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Abstract

Large-scale bisulfite treatment and short reads sequencing technology allows comprehensive
estimation of methylation states of Cs in the genomes of different tissues, cell types, and
developmental stages. Accurate characterization of DNA methylation is essential for
understanding genotype phenotype association, gene and environment interaction, diseases, and
cancer. The thesis work first evaluates the performance of several commonly used bisulfite short
read mappers and investigates how pre-processing data might affect the performance. Aligning
bisulfite short reads to a reference genome remains a challenging task. In practice, only a limited
proportion of bisulfite treated DNA reads can be mapped uniquely (around 50-70%) while a
significant proportion of reads (called multireads) are aligned to multiple genomic locations. The
thesis outlines a strategy to improve the mapping efficiencies of the existing bisulfite short reads
software by finding unique locations for multireads. Analyses of both simulated data and real
hairpin bisulfite sequencing data show that our strategy can effectively assign approximately 70%
of the multireads to their best locations with up to 90% accuracy, leading to a significant increase

in the overall mapping efficiency.

The most common and essential downstream task in DNA methylation analysis is to detect
differential methylated cytosines (DMCs). Although many statistical methods have been applied
to detect DMCs, inconsistency in detecting differential methylated sites among statistical tools
remains. We adapt the wavelet-based functional mixed models (WFMM) to detect DMCs.
Analyses of simulated Arabidopsis data show that WFMM has higher sensitivities and specificities
in detecting DMCs compared to existing methods especially when methylation differences are
small. Analyses of monozygotic twin data who have different pain sensitivity also show that
WFMM can find more relevant DMCs related to pain sensitivity compared to methylKit. In
addition, we provide a strategy to modify the default settings in both WFMM and methylKit to be

more tailored to a given methylation profile, thus improving the accuracy of detecting DMCs.



Population growth and climate change leave billions of people around the world living in water
scarcity conditions. Therefore, utility of reclaimed water (treated wastewater) is pivotal for water
sustainability. Recently, researchers discovered microbial regrowth problems in reclaimed water
distribution systems (RWDs). The third part of the thesis involves: 1) identifying fundamental
conditions that affect proliferation of antibiotic resistance genes (ARGS), 2) identifying the effect
of water chemistry and water age on microbial regrowth, and 3) characterizing co-occurrence of
ARGs and/or mobile genetics elements (MGEs), i.e., plasmids in simulated RWDs. Analyses of
preliminary results from simulated RWDs show that biofilms, bulk water environment,
temperature, and disinfectant types have significant influence on shaping antibiotic resistant
bacteria (ARB) communities. In particular, biofilms create a favorable environment for ARGs to
diversify but with lower total ARG populations. ARGs are the least diverse at 30°C and the most
diverse at 22°C. Disinfectants reduce ARG populations as well as ARG diversity. Chloramines
keep ARG populations and diversity at the lowest rate. Disinfectants work better in bulk water
environment than in biofilms in terms of shaping resistome. Network analysis on assembly data is
done to determine which ARG pairs are the most co-occurred. Bayesian network is more consistent
with the co-occurrence network constructed from assembly data than the network based on

Spearman’s correlation network of ARG abundance profiles.
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Human genome project has been lately attracting a lot of public attention. With the flood of
big genomic data, understanding and extracting valuable information from the data remain
challenge. The thesis work first evaluates the performance of different genome analysis tools. After
that, the thesis outlies a strategy to improve the overall performance of whole-genome analysis
tools, thus contributing to more accurate identification of mutations that are responsible for cancer
and diseases. Population growth and climate change leave billions of people around the world
living in water scarcity conditions. Therefore, utility of reclaimed water (treated wastewater) is
pivotal for water sustainability. Recently, researchers discovered microbial regrowth problems in
reclaimed water distribution systems which can worsen the existing problem of antibiotics
resistance spread. The thesis identifies fundamental factors that help shape the microbial

communities in reclaimed water systems in order to limit the spread of antibiotics resistance.
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Chapter 1

Introduction

1.1 Background

DNA methylation is the addition of a methyl group (CHs) at the 5™ carbon position of the cytosine
ring. Most cytosine methylation occurs in the sequence context of 5’CG3’ (also called CpG
dinucleotide) in mammalian DNA, but some in CpH dinucleotides (where H=C, T or A). The
human genome is not methylated uniformly, and some small regions called CpG islands are usually
unmethylated and GC rich. DNA methylation is responsible for regulation of gene expression,
silencing of genes on the inactive X chromosome, imprinted genes, and parasitic DNAs [1]. DNA
methylation is also a major contributor to the generation of disease-causing germ-line mutations
and somatic mutations that cause cancer [2]. Therefore, accurate genome-wide determination of
DNA methylation in different cells, tissues, and developmental stages is crucial for identification
of causes for phenotype differences and diseases and cancer.

Large-scale characterization of DNA methylation has been made possible by bisulfite
conversion of genomic DNA combined with next generation sequencing. After bisulfite treatment

of DNAs, unmethylated Cs are converted to Ts and subsequent mapping of the short reads to a



reference genome allows inference of methylated vs. unmethylated Cs. Thus, inference on DNA
methylation is highly dependable on the mapping of bisulfite-treated short reads to a reference
genome. Similar to regular next generation sequencing analysis, the great challenge is to be able
to map thousands of millions of reads in reasonable time and with high mapping efficiency (i.e.,

the percentage of reads that are mapped to a reference genome).

1.2 Evaluation of bisulfite short read aligners

Many tools have been developed to tackle this computational challenge such as MAQ [3], Bismark
[4], BSMAP [5], PASH [6], RMAP [7], GSNAP [8], Novoalign [9], BFAST [10], BRAT-BW
[11], Methylcoder [12], CokusAlignment [13], BS-Seeker [14], BS-Seeker2 [15], Segemehl [16],
BiSS [17], BatMeth [18], and the latest one ERNE-bs5 [19]. The majority of these bisulfite
sequencing mappers first conduct some sequence conversions (e.g. Cs to Ts and Gs to As) either
on the reads, the reference genomes, or both, and then use existing regular aligners such as Bowtie
[20], Bowtie2 [21], BLAT [22], SOAP [23], and BWA [24] to map short reads to a reference
genome. Fonseca et al. [25] classified the tools according to their indexing techniques and
supported features such as mismatches, splicing, indels, gapped alignment, and minimum and
maximum of read lengths. Stockwell et al. [26] compared Bismark, BSMAP, and RMAPBS in
terms of uniquely mapped reads percentages, multiple mapping percentages, CPU running time,
and reads mapped per second. They also pointed out that trimming the data before aligning could
improve mapping efficiency. However, the study did not examine how setting different parameters
might impact program performance.

In this section, we present how modifying default parameters in each program might
change the results (i.e., mapping efficiency and CPU time) and the sensitivity of each program to
the characteristics of data. Though we examined many software packages, we mainly focused on
two mappers: BSMAP and Bismark since they are representatives of two different index
algorithms namely Burrows-Wheeler Transform in Bismark and hash table in BSMAP. In general,
genome indexing based tools performed better than read indexing tools and read indexing does not
provide any significant speed up [27], therefore, we did not include RMAP in our analysis. We

also show that trimming data improves mapping efficiency. The paper is organized as follows:



first, we briefly describe the bisulfite sequence mapping problem and mapping techniques used by
the tools. Then we describe the datasets used in the study and criteria used to evaluate the
performance of the tools. Finally we show results on evaluating the tools using both real and

simulated data.

1.2.1 Overview of the Computational Problem, Algorithms, and Tools
Computational challenges of mapping bisulfite short reads

Over the decades, bisulfite sequencing has remained the gold standard for DNA methylation
analysis. After bisulfite treatment, unmethylated Cs are converted to thymines (T) whereas
methylated Cs unchanged. Several factors make bisulfite short reads more complicated to map
than regular reads. Firstly, up to four strands are analyzed from one genomic region. There are two
scenarios after Polymerase chain reaction (PCR) amplification. In the first case, if the sequencing
library is generated in a directional manner, the strand that the reads are amplified from is known
a priori. However, if non-directional, the Watson and Crick strands of bisulfite treated sequences
are no longer complementary to each other due to the conversion, and there are four different
strands after PCR amplification: BSW (bisulfite Watson), BSWR (reverse complement of BSW),
BSC (bisulfite Crick), and BSCR (reverse complement of BSC), all amplified and sequenced at
roughly the same frequency [13]. The search space is, therefore, significantly increased relative to
the original reference sequence [5]. Secondly, sequence complexity is reduced as all unmethylated
Cs are changed into Ts. In the mammalian genome, because C methylation occurs almost
exclusively at CpG dinucleotide, the majority of Cs in BSW and BSC strands will be converted to
Ts. Therefore, most reads from the two strands will be C-poor. However, PCR amplification will
complement all Gs with Cs in BSWR and BSCR strands, so reads from these two strands are
typically G-poor and have a normal C content. As a result, we expect the overall C content of
bisulfite reads to be reduced by approximately 50% after the two processes (converting Cs to Ts
in bisulfite treatment and transcribing Gs to Cs in PCR amplification)[5]. Lastly, C to T mapping
is asymmetric. The T in the bisulfite reads could be mapped to either C or T in the reference

genome but not vice versa. This complicates the mapping process.

Algorithms and tools for bisulfite short reads mapping



For most of the existing programs, alignment process is to build auxiliary data structures called
indices for the reference genome, the reads, or both. The indices are then used to find matching
genomic positions for each read. There are many available methods to build the indices [28]. The
two most popular techniques are hash tables and suffix/prefix tries [27] reviewed below together
with some representative programs (Figure 1.1). A comprehensive comparison of detailed

functionalities of the programs is shown in Table 1.1.

Hash Tables

Figure 1.1: Bisulfite mapping tools classification. The tools can be divided into two groups based
on indexing strategies: hash tables or Suffix/Prefix tries. Each of the groups are further classified
into subgroups where some example programs are shown. Note: BFAST uses multiple index

strategies: both hashing and suffix tree



Programs  Year  Algorithmic Technique used Language Aligner  Input Output Min/ Mismatch Indels Gaps Single/ Multi-  Non-
Max es Paired- threade directi
read end d onal
length

ERNE- 2012  Hash genome indexing, usea C++ None gz/bz2/ BAM/ upto 600 1 every Yes Yes both Yes No

bs5 5-letter (Cm, Cu) for storing fastq/ SAM bp 15 bp(-

methylation information, use fasta errors
a weighted context-aware arg)
Hamming distance to identify
a T coming from an
unmethylated C.
Batmeth 2012 FM index, integrates Perl/C++  None fasta NA NA upto5(- No No Yes Yes Yes
mismatch ~ Counting, list n)ina
filtering and mismatch stage read
filtering and fast mapping
onto two indexes.
BiSS 2012  Reference genome hashing, Perl None fasta/ SAM/ up to (-ifrom0 Yes Yes Yes Yes No
local Smith-Waterman fastq/ BAM/ 4096 tol)ina
alignment gz/ Next bp read
SAM/ GenMap Default i
BAM =65%
Bismark 2011  FM-Index, enumerates all Perl Bowtie/  fasta/ BAM/ Bowtie: Oorlina Yes Yes both Yes Yes
possible T to C conversion Bowtie2 fastq SAM up to seed (-N)
1000 bp
Bowtie 2:
unlimited
BS- 2013  FM-Index, enumerates all Python Bowtie2/ fasta, BAM/ 50-500bp upto4 Yes Yes Single  No Yes
Seeker2 possible T to C conversion Bowtie/  fastq, SAM/BS- per read
SOAP/R  gseq, Seeker (-m)
MAP pure
sequence
BS- 2010 FM-Index, enumerates all Python Bowtie  fasta, BAM/ 50-250bp upto3 Yes No Single  No Yes
Seeker possible T to C conversion, fastq, SAM/ per read
converts the genome to a 3 gseq, pure BS_Seeker (-m)

letter and use Bowtie to align
reads

sequence



BSMAP 2009 hashing of reference genome Python SOAP fasta/ SAM/ upto144 uptol5 upto both Yes Yes
and bitwise masking, tries all fastg/SA  txt bp in a read 3bp
possible T to C combinations M (-v)
for reads
RMAP 2008 Wildcard  matching  for C++ fastg/fasta BED unlimited upto 10 No No both No No
mapping Ts, incorporate the in a read
use of quality scores directly (-m)
into the mapping process
BRAT- 2012 Convert a TA referene and C++ Text file  txt 32 bp- unlimited No No both Yes Yes
BW CG reerence, Two FM with input unlimited
indices are built on the file
positive strand of the names in
reference genome fastq,
sequence
only
MAQ 2008  Builds multiple hash tables to  Perl/ fastq maq Upto63 upto3 Yes,- No both No No
index the reads, scans the C/C++ bp per read n=2
reference genome against the
hash tables to find hits
PASH 2010 Implements k-mer level C fastq Txt/ SAM NA Yes Yes No Single  No No
alignment  using  multi-
positional hash tables
Novo- 2010 Hashing genome C/C++ fastq SAM/ upto8 Yes Yes upto Both No Yes
align BAM per read, 7bp
16 for on
paired single
end reads end
reads
Methyl- 2011  FM-Index, all Cs converted CIC++/ GSNAP/ fastg/ BAM/ Bowtie: Yes No Yes both No No
coder toTs Python bowtie fasta SAM up to
1000 bp
GSNAP 2005  g-mer hashing of reference C/Perl gzip/ SAM/ 14-250bp  Yes Yes Yes both yes No
genome fastq, GSNAP
fasta/
bzip2
BFAST 2009 uses multiple indexing C fastg/bz2/ SAM NA Yes Yes Yes  both Yes Yes
strategies: hashing and suffix gzip

array of the reference genome



Segemehl

2008 Enhanced suffix arrays to C/C++ fasta SAM unlimited  Yes (-A*1) Yes both Yes
find exact and inexact
matches. Align to to read
using Myers  bitvector
algorithm
Table 1.1: Detailed comparison of different bisulfite short reads mapping tools

*BFAST does not have a direct option for bisulfite mapping, users have to convert Cs to Ts in both a reference genome and reads and

then align converted reads to the converted reference genome.
*Parenthesis in mismatches column indicates parameter for mismatches in a program.

*1 A min percentages of matches per read

No



Indexing using hash tables can be divided into three strategies: hashing the genome,
hashing the reads, or a combination of both. All hash table algorithms essentially follow the seed-
and-extend technique. The algorithm keeps the positions of each k-mer fragment of the
read/genome in a hash table using k-mer as the key and searches the sequence databases for k-mer
matches (called seeds) [28]. After this, seeds can be joined without gaps and refined by local
sequence alignment. Tools using this indexing technigque include: BSMAP (genome hashing) [5],
GSNAP (genome hashing) [8], Novalign (genome hashing)[9], BFAST (genome hashing/suffix
array)[29], RMAP (read hashing) [7], BiSS (genome hashing) [17], PASH (read hashing) [6],
MAQ (read hashing) [3], and ERNE-bs5 (genome hashing) [19].

Specifically, BSMAP is implemented based on SOAP (Short Oligonucleotide Alignment
Program) [23]. BSMAP indexes the reference genome for all possible k-mers using hash tables.
BSMAP masks Ts in bisulfite reads as Cs (i.e., reverse bisulfite conversion) only at C position in
the original reference and keeps other Ts in the bisulfite reads unchanged. Then BSMAP maps the
masked BS read directly to the reference genome. By combining bitwise masking and hash table
seeding in its algorithm, BSMAP offers fast and good performance [5].

BiSS (Bisulfite Sequence Scorer) is based on Smith-Waterman local alignment with a
customized alignment scoring function [17]. BiSS uses NextGenMap [30] to align bisulfite reads
to a reference genome. NextGenMap involves three steps. The first step, NextGenMap indexes the
reference genome in a hash table. The next step is to identify the genomic region match.
NextGenMap only considers regions where the number of k-mer matches exceeds a certain
threshold as a match. Unlike other methods, NextGenMap adaptively chooses the threshold,
meaning each read has different threshold rather than one threshold for all reads [30].

Indexing algorithm based on suffix/prefix tries essentially converts the inexact string
matching to exact matching problem. The algorithm involves two steps: identify exact matches
and building inexact alignments supported by exact matches. Several representations for searching
exact matches in suffix/prefix tries are suffix tree, enhanced suffix array, and FM-index [28].
Therefore, indexing using suffix/prefix tries can be classified into three subgroups: indexing using
suffix tree, enhanced suffix array, and FM-index based on Burrows-Wheeler Transform. Tools

falling into this category include Bismark (FM index), BS-Seeker (and BS-Seeker2, FM index),



BatMeth (FM index), Segemehl (enhanced suffix array), Methylcoder (FM index), Cokus
Alignment (suffix tree), and BRAT-BW (FM index).

Specifically, in Bismark, bisulfite reads are transformed into a C to T and G to A version
(equivalent to a C to T conversion on the reverse strand). Then each of them is aligned to
equivalently pre-converted forms of the reference genome using four parallel instances of Bowtie
or Bowtie2 [4]. Bowtie starts by building an FM index for the reference genome and uses the
modified FM index [31] to find the matching location. Bowtie2 are designed to support reads
longer than 50 bps. The two versions of Bowtie performed quite differently [27]. This read
mapping enables Bismark to uniquely determine the strand origin of a bisulfite read.

