ the LCOP for both source

and target. I optimize the loss LCOP over the source encoder parameter θs, target encoder parameter

θt , COP MLP parameter θΩ, and clip order cliassifier parameter θ fO .

4.3.4 Inference

At inference time, I remove the domain discriminator and clip order prediction network. I divide

the input video into N clips and extract clip features. These features are then weight averaged with
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weights obtained using the attention network. The action classifier predicts the action using the

video-level feature.

4.4 Experimental Results

4.4.1 Datasets

I show results on the publicly available benchmark based on the UCF [140] and HMDB [86]

datasets. I further show the result in a more challenging setting where the source dataset is part

of the Kinetics dataset [18], and the target dataset is drone-captured action dataset [29]. In the

following, the direction of the arrow indicates the source (arrow start) to target (arrowhead).

UCF↔HMDB. Chen et al. [21] released the UCF-HMDB dataset for studying video domain adap-

tation. This dataset has 3,209 videos with 12 action classes. All the videos come from the original

UCF [140] and HMDB [86] datasets. They subsampled overlapping 12 classes out of 101/51

classes from the UCF/HMDB, respectively. There are two settings of interest, UCF → HMDB,

and the other is HMDB → UCF. I show the performance of my method in both of the two settings.

I use the official split provided by the authors [21].

Kinetics→NEC-Drone. I also test my method on a more challenging target dataset captured by

drones [29]. The dataset contains 5K videos with 16 classes in total, while the domain adaptation

subset used contains 994 videos from 7 classes, which overlap with Kinetics dataset. I use the

official train/val/test split provided by Choi et al.[29]. I conduct domain adaptation experiments

with Kinetics→NEC-Drone setting, which is more challenging than UCF↔HMDB as there is a

more significant domain gap between source and target domains.

Summary of the datasets I present the summary of the datasets used in this work in Table 4.1.
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Table 4.1: Video domain adaptation datasets summary.

UCF HMDB Kinetics NEC-Drone

Length (sec.) 1-33 1-33 1-10 1-22

Spatial resolution 320×240 varies × 240 varies 1920×1080
Frame rate 25 30 varies 30

# of classes 12 12 7 7

# of training videos 1,438 840 9,955 560
# of validation videos 571 360 742 206
# of test videos - - - 228

# of training frames 276,148 84,883 2,415,462 75,901
# of validation frames 107,223 34,023 181,878 29,224
# of test frames - - - 29,742

Domain gap UCF→HMDB: 14.7%p
Kinetics→Drone: 64.5%p

HMDB→UCF: 8.0%p

In addition to the other information, I add a domain gap row between datasets by measuring clas-

sification performance difference between the supervised source only I3D (lower bound) and the

supervised target I3D (upper bound) in the last row of Table 4.1. Kinetics→Drone has a domain

gap of 64.5% while UCF→HMDB has 14.7%p and HMDB→UCF has 8.0%p. The domain gap

difference suggests that Kinetics→Drone is a more challenging setting than UCF→HMDB and

HMDB→UCF.

In all three settings, I report top-1 accuracy on the target dataset and compare it to other methods.

4.4.2 Implementation details

I implement my method with the PyTorch library. I use the I3D [18] network as my clip feature

encoder architecture for both source and target. The source and target encoders are different from

each other and do not share parameters. Both are initialized with the Kinetics pre-trained model

weights and then trained further as appropriate. Such pre-training on a large dataset is common
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in domain adaptation, e.g. for images (ImageNet) [25, 46, 146, 150] and videos (Sports-1M [71],

Kinetics [22, 107]). The input to the clip feature encoder is a 3 channels × 16 frames × 224×224

pixels clip. I set the number of clips per video to N = 4 via validation. During testing, I sample

the same N = 4 number of clips. COP module is a 2-layer MLP with 512 hidden units. I sample

M = 3 clips per video for the COP task by following Xu [171].

By using attention, I compute the weighted average of the clip-level softmax score as my final

video-level softmax score. I evaluate two types of networks for the attention module. One is 4-

layer MLP with 1024 hidden units in each layer, and the other is a GRU [27] with 1024 hidden

units. I found GRU to be better in two out of the three cases (Section 4.4.3), so I report all results

with GRU. I set the attention module’s confidence threshold cth as 0.96 for the UCF and HMDB

and 0.8 for Kinetics by validation on the source dataset. I use 4-layer MLP with 4096 hidden units

in each layer as my domain classifier.

I set the batch size to 72. The learning rate starts from 0.01, and I divide the learning rate by 10

after two epochs and ten epochs. I train models for 40 epochs. I set the weight decay to 10−7. I

use stochastic gradient descent with momentum 0.9 as my optimizer.

I follow the ‘pre-train then adapt’ training procedure similar to previous work [150]. (i) I train the

feature extractor Ψ(·) with the COP loss (4.4). I train my feature extractor Ψ(·) on both source

and target datasets as I do not require any labels. (ii) Given the trained feature extractor Ψ(·), I

further train it on the labeled source and unlabeled target datasets with a domain classifier fD(·)

attached. I also train the attention module Φ(·) on the labeled source dataset, given the trained

feature extractor Ψ(·) from step 1. (iii) Given the feature extractor Ψ(·) and the attention module

Φ(·), I train my full model with the labeled source dataset and unlabeled target dataset.

Attention module. There can be multiple valid choices for the architecture of the attention module

Φ(·), e.g., a standard feed-forward network which takes concatenation of the clip features as input,
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Figure 4.4: Implementations of clip attention network Φ. Best viewed with zoom and color.

or a recurrent network that consumes the clip features one by one. I explore two specific choices:

(1) MLP and (2) gated recurrent unit (GRU) network, as shown in Figure 4.4. Let us assume the

number of clips per video N = 4 for brevity. The MLP-based attention module takes four clips as

input. Then I concatenate the four clips (temporally ordered as shown in Figure 4.4 (a)) and pass

it through 4 fully connected layers. The four fully connected layers consist of 3 layers with 1024

hidden units each, and four units in the final fully connected layer. The output of the MLP is the

length-4 vector indicating that which clip is more important (discriminative) and which clip is less

important. The GRU-based attention module also takes four clips as input. Then I pass each clip

in temporal order to the GRU with 1024 hidden units, as shown in Figure 4.4 (b). I pass the output

feature of GRU to a fully connected layer to get the length-4 vector indicating that which clip is

more important and which clip is less important.

Baselines. I implement competitive baseline video domain adaptation methods by extending the

two state-of-the-art image-based domain adaptation methods DANN [46], and ADDA [150] as

shown in Figure 4.5. The major differences between DANN and ADDA are two-fold: (1) The
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DANN method shares the feature backbone parameters between source and target encoders. The

ADDA method, on the other hand, does not share the network parameters. (2) The DANN method

uses a gradient reversal layer or inverted GAN loss for adversarial training of domain classifiers. I

extend DANN and ADDA by replacing the feature vector input to the domain classifier from image

feature to clip feature. I sample a L = 16-frames long clip from each video and pass it through a

clip feature encoder (e.g., I3D [18] in this work). I feed the clip features from source and target

videos to the domain classifier.

I3D-based TA3N. The original TA3N builds upon the TRN using the 2D ResNet-101 [62] feature

backbone. I replace the 2D ResNet-101 backbone with the I3D backbone. Given a video, I densely

slide a temporal window with a temporal stride of 1 to sample 16 frames long clips. For a frame k

in the video, the temporal window consists of frames from k−7 to k+8. I zero-pad the beginning

and the end of the input video. I then extract I3D features by feeding the sliding windows to the

I3D feature backbone. As a result, I obtain a 1,024 dimensional feature vector for every frame. I

then follow the remaining steps as in the original TA3N method.

4.4.3 Ablation study

I perform several ablation experiments to analyze the proposed domain adaptation method. I con-

duct the experiments on more challenging Kinetics→NEC-Drones setting except the attention mod-

ule design choice experiment in Table 4.4, which I performed on the UCF, HMDB, and Kinetics

datasets.

Effect of clip order prediction. Table 4.2 gives the results showing the effect of COP. Here, the

source only is the I3D network trained on the source dataset, which I directly test on the target

dataset without any adaptation. Clip-level domain adaptation (Clip DA) is the baseline where I

randomly sample clips and align features of the clips without any attention. On top of the clip DA,
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Table 4.2: Ablation experiments on the COP loss, on Kinetics→NEC-Drone.

COP on
Method Source Target Top-1 acc (%) ∆

Clip DA + COP ✓ ✓ 28.5 + 11.3
Clip DA + COP ✓ × 25.9 + 8.7
Clip DA + COP × ✓ 22.4 + 5.2
Clip DA only × × 23.7 + 6.5
Supervised source only × × 17.2 reference

Table 4.3: Ablation experiments on the clip attention on Kinetics→NEC-Drone.

Method Align Clip attention Top-1 acc (%)

SAVA (ours) video-level ✓ 31.6
SAVA (ours) w/o. clip attention video-level × 30.3
Clip-level align clip-level × 28.5

I can optionally use the COP losses for either source or target or both.

Table 4.4: Effect of using different attention im-
plementation. We show the attention module ac-
curacy (%) on the Kinetics, UCF, and HMDB
datasets.

Method No. params Kinetics UCF HMDB

MLP 6.3M 72.2 86.1 75.4

GRU 6.3M 78.0 78.9 76.6

The clip DA only (without COP) improves per-

formance over the supervised source only base-

line by 6.5%p. More interestingly, the results

show that using both source and target COP im-

proves performance significantly compared to

the clip DA only baseline by 4.8%p. I also ob-

serve that the source COP is more crucial com-

pared to the target COP. This is because the tar-

get NEC-Drone dataset (i) contains similar background appearance across all videos (a high school

gym), (ii) has a limited number of training videos (∼ 1K), and (iii) has the main activities occur-

ring with small spatial footprint (as the actors are small given the videos were captured by drones).

