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Abstract

The liver plays a vital role in glucose homeostasis, the synthesis of bile acids and the detoxification of foreign substances.
Liver culture systems are widely used to test adverse effects of drugs and environmental toxicants. The two most prevalent
liver culture systems are hepatocyte monolayers (HMs) and collagen sandwiches (CS). Despite their wide use,
comprehensive transcriptional programs and interaction networks in these culture systems have not been systematically
investigated. We integrated an existing temporal transcriptional dataset for HM and CS cultures of rat hepatocytes with a
functional interaction network of rat genes. We aimed to exploit the functional interactions to identify statistically significant
linkages between perturbed biological processes. To this end, we developed a novel approach to compute Contextual
Biological Process Linkage Networks (CBPLNs). CBPLNs revealed numerous meaningful connections between different
biological processes and gene sets, which we were successful in interpreting within the context of liver metabolism.
Multiple phenomena captured by CBPLNs at the process level such as regulation, downstream effects, and feedback loops
have well described counterparts at the gene and protein level. CBPLNs reveal high-level linkages between pathways and
processes, making the identification of important biological trends more tractable than through interactions between
individual genes and molecules alone. Our approach may provide a new route to explore, analyze, and understand cellular
responses to internal and external cues within the context of the intricate networks of molecular interactions that control
cellular behavior.
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Introduction

The liver is one of the important organs in our bodies, playing a

vital role in glucose homeostasis, the synthesis of bile acids for the

metabolism of cholesterol, and the secretion of proteins to aid

clotting [1]. Additionally, the liver is primarily responsible for the

detoxification of foreign substances, including a variety of

environmental toxicants, alcohol, cigarette smoke, and drugs [1].

Hepatocytes are the principal cells in the liver, comprising over

80% of its mass and performing several characteristic functions of

this organ. Liver culture systems such as hepatocyte monolayers

(HMs) and collagen sandwiches (CSs) are routinely used to test

adverse effects of drugs and environmental toxicants. In HMs,

hepatocytes are cultured on a single collagen gel. Such cells

progressively lose their phenotypic characteristics over time [2]. In

CS systems, hepatocytes are maintained between two collagen

gels. Hepatocytes in CS cultures remain stable over extended

periods of time, and maintain differentiated hepatic functions

[3,4]. While morphological and physiological characteristics of

hepatocytes in CS cultures have been studied extensively,

comprehensive transcriptional studies of these culture systems do

not appear to have been reported. Therefore, in an earlier study,

we performed a systematic temporal study of genome-wide gene

expression programs in HMs and in CS cultures over an eight-day

period [5]. We used Gene Set Enrichment Analysis (GSEA) [6] to

compare the transcriptional programs in the two culture systems.

Our results demonstrated that gene expression in hepatocytes in

CS cultures steadily and comprehensively diverges from that in

HMs [5]. Gene sets up-regulated in CS cultures included several

hepatic functions, such as metabolism of lipids, amino acids,

carbohydrates, and alcohol, and synthesis of bile acids. Monoox-

ygenases such as Cytochrome-P450 enzymes did not show any

change between the culture systems after one day, but exhibited

significant up-regulation in CS cultures after three days and later

in comparison to HMs.

This analysis did not consider the fact that a cell’s response to

its environment is governed by an intricate network of molecular

interactions. These interactions dynamically change in response

to a myriad of cues. Therefore, discovering the set of molecular

interactions that are active in a given cellular context is a

fundamental question in computational systems biology [7]. In

the current work, we reanalyze the CS-HM transcriptional data
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in the light of an underlying molecular interaction network. We

propose a novel approach called ‘‘Contextual Biological Process

Linkage Network’’ (CBPLN) that focuses on computing which

processes in the cell are perturbed in a particular context and

how these processes are linked to each other. Our approach is

predicated on the belief that high-level linkages between path-

ways and processes make identification of important biological

trends more tractable and intuitive than through interactions

between individual genes and molecules alone. Our method

requires three inputs:

1. p-values representing the statistical significance of the differ-

ential expression of each gene (upon comparing a treatment to

a control), which we refer to hereafter as expression p-values,

2. a functional or physical interaction network connecting genes

and proteins, and

3. a dataset of functional annotations for genes and proteins.

We extend the method developed by Dotan-Cohen et al. [8] to

detect directed linkages between gene sets in the context of a

functional interaction network. Given two biological processes a
and b and the sets of genes that are members of each, these

authors computed the number of genes annotated by b that are

themselves not annotated by a and interact with at least one gene

annotated by a. They estimated the statistical significance of this

count using the one-sided version of Fisher’s exact test. Similar

methods developed by Pandey et al. [9,10] for regulatory and

physical interaction networks are aimed at discovering chains of

significantly linked biological processes.

In this work, we extend the ideas of Dotan-Cohen et al. to

incorporate gene expression measurements to determine which

inter-process links are significantly perturbed between the

measured conditions. Informally, we compute a score for a link

from process a to process b based upon the expression p-values of

pairs of interacting genes, where one gene belongs to process a and

the other to process b. Our score takes estimates of confidence in

the interactions into account. High-confidence interactions with

highly perturbed incident genes make large contributions to the

score. We estimate the statistical significance of the score by

computing an empirical distribution of scores under two different

hypotheses. The first hypothesis tests the dependence of the score

on the particular set of genes annotated by b, i.e., it asks if we

would observe a particular score from process a to b even if we

selected the genes annotated by b uniformly at random from the

set of all annotated genes. This test directly extends the approach

used by Dotan-Cohen et al. The second hypothesis tests the

dependence of the score on the specific interactions in the network,

i.e., it asks if we would observe the score from a to b even with an

interaction network drawn from a distribution of networks with

the same node degrees. Under either hypothesis, we report the

significance of the link, after multiple testing correction, as a p-

value. Hereafter, we refer to this quantity as the link p-value, to

distinguish it from the expression p-values that are inputs to our

method.

Results and Discussion

Input Data
Gene Expression Data. We used the Affymetrix Rat

Genome 230 2.0 GeneChip to measure genomewide trans-

criptional profiles in rat hepatocytes grown in monolayers and in

collagen sandwiches [5]. This dataset is available in MIAME-

compliant format in the Gene Expression Omnibus (accession

number GSE20659). We marked the day when we deposited the

second layer of collagen in CS cultures as day zero. On days one,

two, three and eight after deposition of the second layer of

collagen, we measured data in triplicate in hepatocytes in each

culture system.

Functional Linkage Network. Existing databases of protein

interactions contain very few experimentally detected Protein-

Protein Interactions (PPIs) for rat: seven different widely-used

sources [11–17] contained a total of just 1,274 non-redundant rat

PPIs spanning 974 proteins. Therefore, we decided to use the rat

functional linkage network predicted by the STRING system [18].

The interaction type in STRING is a functional association, which the

authors define as ‘‘the specific and meaningful interaction between

two proteins that jointly contribute to the same functional process.’’

