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DI. lNTRODUCTION 

The problem of interpolating a function between given points is a 

very f\lndamental one with some of the earliest work dating back to that 

of James Gregory in 1670 [6]. The most general fonn of the Gregory-

Newton series is given by Norlund [5] as 

<XI 

f(Z) = I (2 s a) 6 8 f(a), 
S=O 

Nonnal1Y the value of a is taken as an integer. For example, if 

a = O, equation (1) yields 

f(Z) = f(O) + Z 6f(O) + Z(Z ~ l) 6 2 f(O) 
2. + • . • 

(l) 

(2) 

Layman [4] and [4a] with Pitts [4b] has investigated an interpo-

lating series somewhat similar to equation (2) as follows: 

z z z 
f(Z) = lz f{O) + (2Z - lz) 6f(O) + 3 - 2"2 + l 6(6 - l)f(O) + • 

2! 

Equation (3) can be written more compact1Y as 

<XI 

,, ( ) 
f(Z) = l u~! z 6(n) r(o), 

n=O 

1 

(3) 

(4) 
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where 

z 
- m + 1) , (5) 

6(n) = 6(6 - 1) (6 - n + 1). 

A fundamental question concerning equation (4) is how large a. 

class of functions does the series represent. That this class of 

!'unctions is not empty is evident from the following example. 

f(Z) = 22 

f( 0) :::; 1 

6f(O) == f(l) - f(O) = 2 - 1 = 1 

6(6 - l)f(O) = 62 f(O) - 6f(O) == f(2) - 3f(l) + 2f(O) = 4 - 6 + 2 = 0 

All higher 6(n) f(O) are also zero, and substituting into equation (3) 

we get 

The purpose of this paper is to determine a set of conditions on 

f(Z) which will guarantee that equation (4) does indeed represent a 

large class of functions. To establish this fact, the general function 

will be represented by a kernel expansion; its validity will rest on 

the uniform convergence of a particular Gregory-Newton series. 



V. THE KERNEL EXPANSION 

The purpose of the following discussion is to review the tools 

necessary to use the kernel expansion. These tools include the basic 

technique of representing a given function by the method of kernel 

expansion and particular examples which lead to results that will be 

needed later in the paper. These examples include the development of 

the Cauchy integral from the kernel expansion and the development of 

the NcClaurin and Gregory-Newton series from the Cauchy integral. 

The kernel expansion method is a very general technique by which 

analytic functions mew be represented in an integral form. Several 

sources have treated the kernel expansion technique in considerable 

detail with the individual and collective works of Boas and Buck [1], 
[1~, [2], and [2a] being among the most complete. The following dis-

cussion generally follows the development in references [1a] and [2] 
which gives the following general form: 

3 

f(Z) - 2~i ~ K(Z,ro)F(m)dro. (6) 

A few connnents about each of these terms is in order. The function 

f(Z) is regular in a prescribed domain and can be written as 

00 

f(Z) = i n fnZ • 
n=O 
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The f1.U1ction K(Z,ro) is the kernel of the expansion and is analytic 

for (Z,ro) in an open set A containing the plane Z = o. The f\mction 

K(Z,ro) is normally restricted to the form 

K(Z,ro) = f(2ID), 

with 
00 

i(Zm) = L *n[®]n' 
n=O 

With these two definitions we may now define 

00 

F(w) 

The contour r is taken as a contour outside of which and on which F(w) 

is regular. 

A particularly significant result occu.rs for the case 

for which we have 

f(Z) l 2ID e F(w)dro. 
21t'i 

This gives the relationship between the f\mction f(Z) a.nd its Borel 

(or in this case Laplace) transform.. This expression for f(Z) is 

also known as the Polya representation a.nd any entire function of 

exponential type has a representation of this form. 



Sufficient information has now been developed to justify this 

approach and to outline the remaining necessary steps. Consider now 

a set of :functions, %(Z), from which we wish to construct a given 

:function f(Z) as 

5 

f(Z) = L Cn~(Z) • (7) 
n 

The method of kernel expansion provides a means of selecting the 

proper <;i's in a systematic manner to ensure convergence of the sum-

mation to the given :function. This is accomplished by selecting a 

second sequence of functions Pn(CD) such that 

f(?m) = ~ %(Z)Pn(CD) (8) 
n 

converges uniformly on the contour r. We may now use f(?m) as the 

kernel of an expansion as in equation ( 6). This yields 

f(Z) 
l Ir f(Zm)F(CD)dru =-

2n:i 

1 Ir I Q,n (Z)Pn (CD)F(ru)dro 2n:i 



wnere the interchange of the summation and integration is justified by 

the previously specified uniform convergence of the left-hand side of 

equation (8). This can be further reduced to 

·where 

- ..2:_ j" Pn (m)F(ru)dro 
2rci r 

is a linear functional which assigns a number to the function f. The 

value of 1n ( f) is the desired <;i in equation ( 7). 

