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Abstract 

Large-scale bisulfite treatment and short reads sequencing technology allows comprehensive 

estimation of methylation states of Cs in the genomes of different tissues, cell types, and 

developmental stages. Accurate characterization of DNA methylation is essential for 

understanding genotype phenotype association, gene and environment interaction, diseases, and 

cancer. The thesis work first evaluates the performance of several commonly used bisulfite short 

read mappers and investigates how pre-processing data might affect the performance. Aligning 

bisulfite short reads to a reference genome remains a challenging task. In practice, only a limited 

proportion of bisulfite treated DNA reads can be mapped uniquely (around 50-70%) while a 

significant proportion of reads (called multireads) are aligned to multiple genomic locations. The 

thesis outlines a strategy to improve the mapping efficiencies of the existing bisulfite short reads 

software by finding unique locations for multireads. Analyses of both simulated data and real 

hairpin bisulfite sequencing data show that our strategy can effectively assign approximately 70% 

of the multireads to their best locations with up to 90% accuracy, leading to a significant increase 

in the overall mapping efficiency. 

The most common and essential downstream task in DNA methylation analysis is to detect 

differential methylated cytosines (DMCs). Although many statistical methods have been applied 

to detect DMCs, inconsistency in detecting differential methylated sites among statistical tools 

remains. We adapt the wavelet-based functional mixed models (WFMM) to detect DMCs. 

Analyses of simulated Arabidopsis data show that WFMM has higher sensitivities and specificities 

in detecting DMCs compared to existing methods especially when methylation differences are 

small. Analyses of monozygotic twin data who have different pain sensitivity also show that 

WFMM can find more relevant DMCs related to pain sensitivity compared to methylKit. In 

addition, we provide a strategy to modify the default settings in both WFMM and methylKit to be 

more tailored to a given methylation profile, thus improving the accuracy of detecting DMCs.



 
 

Population growth and climate change leave billions of people around the world living in water 

scarcity conditions. Therefore, utility of reclaimed water (treated wastewater) is pivotal for water 

sustainability. Recently, researchers discovered microbial regrowth problems in reclaimed water 

distribution systems (RWDs). The third part of the thesis involves: 1) identifying fundamental 

conditions that affect proliferation of antibiotic resistance genes (ARGs), 2) identifying the effect 

of water chemistry and water age on microbial regrowth, and 3) characterizing co-occurrence of 

ARGs and/or mobile genetics elements (MGEs), i.e., plasmids in simulated RWDs. Analyses of 

preliminary results from simulated RWDs show that biofilms, bulk water environment, 

temperature, and disinfectant types have significant influence on shaping antibiotic resistant 

bacteria (ARB) communities. In particular, biofilms create a favorable environment for ARGs to 

diversify but with lower total ARG populations. ARGs are the least diverse at 300C and the most 

diverse at 220C. Disinfectants reduce ARG populations as well as ARG diversity. Chloramines 

keep ARG populations and diversity at the lowest rate. Disinfectants work better in bulk water 

environment than in biofilms in terms of shaping resistome. Network analysis on assembly data is 

done to determine which ARG pairs are the most co-occurred. Bayesian network is more consistent 

with the co-occurrence network constructed from assembly data than the network based on 

Spearman’s correlation network of ARG abundance profiles. 
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Human genome project has been lately attracting a lot of public attention. With the flood of 

big genomic data, understanding and extracting valuable information from the data remain 

challenge. The thesis work first evaluates the performance of different genome analysis tools. After 

that, the thesis outlies a strategy to improve the overall performance of whole-genome analysis 

tools, thus contributing to more accurate identification of mutations that are responsible for cancer 

and diseases. Population growth and climate change leave billions of people around the world 

living in water scarcity conditions. Therefore, utility of reclaimed water (treated wastewater) is 

pivotal for water sustainability. Recently, researchers discovered microbial regrowth problems in 

reclaimed water distribution systems which can worsen the existing problem of antibiotics 

resistance spread. The thesis identifies fundamental factors that help shape the microbial 

communities in reclaimed water systems in order to limit the spread of antibiotics resistance.  
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Chapter 1 

 

Introduction 
 

1.1 Background 

DNA methylation is the addition of a methyl group (CH3) at the 5th carbon position of the cytosine 

ring. Most cytosine methylation occurs in the sequence context of 5’CG3’ (also called CpG 

dinucleotide) in mammalian DNA, but some in CpH dinucleotides (where H=C, T or A). The 

human genome is not methylated uniformly, and some small regions called CpG islands are usually 

unmethylated and GC rich. DNA methylation is responsible for regulation of gene expression, 

silencing of genes on the inactive X chromosome, imprinted genes, and parasitic DNAs [1]. DNA 

methylation is also a major contributor to the generation of disease-causing germ-line mutations 

and somatic mutations that cause cancer [2]. Therefore, accurate genome-wide determination of 

DNA methylation in different cells, tissues, and developmental stages is crucial for identification 

of causes for phenotype differences and diseases and cancer. 

Large-scale characterization of DNA methylation has been made possible by bisulfite 

conversion of genomic DNA combined with next generation sequencing. After bisulfite treatment 

of DNAs, unmethylated Cs are converted to Ts and subsequent mapping of the short reads to a 
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reference genome allows inference of methylated vs. unmethylated Cs. Thus, inference on DNA 

methylation is highly dependable on the mapping of bisulfite-treated short reads to a reference 

genome. Similar to regular next generation sequencing analysis, the great challenge is to be able 

to map thousands of millions of reads in reasonable time and with high mapping efficiency (i.e., 

the percentage of reads that are mapped to a reference genome). 

1.2 Evaluation of bisulfite short read aligners 

Many tools have been developed to tackle this computational challenge such as MAQ [3], Bismark 

[4], BSMAP [5], PASH [6], RMAP [7], GSNAP [8], Novoalign [9], BFAST [10], BRAT-BW 

[11], Methylcoder [12], CokusAlignment [13], BS-Seeker [14], BS-Seeker2 [15], Segemehl [16], 

BiSS [17], BatMeth [18], and the latest one ERNE-bs5 [19]. The majority of these bisulfite 

sequencing mappers first conduct some sequence conversions (e.g. Cs to Ts and Gs to As) either 

on the reads, the reference genomes, or both, and then use existing regular aligners such as Bowtie 

[20], Bowtie2 [21], BLAT [22], SOAP [23], and BWA [24] to map short reads to a reference 

genome. Fonseca et al. [25] classified the tools according to their indexing techniques and 

supported features such as mismatches, splicing, indels, gapped alignment, and minimum and 

maximum of read lengths.  Stockwell et al. [26] compared Bismark, BSMAP, and RMAPBS in 

terms of uniquely mapped reads percentages, multiple mapping percentages, CPU running time, 

and reads mapped per second. They also pointed out that trimming the data before aligning could 

improve mapping efficiency. However, the study did not examine how setting different parameters 

might impact program performance.  

In this section, we present how modifying default parameters in each program might 

change the results (i.e., mapping efficiency and CPU time) and the sensitivity of each program to 

the characteristics of data. Though we examined many software packages, we mainly focused on 

two mappers: BSMAP and Bismark since they are representatives of two different index 

algorithms namely Burrows-Wheeler Transform in Bismark and hash table in BSMAP. In general, 

genome indexing based tools performed better than read indexing tools and read indexing does not 

provide any significant speed up [27], therefore, we did not include RMAP in our analysis. We 

also show that trimming data improves mapping efficiency. The paper is organized as follows: 
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first, we briefly describe the bisulfite sequence mapping problem and mapping techniques used by 

the tools. Then we describe the datasets used in the study and criteria used to evaluate the 

performance of the tools. Finally we show results on evaluating the tools using both real and 

simulated data.  

1.2.1 Overview of the Computational Problem, Algorithms, and Tools 

Computational challenges of mapping bisulfite short reads 

Over the decades, bisulfite sequencing has remained the gold standard for DNA methylation 

analysis.  After bisulfite treatment, unmethylated Cs are converted to thymines (T) whereas 

methylated Cs unchanged.  Several factors make bisulfite short reads more complicated to map 

than regular reads. Firstly, up to four strands are analyzed from one genomic region. There are two 

scenarios after Polymerase chain reaction (PCR) amplification. In the first case, if the sequencing 

library is generated in a directional manner, the strand that the reads are amplified from is known 

a priori. However, if non-directional, the Watson and Crick strands of bisulfite treated sequences 

are no longer complementary to each other due to the conversion, and there are four different 

strands after PCR amplification: BSW (bisulfite Watson), BSWR (reverse complement of BSW), 

BSC (bisulfite Crick), and BSCR (reverse complement of BSC), all amplified and sequenced at 

roughly the same frequency [13]. The search space is, therefore, significantly increased relative to 

the original reference sequence [5]. Secondly, sequence complexity is reduced as all unmethylated 

Cs are changed into Ts. In the mammalian genome, because C methylation occurs almost 

exclusively at CpG dinucleotide, the majority of Cs in BSW and BSC strands will be converted to 

Ts. Therefore, most reads from the two strands will be C-poor.  However, PCR amplification will 

complement all Gs with Cs in BSWR and BSCR strands, so reads from these two strands are 

typically G-poor and have a normal C content. As a result, we expect the overall C content of 

bisulfite reads to be reduced by approximately 50% after the two processes (converting Cs to Ts 

in bisulfite treatment and transcribing Gs to Cs in PCR amplification)[5]. Lastly, C to T mapping 

is asymmetric. The T in the bisulfite reads could be mapped to either C or T in the reference 

genome but not vice versa. This complicates the mapping process.  