Apart from incorporating experimental interaction data, STRING

uses multiple methods to predict possible functional linkages

including interolog-based interaction transfer, similar transcrip-

tional response across a variety of conditions (co-expression), text-

mining, and gene families that share above-random similarities in

their evolutionary histories. STRING includes a scheme to score

each predicted interaction in the range 150–1000 against a common

reference of functional partnership based on the KEGG database

[19]. STRING version 8.3, released on May 26, 2010 contains

975,454 predicted interactions among 15,178 rat proteins. We used

the subset of these interactions with a weight of at least 500; there

were 204,992 such interactions among 9,925 proteins. We selected

500 as a cutoff based on the reasoning that interactions with at least

this weight were more likely to connect genes belonging to the same

process than to connect genes belonging to different processes.

When we further pruned the network to include genes with at least

one annotation (see below), we obtained 47,002 interactions among

4,714 genes.

Functional Annotations. In our earlier work [5], we used

GSEA to compare the two culture systems at each of the four time

points; Table 1 lists the contrasts we analyzed. This analysis

provided insights into the temporal patterns of up- and down-

regulation in the gene sets in the Molecular Signature Database

(MSigDB) [6]. In that work, we focused our analysis on gene sets

that showed monotonically diverging patterns of expression

between CS and HM cultures. In the current paper, we use the

curated (c2), motif (c3), and Gene Ontology (c5) collections of gene

sets in MSigDB as our set of functional annotations. We focus on

establishing linkages among the subset of 18 up-regulated gene sets

from the previous study; Table 2 lists these sets along with a short

description of each.

Overview of Results
We considered only those links with a link p-value of at most

0:01, after using the method of Benjamini and Hochberg [20] to

adjust for testing multiple hypotheses. We further restricted our

attention to pairs of gene sets for which at least 10 genes

exclusively in the second set of the pair interacted with genes in the

first set, reasoning that fewer interacting genes might not yield

robust link p-values. We compared the number of links computed

by using each hypothesis test. We also compared these values to

the number of links in the (context-free) BPLN computed using the

method of Dotan-Cohen et al. [8]. Tables 3 and 4 display the

results of the comparisons.

Several salient trends emerged. First, in Table 3, irrespective of

the hypothesis test used, the number of links increased with time.

This phenomenon parallels our earlier observation that the

transcriptional programs of hepatocytes in CS cultures steadily

diverged from that in HMs. Second, the size of the intersection

between the two sets of links also increased with time, as did the

Jaccard similarity coefficient of the two sets (i.e., the size of the

Networks of Perturbed Biological Processes
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intersection divided by the size of the union). Further, for each

day, the number of links deemed to be significant by both

hypothesis tests was itself statistically significant, based on Fisher’s

Exact Test (see File S1). These trends suggest that once the

transcriptional programs of the two culture systems have diverged

(day 2 and later), both hypothesis tests find very similar sets of

process pairs to be significantly linked at the 0.01 level. However,

the number of common links is very close to the number of links

identified by the second hypothesis test, indicating that the second

test is more conservative than the first in deciding whether a link is

statistically significant. We observed similar results when we

repeated these analyses with other cutoffs on the link p-value

(0.005, 0.05, and 0.1) (see File S2). Third, normalizing the linkage

score (see ‘‘Methods’’) pruned out a small number of links.

Finally, the overlap between the intersection of the results from

both hypothesis tests and the BPLN was small in days 1 and 2 and

more substantial in days 3 and 8 (Table 4), although the overlap

was still statistically significant by Fisher’s Exact Test (see File S1).

These data suggest that only a subset of the links in a BPLN may

have some relevance to the particular biological conditions being

investigated. By incorporating measurements of gene expression,

CBPLNs can identify those inter-process links that correspond to

the phenotypic differences observed in the two conditions being

compared (e.g., hepatocytes in CS versus HM).

Although both hypothesis tests find very similar sets of process

pairs to be significantly linked at the 0.01 level, especially in later

days, we found that the actual link p-values computed for each

process pair were not very highly correlated to each other (see File

S3). Based on these results, we decided to consider a linkage

between a pair of gene sets only if this link was significant at the 0.01

level with both hypothesis tests with normalization. The resulting

CBPLNs are displayed in Figures 1, 2, 3, 4. For reference, we have

displayed the BPLN in Figure 5. We discuss the properties of these

CBPLNs in the rest of the paper. We focus primarily on the day 8

Table 1. Contrasts analyzed for contextual BPLNs.

Contrast name Treatment Control

CS vs. HM 1d Collagen sandwich 1 day Hepatocyte monolayer 1 day

CS vs. HM 2d Collagen sandwich 2 days Hepatocyte monolayer 2 days

CS vs. HM 3d Collagen sandwich 3 days Hepatocyte monolayer 3 days

CS vs. HM 8d Collagen sandwich 8 days Hepatocyte monolayer 8 days

doi:10.1371/journal.pone.0015247.t001

Table 2. Gene sets from MSigDB selected for our analyses.

MSigDB gene set name Description

ALCOHOL_METABOLIC_PROCESS (GO BP) reactions and pathways involving alcohols

CARBOXYLIC_ACID_TRANSMEMBRANE_TRANSPORTER_ACTIVITY (GO MF) transfer of carboxylic acid across a membrane

CELLULAR_LIPID_METABOLIC_PROCESS (GO BP) lipid reactions and pathways

GLYCOLYSIS_AND_GLUCONEOGENESIS participation in glycolysis or gluconeogenesis

HSA00071_FATTY_ACID_METABOLISM KEGG fatty acid metabolism pathways

HSA00120_BILE_ACID_BIOSYNTHESIS KEGG bile acid synthesis genes

HSA00220_UREA_CYCLE_AND_METABOLISM_OF_AMINO_GROUPS KEGG urea cycle and metabolism and amino groups
pathways

HSA00251_GLUTAMATE_METABOLISM KEGG glutamate metabolism pathways

HSA00980_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 KEGG pathways for metabolism of xenobiotics by
cytochrome P450

HSA03320_PPAR_SIGNALING_PATHWAY KEGG PPAR signaling pathway

HSIAO_LIVER_SPECIFIC_GENES liver tissue genes

HUMAN_TISSUE_LIVER genes specifically expressed in human liver tissue rather
than mouse

MONOOXYGENASE_ACTIVITY (GO MF) integration of one oxygen atom into a
compound

NITROGEN_COMPOUND_CATABOLIC_PROCESS (GO BP) pathways for breakdown of nitrogenous
compounds

NITROGEN_COMPOUND_METABOLIC_PROCESS (GO BP) pathways for synthesis and breakdown of
nitrogenous compounds

NUCLEAR_RECEPTORS GenMAPP nuclear receptor genes

PEROXISOME (GO CC) associated with peroxisome

V$HNF1_Q6 genes containing promoter motif for hepatic nuclear
factor

doi:10.1371/journal.pone.0015247.t002

Networks of Perturbed Biological Processes
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CBPLN (Figure 4), noting that many of the features we discuss are

also apparent in the day 3 CBPLN (Figure 3). When we discuss

some pairs of linked gene sets, we refer to the underlying functional

interaction network connecting the genes in those sets. We start by

discussing properties of liver-specific genes, focusing particularly on

the regulation of these genes by the transcription factor HNF1.