As an example of this, consider the sequence of functions {zk), 
which takes the role of the Qn' s, and an associated set { mk }, which 

takes the role of the Pn's; these functions result in the kernel 

IZLDI < 1 . 
1 - Zm 

This notation can be directly compared with equation (8). Continuing 

in the same manner, we obtain 

f(Z) - _!_ J,_ F(ru) dill • 
2:rci r 1 - Zm 

6 



7 

By the definitions following equation (6), we have 

00 
~ 

~ ( Zm) = L (ZLO)k, with l!rn = l, 
k=O 

00 

f(Z) I n = fnZ , 
n=O 

F(m) 

Substituting F(ro) into the above equation for F(Z) yields 

f(Z) = ~ ).··. f(~) din. 
2rci r m(l - ZLO) 

Substituting T '" ~ into the last integrand, noting that dm = - 4 dT 

and that this substitution reverses the path of integration, we get 

f(Z) - ..2:_ 1· !i.!l_ d T. 
2rci J' T _ z (9) 

This is the Cauchy representation of an analytic function. Rearra.ng-

ing the terms of equation (9) and returning to the m notation, we 

have 

f(Z) = 2!i Ir f~ru) 'i (~t din. 
k=O 
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Since we have uniform convergence of the series, we may write 

00 

f(Z) = i zk ..L 1 f(w) dro 
2lti r~ k=O 

00 
-··· 

= l zk1k(f), 
k=O 

where 

by the basic property of the Cauchy integral. Thus we see that by 

proper selection of a kernel we have arrived at the MacLaurin expansion. 

In the process of this development we have obtained the Cauchy repre-

sentation through a kernel expansion. We have also seen that the linear 

functional, Ln(f), can be interpreted as the Nth derivative evaluated 

at zero and divided by N!; these are the numerical coefficients of the 

McClaurin expansion. 

If a slightly different approach had been taken after equation (9), 

the Gregory-Newton series would have followed instead of the McClaurin 

series. To arrive at this latter result, the following substitution is 

required in equation ( 9) [5 J 

1 _ 1 + Z + Z(Z - 1) 
co - Z - ~ w(w - 1) w(w - 1 Hw - 2) 

+ •.• Z(Z - l) ..• (z - n) 
w(m - l) ••• (m - n)(w - Z) 
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Since there are only a finite number of terms, we may substitute this 

into equation (9) to obtain 

f(Z) = _l_ j- f(w) dw 
2l't"i r w - z (9) 

1 f(w) + Zf(w) 
w ro(ro - 1) 

+ • • . z(z - l) ... (z - n)f(ro) 
~--~~-'-~--~-'-~~am, 
ro(w - 1) ... (w - n)(w - Z) 2rci 

(10) 

and integrate term by term. The first term yields f(O) by the basic 

property of the Cauchy integraJ.. The second term yields 

1 
2rci J Zf(w) dw = ~ j'" f(w)[- ! + l l dru 

r ro(w - 1) 2ni r ro w - ~ 

_ _!._ j' _ f(w) dw + _!._ j,. f(ro) dw 
2rci r w 2ni r w - 1 . 

= -Zf(O) + Zf(l) 

=ZM(O). 

Considering each term individuaJ.ly in equation (10), we obtain 

the following result 

f(Z) = f(O) + z 6.f(O) + •• • Z(Z - l) ... (z - n + 1) b.n f(O) 
n! 

+ -2:_ 1· Z(Z - 1) ••• (Z - n)f(w) dro· 
2rci r ro(w - 1). • • (w - Z) 

Equation (11) is the Gregory-Newton expansion with remainder. 

(11) 



VL THE GREGORY-NEWTON SERIES AND ITS CHARACTERISTICS 

To make later development more straightforward and to develop 

some required characteristics of the Gregory-Newton series, it is 

appropriate to look at an alternate development. This approach utilizes 

the kernel expansion directly and closely follows the work of Buck 

[2]. This development leads to several theorems on the convergence 

properties of the Gregory-Newton series, but the principal advantage 

is to acquaint the reader with certain steps that will be used in 

developing the exponential interpolating series. 