Thus, applying COP on the NEC-Drone dataset does not lead to improved results. However, ap-

plying COP on the source or both source/target produces large improvements over the baseline.
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Clip attention performance. I evaluate the two different design choices, MLP and GRU, for my

attention module in this experiment. I show the clip attention accuracy on the three source datasets

in Table 4.4. I get the attention accuracy by comparing the ground truth importance label (see Sec-

tion 4.3.3 for the details) and the predicted importance. I compute the clip attention performance

on the three source datasets Kinetics, UCF, and HMDB. Using such curated ground truth ensures

that the attention module starts from good local minima, which is in tune with the base I3D encoder

network.

The GRU shows a higher attention performance in two out of the three cases, while it has a sim-

ilar number of parameters to the MLP-based attention. Thus, I employ the GRU-based attention

module on all experiments in this chapter.

Effect of attention module. I show the effect of the attention module in the overall method

in Table 4.3. Here, all the methods are pre-trained using source and target COP losses turned

on. I train my domain adaptation network with three settings, (i) video-level alignment with clip

attention (my full model), (ii) video-level alignment without clip attention (using temporal average

pooling instead), and finally (iii) clip-level alignment.

The results show that video-level alignment gives an improvement over random clip sampling

alignment, 30.3% vs. 28.5%. My full model with clip attention alignment further improves the

performance to 31.6%, over video-level alignment without attention. The video-level alignment

without attention treats every clip equally. Hence, if there are some non informative clips, e.g., tem-

poral background, equally aligning those clips is a waste of the network capacity. My discrimina-

tive clip attention alignment is more effective in determining more discriminative clips and doing

alignment based on those.
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Table 4.5: Results on UCF↔HMDB.

Method Encoder UCF→HMDB HMDB→UCF

Supervised source only [21] ResNet-101-based TRN 73.1 (71.7) 73.9 (73.9)
TA3N [21] ResNet-101-based TRN 75.3 (78.3) 79.3 (81.8)
Supervised target only [21] ResNet-101-based TRN 90.8 (82.8) 95.6 (94.9)

Supervised source only [21] I3D-based TRN 80.6 88.8
TA3N [21] I3D-based TRN 81.4 90.5
Supervised target only [21] I3D-based TRN 93.1 97.0

TCoN [109] ResNet-101-based TRN 87.2 89.1

Supervised source only I3D 80.3 88.8
SAVA (ours) I3D 82.2 91.2
Supervised target only I3D 95.0 96.8

4.4.4 Comparison with other methods

Methods compared. The methods reported are (i) ‘supervised source only’: the network trained

with supervised source data (a lower bound for adaptation methods), (ii) ‘supervised target only’:

the network trained with supervised target data (an upper bound for the adaptation methods), and

(iii) different unsupervised domain adaptation methods. For the TA3N, I compare with the latest

results obtained by running the public code1 provided by the authors [21] and not the results in

the paper (given in brackets for reference, in Table 4.5). While the original TA3N [21] works with

2D features based temporal relation network (TRN) [186], I go beyond and integrate the TA3N

with stronger I3D [18] based TRN features. This allows a fair comparison with my method when

all other factors (backbone, computational complexity, etc) are similar. For TCoN, I report the

numbers from the paper [109] as code is not publicly available.

For the Kinetics → NEC-Drone setting, I implement video versions of the DANN [46] and ADDA [150],

which align the clip-level I3D [18] features and show the results. I also compare with both unsu-

pervised and semi-supervised methods of Choi et al. [29].

1https://github.com/cmhungsteve/TA3N

https://github.com/cmhungsteve/TA3N
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UCF → HMDB. I compare my method with existing methods in Table 4.5. The first three blocks

contain the results of the method with TRN-based encoder [186]. The fourth block shows the

results of my SAVA with domain adaptation as well as the source only I3D [18] baseline. I also

show the result of fully supervised finetuning of the I3D network on the target dataset as an upper

bound.

SAVA with the I3D-based encoder shows 82.2% top-1 accuracy on the HMDB dataset, in this

setting. SAVA improves the performance of the strong I3D encoder, 80.3%, which in itself obtains

better results than the TRN-based adaptation results, 75.3% with TA3N. My SAVA is closer to

the upper bound (82.2% vs. 95.0%), than the gap between TA3N and its upper bound (75.3%

vs. 90.8%). Furthermore, SAVA outperforms TA3N with I3D-based TRN features, 81.4%.

HMDB → UCF. Table 4.5 gives the comparison of my method with existing methods in this

setting. I achieve state-of-the-art results in this setting while the other trend is similar to the

UCF→HMDB setting. SAVA achieves 91.2% accuracy on the target dataset with domain adap-

tation and without using any target labels. The baseline source only accuracy of the I3D network

is already quite strong cf. the existing best adaptation method, i.e., 88.8% vs. 90.5% for TA3N

with I3D-based TRN features. I improve this to 91.2%. SAVA is quite close to the upper bound

of 96.8%, which strongly supports the proposed method. In contrast, TA3N is still far behind its

upper bound (79.3% vs. 95.6%).

Kinetics → NEC-Drone. This setting is more challenging, as the domain gap is larger, i.e., the

gap between the source only and target finetuned classifiers is 64.5% cf. 14.7% for UCF→HMDB.

Table 4.6 gives the results. The first block uses the TRN with ResNet-101 features, and the second

block uses the TRN with I3D features while the others use I3D features. I observe that similar to

previous cases, SAVA outperforms all methods, e.g., DANN (42% relative), ADDA (33% relative),

TA3N (26.4% relative), TA3N with I3D features (12.4% relative), and Choi et al.(the unsupervised
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Table 4.6: Results on the Kinetics→NEC-Drone.

Method Encoder Target labels used (%) Top-1 acc (%)

Supervised source only [21] ResNet-101-based TRN None 15.8
TA3N [21] ResNet-101-based TRN None 25.0

Supervised source only [21] I3D-based TRN None 15.8
TA3N [21] I3D-based TRN None 28.1

Supervised source only I3D None 17.2
DANN [46] I3D None 22.3
ADDA [150] I3D None 23.7
Choi et al. [29] (on val set) I3D None 15.1
SAVA (ours) I3D None 31.6

Choi et al. [29] I3D 6 32.0
Supervised target only I3D 100 81.7

domain adaptation case). It is very close to the semi-supervised result of Choi et al.(31.6 vs. 32.0),

where they use 5 target labeled examples per class.

While the improvements achieved by SAVA are encouraging in this challenging setting, the gap is

still significant, 31.6% with adaptation vs. 81.7% with the model finetuned with the target labels.

The gap highlights the challenging nature of the dataset, and the large margin for improvement in

the future, for video-based domain adaptation methods.

4.4.5 Qualitative evaluation

Clip order prediction. To better understand the effect of the proposed COP module, I show class

activation maps (CAM) [187] of target videos in Figure 4.6. I compute the CAM of the center (8th)

frame of a 16 frames long clip. I show CAMs from models with and without COP (baseline/ours).

The baseline without COP tends to focus more on the scene context. However, the proposed model

with COP focuses more on the actual human action (typically around the actors). As the model with

COP focuses more on the actual action, it generalizes better to a new domain with a completely
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different scene cf. the model without COP, which is heavily biased by the scene context.

Clip attention. I show the center frames of 4 clips per video with the clip attention module based

selection. The videos demonstrate how the proposed clip attention module focuses more on the

action class relevant clips and less on the irrelevant clips with either highly occluded actors or

mainly background. E.g., in the fencing video in the second row, first and the fourth clips are not

informative as the actor, or the object (sword), is highly occluded or cropped. Thus, aligning the

features from the relevant second and the third clips is encouraged. Similarly, in the golf video

of the first row, the last clip (green background) is irrelevant to the golf action, and my attention

module does not attend to it. However, a model without attention treats all the clips equally.

4.5 Conclusions

I proposed Shuffle and Attend: Video domain Adaptation (SAVA), a novel video domain adap-

tation method with self-supervised clip order prediction and clip attention based feature alignment.

I showed that both of the two components contribute to the performance. I achieved state-of-the-

art performance on the publicly available HMDB→UCF and Kinetics→Drone datasets. I showed

extensive ablation studies to show the impact of different aspects of the method. I also validated

the intuitions for designing the method with qualitative results for both the contributions.
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Figure 4.5: Overview of the DANN and ADDA extended for video. Best viewed with zoom and
color.
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baseline ours baseline ours baseline ours baseline ours

walk fencing walk fencing basketball climbing basketball climbing

walk fencing walk fencing fencing punch push up punch

Figure 4.6: Class activation maps (CAM) on the UCF (first row) and HMDB (second row)
datasets. The actions green are correct predictions, and those in red are incorrect predictions. Here
the baseline is ADDA without COP, and ours is ADDA with COP. Note how the COP encourages
the model to focus more on human action instead of scene context. Best viewed with zoom and
color.

punch (UCF) gol f swing (UCF)

f encing (HMDB) bike riding (HMDB)

Figure 4.7: Attention visualization on center frames of 4 clips from 4 videos. The frames with
green borders are given more importance by our attention module cf. those with red borders. Note
that our attention module can attend to relevant clips where the action is clearly visible, while the
baseline without attention would align all clips equally, even those where the actor is missing or
highly occluded. Best viewed with zoom and color.



Chapter 5

Semi-Supervised Learning with Target Data

5.1 Introduction

Deep neural networks have shown rapid progress in video action recognition [18, 43, 134, 145,

170]. However, these approaches rely on training a model on a massive amount of labeled videos.

For example, the SlowFast networks [43], R(2+1)D [145], I3D [18] are pre-trained on the Kinetics

dataset [80], which contains ∼ 300K manually labeled and temporally trimmed videos. The depen-

dency on large-scale annotated video datasets is not scalable because manual labeling of videos is

expensive, time-consuming, and error-prone. Hence, it is of great interest to develop video action

recognition models that can learn from limited labeled data.