Then, we discuss the role of lipid homeostasis and bile acid

synthesis in the liver. Finally, we summarize the different

interpretations of the links in CBPLNs. We stress that the

formulation of linkage between processes a and b is asymmetric.

Hence, by definition, links in the CBPLN are directed, i.e., a

CBPLN may contain a link between a and b and between b
and a.

Liver Specific Genes
The 251 genes in the HSIAO_LIVER_SPECIFIC_GENES

gene set are expressed selectively in the liver, as determined by

Hsiao et al. [21] from a compendium of gene expression in normal

human tissues created with the goal of defining a reference for

basic organ systems biology. Genes in this set are members of a

spectrum of biological processes, including fatty acid metabolism,

metabolism of xenobiotics, blood coagulation, and response to

wounding. Not surprisingly, this gene set occupies a central place

in the CBPLN on day 8 (Figure 4); it has the highest number of

outgoing and incoming links. Outgoing links include connections

to glycolysis and gluconeogenesis, alcohol metabolism process,

metabolism of xenobiotics by cytochrome P450s, the Peroxisome

Proliferator-Activated Receptor (PPAR) signaling pathway, lipid

metabolic processes, the urea cycle, and bile acid biosynthesis,

among others. In turn, the gene sets such as V$HNF1_Q6 and

NUCLEAR_RECEPTORS are linked to HSIAO_LIVER_SPE-

CIFIC_GENES. Some links involving HSIAO_LIVER_SPECI-

FIC_GENES are unidirectional on day 2 or day 3 (Figures 2 and

3) but bidirectional on day 8 (Figure 4), e.g., to HSA03320_

PPAR_SIGNALING_PATHWAY and metabolism of fatty acids,

bile acids, and alcohol. Such features suggest that CBPLNs may be

representing cellular signals emanating from a subset of liver

specific genes to other processes and subsequent feedback from the

Table 3. Comparison of the properties of the CBPLNs computed by using each hypothesis test.

Without normalization With normalization

Gene set
randomization

Network
randomization Intersection

Jaccard
index

Gene set
randomization

Network
randomization Intersection

Jaccard
index

Day 1 32 21 21 0.66 28 17 17 0.61

Day 2 39 30 30 0.77 33 27 27 0.82

Day 3 75 54 53 0.70 70 52 51 0.72

Day 8 96 81 79 0.81 94 77 75 0.78

There are two groups of columns, one for the results without normalization and another for the results with normalization, where ‘‘normalization’’ refers to results
obtained when we deduct the score calculated with average expression values from the observed score. Within each group, the columns titled ‘‘Gene set
randomization’’ refer to the number of observed significant links (corrected link p-value ƒ0:01) when we construct the null distribution by re-sampling the genes
annotated with the gene set b; similarly, the columns titled ‘‘Network randomization’’ refer to the number of significant links observed when generating interaction
networks with the same node degrees as the original network. The columns titled ‘‘Intersection’’ refer to the number of links significant under both hypothesis tests. The
column titled ‘‘Jaccard index’’ contains the ratio of the size of the intersection to the size of the union of the CBPLNs computed by the two hypothesis tests. File S1
contains the statistical significance values for the intersection sizes, as computed by Fisher’s exact test.
doi:10.1371/journal.pone.0015247.t003

Table 4. Comparison of the number of links in the BPLN to the number of links in the CBPLNs, computed without and with
normalization.

BPLN Gene set randomization Intersection Jaccard index Network randomization Intersection Jaccard index

Without normalization

Day 1 105 32 32 0.30 21 21 0.20

Day 2 105 39 39 0.37 30 30 0.29

Day 3 105 75 75 0.71 54 53 0.50

Day 8 105 96 93 0.86 81 79 0.74

With normalization

Day 1 105 28 28 0.27 17 17 0.16

Day 2 105 33 33 0.31 27 27 0.26

Day 3 105 70 70 0.67 52 51 0.48

Day 8 105 94 91 0.84 77 75 0.70

The column titled ‘‘BPLN’’ denotes the number of links in the BPLN. Note that the number of links in the BPLN does not change with the number of days, as the BPLN
method does not use gene expression data. The last six columns are divided into two groups of three columns each. The first set of columns compare BPLNs to CBPLNs
computed using gene set randomization. The second set of columns compare BPLNs to CBPLNs computed using network randomization. The data in and meaning of
columns ‘‘Gene set randomization’’ and ‘‘Network randomization’’ are identical to those in Table 3. The columns titled ‘‘Intersection’’ contains the number of links found
to be significant in both the BPLN and the respective CBPLN. The columns ‘‘Jaccard index’’ contains the ratio of the size of the intersection to the size of the union of the
BPLN and the respective CBPLN. Statistical significance values for the intersection sizes, as computed by Fisher’s exact test, are available in File S1.
doi:10.1371/journal.pone.0015247.t004
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other processes to liver specific genes. Overall, these results suggest

that CBPLNs can assist in the sub-division of liver-specific genes

into more refined categories, based not only on the functions of the

genes themselves, but also on how they are regulated and what

other processes they may control. We discuss one specific link next

that illustrates this property.

Figure 1. CS vs. HM CBPLN on day 1. In this figure and all other figures displaying CBPLNs, each node is one of the gene sets in Table 2. An edge
connects two gene sets whose linkage is determined to be statistically-significant by both hypothesis tests used in computing CBLPNs. The color of a
node indicates the statistical significance of its perturbation, as computed by GSEA [6]. The legend mapping colors to ranges of statistical significance
appears at the bottom of the figure. We use the same color scheme to indicate the statistical significance computed for a gene set by GSEA and for
the significance value computed for a gene by LIMMA. We use this color scheme in all the subsequent figures as well.
doi:10.1371/journal.pone.0015247.g001

Networks of Perturbed Biological Processes
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Liver Specific Gene Sets Regulated by HNF1
Hepatic nuclear factor 1 (HNF1), also known as albumin proximal

factor, is a transcription factor required for the expression of several

liver-specific genes including albumin [22]. The protein functions as a

homodimer and binds to the inverted palindrome 59-GTTAAT-

NATTAAC-39. The promoter regions of genes in the MSigDB set

V$HNF1_Q6 match this binding site for HNF1 [23]. In our previous

study [5], we noted the monotonic up-regulation of this gene set in

CS cultures when compared to HMs. This gene set has an overlap of

25 genes with the gene set HSIAO_LIVER_SPECIFIC_GENES.

We concluded that HNF1 monotonically up-regulates the expression

of liver-specific genes in CS cultures but not in HMs.

CBPLNs assist us in elaborating upon these earlier observations.

We studied the link between V$HNF1_Q6 and HSIAO_

LIVER_SPECIFIC_GENES in the day 8 CBPLN by examining

the functional interactions in the STRING database connecting

genes in V$HNF1_Q6 to genes in HSIAO_LIVER_SPECIFIC_

GENES. Figure 6 displays a layout of this network. Visual

examination of Figure 6 indicates that the linkage between these

two gene sets is driven by the genes F2, Plg, CYP2E1, Nr1h4,

Lipc, and their interactors, with weaker contributions arising from

Hnf1a and Hnf4a. Note that F2, Plg, CYP2E1, Nr1h4, and Lipc

are members of both gene sets while Hnf1a and Hnf4a are

members of V$HNF1_Q6. We discuss a subset of these proteins

next, highlighting liver-specific processes they participate in.