BS-Seeker is very much similar to Bismark. The only difference is that BS-Seeker only
works well for single-end reads whereas Bismark can work with both single-end and paired-end
reads. Also BS-Seeker can explicitly account for tags generated by certain library construction
protocols [14]. BS-Seeker records only unique alignments, defined as those that have no other hits
with the same or fewer mismatches in the 3-letter alignment [14].

BRAT-BW is an evolution of BRAT [32]. Two FM indices are built on the positive strand
of the reference genome: in the first, Cs are converted to Ts, and in the second, Gs are converted
to As. Original reads with C to T conversion are mapped to the first index and reverse-complement
reads with all Gs changed to As are mapped to the second index. BRAT-BW uses a multi-seed

approach similar to Bowtie2 [32].
Datasets

We evaluated the tools on three types of data, human blood data (GSM791828), human and mouse
brain data (GSE47966), and simulated mouse short read data. First, human blood data, including
ten datasets (ID: SRR342552, SRR342553, SRR342554, SRR342555, SRR342556, SRR342557,
SRR342558, SRR342559, SRR342560 and SRR342561) were downloaded from NCBI’s short
reads archive [33]. The DNA short read sequences are non-directional. Each file in SRA format
contains about 23 million single-end whole genome shot gun bisulfite sequence reads from human
hematopoietic stem/progenitor cells (HSPCs). The BS-Seq reads are conventional base call
qualities that are Sanger/lllumina 1.9 encoded Phred values (Phred33) and trimmed to 76 bps.

Second, human and mouse brain data, including ten datasets from human brain [33] and eight



datasets from mouse brain [33] were downloaded from NCBI’s gene expression omnibus [34].
The DNA bisulfite short read sequences are directional. Each file contains around 100 million
single-end whole genome shot gun bisulfite sequence reads from human and mouse frontal cortex
in SRA format. The BS-Seq reads are conventional base call qualities that are lllumina HiSeq 2000
encoded Phred values (Phred64) and trimmed to 101 bps. Third, simulated bisulfite short reads
data were generated from the mouse and human reference genome (version mm10 and hgl9
respectively) using Sherman simulator [35]. Parameters such as sequencing error, bisulfite
conversion rate for cytosines in CG-context, and CH-context in Sherman, are determined based on
literature for the mouse data [36] and cytosine methylation reports from Bismark for the human
data. Reads with different read lengths were generated to mimic the real mouse and human data.
Specifically, for examining the effect of sequencing error on mapping efficiency, 24 datasets were
generated from the mouse reference genome by varying the sequencing error from 0 to 4.75% (The
error rate is a mean error rate per bp). Each dataset contained 1 million short reads with length of
101 bps and CG conversion rate of 10% (10% of all CG-cytosines will be converted into thymines)
and CH conversion rate of 98.5% (98.5% of all CH-cytosines will be converted into thymines).
For examining the effect of read length on mapping efficiency, 28 datasets were generated by
varying the read length from 40 to 160 bps with sequencing error of 0.16%, CG conversion rate of
10%, CH conversion rate of 98.5% for the mouse data and with sequencing error of 0.16%, CG
and CH conversion rate of 19.73% and 98.9% respectively for the human data. Both human and

mouse reference genomes (hg19 and mm10) were downloaded from Ensembl [37].

Important parameters in mapping tools

Programs often have different default settings for the same parameters that can influence their
performance. For example, BiSS sets the default mismatch to be 35% of the read whereas Bismark
sets the equivalent parameter to zero. It is therefore important and fair to compare them on a
common ground. Several important parameters that can greatly influence program performance
include, (1). Number of mismatches allowed in the seed (e.g., Bismark); (2). Number of
mismatches allowed in the read (e.g., BSMAP, BS-Seeker, BISS, and BRAT-BW); (3).

Directionality of data library (directional or non-directional); (4). Phred quality score (i.e., whether
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data have Phred score of 33 or 64). In this study, we examined the effect of these parameters on
the performance of the programs and how altering them can influence the final mapping results.
Evaluation criteria

The performance of the tools is evaluated mainly by two aspects: the mapping efficiency (i.e.,
percentage of uniquely mapped reads) and the CPU time. Uniquely mapped reads are reads that
are mapped to only one location. Computationally speaking, most reads have multiple matches
and from those matches, alignment scores are determined. An alignment is unique when it has
much higher score than all other possible alignments, often determined by some statistics or
cutoffs. The greater the difference between the best alignment score and the second-best alignment
score, the more unique the alignment is, and the higher its mapping quality should be [38].
Mapping quality is a non-negative integer Q =-10 log10p, where p is an estimate of the probability
that the alignment does not correspond to the read's true point of origin. Mapping quality is
sometimes abbreviated MAPQ. (10 log10 Pr{mapping position is wrong}).

Data preprocessing

The original data were processed so reads have better quality scores and consequently can be
mapped to reference genomes. Perl programming language was used to trim the tail of a read with
residues quality score less than or equal to 2. After removing the tail, if the read length is shorter
than 30, the read is also discarded. We use both trimmed and raw data in the analysis for the

purpose of comparison of how mapping efficiency can be improved by pre-processing the data.

1.2.2 Results and Discussion

Performance comparison of the programs

Five bisulfite reads mapping tools, BSMAP, Bismark, BS-Seeker, BiSS, and BRAT-BW, were
chosen to cover different algorithms discussed in the algorithm overview section (also refer to
Table 1.1). BatMeth, Segmenhl, and ERNE-bs5 were not included as BatMeth failed at last step
of the reads alignment, Segmenhl consumed too much computer memory (1 TB) and could not be

finished in reasonable time, and ERNE-bs5 produced inaccurate results on small test datasets.

The performance is evaluated by considering two factors: mapping efficiency and CPU running

time. Mapping efficiency is determined by the number of uniquely mapped reads divided by the
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total number of reads. We set the number of mismatches to zero for all the programs and compare
mapping efficiency and CPU running time of these programs on ten human blood datasets. Among
the five programs, in terms of mapping efficiency (Figure 1.2), Bismark performs the best,
achieving the highest mapping efficiency (average around 56% across the ten human blood
samples), followed by BiSS (average around 46%) and BSMAP (average around 42%), and finally
BRAT-BW (average around 39%) and BS-Seeker (average around 38%) with similar mapping

efficiency across samples.
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Figure 1.2: Mapping efficiency on ten human blood datasets for BSMAP, Bismark, BS-Seeker,

BRAT_BW, and BiSS with zero mismatches allowed between reads and the reference genome.

However, for CPU running time, the trend is almost the opposite (Figure 1.3), with BRAT-BW
taking the shortest time (average 16 minutes across samples), followed by BSMAP (average 29
minutes) and BS-Seeker (average 31 minutes). Both BiSS (average 84 hours) and Bismark
(average 11 hours) took much longer time than the other three programs, suggesting existence of
the tradeoff between mapping efficiency and running time. The observation that BiSS ran the
slowest might be because BiSS uses Smith-Waterman local sequence alignment algorithm to align
reads to potential genomic locations [17]. Interestingly, although both Bismark (written in Perl)

and BS-Seeker (written in Python) use Bowtie (or Bowtie2) for short reads mapping, Bismark ran
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much slower than BS-Seeker, but having much higher mapping efficiency. We then used BSMAP
and Bismark to map human fetal brain and mouse brain short reads data (refer to Figure 1.5).
Consistent with the results for human blood data, Bismark has higher mapping efficiency but
longer CPU running time than BSMAP. The mapping percentages are very similar across samples
(Figure 1.6). However, mapping efficiency for the human and mouse brain data is higher than
those for human blood data, consistent with the original research studies [39], suggesting that

mapping efficiency is highly dependent upon the specific experiments producing the data.
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Figure 1.3: CPU running time (on a log scale) on human blood data for BSMAP, Bismark, BS-

Seeker, BRAT-BW, and BiSS with zero mismatches allowed between reads and the reference

genome.

Even though tools have similar mapping efficiency, reads that are actually mapped (i.e., mapped
reads content) might differ among different programs. To examine how much difference the tools
have in mapped reads content, we compared uniquely mapped reads from Bismark and BSMAP.
On average, for human blood data, uniquely mapped reads shared by both Bismark and BSMAP
account for approximately 97% of the total mapped reads by BSMAP and only 69% by Bismark.
The numbers change little with different samples. Therefore, most of the mapped reads identified

by BSMAP are also identified by Bismark. The difference in mapped reads content between
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Bismark and BSMAP can be caused by several factors. First, the two use different string matching
strategies. Bismark uses Burrows Wheeler transform and FM-indexes for searching and BSMAP
hashes the reference genome for searching. In particular, Bismark uses aligner Bowtie2 whereas
BSMAP uses aligner SOAP (older version of SOAP2) to map bisulfite short reads. As a result,
difference in mapping algorithms can contribute to difference in mapped read content. According
to Hatem et al. [27], Bowtie maintained the best throughput with higher mapping percentages,
which could be why Bismark maps more reads than BSMAP. Second, determining whether a read
is uniquely mapped is rather arbitrary and program specific [40]. Depending how each program
defines “uniquely mapped” computationally, uniquely mapped read content can vary as a result.
We also examined whether combining multiple tools to analyze bisulfite short reads could improve
the overall mapping efficiency. We used BSMAP and BS-Seeker to align the unmapped reads
from Bismark to see how much further BSMAP and BS-Seeker can improve the overall mapping
efficiency. Table 1.2 shows that using BSMAP to align the unmapped reads from Bismark
improves the overall mapping efficiency slightly better than using BS-Seeker (BSMAP: around
4% improvement; BS-Seeker: only 1%). The lesser improvement from BS-Seeker might be due to
the fact that both Bismark and BS-Seeker use Bowtie to align reads although they may have
different criteria in post-processing the mapped reads. Overall, results across different datasets
indicate that Bismark was able to identify the most uniquely mapped reads, and addition of more

programs does not significantly improve mapping efficiency.
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Unmapped Overall Overall

File name Tota}l nurc?ber reads in Improyement Improyement
of reads using usin

BISMARK BSMAP  BS Seeker
SRR342552 23,472,574 10512269 3.72% 0.90%
SRR342553 23,749,583 10610307 4.24% 1.03%
SRR342554 25,232,053 11277407 4.29% 1.07%
SRR342555 23,750,428 10452979 4.23% 1.01%
SRR342556 23,140,352 10204603 4.28% 1.06%
SRR342557 23,089,492 10093756 4.33% 1.05%
SRR342558 21,205,564 9215604 4.26% 1.04%
SRR342560 26,174,056 11491673 4.17% 1.01%
SRR342561 25,457,341 11271400 4.16% 1.02%

Table 1.2: Improvement in mapping efficiency after using BSMAP and BS-Seeker to map

unmapped reads from Bismark on human blood data

Effect of varying parameters in different tools

We mainly focus on how changing numbers of allowed mismatches between reads and the
reference genome affects mapping efficiency. Different programs have parameters that serve this
purpose but sometimes have different meanings. For example, BSMAP has the option of setting
the number of mismatches allowed in each short read using the parameter v. If v is between 0 and
1, it is interpreted as the mismatch rate with respect to the read length. Otherwise it is interpreted
as the maximum number of mismatches allowed in a read. The default is 0.08. The maximum
number of mismatches allowed is 15 per read. BiSS has the option of setting the number of
mismatches allowed in each short read using the parameter i (minimum identity between a read
and a match) ranging from 0 to 1. The default setting is 0.65, meaning 65% of a read and its
corresponding match are identical. All reads mapped with an identity lower than this threshold will
be reported as unmapped. Our results on changing these parameters show that in general, the
mapping efficiency increases with the number of mismatches. The results are consistent across
datasets and for all the programs tested. For brevity, only the results from BS-Seeker were used to
illustrate (Figure 1.4). BS-Seeker has the option of setting the number of mismatches allowed in
each short read using the parameter m. The default is 2 and the maximum number allowed is 3.

Figure 1.4 shows that with the number of mismatches allowed increasing from 0 to 3, mapping
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efficiency increases by 43%-60%. Worth noting is that with mapping efficiency increases, CPU
running time also increases significantly. Therefore, in real practice, though it is desirable to have
high mapping efficiency, CPU time is another important aspect that users need to consider before
running the programs. Sometimes cost of having high mapping efficiency becomes inhibitive as it
takes too much running time. For example, when we changed Bismark’s allowed mismatches from
0 to 1, the time it takes to finish the program doubles (e.g., increased from 657 to 1581 minutes to
run on sample SRR342553). Another important aspect to consider is that increasing the number of
mismatches allowed also runs the risk of increased false positives, although in real practice it is
difficult to determine whether mapped reads having mismatches to the mapped location are

actually false positives or real variants from the reference genome.
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Figure 1.4: Unique mapping efficiency on ten human blood datasets from BS-Seeker with
different numbers of mismatches allowed between reads and the reference genome (0, 1, 2, and 3

mismatches)

Effect of data preprocessing
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We also preprocessed the reads and used those tools to analyze the trimmed data. Around 2%-
4.5% of the blood data and around 1.1%-2.3% were trimmed on the brain data. Figure 1.5 shows
that the mapping efficiency increases by around 5% for BSMAP and around 3% for Bismark on
the human blood data, and by around 10% for BSMAP and around 6% for Bismark on the human
fetal brain and mouse brain data. Therefore, preprocessing reads before mapping is an effective

approach to improve mapping efficiency.

Effect of trimming on human blood data
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Figure 1.5: The effect of trimming reads on mapping efficiency on ten human blood, ten human

brain and eight mouse brain datasets for BSMAP and Bismark

17



Mean and standard deviation of mapping percentages
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Figure 1.6: Mean and standard deviations of mapping percentages across ten human blood, ten

human brain and eight mouse brain datasets

Effect of read length and sequencing error

We used simulated data to see the effect of sequencing error and read length on mapping
efficiency. Sequencing error has been found to be an important factor influencing the performance
of short reads mapping tools [3]. Consistent with previous finding, our result shows that for both
BSMAP and Bismark, as sequencing error increases, mapping efficiency decreases (Figure 1.7).
Comparatively, BSMAP is more sensitive to sequencing error than Bismark as the BSMAP’s
mapping efficiency decay exponentially with the increase of sequencing error, while Bismark’s

only gradually.
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Figure 1.7: The effect of sequencing error on mapping efficiency for BSMAP and Bismark using
simulated data generated from Sherman simulator with varying sequencing error from 0.1 to 4.75%
(e.g., sequencing error 0.1% means 1 error in every 1000 bases) for read length =101 bp, CG=10%
(10% of all CG-cytosines will be converted into thymines) and CH=98.5% (98.5% of all CH-

cytosines will be converted into thymines)

Read length is another important factor in short reads mapping. Figure 1.8 shows opposite patterns
for BSMAP and Bismark. For BSMAP, as read length increases from 40 to 140 bps, mapping
efficiency decreases but with read length above 140 bps, an increase in read length results in an
increase in mapping efficiency. On the other hand, unique mapping efficiency from BISMARK

increase as read lengths increase consistently. It is unclear what contributes to the pattern exhibited

by BSMAP.
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Mapping efficiency vs read length
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Figure 1.8: The effect of read length on mapping efficiency for BSMAP and Bismark using
simulated data generated from Sherman simulator with different read lengths (from 40 to 160 bps)
for sequencing error e=0.16, CG=10% and CH=98.5% for mouse and e=0.16, CG=19.73% and
CH=98.9% for human data.

1.2.3 Summary

Many bisulfite short read mapping tools are available and choosing the best one among them is a
difficult task. In our experiments, even though Bismark produced the highest unique mapping
efficiency on real data, its CPU running time was not the shortest. BRAT-BW ran the fastest on
real data but with lower mapping efficiency. Also, preprocessing data before mapping can increase
mapping efficiency regardless of what tools are used. Changing parameters in the program can
affect the mapping results. Overall, as number of mismatches increases, mapping efficiency
increases. Short reads length and sequencing error can affect the results. Bismark is more sensitive
to read lengths. The longer the read length, the higher the mapping efficiency for Bismark, whereas
there is no clear pattern for BSMAP. BSMAP is more sensitive to sequencing error. A small

increase in sequencing error can result in significant decrease in mapping efficiency from BSMAP.
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1.3 Motivation and Problems

1.3.1 Low mapping efficiencies in bisulfite short reads

Although, numerous alignment software for traditional DNA short reads are available with much
faster running time and more accuracy and quite a few DNA bisulfite short reads mappers are
adapted from traditional DNA short read mappers (e.g.[4], [5], [11], [15], etc.), the percentage of
BS-reads that are mapped uniquely to only one location in the reference genome remains very low
(~50%) (refer to Figure 2.2). The rest of the BS sequences (i.e. multireads (BS-short reads that are
aligned to multiple locations in the reference genome) and unmapped (no sequence match in the
reference genome is found)) are usually removed from downstream analyses. This common
practice not only leads to biased information and information loss but also enormous financial

cost.