The state-of-the-art video recognition models suffer from a significant performance drop when only

a limited amount of labeled training data is available. For example, an R(2+1)D model achieves

only 19.24% accuracy on the UCF-101 dataset using 5% of the labeled training data, compared to

the 55.67% using the full training set when it is trained from scratch. To improve the performance

in a low labeled data regime, I need to devise methods that can capitalize on both labeled and

unlabeled data during training.

I build upon the state-of-the-art semi-supervised learning algorithm, FixMatch [139], to tackle the

video action recognition problem in the low labeled data regime. FixMatch shows that generating

a one-hot pseudo label from the weakly-augmented example to supervise the strongly-augmented

69
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Figure 5.1: Strong data augmentation for video data. We extensively explore data augmentation
strategy for semi-supervised video representation learning from different perspectives: photomet-
ric, geometric, temporal, and actor/scene.

counterpart is critical to its success. Here, the weak augmentation refers to standard augmentation

methods (e.g., , random scaling, cropping, etc.), while the strong augmentation (e.g., , CTAug-

ment [10], RandAugment [33]) provides stronger and more diverse transformation for the input

data. Enforcing the consistency between the weakly and strongly-augmented example helps the

model learn to capture the invariance better and mitigate the risk of overfitting.

While strong data augmentation in the image domain has been extensively studied [32, 33, 36,

97, 177], data augmentation techniques for videos are relatively under-explored. In this work, I

aim to address a question: “what kind of invariance do I need for semi-supervised video action

recognition?" The answer to this question directly informs us how to design a good (strong) data

augmentation for consistency regularization in the semi-supervised learning framework. In light of

this, I investigate different augmentation strategies to capture various types of visual invariances.

Photometric (color) and geometric (spatial) invariance. Photometric and geometric based augmen-

tations are commonly used in image recognition [139, 169]. I empirically find that applying photo-
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metric and geometric augmentation in a temporally-coherent manner is crucial for semi-supervised

video recognition.

Temporal invariance. I introduce temporal data augmentation operations specifically for video

data, including (1) T-Half for temporal occlusion and (2) T-Drop for speed and temporal occlusion

invariance, (3) T-Reverse for temporal order invariance, and study the effect of the proposed tem-

poral augmentations. More specifically, I randomly discard the first (or last half) of the frames in a

clip in T-Half, while I replace every frame with its previous frame by a random chance in T-Drop.

I reverse the order of the frames in T-Reverse.

Scene invariance. As actions often occur in context (e.g., in a specific scene), training a model

without diverse data leads to an unwanted bias toward a spurious association with the background

scene. I propose ActorCutMix to mitigate such scene biases [28, 95, 96] by copying all humans in

an input video and then pasting them into another input video. With ActorCutMix, I can effectively

augment various background scenes for each action and therefore mitigate scene bias.

I empirically show that all these augmentation techniques individually help improve performance.

With all the augmentations (as shown in Figure 5.1), i.e., , photometric, geometric, temporal aug-

mentations, ActorCutMix, I achieve favorable results in the low labeled data regime on the UCF-

101 [141] and HMDB-51 [85] datasets.

To summarize, I make the following contributions.

• I extensively study the video data augmentation strategies, a relatively under-explored area,

in semi-supervised video action recognition.

• I introduce several temporal data augmentations and a scene augmentation strategy for video

action recognition.

• My introduced strong data augmentation strategies naturally fit into the state-of-the-art holis-
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tic semi-supervised classification framework for video action recognition, leading to a promis-

ing performance in the low-data regime. My source code and pre-trained models will be

made publicly available.

5.2 Related Work

Semi-supervised learning. Semi-supervised learning (SSL) aims to improve the performance

using the abundant unlabeled data, alleviating the need for manual annotations. Most of re-

cent SSL approaches adopt either one of the following two strategies: (1) consistency regular-

ization [87, 88, 103, 123, 143, 169], and (2) entropy minimization [55, 91]. The critical insight of

consistency regularization is that a model should generate consistent predictions for the same (un-

labeled) data undergone different transformations/perturbations. As argued by Grandvalet & Ben-

gio [55], unlabeled data can also be used to encourage a model to have a good separation between

classes. To achieve this goal, one can encourage a model to output confident (low-entropy) predic-

tions for the unlabeled data, which is the core idea of entropy minimization. Pseudo-labeling [91]

is one of the efficient ways to minimize entropy implicitly.

Recently, holistic approaches [10, 11, 139] that combine both SSL strategies have been proposed

to tackle the semi-supervised image classification task effectively. Inspired by the recent success

in semi-supervised image classification, I leverage the state-of-the-art FixMatch framework [139]

and apply it to the video action recognition problem. My focus, however, is not on improving the

algorithmic framework for SSL. Instead, I investigate different types of video data augmentations

for consistency regularization.

The most relevant work to ours is VideoSSL [76], whose focus is to design a semi-supervised frame-

work for video recognition. The VideoSSL method differs from my work in two perspectives. First,
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VideoSSL does not apply strong/weak dual augmentations to capture the video invariance. Second,

VideoSSL uses an additional ImageNet pre-trained model for supervised knowledge distillation.

Data augmentation. A key factor to a successful consistency-based SSL approach is to ap-

ply a set of diverse yet reasonable augmentations for the same unlabeled example. Early ap-

proaches [88, 123] only apply weak augmentations such as random translation and cropping. In

addition to simple geometric transformations, random Gaussian or Dropout noise [4] and adversar-

ial noise [103] have also been proposed for semi-supervised learning, leading to improved perfor-

mance. Recently, learning-based approaches [32, 97] have been proposed to alleviate the require-

ment of manually designing the data transformations. Such a network learns to adjust the data aug-

mentation policy according to the feedback on a held-out (labeled) validation set. Leveraging the

state-of-the-art data augmentation strategies in supervised classification, recent methods [139, 169]

apply strong image space augmentation (e.g., , RandAugment [33]) by cascading standard color

jittering, geometric transformations, and regional dropout [36, 177], achieving state-of-the-art re-

sults. In addition to perturbing the unlabeled image in the pixel space, several approaches [87, 165]

propose to augment the example in the feature space. Most existing works design the data augmen-

tation strategy specifically for images. My focuses on video data augmentation have been less ex-

plored in the literature. This work aims to study data augmentation in semi-supervised video action

recognition from multiple perspectives: photometric, geometric, temporal, and the actor/scene.

Self-supervised learning. Self-supervised methods learn representations by solving pretext tasks

that do not require manual human annotation. For video related tasks, frame sorting [92], clip

order verification [102, 171], speed prediction [9, 39, 155], video-induced visual invariance [147],

future prediction [56, 57] have shown promising results.

More recently, contrastive learning has emerged as a powerful tool for learning visual represen-

tations [23, 24, 60, 113, 126, 168]. In contrastive learning, a model learns representations by
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discriminating instances. Given transformations of input data, these methods encourage the same

instance’s embeddings similar and all the different instances’ embedding dissimilar. Since the self-

supervised learning method can learn representation without human annotations, I could apply it to

the low labeled data scenario, i.e., , semi-supervised learning. In this work, I compare the proposed

method with a few self-supervised video representation methods.

Video recognition models. Recent advances in video recognition (e.g., , two-stream networks [44,

134], 3D CNNs [18, 58, 144, 162], 2D and 1D separable CNNs [145, 170], incorporating long-

term temporal contexts [43, 162, 167]) focus on the fully supervised learning setting, where a large

amount of human-annotated video data, e.g., , Kinetics-400 [80] with 300K labeled videos, is

available. In this work, I focus on the relatively under-explored semi-supervised video recognition

setting, where I have limited labeled videos and a large amount of unlabeled data.

5.3 Method

I organize this section as follows: First, I formulate the semi-supervised classification task in Sec-

tion 5.3.1. I then present the intra-clip data augmentation strategies (photometric, geometric, tem-

poral) in Section 5.3.2. Next, I propose and study ActorCutMix, a cross-clip human-centric data

augmentation operation in Section 5.3.3. Lastly, I show how I combine all these data augmentation

operations to construct the final data augmentation strategy in Section 5.3.4.

5.3.1 Background: semi-supervised classification

Considering a multi-class classification problem, I define X = {(xi,yi)}Nl
i=1 as the labeled set,

where xi is the i-th input data, yi is the corresponding ground truth label, and Nl is the number of

data points within the labeled set. Similarly, I define U = {x j}Nu
j=1 as the unlabeled set, where Nu
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Figure 5.2: Overview. The overall training pipeline consists of a supervised branch and an
unsupervised branch. We use ground truth labels to supervise the supervised branch. We use
pseudo labels generated from weakly-augmented video clips to supervise the strong-augmented
counterpart in the unsupervised branch. Best viewed with zoom and color.

is the number of data in the unlabeled set. Usually, I have a small number of labeled examples

and a large amount of unlabeled data (i.e., , Nl << Nu). I use fθ to denote a classification model

with trainable parameters θ . Lastly, I use α(·) to represent the weak (standard) augmentation

(e.g., , random horizontal flip, random scaling, random crop), and β (·) to represent the strong data

augmentation strategies (my focus in this chapter).

I show an overview of the semi-supervised classification pipeline in Figure 5.2. I denote an input

video clip consists of L frames as xi from now throughout the chapter. Given a mini-batch of

labeled data {(xi,yi)}Bl
i=1, I minimize the standard cross-entropy loss Ll defined as

Ll =− 1
Bl

Bl

∑
i=1

yi log fθ (α(xi)). (5.1)

For a mini-batch of unlabeled data {x j}Bu
j=1, I enforce the prediction consistency as suggested by
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Figure 5.3: Temporal augmentations. We introduce three different temporal transformations:
T-Half, T-Drop, and T-Reverse to achieve temporal occlusion, speed, and order invariances. Note
that the blue number of each frame indicates the frame index within the corresponding video clip.
We construct the final temporal augmentation by randomly selecting one of these transformed clips
(including the original input) for each input video clip. Best viewed with zoom and color.