Algorithms and tools for bisulfite short reads mapping 
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For most of the existing programs, alignment process is to build auxiliary data structures called 

indices for the reference genome, the reads, or both. The indices are then used to find matching 

genomic positions for each read. There are many available methods to build the indices [28]. The 

two most popular techniques are hash tables and suffix/prefix tries [27] reviewed below together 

with some representative programs (Figure 1.1). A comprehensive comparison of detailed 

functionalities of the programs is shown in Table 1.1.  

 

Figure 1.1: Bisulfite mapping tools classification. The tools can be divided into two groups based 

on indexing strategies: hash tables or Suffix/Prefix tries. Each of the groups are further classified 

into subgroups where some example programs are shown. Note: BFAST uses multiple index 

strategies: both hashing and suffix tree 
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Programs Year  Algorithmic Technique used Language Aligner Input Output Min/ 

Max  

read 

length 

Mismatch

es 

Indels Gaps  Single/

Paired-

end 

Multi-

threade

d 

Non-

directi

onal 

ERNE-

bs5 

2012 Hash genome indexing, use a 

5-letter (Cm, Cu) for storing 

methylation information, use 

a weighted context-aware 

Hamming distance to identify 

a T coming from an 

unmethylated C.  

C++ None gz/bz2/ 

fastq/ 

fasta 

BAM/ 

SAM 

up to 600 

bp 

1 every 

15 bp(-

errors 

arg) 

Yes Yes both Yes No 

Batmeth 2012 FM index, integrates 

mismatch Counting, list 

filtering and mismatch stage 

filtering and fast mapping 

onto two indexes.  

Perl/C++ None fasta NA NA up to 5 (-

n) in a 

read 

No No Yes Yes Yes 

BiSS 2012 Reference genome hashing, 

local Smith-Waterman 

alignment 

Perl None fasta/ 

fastq/ 

gz/ 

SAM/ 

BAM 

SAM/ 

BAM/ 

Next 

GenMap 

up to 

4096 

bp 

(-i from 0 

to 1) in a 

read 

Default i 

=65% 

Yes Yes Yes Yes No 

Bismark 2011 FM-Index, enumerates all 

possible T to C conversion 

Perl Bowtie/

Bowtie2 

fasta/ 

fastq 

BAM/ 

SAM 

Bowtie: 

up to 

1000 bp 

Bowtie 2: 

unlimited 

0 or 1 in a 

seed (-N) 

Yes Yes both Yes Yes 

BS-

Seeker2 

2013 FM-Index, enumerates all 

possible T to C conversion 

Python Bowtie2/

Bowtie/

SOAP/R

MAP 

fasta, 

fastq, 

qseq, 

pure 

sequence 

BAM/ 

SAM/BS-

Seeker 

50-500bp up to 4 

per read 

(-m) 

Yes Yes Single No Yes 

BS-

Seeker 

2010 FM-Index, enumerates all 

possible T to C conversion, 

converts the genome to a 3 

letter and use Bowtie to align 

reads 

Python Bowtie fasta, 

fastq, 

qseq, pure 

sequence 

BAM/ 

SAM/ 

BS_Seeker 

50-250bp up to 3 

per read 

(-m) 

Yes No Single No Yes 
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BSMAP 2009 hashing of reference genome 

and bitwise masking, tries all 

possible T to C combinations 

for reads 

Python SOAP fasta/ 

fastq/SA

M 

SAM/ 

txt 

up to 144 

bp 

up to 15 

in a read 

(-v) 

 up to 

3 bp 

both Yes Yes 

RMAP 2008 Wildcard matching for 

mapping Ts,  incorporate the 

use of quality scores directly 

into the mapping process 

C++  fastq/fasta BED unlimited up to 10 

in a read 

(-m) 

No No both No No 

BRAT-

BW 

2012 Convert a TA referene and 

CG reerence,  Two FM 

indices are built on the 

positive strand of the 

reference genome 

C++  Text file 

with input 

file 

names in 

fastq, 

sequence 

only 

txt 32 bp-

unlimited 

unlimited  No No both Yes Yes 

MAQ 2008 Builds multiple hash tables to 

index the reads, scans the 

reference genome against the 

hash tables to find hits 

Perl/ 

C/C++ 

 fastq maq Up to 63 

bp 

up to 3 

per read 

Yes, -

n=2 

No both No No 

PASH 2010 Implements k-mer level 

alignment using multi-

positional hash tables 

C  fastq Txt/  SAM NA Yes Yes No Single No No 

Novo-

align 

2010 Hashing genome C/C++  fastq SAM/ 

BAM 

up to 8 

per read, 

16 for 

paired 

end reads 

Yes Yes up to 

7bp 

on 

single 

end 

reads 

Both No Yes 

Methyl-

coder 

2011 FM-Index, all Cs converted 

to Ts 

C/C++/ 

Python 

GSNAP/

bowtie 

fastq/ 

fasta 

BAM/ 

SAM 

Bowtie: 

up to 

1000 bp 

Yes No Yes both No No 

GSNAP 2005 q-mer hashing of reference 

genome 

C/Perl  gzip/ 

fastq, 

fasta/ 

bzip2 

SAM/ 

GSNAP 

14-250bp Yes Yes Yes both yes No 

BFAST 2009 uses multiple indexing 

strategies: hashing and  suffix 

array of the reference genome 

C  fastq/bz2/

gzip 

SAM NA Yes Yes Yes both Yes Yes 
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Table 1.1: Detailed comparison of different bisulfite short reads mapping tools 

*BFAST does not have a direct option for bisulfite mapping, users have to convert Cs to Ts in both a reference genome and reads and 

then align converted reads to the converted reference genome.  

*Parenthesis in mismatches column indicates parameter for mismatches in a program. 

*1 A min percentages of matches per read 

 

 

 

Segemehl 2008 Enhanced suffix arrays to 

find exact and inexact 

matches. Align to to read 

using Myers bitvector 

algorithm 

C/C++  fasta SAM unlimited Yes (-A *1) Yes both Yes No 
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Indexing using hash tables can be divided into three strategies: hashing the genome, 

hashing the reads, or a combination of both. All hash table algorithms essentially follow the seed-

and-extend technique. The algorithm keeps the positions of each k-mer fragment of the 

read/genome in a hash table using k-mer as the key and searches the sequence databases for k-mer 

matches (called seeds) [28]. After this, seeds can be joined without gaps and refined by local 

sequence alignment. Tools using this indexing technique include: BSMAP (genome hashing) [5], 

GSNAP (genome hashing) [8], Novalign (genome hashing)[9], BFAST (genome hashing/suffix 

array)[29], RMAP (read hashing) [7], BiSS (genome hashing) [17], PASH (read hashing) [6], 

MAQ (read hashing) [3], and ERNE-bs5 (genome hashing) [19].  

Specifically, BSMAP is implemented based on SOAP (Short Oligonucleotide Alignment 

Program) [23]. BSMAP indexes the reference genome for all possible k-mers using hash tables. 

BSMAP masks Ts in bisulfite reads as Cs (i.e., reverse bisulfite conversion) only at C position in 

the original reference and keeps other Ts in the bisulfite reads unchanged. Then BSMAP maps the 

masked BS read directly to the reference genome. By combining bitwise masking and hash table 

seeding in its algorithm, BSMAP offers fast and good performance [5].  

BiSS (Bisulfite Sequence Scorer) is based on Smith-Waterman local alignment with a 

customized alignment scoring function [17]. BiSS uses NextGenMap [30] to align bisulfite reads 

to a reference genome. NextGenMap involves three steps. The first step, NextGenMap indexes the 

reference genome in a hash table. The next step is to identify the genomic region match. 

NextGenMap only considers regions where the number of k-mer matches exceeds a certain 

threshold as a match.  Unlike other methods, NextGenMap adaptively chooses the threshold, 

meaning each read has different threshold rather than one threshold for all reads [30].  

Indexing algorithm based on suffix/prefix tries essentially converts the inexact string 

matching to exact matching problem. The algorithm involves two steps: identify exact matches 

and building inexact alignments supported by exact matches. Several representations for searching 

exact matches in suffix/prefix tries are suffix tree, enhanced suffix array, and FM-index [28].  

Therefore, indexing using suffix/prefix tries can be classified into three subgroups: indexing using 

suffix tree, enhanced suffix array, and FM-index based on Burrows-Wheeler Transform. Tools 

falling into this category include Bismark (FM index), BS-Seeker (and BS-Seeker2, FM index), 
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BatMeth (FM index), Segemehl (enhanced suffix array), Methylcoder (FM index), Cokus 

Alignment (suffix tree), and BRAT-BW (FM index). 