1.3.2 Inconsistency in detecting differentially methylated sites

An essential task following the alignment of bisulfite sequencing data is to detect differentially
methylated cytosines among phenotype samples (i.e, disease vs control groups). Although several
statistical methods have been applied to DMC detection [41], there are several problems remained.
First, individual cytosines are assumed to be independent across genome. However, methylation
levels of neighboring cytosines are highly correlated ([42], refer to Figure 3.1). Second, small
number of samples for each phenotype coupled with weak methylation effect among different
phenotype categories could make it difficult to detect DMRs accurately since most existing
statistical methods assume large enough sample sizes and/or normal distribution. Thus, there is

little consistency in DMRs detected by these methods.

1.3.3 Identification of fundamental factors shaping microbiome communities

Reusing treated waste water is an essential part of water sustainability. However, microbiome
proliferation in RWDs is of concern. Therefore, the third problem in the thesis work involves
identifying conditions that affect proliferation of opportunist pathogens and antibiotic resistance
genes (ARGS) in simulated RWDs. Once, the factors contributing to ARGs and opportunist
pathogens growth are found, researchers will have an insight into manipulating microbial regrowth

issues in RWDs.
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To address these three mentioned important issues, the thesis work outlines as follows.
Chapter 2 describes our Bayesian statistical framework to improve bisulfite sequencing alignment
performance. Chapter 3 contains adapting wavelet-based functional mixed models (WFMM)
introduced by Morris and Carrol [43] that incorporate correlation among cytosines in estimation
to better detect differential methylated sites. Chapter 4 describes how ARG communities change
under various conditions, thus providing an insight into microbiome mitigation strategies. Finally,

chapter 5 contains summary of new findings from each chapter and concluding remarks.
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Chapter 2

BAM-ABS: A Bayesian Assignment Method
for Ambiguous Bisulfite Short Reads

2.1 Introduction

DNA methylation is the addition of a methyl group (CH3) at the 5th carbon position of the cytosine
ring. Cytosine methylation frequently occurs in the sequence context of 5’CG3’ (also called a CpG
dinucleotide) in mammalian DNA. Non-CpG methylation at CpH dinucleotides (where H=C, T or
A) has been reported in some specific cell types, such as adult brain tissues [44] and stem cells
[45]. DNA methylation leads to condensed chromatin and transcriptionally silences genes on the
inactive X chromosome, imprinted loci, and parasitic DNAs [1]. It is also a major contributor to

the generation of disease-causing germ-line mutations and somatic mutations that cause cancer
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[2]. The determination of DNA methylation is crucial for the understanding of phenotype

differences among cells or tissues during development and disease.

With the advance of next generation sequencing technology, characterization of genome-
wide DNA methylation at single-nucleotide resolution is made possible by whole-genome bisulfite
sequencing. After bisulfite treatment of DNA, unmethylated Cs are converted to Ts, whereas
methylated Cs remain unchanged. Subsequent mapping of the short reads to a reference genome
allows inference of methylated vs. unmethylated Cs. Several factors make bisulfite short reads
(BS-reads) more complicated to map than regular short reads. First, due to how BS-reads are
generated, after PCR amplification, up to four strands might be produced from one genomic region.
The search space is therefore significantly increased. Second, sequence complexity is reduced, as
most of the unmethylated Cs are changed into Ts. Third, C to T mapping is asymmetric. The T in
the bisulfite reads could be mapped to either C or T in the reference genome but not vice versa [5].
Despite the introduction of several bisulfite short read alignment tools (e.g., Bismark [4], BSMAP
[5], BS-Seeker [15], and Batmeth [18]), the mapping efficiency of BS-reads remains very low, that
is, a high percentage of BS-reads, nearly 50% are either mapped to multiple genomic locations

(called “multireads” or “ambiguous” reads) or unmapped [26].

Most BS-read mapping programs, for instance, Bismark [4], BS-Seeker [15], and Batmeth
[18], convert both the genome and the reads to a three-letter alphabet accounting for the C-to-T or
G-to-A mismatches caused by bisulfite conversion before applying a regular short read mapper
such as Bowtie [21] or BWA [24]. However, due to reduced complexity in C-to-T and G-to-A
conversion, this simple strategy causes a greatly increased proportion of reads to be aligned to
multiple genomic locations with similar scores, i.e., multireads. The routine practice is to exclude
all the multireads and unmapped reads from downstream analyses. This practice leads to not only
bias in estimating methylation levels but also financial waste.

In this paper, we present a Bayesian statistical method BAM-ABS to solve the multiread
mapping problem so that a great number of ambiguously mapped reads can be allocated to the
most probable genomic locations, thus improving the overall mapping efficiency. To this end, we
use the mismatch and methylation profiles between multireads and genomic locations, taking

advantage of the information gleaned from unique read alignments, prior knowledge of single
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nucleotide polymorphisms (SNPs), and context-specific methylation levels at the regions, to assign
each multiread to the best location according to the highest posterior probability. Our assignment
framework involves two stages. First, we use Bismark - a popular BS-reads mapper [4] to map the
BS-reads, and from the mapping results, compile all the multireads with their competing locations
as well as all the unique reads overlapping with the multireads. The second stage is refinement,
during which we deploy the proposed Bayesian model to assign each multiread to the most likely
genomic location (Figure 2.1). We use both simulated data and real data generated with hairpin

bisulfite sequencing strategy to evaluate BAM-ABS’ performance.
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Figure 2.1: Pipeline for assigning multireads to the best locations

2.2 Materials and Methods

2.2.1 Posterior probability calculation

Suppose, for a given multiread X with length K, that there are T competing genomic locations,
indexedby t = 1, -+, T, and that the multiread is mapped with similar fidelity (e.g., equal or similar

number of mismatches). For genomic location t, we use M, to denote the observed base of the
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multiread X at position k (k = 1,---, K) of the genomic location and R;, to denote the reference
base (i.e., the base that the reference genome has) at that position. The overlapping unique reads
are defined as reads that are uniquely mapped with high mapping qualities (usually with MAQ
scores greater than 30) and also overlapped with a multiread’s mapped location. Assuming that
there are r such unique reads, we use Dy = {d, dx, -..d} 10 denote the observed bases of
overlapping unique reads at position k. Given the multiread and genomic location t, the observed
data consist of two mismatch profiles, one between the reference genome and the multiread, the
other between the reference genome and all the overlapping unique reads. We want to compute
the posterior probability of observing M, given D,, P(M,|D,.), based on which decision is made
on assigning the multiread.
Applying Bayes’ Theorem,

(M) P (Dy | My)

P(My|Dy) = (M) P(Dy |My) + (M) P(Dyc | M)’

where m(M,) is the prior probability of observing base M, and P(D,|M,) is the likelihood of
observing the overlapping unique reads at position k given the observed M. In practice, we would
also like to incorporate the reference information R, into the prior to help improve the inference
accuracy. Replacing m(M,,), m(M,) with (M, |Ry), t(My|R;), respectively, and assuming that
conditioning on M, D, is independent of R, we may write the posterior probability as

(M |Ry) P(Dy | My)

P(My|Dy,Ry) = = ——
I T (M | R P(Dye | M) + (M |R )P (D | M)

How the prior probability m(M, |R;) is computed is given in the next section.

Since the likelihood P (D, |M), as the product of all P(djk|Mk) for j=1...r, is directly related to
the number of overlapping unique reads: the more reads, the smaller likelihood, we calculate
P(D,|My,) in an average sense instead of using the usual joint probability definition to avoid this
bias. Thus we write the likelihood in terms of the base quality of the multiread and unique reads

as

i1 P(djx|My)
P(Di|My) = ==—

where
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and ¢ is the probability of observing a base miscall in the jth unique read at position k, & is the
probability of observing a base miscall in the multiread at position k. It is easy to see that the above
calculation follows the general addition rule of probability, that is P(AU B) = P(A) + P(B) —
P(A n B). Here, A represents the event of having a sequencing error in the jth unique read at
position k, and B represents the event of having a sequencing error at the multiread base M;,. Given
sequencing errors occur independently in unique reads and in multireads, i.e., P(ANB) =

P(A)P(B), replacing P(A) with g, and P(B) with g, then results in the expression of P(djk|Mk).

Finally we calculate the posterior probability of observing the multiread X at genomic location

t by

K
DR = | POMIDLRY,

where D = {D;, D,, ..., D¢} denotes the set of all observed bases from the overlapping unique reads
at positions 1,2, ---, K. The genomic location with the highest posterior probability is chosen, and
an assignment score S for the read is calculated by taking the log odds of the posterior probabilities

at the best location and at the next best location

P(X|D) at best location
S =log — . (D
P(X|D) at next best location

To assign a multiread, we need to determine a cutoff score S,. Users can choose a cutoff
score suitable to their needs. If a multiread has an assignment score S > S, the read is considered
as “assignable” and will be assigned to the best location, otherwise, the read will be labelled as
“unassignable”. We conducted experiments to determine a cutoff score S,. Experiments show that
BAM-ABS achieves good performance when S is set between 0.005 to 6. We set S, to be 0.05 in
simulated data and 0.2 in real data. In real data, the sequence coverage is not uniform across the
entire genome and some genomic loci may not be covered by any uniquely mapped read. We will

assign a multiread to a location that has more unique reads. To increase inference accuracy, we
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raise the cut-off in real data to 0.2 and achieved a reasonable efficiency in the multiread

assignment.

2.2.2 Prior probability calculation

Given the reference genome, the mutation rate of the organism, the observed multiread
sequence, and knowledge on context-specific methylation levels, we can infer the underlying
process and compute (M, |Ry), the prior probability of observing multiread base M, given the
reference genome base R, at position k. For example, according to NCBI dbSNP [46], transitions
are twice as frequent as transversions in many species, such as humans and mice. Also, studies
have shown that the methylation rate is about 0.80 at CpG whereas 0.05 at CH (HE{A, T,C }) in
mammals [47]. Such information can be incorporated to compute (M, |R;). To illustrate, suppose
that the reference genome has a base C at one position of the genomic location that the multiread

is aligned to, then there are four possible cases:

1) observing A in the multiread
In this case, we conclude that there is only a C to A mutation occurring and the prior probability

of observing A in the multiread given C in the reference genome is
(M |R,) = P(C to A mutation).

2) observing C in the multiread
In this case, we conclude that no mutation occurs and the C is methylated. The prior probability

of observing C in the multiread given C in the reference genome is
(Mg |Ry) = [1 — P(mutation)] X P(methylation).

3) observing G in the multiread
In this case, we conclude that there is only a C to G mutation occurring and the prior probability

of observing G in the multiread given C in the reference genome is
(M, |Ry) = P(C to G mutation).

4) observing T in the multiread
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In this case, we conclude that either there is a C to T mutation occurring or there is no mutation
and the C in the reference genome is unmethylated and converted to T after bisulfite treatment.
Therefore the prior probability of observing T in the multiread given C in the reference genome

is the sum of the probabilities of the two disjoint events and can be expressed as
(M |R,) = P(C to T mutation) + [1 — P(mutation)]| X [1 — P(methylation)].

The probability of C methylation P(methylation) depends on the sequence context, that is, if the
next base in the multiread is G, the probability of C methylation is higher than that if the next base
is H (HE{A,T,C}). The probability of mutation can be computed similarly as in previous methods
[48], [49]. For example, if we assume that the SNP rate in the human genome is 0.001 and that the
reference allele is C at position k, the prior probabilities of C to A mutation and C to G mutation
are 0.00025 and 0.00025, respectively, whereas the prior probability of C to T mutation is 0.0005
and the prior probability of C to C (i.e., no mutation) is 0.999. All other cases are illustrated in
Section 2.1 of the Supplementary materials. In a later section of simulation study and real data
analysis, we will also consider the “without” prior option, that is, using a uniform prior (equal
probabilities for observing different bases on M;) and make a comparison to illustrate the

advantage of using a prior in BAM-ABS.

2.2.3 Bisulfite short read simulation

We aim to generate BS-reads that closely mimic the bisulfite conversion experiment. The
simulated data consist of BS-reads generated from the human genome (hgl9) and the mouse
genome (mm10). First, we randomly assigned a mutation rate of 0.001 to every base in the
reference genome, i.e., we randomly changed 0.1% of all current bases in the reference genomes
to other bases. As transitions are twice as frequent as transversions, we assigned a higher
probability for C&T and G A mutations than other mutations, e.g., P(C & T) = 0.0005 while
P(C & A) = P(C & G) = 0.00025. Second, we randomly assigned a methylation rate to every
cytosine in both strands of each chromosome after introducing mutations. We varied the
methylation probability at CpG (i.e., 70%, 75%, 80%, 85%, 90%) while maintaining methylation
probability at CH (HE{A, T,C}) 0.5%. To illustrate, we randomly converted C to T at 99.5% of all
CH sites and converted C to T at 30%, 25%, 20%, 15% or 10% of all CpG sites to generate different
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data sets. After introducing both mutation and methylation, we randomly generated short reads
with different read lengths for each data (51 bp, 76 bp, and 101 bp) from the converted reference
genome. Finally, we extracted quality score strings from three real datasets SRR980327 (read
length=51 bp), SRR342553 (read length=76 bp), and SRR921765 (read length=101 bp) generated
by the Illumnia-HiSeq 2000 platform (data downloaded from NCBI’s short read archive
(http://www.ncbi.nlm.nih.gov/sra) and simulated sequence errors according to the per-base error
probabilities of all reads from these datasets. All reads were generated in a directional manner, i.e.,
only from the top strands of the genome. We simulated 3,000, 40,000, and 100,000 short reads for

each methylation probability parameter with varying read lengths.

We used Bismark [4] to align simulated BS-reads and collected all ambiguous reads or
multireads. Most of the multireads have two or three mapped genomic locations in both simulated
and real data (Figure 2.1S in Supplementary Materials). In this paper, we only examined
directional data. However, undirectional data will be addressed similarly, since only methylation
and SNP information of uniquely mapped reads from the same DNA strand as a multiread is

incorporated in the scoring model.

An important and practical question is how much coverage is required for accurate
assignment of multireads using BAM-ABS. To address this problem, for each location that
multireads are aligned to, we generated different numbers (i.e., 3x, 5x, 10x, 25x, and 30x) of
overlapping unique reads to mimic different depths of coverage. We then introduced sequencing
errors for the generated reads using base quality scores from the real data. These reads are treated
as overlapping unique reads by BAM-ABS. A detailed pipeline for generating BS-reads and

overlapping unique reads is illustrated in supplementary Figure 2.2S.

2.2.4. Real data from hairpin bisulfite sequencing

To validate our model on real data, we used the genome-scale hairpin bisulfite sequencing data for
mouse embryonic stem cell (ESC) (NCBI’s SRA accession number: GSM1173118) produced in
our previous study [50]. The hairpin data are from one sample but generated in five different
sequencing lanes (labeled as Lanel, Lane2, Lane3, Lane4, Laneb). In brief, genomic DNA was

extracted and then sonicated into fragments of around 200 bp. Then, the DNA fragments were
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ligated to the biotinylated hairpin and Illumina sequencing adaptors simultaneously. Following the
streptavidin-capture and bisulfite PCR, the fragments linked to both the hairpin adaptor and
Illumina sequencing adaptor were amplified for high-throughput paired-end sequencing using
[llumina HiSeq 2000 platform. After purification, size selection of 400-600-bp fragments was
conducted with LabChip XT DNA Assay (Caliper) to yield longer sequences that are more
amenable for unambiguous mapping to the reference sequence. The reads are of 101 bp in length.
Unlike traditional bisulfite sequencing methods, which are non-invertible, the hairpin technology
allows for recovery of the original sequences; therefore, hairpin data can be used to evaluate the
mapping efficiency of BS-reads. The hairpin sequencing approach generates methylation data for
two DNA strands simultaneously by putting a linking adaptor between Watson and Crick strands
and then using PCR and paired-end technology to sequence short reads [51]. The resulting
sequences give paired strands so that the original untreated sequences can be recovered. Taking
advantage of this ability, we used Bismark [4] with default parameters and Bowtie2 [21] option
(command: ./bismark --path_to_bowtie <path to Bowtie2 folder> --bowtie2 --ambiguous <path to
Reference genome folder> <input_short_reads.fastq>) to map approximately 308 million reads
generated with genome-scale hairpin bisulfite sequencing. Bismark [4] mapped ~ 50% reads
uniquely and 25% ambiguously (Figure 2.2). We collected all the ambiguous reads, recovered their
original sequences, and used Bowtie2 [21] with default parameters (command: ./bowtie2 -x
<reference.fa> -U <input_short_reads.fastq> -S <output.sam>) to map the original sequences.
Here the mapping results of recovered sequences are used as the gold standard to validate our
Bayesian assignment model. To ensure the quality of the gold standard, we used only those reads
with mapping quality score >30. As a measure of the goodness of alignment, mapping quality
score is a non-negative integer Q = -10 log10p, where p is an estimate of the probability that the
alignment does not correspond to the read's true point of origin. Mapping quality is sometimes
abbreviated MAPQ. Approximately 48% of the recovered reads were mapped uniquely and also
satisfied our mapping quality requirement, and thus were used to validate our model (Figure 2.2).
We randomly sampled 1% and 10% of the reads, respectively, from Lanel, Lane2, Lane3, Lane4
and Lane5. We created ten replicates from 1% random sampling and ten other replicates from 10%
random sampling for each of the five lanes. Therefore, we had 100 samples altogether, to generate

some of the statistics.
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Figure 2.2: Mapping efficiency using Bismark on the mouse embryonic stem cell data for
different categories, uniquely mapped reads (blue), multireads (yellow), and unmapped reads
(grey). The orange bar is the percentage of multireads that become uniquely mapped with Bowtie2

after recovery to their original sequences using the hairpin bisulfite sequencing technique.