HNF1a and HNF4a. Hepatocyte nuclear factor 4a (Hnf4a) is

a nuclear receptor implicated in the regulation of numerous genes

associated with hepatic function [24–26], gluconeogenesis [27],

and activation of the metabolism of xenobiotics, including drugs

and pharmaceuticals [28]. It is known that both the HNF4 protein

and HNF1 protein can transactivate the HNF1 gene [29].

Although both genes are not very highly up-regulated, their

Figure 2. CS vs. HM CBPLN on day 2.
doi:10.1371/journal.pone.0015247.g002

Networks of Perturbed Biological Processes
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interactions with liver-specific genes Apoa2, Serpina1, Pcbd1,

Slc2a2, Slc10a1, Fabp1, and Pck1 suggest the activation of many

liver-related pathways.

Blood clotting (Plg and F2). Plasminogen (Plg) is a secreted

protein that is proteolysed to plasmin and angiostatin. Plasmin

dissolves fibrin in blood clots while angiostatin inhibits

angiogenesis. In Figure 6, the significantly up-regulated genes

that Plg interacts with include the serpin peptidase inhibitors

Serpina1 and Serpinf2, kallikrein B (Klkb1), and coagulation

factor XII (F12). Another important protein in Figure 6 is the

prothrombin precursor (Coagulation factor II, F2), which interacts

with F10, Fga, Fgg, Fn1, Proc, Serpina5, Serpind1, and Vtn. Most

of the interactions involving Plg and F2 have been included in

STRING via the KEGG pathway for complement and

coagulation cascades [19]. The complement system and blood

coagulation are a closely interacting pair of proteolytic cascades in

blood plasma that are activated after injury [30]. The blood

coagulation cascade culminates in the formation of thrombin, the

enzyme responsible for the conversion of soluble fibrinogen to the

insoluble fibrin clot.

Metabolism of xenobiotics (CYP2E1). Cytochrome P450,

family 2, subfamily E, polypeptide 1 (CYP2E1) encodes a member

of the cytochrome P450 superfamily of enzymes. Cytochrome

P450s proteins are monooxygenases, which carry out the liver’s

prominent role in xenobiotic metabolism and synthesis of

cholesterol, steroids and other lipids. CYP2E1 is an important

member of this family, implicated in the metabolism of exogenous

compounds such as benzene, carbon tetrachloride, ethylene glycol,

and substances found in cigarette smoke as well as endogenous

compounds including ethanol, acetone, and acetal [31–33]. In

Figure 6, CYP2E1 interacts with C2, Cyb5a, CYP4F1, Ephx1,

and Mgst1. The interactions of CYP2E1 with Cytochrome P450

Figure 3. CS vs. HM CBPLN on day 3.
doi:10.1371/journal.pone.0015247.g003

Networks of Perturbed Biological Processes
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4F1 (CYP4F1), Epoxide hydrolase 1 (Ephx1), and Microsomal

glutathione S-transferase 1 (Mgst1) are included in the KEGG

pathways for metabolism of xenobiotics by Cytochrome P450s and

for Arachidonic acid metabolism, which are sources of interactions

for STRING. Further support for the role played by CYP2E1

comes from the links to HSA00980_METABOLISM_OF_

XENOBIOTICS_BY_CYTOCHROME_P450 from V$HNF1_

Q6 and HSIAO_LIVER_SPECIFIC_GENES in the day 8

CBPLN (Figure 4). These links are mediated by the functional interac-

tions between CYP2E1 and members of the alcohol dehydrogenase

and glutathione s-transferase gene families (data not shown).

Lipid Homeostasis and Bile Acid Synthesis
Two of the most important functions that hepatocytes in the

liver carry out are lipid homeostasis and bile acid synthesis. These

two functions are intrinsically linked. As illustrated schematically

in Figure 7, the liver produces bile acids, which are secreted into

the small intestine, where they allow for breakdown of dietary fats

and uptake of fatty acids. Subsequently, the liver re-mobilizes these

fatty acids throughout the body via lipoproteins [34]. Lipoproteins

circulate fatty acids and cholesterol through the body in a cycle

that begins with the liver’s secretion of fatty acid-rich very low-

density lipoproteins (VLDLs) and ends with the liver’s uptake of

cholesterol-rich high-density lipoproteins (HDLs) [35]. The liver

then recycles these cholesterols or converts them into bile acids.

Our results capture the high-level relationships between these

processes, as displayed in the sub-CBPLNs involving nuclear

receptors, the PPARa signaling pathway, bile acid biosynthesis,

and fatty acid metabolism (Figures 8A–8D).

Before we examine some of these links in more detail, we stress

that the links in CBPLNs (e.g., the bi-directional links between

HSA03320_PPAR_SIGNALING_PATHWAY and HSA00120_

Figure 4. CS vs. HM CBPLN on day 8.
doi:10.1371/journal.pone.0015247.g004

Networks of Perturbed Biological Processes
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BILE_ACID_BIOSYNTHESIS) must be interpreted with cau-

tion. Both HSA03320_PPAR_SIGNALING_PATHWAY and

HSA00120_BILE_ACID_BIOSYNTHESIS are up-regulated in

CS cultures in contrast to HMs (Fig. 8C and Fig. 8D). Bile acids

directly induce the expression of PPARa [36], which supports

interpreting the observed link from HSA00120_BILE_ACID_

BIOSYNTHESIS to HSA03320_PPAR_SIGNALING_PATH-

WAY as a regulatory one. On the other hand, although it is

tempting to infer that the reverse of that link, from HSA03320_

PPAR_SIGNALING_PATHWAY to HSA00120_BILE_ACID_

BIOSYNTHESIS, also implies the PPARa pathway up-regulates

bile acid biosynthesis, such a conclusion may be incorrect. Since

the up-regulation trends arise from the comparison of CS cultures

to HMs, it is possible that bile acid production in CS cultures is

constant (or even decreasing) over time and that bile acid levels in

HMs are decreasing. In fact, when we compare the expression

values of these two gene sets exclusively within the CS cultures, we

observe that there is no statistically significant change between the

expression levels of the bile acid biosynthesis genes between days 3

and 8, and that there is a barely statistically significant up-

regulation of the genes in the PPARa signaling pathway between

the same two days (data not shown). Moreover, PPARa has been

shown to directly inhibit production of Cholesterol 7a-hydroxylase

(CYP7A1) [37,38]. CYP7A1 is the rate-limiting enzyme in the

classical pathway of bile acid synthesis from cholesterol [35].

Therefore, while we can conclude from the CBPLN that

HSA03320_PPAR_SIGNALING_PATHWAY may regulate

HSA00120_BILE_ACID_BIOSYNTHESIS, the mode of regula-

tion (e.g., induction or inhibition) requires more detailed study.