Specifically, in Bismark, bisulfite reads are transformed into a C to T and G to A version 

(equivalent to a C to T conversion on the reverse strand). Then each of them is aligned to 

equivalently pre-converted forms of the reference genome using four parallel instances of Bowtie 

or Bowtie2 [4]. Bowtie starts by building an FM index for the reference genome and uses the 

modified FM index [31] to find the matching location. Bowtie2 are designed to support reads 

longer than 50 bps. The two versions of Bowtie performed quite differently [27]. This read 

mapping enables Bismark to uniquely determine the strand origin of a bisulfite read.  

BS-Seeker is very much similar to Bismark. The only difference is that BS-Seeker only 

works well for single-end reads whereas Bismark can work with both single-end and paired-end 

reads. Also BS-Seeker can explicitly account for tags generated by certain library construction 

protocols [14]. BS-Seeker records only unique alignments, defined as those that have no other hits 

with the same or fewer mismatches in the 3-letter alignment [14]. 

BRAT-BW is an evolution of BRAT [32]. Two FM indices are built on the positive strand 

of the reference genome: in the first, Cs are converted to Ts, and in the second, Gs are converted 

to As. Original reads with C to T conversion are mapped to the first index and reverse-complement 

reads with all Gs changed to As are mapped to the second index.  BRAT-BW uses a multi-seed 

approach similar to Bowtie2 [32]. 

Datasets  

We evaluated the tools on three types of data, human blood data (GSM791828), human and mouse 

brain data (GSE47966), and simulated mouse short read data. First, human blood data, including 

ten datasets (ID: SRR342552, SRR342553, SRR342554, SRR342555, SRR342556, SRR342557, 

SRR342558, SRR342559, SRR342560 and SRR342561) were downloaded from NCBI’s short 

reads archive [33]. The DNA short read sequences are non-directional. Each file in SRA format 

contains about 23 million single-end whole genome shot gun bisulfite sequence reads from human 

hematopoietic stem/progenitor cells (HSPCs). The BS-Seq reads are conventional base call 

qualities that are Sanger/Illumina 1.9 encoded Phred values (Phred33) and trimmed to 76 bps.  

Second, human and mouse brain data, including ten datasets from human brain [33] and eight 
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datasets from mouse brain [33] were downloaded from NCBI’s gene expression omnibus [34]. 

The DNA bisulfite short read sequences are directional. Each file contains around 100 million 

single-end whole genome shot gun bisulfite sequence reads from human and mouse frontal cortex 

in SRA format. The BS-Seq reads are conventional base call qualities that are Illumina HiSeq 2000 

encoded Phred values (Phred64) and trimmed to 101 bps.  Third, simulated bisulfite short reads 

data were generated from the mouse and human reference genome (version mm10 and hg19 

respectively) using Sherman simulator [35]. Parameters such as sequencing error, bisulfite 

conversion rate for cytosines in CG-context, and CH-context in Sherman, are determined based on 

literature for the mouse data [36] and cytosine methylation reports from Bismark for the human 

data. Reads with different read lengths were generated to mimic the real mouse and human data. 

Specifically, for examining the effect of sequencing error on mapping efficiency, 24 datasets were 

generated from the mouse reference genome by varying the sequencing error from 0 to 4.75% (The 

error rate is a mean error rate per bp). Each dataset contained 1 million short reads with length of 

101 bps and CG conversion rate of 10% (10% of all CG-cytosines will be converted into thymines) 

and CH conversion rate of 98.5% (98.5% of all CH-cytosines will be converted into thymines). 

For examining the effect of read length on mapping efficiency, 28 datasets were generated by 

varying the read length from 40 to 160 bps with sequencing error of 0.16%, CG conversion rate of 

10%, CH conversion rate of 98.5% for the mouse data and with sequencing error of 0.16%, CG 

and CH conversion rate of 19.73% and 98.9% respectively for the human data. Both human and 

mouse reference genomes (hg19 and mm10) were downloaded from Ensembl [37]. 

Important parameters in mapping tools 

Programs often have different default settings for the same parameters that can influence their 

performance. For example, BiSS sets the default mismatch to be 35% of the read whereas Bismark 

sets the equivalent parameter to zero. It is therefore important and fair to compare them on a 

common ground. Several important parameters that can greatly influence program performance 

include, (1). Number of mismatches allowed in the seed (e.g., Bismark); (2). Number of 

mismatches allowed in the read (e.g., BSMAP, BS-Seeker, BiSS, and BRAT-BW); (3). 

Directionality of data library (directional or non-directional); (4). Phred quality score (i.e., whether 
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data have Phred score of 33 or 64). In this study, we examined the effect of these parameters on 

the performance of the programs and how altering them can influence the final mapping results.  

Evaluation criteria 

The performance of the tools is evaluated mainly by two aspects: the mapping efficiency (i.e., 

percentage of uniquely mapped reads) and the CPU time. Uniquely mapped reads are reads that 

are mapped to only one location. Computationally speaking, most reads have multiple matches 

and from those matches, alignment scores are determined. An alignment is unique when it has 

much higher score than all other possible alignments, often determined by some statistics or 

cutoffs. The greater the difference between the best alignment score and the second-best alignment 

score, the more unique the alignment is, and the higher its mapping quality should be [38]. 

Mapping quality is a non-negative integer Q = -10 log10p, where p is an estimate of the probability 

that the alignment does not correspond to the read's true point of origin. Mapping quality is 

sometimes abbreviated MAPQ. (10 log10 Pr{mapping position is wrong}). 

Data preprocessing  

The original data were processed so reads have better quality scores and consequently can be 

mapped to reference genomes. Perl programming language was used to trim the tail of a read with 

residues quality score less than or equal to 2. After removing the tail, if the read length is shorter 

than 30, the read is also discarded. We use both trimmed and raw data in the analysis for the 

purpose of comparison of how mapping efficiency can be improved by pre-processing the data.  

1.2.2 Results and Discussion 

Performance comparison of the programs 

Five bisulfite reads mapping tools, BSMAP, Bismark, BS-Seeker, BiSS, and BRAT-BW, were 

chosen to cover different algorithms discussed in the algorithm overview section (also refer to 

Table 1.1). BatMeth, Segmenhl, and ERNE-bs5 were not included as BatMeth failed at last step 

of the reads alignment, Segmenhl consumed too much computer memory (1 TB) and could not be 

finished in reasonable time, and ERNE-bs5 produced inaccurate results on small test datasets.   

The performance is evaluated by considering two factors: mapping efficiency and CPU running 

time. Mapping efficiency is determined by the number of uniquely mapped reads divided by the 
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total number of reads. We set the number of mismatches to zero for all the programs and compare 

mapping efficiency and CPU running time of these programs on ten human blood datasets. Among 

the five programs, in terms of mapping efficiency (Figure 1.2), Bismark performs the best, 

achieving the highest mapping efficiency (average around 56% across the ten human blood 

samples), followed by BiSS (average around 46%) and BSMAP (average around 42%), and finally 

BRAT-BW (average around 39%) and BS-Seeker (average around 38%) with similar mapping 

efficiency across samples. 

 

Figure 1.2: Mapping efficiency on ten human blood datasets for BSMAP, Bismark, BS-Seeker, 

BRAT_BW, and BiSS with zero mismatches allowed between reads and the reference genome. 

However, for CPU running time, the trend is almost the opposite (Figure 1.3), with BRAT-BW 

taking the shortest time (average 16 minutes across samples), followed by BSMAP (average 29 

minutes) and BS-Seeker (average 31 minutes). Both BiSS (average 84 hours) and Bismark 

(average 11 hours) took much longer time than the other three programs, suggesting existence of 

the tradeoff between mapping efficiency and running time. The observation that BiSS ran the 

slowest might be because BiSS uses Smith-Waterman local sequence alignment algorithm to align 

reads to potential genomic locations [17]. Interestingly, although both Bismark (written in Perl) 

and BS-Seeker (written in Python) use Bowtie (or Bowtie2) for short reads mapping, Bismark ran 
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much slower than BS-Seeker, but having much higher mapping efficiency. We then used BSMAP 

and Bismark to map human fetal brain and mouse brain short reads data (refer to Figure 1.5). 

Consistent with the results for human blood data, Bismark has higher mapping efficiency but 

longer CPU running time than BSMAP. The mapping percentages are very similar across samples 

(Figure 1.6). However, mapping efficiency for the human and mouse brain data is higher than 

those for human blood data, consistent with the original research studies [39], suggesting that 

mapping efficiency is highly dependent upon the specific experiments producing the data.  

 

Figure 1.3: CPU running time (on a log scale) on human blood data for BSMAP, Bismark, BS-

Seeker, BRAT-BW, and BiSS with zero mismatches allowed between reads and the reference 

genome.   

Even though tools have similar mapping efficiency, reads that are actually mapped (i.e., mapped 

reads content) might differ among different programs. To examine how much difference the tools 

have in mapped reads content, we compared uniquely mapped reads from Bismark and BSMAP. 

On average, for human blood data, uniquely mapped reads shared by both Bismark and BSMAP 

account for approximately 97% of the total mapped reads by BSMAP and only 69% by Bismark. 