2.2.5 Real data from regular bisulfite sequencing

Although the hairpin bisulfite sequencing data seem ideal as the gold standard from real
data, there is still concern that it might differ in some way from data produced by the regular
bisulfite sequencing procedure. Therefore, we also applied our assignment model to another real
data produced by the regular whole-genome bisulfite sequencing for the human brain (NCBI’s
SRA accession number: GSM1163695). The human brain data include ten datasets. The DNA
bisulfite short read sequences are directional. Each dataset contains around 100 million single-end
bisulfite reads for the human frontal cortex. The reads have conventional base call qualities that
are lllumina HiSeq 2000 encoded Phred values (Phred64) and have been trimmed to 101 bps. We
used Bismark with default parameters to map all the short reads from the ten datasets. Bismark
mapped ~75% reads uniquely and ~8% ambiguously. We then used these uniquely mapped reads
as “gold standard” to assess the performance of the model. The idea is to shorten these reads so
that the original uniquely mapped reads become ambiguously mapped reads, then we apply our
model to assign these reads and use the original mapped location as the correct answer to evaluate

the assignment accuracy of our model. Specifically, we randomly sampled 1% of the uniquely
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mapped reads from the ten datasets and trimmed the reads to shorter ones (i.e., 10 bp shorter than
original short reads). After applying Bismark to the trimmed reads, ~50% were uniquely mapped
and ~5% multireads. We used our Bayesian model to assign the location of these trimmed

multireads and compared the assigned locations with their originally mapped locations.

2.3 Results

2.3.1 Mapping efficiency improvement for simulated data and real data

We simulated 3,000, 40,000, and 100,000 BS-reads for both the human genome and the
mouse genome with the setting of read length=76 bp, CG=20% (20% of all CG-cytosines are
converted into thymines), CH=99.5% (H can be A, T, or G, 99.5% of all CH-cytosines are
converted into thymines), and mutation rate of 0.1% at 30x coverage. We then applied the Bayesian
assignment model to score the ambiguously mapped BS-reads and assigned them to their best
locations based on the log likelihood ratio S (Equation 1). For human BS-reads, the model was
able to assign ~ 72% of the multireads to their best locations with an assignment accuracy rate of
~90% for all three datasets (Figure 2.3). The accuracy rate was defined as the percentage of
correctly assigned multireads, i.e., the ratio of the number of accurately assigned multireads to the
number assigned multireads. For mouse BS-reads, the model was able to assign approximately
53% of all the multireads with an accuracy rate of 80%. Both percentages of assignable multireads
and accuracy rates for the mouse data were lower than those for the human. This is likely due to
the fact that there are more CTs or TCs in the mouse genome than in the human genome (26.37%
vs. 23.87%), consequently, with bisulfite treatment, the mouse genomic DNAs are expected to

have a higher frequency of TT posing more challenges to multiread assignment.
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Figure 2.3: Percentages of assignable multireads and accuracy rates of the assigned
multireads on six simulated bisulfite datasets generated from the human reference and the
mouse reference with read length=76 bp and CG=20% (20% of all CG-cytosines are converted
into thymines) and CH=99.5% (99.5% of all CH-cytosines are converted into thymines) and
mutation rate of 0.1% at 30x coverage. hg19 N3, hgl9 N40, and hgl9 N100 denote the datasets
with 3k, 40k, and 100k simulated reads respectively for humans; mm10_N3, mm10_N40, and
mm210_N100 denote the datasets with 3k, 40k, and 100k simulated reads respectively for mice. All

remaining figures use the same notations.

A major challenge in testing the performance of multiread assignment methods on real data
is a lack of ground truth for where multireads should be assigned to in the real data. To examine
the performance of our Bayesian assignment model on real data, we took advantage of the genome-
scale hairpin bisulfite sequencing technique developed recently [52] that allows us to recover the
bisulfite converted reads to their original sequences. We assume that once multireads are recovered
to their original sequences and these original sequences are mapped to unique locations, the unique
locations are indeed true locations. To ensure this assumption to be largely held, we consider only

those multireads that are mapped with high mapping quality.

The genome-scale hairpin bisulfite sequencing data for mouse ESC were generated in five
sequencing lanes with the Illumina sequencing platforms. For data generated from each of the five

lanes, we randomly sampled 1% of the reads and created ten samples per dataset. With assignment
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score cut-off of 0.2, in the range of reasonable cut-off point by experiment, 74% of the multireads
were assigned to their best locations with ~88% accuracy rates (Figure 2.4). Standard deviations
across ten replicates were small, from 0.23-0.42% and from 0.46-0.66% in accuracy rates and

assignable percentages, respectively. Thus, 1% random samples were representative of the five
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Figure 2.4: Accuracy rates of assigned multireads and percentages of assignable multireads on ten
replicates from 1% random samples from five genome-wide hairpin bisulfite sequencing datasets

from mouse ESC. The black bar shows the standard deviation.

For human brain whole-genome bisulfite sequencing data, we randomly sampled 1% of the
uniquely mapped reads from ten datasets, shortened them so that they “degraded” from previously
uniquely mapped reads to multireads. Our model assigned ~75-81% of the multireads to their best
locations with ~76-85% accuracy rates (Figure 2.5), therefore, showing similar performance

results to that for hairpin sequencing data.
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Figure 2.5: Accuracy rates of assigned multireads and percentages of assignable multireads on
ten replicates from 1% random samples from ten genome-wide bisulfite sequencing datasets from
human frontal cortex (SRA accession number GSM1163695). The black bar shows the standard

deviation.

2.3.2 Effect of coverage depth and with/without prior

Table 2.1 shows the effect of sequence coverage on the performance of the model, with
and without priors for simulated data. For the simulated human data, the percentage of assignable
multireads tends to increase with the coverage depth, and expectedly, the assignment error rate
decreases. Compared to simple assignment without a prior, that is, only using observed unique
reads to assign multireads, considering prior probability (M, |R;) leads to better performance in
the model, with much lower error rates (9%-11% compared to 22%-33% for without a prior),
although the percentage of assignable multireads decreases at the same time. When the comparison
is converted to error rates per read, it is clear that incorporating priors in the method increases the
mapping accuracy, with the error rate per read decreasing from 0.01% to 0.005% for the 3x
coverage data, and 0.007% to 0.003% for the 30x coverage. The simulated mouse data show a
similar pattern, except, in general, has lower percentages of assignable multireads and higher error

rates.
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Table 2.1: The percentage of assignable multireads and the error rate (ratio of the # of reads
assigned to wrong locations to the # of reads that were assigned) as a function of coverage depth

and with or without priors for simulated data.

Coverage _ Without prior . With prior
depth Assignable rate Error rate Assignable rate Error rate
(%) (%) (%) (%)
hgl19 N40
3X 96.23 32.55 67.20 10.5
5x 98.10 32.48 69.34 9.96
10x 99.43 27.32 70.55 9.23
25% 99.58 21.95 71.63 9.01
30x 99.37 21.54 72.23 9.00
mm10_ N40
3x 92.56 44.55 49.18 20.68
5X 96.74 44.34 52.44 20.89
10x 98.98 40.67 54.96 19.98
25% 99.43 36.68 54.96 19.81
30x 99.41 36.48 54.37 19.53

For hairpin bisulfite sequencing data, when including prior probabilities, even though the
percentages of assignable multireads reduce, the error rates per read decrease (Table 2.2). For
example, error rates reduce from 0.00043% to 0.00035% and from 0.00025% to 0.00020% in
Lane5 1 and Lane2_ 10 respectively. Therefore, incorporating priors in the method increases
inference accuracy. These results are consistent with simulation results. Compared with simulation

results, the accuracy rate improvement in real data is smaller.

Table 2.2: Assignable rates and error rates for assigning multireads with and without priors
on 1% and 10% random samples from five genome-wide hairpin bisulfite sequencing datasets

from mouse ESC (without priors refers to only using observed unique reads to assign multireads).
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Without prior With prior
Sample ID | Assignable Ergtgr peErr;g; q Assignable Error | Error per read
rate(%) (%) (%) rate (%) rate (%) (%)
Lanel 1 72.17 17.50 | 0.00043 70.97 14.01 0.00035
Lanel 10 72.27 18.30 | 0.00004 71.27 13.90 0.00003
Lane2 1 74.60 14.74 | 0.00239 73.61 11.35 0.00187
Lane2 10 74.67 15.53 | 0.00025 73.27 12.13 0.00020
Lane3 1 74.44 15.12 | 0.00275 73.54 12.78 0.00235
Lane3_10 74.54 14.58 | 0.00026 73.61 12.17 0.00022
Laned 1 73.24 15.07 | 0.00282 72.27 12.39 0.00235
Lane4 10 74.35 14.79 | 0.00027 73.32 12.21 0.00023
Lane5 1 74.76 14.27 | 0.00251 73.77 12.12 0.00216
Lane5_10 74.23 14.44 | 0.00025 73.38 12.02 0.00021

We also determined the effect of read coverage on the performance of the assignment
model using hairpin sequencing data. Specifically, coverage depth refers to the number of unique
reads that overlap with multireads and thus can be used for inference. Table 2.3 shows that as
coverage depth increases from 6x to 40x, assignment accuracy increases slightly from 85.92% to

86% in Lanel and the percentage of assignable reads decreases slightly from 70.9% to 70.82% in

Lanel, both at a lower rate than in the simulation study.

Table 2.3: Coverage effect on model performance for 1% random samples from the five

hairpin datasets.

Lane 1 Lane 2 Lane3
Coverage | Assignable | Accuracy | Assignable | Accuracy | Assignable | Accuracy
rate (%) rate (%) rate (%) rate (%) rate (%) rate (%)
6X 70.90 85.92 73.62 88.65 73.41 87.14
10x 70.92 85.92 73.63 88.68 73.37 87.17
20x 70.90 85.95 73.58 88.69 73.45 87.22
30x 70.90 85.99 73.47 88.71 73.42 87.25
40X 70.82 86.00 73.47 88.71 73.53 87.33
Lane4d Lane5
Coverage | Assignable | Accuracy | Coverage | Assignable | Accuracy
rate (%) rate (%) rate (%) rate (%)
6X 72.23 87.322 6X 73.73 87.79
10x 72.27 87.329 10x 73.77 87.83
20x 72.28 87.464 20x 73.70 87.84
30x 72.16 87.481 30x 73.73 87.84
40X 72.19 87.505 40X 73.74 87.86
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Noteworthy is that the model performs well even with low coverage, for both simulated
data and real data. Taken together, the robust performance of the assignment model towards low
coverage data makes the model particularly applicable to the current whole genome bisulfite

sequencing data (many at 10x coverage).

2.3.3 Effect of read length

To examine the effect of read length on the performance of the Bayesian assignment model,
we simulated BS-reads with three read lengths, 51bp, 76bp, and 101bp. All simulated data (3K,
40K, and 100K reads for humans and mice) show similar patterns and only data with 100K BS-
reads were used to demonstrate for brevity. Figure 2.6 (left panel) shows that for both human and
mouse data, as read length increases, the accuracy rate of assigned multireads to their true locations
increases as well as the percentage of assignable multireads. The percentage of increase in
accuracy rate is much higher for read lengths increasing from 51bp to 76bp than from 76bp to
101bp.
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Figure 2. 6: Effect of read length (left panel) and methylation rates at CpGs (right panel,
CG10 refers to a methylation rate of 90% at CpGs) on the percentage of assignable multireads
and assignment accuracy rates for simulated data generated from hg19 and mmZ10 at 30x

coverage.
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In our real data analysis, the hairpin bisulfite sequencing data contain reads with different
lengths (Figure 2.3S in supplementary material). This enabled us to determine the effect of read
length on our model performance. Reads were classified into 3 groups: short, with read length <
50 bp, moderate, with read length between 50-76 bp, and long, with read length > 76 bp. Figure 2.7
shows that as read length increases, assignable percentages of multireads increase as well as
accuracy rates on 1% random samples from the five whole-genome mouse hairpin ESC data. Reads
in the long group have highest accuracy rates, around 90% and highest assignable rates, around
75%. Notably, more than a 10% increase in accuracy was observed from the short and moderate
groups (i.e., accuracy rate in Lanel dataset jumps from 75.55% to 85.36%, approximately 10%

increase in accuracy).

90
)

80
1

Percentage

Lane1 accuracy
Lane2 accuracy
Lane3 accuracy
—— Laned accuracy
Lane5 accuracy
Lane1 assignable
Lane2 assignable
Lane3 assignable
Laned assignable
- —— Lane5 assignable

[ I |
<50bp <76bp >76bp

60

50

Figure 2.7: Effect of read length on accuracy rates and percentages of assignable multireads

on 1% random samples from five genome-wide hairpin bisulfite sequencing datasets from ESC.

2.3.4 Effect of methylation rate at CpGs
As methylation may vary as a function of genomic regions, developmental stages, tissues,

species, and so on [47] [53], it is important to examine how the multiread assignment model is
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affected by varying methylation rates. We therefore simulated data with different methylation rates
(70%, 75%, 80%, 85%, 90%) at CpGs and applied the Bayesian model to assign the multireads in
the data. Figure 2.6 (right panel) shows that both the percentage of assignable multireads and
assignment accuracy rate change only slightly with respect to different methylation rates,

indicating that the method is robust to changes in methylation rates.

2.3.5 Effect of sequencing errors

To examine the effect of sequencing error on the assignment model, we simulated data
with different sequencing error rates ranging from 0.002% to 3%. Table 2.4 shows that as
sequencing error increases, for both humans and mice, accuracy rate of multiread assignment
decreases. However the percentage of assignable ambiguous reads remains similar.

Comparatively, sequencing error has a bigger impact on the mouse data than on the human data.

Table 2.4: Effect of sequencing errors on the percentage of assignable reads for simulated

data generated from hg19 and mm10 at 30x coverage.

Sequencing Accuracy rate (%) Assignable rate (%)
error hgl19_N40 mmZ10_N40 hg19 _N40 mmZ10_N40
0.002% 99.31 99.36 71.10 55.05
0.005% 99.12 98.68 71.15 55.19
0.015% 98.97 98.10 71.50 56.60
0.045% 98.62 97.37 71.31 50.87
0.150% 96.97 93.60 71.54 52.23
0.500% 96.31 89.82 72.21 56.06
1.500% 95.30 85.40 72.04 52.28
3.000% 93.23 82.16 72.81 55.56

2.4 Discussion

The whole genome bisulfite sequencing technique allows for determination of C

methylation at the whole genome scale and with single nucleotide resolution. Though considered
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to be the gold standard for characterizing DNA methylation, its high cost has limited its application
to large research laboratories. To make the situation worse, the mapping efficiency of existing tools
has been low, mostly 50-70% as compared to over 95% in regular short reads mapping [54]. A large
proportion of reads, known as multireads, are routinely discarded from downstream analysis,
leading to both biased methylation inference and financial loss. To address the problem, we propose
a Bayesian assignment model to help determine the most likely locations the multireads should be
mapped to. Results show that the model is effective and can be used to increase the number of

uniquely mapped read, and thus allows users to make the best use of the data possible.

Our analysis demonstrates that read length shows a much bigger positive impact on the
model performance for real data than for simulated data: both the percentage of assignable reads
and the assignment accuracy rate increase much more with read length increase in real data (Figure
2.7) than in simulated data (Figure 2.6). This is likely because reads from real data carry more
information than simulated reads giving the assignment model more power to differentiate among
the competing locations of multireads, and thus lead to better performance in real data. We note
that real whole genome bisulfite sequencing experiments usually generate reads with 100bp or
longer. Even after ends trimming, these reads are mostly longer than 76bp. The results here suggest
that, with real data, the assignment model is capable of recovering 14-20% of the multireads to their
true locations (Figure 2.2), and these reads can be included in downstream analysis to provide more
comprehensive information on methylation at the genome level. It might be interesting to conduct
a comprehensive survey to examine how these reads that are routinely thrown away affect the

downstream inference were they included in the downstream analysis.