Let K be the class of entire functions of exponential type, 

{Tn} be a sequence of linear functionals defined on all or part of K, 

and Cc:: K be a uniqueness class for {Tn)• (fEC and Tn(f) = 0 for 

all n implies f = o. ) Now further suppose it is possible to find 

a sequence of functions {%(Z)) which are orthogonal to (TJ, that is, 

Tn ( Qm) = 0 for all n I m, while Tn {Qn) = 1. Then we may attempt to 

represent any function f(Z) by the series 

00 

This is referred to as an interpolating series for {Tn), [2], provided 

it converges. 

From the similarity of forms between this and equation (8), it is 

appropriate to define Tn analogous to Lri as 

10 



where F(ro) is the Borel transform of f(Z), Pn(w) is known as the 

generating f'unction for Tn(f), and r is a circle outside of which 

and on which F(w) is regular. 

To obtain the Gregory-Newton series from this approach, we take 

ll 

as the generating f'unction Pn(ro) = (em - l)n and the f'unctions Qn(Z) 

as the polynomials Qn(Z) = Z(Z - 1) ••• (Z - n + l)/n!. This will 

yield a i'unctional {Tn}, Tn = tP f ( 0) as can be seen by the following 

development. 

The Pol.ya representation gives 

Likewise, 

By definition 

or 

M(O) 

1 
21(i 

f(Z) 

f(Z + 1) 

61'(0) 

- 2:_ j'"' e'Zm F(ro)dw. 
21(i r 

= _!__ Jr·. e (Z+l )ro F(ro)aro. 
21(i 

= r<z + i) - r<z)I , 
Z=O 

(el" - 1 )F(w )dw 

(12) 
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The desired result of 

(13) 

therefore follows directly. 

Based on this type of development, Buck [2] has proved several 

theorems relating the growth properties of entire :f'unctions and the 

convergence properties of the Gregory-Newton series. Since they only 

apply to entire f\mctions, they will not be applicable to the problem 

that must be considered later. A theorem that will apply is that of 

N"orlund [5]· The series (1) referred to below is essentially equa-

tion (1) of this paper, and N0 is a bounded sector in the complex 

plane lying to the right of an arbitrary, noninteger point 

Theorem (Norlund [5] ) 
Si la serie (1) converge pour Z = Zq = cr0 + iT0 : 
I Elle converge en tout point situe a droite de R(Z) = a0 
II Elle converge uniformement dans le secteur N0 

Si une fonction F(Z), holomorphe da.ns le demiplane a ~a, 
y satisfait a l'inegalite 

IF(a, + reiv)I < erl((v) (1 + r)i3+E(r), 

'((v) == cos v 2n(2 cos v) + v sin v, (- .!!. < v < .!!.), 2- -2 
OU la fonction E(r) tend uniforrnement vers zero quand r 
augmente indefiniment, elle adlnet un developpement de la formi 
(1), dont l'abscisse de convergence est inferience OU egale au 
plus grand des nombres a,s + 1/2. 



A translation of these theorems is as follows: 

If the series (1) converges for Z = Z0 = a0 + iT0 : 

I It converges at all points lying on the right of R(Z) = cr0 

II It converges uniformly within the sector N0 

If F(Z) is an analytic f'unction, holomorphic in the semiplane 

a > a, and there satisfies the inequality 

-E.<v<E., 
2- -2 

when the f'unction E(r) tends uniformly to zero as r ~oo, then the 

f'unction can be represented by the Newton expansion, and its abscissa 

13 

of convergence is less than or equal to the greater of the two numbers 

a., j3 + 1/2. 

As Norlund points out several places in his book, the provision 

Z f integer must be made in each of these theorems. Also the usual 

definition of a holomorphic f'unction [7] as one which is single valued, 

continuous, and differentiable in the domain under consideration is 

intended. Another definition is required for "the abscissa of conver-

gence." 

Translating directly from Norlund [5], we have 

It results from Theorem I that a real number A exists 
such that series I converges at a > A1 and diverges at 
a < A. The domain of convergence is therefore a semi-
pla.ne limited at the left by the line cr = A· This line 
is called the line of convergence, and A the abscissa 
of convergence. 