Sohn et al. [139]. More specifically, I generate pseudo-label ŷ for the unlabeled data by confidence

thresholding

C = {x j|max fθ (α(x j))≥ τ}, (5.2)

where τ denotes a pre-defined threshold, and C is the confident example set for the current mini-

batch. I then convert the confident model predictions fθ (α(x j)) to one-hot labels ŷ j by taking

argmax operation. I optimize a cross-entropy loss Lu on the confident set of unlabeled examples.

Lu =− 1
Bu

∑
x j∈C

ŷ j log fθ (β (x j)). (5.3)

My overall training objective is the summation of the two loss functions.

L = Ll +λuLu. (5.4)

I set λu = 1 as I empirically find it leads to good results.



5.3. METHOD 77

5.3.2 Intra-clip data augmentation

Temporally-coherent photometric and geometric augmentation. Photometric (color) and ge-

ometric (spatial) augmentation strategies are widely used in supervised [33], self-supervised [23,

60], and semi-supervised [139] image classification tasks. Similar to image recognition, it is natu-

ral to apply photometric and geometric transformations to a video. However, as I validated with an

ablation study in Section 5.4.3, individually applying state-of-the-art photometric and geometric

augmentation (e.g., , RandAugment [33]) on each video frame leads to sub-optimal performance. I

conjecture that the random transformation for each frame breaks the temporal coherency of a video

clip. As a result, the video recognition model may not extract motion cues from these augmented

video clips. I instead apply exactly the same photometric and geometric transformations for ev-

ery frame to maintain the temporal consistency within a sampled video clip. More specifically,

I sample two basic operations from a pool of photometric and geometric transformations (as in

FixMatch [139]) and then apply them sequentially for each video clip.

Temporal augmentation. In addition to color space and spatial dimension, the temporal dimen-

sion is also essential for video data. I introduce three different types of temporal data augmentation

operations: (1) T-Half, (2) T-Drop, and (3) T-Reverse, and study the effect of them. I illustrate the

three temporal augmentations in Figure 5.3. First, to avoid a video recognition model focusing too

much on particular frames instead of understanding the temporal context, I randomly drop some

frames within a video clip. Randomly dropping frames is conceptually similar to the Cutout [36]

operations in the spatial dimension. I implement this temporal version of Cutout in two ways: 1)

I randomly discard the second half of a video clip and fill in the empty slots with the first half,

which I refer to as T-Half; 2) For each frame in a video clip, I randomly replace it with its previous

frame with a probability of p = 0.5, which I refer to as T-Drop. In addition to dropping part of

the information, the latter also simulates speeding-up (frame indexes: 23 → 13) and slowing-down
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Figure 5.4: ActorCutMix scene augmentation. We introduce an actor/scene augmentation
method to achieve scene invariance in the semi-supervised action recognition task. We transform
two video clips by swapping the background regions of the video clips. We generate human/back-
ground masks by running an off-the-shelf human detector. We smooth labels in order to mitigate
data corruption due to the missing/false-positive human detections. Best viewed with zoom and
color.

(frame indexes: 12 → 11) within a video clip, encoding the speed invariance. Second, I argue

that many actions have temporal order invariance. Thus, a video recognition model should clas-

sify these video clips no matter in the original order or reversely. Inspired by this, I introduce the

third temporal augmentation operation, transforming a video clip by reversing its temporal order,

referred to as T-Reverse. As validated in the ablation study (Section 5.4.3), all three operations

are beneficial for SSL video action recognition. Thus, I include all these three operations to form

my final temporal augmentation. Since these operations are exclusive to each other, I put them in

an operation pool (including the identity operation) and randomly sample one for each input video

clip.
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5.3.3 Cross-clip data augmentation

ActorCutMix. It is shown that there are severe scene representation biases in the popular action

recognition datasets such as UCF-101, HMDB-51, Kinetics-400, Charades, ActivityNet [28, 95,

96]. Models trained on a biased dataset may capture unwanted bias. A biased model is likely to fail

when tested for the new data with a different distribution than the training distribution. In this work,

to address the scene bias problem, I propose a new human-centric video data augmentation method,

ActorCutMix. The operation of the proposed ActorCutMix is similar to that of CutMix [177].

However, my method differs in motivation. Specifically, the goal of CutMix [177] is to achieve

to occlusion robustness. In contrast, my ActorCutMix aims to improve scene invariance (scene

debiasing).

As shown in Figure 5.4, ActorCutMix generates new training examples (x̃A, ỹA), (x̃B, ỹB) by swap-

ping the background regions in the two training examples (xA, ŷA), and (xB, ŷB) in a mini-batch. I

defined the swapping operation as follows:

x̃A = mA ⊙ xA +(1−mA)⊙ (1−mB)⊙ xB,

ỹA = λ ŷA +(1−λ )ŷB. (5.5)

Here, m is the binary masks for a video clip, with a value of 1 for human regions and 0 for the

background regions, ⊙ represents the element-wise multiplication, and λ is a combination ratio for

label smoothing. (x̃B, ỹB) can be generated similarly. I generate the human mask m by running an

off-the-shelf human detection algorithm [61], without fine-tuning on the dataset used in this work.

I run the human detector on the datasets offline and store the detection results. I load the cached

human bounding boxes during training. I demonstrate that the proposed ActorCutMix significantly

improves the semi-supervised action recognition performance in Section 5.4.
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Label smoothing. A straightforward way to select the combination ratio λ in Eq. (5.5), is to set

it according to the ratio of the foreground mask. Assume xA ∈RT×H×W×3, then I can compute the

foreground ratio

γ =
∑mA

T HW
, (5.6)

and then use γ as the combination ratio λ as in CutMix. I emphasize that the ActorCutMix and

CutMix have different purposes of label smoothing. The purpose of label smoothing in CutMix is

to provide multiple labels for a single training image, as a training image consists of information

from two different classes (e.g., , a dog and a cat). In contrast, I smooth labels in ActorCutMix

in order to mitigate data corruption due to the missing/false-positive human detections. Ideally,

suppose I have a perfect human detector. In this case, the pseudo label of the video clip xA is ỹA =

ŷA. In other words, I aim to recognize the human action instead of the background scene. However,

due to missing/false-positive human detections, an augmented video clip could potentially contain

humans performing different actions from different clips. Therefore, to prevent model confusion,

I apply label smoothing with a higher weight for the label of the (potentially corrupted) human

action ŷA and a lower weight for the label of the (potentially corrupted) background scene ŷB, via

the following scaling function:

λ =−(γ −1)α +1,γ ∈ [0,1] (5.7)

where I empirically find α = 4 yields good results.

5.3.4 Combining different data augmentations

Algorithm 1 outlines the proposed (strong) data augmentation strategy.

Combining photometric-geometric and temporal augmentations. I combine the photometric-
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Algorithm 1: Strong video data augmentation
Input :A mini-batch of unlabeled video clips X and the corresponding human mask M

1 Draw a sample p from uniform distribution U(0,1)
2 If p > 0.5
3 Reverse the order of the batch dimension to get X ′ and M′

4 X̃ , X̃ ′ = ActorCutMix(X ,X ′,M,M′)
5 else
6 for each video clip x in X
7 Sample op1, op2 from photometric-geometric op pool, op3 from temporal op pool
8 x̃ = PhotometricGeometricAug(x,op1,op2)
9 x̃ = TemporalAug(x̃,op3)

10 end for
11 end if

Return :Strongly-augmented video clips X̃

geometric and temporal augmentations by cascading both of them. This can be regarded as a

spatial-temporal counterpart of RandAug [33]: Randomly sample two operations from photomet-

ric and geometric augmentation strategies, and then sample one operation from the temporal aug-

mentation strategies. I refer this combined augmentation as intra-clip augmentation.

Combining intra-clip and cross-clip augmentations. Now I have both intra-clip augmentation

(photometric-geometric-temporal) and cross-clip augmentation (ActorCutMix). To combine these

two very different augmentation strategies, I propose randomly applying either one of them for

each mini-batch. I validate the effectiveness of this combination in Section 5.4.3.

5.4 Experimental Results

5.4.1 Experimental setup

Dataset. I evaluate the proposed method on the public action recognition benchmarks: UCF-

101 [141] and HMDB-51 [85]. UCF-101 consists of 13,320 videos with 101 action classes.
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HMDB-51 consists of 6,766 videos with 51 action classes. For semi-supervised learning evalu-

ation, I split the datasets following Jing et al. [76].

Evaluation metrics. For all the datasets I evaluate, I report top-1 accuracy and compare it to

other methods.

Compared methods. As a first baseline, I train a model with only the labeled data. I call

it a supervised baseline. I compare my method with VideoSSL [76] and several semi-supervised

methods adapted to video (i.e., , PseudoLabel [91], MeanTeacher [143], S4L [179]). With the same

amount of data, one can also pre-train the model using all the available data (using self-supervised

learning) and then fine-tune the model with the small amount of labeled data. Thus, I establish

another type of baselines by fine-tuning the self-supervised video pre-trained models on the labeled

data. I choose two recent state-of-the-art self-supervised methods for video representation, i.e., ,

VCOP [171] and DPC [56].

Implementation details. I implement my method on top of the publicly available mmaction2

codebase. 1 Unless specified, I use the R(2+1)D model [145] with ResNet-34 [62] as the feature

extraction backbone. To better understand the effect of my augmentation techniques, I initialize the

model with random weights (as opposed to using models with supervised pre-training on ImageNet

or Kinetics). I randomly sample eight frames with eight-frame intervals from a video to construct

a clip. For the supervised learning baseline, I use a batch size of 16 clips for each GPU. I use a

mini-batch of five clips from labeled data and five clips from unlabeled data for each GPU for my

semi-supervised learning method. I train my models using 8 RTX 2080 Ti GPUs.