We also note modest changes in the interconnections between

the gene sets in Figures 8A–8D over the time-course. One example

is the disappearance of the link from HSA03320_PPAR_SIGNA-

LING_PATHWAY to HSA00120_BILE_ACID_BIOSYNTH-

ESIS from day 1 to day 2, followed by the reappearance of this

link at day 3. We attribute this behavior to a spurious report of the

link as significant at day 1, since we believe our methods may be

over-sensitive when very few genes are significantly perturbed in a

given contrast (as was the case for day 1). We are currently

investigating ways to improve the robustness of our methods in

reporting links for such scenarios.

Two other noticeable changes over the time series have

immediate biological interpretations. First, the link from NUCLE-

AR_RECEPTORS to HSA03320_PPAR_SIGNALING_PATH-

WAY appears at day 2, which we interpret as a regulatory

relationship reflected in the underlying functional interaction

network and the corresponding up-regulation of the two gene sets.

Second, the link from HSA00071_FATTY_ACID_METABO-

LISM to HSA03320_PPAR_SIGNALING_PATHWAY also

appears at day 2, which we interpret in light of feedback in the

fatty acid metabolic pathway. In the rest of this section, we discuss

the linkages between these three gene sets, anchoring our

discussing on the underlying functional interaction networks on

day 8 (Figures 9 and 10). We divide our discussion into three parts:

interactions of nuclear receptors with cytochrome P450 enzymes,

Figure 5. Context-free BPLN, constructed using the approach of Dotan-Cohen et al. [8]. Colors of gene sets represent perturbation
measured by GSEA for CS versus HM at day 8. Note that these perturbation values did not factor into the computation of the BPLN; we display them
only for the purpose of visual comparison with Figures 1–4.
doi:10.1371/journal.pone.0015247.g005
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the role played by PPARa, and the regulation of fatty acid

metabolism.

Interactions of nuclear receptors with cytochrome

P450s. In Figure 9, the nuclear receptors that contribute to the

linkage between NUCLEAR_RECEPTORS and the HSA03320_

PPAR_SIGNALING_PATHWAY are Hepatocyte Nuclear Factor

4a (Hnf4a), Liver Receptor Homolog-1 (Nr5a2/Lrh1), Liver X

Receptor a (Nr1h3/Lxra), PPARa, Nuclear Orphan Receptor

(Nr1h2/OR-1), and Retinoic acid receptors a, b, and c (RXRa and

RXRb, RXRg). The dense network of interactions involving

PPARa, RXRa, RXRb, and Nr1h3 have been incorporated into

STRING from curated pathway databases such as REACTOME

[11].

All these nuclear receptors exhibit increasing perturbation over

time, and interact with CYP7A1, a cytochrome P450 enzyme that is

a member of the PPAR signaling pathway. Note that CYP7A1 itself

shows no significant perturbation until day 8. We discuss the

support in the literature for a subset of the interactions with

CYP7A1. HNF4a has been shown to bind to the promoter regions

of CYP7A1, resulting in up to a nine-fold increase in production of

the CYP7A1 protein in vitro [39]. The literature suggests tenuous

regulatory connections between liver receptor homolog 1 (LRH-1,

or Nr5a2) and CYP7A1. In vitro studies have shown that Nr5a2 both

promotes and represses the expression of CYP7A1 [40,41]. In a

recent study, a knockout of Lrh-1 (Nr5a2) performed selectively in

cells that developed into mouse hepatocytes demonstrated that the

absence of Nr5a2 had little effect on expression of CYP7A1 [42].

Liver X receptors regulate cholesterol and lipid homeostasis in

multiple tissues via two isoforms: LXRa (Nr1h3), which is highly

expressed in liver, and LXRb which is more abundant in adipose

tissue, gut, kidney, and macrophages [43]. In contrast to the

connection between LRH-1 and CYP7A1, LXRa is well known to

Figure 6. Network of functional interactions resulting in the link between V$HNF1_Q6 and HSIAO_LIVER_SPECIFIC_GENES on day
8. In this and subsequent figures of such networks, each node represents a gene, and its color indicates the statistical significance of its perturbation
(up- or down-regulation) in the contrast between CS and HM on the corresponding day. A node’s shape represents its membership within the two
gene sets: a pentagon represents membership in the first gene set (i.e., V$HNF1_Q6), a rectangle represents membership in the second gene set (i.e.,
HSIAO_LIVER_SPECIFIC_GENES), and the house shape represents membership in both gene sets. Nodes with blue (respectively, green) borders are
those genes in the first (respectively, second) gene set that we mention or discuss in the text. An edge connecting two nodes represents a functional
interaction as predicted by STRING. To increase clarity, we do not display interactions between genes within the same set. Abbreviations: HNF1:
annotated with V$HNF1_Q6, LS: annotated with HSIAO_LIVER_SPECIFIC_GENES.
doi:10.1371/journal.pone.0015247.g006
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activate transcription of CYP7A1 in the presence of cholesterol

[44]. Thus, it is surprising that we did not observe significant

perturbation in expression of CYP7A1 until day 8. However, in vitro

studies indicate that CYP7A1 protein exhibits low turnover [35],

raising the possibility that the hepatocytes in both cultures had

ample amounts of the proteins up to day 3.

Another set of contributions to the linkage between these two

gene sets come from interaction of the nuclear receptors Hnf4a and

Nr5a2/Lrh1 with sterol 12a-hydroxylase (CYP8B1), a member of

the PPAR signaling pathway. CYP8B1 catalyzes a fate-determining

reaction in which cholesterol is ultimately converted into the

primary bile acid cholic acid, rather than chenodeoxycholic acid

[35]. The study of selective knockout of Lrh-1 (Nr5a2) in mice [42]

showed that, in contrast to the effect on the expression of CYP7A1,

the knockout caused a significant drop in expression of CYP8B1,

demonstrating a very strong regulatory relationship between Nr5a2

and CYP8B1 [42]. Additionally, strong experimental support for

Hnf4a promotion of CYB8B1 expression exists [45]. Thus, the

expression of CYP8B1 also increases over time, although it lags the

expression of its regulatory receptors Hnf4a and Nr5a2.

Nr5a2 is also predicted to interact with 27-hydroxylase

(CYP27A1), a mitochondrial cytochrome P450 enzyme that is

responsible for a step in the conversion of cholesterol to

approximately 25% of the bile acids in mouse [35]. We observe

an increase in the perturbed expression of CYP27A1 concomitant

to but lagging that of Lrh-1 (Nr5a2). The knockout of Lrh-1 led to

significantly decreased expression of CYP27A1 [42], supporting the

interaction of these two genes.

The role of PPARa. Next, we focus on the role played by

PPARa in the linkage between nuclear receptors and the PPAR

Figure 8. Subgraphs of the CBPLNs involving nuclear receptors and the PPAR signaling, bile acid biosynthesis, and fatty acid
metabolism pathways, on days 1 (A), 2 (B), 3 (C), and 8 (D).
doi:10.1371/journal.pone.0015247.g008

Figure 7. The liver regulates two tightly coupled pathways: bile acid synthesis and fatty acid metabolism. Abbreviations: VLDL: very
low-density lipoprotein, HDL: high-density lipoprotein.
doi:10.1371/journal.pone.0015247.g007
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signaling pathway. PPARs are a class of nuclear receptors

responsive to fatty acid ligands. PPARs have been divided

among three known subtypes, a, b=d, and c, with each subtype

occurring in distinct tissues and effecting differing biological

responses. Liver cells express PPARa, which is responsible for the

regulation of fatty acid uptake and catabolism [46,47]. In our data,

only PPARa shows increasing expression in CS cultures,

compared to HMs; the other PPARs are not significantly

different between the two culture systems.