Since uniform convergence is of major importance as required by 

the interchange of summation and integration in the kernel expansion, 

this region has been illustrated in figure l for the Gregory-Newton 

series. 

I(Z) 

Figure 1.- Region of uniform convergence of the 
Gregory-Newton series. 

This contrasts rather sharply with the power series which exhibits a 

circle of convergence. The requirement that Z not be an integer is 

necessary because the series truncates for positive integer values of 

z. Norlund [5] gives the following example: 

00 

= \ asZ(Z-1) ••• (Z-S+l) 
L s. 

S=O 

If lal > 1, the series will converge for ari:y positive integer value 

Z since the summatfon will eventually truncate; however, it will 

diverge for all other values of z. 

14 



VII. DEVELOPMENT OF THE EXPONENTIAL INTERPOLATOO. SERIES 

Let us now consider the following example of the Gregory-Newton 

expansion (i.e., the expansion of the function) 

f(U) = uZ. 

Note that this is to be looked upon as a function of U, not of z. 

This will be expanded according to equation (1) with a = 1. The first 

few coefficients are 

z f(l) = 1 , 

Lrl'(l) = f(2) - f(l) = 2Z - lz, 

l::!.2 f(l) = f(3) - 2f(2) + f(l) = 3Z - 2.2Z + lz. 

The series takes the form 

. 3Z - 2.2z + lz 
f(U) = uZ = lz + (2Z - lZ)(U - 1) + (U - l)(U - 2) + 

2! 

or more compactly 

Loo-"\ Un (Z )(U - 1) (n) 
f(U) = , 

n! 
n=O 

15 

. . . , 
(14) 

(15) 



where Un(Z) is given by equation (5) and 

(n) ( u = u u - 1 )(u - 2). • • (u - n + 1) . 

Instead of considering the variable u, we may write 

and consider ro as the variable. Then we may further write 

a.nd formally substitute into equation (15), obtaining 

n=O 

If this is uniformly convergent, it m8lf be used as a kernel in the 

sense of equation (18) and we obtain 

f(Z) - .2:_ j' e?m F(ro)dro • 
2:rri r 

Substituting equation (17) into the above gives 

\ · Un ( Z) 1 j ( n ) 
f(Z) = L nr- 2;i r (e(f) - 1) F(rn)dro 

n=O 

L-, Un(Z) ( ) 
= --Mf, n! n 

n=O 

16 

(16) 

(17) 

(18) 
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where 

(ea> - l)(n) F(m)dc.o. (19) 

As in the previous examples (MacLaurin expansion and the Gregory-

Newton expansion using In(f) and Tn(f) ), a more useful interpretation 

can be obtained for Mn(f ). The difference between equations (19) and 

(13) should be noted. In equation (13), 11n11 indicates exponentiation, 

while in equation (19), "(n)" is defined by equation (16). Consider 

M2(f) (note that Mo(f) and M1 (f) are equal to T1 (f) and T2 (f), 

respectively) 

~(f) = ...L j ( ew - l) (2 ) F(m)dc.o 
. 2Jfi r 

= 2;i j r (eU> - l)[(eU> - l) - :ijF(m)dc.o 

= 2!i ~ [CeU> - 1)2 - (ea> - lLJF(m)dc.o. 

By virtue of the relationship established in equation (13), we now 

obtain 

~(f) = 62 f(O) - .6.f(O) = 6(6 - l)f(O). 
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Proceeding similarly, Mn(f) is then 

!vfu(f) = 6(6 - 1) .•. (6 - n + l)f(O) 

= 6(n) f(O). (20) 

Combining the results of equation ( 20) 'With equation ( 18), we 

may write 

00 

f(Z) L u~;z) 6(n) f(O) 
n=O 

+ • . •• 

These are equations (4) and (3), respectively, which we set out to 

investigate. 

To establish the validity of this representation (eqs. (3) or (4)), 

it is necessary to establish the unifo:nn convergence of the series in (17). 

The convergence of this series is dependent upon the region of con-

vergence of equation (14); hence, the validity of equation (14) must 

be determined. 

The function 

f(U) = uz, 

considered as a function of u, is not a.n entire function since it is 

not analytic at U = 0 for all values of z. The theorem of N<5rlund 



l9 

requires that the function be holomorphic in a semipla.ne. The function 

uZ has this property. If U is restricted to the right half plane, 

Norlund's theorem rnSi)" be applied. 