I use SGD with momentum as my optimizer, with an initial learning rate of 0.2, a momentum value

of 0.9, and a weight decay value of 1e−4. I use the cosine annealing policy for learning rate decay.

I also adopt the synchronous batch normalization across 8 GPUs. For the UCF-101 dataset [141],

1https://github.com/open-mmlab/mmaction2

https://github.com/open-mmlab/mmaction2
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Figure 5.5: Improvement over the supervised baseline.

I train my method for 360 epochs (w.r.t unlabeled data). For the HMDB-51 dataset [85], I train

my method for 600 epochs (w.r.t unlabeled data). I list the values of the other hyper-parameters as

below.

Table 5.1: Hyper-parameters.

Symbol Description Value

τ Pseudo label threshold (Eq. (2)) 0.95
λu Unlabeled loss weight (Eq. (4)) 1.0
α Scaling factor for label smoothing (Eq. (7)) 4.0

5.4.2 Improvement over supervised baseline

I validate my method’s effectiveness by comparing it with the supervised baseline trained only on

the limited labeled video data. As shown in Figure 5.5, my method consistently outperforms the su-

pervised baseline by a large margin across different label ratios in both datasets. The performance

improvement highlights the effectiveness of leveraging unlabeled video data.
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Table 5.2: Ablation study. Please refer to the main text for detailed descriptions.

(a) Temporally-coherent
color-spatial aug.

(b) Temporal augmentation (c) ActorCutMix augmentation

Strategy Top-1 acc.

Supervised baseline 38.91

Per-frame 44.17
Temporally-coherent 53.37

Strategy Top-1 acc.

T-Half 42.77
T-Drop 43.14
T-Reverse 43.40

TemporalAll 44.07

Strategy Top-1 acc.

Supervised baseline 38.91

w/o label smoothing 42.82
w/ label smoothing 45.28

(d) Combining photo.-geo. and temporal
augmentations

(e) Combining intra- and inter-clip
augmentations

Strategy Top-1 acc.

Supervised baseline 38.91

Randomly sample one 53.37
Cascaded 54.48

Strategy Top-1 acc.

Supervised baseline 38.91

Cascaded 50.89
Randomly sample one 56.73

5.4.3 Ablation study

To answer the question, “what kind of invariance do I need in the semi-supervised video action

recognition problem?”, I conduct ablation experiments on the 20% labeled data split of the UCF-

101 dataset [141]. In the following, I validate each design choice of the proposed framework.

Temporally-coherent photometric-geometric augmentation. I first conduct an ablation exper-

iment to study the necessity of applying temporally-coherent photometric-geometric augmenta-

tion. As shown in Table 5.2(a), although applying photometric-geometric augmentation individ-

ually in a frame-by-frame manner improves upon the supervised baseline (38.91% → 44.17%),

the proposed temporally-coherent augmentation further enhances the performance by a large mar-

gin (44.17% → 53.37%). The results validate my hypothesis that preserving motion cues in the

augmented videos leads to improved results.

Temporal augmentation. Next, I study the effectiveness of the proposed temporal augmentation

and its atomic operations. As shown in Table 5.2(b), all of the atomic operations are beneficial to
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the recognition accuracy. The results validate my motivation: Temporal occlusion and order invari-

ances are beneficial for semi-supervised video action recognition. With all the atomic temporal

operations combined, the proposed temporal augmentation further improves the accuracy.

ActorCutMix augmentation. I validate the proposed human-centric data augmentation, Actor-

CutMix in Table 5.2(c). ActorCutMix shows moderate improvement over the baseline without

label smoothing. With label smoothing, ActorCutMix shows even more significant performance

improvement. The results validate that the capturing scene invariance improves recognition accu-

racy. My results suggest that label smoothing can mitigate data corruption due to the missing/false-

positive human detections.

Combining photometric-geometric and temporal augmentations. In this ablation experiment,

I study how to combine photometric-geometric augmentation and temporal augmentation. I ex-

plore an alternative combination strategy: sample only one of them and apply it for a video clip.

As shown in Table 5.2(d), my default cascaded strategy leads to better performance, indicating

that combining photometric-geometric and temporal augmentations in a cascaded manner is more

effective.

Combining intra-clip and cross-clip augmentations. Similarly, I study how to combine both

intra-clip (photometric-geometric-temporal) and cross-clip (ActorCutMix) data augmentations. A

straightforward approach is to combine these two types of augmentations in a cascaded fashion, the

same as intra-clip transformation combinations. Surprisingly, as shown in Table 5.2(e), I find that

the cascaded data augmentation is even worse than applying the intra-clip augmentation alone. My

intuition is that cascading both intra-clip, and cross-clip augmentation produces severely distorted

video clips that no longer resemble natural videos. As a result, cascading the two augmentation

hurts pseudo labels’ performance to supervised the strongly-augmented branch. Hence, I randomly

apply only one data augmentation selected from intra-clip or cross-clip for each input video clip.
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Figure 5.6: Class accuracy. We compare the class accuracies of the supervised baseline and our
semi-supervised model on the UCF-101 dataset. We sort the classes in ascending order of the
baseline accuracy. Best viewed with zoom and color.

Different Initialization. In this study, I aim to test if the proposed data augmentation strategy,

together with the semi-supervised consistency regularization framework, can still improve over

the supervised baseline, given a strong pre-trained model as initialization. I here choose an off-

the-shelf R(2+1)D-34 model trained on the full Kinetics-400 dataset [80] as the initialization and

train it on the 20% label ratio split of the UCF-101 dataset [141]. As shown in Table 5.3, although

the improvement over the supervised baseline is not as large as the boost in the train-from-scratch

setting, the proposed method can still achieve a sizable improvement (72.40% → 77.37%). The

results validate the general applicability of the proposed method in practical scenarios.

Table 5.3: Effect of using different initialization.

Initialization

Random Kinetics-400

Supervised 38.91 72.40
Ours 56.73 77.37
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5.4.4 Error Analysis

In Figure 5.6, I visualize the class accuracies of the supervised baseline (red curve) and my semi-

supervised model with all augmentations (blue curve) on the UCF-101 datasets. I sort the classes

in ascending order of the baseline accuracy. Temporal augmentations could reduce the baseline

error rate for the classes such as “BodyWeightSquats" and “Haircut".

In Figure 5.7, I visualize UCF-101 (20% label ratio) confusion matrices of the (i) supervised base-

line, and my semi-supervised models with (ii) temporal augmentation only, (iii) ActorCutMix only,

and (iv) all augmentations (i.e., photometric, geometric, temporal, and scene).

The baseline model confused “BodyWeightSquats" with “TableTennisShot". However, my model

with temporal augmentation reduces this type of error significantly (26.7% → 13.3%). Tempo-

ral augmentations such as T-Half and T-Drop are essentially providing a model less information.

Therefore, they could encourage the model to focus more on the fine-grained details related to hu-

man actions such as human pose. Compared to the baseline, ActorCutMix reduces the error rate of

the classes such as “BlowDryHair" and “ShotPut". The baseline is confused “BlowDryHair" with

“ApplyLipstick," which has similar scenes, e.g., , bedroom and restroom. In contrast, ActorCut-

Mix significantly reduces this type of error, (18.4% → 7.9%). The results imply that ActorCutMix

provides various scenes and results in scene invariance of my model. Additional invariances to pho-

tometric/geometric transformations help my model not to use shortcuts. Using all augmentations

significantly reduces the error rate of the baseline for the class “PlayingDaf" with “PlayingFlute"

(26.8% → 4.9%).
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(a) Supervised baseline
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(b) Temporal augmentations only
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(c) ActorCutMix augmentation only
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(d) All augmentations

Figure 5.7: UCF-101 confusion matrix visualization. We compare the confusion matrices of the
i) supervised baseline, and our semi-supervised models with ii) temporal augmentation only, iii)
ActorCutMix only, and iv) all augmentations. We sort the classes in ascending order of the baseline
accuracy. Best viewed with zoom and color.
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Table 5.4: Results on UCF-101. Note that VideoSSL [76] uses an additional ImageNet pre-
trained model for knowledge distillation. The best performance is in bold and the second best
is underlined.

w/ ImageNet Label ratio (%)

Method Backbone pre-trained 50 20 10 5

PL [91] 3D ResNet-18 - 47.5 37.0 24.7 17.6
MT [143] 3D ResNet-18 - 45.8 36.3 25.6 17.5
S4L [179] 3D ResNet-18 - 47.9 37.7 29.1 22.7
VideoSSL [76] 3D ResNet-18 ✓ 54.3 48.7 42.0 32.4

VCOP [171] R(2+1)D ResNet-10 - 67.9 53.1 31.1 14.4
DPC [56] R(2+3)D ResNet-18 - 53.1 38.9 25.3 19.2

Ours R(2+1)D ResNet-18 - 64.2 52.5 39.9 26.1
Ours R(2+1)D ResNet-34 - 68.7 56.7 39.7 22.8

5.4.5 Comparing with the state of the arts

Lastly, I compare my method with several existing semi-supervised learning approaches and two

recent video self-supervised learning methods. I first pre-train the models on the entire training set

for the self-supervised learning methods and then fine-tune them with the labeled data. As shown in

Table 5.4 and Table 5.5, my method consistently achieves promising results compared with other

approaches with the same amount of supervision. I observe that VideoSSL [76] achieves state-

of-the-art performance in the extremely low label ratios (10% and 5%) in the UCF-101 dataset

while being worse in other label ratios. I conjecture that the knowledge distillation from ImageNet

pre-trained model plays a crucial role in the extremely low-data regime. At the same time, its

improvement becomes marginal quickly as the number of labeled data grows. I also observe that a

deeper model could perform worse in the low-data regime, which might be caused by overfitting.