The numbers change little with different samples. Therefore, most of the mapped reads identified 

by BSMAP are also identified by Bismark. The difference in mapped reads content between 
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Bismark and BSMAP can be caused by several factors. First, the two use different string matching 

strategies. Bismark uses Burrows Wheeler transform and FM-indexes for searching and BSMAP 

hashes the reference genome for searching. In particular, Bismark uses aligner Bowtie2 whereas 

BSMAP uses aligner SOAP (older version of SOAP2) to map bisulfite short reads. As a result, 

difference in mapping algorithms can contribute to difference in mapped read content. According 

to Hatem et al. [27], Bowtie maintained the best throughput with higher mapping percentages, 

which could be why Bismark maps more reads than BSMAP. Second, determining whether a read 

is uniquely mapped is rather arbitrary and program specific [40]. Depending how each program 

defines “uniquely mapped” computationally, uniquely mapped read content can vary as a result. 

We also examined whether combining multiple tools to analyze bisulfite short reads could improve 

the overall mapping efficiency. We used BSMAP and BS-Seeker to align the unmapped reads 

from Bismark to see how much further BSMAP and BS-Seeker can improve the overall mapping 

efficiency. Table 1.2 shows that using BSMAP to align the unmapped reads from Bismark 

improves the overall mapping efficiency slightly better than using BS-Seeker (BSMAP: around 

4% improvement; BS-Seeker: only 1%). The lesser improvement from BS-Seeker might be due to 

the fact that both Bismark and BS-Seeker use Bowtie to align reads although they may have 

different criteria in post-processing the mapped reads. Overall, results across different datasets 

indicate that Bismark was able to identify the most uniquely mapped reads, and addition of more 

programs does not significantly improve mapping efficiency.  
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File name 
Total number  

of reads 

Unmapped 

reads in 

BISMARK 

Overall  

Improvement 

using 

BSMAP 

Overall  

Improvement 

using  

BS-Seeker 

SRR342552 23,472,574 10512269 3.72% 0.90% 

SRR342553 23,749,583 10610307 4.24% 1.03% 

SRR342554 25,232,053 11277407 4.29% 1.07% 

SRR342555 23,750,428 10452979 4.23% 1.01% 

SRR342556 23,140,352 10204603 4.28% 1.06% 

SRR342557 23,089,492 10093756 4.33% 1.05% 

SRR342558 21,205,564 9215604 4.26% 1.04% 

SRR342560 26,174,056 11491673 4.17% 1.01% 

SRR342561 25,457,341 11271400 4.16% 1.02% 

 

Table 1.2: Improvement in mapping efficiency after using BSMAP and BS-Seeker to map 

unmapped reads from Bismark on human blood data 

Effect of varying parameters in different tools 

We mainly focus on how changing numbers of allowed mismatches between reads and the 

reference genome affects mapping efficiency. Different programs have parameters that serve this 

purpose but sometimes have different meanings. For example, BSMAP has the option of setting 

the number of mismatches allowed in each short read using the parameter v. If v is between 0 and 

1, it is interpreted as the mismatch rate with respect to the read length. Otherwise it is interpreted 

as the maximum number of mismatches allowed in a read. The default is 0.08. The maximum 

number of mismatches allowed is 15 per read. BiSS has the option of setting the number of 

mismatches allowed in each short read using the parameter i (minimum identity between a read 

and a match) ranging from 0 to 1. The default setting is 0.65, meaning 65% of a read and its 

corresponding match are identical. All reads mapped with an identity lower than this threshold will 

be reported as unmapped. Our results on changing these parameters show that in general, the 

mapping efficiency increases with the number of mismatches. The results are consistent across 

datasets and for all the programs tested. For brevity, only the results from BS-Seeker were used to 

illustrate (Figure 1.4). BS-Seeker has the option of setting the number of mismatches allowed in 

each short read using the parameter m. The default is 2 and the maximum number allowed is 3. 

Figure 1.4 shows that with the number of mismatches allowed increasing from 0 to 3, mapping 
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efficiency increases by 43%-60%. Worth noting is that with mapping efficiency increases, CPU 

running time also increases significantly. Therefore, in real practice, though it is desirable to have 

high mapping efficiency, CPU time is another important aspect that users need to consider before 

running the programs. Sometimes cost of having high mapping efficiency becomes inhibitive as it 

takes too much running time. For example, when we changed Bismark’s allowed mismatches from 

0 to 1, the time it takes to finish the program doubles (e.g., increased from 657 to 1581 minutes to 

run on sample SRR342553). Another important aspect to consider is that increasing the number of 

mismatches allowed also runs the risk of increased false positives, although in real practice it is 

difficult to determine whether mapped reads having mismatches to the mapped location are 

actually false positives or real variants from the reference genome.  

 

 

Figure 1.4: Unique mapping efficiency on ten human blood datasets from BS-Seeker with 

different numbers of mismatches allowed between reads and the reference genome (0, 1, 2, and 3 

mismatches) 
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We also preprocessed the reads and used those tools to analyze the trimmed data. Around 2%-

4.5% of the blood data and around 1.1%-2.3% were trimmed on the brain data. Figure 1.5 shows 

that the mapping efficiency increases by around 5% for BSMAP and around 3% for Bismark on 

the human blood data, and by around 10% for BSMAP and around 6% for Bismark on the human 

fetal brain and mouse brain data. Therefore, preprocessing reads before mapping is an effective 

approach to improve mapping efficiency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: The effect of trimming reads on mapping efficiency on ten human blood, ten human 

brain and eight mouse brain datasets for BSMAP and Bismark
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Figure 1.6: Mean and standard deviations of mapping percentages across ten human blood, ten 

human brain and eight mouse brain datasets 

Effect of read length and sequencing error 

 We used simulated data to see the effect of sequencing error and read length on mapping 

efficiency. Sequencing error has been found to be an important factor influencing the performance 

of short reads mapping tools [3]. Consistent with previous finding, our result shows that for both 

BSMAP and Bismark, as sequencing error increases, mapping efficiency decreases (Figure 1.7). 

Comparatively, BSMAP is more sensitive to sequencing error than Bismark as the BSMAP’s 

mapping efficiency decay exponentially with the increase of sequencing error, while Bismark’s 

only gradually.  
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Figure 1.7: The effect of sequencing error on mapping efficiency for BSMAP and Bismark using 

simulated data generated from Sherman simulator with varying sequencing error from 0.1 to 4.75% 

(e.g., sequencing error 0.1% means 1 error in every 1000 bases) for read length =101 bp, CG=10% 

(10% of all CG-cytosines will be converted into thymines) and CH=98.5% (98.5% of all CH-

cytosines will be converted into thymines) 

Read length is another important factor in short reads mapping. Figure 1.8 shows opposite patterns 

for BSMAP and Bismark. For BSMAP, as read length increases from 40 to 140 bps, mapping 

efficiency decreases but with read length above 140 bps, an increase in read length results in an 

increase in mapping efficiency. On the other hand, unique mapping efficiency from BISMARK 

increase as read lengths increase consistently. It is unclear what contributes to the pattern exhibited 

by BSMAP. 
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Figure 1.8: The effect of read length on mapping efficiency for BSMAP and Bismark using 

simulated data generated from Sherman simulator with different read lengths (from 40 to 160 bps) 

for sequencing error e=0.16, CG=10% and CH=98.5% for mouse and e=0.16, CG=19.73% and 

CH=98.9% for human data. 

1.2.3 Summary 

Many bisulfite short read mapping tools are available and choosing the best one among them is a 

difficult task. In our experiments, even though Bismark produced the highest unique mapping 

efficiency on real data, its CPU running time was not the shortest. BRAT-BW ran the fastest on 

real data but with lower mapping efficiency. Also, preprocessing data before mapping can increase 

mapping efficiency regardless of what tools are used. Changing parameters in the program can 

affect the mapping results. Overall, as number of mismatches increases, mapping efficiency 

increases. Short reads length and sequencing error can affect the results. Bismark is more sensitive 

to read lengths. The longer the read length, the higher the mapping efficiency for Bismark, whereas 

there is no clear pattern for BSMAP. BSMAP is more sensitive to sequencing error. A small 

increase in sequencing error can result in significant decrease in mapping efficiency from BSMAP.  
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1.3 Motivation and Problems  

1.3.1 Low mapping efficiencies in bisulfite short reads  

Although, numerous alignment software for traditional DNA short reads are available with much 

faster running time and more accuracy and quite a few DNA bisulfite short reads mappers are 

adapted from traditional DNA short read mappers (e.g.[4], [5], [11], [15], etc.), the percentage of 

BS-reads that are mapped uniquely to only one location in the reference genome remains very low 

(~50%) (refer to Figure 2.2). The rest of the BS sequences (i.e. multireads (BS-short reads that are 

aligned to multiple locations in the reference genome) and unmapped (no sequence match in the 

reference genome is found)) are usually removed from downstream analyses. This common 

practice not only leads to biased information and information loss but also enormous financial 

cost.  

1.3.2 Inconsistency in detecting differentially methylated sites 

An essential task following the alignment of bisulfite sequencing data is to detect differentially 

methylated cytosines among phenotype samples (i.e, disease vs control groups). Although several 

statistical methods have been applied to DMC detection [41], there are several problems remained. 