In Figure 9, the significantly perturbed members of the PPARa
pathway that PPARa interacts with include Scd1, Fabp1, Apoa2,

Lpl, Acox1, Cpt1a, and CYP7A1. PPARa has been shown to

promote expression of these genes by binding to their upstream

Peroxisome Proliferator Regulatory Element (PPRE) regions as a

heterodimer with RXRa (reviewed in [48]). We note that RXRa
shows significant up-regulation in CS versus HM, as well (Fig. 9).

RXRa has been shown to be particularly highly expressed in the

liver [49]. RXRb, however, tends to have low expression levels

across all tissues [49]. The significant up-regulation of RXRc in

CS versus HM is somewhat puzzling, given that RXRc tends to be

exclusively expressed in the brain, anterior pituitary, and skeletal

muscle [49–51], where it is responsible for triglyceride uptake and

metabolism [52]. We discuss a subset of the interactions involving

PPARa next.

Stearoyl-Coenzyme A desaturase 1 (D9-desaturase, Scd1) is the

main hepatic isoform of SCD. Scd1 helps catalyze the rate-limiting

step in the synthesis of monounsaturated fatty acids, particularly

the production of palmitoleic acid and oleic acid from palmitic

acid and stearic acid, respectively [48,53]. LXRa indirectly

regulates transcription of Scd1 through activation of transcription

of sterol regulatory element binding protein (SREBP) 1c [54,55],

an activator of Scd1 transcription [56,57]. Additionally, LXRa

Figure 9. Network of functional interactions resulting in the link between NUCLEAR_RECEPTORS and HSA03320_PPAR_SIGNA-
LING_PATHWAY on day 8. Abbreviations: NR: annotated with NUCLEAR_RECEPTORS, PPAR: annotated with HSA03320_PPAR_SIGNALING_
PATHWAY.
doi:10.1371/journal.pone.0015247.g009
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directly activates Scd1 transcription through an upstream response

element [58]. PPARa has also been demonstrated to directly

activate transcription of Scd1 [59]. Thus, our observation of

increasingly significant changes in expression for LXRa and

PPARa, and a similar trend in Scd1, runs in accordance with

previous studies.

The interaction of Fatty Acid Binding Protein 1 (Fabp1, L-

FABP) with PPARa through protein-protein contacts is thought to

promote the expression of proteins involved in fatty-acid oxidation

and gluconeogenesis [60,61]. Included among these genes is

Fabp1. Thus, it regulates its own expression through PPARa.

Regulation of fatty acid metabolism by nuclear

receptors. The genes in NUCLEAR_RECEPTORS are

responsible for initiating cellular responses to a wide variety of

conditions and for starting appropriate signal cascades. The

nuclear receptors in HSA03320_PPAR_SIGNALING_PATHWAY

are the specific subset responsible for initiating the signaling cascade

leading to the breakdown of long chain fatty acids [48]. The gene set

HSA00071_FATTY_ACID_METABOLISM contains the full con-

tingent of genes responsible for the catabolism of fatty acids.

HSA03320_PPAR_SIGNALING_PATHWAY acts as a bridge

between the two general classes of genes, NUCLEAR_

RECEPTORS and HSA00071_FATTY_ACID_METABOLISM.

Figure 9 shows the interactions of individual genes in NUCLEAR_

RECEPTORS with those in HSA03320_PPAR_SIGNALING_

PATHWAY responsible for the upstream processes of fatty-acid

catabolism, including uptake, such as L-FABP (Fabp1) and

early-stage fatty-acid b-oxidation in the peroxisome, such as acyl-

Coenzyme A oxidase 1 (Acox1) [48]. Figure 10 shows the indivi-

dual genes in HSA03320_PPAR_SIGNALING_PATHWAY that

Figure 10. Network of functional interactions resulting in the link between HSA03320_PPAR_SIGNALING_PATHWAY and
HSA00071_FATTY_ACID_METABOLISM on day 8. Abbreviations: PPAR: annotated with HSA03320_PPAR_SIGNALING_PATHWAY, FAM:
annotated with HSA00071_FATTY_ACID_METABOLISM.
doi:10.1371/journal.pone.0015247.g010
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interact with those in HSA00071_FATTY_ACID_METABOLISM

responsible for later stages of b-oxidation in the mitochondria, such as

acetyl-Coenzyme A acyltransferase 2 (Acaa2) and hydroxyacyl-

Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/

enoyl-Coenzyme A hydratase b (Hadhb) [48]. Thus, the signals

from NUCLEAR_RECEPTORS are transferred to HSA00071_

FATTY_ACID_METABOLISM via the subset of nuclear receptors

that are members of the PPAR signaling pathway, a chain of events

that we are able to recover in the CBPLNs.

Interpretation of Links in CBPLNs
Keeping the examples of the previous sections in mind, we now

discuss how links in CBPLNs might be interpreted.

Regulatory relationship. Gene set a may contain genes

whose products regulate genes and/or their products in gene set

b. An example is the linkage from NUCLEAR_RECEPTORS

to other gene sets such as HSA03320_PPAR_SIGNALING_

PATHWAY and genes involved in cellular lipid metabolism;

many liver-specific nuclear receptors such as LXRa and HNF4a
regulate critical hepatic processes.

Multi-input motif. Multiple gene sets may link to a gene set

b, suggesting that the expression of genes in b is regulated by genes

in multiple other sets. Such a phenomenon is called a ‘‘multi-input

motif’’ in the case of a gene being regulated by multiple trans-

cription factors [62]. An example is HSIAO_LIVER_SPECIFIC_

GENES and links to this gene set from V$HNF1_Q6 and

NUCLEAR_RECEPTORS.

Feedback. Links that exist in both directions between a and b
may suggest that a regulates b and that b receives a feedback signal

from a. This phenomenon may be observed within CBPLNs when

the link is unidirectional at some time points and bidirectional in

later time points. A specific example is the linkage between bile acid

biosynthesis and HSA03320_PPAR_SIGNALING_PATHWAY,

which is unidirectional on day 2 (Figure 8B) but bidirectional on

days 3 and 8 (Figures 8C and 8D).

Downstream in the signal flow. A link from process a to

process b and another from b and process c may suggest that c lies

downstream of a. An instance of this feature is the link from

NUCLEAR_RECEPTORS to HSA03320_PPAR_SIGNALING_

PATHWAY and the link from HSA03320_PPAR_SIGNALING_

PATHWAY to HSA00071_FATTY_ACID_METABOLISM in

Figure 8B.