Other regularization techniques or better pseudo-labeling might mitigate this issue.
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Table 5.5: Results on HMDB-51. Note that VideoSSL [76] uses an additional ImageNet pre-
trained model for knowledge distillation. The best performance is in bold and the second best is
underlined.

w/ ImageNet Label ratio (%)

Method Backbone pre-trained 60 50 40

PL [91] 3D ResNet-18 - 33.5 32.4 27.3
MT [143] 3D ResNet-18 - 32.2 30.4 27.2
S4L [179] 3D ResNet-18 - 35.6 31.0 29.8
VideoSSL [76] 3D ResNet-18 ✓ 37.0 36.2 32.7

VCOP [171] R(2+1)D ResNet-10 - 27.8 26.5 25.7
DPC [56] R(2+3)D ResNet-18 - 37.2 33.2 31.6

Ours R(2+1)D ResNet-18 - 42.5 39.5 33.0
Ours R(2+1)D ResNet-34 - 41.7 39.2 34.6

5.4.6 ImageNet Knowledge Distillation

As discussed in Section 5.4.5, I conjecture that the ImageNet knowledge distillation in VideoSSL [76]

may be the key factor to its good performance in the extremely low label ratios (10% and 5%) in the

UCF-101 dataset. In this study, I aim to explore whether an additional knowledge distillation loss

can be integrated into my training framework and improve performance. Following VideoSSL [76],

I adopt an ImageNet pre-trained ResNet-18 to compute a 1000D ImageNet class probability vector

for each frame of all the training videos offline. Accordingly, I add an additional classification

head to predict the ImageNet probability of each video clip, on top of the feature extraction back-

bone. I randomly select one frame from each (weakly-augmented) video clip during training time

and then use its corresponding ImageNet probability as a soft pseudo label for a cross-entropy loss.

The soft pseudo label provides an additional supervisory signal to the feature backbone and the

new classification head of the weakly-augmented branch.
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Table 5.6: Effect of ImageNet knowledge distillation on the UCF-101.

w/ ImageNet Label ratio (%)

Method Backbone #Parameters pre-trained 10 5

VideoSSL [76] 3D ResNet-18 33M ✓ 42.0 32.4

Ours R(2+1)D ResNet-18 33M - 39.9 26.1
Ours (w/ distillation) R(2+1)D ResNet-18 33M ✓ 52.7 49.5

As shown in Table 5.6, the performance of my method significantly improves with ImageNet distil-

lation compared to my method without ImageNet distillation (26.1% → 49.5% for 5% label ratio

and 39.9%→ 52.7% for 10% label ratio). My method with ImageNet distillation shows a favorable

performance when compared to the VideoSSL [76].

5.5 Conclusions

In this chapter, I investigate different types of data augmentation strategies for semi-supervised

video action recognition. My study shows the importance of (1) temporally-coherent photomet-

ric and geometric augmentations, (2) temporal augmentations, and (3) actor/scene augmentation.

With all the augmentations, I show promising semi-supervised action recognition performance on

the public benchmarks. I hope my insights help facilitate future semi-supervised video action

recognition research.



Chapter 6

Conclusions

In this dissertation, I have investigated video action recognition in the context of transfer learning.

First, I addressed the problem of learning to mitigate scene bias in video action recognition. I

proposed two losses for scene debiasing, i) scene adversarial loss and ii) human-mask confusion

loss. The scene debiased model consistently generalizes better on the new tasks and datasets.

Second, I addressed the problem of the high labeling cost of target video data. I formulated the

problem as i) unsupervised domain adaptation for video action recognition and ii) semi-supervised

video action recognition. To tackle the unsupervised domain adaptation problem, I collected a

new action recognition dataset captured by drones. Then I proposed a video domain adaptation

method with clip attention based feature alignment and self-supervised clip order prediction. The

proposed method shows state-of-the-art performance on the public benchmarks. To tackle the semi-

supervised video action recognition problem, I explore multiple types of video data augmentations

that inject photometric, geometric, temporal, and scene invariances into our model. The proposed

method shows favorable results on the public benchmarks.

The main contribution of this dissertation is addressing two crucial problems in transfer learning

for video action recognition. i.e., i) Scene bias problem in the source datasets, and ii) high labeling

cost for the target datasets. I demonstrated that the proposed solutions could improve action recog-

nition models generalization performance by addressing the two problems in transfer learning for

videos. I hope that the dissertation work sheds light on addressing action recognition models’

generalization with a limited amount of labeled data.

95



Bibliography

[1] Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum, Edith V Sullivan, Li Fei-Fei, Juan Carlos

Niebles, and Kilian M Pohl. Bias-resilient neural network. arXiv preprint arXiv:1910.03676,

2019.

[2] Lisa Anne Hendricks, Kaylee Burns, Kate Saenko, Trevor Darrell, and Anna Rohrbach.

Women also snowboard: Overcoming bias in captioning models. In ECCV, 2018.

[3] Shervin Ardeshir and Ali Borji. Integrating egocentric videos in top-view surveillance

videos: Joint identification and temporal alignment. In ECCV, 2018.

[4] Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. In

NeurIPS, 2014.

[5] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional

networks for learning video representations. In ICLR, 2016.

[6] Mohammadamin Barekatain, Miquel Martí, Hsueh-Fu Shih, Samuel Murray, Kotaro

Nakayama, Yutaka Matsuo, and Helmut Prendinger. Okutama-action: An aerial view video

dataset for concurrent human action detection. In 1st Joint BMTT-PETS Workshop on Track-

ing and Surveillance, CVPR, 2017.

[7] Loris Bazzani, Alessandra Bergamo, Dragomir Anguelov, and Lorenzo Torresani. Self-

taught object localization with deep networks. In WACV, 2016.

[8] Harkirat S. Behl, Michael Sapienza, Gurkirt Singh, Suman Saha, Fabio Cuzzolin, and Philip

H. S. Torr. Incremental tube construction for human action detection. In BMVC, 2018.

[9] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William T Freeman, Michael Ru-

binstein, Michal Irani, and Tali Dekel. Speednet: Learning the speediness in videos. In

CVPR, 2020.

[10] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,

96



and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and

augmentation anchoring. In ICLR, 2019.

[11] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and

Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. In NeurIPS,

2019.

[12] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image networks for

action recognition. In CVPR, 2016.

[13] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai.

Man is to computer programmer as woman is to homemaker? debiasing word embeddings.

In NeurIPS, 2016.

[14] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krish-

nan. Unsupervised pixel-level domain adaptation with generative adversarial networks. In

CVPR, 2017.

[15] Pau Panareda Busto, Ahsan Iqbal, and Juergen Gall. Open set domain adaptation for image

and action recognition. TPAMI, 2018.

[16] Qi Cai, Yingwei Pan, Chong-Wah Ngo, Xinmei Tian, Lingyu Duan, and Ting Yao. Explor-

ing object relation in mean teacher for cross-domain detection. In CVPR, 2019.

[17] Peter Carbonetto, Nando De Freitas, and Kobus Barnard. A statistical model for general

contextual object recognition. In ECCV, 2004.

[18] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the

kinetics dataset. In CVPR, 2017.

[19] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A. Ross, Jia Deng, and

Rahul Sukthankar. Rethinking the faster r-cnn architecture for temporal action localization.

In CVPR, 2018.

[20] Minghao Chen, Hongyang Xue, and Deng Cai. Domain adaptation for semantic segmenta-

tion with maximum squares loss. In ICCV, 2019.

97



[21] Min-Hung Chen, Zsolt Kira, Ghassan AlRegib, Jaekwon Woo, Ruxin Chen, and Jian Zheng.

Temporal attentive alignment for large-scale video domain adaptation. In ICCV, 2019.

[22] Min-Hung Chen, Baopu Li, Yingze Bao, Ghassan AlRegib, and Zsolt Kira. Action segmen-

tation with joint self-supervised temporal domain adaptation. In CVPR, 2020.

[23] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-

work for contrastive learning of visual representations. In ICML, 2020.

[24] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momen-

tum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[25] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Domain adaptive

faster r-cnn for object detection in the wild. In CVPR, 2018.

[26] Yun-Chun Chen, Yen-Yu Lin, Ming-Hsuan Yang, and Jia-Bin Huang. CrDoCo: Pixel-level

domain transfer with cross-domain consistency. In CVPR, 2019.

[27] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. In EMNLP, 2014.

[28] Jinwoo Choi, Chen Gao, Joseph CE Messou, and Jia-Bin Huang. Why can’t i dance in the

mall? learning to mitigate scene bias in action recognition. In NeurIPS, 2019.

[29] Jinwoo Choi, Gaurav Sharma, Manmohan Chandraker, and Jia-Bin Huang. Unsupervised

and semi-supervised domain adaptation for action recognition from drones. In WACV, 2020.

[30] Jinwoo Choi, Gaurav Sharma, Samuel Schulter, and Jia-Bin Huang. Shuffle and attend:

Video domain adaptation. In ECCV, 2020.

[31] Myung Jin Choi, Joseph J Lim, Antonio Torralba, and Alan S Willsky. Exploiting hierarchi-

cal context on a large database of object categories. In CVPR, 2010.

[32] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaug-

ment: Learning augmentation policies from data. In CVPR, 2019.

[33] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical

98



automated data augmentation with a reduced search space. In CVPR Workshops, 2020.

[34] Achal Dave, Olga Russakovsky, and Deva Ramanan. Predictivecorrective networks for

action detection. In CVPR, 2017.

[35] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-

scale hierarchical image database. In CVPR, 2009.

[36] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural

networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[37] Santosh K Divvala, Derek Hoiem, James H Hays, Alexei A Efros, and Martial Hebert. An

empirical study of context in object detection. In CVPR. IEEE, 2009.

[38] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini

Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks

for visual recognition and description. In CVPR, 2015.

[39] Dave Epstein, Boyuan Chen, and Carl. Vondrick. Oops! predicting unintentional action in

video. In CVPR, 2020.