First, individual cytosines are assumed to be independent across genome. However, methylation 

levels of neighboring cytosines are highly correlated ([42], refer to Figure 3.1). Second, small 

number of samples for each phenotype coupled with weak methylation effect among different 

phenotype categories could make it difficult to detect DMRs accurately since most existing 

statistical methods assume large enough sample sizes and/or normal distribution. Thus, there is 

little consistency in DMRs detected by these methods.  

1.3.3 Identification of fundamental factors shaping microbiome communities 

Reusing treated waste water is an essential part of water sustainability. However, microbiome 

proliferation in RWDs is of concern. Therefore, the third problem in the thesis work involves 

identifying conditions that affect proliferation of opportunist pathogens and antibiotic resistance 

genes (ARGs) in simulated RWDs. Once, the factors contributing to ARGs and opportunist 

pathogens growth are found, researchers will have an insight into manipulating microbial regrowth 

issues in RWDs.  
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To address these three mentioned important issues, the thesis work outlines as follows. 

Chapter 2 describes our Bayesian statistical framework to improve bisulfite sequencing alignment 

performance. Chapter 3 contains adapting wavelet-based functional mixed models (WFMM) 

introduced by Morris and Carrol [43] that incorporate correlation among cytosines in estimation 

to better detect differential methylated sites. Chapter 4 describes how ARG communities change 

under various conditions, thus providing an insight into microbiome mitigation strategies. Finally, 

chapter 5 contains summary of new findings from each chapter and concluding remarks.  
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Chapter 2 

 

BAM-ABS: A Bayesian Assignment Method 

for Ambiguous Bisulfite Short Reads 

 

2.1 Introduction 

DNA methylation is the addition of a methyl group (CH3) at the 5th carbon position of the cytosine 

ring. Cytosine methylation frequently occurs in the sequence context of 5’CG3’ (also called a CpG 

dinucleotide) in mammalian DNA. Non-CpG methylation at CpH dinucleotides (where H=C, T or 

A) has been reported in some specific cell types, such as adult brain tissues [44] and stem cells 

[45]. DNA methylation leads to condensed chromatin and transcriptionally silences genes on the 

inactive X chromosome, imprinted loci, and parasitic DNAs [1]. It is also a major contributor to 

the generation of disease-causing germ-line mutations and somatic mutations that cause cancer 



24 
 

[2]. The determination of DNA methylation is crucial for the understanding of phenotype 

differences among cells or tissues during development and disease. 

With the advance of next generation sequencing technology, characterization of genome-

wide DNA methylation at single-nucleotide resolution is made possible by whole-genome bisulfite 

sequencing. After bisulfite treatment of DNA, unmethylated Cs are converted to Ts, whereas 

methylated Cs remain unchanged. Subsequent mapping of the short reads to a reference genome 

allows inference of methylated vs. unmethylated Cs. Several factors make bisulfite short reads 

(BS-reads) more complicated to map than regular short reads. First, due to how BS-reads are 

generated, after PCR amplification, up to four strands might be produced from one genomic region. 

The search space is therefore significantly increased. Second, sequence complexity is reduced, as 

most of the unmethylated Cs are changed into Ts. Third, C to T mapping is asymmetric. The T in 

the bisulfite reads could be mapped to either C or T in the reference genome but not vice versa [5]. 

Despite the introduction of several bisulfite short read alignment tools (e.g., Bismark [4], BSMAP 

[5], BS-Seeker [15], and Batmeth [18]), the mapping efficiency of BS-reads remains very low, that 

is, a high percentage of BS-reads, nearly 50% are either mapped to multiple genomic locations 

(called “multireads” or “ambiguous” reads) or unmapped [26]. 

Most BS-read mapping programs, for instance, Bismark [4], BS-Seeker [15], and Batmeth 

[18], convert both the genome and the reads to a three-letter alphabet accounting for the C-to-T or 

G-to-A mismatches caused by bisulfite conversion before applying a regular short read mapper 

such as Bowtie [21] or BWA [24]. However, due to reduced complexity in C-to-T and G-to-A 

conversion, this simple strategy causes a greatly increased proportion of reads to be aligned to 

multiple genomic locations with similar scores, i.e., multireads. The routine practice is to exclude 

all the multireads and unmapped reads from downstream analyses. This practice leads to not only 

bias in estimating methylation levels but also financial waste.  

In this paper, we present a Bayesian statistical method BAM-ABS to solve the multiread 

mapping problem so that a great number of ambiguously mapped reads can be allocated to the 

most probable genomic locations, thus improving the overall mapping efficiency. To this end, we 

use the mismatch and methylation profiles between multireads and genomic locations, taking 

advantage of the information gleaned from unique read alignments, prior knowledge of single 
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nucleotide polymorphisms (SNPs), and context-specific methylation levels at the regions, to assign 

each multiread to the best location according to the highest posterior probability. Our assignment 

framework involves two stages. First, we use Bismark - a popular BS-reads mapper [4] to map the 

BS-reads, and from the mapping results, compile all the multireads with their competing locations 

as well as all the unique reads overlapping with the multireads. The second stage is refinement, 

during which we deploy the proposed Bayesian model to assign each multiread to the most likely 

genomic location (Figure 2.1). We use both simulated data and real data generated with hairpin 

bisulfite sequencing strategy to evaluate BAM-ABS’ performance. 

 

 

Figure 2.1: Pipeline for assigning multireads to the best locations 

2.2 Materials and Methods 

2.2.1 Posterior probability calculation  

Suppose, for a given multiread 𝑋 with length 𝐾, that there are 𝑇 competing genomic locations, 

indexed by 𝑡 = 1,⋯ , 𝑇, and that the multiread is mapped with similar fidelity (e.g., equal or similar 

number of mismatches). For genomic location 𝑡, we use 𝑀𝑘 to denote the observed base of the 
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multiread 𝑋 at position 𝑘 (𝑘 = 1,⋯ , 𝐾) of the genomic location and 𝑅𝑘 to denote the reference 

base (i.e., the base that the reference genome has) at that position. The overlapping unique reads 

are defined as reads that are uniquely mapped with high mapping qualities (usually with MAQ 

scores greater than 30) and also overlapped with a multiread’s mapped location. Assuming that 

there are 𝑟 such unique reads, we use 𝐷𝑘 = {𝑑1𝑘, 𝑑2𝑘, …𝑑𝑟𝑘} to denote the observed bases of 

overlapping unique reads at position 𝑘. Given the multiread and genomic location 𝑡, the observed 

data consist of two mismatch profiles, one between the reference genome and the multiread, the 

other between the reference genome and all the overlapping unique reads. We want to compute 

the posterior probability of observing 𝑀𝑘 given 𝐷𝑘, 𝑃(𝑀𝑘|𝐷𝑘), based on which  decision is made 

on assigning the multiread.  

Applying Bayes’ Theorem, 

𝑃(𝑀𝑘|𝐷𝑘) =
𝜋(𝑀𝑘)𝑃(𝐷𝑘|𝑀𝑘)

𝜋(𝑀𝑘)𝑃(𝐷𝑘|𝑀𝑘) + 𝜋(𝑀̅𝑘)𝑃(𝐷𝑘|𝑀̅𝑘)
, 

where  𝜋(𝑀𝑘) is the prior probability of observing base 𝑀𝑘 and 𝑃(𝐷𝑘|𝑀𝑘) is the likelihood of 

observing the overlapping unique reads at position k given the observed 𝑀𝑘. In practice, we would 

also like to incorporate the reference information 𝑅𝑘 into the prior to help improve the inference 

accuracy. Replacing 𝜋(𝑀𝑘), 𝜋(𝑀̅𝑘) with 𝜋(𝑀𝑘|𝑅𝑘), 𝜋(𝑀̅𝑘|𝑅𝑘), respectively, and assuming that 

conditioning on 𝑀𝑘, 𝐷𝑘 is independent of 𝑅𝑘, we may write the posterior probability as 

𝑃(𝑀𝑘|𝐷𝑘, 𝑅𝑘) =
𝜋(𝑀𝑘|𝑅𝑘)𝑃(𝐷𝑘|𝑀𝑘)

𝜋(𝑀𝑘|𝑅𝑘)𝑃(𝐷𝑘|𝑀𝑘) + 𝜋(𝑀̅𝑘|𝑅𝑘)𝑃(𝐷𝑘|𝑀̅𝑘)
, 

How the prior probability 𝜋(𝑀𝑘|𝑅𝑘) is computed is given in the next section. 