Multi-functional gene set. A gene set a that has many

incoming links and/or many outgoing links might be an example

of a multi-functional gene set. A prominent example in our

CBPLNs is the central HSIAO_LIVER_SPECIFIC_GENES

gene set. As we remarked earlier, the links incident on this gene

set suggest what other processes the genes in HSIAO_LIVER_

SPECIFIC_GENES may regulate or be connected to. Clearly,

such a feature depends on how a gene set is defined. For example,

many biological processes in the Gene Ontology such as ‘‘response

to stress’’ are themselves composed of well-defined and

functionally-coherent processes. Similarly, the genes that are

perturbed by a particular stimulus may participate in a wide

variety of processes. CBPLNs can situate such genes in a rich

context within the underlying network of molecular interactions.

Conclusions
We have presented an approach that represents cellular

responses at the granularity of biological processes and connec-

tions among them. Our approach extends the work of Dotan-

Cohen et al. [8] by integrating transcriptional data (the ‘‘context’’)

with functional interaction networks. We focused our analysis on

nearly 20 MSigDB gene sets we had identified as up-regulated in

hepatocyte cultures in an earlier study. CBPLNs revealed

numerous meaningful connections between different biological

processes and gene sets, which we were successful in interpreting

within the context of liver metabolism. Links and local network

features in CBPLNs are generalizations of diverse physiological

phenomena such as regulation, feedback, and downstream signal

flow from the gene/protein level to the scale of biological

processes.

Our approach is a complement to a suite of methodologies that

integrate physical, signaling, regulatory, and functional networks

with measurements of molecular profiles such as transcriptional,

proteomic, or metabolic data to compute the response network, which

may be defined as the sub-network of interactions that are

perturbed in a particular condition. A wide variety of methods

have been developed for computing such response networks [63–

67]. Response networks are typically interpreted by computing

which biological processes are enriched in them. In contrast,

rather than compute the entire response network, we focus on

discovering connections between perturbed biological processes.

Since response networks can include genes without any annota-

tions, they can be used to predict biological processes to which

unannotated genes belong [68]. In contrast, only genes annotated

to some biological process can contribute to CBPLNs. A detailed

comparison of CBPLNs to response networks and the develop-

ment of methods that combine both approaches will be the focus

of future research.

Generalizing our approach to the entire spectrum of MSigDB

gene sets or to the set of all biological processes in the Gene

Ontology raises several interesting challenges. First, gene sets can

have considerable overlap, leading to redundant links. Second,

scaling this approach up to thousands of gene sets may result in

tens to hundreds of thousands of links that are deemed to be

statistically significant. This deluge of links will be hard to

interpret. Third, it will be challenging to computationally scale our

permutation-based sampling to the large number of process pairs

we will have to test. We are currently investigating these issues.

In this work, we computed CBPLNs for two conventional

hepatocyte culture systems. Three dimensional liver mimics

[69,70] and microscale co-culture systems [71] have shown

improved retention of hepatic phenotype over conventional

systems. In the future, we plan to apply CBPLNs to liver mimics

and co-culture systems in order to obtain insights into the inter-

cellular signaling mechanisms that confer improved hepatic

phenotype. More generally, our approach may provide a novel

route to explore, analyze, and interpret cellular responses to

internal and external cues.

Materials and Methods

Measuring perturbation from gene expression data
We applied Linear Models for Microarray Data (LIMMA) [72]

to the DNA microarray data to compute expression p-values

indicating the differential expression of each gene for each of the

four contrasts shown in Table 1.

Scoring a link between a pair of processes
We first present the approach developed by Dotan-Cohen et al.

to identify linkages between biological processes [8]. Given an

intracellular interaction network for an organism and Gene

Ontology annotations for the genes in those networks, Dotan-

Cohen et al. compute what they term a Biological Process Linkage

Network (BPLN). Informally, given two biological processes, they

defined the first process as being linked to the second process if

genes annotated by the first process interact with a significant
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number of genes annotated by the second process. By definition,

such links are directed. The resulting output of the algorithm by

Dotan-Cohen et al. is, for each ordered pair of processes, the

probability that the first process is linked to the second.

Formally, let F be the set of all biological processes. We seek

to ask ‘‘Given two processes a,b[F , is process a linked to process

b?’’ More specifically, of the genes that are neighbors of those

annotated by a, are many more annotated with b than would be

expected by chance? Let V be the set of all genes in an organism.

Let Va(V be the set of genes annotated by process a[F , and let

the universe U~
S

a[F Va, be the set of all genes annotated by at

least one process in F . Let G(U ,E) denote an undirected

interaction graph where E is the set of undirected edges (u,v),
each representing an interaction between genes u,v[U . We

define the set Na as the set of genes v that meet the following

criteria:

1. gene v neighbors at least one gene u annotated with a

2. gene v is not annotated with a.

In other words,

Na~fv : V(u,v)[E, u[Va, v 6[Vag,

Next, we define eNNab~Na\Vb, i.e., the set of genes that are

neighbors of genes annotated with a, are not annotated with a

themselves, and are annotated with process b. We define the link

p-value p(a,b) as the probability that, if we selected a set X of DVbD
genes uniformly at random from U , the set Na\X would contain

DeNNabD or more genes. We can compute this link p-value as the tail of

a hypergeometric distribution:

p(a,b)~
XminfDVb D,DNa Dg

k~DeNab D

DNaD
k

� �
DU{NaD
DVbD{k

� �
DU D
DVbD

� �

If this link p-value is significant at some cutoff a, we conclude that

process a is linked to process b.

Extending the score to include transcriptional data and
interaction weights

With this background, we extend the formulation of BPLN to

take transcriptional measurements and interaction weights into

account. For each interaction (u,v) in the graph G(U ,E), we use

wuvw0 to denote its weight. The larger the weight of an

interaction, the larger is our belief that u and v indeed interact

functionally in the cell. We define a scoring function s(v) : V?Rz

that maps genes to a non-negative real number representing their

degree of perturbation in a given biological context (e.g., CS day 8

versus HM day 8). In this work, we compute s(v) as absolute value

of the logarithm of the LIMMA p-value of the gene. Given

processes a and b, we first define a score t(v,a) : U?Rz.

The function t measures the contribution of the neighbors of v

annotated with term a based on their perturbation. Ideally, if at

least one neighbor of v that is annotated with a is highly perturbed,

we desire that t(v,a) take a high value. On the other hand, if no

such neighbor of v is highly perturbed, we desire that t(v,a) take a

small value. Naturally, the weights of the interactions should also

play a role in t(v,a). Accordingly, we define

t(v,a)~ maxfwuvs(u) : (u,v)[E, u[Vag,

i.e., t(v,a) is the maximum weighted score of all neighbors of node

v that are annotated with process a.

We define the contextual linkage score s(a,b) between processes a

and b as the following:

s(a,b)~
X

v[eNab

s(v)t(v,a):

Figure 11 contains a toy example that illustrates these concepts.

Thus, a node v annotated by a makes a large contribution to the

contextual linkage score s(a,b) if v shows a high amount of

perturbation in a particular context and if the neighbors of v

annotated by a also show a high amount of perturbation. If we

have many such nodes v, then s(a,b) itself will be large. Note that

if we set s(v)~1 for all v[U and if all edges have weight 1, then

s(a,b) is equal to the size of ab, identical to the score computed by

the original BPLN algorithm.