Due to the high cost of whole genome bisulfite sequencing, the depth of sequencing
coverage is often low, approximately 10X for many experiments. This poses an additional
challenge to downstream analyses such as methylation calling and variant calling. For example,
Bis-SNP, a program that does methylation calling and SNP calling for bisulfite sequencing data,
requires an average of 30X coverage for correctly calling 96% of the SNPs [55]. Our results
demonstrate that even with low coverage of ~5X-10X, the Bayesian scoring model performs well
and is stable (Tables 2.1 and 2.3).
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Our Bayesian scoring model enables a high proportion of multireads to be mapped to
unique locations, which in turn increases the overall amount of sequence data suitable for the
downstream methylation inference. An interesting issue to examine is whether methylation ratios
are affected as a result of changes in the compositions of reads. Thus, we took a set of 50,000
multireads and ~500,000 uniquely mapped reads overlapping with these multireads and another
set of ~550,000 uniquely mapped reads in these regions from the human whole-genome bisulfite
sequencing data (SRA accession number SRX306253, GSM1163695, see methods for details) and
used Bismark for methylation calling. The methylation ratios at CpG sites were very similar
between the two datasets. We also took a set of 100,000 multireads and ~300,000 uniquely mapped
reads and another set of ~400,000 uniquely mapped reads around these regions and did the same
analysis. The methylation ratios were still similar but as expected there were more CpG sites
covered in the former dataset. Taken together, the results suggest it depends on data coverage and
percentages of multireads. Specifically, CpG methylation ratios are expected to stay similar if the
coverage is low, however, more CpG methylation sites will be covered. On the other hand, if the
coverage is high, CpG methylation ratios are expected to be more accurate and more CpG sites
will be covered. Again, the advantage of multiread mapping is to gain valuable information from
“unusable” data by traditional mappers, which benefits the subsequent calling procedure and

downstream analysis.

Results for both simulated data and real data (Tables 2.1 and 2.2) show that incorporating
prior knowledge such as mutation rates and context specific methylation levels into the assignment
model helps improve the accuracy of the assignment. Moreover, for organisms without such prior
information, the assignment model can still provide robust assignment, especially reflected by the
real data. Comparatively, it is clear that information gleaned from uniquely mapped reads plays a

more important role in correctly assigning multireads.

A common problem in the development of tools for bisulfite short read mapping is the lack
of a gold standard. We addressed this by taking advantage of the hairpin bisulfite sequencing data
that allows the recovery of the original reads (refer to [51] for the mechanism of read recovery),
and assuming that the unique locations that recovered reads are mapped to are true locations.

Although we required a high mapping quality (=30), it is still possible that some of the true
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locations are false positives. However, the consistency shown between simulated data and real
data suggests that even if there are false positives in the gold standard, the number should be very
low. Another concern for using hairpin bisulfite sequencing data is that its characteristics might be
different from those of the regular bisulfite sequencing data. However, our model performance on
regular bisulfite sequencing data is very similar to that on hairpin sequencing data, suggesting that

the hairpin sequencing data is representative and can serve as gold standard for real data.

2.5 Conclusion

A major problem in mapping bisulfite short reads is the high percentage of multireads
caused by bisulfite conversion. To our knowledge, no program is devoted to address this problem.
Here we present a Bayesian model to assign multireads to the best possible locations. Simulation
and real data results show that our assignment method is effective in mapping multireads with high
accuracy. We investigated several factors that might affect the model performance, including
methylation level, coverage, sequencing error, and read length. More specifically, methylation level
has little effect, whereas sequencing errors have a negative impact on model performance.
Increasing depth of coverage and read length will increase the accuracy of assigning multireads.
The model performs quite well even with low read coverage. Therefore, our scoring method can be

used to effectively improve the mapping results of bisulfite sequencing data.

Supporting Information

S2.1 Table: Prior calculation

Prior probabilities of all possible cases of alignments on the forward direction
Notation:
Pr(me) is the probability of methylation event occurring at a position

Pr(SNP) is the probability of mutation event occurring at a position

Pr(AB) is the probability of A to B mutation event occurring at a position, i.e. Pr(AT) is

the probability of A on the reference genome changes to T on the multiread.

Bases in green are observed bases, in black are unobserved. Cs/Gs in red indicate

methylated Cs/Gs, in blue unmethylated Cs/Gs.
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Table 2.1a: Prior probabilities at A reference genome of forward alignments

Reference base A A A A

Unobserved A C G T/C

Multiread base A C G T

Inference No mutation AtoC A to G mutation A to T mutation or Ato C
mutation and mutation and unmethylated
methylated C C

Prior 1-Pr(SNP) Pr(AC)xPr(me) Pr(AG) Pr(AT)+Pr(AC)x[1-Pr(me)]

Note: 1-Pr(SNP) + Pr(AC)xPr(me)+ Pr(AG)+ Pr(AT)+Pr(AC)x[1-Pr(me)]=1 (sum of all priors is

1)

Table 2.1b: Prior probabilities at C reference genome of forward alignments

Reference base C C C C

Unobserved A C G T/C

Multiread base A C G T

Inference CtoA No mutation and CtoG C to T mutation or no mutation
mutation methylated C mutation and unmethylated C

Prior Pr(CA) [1-Pr(SNP)]*Pr(me) Pr(CG) Pr(CT)+[1-Pr(SNP)]x[1-Pr(me)]

Table 2.1c: Prior probabilities at G reference genome of forward alignments

Reference base G G G G

Unobserved A C G T/C

Multiread base A C G T

Inference Gto A G to C mutation No G to T mutation orGto C
mutation and methylated C mutation mutation and unmethylated C

Prior Pr(GA) Pr(GC)xPr(me) 1-Pr(SNP) Pr(GT)+Pr(GC)x[1-Pr(me)]

Table 2.1d: Prior probabilities at T reference genome of forward alignments

Reference base T T T T
Unobserved A C G T/C
Multiread base A C G T
Inference TtoA T to C mutation TtoG No mutation or T to C mutation
mutation and methylated mutation and unmethylated C
C
Prior Pr(TA) Pr(TC)xPr(me) | Pr(TG) [1-Pr(SNP)]+Pr(TC)x[1-Pr(me)]

S2.2 Table: Prior probabilities of all possible cases of alignments on the reverse direction

Table 2.2a: Prior probabilities at A reference genome of reverse alignments

Reference base A A A A
Unobserved AlIG C G T
Multiread base A C G T
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Inference No mutation or A to G mutation AtoC A to G mutation AtoT
and unmethylated G mutation and methylated G mutation
Prior [1-Pr(SNP)]+Pr(AG)x[1-Pr(me)] Pr(AC) Pr(AG)xPr(me) Pr(AT)

Table 2.2b: Prior probabilities at C reference genome of reverse alignments

Reference base C C C C
Unobserved AlIG C G T
Multiread base A C G T
C to A mutation or Cto G No C to G mutation and CtoT
Inference mutation and unmethylated | mutation methylated G mutation
G
Prior Pr(CA)+Pr(CG)x[1-Pr(me)] | 1-Pr(SNP) Pr(CG)xPr(me) Pr(CT)

Table 2.2c: Prior probabilities at G reference genome of reverse alignments

Reference base G G G G
Unobserved AIG C G T
Multiread base A C G T

G to A mutation or no mutation GtoC No mutation and GtoT
Inference and unmethylated G mutation methylated G mutation
Prior Pr(GA)+[1-Pr(SNP)]x[1-Pr(me)] Pr(GC) [1-Pr(SNP)]xPr(me) Pr(GT)

Table 2.2d: Prior probabilities at T reference genome of reverse alignments

Reference base T T T T
Unobserved AIG C G T
Multiread base A C G T
Inference T to A mutation or T to G TtoC T to G mutation and No
mutation and unmethylated G mutation methylated G mutation
Prior Pr(TA)+p(TG)x[1-Pr(me)] Pr(TC) Pr(TG)xPr(me) 1-Pr(SNP)
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Figure 2.1S: Histogram of number of genomic locations Bismark found for multireads in
simulated data (left) and in real hairpin data (right)
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Figure 2.2S: Pipeline for generating bisulfite short reads, multireads, and overlap unigue
reads.
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Chapter 3

Identification of Differentially Methylated
Sites from Weak Methylation Effect

Abstract

Motivation: DNA methylation is an epigenetic alteration crucial for differentiating normal and
stress responses. In order to better understand phenotype changes among cells or tissues during
development and stress response stages, it is essential to accurately characterize genome-wide
DNA methylation. Whole genome bisulfite sequencing has made it possible to characterize large-
scale DNA methylation at the single nucleotide resolution. An essential task following the
generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs)
between different samples. Many statistical methods for DMC detection ignore the dependency of

methylation patterns across the genome, which could lead to inflated type | error, i.e., identifying
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DMC:s that are not truly significant. Furthermore, small sample sizes and weak methylation effect
among different phenotype categories make it difficult for these methods to accurately detect
DMCs. To address these issues, we adopt the wavelet-based functional mixed model (WFMM)
approach to detect DMCs and compare its performance to that of the most popular DMC detection

tool methylKit.

Results: Analyses of simulated data based on a reference data set that measure the effects of
herbicide glyphosate on Arabidopsis thaliana show that WFMM results in higher sensitivity and
specificity in detecting DMCs compared to methylKit especially when the methylation differences
among phenotype groups are small. Moreover, the performance of WFMM depends less on read
coverage and is robust to sample sizes, making it particularly attractive considering the prohibitive
cost of bisulfite sequencing. The analysis of the Arabidopsis thaliana data under varying herbicide
glyphosate dosages and the analysis of monozygotic twins who have different pain sensitivities
(both datasets have weak methylation effect, i.e. average methylation differences between two
phenotype groups is less than 0.01) show that WFMM can find more relevant DMCs related to the

phenotype of interest compared to methylKit.

“Differentially methylated regions (DMRS) are genomic regions with different DNA methylation
status across biological samples. DMRs and DMCs are the same concepts, with the only difference
being how methylation information across genome is summarized. If methylation levels are
determined by grouping neighboring cytosine sites, then they are DMRs; if methylation levels are

calculated based on single cytosines, they are DMCs.

3.1 Introduction

DNA methylation is an important epigenetic mechanism in controlling gene expression, silencing
of genes on the inactive X chromosome, imprinted genes, and parasitic DNAs [48]. Accurate
characterization of DNA methylation is essential for understanding genotype-phenotype
association, gene-environment interaction, diseases, and stresses [44]. Genome-wide bisulfite
treated DNA sequencing has enabled the measurement of DNA methylation at the single
nucleotide resolution. After DNA is treated with sodium bisulfite, unmethylated Cs are converted
to Ts, whereas methylated Cs remain unchanged. At a single cytosine site, methylation levels are

estimated by taking the ratio of C/(T+C) where C and T are the counts of cytosines and thymines
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respectively from all aligned reads at the site. The count of Ts represents the number of
unmethylated Cs and the count of Cs represents the number of methylated Cs. The most common
task is to detect differentially methylated cytosine sites across different phenotype samples (e.g.,
dosage vs. non-dosage samples, and patients vs. healthy people). Although numerous statistical
methods such as Fisher’s exact test and logistic regression have been used for the detection of
DMCs [41], several challenges remain. First, most current methods make the assumption that
individual cytosine methylation levels are independent across the genome. This assumption is
questionable as it has been shown that methylation levels of nearby cytosine sites are highly
correlated ([42], Figure 3.1). Assuming independence across cytosine sites can lead to
underestimation of the p-values and inflated type-I error, resulting in mistakenly identifying more
significant DMCs than the underlying truth Second, due to the high cost of whole genome bisulfite
sequencing, studies are often done with only a small number of samples for each phenotype, which
makes it difficult to detect small methylation differences. To address these issues, Lee and Morris
[56] adapted the wavelet-based functional mixed model (WFMM) developed by Morris and
Carroll [43] to identify differentially methylated sites. In this paper, we validate the effectiveness
of WFMM by analyzing two different methylation data sets and compared its performance with
the commonly used approach methylKit. We introduced an empirical approach to setting the
tuning parameters to specific methylation profiles in real data to detect more relevant DMCs that
related to phenotype changes under different stresses. Our results showed that WFMM has
advantages over methylKit when there is weak methylation effect and sample sizes are small.
When methylation effect is large enough, WFMM and methylKit are comparable. The paper is
organized as follows. First, we describe the methodology. Then we describe the simulation studies
based closely on our herbicide glyphosate experiments with A. thaliana [57]. Finally we evaluate
the WFMM method on simulated and real datasets from whole genome bisulfite sequencing of A.
thaliana leaves and whole genome methylation profiles of monozygotic (MZ) twins and make

comparison with the methylKit program [58].
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Figure 3.1: Correlation of methylation levels of neighboring cytosine regions in monozygotic twin

and neirboring cytosines in A. thaliana datasets.

3.2 Methods

3.2.1 Wavelet based functional mixed models

Assume that all methylation measurements come from N individuals across all 77 genomic

locations. A functional mixed effect model can be represented by

J+1 M

YD) = D KyBy () + Y Zunlin(®) + E), £ €T (1)
;” )

=1
where y;(t) represents the logit-transformation of methylation levels at a genomic location t €
{t; 1 =1,..., 7} for the ith individual, i = 1, ..., N. X;; = 1 if individual i belongs to treatment j
and 0 otherwise, for 1 < j < J The function B;(t) represents the fixed effect corresponding to

treatment and other covariates of interest). Z;,,, is a random covariate that takes into account

variations in y;(t) that are caused by potential multilevel structures in the measurements (e.g.,
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when multiple subjects from the same family were measured, then each family will introduce its
own random effect and Z;,,, = 1 if individual i is from family m and U,,,(t) is the random effect
of family m). E;(t) is a residual error function. Using vectorized formulation, we may write model
(1) as

Y(t) =XB(t)+ZU(t) + E(t),t €T (la)

where Y (t) = [V1(2), ..., Yy(D17, B(t) = [B1(D), ...,B,(t)]T, U(t) = [Uy(0), ..., Uy (D], and
E(t) = [EL(t),...,Ey(t)]T. Here, Y isa N x T matrix across all T genomic locations for all N
individuals. X is an N X J design matrix that indicates which treatment group the N individuals
belong to or other covariates of interest (e.g., a phenotype), the B (J X T°) matrix contains the
fixed effects of the covariates. The tth column of B, denoted by b, is a J-dimensional vector

describing the effects the / covariates on Y at genomic location t.

For example, if we let the ith row of X be a 1/0 vector to indicate which of the herbicide
glyphosate dosage groups the ith plant was treated, i = 1, ..., N, then b, corresponds to the effect
of dose levels on Y at genomic location t. In equation (1a), Z is a design matrix for random effects
that takes into account variations in Y that are caused by potential multilevel structures in the
measurements; U contains the corresponding random effects; and E is an N X 7 matrix of residual
errors. We assume that E is multivariate normal with mean 0 and variance-covariance matrix S.
For example, in our A. thaliana experiment, there are four plants for each of the 0%, 5%, 10%
glyphosate-treated group. Therefore, the X design matrix is a 12x3 and Bis a 3x T matrix, where
T is the number of cytosine locations. Since the A. thaliana data does not involve multilevel
structures, the random effect term in equation (1a) is omitted. The resulting functional model can
be rewritten as

Y(t) =XB(t)+ E(t), teT (1b)

where
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each b, is a column vector consisting of p=3 elements/groups giving the mean methylation profiles

for each group at a given genomic location t.

To incorporate nearby methylation correlations across all genomic locations 7 into the
model, we first use a basis function transform to transform model (1b) from the original data space
into the basis space, and then fit the basis space model to estimate parameters. Finally, we
transform results back to the original data space for inference. In particular, we apply the discrete
wavelet transform (DWT) to each row of Y to obtain a N X 7* matrix of wavelet coefficients D.
The corresponding wavelet space model can be obtained by post-multiplying both sides of
Equation (1b) by &', the wavelet transformation operator:

Y®' = XB®' + E®'  (1b)

D=XB*+E* )

where @' is a T x 7* wavelet transformation operator, D=Y@®’, B*=B@®' and E*=E®'. The model
(2) is a wavelet space model with D, B* and E* representing the wavelet coefficients of Y, B, and
E respectively. We adopt a Bayesian approach to fit model (2) following Morris and Carroll (2006)
[43]. The posterior samples of the parameters in (2) are obtained by employing a Markov chain
Monte Carlo (MCMC) algorithm. Inverse DWT is finally applied to the posterior samples of B*
to obtain posteriors for B in the data domain, which were subsequently used to identify DMCs

following a Bayesian false discovery rate approach.
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3.2.2 Bayesian false discovery rate (FDR)

Based on the posterior samples of B, we can identify significant regions either on B or on the
contrast effects that contains the differences between covariate effects in B. For example, in the
A. thaliana data example, since we are interested in identifying DMCs with different dosage

effects, we will calculate the contrast effects by pre-multiplying B with a contrast effect operator

-1 1 0
( 0 -1 1), which transforms the effect of each dosage level to the contrast effects of level
-1 0 1

2 vs. level 1, level 3 vs. level 2, and level 3 vs. level 1 respectively. We will apply this operator
to all posterior samples of B to obtain the posterior samples of the contrast effects. Denote C,(t),
t € {t;l =1,..., T} the ath contrast effect, identifying significant DMCs on C,(t) amounts to
identifying locations on C,(t) that are large in magnitude. We achieve this by performing a
Bayesian multiple testing that controls the overall false discovery rate following Morris et al.
[43], Zhu et al. [59], and Lee and Morris [56].