Since the likelihood 𝑃(𝐷𝑘|𝑀𝑘), as the product of all 𝑃(𝑑𝑗𝑘|𝑀𝑘) for j=1…r, is directly related to 

the number of overlapping unique reads: the more reads, the smaller likelihood, we calculate 

𝑃(𝐷𝑘|𝑀𝑘) in an average sense instead of using the usual joint probability definition to avoid this 

bias. Thus we write the likelihood in terms of the base quality of the multiread and unique reads 

as 

𝑃(𝐷𝑘|𝑀𝑘) =
∑ 𝑃(𝑑𝑗𝑘|𝑀𝑘)

𝑟
𝑗=1

𝑟
 

 where 
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𝑃(𝑑𝑗𝑘|𝑀𝑘) = {
1 − 𝜀𝑗𝑘 − 𝜀𝑘 + 𝜀𝑗𝑘 × 𝜀𝑘,    if  𝑑𝑗𝑘 = 𝑀𝑘

𝜀𝑗𝑘 + 𝜀𝑘 − 𝜀𝑗𝑘 × 𝜀𝑘,             if  𝑑𝑗𝑘 ≠ 𝑀𝑘
, 

and 𝜀𝑗𝑘 is the probability of observing a base miscall in the 𝑗th unique read at position 𝑘, 𝜀𝑘 is the 

probability of observing a base miscall in the multiread at position 𝑘. It is easy to see that the above 

calculation follows the general addition rule of probability, that is 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) −

𝑃(𝐴 ∩ 𝐵). Here, 𝐴 represents the event of having a sequencing error in the 𝑗th unique read at 

position 𝑘, and 𝐵 represents the event of having a sequencing error at the multiread base 𝑀𝑘. Given 

sequencing errors occur independently in unique reads and in multireads, i.e., 𝑃(𝐴 ∩ 𝐵) =

𝑃(𝐴)𝑃(𝐵), replacing 𝑃(𝐴) with 𝜀𝑗𝑘, and 𝑃(𝐵) with 𝜀𝑘 then results in the expression of 𝑃(𝑑𝑗𝑘|𝑀𝑘).  

 Finally we calculate the posterior probability of observing the multiread 𝑋 at genomic location 

𝑡 by 

𝑃(𝑋|𝑫, 𝑅) = ∏ 𝑃(𝑀𝑘|𝐷𝑘, Rk)
𝐾

𝑘=1
, 

where 𝑫 = {𝐷1, 𝐷2, … , 𝐷𝐾} denotes the set of all observed bases from the overlapping unique reads 

at positions 1,2,⋯ , 𝐾. The genomic location with the highest posterior probability is chosen, and 

an assignment score S for the read is calculated by taking the log odds of the posterior probabilities 

at the best location and at the next best location 

𝑆 = log
𝑃(𝑋|𝑫) at best location

𝑃(𝑋|𝑫) at next best location
 .          (1) 

To assign a multiread, we need to determine a cutoff score 𝑆0. Users can choose a cutoff 

score suitable to their needs. If a multiread has an assignment score 𝑆 ≥ 𝑆0, the read is considered 

as “assignable” and will be assigned to the best location, otherwise, the read will be labelled as 

“unassignable”. We conducted experiments to determine a cutoff score 𝑆0. Experiments show that 

BAM-ABS achieves good performance when S is set between 0.005 to 6. We set 𝑆0 to be 0.05 in 

simulated data and 0.2 in real data. In real data, the sequence coverage is not uniform across the 

entire genome and some genomic loci may not be covered by any uniquely mapped read. We will 

assign a multiread to a location that has more unique reads. To increase inference accuracy, we 
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raise the cut-off in real data to 0.2 and achieved a reasonable efficiency in the multiread 

assignment. 

2.2.2 Prior probability calculation 

Given the reference genome, the mutation rate of the organism, the observed multiread 

sequence, and knowledge on context-specific methylation levels, we can infer the underlying 

process and compute 𝜋(𝑀𝑘|𝑅𝑘), the prior probability of observing multiread base 𝑀𝑘 given the 

reference genome base 𝑅𝑘 at position 𝑘. For example, according to NCBI dbSNP [46], transitions 

are twice as frequent as transversions in many species, such as humans and mice. Also, studies 

have shown that the methylation rate is about 0.80 at CpG whereas 0.05 at CH (H∈{A,T,C }) in 

mammals [47]. Such information can be incorporated to compute 𝜋(𝑀𝑘|𝑅𝑘). To illustrate, suppose 

that the reference genome has a base C at one position of the genomic location that the multiread 

is aligned to, then there are four possible cases: 

1) observing A in the multiread 

In this case, we conclude that there is only a C to A mutation occurring and the prior probability 

of observing A in the multiread given C in the reference genome is 

𝜋(𝑀𝑘|𝑅𝑘) = 𝑃(C to A mutation). 

2) observing C in the multiread 

In this case, we conclude that no mutation occurs and the C is methylated. The prior probability 

of observing C in the multiread given C in the reference genome is 

𝜋(𝑀𝑘|𝑅𝑘) = [1 − 𝑃(mutation)] × 𝑃(methylation). 

3) observing G in the multiread 

In this case, we conclude that there is only a C to G mutation occurring and the prior probability 

of observing G in the multiread given C in the reference genome is 

𝜋(𝑀𝑘|𝑅𝑘) = 𝑃(C to G mutation). 

4) observing T in the multiread 
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In this case, we conclude that either there is a C to T mutation occurring or there is no mutation 

and the C in the reference genome is unmethylated and converted to T after bisulfite treatment. 

Therefore the prior probability of observing T in the multiread given C in the reference genome 

is the sum of the probabilities of the two disjoint events and can be expressed as 

𝜋(𝑀𝑘|𝑅𝑘) = 𝑃(C to T mutation) + [1 − 𝑃(mutation)] × [1 − 𝑃(methylation)]. 

The probability of C methylation 𝑃(methylation) depends on the sequence context, that is, if the 

next base in the multiread is G, the probability of C methylation is higher than that if the next base 

is H (H∈{A,T,C}). The probability of mutation can be computed similarly as in previous methods 

[48], [49]. For example, if we assume that the SNP rate in the human genome is 0.001 and that the 

reference allele is C at position 𝑘, the prior probabilities of C to A mutation and C to G mutation 

are 0.00025 and 0.00025, respectively, whereas the prior probability of C to T mutation is 0.0005 

and the prior probability of C to C (i.e., no mutation) is 0.999. All other cases are illustrated in 

Section 2.1 of the Supplementary materials. In a later section of simulation study and real data 

analysis, we will also consider the “without” prior option, that is, using a uniform prior (equal 

probabilities for observing different bases on 𝑀𝑘) and make a comparison to illustrate the 

advantage of using a prior in BAM-ABS. 

2.2.3 Bisulfite short read simulation  

We aim to generate BS-reads that closely mimic the bisulfite conversion experiment. The 

simulated data consist of BS-reads generated from the human genome (hg19) and the mouse 

genome (mm10). First, we randomly assigned a mutation rate of 0.001 to every base in the 

reference genome, i.e., we randomly changed 0.1% of all current bases in the reference genomes 

to other bases. As transitions are twice as frequent as transversions, we assigned a higher 

probability for C↔T and G↔A mutations than other mutations, e.g., P(C ↔ T) = 0.0005 while 

P(C ↔ A) = P(C ↔ G) = 0.00025. Second, we randomly assigned a methylation rate to every 

cytosine in both strands of each chromosome after introducing mutations. We varied the 

methylation probability at CpG (i.e., 70%, 75%, 80%, 85%, 90%) while maintaining methylation 

probability at CH (H∈{A,T,C}) 0.5%. To illustrate, we randomly converted C to T at 99.5% of all 

CH sites and converted C to T at 30%, 25%, 20%, 15% or 10% of all CpG sites to generate different 
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data sets. After introducing both mutation and methylation, we randomly generated short reads 

with different read lengths for each data (51 bp, 76 bp, and 101 bp) from the converted reference 

genome. Finally, we extracted quality score strings from three real datasets SRR980327 (read 

length=51 bp), SRR342553 (read length=76 bp), and SRR921765 (read length=101 bp) generated 

by the Illumnia-HiSeq 2000 platform (data downloaded from NCBI’s short read archive 

(http://www.ncbi.nlm.nih.gov/sra) and simulated sequence errors according to the per-base error 

probabilities of all reads from these datasets. All reads were generated in a directional manner, i.e., 

only from the top strands of the genome. We simulated 3,000, 40,000, and 100,000 short reads for 

each methylation probability parameter with varying read lengths.  

We used Bismark [4] to align simulated BS-reads and collected all ambiguous reads or 

multireads. Most of the multireads have two or three mapped genomic locations in both simulated 

and real data (Figure 2.1S in Supplementary Materials). In this paper, we only examined 

directional data. However, undirectional data will be addressed similarly, since only methylation 

and SNP information of uniquely mapped reads from the same DNA strand as a multiread is 

incorporated in the scoring model. 

An important and practical question is how much coverage is required for accurate 

assignment of multireads using BAM-ABS. To address this problem, for each location that 

multireads are aligned to, we generated different numbers (i.e., 3x, 5x, 10x, 25x, and 30x) of 

overlapping unique reads to mimic different depths of coverage. We then introduced sequencing 

errors for the generated reads using base quality scores from the real data. These reads are treated 

as overlapping unique reads by BAM-ABS. A detailed pipeline for generating BS-reads and 

overlapping unique reads is illustrated in supplementary Figure 2.2S. 