It is, therefore, necessary to establish the following inequality: 

-!<e<!. 2- -2 

(21) 

The quantity ~ is an arbitrarily sma.ll number since the holomorphic 

region extends arbitrarily close to the imaginary a.xis. The abscissa 

of convergence is less than or equal to the greater of the two numbers 

a and ~ + 1/2; therefore, we take ~ ~ -1/2 so that this term will 

not restrict the abscissa of convergence, provided we can make equa-

tion (21) hold. Furthermore, the term ljr( e) has a minimum. value [5] 

if( e) . = in 2. 
min 

Substituting these values into relationship (21) gives 

1( 1( --<e<-, 2- -2 

(22) 

as the desired inequality. For the function under consideration, we 

have 



With the usual substitutions 

and 

a.nd 

We may now write 

Then, 

U = reie = u + iv, 

r2 = u2 + y2.' 

e=ta.n-1.!, -.!!.<e<.!!., 
u 2- -2 

z = a. + ib, 

e• = ta.n-1 v , 
a. + u 

a. + reie = r'ei9'. 

20 

(23) 
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Choosing the branch n = 01 we have 

j<a. + reie)ZI = leZ[ln r'+ie'lf 

< fez [?n(r+l)+i( e+1)]f 

since a. was arbitrarily small. 

Ma.king the substitution for Z and collecting real and imaginary 

terms, we obtain 

l<a. + reie)Z I < lea in(r+l)-b(0+l)l Jei[a.(e+1)+b ?n(r+1D', - ~ 5 e 5 ~· 

Since 

and 

eY > O tor all real y 

we have 

Up to this point it has been established that 

We now let e range over the values 

-.!<e<.!, 2- -2 

-.!<e<.!. 2- -2 



and the maximum value of the preceding function is 

Note that 

So that 

' 
ea. in(r+l)-b(0+1) <ea ln(r+l)+ jbl(~+2 ). 

{I b I ( n+2 ) ;2 \ 

= e ln(r+l) ?n(r+l) j 

f] b I ( n+2 ) ;~ 
= (r + l)l ?n(r+l) j 

To satisf'y the requirements of Norlund's theorem, we must estab-

lish the inequality 

I b I ( 1(+2 ) ;2 
(r + l)a(r + l) ln(r+l) <er ln 2 (r + l)-l/2+€(r), 

22 
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where e(r) tends uniformly to zero as r approaches infinity. Since 

the exponent 

I bl Cn+2 >/2 
ln(r+l) 

satisfies this restriction on E(r), we may substitute for E(r) the 

quantity 

€(r) = lbl(n + 2)/2 + E'(r), 
ln(r + 1) 

where E'(r) is yet to be determined. When this is done, and like 

terms canceled, the inequality reduces to 

(r + l)a < (r + l)e'(r)-1/2 er in 2 • 

The existence of such an e'(r) satisfying the previous restriction 

is not obvious; however, solving the relationship for E'(r) we 

obtain 

or 
a ln(r + l) < (e'(r) - ~)1n(r + l)+ r ln 2 

1 r ln 2 __ t _ r ln 2 
=a+------ 1:> 2 in ( r + 1 ) ?n ( 1 + r ) 

If equation (24) is satisfied, the inequality is established. 

(24) 

Furthermore, we see that regardless of the choice of E, E (r) will 
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eventually be negative. Hence, the existence of an €1 (r) > 0 satis-

f'ying the restriction that €'(r) tends uniformly to zero is guaranteed. 

A plot of ~(r) versus r is shown in figure 2. 

~(r) 
r ?n 2 

~ - Zn(l + r) 

r 

Figure 2.- Plot of ~(r) versus r; initial value of 
~(r) = ~ - Zn 2; final value of ~(r) = -oo. 

Since the inequality required by the theorem is satisfied, equa-

tion (ll+) is uniformly convergent in any bounded sector of the right 

half plane for all values of z. In particular, the series is conver-

gent for em lying in the right half plane. This places a restriction 

on m, however, for consider 

em= eu+iv = eU(cos v + i sin v), 

which will have a negative or zero real part unless 

we must place the restriction < 2!. 
2 on w. 

lvJ < .!!.. 
2 

Hence, 



VIII. A CONVERGENCE THEOREM FOR THE EXPONENTIAL INTERPOLATING SERIES 

The preceding sections of this paper have reviewed or developed 

all the necessary tools to state and prove the following convergence 

theorem for the exponential interpolating series; however, before doing 

this it will simplify the statement of the theorem to define the convex 

hull, D(f), of a set as consisting of the smallest, closed, convex 

polygon containing every element of the set and its interior. 