[40] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zis-

serman. The pascal visual object classes (voc) challenge. IJCV, 2010.

[41] Chenyou Fan, Jangwon Lee, Mingze Xu, Krishna Kumar Singh, Yong Jae Lee, David J

Crandall, and Michael S Ryoo. Identifying first-person camera wearers in third-person

videos. In CVPR, 2017.

[42] Alireza Fathi, Ali Farhadi, and James M Rehg. Understanding egocentric activities. In

ICCV, 2011.

[43] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks

for video recognition. In ICCV, 2019.

[44] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream

network fusion for video action recognition. In CVPR, 2016.

[45] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Temporal localization of actions

99



with actoms. TPAMI, 35(11):2782–2795, 2013.

[46] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.

In ICML, 2015.

[47] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,

François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training

of neural networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[48] Chen Gao, Yuliang Zou, and Jia-Bin Huang. ican: Instance-centric attention network for

human-object interaction detection. In BMVC, 2018.

[49] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Felix Wichmann, Wieland Brendel,

and Matthias Bethge. Imagenet-trained CNNs are biased towards texture; increasing shape

bias improves accuracy and robustness. In ICLR, 2019.

[50] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for

convolutional networks. In NeurIPS, 2018.

[51] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning

by predicting image rotations. In ICLR, 2018.

[52] Rohit Girdhar and Deva Ramanan. Attentional pooling for action recognition. In NeurIPS,

2017.

[53] Georgia Gkioxari and Jitendra Malik. Finding action tubes. In CVPR, 2015.

[54] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsuper-

vised domain adaptation. In CVPR, 2012.

[55] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization.

In NeurIPS, 2005.

[56] Tengda Han, Weidi Xie, and Andrew Zisserman. Video representation learning by dense

predictive coding. In ICCV Workshops, 2019.

[57] Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-augmented dense predictive

coding for video representation learning. In ECCV, 2020.

100



[58] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace

the history of 2d cnns and imagenet? In CVPR, 2018.

[59] Jiawei He, Mostafa S Ibrahim, Zhiwei Deng, and Greg Mori. Generic tubelet proposals for

action localization. WACV, 2018.

[60] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast

for unsupervised visual representation learning. In CVPR, 2020.

[61] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In ICCV,

2017.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In CVPR, 2016.

[63] Yun He, Soma Shirakabe, Yutaka Satoh, and Hirokatsu Kataoka. Human action recognition

without human. In ECCV Workshop, 2016.

[64] Zhenwei He and Lei Zhang. Multi-adversarial faster-rcnn for unrestricted object detection.

In ICCV, 2019.

[65] Judy Hoffman, Mehryar Mohri, and Ningshan Zhang. Algorithms and theory for multiple-

source adaptation. In NeurIPS, 2018.

[66] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A

Efros, and Trevor Darrell. CyCADA: Cycle-consistent adversarial domain adaptation. In

ICML, 2017.

[67] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell. Fcns in the wild: Pixel-level

adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649, 2016.

[68] Rui Hou, Chen Chen, and Mubarak Shah. Tube convolutional neural network (T-CNN) for

action detection in videos. In ICCV, 2017.

[69] Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Maneesh

Singh, and Ming-Hsuan Yang. Progressive domain adaptation for object detection. In

WACV, 2020.

101



[70] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In CVPR, 2017.

[71] Arshad Jamal, Vinay P Namboodiri, Dipti Deodhare, and KS Venkatesh. Deep domain

adaptation in action space. In BMVC, 2018.

[72] Saumya Jetley, Nicholas A Lord, Namhoon Lee, and Philip HS Torr. Learn to pay attention.

In ICLR, 2018.

[73] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, and Michael J Black. Towards

understanding action recognition. In ICCV, 2013.

[74] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human

action recognition. TPAMI, 35(1):221–231, 2013.

[75] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and R. Sukthankar.

THUMOS challenge: Action recognition with a large number of classes. http://crcv.

ucf.edu/THUMOS14/, 2014.

[76] Longlong Jing, Toufiq Parag, Zhe Wu, Yingli Tian, and Hongcheng Wang. Videossl: Semi-

supervised learning for video classification. arXiv preprint arXiv:2003.00197, 2020.

[77] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari, and Cordelia Schmid. Action

tubelet detector for spatio-temporal action localization. In ICCV, 2017.

[78] Amlan Kar, Nishant Rai, Karan Sikka, and Gaurav Sharma. Adascan: Adaptive scan pooling

in deep convolutional neural networks for human action recognition in videos. In CVPR,

2017.

[79] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and

Li Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR,

2014.

[80] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-

narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human

action video dataset. arXiv preprint arXiv:1705.06950, 2017.

102

http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/


[81] Mehran Khodabandeh, Arash Vahdat, Mani Ranjbar, and William G Macready. A robust

learning approach to domain adaptive object detection. In ICCV, 2019.

[82] Aditya Khosla, Byoungkwon An An, Joseph J Lim, and Antonio Torralba. Looking beyond

the visible scene. In CVPR, 2014.

[83] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning not

to learn: Training deep neural networks with biased data. In CVPR, 2019.

[84] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler: Sampling salient clips from

video for efficient action recognition. In ICCV, 2019.

[85] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre.

HMDB: A large video database for human motion recognition. In ICCV, 2011.

[86] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre.

HMDB: A large video database for human motion recognition. In ICCV, 2011.

[87] Chia-Wen Kuo, Chih-Yao Ma, Jia-Bin Huang, and Zsolt Kira. Featmatch: Feature-based

augmentation for semi-supervised learning. In ECCV, 2020.

[88] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In ICLR,

2016.

[89] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Colorization as a proxy task

for visual understanding. In CVPR, 2017.

[90] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial

pyramid matching for recognizing natural scene categories. In CVPR, 2006.

[91] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method

for deep neural networks. In ICML Workshop, 2013.

[92] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsupervised rep-

resentation learning by sorting sequences. In ICCV, 2017.

[93] Dong Li, Jia-Bin Huang, Yali Li, Shengjin Wang, and Ming-Hsuan Yang. Weakly super-

vised object localization with progressive domain adaptation. In CVPR, 2016.

103



[94] Dong Li, Jia-Bin Huang, Yali Li, Shengjin Wang, and Ming-Hsuan Yang. Progressive rep-

resentation adaptation for weakly supervised object localization. TPAMI, 2019.

[95] Yingwei Li, Yi Li, and Nuno Vasconcelos. Resound: Towards action recognition without

representation bias. In ECCV, 2018.

[96] Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resampling.

arXiv preprint arXiv:1904.07911, 2019.

[97] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaug-

ment. In NeurIPS, 2019.

[98] Tsung-Yi Lin, Yin Cui, Serge Belongie, and James Hays. Learning deep representations for

ground-to-aerial geolocalization. In CVPR, 2015.

[99] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,

Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014.

[100] Aurelien Lucchi, Yunpeng Li, Xavier Boix, Kevin Smith, and Pascal Fua. Are spatial and

global constraints really necessary for segmentation? In ICCV, 2011.

[101] Zelun Luo, Yuliang Zou, Judy Hoffman, and Li F Fei-Fei. Label efficient learning of trans-

ferable representations acrosss domains and tasks. In NeurIPS, 2017.

[102] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised

learning using temporal order verification. In ECCV, 2016.

[103] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial

training: a regularization method for supervised and semi-supervised learning. TPAMI,

41(8):1979–1993, 2018.

[104] Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gianfranco Doretto. Few-shot adver-

sarial domain adaptation. In NeurIPS, 2017.

[105] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fi-

dler, Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic

104



segmentation in the wild. In CVPR, 2014.

[106] Matthias Mueller, Neil Smith, and Bernard Ghanem. A benchmark and simulator for uav

tracking. In ECCV, 2016.

[107] Jonathan Munro and Dima Damen. Multi-modal domain adaptation for fine-grained action

recognition. In CVPR, 2020.

[108] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solv-

ing jigsaw puzzles. In ECCV, 2016.

[109] Boxiao Pan, Zhangjie Cao, Ehsan Adeli, and Juan Carlos Niebles. Adversarial cross-domain

action recognition with co-attention. In AAAI, 2020.

[110] Pau Panareda Busto and Juergen Gall. Open set domain adaptation. In ICCV, 2017.

[111] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros.

Context encoders: Feature learning by inpainting. In CVPR, 2016.

[112] Xiaojiang Peng and Cordelia Schmid. Multi-region two-stream r-cnn for action detection.

In ECCV, 2016.

[113] Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised learn-

ing: Invariances, augmentations and dataset biases. arXiv preprint arXiv:2007.13916, 2020.

[114] Anant Raj, Vinay Namboodiri, and Tinne Tuytelaars. Subspace alignment based domain

adaptation for rcnn detector. In BMVC, 2015.

[115] Krishna Regmi and Ali Borji. Cross-view image synthesis using conditional gans. In CVPR,

2018.

[116] Zhongzheng Ren and Yong Jae Lee. Cross-domain self-supervised multi-task feature learn-

ing using synthetic imagery. In CVPR, 2018.

[117] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Learning

social etiquette: Human trajectory understanding in crowded scenes. In ECCV, 2016.

[118] Suman Saha, Gurkirt Singh, and Fabio Cuzzolin. Amtnet: Action-micro-tube regression by

end-to-end trainable deep architecture. In ICCV, 2017.

105



[119] Suman Saha, Gurkirt Singh, Michael Sapienza, Philip H.S. Torr, and Fabio Cuzzolin. Deep

learning for detecting multiple space-time action tubes in videos. In BMVC, 2016.

[120] Suman Saha, Gurkirt Singh, Michael Sapienza, Philip HS Torr, and Fabio Cuzzolin. Spatio-

temporal human action localisation and instance segmentation in temporally untrimmed

videos. arXiv preprint arXiv:1707.07213, 2017.

[121] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classi-

fier discrepancy for unsupervised domain adaptation. In CVPR, 2018.