2.2.4. Real data from hairpin bisulfite sequencing  

To validate our model on real data, we used the genome-scale hairpin bisulfite sequencing data for 

mouse embryonic stem cell (ESC) (NCBI’s SRA accession number: GSM1173118) produced in 

our previous study [50]. The hairpin data are from one sample but generated in five different 

sequencing lanes (labeled as Lane1, Lane2, Lane3, Lane4, Lane5). In brief, genomic DNA was 

extracted and then sonicated into fragments of around 200 bp. Then, the DNA fragments were 

http://www.ncbi.nlm.nih.gov/sra
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ligated to the biotinylated hairpin and Illumina sequencing adaptors simultaneously. Following the 

streptavidin-capture and bisulfite PCR, the fragments linked to both the hairpin adaptor and 

Illumina sequencing adaptor were amplified for high-throughput paired-end sequencing using 

Illumina HiSeq 2000 platform. After purification, size selection of 400–600-bp fragments was 

conducted with LabChip XT DNA Assay (Caliper) to yield longer sequences that are more 

amenable for unambiguous mapping to the reference sequence. The reads are of 101 bp in length. 

Unlike traditional bisulfite sequencing methods, which are non-invertible, the hairpin technology 

allows for recovery of the original sequences; therefore, hairpin data can be used to evaluate the 

mapping efficiency of BS-reads. The hairpin sequencing approach generates methylation data for 

two DNA strands simultaneously by putting a linking adaptor between Watson and Crick strands 

and then using PCR and paired-end technology to sequence short reads [51]. The resulting 

sequences give paired strands so that the original untreated sequences can be recovered. Taking 

advantage of this ability, we used Bismark [4] with default parameters and Bowtie2 [21] option 

(command: ./bismark --path_to_bowtie <path to Bowtie2 folder> --bowtie2 --ambiguous <path to 

Reference genome folder> <input_short_reads.fastq>) to map approximately 308 million reads 

generated with genome-scale hairpin bisulfite sequencing. Bismark [4] mapped ~ 50% reads 

uniquely and 25% ambiguously (Figure 2.2). We collected all the ambiguous reads, recovered their 

original sequences, and used Bowtie2 [21] with default parameters  (command: ./bowtie2 -x 

<reference.fa> -U <input_short_reads.fastq> -S <output.sam>) to map the original sequences. 

Here the mapping results of recovered sequences are used as the gold standard to validate our 

Bayesian assignment model. To ensure the quality of the gold standard, we used only those reads 

with mapping quality score ≥30. As a measure of the goodness of alignment, mapping quality 

score is a non-negative integer Q = -10 log10p, where p is an estimate of the probability that the 

alignment does not correspond to the read's true point of origin. Mapping quality is sometimes 

abbreviated MAPQ. Approximately 48% of the recovered reads were mapped uniquely and also 

satisfied our mapping quality requirement, and thus were used to validate our model (Figure 2.2). 

We randomly sampled 1% and 10% of the reads, respectively, from Lane1, Lane2, Lane3, Lane4 

and Lane5. We created ten replicates from 1% random sampling and ten other replicates from 10% 

random sampling for each of the five lanes. Therefore, we had 100 samples altogether, to generate 

some of the statistics.  
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Figure 2.2: Mapping efficiency using Bismark on the mouse embryonic stem cell data for 

different categories, uniquely mapped reads (blue), multireads (yellow), and unmapped reads 

(grey). The orange bar is the percentage of multireads that become uniquely mapped with Bowtie2 

after recovery to their original sequences using the hairpin bisulfite sequencing technique.  

2.2.5 Real data from regular bisulfite sequencing  

      Although the hairpin bisulfite sequencing data seem ideal as the gold standard from real 

data, there is still concern that it might differ in some way from data produced by the regular 

bisulfite sequencing procedure. Therefore, we also applied our assignment model to another real 

data produced by the regular whole-genome bisulfite sequencing for the human brain (NCBI’s 

SRA accession number: GSM1163695). The human brain data include ten datasets. The DNA 

bisulfite short read sequences are directional. Each dataset contains around 100 million single-end 

bisulfite reads for the human frontal cortex. The reads have conventional base call qualities that 

are Illumina HiSeq 2000 encoded Phred values (Phred64) and have been trimmed to 101 bps. We 

used Bismark with default parameters to map all the short reads from the ten datasets. Bismark 

mapped ~75% reads uniquely and ~8% ambiguously. We then used these uniquely mapped reads 

as “gold standard” to assess the performance of the model. The idea is to shorten these reads so 

that the original uniquely mapped reads become ambiguously mapped reads, then we apply our 

model to assign these reads and use the original mapped location as the correct answer to evaluate 

the assignment accuracy of our model. Specifically, we randomly sampled 1% of the uniquely 
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mapped reads from the ten datasets and trimmed the reads to shorter ones (i.e., 10 bp shorter than 

original short reads). After applying Bismark to the trimmed reads, ~50% were uniquely mapped 

and ~5% multireads. We used our Bayesian model to assign the location of these trimmed 

multireads and compared the assigned locations with their originally mapped locations.   

2.3 Results 

2.3.1 Mapping efficiency improvement for simulated data and real data  

We simulated 3,000, 40,000, and 100,000 BS-reads for both the human genome and the 

mouse genome with the setting of read length=76 bp, CG=20% (20% of all CG-cytosines are 

converted into thymines), CH=99.5% (H can be A, T, or G, 99.5% of all CH-cytosines are 

converted into thymines), and mutation rate of 0.1% at 30x coverage. We then applied the Bayesian 

assignment model to score the ambiguously mapped BS-reads and assigned them to their best 

locations based on the log likelihood ratio S (Equation 1). For human BS-reads, the model was 

able to assign ~ 72% of the multireads to their best locations with an assignment accuracy rate of 

~90% for all three datasets (Figure 2.3). The accuracy rate was defined as the percentage of 

correctly assigned multireads, i.e., the ratio of the number of accurately assigned multireads to the 

number assigned multireads. For mouse BS-reads, the model was able to assign approximately 

53% of all the multireads with an accuracy rate of 80%. Both percentages of assignable multireads 

and accuracy rates for the mouse data were lower than those for the human. This is likely due to 

the fact that there are more CTs or TCs in the mouse genome than in the human genome (26.37% 

vs. 23.87%), consequently, with bisulfite treatment, the mouse genomic DNAs are expected to 

have a higher frequency of TT posing more challenges to multiread assignment. 
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Figure 2.3: Percentages of assignable multireads and accuracy rates of the assigned 

multireads on six simulated bisulfite datasets generated from the human reference and the 

mouse reference with read length=76 bp and CG=20% (20% of all CG-cytosines are converted 

into thymines) and CH=99.5% (99.5% of all CH-cytosines are converted into thymines) and 

mutation rate of 0.1% at 30x coverage. hg19_N3, hg19_N40, and hg19_N100 denote the datasets 

with 3k, 40k, and 100k simulated reads respectively for humans; mm10_N3, mm10_N40, and 

mm10_N100 denote the datasets with 3k, 40k, and 100k simulated reads respectively for mice. All 

remaining figures use the same notations.  

A major challenge in testing the performance of multiread assignment methods on real data 

is a lack of ground truth for where multireads should be assigned to in the real data. To examine 

the performance of our Bayesian assignment model on real data, we took advantage of the genome-

scale hairpin bisulfite sequencing technique developed recently [52] that allows us to recover the 

bisulfite converted reads to their original sequences. We assume that once multireads are recovered 

to their original sequences and these original sequences are mapped to unique locations, the unique 

locations are indeed true locations. To ensure this assumption to be largely held, we consider only 

those multireads that are mapped with high mapping quality. 

The genome-scale hairpin bisulfite sequencing data for mouse ESC were generated in five 

sequencing lanes with the Illumina sequencing platforms. For data generated from each of the five 

lanes, we randomly sampled 1% of the reads and created ten samples per dataset. With assignment 
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score cut-off of 0.2, in the range of reasonable cut-off point by experiment, 74% of the multireads 

were assigned to their best locations with ~88% accuracy rates (Figure 2.4). Standard deviations 

across ten replicates were small, from 0.23-0.42% and from 0.46-0.66% in accuracy rates and 

assignable percentages, respectively. Thus, 1% random samples were representative of the five 

datasets.  

 

Figure 2.4: Accuracy rates of assigned multireads and percentages of assignable multireads on ten 

replicates from 1% random samples from five genome-wide hairpin bisulfite sequencing datasets 

from mouse ESC. The black bar shows the standard deviation.  

For human brain whole-genome bisulfite sequencing data, we randomly sampled 1% of the 

uniquely mapped reads from ten datasets, shortened them so that they “degraded” from previously 

uniquely mapped reads to multireads. Our model assigned ~75-81% of the multireads to their best 

locations with ~76-85% accuracy rates (Figure 2.5), therefore, showing similar performance 

results to that for hairpin sequencing data. 
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Figure 2.5: Accuracy rates of assigned multireads and percentages of assignable multireads on 

ten replicates from 1% random samples from ten genome-wide bisulfite sequencing datasets from 

human frontal cortex (SRA accession number GSM1163695). The black bar shows the standard 

deviation.  