Specifically, in the Bayesian FDR approach, we detect locations in {t;; 1 = 1, ..., T} that has
C,(t) values greater than some threshold § (in absolute value) based on G posterior samples of
C,(t) for all contrast effects. We first calculate the pointwise posterior probability of at least §

251 1{Ca(t)@|>8)

difference at ¢t; by calculating p,(t;) = Pr{|C,(t))| > §|Y} = , where C, ()9

denotes the gth sample of C, at t;. Then, we find a cut-point ¢, for p,(t;) so that the expected
global Bayesian FDR is less than or equal to a pre-specified level a. We claim all of the t; on

which p,(t;) > ¢, as genomic locations with C,(t;) greater than &.

3.3 Data and Simulation

3.3.1 A. thaliana treated with herbicide glyphosate experiment

We previously investigated methylation profiles of twelve A. thaliana plants induced by herbicide
glyphosate at different dosage concentrations [57]. Blocks of four A. thaliana plants were
randomly assigned to glyphosate treatment at three different dosages, 0%, 5%, and 10%. Following
glyphosate treatment, these plants were transferred to a growth chamber with a 12-hour light cycle

and light intensity of 90 pmol m? s and let grow for approximately 2 weeks for the 0% and 5%
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glyphosate-treated plants and 8 weeks for the 10% glyphosate-treated plants until fully-developed
siliques were formed [57]. The tissue samples from these twelve plants were sent to Genomics
Research Laboratory at Biocomplexity Institute of Virginia Tech for bisulfite sequencing. First,
the sequenced reads’ quality was checked using FastQC [60] to eliminate adapter sequences and
barcodes using Trimmomatic [61] and FastX Tookit [62]. Low quality reads (quality score Q<30)
were exclueded. After all quality checks, bisulfite short sequences were aligned to A. thaliana
(TAIR 10) reference genome using Bismark aligner (v 0.14.5) using default parameters (-n 1 -I
50) [4]. Cytosine methylation level information was extracted from aligned reads using Bismark
[4] methylation extractor. In total, there are 3,348,756 cytosines in the dataset for detecting

significant methylated cytosines differentiating glyphosate dosage groups.

3.3.2 Methylation level simulation

We aimed to generate methylation profiles that closely mimic the real data collected from our
experiment ([57], Figure 3.1S). We generated two sets of methylated cytosines, one set with
correlation among nearby cytosine sites and the other set without methylation correlation. For
uncorrelated dataset, we first randomly selected 10,000 out of 100,000 cytosine sites as DMCs
(~10% of all cytosine sites are differentially methylated). The average methylation levels for each
of the three dosage groups, i.e., no treatment (0%) or two different sub-lethal doses (5% and 10%)
of herbicide glyphosate were generated from estimating the real A. thaliana dataset. To illustrate,
from the real A. thaliana dataset, for each cytosine site, pairwise mean methylation differences
between 0% vs 5%, 5% vs. 10% and 0% vs 10% were calculated. If one of the mean methylation
differences was greater than 0.04, cytosine sites were considered differentially methylated,
therefore the methylation levels at these cytosine sites were used to generate methylation profiles
for differentially methylated sites (true positive methylation differentiation) in simulated data. If
none of the mean methylation differences between any of the two groups were greater than 0.04,
cytosine sites were considered nondifferential. Thus, methylation levels at these nondifferential
sites were used to generate not differentially methylated sites (true negative methylation
differentiation) in simulated data (Figure 3.2S).

To generate correlated simulated datasets, we first divided the real A. thaliana dataset into

blocks of 100,000 cytosine sites and we randomly chose blocks to generate methylation profiles
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for simulated data. For each random block, if one of the mean methylation differences was greater
than 0.04, cytosines were considered differentially methylated, therefore the methylation levels at
these cytosine sites were used to generate methylation profiles for differentially methylated sites
in simulated data with correlation. Otherwise, sites were considered nondifferential and used to
simulate true negative methylation profiles (Figure 3.2S). Individual methylation levels for each
of the three dosage groups from both correlated and uncorrelated datasets were generated from
truncated normal distribution ranged from 0 to 1 with mean and standard deviations calculated
from the real A. thaliana dataset.

We changed methylation difference profiles by changing cutoff value for a cytosine site to
be considered differentially methylated by increasing 0.04 to 0.08, 0.1, 0.12, 0.15, 0.2, and 0.25.
To illustrate, with the cutoff value 0.25, only cytosines with at least one of the pairwise mean
methylation differences greater than 0.25 are considered differentially methylated. We also
increased sample sizes for each dosage group from 4 to 10, 20, 30, and 40 to examine how the
WFMM method performs under different scenarios and compared its performance to the

commonly used program methylKit [58].

3.4 Results

3.4.1 Simulation results

1) Effect of the degree of methylation difference

The degree of methylation difference between different phenotypes is an obvious factor to consider
when examining the performance of tools for detecting differentially methylated cytosines.
Therefore, we examined the performance of the WFMM method through receiver operating
characteristic (ROC) curve analysis and compared it to methylKit [58] for different degree of
methylation difference. Figure 3.2 shows the performance of the two methods with different
methylation difference cutoffs. We used Youden’s rule to find the optimal threshold for the delta
parameter (6) in WFMM and the qvalue parameter in methylKit. MethylKit uses qvalues, the
adjusted P-values for multiple testing correction. According to Youden’s rule, the optimal
threshold is where the sum of sensitivity and specificity is maximized. Figure 3.2 shows that

overall WFMM performs better than methylKit with higher sensitivity and specificity in both
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correlated and uncorrelated scenarios. When differentially methylated cutoff is 0.04 or 0.08 and in
both correlated and uncorrelated cytosines, the optimal value for delta § parameter in WFMM is
0.01 and the optimal value for qvalue parameter in methylKit is 1.00. Noteworthy is that there is
an improved performance in WFMM, i.e., higher specificity and slightly higher sensitivity in

correlated data compared to uncorrelated data whereas methylKit performance is similar in both

scenarios.
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Figure 3.2: ROC curve comparison between WFMM (blue curve) and methylKit (red curve) when
differentially methylated cutoff is 0.04 in correlated cytosines (top left), uncorrelated cytosines
(top right) and when differentially methylated cutoff is 0.08 in correlated cytosines (bottom left),

uncorrelated cytosines (bottom right).

Figure 3.3 shows that as increasing differentially methylated cutoff from 0.1, 0.12, 0.15, 0.2 and
0.25, the gaps in ROC curves between WFMM and methylKit become narrower. Specifically,
there is little improvement in WFMM whereas the performance of methylKit improves with
increasing differentially methylated cutoff values. When differentially methylated cutoff is 0.2 or
0.25, WFMM and methylIKit perform similarly. To illustrate, when differentially methylated cutoff
= 0.25, at an optimal threshold §=0.013 in WFMM, and at an optimal threshold qvalue=0.76 in
methylKit, WFMM has higher sensitivity (0.953 vs. 0.806) but lower specificity (0.696 vs. 0.828)

than methylKit. Therefore, there is a trade-off between two methods.
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Figure 3.3: ROC curve comparision in ROC curve comparison between WFMM (blue curve)
and methylKit (red curve) as differentially methylated cutoff increases from 0.1, 0.12, 0.15, 0.2
and 0.25.

2 Effect of sample sizes
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Overall, when sample sizes increase from 4, 10, 20, 30, to 40, WFMM performance remains robust
(Figure 3.4). There is a moderate improvement in sensitivity and specificity when sample size
increases from 4 to 10. There is only slight improvement in sensitivity and specificity in sample
sizes of 10 or greater. In contrast, increase in sample sizes results in dramatic improvement in
specificity in methylKit while sensitivity only improves slightly (Figure 3.4). Therefore, increase
in sample sizes significantly improves methylKit’s performance whereas only slightly for
WEMM. It can be inferred that increased sample sizes give methylKit more power to detect small
methylation differences across different phenotype groups whereas WFMM performance is more
stable because the method incorporates methylation levels of nearby cytosines to make inference

rather than solely relies on sample sizes.
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Figure 3.4: Effect of different sample sizes on WFMM with §=0.01 and methylKit with adjusted
setting (qvalue=1.00 and difference=4) performance on correlated simulated data when

differentially methylated cutoff is 0.04.

3.4.2 Real data from herbicide glyphosate treatment of Arabidopsis thaliana
We applied WFMM and methylKit on dataset generated from our herbicide glyphosate treatment

experiment on A. thaliana. WFMM was able to detect 557,664 DMCs (~17% of all cytosines in
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A. thaliana genome) corresponding to 15,823 TAIR genes recognized from DAVID [63]. In
contrast, methylKit detected only 48,041 DMCs (~1.43% of all cytosines in A. thaliana genome)

corresponding to 12,166 TAIR genes with default settings (qvalue=0.01 and difference=25), and
1,338,219 DMCs (~40% of all cytosines in A. thaliana genome) corresponding to 30,947 TAIR
genes with adjusted settings (qvalue=1.00 and difference=4). Table 3.1 shows the breakdown of
the number of significant DMCs and TAIR genes for each chromosome in A. thaliana genome.
Chromosomes 1 and 5 have the most number of genes responding to herbicide glyphosate stress.
Analysis of overlapping DMCs between WFMM and methylKit (Figure 3.5) shows that there are
33.6% and 21.7% common DMCs detected by both WFMM and methylKit in simulated and real
dataset respectively. The similarity in proportions of common DMCs detected by both methods
and of DMCs detected by only one of the two methods shows that simulation is reflective of real

data.

Table 3.1: Number of significant DMCs, genes recognized by DAVID by applying WFMM with
6=0.01 and methylKit with default setting (difference=25, qvalue=0.01) and methylKit with

adjusted setting (difference=4, qvalue=1.00) on real A. thaliana dataset.

Chrom | WFMM methylKit methylKit WFMM MethylKit | MethylKit
osome | 6=0.01, default, qvalue=1.00, | 6=0.01, default, gvalue=1.0
Number qvalue=0.01, | difference=4, | Number | gqvalue=0.0 0,
of DMCs | difference=25, | Number of of 1, difference=
Number of DMCs significant | difference= | 4, Number
DMCs genes 25, of
Number of | significant
significant genes
genes
Chrl 133,512 12,048 294,153 4,041 3,098 7,760
Chr2 87,488 7,627 244,683 2,417 1,887 5,129
Chr3 113,229 9,863 274,382 3,180 2,459 6,254
Chr4 91,327 7,708 227,539 2,563 1,943 4,815
Chr5 123,027 10,776 290,090 3,622 2,779 6,989
ChrC 9,081 19 7306 0 0 0
ChrM 0 0 66 0 0 0
Total 557,664 48,041 1,338,219 15,823 12,166 30,947
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Figure 3.5: Percentages of overlapping DMCs from methylKit with adjusted settings
(difference=4, qvalue=1.00) and WFMM with §=0.01 in correlated simulated data when
differentially methylated cutoff is 0.04 (left panel) and in real data (right panel).

Functional annotation results of significant genes detected by WFMM and methylKit show
similar results between both methods (Figure 3.6). The most significant gene ontology (GO) terms
in WFMM are also in top 50 significant methylKit GO terms. Malay Das et. al [64] did similar
experiment applying herbicide glyphosate to A. thaliana plants and identified 484 genes that might
be responsive to glyphosate stress. Comparatively, methylKit with default settings identified
12,166 genes, 181 of which overlap with Malay Das et al., and with adjusted settings
(difference=4, qvalue=1.00), identified 30,947 genes, 466 of which overlap with Malay Das et al..
WFMM with §=0.01 identified 12,166 genes, 238 of which overlap with Malay Das et. al. (Table
3.2). Thus, WFMM is slightly better than methylKit with default settings by identifying slightly
more relevant genes related to glyphosate responses. For a fair comparison, of 3000 top most
significant genes, methylKit with default settings has 39 overlapped genes, methylKit with
adjusted settings (difference=4, qvalue=1.00), 41 overlapped genes and WMFF with default
setting 6=0.01, 51 overlapped genes which also identified by Malay Das et. al [64] (Table 3.2).
Though there are minor differences in gene clusters from methylKit and WFMM §=0.01, the GO

analysis between two methods are very similar (Figure 3.6, Figure 3.7).
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Figure 3.6: Gene Ontology for significant differentially methylated TAIR genes detected by

WFMM with §=0.01 (left panel) and methylKit with default settings (difference=25,
gvalue=0.01) (right panel).
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Figure 3.7: Gene Clusters of the top 3,000 most significant genes from WFMM with §=0.01
(top panel), methylKit with default settings (difference=25, gqvalue=0.01) (middle planel), and
methylKit with adjusted settings (difference=4, qvalue=1.00) (bottom panel).

Table 3.2: Number of intersecting genes between 484 genes identified by Malay Das et al. [64]
that are related to herbicide glyphosate stress and significant genes identified by WFMM and
methylKit.

Methods Number of Number of shared Number of shared
significant genes genes in all genes in top 3000 most
significant genes significant genes

WEMM 6=0.01 15,823 238 51

methylKit default, 12,166 181 39
gvalue=0.01,
difference=25
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methylKit adjusted, 30,947 466 44
gvalue=1.00,
difference=4

3.4.3 Real data from monozygotic twin data with different pain sensitivity scores

We used the methylation profiles generated from MeDIP-sequencing data of 25 MZ twin pairs (50
MZ twins) who were discordant for heat pain sensitivity for model comparison. Heat pain tolerance
between twins was determined experimentally using quantitative sensory testing. Datasets were
downloaded from [65] with sample IDs from GSM1278649 to GSM1278698. The methylation
levels in these datasets were summarized by combining cytosine regions rather than single cytosine
sites. In total, there are 5,735,431 DMRs in these datasets. We assigned MZ twins in each of 25
MZ pairs to two groups (high vs low pain temperatures) according to MZ twins’ pain sensitivity
temperatures. For example, for a MZ twin pair from family ID 1, MZ twin 1 and MZ twin 2 have
pain sensitivity temperature of 44.7 and 47.8 respectively. Therefore, we assigned MZ twin 1 to
the low pain sensitivity temperature group and MZ twin 2 to the high pain sensitivity temperature
group. We then applied WFMM and methylKit to the 50 MZ twins’ methylation profiles with high
vs. low pain sensitivity temperatures as phenotype groups. There were no significant DMRs
detected by both WFMM with §=0.01 and methylKit default settings or methylKit adjusted
settings (difference=0.04, qvalue=1.00). This can be explained that the mean methylation
differences between high vs. low pain temperature groups are very small (~4.1% of all mean
methylation differences across DMRs < 10°) (Figure 3.3S). Therefore we adjusted parameter
settings in both WFMM with §=3.44x10"° and methylKit (difference=4.34x10°, qvalue=1.00).
These parameter settings from both methods were determined by empirical function applied on the
real twin data and further described in the discussion section. For the 769 significant DMRs
detected by WFMM with §=3.44x107°, there were 236 genes recognized by the gene function
enrichment program DAVID (Table 3.3). These genes were clustered into 5 groups by DAVID
(Figure 3.8 left panel). For 2,023 significant DMRs from MethylKit (difference=4.34x10",
gvalue=1.00), there were 892 genes recognized by DAVID (Table 3.3) that were clustered into 32
clusters (Figure 3.8 right panel). The most important gene groups were ranked by enrichment
scores (EASE scores). EASE scores are calculated from geometric mean of all enrichment P-

values for each annotation term of all gene members in a gene group [66]. Two gene clusters that
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have the highest EASE scores from significant differentially methylated genes detected by WFMM
contain myelin transcription factor 1 like (MYTLL, enrichment score=1.19) and transient receptor
potential cation channel subfamily C member 1(TRPC7, enrichment score=0.90). MYTI1L
functions in the developing mammalian central nervous system. TRPC7 was identified by Bell
et.al [65] responsive to heat pain sensitivity. In comparison, methylKit was not able to capture
relevant gene clusters pertaining to pain sensitivity in its first top 17 clusters. In the 18" cluster,
two genes (out of the 112 genes in this cluster) STEGGALNACL1 and TRPC7 were also found
involved in heat pain sensitivity by Bell et al. [65]. It is remarkable that WFMM was able to capture
the significant gene groups related to pain sensitivity using only the 25 MZ twin pairs’ methylation
profiles whose methylation differences are very small whereas Bell et al. [65] had to use the
methylation profiles of 25 MZ twin pairs together with 50 unrelated individuals in a meta-analysis
to capture the genes responsible for heat pain sensitivity.

Table 3.3: Number of significant DMCs, genes recognized by DAVID by applying WFMM with
5=3.44x10" and difference=4.34x10°, qvalue=1.00 on 25 monozygotic twin pairs with different

pain sensitivity temperature.