[122] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain

adaptation by backpropagation. In The European Conference on Computer Vision (ECCV),

September 2018.

[123] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic

transformations and perturbations for deep semi-supervised learning. In NeurIPS, 2016.

[124] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding

for face recognition and clustering. In CVPR, 2015.

[125] Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio Savarese. Learning transferrable

representations for unsupervised domain adaptation. In NeurIPS, 2016.

[126] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,

Sergey Levine, and Google Brain. Time-contrastive networks: Self-supervised learning

from video. In ICRA, 2018.

[127] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and Shih-Fu Chang.

Cdc: Convolutional-de-convolutional networks for precise temporal action localization in

untrimmed videos. In CVPR, 2017.

[128] Gunnar Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali Farhadi, and Karteek Alahari.

Actor and observer: Joint modeling of first and third-person videos. In CVPR, 2018.

[129] Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Abhinav Gupta. Asynchronous

temporal fields for action recognition. In CVPR, 2017.

106



[130] Gunnar A Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali Farhadi, and Karteek Alahari.

Charades-ego: A large-scale dataset of paired third and first person videos. arXiv preprint

arXiv:1804.09626, 2018.

[131] Karan Sikka and Gaurav Sharma. Discriminatively trained latent ordinal model for video

classification. TPAMI, 40(8):1829–1844, 2017.

[132] Karan Sikka and Gaurav Sharma. Discriminatively trained latent ordinal model for video

classification. TPAMI, 40(8):1829–1844, 2018.

[133] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action

recognition in videos. In NeurIPS, 2014.

[134] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action

recognition in videos. In NeurIPS, 2014.

[135] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. In ICLR, 2015.

[136] Gurkirt Singh, Suman Saha, and Fabio Cuzzolin. Online real time multiple spatiotemporal

action localisation and prediction on a single platform. In ICCV, 2017.

[137] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek: Forcing a network to be meticulous

for weakly-supervised object and action localization. In ICCV, 2017.

[138] Suriya Singh, Chetan Arora, and C. V. Jawahar. First person action recognition using deep

learned descriptors. In CVPR, 2016.

[139] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D

Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-

supervised learning with consistency and confidence. In NeurIPS, 2020.

[140] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101

human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[141] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101

human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

107



[142] Kevin Tang, Vignesh Ramanathan, Li Fei-Fei, and Daphne Koller. Shifting weights: Adapt-

ing object detectors from image to video. In NeurIPS, 2012.

[143] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged

consistency targets improve semi-supervised deep learning results. In NeurIPS, 2017.

[144] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning

spatiotemporal features with 3d convolutional networks. In ICCV, 2015.

[145] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A

closer look at spatiotemporal convolutions for action recognition. In CVPR, 2017.

[146] Yi-Hsuan Tsai, Kihyuk Sohn, Samuel Schulter, and Manmohan Chandraker. Domain adap-

tation for structured output via discriminative representations. In ICCV, 2019.

[147] Michael Tschannen, Josip Djolonga, Marvin Ritter, Aravindh Mahendran, Neil Houlsby,

Sylvain Gelly, and Mario Lucic. Self-supervised learning of video-induced visual invari-

ances. arXiv preprint arXiv:1912.02783, 2019.

[148] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer

across domains and tasks. In ICCV, 2015.

[149] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative

domain adaptation. In CVPR, 2017.

[150] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative

domain adaptation. In CVPR, 2017.

[151] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Pérez. Dada:

Depth-aware domain adaptation in semantic segmentation. In ICCV, 2019.

[152] Tuan-Hung Vu, Catherine Olsson, Ivan Laptev, Aude Oliva, and Josef Sivic. Predicting

actions from static scenes. In ECCV, 2014.

[153] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Action recognition

by dense trajectories. In CVPR, 2011.

[154] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In ICCV,

108



2013.

[155] Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-supervised video representation learning

by pace prediction. In ECCV, 2020.

[156] Junbo Wang, Wei Wang, Yan Huang, Liang Wang, and Tieniu Tan. M3: Multimodal mem-

ory modelling for video captioning. In CVPR, 2018.

[157] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Val

Gool. Temporal segment networks: Towards good practices for deep action recognition. In

ECCV, 2016.

[158] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc

Van Gool. Temporal segment networks for action recognition in videos. TPAMI, 2018.

[159] Shiguang Wang and Jian Cheng. A faster pytorch implementation of r-c3d.

https://github.com/sunnyxiaohu/R-C3D.pytorch.git, 2018.

[160] Tianlu Wang, Jieyu Zhao, Kai-Wei Chang, Mark Yatskar, and Vicente Ordonez. Adversarial

removal of gender from deep image representations. In ICCV, 2019.

[161] Xiaolong Wang, Ali Farhadi, and Abhinav Gupta. Actions˜ transformations. In CVPR,

2016.

[162] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural net-

works. In CVPR, 2018.

[163] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn: Hard positive gen-

eration via adversary for object detection. In CVPR, 2017.

[164] Yang Wang and Minh Hoai. Pulling actions out of context: Explicit separation for effective

combination. In CVPR, 2018.

[165] Yulin Wang, Gao Huang, Shiji Song, Xuran Pan, Yitong Xia, and Cheng Wu. Regularizing

deep networks with semantic data augmentation. arXiv preprint arXiv:2007.10538, 2020.

[166] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. Learning to track for spatio-

temporal action localization. In ICCV, 2015.

109



[167] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp Krahenbuhl, and

Ross Girshick. Long-term feature banks for detailed video understanding. In CVPR, 2019.

[168] Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Darrell. What should not be con-

trastive in contrastive learning. arXiv preprint arXiv:2008.05659, 2020.

[169] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Unsupervised

data augmentation for consistency training. In NeurIPS, 2020.

[170] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking

spatiotemporal feature learning for video understanding. In ECCV, 2018.

[171] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and Yueting Zhuang. Self-supervised

spatiotemporal learning via video clip order prediction. In CVPR, 2019.

[172] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting

Zhuang. Video question answering via gradually refined attention over appearance and

motion. In ACM MM, 2017.

[173] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: Region convolutional 3d network for

temporal activity detection. In ICCV, 2017.

[174] Jiaolong Xu, Sebastian Ramos, David Vázquez, and Antonio M López. Domain adaptation

of deformable part-based models. TPAMI, 36(12):2367–2380, 2014.

[175] Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and Yoichi Sato. Future person local-

ization in first-person videos. In CVPR, 2018.

[176] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. End-to-end learning of action

detection from frame glimpses in videos. In CVPR, 2016.

[177] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and

Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable

features. In ICCV, 2019.

[178] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.

In ECCV, 2014.

110



[179] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised

semi-supervised learning. In ICCV, 2019.

[180] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with

adversarial learning. In Proceedings of AAAI/ACM Conference on AI, Ethics, and Society,

2018.

[181] Jing Zhang, Wanqing Li, and Philip Ogunbona. Joint geometrical and statistical alignment

for visual domain adaptation. In CVPR, 2017.

[182] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Category anchor-guided unsuper-

vised domain adaptation for semantic segmentation. In NeurIPS, 2019.

[183] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid

scene parsing network. In CVPR, 2017.

[184] Yue Zhao, Yuanjun Xiong, and Dahua Lin. Recognize actions by disentangling components

of dynamics. In CVPR, 2018.

[185] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and Dahua Lin. Tem-

poral action detection with structured segment networks. In ICCV, 2017.

[186] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational reason-

ing in videos. In ECCV, 2018.

[187] B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. Learning Deep Features for

Discriminative Localization. CVPR, 2016.

[188] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A

10 million image database for scene recognition. TPAMI, 2017.

[189] Pengfei Zhu, Longyin Wen, Xiao Bian, Ling Haibin, and Qinghua Hu. Vision meets drones:

A challenge. arXiv preprint arXiv:1804.07437, 2018.

[190] Xinge Zhu, Jiangmiao Pang, Ceyuan Yang, Jianping Shi, and Dahua Lin. Adapting object

detectors via selective cross-domain alignment. In CVPR, 2019.

[191] Mohammadreza Zolfaghari, Gabriel L. Oliveira, Nima Sedaghat, and Thomas Brox.

111



Chained multi-stream networks exploiting pose, motion, and appearance for action clas-

sification and detection. In ICCV, 2017.

112


	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Mitigating Unwanted Biases in Source Data
	Introduction
	Related Work
	Method
	Overview of the method
	Scene adversarial loss
	Human mask confusion loss
	Optimization

	Experimental Results
	Datasets
	Implementation details
	Scene classification accuracy
	Transfer learning for action classification
	Transfer learning for other activity understanding tasks.
	Ablation study
	Class activation map visualization

	Conclusions

	Unsupervised Learning with Target Data, Part I
	Introduction
	Related Work
	Approach
	Overview of the architecture
	Same source and target label set
	Different source and target label sets
	Video-based and instance-based adaptation

	NEC-Drone Dataset
	Experimental Results
	Quantitative evaluation on NEC-Drone
	Ablation study on the losses
	Quantitative evaluation on Charades-Ego
	Qualitative evaluation on NEC-Drone

	Conclusions

	Unsupervised Learning with Target Data, Part II
	Introduction
	Related Work
	Method
	Clip order prediction
	Clip-attention based video-level features
	Training
	Inference

	Experimental Results
	Datasets
	Implementation details
	Ablation study
	Comparison with other methods
	Qualitative evaluation

	Conclusions

	Semi-Supervised Learning with Target Data
	Introduction
	Related Work
	Method
	Background: semi-supervised classification
	Intra-clip data augmentation
	Cross-clip data augmentation
	Combining different data augmentations

	Experimental Results
	Experimental setup
	Improvement over supervised baseline
	Ablation study
	Error Analysis
	Comparing with the state of the arts
	ImageNet Knowledge Distillation

	Conclusions

	Conclusions
	Bibliography