In this formulation, some pairs of processes may have a high

contextual linkage score even if all genes were perturbed by the

same amount. To account for this possibility, we compute a

normalized score s�(a,b)~s(a,b){s’(a,b), where s’(a,b) is a

background score computed in the same manner as s(a,b), but,

after setting the gene perturbation score s(u) equal to the average

expression s~
P

u[U s(u)=DU D for all genes u in U . Thus, s’(a,b)
represents the score for the link between processes a and b if all

genes had the average expression score.

Assessing the statistical significance of links
Since the contextual linkage score is a weighted generalization

of the statistic measured by Dotan-Cohen et al. it is unclear how to

compute its statistical significance analytically. Therefore, we use

two different approaches in order to assess the significance of the

observed score s(a,b) empirically.

1. The first approach is an empirical version of the test performed

by Dotan-Cohen et al. [8]: what is the probability that we

would observe a score s(a,b) or more if we were to randomly

select the nodes annotated with b? Specifically, we repeatedly

select a set X of size DVbD uniformly at random without

replacement from U and calculate s(a,b) for each of these

random selections. After performing the step 10,000 times, we

Figure 11. Calculating the links score s(a,b) in an example

network. Nodes with bold borders (w, x, and y) represent genes in eNab.
Bold edges indicate the interactions contributing to s(a,b).
doi:10.1371/journal.pone.0015247.g011
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return the fraction of random scores that are larger than the

observed value of s(a,b) as the link p-value p(a,b).

1. Two different processes may annotate some genes in common.

To preserve this property even in the random selections of the

set X over different processes, we adopt the following

approach: we construct a bipartite graph H in which a node

is a gene or a biological process and an edge connects a gene to

a biological process it is annotated with. We randomly permute

the labels of the genes in this graph. To generate a random set

X of size DVbD, we simply select the genes annotated with b in

the bipartite graph with randomized gene labels. These steps

create a randomized set of annotations that satisfy two

properties: (a) every process annotates the same number of

genes as in the original set of annotations, and (b) if k genes are

annotated by each process in a set of processes P(F , then

these processes co-annotate exactly k genes in the randomized

dataset as well.

2. The second approach accounts for the role played by the

interactions between the genes in Va and genes in Vb.

Therefore, we generate a graph G’(U ,E’) with the property

that each node v[U has the same degree in G’ and G. We

measure the contextual linkage score between a and b with

respect to G’. We generate G’ 10,000 to build a null

distribution for the contextual linkage score, and compute the

link p-value p(a,b) as before.

2. To construct G’, we follow the ‘‘edge-swap’’ approach [73]. We

begin with the set of edges E’~E and modify the edges in E’
with pairwise edge swaps. For each edge swap, we first select a

pair of edges (u,v),(x,y)[E’. We then select, with equal

probability, either (u,y),(x,v) or (u,x),(v,y) (i.e., the edges

created by swapping the endpoints of the original pair of edges)

as a candidate edge pair. If either candidate edge already exists

in E’ or creates a self-loop, we retain the original pair of edges

in E’, i.e., we do not perform the edge swap. Otherwise, we

remove the original edges (u,v),(x,y) from E’ and insert the

new edges into E’. In total, we perform kDED edge-swap events

to create a randomized graph G’, where k is a user-defined

parameter. In this work we used k~10.

We use the method of Benjamini and Hochberg [20] to correct

for testing multiple hypotheses, while ensuring that the corrected

link p-values are monotonic [74]. For either approach, if

p(a,b)ƒ0:01, we say that term a is linked to b in the given

biological context.

Supporting Information

File S1 File S1 is in tab-separated values format. It contains

results of comparisons on the number of links identified to be

significant under the two hypothesis tests, as well as under the

original BPLN algorithm by Dotan-Cohen, et al. [8], which does

not consider gene expression data. Six tables are given for different

pairwise comparisons of hypothesis tests. In the table headers,

‘‘gene set’’ indicates testing the significance of a link when

compared to a distribution of scores calculated from randomized

annotations, ‘‘network’’ indicates testing the significance of a link

when compared to a distribution of scores calculated from a

randomized network, ‘‘normalization’’ indicates the scores were

normalized by deducting the score calculated for averaged

expression, and ‘‘bpln’’ indicates testing the significance using

the original BPLN algorithm. Column headers of tables are

defined as follows: ‘‘day’’ indicates the time point of the contrast;

‘‘in both’’ indicates the number of links found to be significant in

the two compared hypothesis tests (e.g., gene set randomization

and network randomization); ‘‘first only’’ indicates the number of

links found significant under the first hypothesis test (e.g., gene set

randomization); ‘‘second only’’ indicates the number of links found

significant under the second hypothesis test (e.g., network

randomization); ‘‘neither’’ indicates the number of links not found

significant under either hypothesis test; ‘‘intersection significance’’

indicates the significance of the number of links found significant

under both hypothesis tests versus what would be expected by

chance, as assessed under Fisher’s Exact Test.

(TSV)

File S2 File S2 is in tab-separated values format. It contains

results of comparisons between the two different hypothesis tests,

as well as the original BPLN algorithm by Dotan-Cohen, et al. [8].

Four sets of tables appear indicating the comparison of results at

different cutoffs for considering a link to be significant. The

header of each set indicates the cutoff used: 0.005, 0.01, 0.05, or

0.1. In each set of tables, the first set is the pairwise comparison

under the two hypothesis testing methods of gene set randomi-

zation and network randomization, using normalization. The

column headers for this table are defined as follows: ‘‘Gene set

randomization normalized’’ indicates the number of links found to

be significant under gene set randomization with normalization;

‘‘Network randomization normalized’’ indicates the number of

links found to be significant under network randomization with

normalization; ‘‘Intersection’’ indicates the number of links found

significant under both forms of randomization; and ‘‘Jaccard

index’’ indicates the ratio of the size of the intersection of the sets

of links significant under the two tests to the size of their union. In

the second table of each set, the results under the original BPLN

algorithm are compared to those of the two hypothesis tests. The

column headers for this table are defined as follows: ‘‘BPLN’’

indicates the number of links found significant under the original

BLPN algorithm; ‘‘Gene set randomization normalized’’ and

‘‘Network randomization normalized’’ are identical to the first

table; ‘‘Intersection’’ indicates the number of links found

significant under the original BPLN algorithm and the respective

hypothesis test (e.g., under gene set randomization); ‘‘Jaccard

index’’ indicates the ratio of the size of the intersection of the sets

of links found significant under BPLN and the respective

hypothesis test to the size of the union.

(TSV)

File S3 File S3 contains scatter plots of link p-values for links

found to be significant (p-value ƒ0:01) by least one of the

hypothesis tests (based on gene set randomization or on network

randomization) with normalization. Each plot corresponds to a

single day. Each point on a plot corresponds to one pair of

processes, with the x-coordinate being the p-value from gene set

randomization and y-coordinate representing the p-value from

network randomization. In each plot, both axes are on a

logarithmic scale.

(TIFF)
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