Methods Number of Number of significant
significant DMRs genes using DAVID

WFMM
5=3.44x10° 769 236

methylKit

adjusted,
qvalue=1.00, 2023 892

difference=4.34
x10°
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Figure 3.8: Gene clusters of significant genes detected by WFMM with §=3.44x107 (left panel)
and methylKit (difference=4.34x10°, qvalue=1.00) (right panel).

3.5 Discussion

Though there are numerous statistical methods for detecting differentially methylated cytosine,
small sample sizes and small methylation differences in methylation data across phenotype groups
remain a challenge for the commonly used methods [56]. Our analysis of the datasets demonstrated
that the wavelet-based functional mixed model has several advantages. Firstly, the method is
flexible and can be applied to different experimental designs and does not depend on coverage
depth. Secondly, simulation results show that the WFMM method is robust even when sample
sizes are small. Thirdly, the method is particularly effective for cases where methylation
differences across phenotype groups are relatively small, for example, as demonstrated in our MZ
twin pair analysis, the method is able to capture significant regions that are relevant to the
phenotype of interest. Fourthly, if there is strong methylation correlation in the data, the method
is able to take it into account for the inference, thus having more power in calling of DMCs/DMRs,
as illustrated in the A. thaliana data and MZ twin data analysis. Finally, default settings of DMR
analysis tools might not be the most suitable for some methylation profiles as shown in the
Arabidopsis and twin datasets. We recommend some empirical rules to adjust the default settings
so that the method can be better adapted to different methylation profiles of real datasets. For
methylKit, we suggest to set the “diff” parameter to be at the 100(1-E)™" quantile of the absolute

pairwise methylation level differences between two phenotype groups across the whole genome,
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where E is an expected percentage of methylation differences across all cytosines for a particular
dataset based on prior knowledge. For example, in our Arabidopsis data, we expect ~10% (E=10%)
of cytosines to be DMCs. Therefore, we set diff = 0.04 (corresponding to the 90" quantile of the
absolute pairwise methylation level differences between phenotype categories). In the twin dataset,
we expect E=0.3%, therefore, we adjust diff in methylKit to 4.34x107 (i.e., the 99.7" quantile of
the absolute pairwise methylation level differences across whole human genome). In methylKit,
the qvalue parameter should also be adjusted accordingly. If diff is very small (<0.1), set qvalue
=1.00 to collect all significant DMRs. Similarly, we can adapt WFMM to be more tailored to
different methylation profiles by controlling the § parameter, setting & to be the difference between
the 100(1-E)" quantile of the absolute pairwise methylation differences between two phenotype
groups across the whole genome and the standard deviation of the methylation differences. For
example, in our A. thaliana dataset, the 90" quantile of the absolute pairwise methylation level
differences between dosage categories is 0.04 and the standard deviation of pairwise methylation
level differences between phenotype categories is 0.03, therefore, § = 0.04 - 0.03 = 0.01. In the
twin dataset, the corresponding 99.7"" quantile and standard deviation are 4.34x10° and 9.2x10°®,
respectively, therefore, we use § =4.34x10° - 9.2x10° = 3.44x107°. In this way, a better DMC

detection result can be achieved based on different methylation datasets.
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Table 3.1S Number of significant DMCs, genes recognized by Ensemble by applying WFMM
5=4x10"° and qvalue=1.01, difference=0.07 on 25 monozygotic twin pairs with different pain

sensitivity temperature for each chromosome.
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Chrom WFMM MethylKit, WFMM MethylKit,
8§=4x10°, Number | qvalue=1.01, 8§=4x10"°, Number qvalue=1.01,
of DMRs difference=0.07, | of significant genes difference=0.07,
Number of from Ensemble Number of
DMRs significant genes
from Ensemble
Chrl 53 59 21 35
Chr2 23 28 9 23
Chr3 3 3 1 2
Chra 25 17 10 9
Chrs 10 16 3 8
Chr6 40 21 11 8
Chr7 31 25 19 15
Chr8 36 33 11 12
Chr9 22 21 5 7
Chri10 50 40 11 9
Chr11 20 20 9 11
Chr12 0 15 0 9
Chr13 0 6 0 2
Chr14 7 13 4 4
Chri15 8 11 1 3
Chr16 78 54 21 25
Chr17 27 24 10 13
Chri18 11 15 5 7
Chr19 12 45 4 21
Chr20 10 30 5 11
Chr21 9 20 4 10
Chr22 19 30 3 9
Total 494 546 167 253
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Chapter 4

Identification of factors contributing to
microbiome regrowth in Simulated

Reclaimed Water Distribution Systems

4.1 Introduction

Population growth and climate change leave billions of people around the world living in water
scarcity conditions. Therefore, utility of reclaimed water (highly treated wastewater) plays an
essential role in water sustainability [67]. Recently, researchers discovered microbial regrowth
problems in potable water distribution systems (PWDs) [68]. In particular, microbial populations
including opportunistic pathogens are observed to regrow in PWDs. Studies have shown that
though many microbes in PWDs are benign, some microbes, including opportunist pathogens such
as Legionella pneumophila, Acanthamoeba polyphaga, Mycobacterium avium, Naegleria fowleri
and Pseudomonas aeruginosa can be a public health threat, especially for immunocompromised
population [69]. Reclaimed water distribution systems (RWDs) share some similar characteristics
of PWDs, thus we hypothesize that RWDs would encounter the same issues as PWDs. Previously,
researchers have shown that it is impossible to remove all microbes from PWDs. Rather, we can
only shift the microbial community to more favorable for humans [70]. This can be done through

controlling various fundamental factors pertaining to the water system, for example, disinfect
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types, limiting nutrients (N, C and P), water age, dissolved oxygen, temperature or pH in PWDs.
Our knowledge of PWDs can help understand RWDs. For example, opportunistic pathogens are
naturally occurring in PWDs and thrive under certain conditions. Biofilm is likely where
opportunistic pathogens live and bulk water is likely where they spread and come into contact with
humans. Several other fundamental factors can affect regrowth of opportunistic pathogens in
PWDs, such as nutrients, water age, and disinfectants. We should take these fundamental factors
into consideration to shape a healthy microbiome in RWDs. However, these factors might not have
the same impact on RWDs. To illustrate, in PWDs, assimilable organic carbon (AOC) with
concentration of 10-20 ug/L is reported to limit regrowth of opportunistic pathogens. Chloramine
or chlorine, in some cases, is reported to control Legionella spp [68]. However, AOC has much
higher concentrations in RWDs than PWDs [68], therefore it might no longer control opportunistic
pathogen regrowth in RWDs. Moreover, no impact of chloramine or chlorine on control of

Legionella spp. is found in RWDs [70].

In addition, RWDs is treated-waste water, there are concerns that go beyond the existing
problems in PWDs. RWDs might have added new and/or worsen the existing problems,
contributing to potential public health threats. There are two main reasons for these rising
concerns. First, RWDs’ microbial compositions (e.g., viruses, bacteria, and archaea) are mostly
uncharacterized. Second and more importantly, RWDs contain more antibiotic resistant bacteria
(ARBs), and antibiotic resistance genes (ARGs). During wastewater treatment, both residual
antibiotics and ARBs are injected into wastewater, and certain conditions are imposed and further
the spread of antibiotics resistance [71]. For example, in highly concentrated bacterial areas during
sludge treatment, sharing ARGs among bacteria is facilitated through horizontal gene transfer [72].
These bacteria can persist or even multiply through wastewater treatment [71], thus contributing
to the spread of antibiotic resistance. In summary, there are three objectives in this chapter 1)
evaluate effects of several factors on shaping microbial communities, 2) identify the interplay of
water chemistry, water age and microbial regrowth, and 3) characterize co-occurrence of ARGS

and mobile genetics elements (MGES), i.e., plasmids in simulated RWDs.
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This chapter is largely contributed by Ni (Joyce) Zhu who constructed, maintained as well as
collected and analyzed water samples from the simulated reclaimed distribution systems. The

author performed all the statistical analysis in this chapter.

4.2 Materials and Methods

Experimental Design: The reclaimed water was collected twice weekly in Blacksburg-

Christiansburg area. The wastewater was treated with activated sludge followed by
nitrification/denitrification. High AOC and low AOC source water were collected via aerobic
biological filtration as describe by Wang et al. [73]. After chlorinated to remove ammonia, the
water was subject to no secondary disinfection, chloramination, or chlorination at varying
concentrations. All treated water was kept in a constant temperature room at 14°C, 22°C, 30°C,
22°C and 14°C for a period of two months at each temperature. Bulk water and biofilm water were
collected at two different water ages at the end of each two months. Joyce Zhu designed a network
of simulated RWD to investigate how disinfection behaves differently under different conditions.
Six 4-inch in diameter PVC pipe connected by narrow 3/8-inch in diameter tubing provided a
hybrid design that enabled examination of extended water ages and collection of biofilms under
fast shear conditions. The conditions investigated were: 1) high and low organic carbon levels; 2)
three disinfectant conditions (no residual, 4 mg/L of chlorine, 4 mg/L of chloramine); and 3) four
water ages (0, 1, 2.5 and 5 days). A temperature cycle of from 14°C-22°C-30°C-22°C-14°C was

implemented to simulate a seasonal effect (Figure 4.1).
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Low AOC High AOC

Figure 4.1: Simulated reclaimed water distribution investigating different behavior of disinfection

under varying water conditions. Photos taken by Joyce Zhu.

Collection of water chemistry: total cell counts (counts/uL) were collected by flow cytometer

technology. Disinfectant concentrations (mg/L), dissolved oxygen (mg/L), and nitrite

concentrations (mg/L) were also measured.

Quantification of microbiome profiles: A whole sample metagenomics approach was applied to all

water samples collected at the end of the experiment to generate relative abundances and diversity
of ARGs in RWDs. Metagenomic DNA library was prepared using SwiftBio amplification. The
samples then were subject to deep sequencing using an Illumina HiSeq 2500 at the Biocomplexity
Institute of Virginia Tech facility. Data processing and normalization were done using Metastorm
pipeline [74]. Samples were then submitted to deepARG [75] and ACLAME [76] for assembly
analysis for ARGs and MGEs. The GreenGenes [77] database was used for phylogenetic and

functional analysis for the bacterial community. In the end, there are 36 water samples for analysis.

Statistical Analysis: First, outlier detection methods are conducted to check if the data is consistent

among replicates. Then, diversity analysis and multivariate analysis are conducted to identify
significant population shifts of ARBs and ARGs under varying conditions. Specifically, the
nonparametric method, analysis of similarity (ANOSIM) is applied along with nonmetric

multidimensional scaling (NMDS) plots to determine which factors significantly affect ARG
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populations. Negative binomial mixed models are also applied to examine the effect of water
chemistry and water age on bacterial regrowth with water chemistry and water age. Finally,
network analyses are conducted to find communities and co-occurrence patterns among ARGs and
plasmids. We first construct a network based on Spearman’s correlation for any ARG pairs or
ARG-plasmid pairs. Edges are created between an ARG pair or an ARG-plasmid pair if their
Spearman’s correlation p is greater than 0.8 and the adjusted p-value for multiple testing is less
than 0.01. Bayesian networks are also constructed based on abundance profiles of 655 ARGs and
100 genuses and 100 species across all water samples using the max-min hill-climbing algorithm.
Assembled data are also used to construct the ARG-ARG and ARG-plasmid co-occurrence

networks as a way to validate the two network models.

4.3 Results

4.3.1 Consistency of the simulated RWDs

For water samples at 30°C and treated with chlorine, three replicated measurements from the
simulated RWDs for each sample were collected to make sure that the system runs consistently. If
the system runs consistently, we expect to get similar measurements for each replicate in each
ARG class in a given sample. We can simply check if there is any outlier in all three replicates and
if replicates have any effect on ARG abundance. Data used for this analysis is the normalized count
data for each ARG class. We performed Grubbs’ outlier detection test for all three replicates for
each ARG class. Grubbs’ test gives p-values indicating if there is any extreme value among there
replicates, for example, if p-value < 0.05, there is an outlier among there replicates. We also adjust
p-values for multiple testing using the false discovery rate. If adjusted p-values>0.05, there would
be no outlier, otherwise there would be an outlier among the three measurements. The ANOVA
analysis on samples for each ARG class is performed to determine if replicates have any effect on
ARG abundance. P-values from the ANOVA analysis are also adjusted for multiple testing. There
are no suspected outliers since all adjusted p-values from Grubbs’ test are greater than 0.05 (Table
4.1 left panel). Though there are small variations in some samples in the system, the replicate
measurements are quite consistent within each ARG class. There is also no replicate effect on any
of the ARG classes since there are no p-values and adjusted p-values<0.05 (Table 4.1 right panel).

Finally, we apply ANOSIM on all replicated samples treated with chlorine at 30°C. Replicate is
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included as a factor in the model. Replicate has an R-value of -0.055 and p-value of 0.777.
Therefore, replicate has no effect on ARG composition. From the above outlier detection,

ANOVA, and ANOSIM results, we can conclude that the system is consistent.

Table 4.1: p-values and p-values adjusted for multiple tests from Grubb’s outlier test (right panel).

p-values for replicate effect from the ANOVA test (right panel)

ARG class Sample IDs  p-values p-values ARG class p-values
adjusted glycopeptide 0.121
rifampin 30.H5W.CI2  0.003 0.324 peptide 0.264
tetracycline  30.H.5W.CI2 _ 0.013 0576 pleuromutilin | 0.308
aminocoumarin__ 30.H.2.W.CI2 __ 0.016 0576 tetracycline 0.349
bacitracin 30.H5W.Cl2 0023 0.621 thiostrepton 0.398
multidrug 30.H.2.W.CI2 0.029 0.626

4.3.2 Decay pattern of disinfectant types in RWDs
Overall, there is a decay pattern for both disinfectant types as temperature increases under both

high and low AOC (Figure 4.2). Chlorine tends to decay faster than chloramines. Furthermore,
under low AOC, decay occurs slower in both disinfectant as temperature increases compared to

high AOC.

H|GH 14.1 221 30 222 142 14.1 22.1 30 222 142

AOC

ci2(mgh)
NH2CI(mgn)

LOW 14.1 221 30 222 14.2 14.1 221 30 222 14.2

AOC

cl2(mgil)
NH2CI (ma)

1258 RO 1255 RO 1255 RO 1253 RO 1255 RO 1255 RO 1255 RO 1258 RO 1255
Water Age Water Age

Figure 4.2: Decay pattern of chloramines and chlorine disinfectant in RWDs
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4.3.3 Relationship of water chemistry, water age, and microbial regrowth

We also examine how water chemistry (AOC, disinfectant types, etc.) affects cell counts. We tried
to fit the total cell counts with Poisson regression, Poisson mixed models, negative binomial, and
negative binomial mixed models. We chose negative binomial mixed models since it has the lowest
Akaike Information Criterion (AIC=3913.716). Pearson’s chi-square test for goodness of fit gives
p = 0.805, suggesting the negative mixed model fits the total cell counts data. By applying negative
binomial mixed models on cell counts, water chemistry factors that have the most effect on
bacterial regrowth are identified. Most regrowth occurs at the high temperature (30°C). Chlorine
condition has significantly negative effect on cell counts whereas chloramine does not (Table 4.2).
AOC is marginally significant in determining microbial regrowth (p=0.067). Low AOC nutrients
keep regrowth of resistome at a lower rate (80.2% lower compared to high AOC). The results

shown in Table 4.2 are consistent with findings shown in Figure 4.3.

Table 4.2: The effect of water chemistry and water age on bacterial regrowth

Water Chemistry Coefficient Estimate P-value
Temperature 0.105 0.031*
AOC Low -0.802 0.067.
Disinfectant Types Chlorine(Cl2) -3.034 1.71e-08 ***
Chloramine (NH2CI) 0.035 0.948
Water Age 1 0.012 0.947
2.5 -0.123 0.509
5 0.030 0.869
F -0.109 0.608
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Figure 4.3: The effect of water chemistry and water on observed total cell counts

4.3.4 Factors that affect ARG profiles in the simulated RWDs
Based on Bray-Curtis dissimilarity on all water samples, the ARG compositions are significantly

different for three condition comparisons, biofilm vs. bulk water (R=0.313, p-value=0.001),
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different disinfectant types (R=0.228, p-value=0.003), and different temperatures (R=0.258, p-
value=0.002). The ARG compositions are similar under two water age conditions (R=-0.013, p-
value=0.607). At 30°C, the ARG communities are even more distinctive under biofilm vs. bulk
water (R=0.6, p-value=0.001), and different disinfectant types (R=0.374, p-value=0.003). There is
still no difference in ARG compositions under two different water age conditions (R=-0.046, p-
value=0.707). It is noteworthy that at 30°C disinfectant types are influential in shaping the
resistome especially in water, i.e., there are clear groupings of disinfectant types in bulk water
(Figure 4.4 left). NMDS plot also reveals that at 30°C and in bulk water, MSBA, TETA, MDTC,
MUXC, LLMA in tetracycline and aminocoumarin categories are the most affected by chlorine
(CI2); BACA, MUXB, MDTB, MUXA (belong to bacitracin and aminocoumarin categories) by
chloramines (NH2CI); TET33, NJ69 08675, ILES2, VANRC, TETX, SUL2, and ARNA
prominently in polymyxin, macrolide-lincosamide-streptogramin and chloramphenicol categories
by no disinfectant. At 30°C, biofilm environment has more diverse ARG compositions. Also both
disinfectants reduce diversity in ARG communities. Chloramines keep ARGs the least diverse
(Figure 4.4 right).