Theorem 

Any entire function of exponential type such that the convex hull 

of the set of singularities of its Borel transform lies in the strip 

lr(ru)I< ¥ admits the convergent exponential interpolation series 

expansion 

f(Z) 

Proof 

00 

\ = L 
n=O 

Un(Z) (n) , ~ f(O), for all 
n. 

z. 

As a result of the development from equations ( 21) through ( 2i+), 

inclusive, we have 

-11<e<11, 2 - - 2 

for f(U) = u2• This result and Norlund's theorem yields 

n=O 

25 



uniformly in any bounded sector of the right half plane 

R(U) > o. Letting U = f!J.> and noting that R(U) > 0 requires 

lr(~)I <~'we have equation (17) 

uniformly in a:ny bounded sector for which 

< E.. 
2 

The method of kernel expansion [1], [1aJ, [2], and [2aJ reviewed 

in the second chapter gives us 

f(Z) - 1 J eZill F(w)dro where r encloses D(f ), - 2d I' , 

26 

for any entire function of exponentiaJ. type. Substituting equation (17) 

into the above, we get 

00 

~ -, U (Z) 
f(Z) - 1 j ) _n_(ew - l)(n) F(w)dro. 

21tl. r n'=o nZ 

Since we have uniform convergence in a:ny bounded sector 

00 .·-, U (Z) ,. 
f(Z) =n~ +- 2!1 j r (e"' - l)(n) F(ro)dID, jr(ro)I < ~· 



From the results of equations (19) and (20), we have 

which yields 

~(f) = _!,. j. (ero - l)F(ro)dm = L::..(n) f(O) 
21fi. r 

co 

f(Z) = \- Un(Z) Ll(n) f(O) 
L n! 

n=O · 

for aJ.l Z, as desired. 

27 



IX. SUMMARY 

An investigation of the conditions under which the exponential 

interpolating series 

00 ·-
f(Z) = L Un(Z) ,/n) f(O) 

n=O 

is valid has been made where 

00 

Un(Z) =I (-l)k(~)(n - k +it, 
k=O 

L::.(n) f(O) = L::.(L::. - 1) .•. (L::. - n + l)f(O). 

This investigation has led to the following result: 

Theorem 

Any entire function of exponential type such that the convex hull 

of the set of singularities of its Borel transform (F(oo)) lies in the 

strip lr(ro)I <! admits the convergent exponential series expansion 
2 

00 

f(Z) = i Un(Z) l::.(n) f(O) 
n=O 

for all Z, where U (Z) and A(n) are defined above. n 
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AN EXPONENTIAL INTERPOLATION SERIES 

By 

w. E. Howell 

ABSTRACT 

The convergence properties of the permanent exponential interpola-

tion series 

have been investigated. 

Using the following notation 

n 

un(Z) = ~ (-l)k(~)(n i + 1)2, 
k=O 

6(n) f(O) = 6(6 - 1) ••• (6 - n + l)f(O), 

the series ca.n be written more compactly as 

00 

f(Z) 
0 

It is shown that 6.(n) f(O) ca.n be represented as 

6(n) f(O) = Mn(f) = _!._ Jr. (ew - l)(n) F(ru)dw, 
21fi 



where F(ru) is the Borel transform of f(Z) and r encloses the 

convex hull of the singularities of F(CD). It is further shown that 

the series 

0 

fonns a uniformly convergent Gregory-Newton series, convergent to e2'.l.u 

in any bounded region in the strip lr(ru)j < ~· The Polya representa-

tion of an entire function of exponential type is then formed, and the 

method of kernel expansion (R. P. Boas, and R. c. Buck, Polynomial 

Expansions of Analytic Functions, Springer-Verlag, Berlin, 1964) yields 

the desired result. This result is summed up in the following: 

Theorem 

Any entire function of exponential type such that the convex hull 

of the set of singularities of its Borel transform lies in the strip 

jr(ru)I < ~ admits the convergent exponential interpolation series 

expansion 

f(Z) 
CX) 

= \' Un ( Z) 6 (n) f( 0) 
L n! 

n=O 
for aJ.l z. 
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