— 5 i Biofilm vs. Water, R=0.6, p=0.001 Disinfectant Types, R=0.374, p=0.004
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Figure 4.4: NMDS plot on biofilms (B) vs. bulk water (W) and disinfectant types at 30°C (left)
and ANOSIM plots on diversity under biofilms (B) vs bulk water (W) and under different
disinfectant types at 30°C (right)

In addition, Simpson diversity indices of ARG communities are calculated and compared across
all samples. Mixed ANOVA on diversity indices is applied to determine which factors

significantly affect ARG diversity. Results from the mixed ANOVA show that biofilms vs. bulk
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water have significant effect on ARG diversity (p-value<0.05), whereas disinfectant types,
temperature, and water age have no significant impact on ARG diversity. ARGs are more diverse
in biofilms environment than in bulk water. At 30°C, ARGs tend to be less diverse than at 22 °C.
Disinfectants tend to keep ARG communities less diverse. Chlorine tends to keep ARGs at least

diversity (Figure 4.5). These univariate results are mostly consistent with ANOSIM multivariate

results.
Biofilm vs. Water Disinfectant Types
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Figure 4.5: Simpson diversity plots across all samples

Wilcoxon Mann-Whitney tests are conducted on abundance to determine factors that may control
the total ARG abundance across samples. Total ARG abundance is significantly smaller in
biofilms compared to bulk water (average total abundance in biofilms and water are 53.713 and
75.645 respectively, with p-value=0.003) (Figure 4.6 upper) while temperature, disinfectant types
and water age are not significant in controlling total ARG abundance, i.e., p-value>0.05. Average
total ARG abundance tends to increase with temperature even though average total ARG

abundance is more similar between 22°C and 30°C. Average total abundance tends to be the lowest
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under chloramines followed by no disinfectant (24.187 and 29.986 respectively) and average total

abundance tends to be the highest in chlorine (75.185) (Figure 4.6 upper).

ARG composition plots (Figure 4.6 lower) reveal that ARG compositions differ across disinfectant
types. At 30°C and under chloramines, ARG compositions are the least diverse followed by
chlorine. These observations are consistent with ANOSIM analysis. In summary, the multivariate
nonparametric method, ANOSIM, works the best for the data because it does not assume any
particular distribution imposed for ARG abundance and it takes into consideration all ARG
abundance profiles rather than collapses all ARG profiles into one diversity index per sample.
ANOSIM reveals that water/biofilm and disinfectant types play a significant role in shaping the
resistome. In particular, the selective effect of disinfectants is the most pronounced in the water
phase where the bacteria are in the most direct contact with the disinfectants. Higher ARG diversity
observed in biofilms suggests that biofilm tends to serve as a reservoir for ARG exchange and
accumulation, even though lower ARGs abundance is observed. Disinfectants reduce ARG
abundance as well as ARG diversity. Disinfectants are more in shaping the resistome of bulk water

than that of biofilms. It is remarkable that bacitracin and multidrug are the most abundant in all

water samples.
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Figure 4.6: Absolute abundances (upper) and relative abundances (lower) of ARG classes in

RWDs

4.3.5 Correlation analysis of water chemistry and ARG abundance

Spearman’s correlations between ARG abundance and concentrations of dissolved oxygen and
two disinfectant types across samples were calculated. We reported the most significant
correlations (p-value<0.05) with the highest Spearman’s correlation values. ARG abundance
across samples are positively correlated to dissolved oxygen and chlorine concentrations (Table
4.3a, b). ARGs in multidrug category have the highest correlation with dissolved oxygen (Table
4.3a). It is likely that the antibiotic resistance mechanism is also shared as a defense mechanism
to cope with lower dissolved oxygen. Most ARGs that are highly correlated with chlorine belong
to the beta_lactam group (Table 4.3b). ARG abundances across samples are observed to have the

strongest positive or negative correlation with chloramines.

Table 4.3a: Spearman correlation between ~ Table 4.3b: Spearman correlation between

ARG abundance and dissolved oxygen ARG abundance and chlorine

ARG Spearman ARG class Spearman
correlation ARG correlation ARG class

ACRB 0.671 multidrug
MDTD 0.654 multidrug VANRI 0.656 glycopeptide
ACRA 0.646 multidrug MSRB 0.654 MLS
OPRN 0.640 multidrug ARR.2 0.654 rifampin
MEPB 0.633 multidrug AB182_ 22595 0.633 beta_lactam
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chlorampheni OXA.129 0.633 beta_lactam
CATB9 0.600
col AADK 0.633 aminoglycoside
EMRA 0.599 quinolone WM16 03815 0.633 beta_lactam
MEXA 0.597 multidrug AADA7 0.601 aminoglycoside
DSX2 1119 0.600 beta_lactam
MEXP 0.593 multidrug

Table 4.3c: Spearman correlation between ARG abundance and chloramines

ARG Spearman’s correlation ARG class
(ARGs vs. Chloramines)
ADER 0.777 tetracycline
AAC-3’-11B 0.742 aminoglycoside
ADEB 0.740 multidrug
MAB_2875 0.726 unknown
FLOR 0.721 multidrug
TETZ 0.719 tetracycline
AAV95 16190 0.714 beta_lactam
CCNA 03676 0.714 aminoglycoside
EFPA 0.708 multidrug
MACB -0.857 macrolide-lincosamide-streptogramin
TURPA_2231 -0.785 macrolide-lincosamide-streptogramin
AMS22_10315 -0.757 macrolide-lincosamide-streptogramin
DFRA3 -0.748 trimethoprim
RAHAQ2 0060 -0.744 macrolide-lincosamide-streptogramin
ARNA -0.730 polymyxin
MPHA -0.722 macrolide-lincosamide-streptogramin
CCC_03326 -0.713 beta_lactam
OTRA -0.713 tetracycline

The multivariate regression tree (MRT) analysis is first carried out on ARG profile for all samples

and adjusted for all water chemistry parameters, dissolved oxygen, cell counts, nitrite
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concentrations and disinfectant types to determine the tree splits. Of all the factors considered,
only disinfectant types are significant in determining the tree splits of the ARG abundance. We
further carry out the MRT analysis on ARG profile for samples from chlorine and chloramine
separately to determine whether there exists critical concentration values for each of the
disinfectant types that effectively shape the ARG profile. For chlorine samples, the tree split is at
chlorine concentration of 0.09 mg/L. Samples with chlorine concentration of 0.09 mg/L or greater
have higher average ARG abundance (5.61 compared to 1.09 in lower concentration samples). For
chloramine samples, the tree split is at chloramine concentration of 0.43 mg/L. Samples with this
concentration or greater have lower average ARG abundance (0.535 compared to 0.584 in samples
with lower concentration) (Figure 4.7). It is noticeable that there is a bigger difference in average
ARG abundance in the tree split in chlorine samples with even small concentration compared to
chloramine samples (4.51 vs. 0.049). The multivariate regression tree analysis for chloramines
gives counterintuitive results since we expect that higher disinfectant concentrations lower total

ARG abundance. This is likely due to small sample sizes and further validation is needed.

CI2 disinfectant type NHZ2CI disinfectant type
disinfect.conc>=0.09 disinfect.conc< 0.09 disinfect.conc< 0.43  disinfect.conc>=0.43
[ |
1.09 :n=6 5.61:n=14 0.548 : n=5 0.535:n=3
Error: 0.885 CVError: 1.89 SE: 0.273 Error: 0.707 CV Error: 1.44 SE: 0.364

Figure 4.7: Multivariate Regression Tree on ARG profile

4.3.6 Network analysis on assembled data

To investigate co-occurrence of ARGs with mobile genetic elements and pathogens, we assembled
the metagenomic short reads into contigs using the assembly pipeline from MetaStorm [74]. The
assembled contigs were analyzed for plasmids using the ACLAME database [76]. The GreenGenes

database [77] is used to for bacterial phylogenetic and functional analyses. The read matches were
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filtered out if e-value > 10", coverage<90%, or sequence identity < 60% to ensure high quality
co-occurrence from the contigs. In total, there are 45,066 scaffolds, 557 (1.24%) of which contain
one or more ARGs and 501 (1.11%) contain both ARGs and plasmids. Of all 577 scaffolds from
deepARG [75], 92 (15.95%) scaffolds have ARG co-occurrence. UPPP (of bacitracin class) and
DFRE (of trimethoprim class) are the most co-occuring across all samples (24 occurences),
followed by UPPP and CEOB (multidrug) (13 co-occurences) (Figure 4.8). Other most significant
connections include DFRE and BACA (8 co-occurences), DFRE and CEOB (7 co-occurences),
UPPP and ACRB (7 co-occurences), and UPPP and MEXF (7 co-occurences). Most of the high
frequency co-occuring ARGs are found to be general housekeeping genes that have no specific
targeted mechanism towards individual antibiotics. Other commonly co-occurred ARGs include
SUL1 and TET genes. Co-occurrence of these antibiotic-specific genes with broad-spectrum

resistance genes could enhance the propagation of these genes.
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Figure 4.8: The ARG co-occurrence network constructed based on ARGs occurring on the same

scaffolds using de novo assembly of metagenomic sequences. The sizes of ARG nodes correspond
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to degrees of the nodes. The thickness of edges reflects the number of ARG connections occurring

on the same scaffolds across all water samples.
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Figure 4.9: Network constructed based on ARGs and plasmids occurring on the same scaffolds
using de novo assembly of shotgun metagenomic sequences. The size of the node corresponds to
the degree of the node. The thickness of the edge reflects the number of ARG-plasmid co-
occurrence on the same scaffolds across all water samples. For clarity, only the top 50 ARGs or

plasmids with the highest connections with other ARGs or mobile genetic elements are shown.

Network analysis from the assembled data shows that UPPP, BACA (bacitracin), DFRE
(trimethoprim), CEOB, MEXF, ACRB (multidrug), and ROSA (polymyxin) are ARGs most
frequently found in plasmids while pGMI1000MP, 1, pSymB, megaplasmid, and pRSPAO1 are
plasmids that are most frequently associated with ARGs. Association of these ARGs with mobile
genetic elements such as plasmids indicates the likelihood of these ARGs to spread to susceptible

bacteria through horizontal gene transfer and conferring resistance.
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4.3.7 Modeling co-occurrence of ARGs based on ARG abundance

Several networks are constructed on ARG abundance. One network is constructed based on the

pairwise Spearman’s correlations between 655 ARG subtypes across all water samples. Only ARG

pairs with Spearman’s correlation p>0.8 and the adjusted p-value for multiple tests <0.01 are

retained in the network. In addition, a Bayesian network is constructed using the max-min hill

climbing algorithm.
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Figure 4.10: The network constructed on Spearman’s correlations on ARG abundance with p>0.8

and the adjusted p-value for multiple tests <0.01. For clarity, only the top 58 ARGs with the highest

connections with other ARGs are shown.
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Figure 4.11: The Bayesian network constructed on ARG abundance using the max-min hill
climbing algorithm. Only ARGs’ edge connections with p>0.8 are kept in the network. In addition,
the top 58 ARGs with highest connections with other ARGs are retained.

The Bayesian ARG network is more consistent with the network constructed from assembled data
than Spearman’s correlation network (Figure 4.10) as 43.10% of the most connected ARGs from
the Bayesian network agree with the top ARG hubs from the network based on assembled data
compared to 5% for the network based on Spearman’s correlation). The Bayesian network also

identifies UPPP and DFRE as the most connected ARGs (Figure 4.11)

4.3.8 Modeling co-occurrence of ARGs and microbial taxa based on abundance data

As the above analysis shows that the Bayesian network is a better fit for our data; subsequent
networks were constructed based on the Bayesian network on abundance profiles of ARGs and
microbial taxa. The similarity between ARGs and microbial taxa profiles across samples indicates
co-occurrence of ARGs and microbial taxa. In addition, co-occurrence of ARGs and microbial
taxa may provide ARG-host information, i.e., the kinds of microbial species that carry ARGs. For

example, at the genus level, Sphingomonas stands out as having the most connections with
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different types of ARGs. It is a host for glycopeptide resistant genes (VAND and vanRN) and beta
lactam resistant genes (e.g., IMP-47, mrdA, blaTER-2, and WS70_25295) and aminoglycoside
resistant genes (e.g., LHA 1702, AAC(3)-1d, and aadAl5).
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Figure 4.12: The Bayesian network of ARGs and bacterial taxa constructed based on ARG
abundance profiles and taxa profiles at the genus level. Edge connections with p>0.8 are kept in

the network.

At the species level, Gelatinosus hosts the most ARGs (13 ARGS), including glycopeptide resistant
genes (VAND and VANRC), polymyxin (BASR), beta_lactam (OR214 01020, BL2C_PSE3),
aminoglycoside (ANT1_1), and trimethoprim (DFRK). Analysis at both genus and species levels
showed consistent results that glycopeptide resistant genes, beta-lactam genes, and

aminoglycoside are likely to be preferred by microbial hosts.
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Figure 4.13: The Bayesian network of ARGs and bacterial species constructed based on ARG

abundance profile and taxa profiles. For clarity, only edges with p>0.8 are kept.

4.4 Conclusions

Overall several observations can be made from the study of the simulated water distribution
system. First, temperature and disinfectant types are important factors in influencing microbial
regrowth. In particular, as temperature increases, regrowth occurs more often. Chlorine reduces
microbial regrowth but chloramine does not. Second, biofilm/bulk water, disinfectant types, and
temperature have significant contribution to the shaping of microbial communities. At 30°C,
biofilm environment has more diverse microbial compositions than water. Also disinfectants can
reduce the diversity of the microbial communities and comparatively, chloramines has a stronger
effect on the diversity reduction than chlorine. ARGs are the most diverse at 22°C and the least

diverse at 30°C. Network analysis on assembly data reveals that UPPP and DFRE are the most co-
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occurred ARG pair. The Bayesian networks constructed for ARG and genuses/species abundances

reveal important host information of ARGs.
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Chapter 5

CONCLUSION

Mapping whole-genome bisulfite short reads is challenging because of reduced complexity in
genome sequences due to bisulfite treatment and increased search space after PCR amplification
in the experiment. This thesis evaluates different bisulfite short read mapping tools and develops
a framework for bisulfite sequencing analysis. First, we compared five different bisulfite short read
mappers. Though Bismark is not the fastest mapper, it has the highest mapping efficiency and is
highly recommended for bisulfite short reads alignment. Pre-processing data, i.e., trimming bad
quality bases in short reads improves mapping efficiency. Sequencing errors have a negative
impact on mapping efficiency for all the mappers. Second, we developed a Bayesian framework
that takes advantage of uniquely mapped reads to differentiate ambiguously mapped short reads.
By applying the Bayesian scoring model BAM-ABS on simulation and real hairpin mouse data,
we showed that up to 70% of the ambiguously mapped short reads were assigned to unique
locations with 90% accuracy. Thus, BAM-ABS is effective in mapping multireads to unique
locations. Moreover, BAM-ABS showed robust performance for data with different methylation
rates. As expected, increase in depth coverage and read length improves the performance of BAM-

ABS while sequencing error decreases its performance. BAM-ABS assumes most of the variants
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between uniquely mapped reads and multireads are homozygous. However, this may not be
applicable to all cases. Therefore, for future work, improvement can be made by incorporating

heterozygous variants into the scoring model.

The subsequent step after bisulfite short read alignment is to detect differentially methylated sites
between phenotype groups. The traditional techniques for DMR detection do not take correlation
among cytosine sites into consideration and inaccurately detect DMRs when there are small
methylation differences with small sample sizes between phenotype categories. This thesis
evaluates the traditional (methylKit) and Bayesian WFMM methods for DMR detection using
simulated and real data with small methylation effect. Results show that WFMM has higher
sensitivity and specificity than methylKit when methylation effect is small (i.e., average
methylation differences between phenotype categories <0.01). We also suggest empirical rule to
tune parameters to be reflective of specific methylation profiles. The method can be easily turned
into a classifier for general machine learning purpose that can incorporate spatial and temporal

correlation in the data.

Reusing treated waste water is essential for water sustainability. Our study of simulated RWDs
shows that biofilm/bulk water, temperature, and disinfectant types play an important role in
shaping microbiomes. ARGs are the most diverse under biofilm environment or at 22°C.
Increasing temperature to 30°C and injecting disinfectant in water reduce microbial diversity.
Network analysis of assembled data on ARG abundance shows that UPPP and DFRE are the most
co-occurred. This network serves as a validation of network modeling. Results show that Bayesian
networks fit our ARG profile data better than the network based on simple Spearman’s correlation

coefficients.
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