 2.3.2 Effect of coverage depth and with/without prior  

Table 2.1 shows the effect of sequence coverage on the performance of the model, with 

and without priors for simulated data. For the simulated human data, the percentage of assignable 

multireads tends to increase with the coverage depth, and expectedly, the assignment error rate 

decreases. Compared to simple assignment without a prior, that is, only using observed unique 

reads to assign multireads, considering prior probability 𝜋(𝑀𝑘|𝑅𝑘) leads to better performance in 

the model, with much lower error rates (9%-11% compared to 22%-33% for without a prior), 

although the percentage of assignable multireads decreases at the same time. When the comparison 

is converted to error rates per read, it is clear that incorporating priors in the method increases the 

mapping accuracy, with the error rate per read decreasing from 0.01% to 0.005% for the 3x 

coverage data, and 0.007% to 0.003% for the 30x coverage. The simulated mouse data show a 

similar pattern, except, in general, has lower percentages of assignable multireads and higher error 

rates.  
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Table 2.1: The percentage of assignable multireads and the error rate (ratio of the # of reads 

assigned to wrong locations to the # of reads that were assigned) as a function of coverage depth 

and with or without priors for simulated data. 

Coverage 

depth 

Without prior With prior 

Assignable rate 

(%) 

Error rate 

(%) 

Assignable rate 

(%) 

Error rate 

(%) 

hg19_N40     

3x 96.23 32.55 67.20 10.5 

5x 98.10 32.48 69.34 9.96 

10x 99.43 27.32 70.55 9.23 

25x 99.58 21.95 71.63 9.01 

30x 99.37 21.54 72.23 9.00 

mm10_N40     

3x 92.56 44.55 49.18 20.68 

5x 96.74 44.34 52.44 20.89 

10x 98.98 40.67 54.96 19.98 

25x 99.43 36.68 54.96 19.81 

30x 99.41 36.48 54.37 19.53 

 

For hairpin bisulfite sequencing data, when including prior probabilities, even though the 

percentages of assignable multireads reduce, the error rates per read decrease (Table 2.2). For 

example, error rates reduce from 0.00043% to 0.00035% and from 0.00025% to 0.00020% in 

Lane5_1 and Lane2_10 respectively. Therefore, incorporating priors in the method increases 

inference accuracy. These results are consistent with simulation results. Compared with simulation 

results, the accuracy rate improvement in real data is smaller.  

Table 2.2: Assignable rates and error rates for assigning multireads with and without priors 

on 1% and 10% random samples from five genome-wide hairpin bisulfite sequencing datasets 

from mouse ESC (without priors refers to only using observed unique reads to assign multireads).  
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We also determined the effect of read coverage on the performance of the assignment 

model using hairpin sequencing data. Specifically, coverage depth refers to the number of unique 

reads that overlap with multireads and thus can be used for inference. Table 2.3 shows that as 

coverage depth increases from 6x to 40x, assignment accuracy increases slightly from 85.92% to 

86% in Lane1 and the percentage of assignable reads decreases slightly from 70.9% to 70.82% in 

Lane1, both at a lower rate than in the simulation study.  

Table 2.3: Coverage effect on model performance for 1% random samples from the five 

hairpin datasets.  

Sample ID 

Without prior With prior 

Assignable 

rate(%) 

Error 

rate 

(%) 

Error 

per read 

(%) 

Assignable 

rate (%) 

Error 

rate (%) 

Error per read 

(%) 

Lane1_1 72.17 17.50 0.00043 70.97 14.01 0.00035 

Lane1_10 72.27 18.30 0.00004 71.27 13.90 0.00003 

Lane2_1 74.60 14.74 0.00239 73.61 11.35 0.00187 

Lane2_10 74.67 15.53 0.00025 73.27 12.13 0.00020 

Lane3_1 74.44 15.12 0.00275 73.54 12.78 0.00235 

Lane3_10 74.54 14.58 0.00026 73.61 12.17 0.00022 

Lane4_1 73.24 15.07 0.00282 72.27 12.39 0.00235 

Lane4_10 74.35 14.79 0.00027 73.32 12.21 0.00023 

Lane5_1 74.76 14.27 0.00251 73.77 12.12 0.00216 

Lane5_10 74.23 14.44 0.00025 73.38 12.02 0.00021 

Coverage 

Lane 1 Lane 2 Lane3 

Assignable 

rate (%) 

Accuracy 

rate (%) 

Assignable 

rate (%) 

Accuracy 

rate (%) 

Assignable 

rate (%) 

Accuracy 

rate (%) 

6x 70.90 85.92 73.62 88.65 73.41 87.14 

10x 70.92 85.92 73.63 88.68 73.37 87.17 

20x 70.90 85.95 73.58 88.69 73.45 87.22 

30x 70.90 85.99 73.47 88.71 73.42 87.25 

40x 70.82 86.00 73.47 88.71 73.53 87.33 

Coverage 

Lane4 

Coverage 

Lane5  

Assignable 

rate (%) 

Accuracy 

rate (%) 

Assignable 

rate (%) 

Accuracy 

rate (%) 

 

6x 72.23 87.322 6x 73.73 87.79  

10x 72.27 87.329 10x 73.77 87.83  

20x 72.28 87.464 20x 73.70 87.84  

30x 72.16 87.481 30x 73.73 87.84  

40x 72.19 87.505 40x 73.74 87.86  
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Noteworthy is that the model performs well even with low coverage, for both simulated 

data and real data. Taken together, the robust performance of the assignment model towards low 

coverage data makes the model particularly applicable to the current whole genome bisulfite 

sequencing data (many at 10x coverage). 

2.3.3 Effect of read length 

To examine the effect of read length on the performance of the Bayesian assignment model, 

we simulated BS-reads with three read lengths, 51bp, 76bp, and 101bp. All simulated data (3K, 

40K, and 100K reads for humans and mice) show similar patterns and only data with 100K BS-

reads were used to demonstrate for brevity. Figure 2.6 (left panel) shows that for both human and 

mouse data, as read length increases, the accuracy rate of assigned multireads to their true locations 

increases as well as the percentage of assignable multireads. The percentage of increase in 

accuracy rate is much higher for read lengths increasing from 51bp to 76bp than from 76bp to 

101bp.  

 

Figure 2. 6: Effect of read length (left panel) and methylation rates at CpGs (right panel, 

CG10 refers to a methylation rate of 90% at CpGs) on the percentage of assignable multireads 

and assignment accuracy rates for simulated data generated from hg19 and mm10 at 30x 

coverage. 
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In our real data analysis, the hairpin bisulfite sequencing data contain reads with different 

lengths (Figure 2.3S in supplementary material). This enabled us to determine the effect of read 

length on our model performance. Reads were classified into 3 groups: short, with read length ≤ 

50 bp, moderate, with read length between 50-76 bp, and long, with read length > 76 bp. Figure 2.7 

shows that as read length increases, assignable percentages of multireads increase as well as 

accuracy rates on 1% random samples from the five whole-genome mouse hairpin ESC data. Reads 

in the long group have highest accuracy rates, around 90% and highest assignable rates, around 

75%. Notably, more than a 10% increase in accuracy was observed from the short and moderate 

groups (i.e., accuracy rate in Lane1 dataset jumps from 75.55% to 85.36%, approximately 10% 

increase in accuracy).  

 

Figure 2.7: Effect of read length on accuracy rates and percentages of assignable multireads 

on 1% random samples from five genome-wide hairpin bisulfite sequencing datasets from ESC. 

2.3.4 Effect of methylation rate at CpGs 

As methylation may vary as a function of genomic regions, developmental stages, tissues, 

species, and so on [47] [53], it is important to examine how the multiread assignment model is 
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affected by varying methylation rates. We therefore simulated data with different methylation rates 

(70%, 75%, 80%, 85%, 90%) at CpGs and applied the Bayesian model to assign the multireads in 

the data. Figure 2.6 (right panel) shows that both the percentage of assignable multireads and 

assignment accuracy rate change only slightly with respect to different methylation rates, 

indicating that the method is robust to changes in methylation rates.  

2.3.5 Effect of sequencing errors 

To examine the effect of sequencing error on the assignment model, we simulated data 

with different sequencing error rates ranging from 0.002% to 3%. Table 2.4 shows that as 

sequencing error increases, for both humans and mice, accuracy rate of multiread assignment 

decreases. However the percentage of assignable ambiguous reads remains similar. 

Comparatively, sequencing error has a bigger impact on the mouse data than on the human data. 

Table 2.4: Effect of sequencing errors on the percentage of assignable reads for simulated 

data generated from hg19 and mm10 at 30x coverage. 

 

Sequencing 

error 

Accuracy rate (%) Assignable rate (%) 

hg19_N40 mm10_N40 hg19_N40 mm10_N40 

0.002% 99.31 99.36 71.10 55.05 

0.005% 99.12 98.68 71.15 55.19 

0.015% 98.97 98.10 71.50 56.60 

0.045% 98.62 97.37 71.31 50.87 

0.150% 96.97 93.60 71.54 52.23 

0.500% 96.31 89.82 72.21 56.06 

1.500% 95.30 85.40 72.04 52.28 

3.000% 93.23 82.16 72.81 55.56 

 

2.4 Discussion 

The whole genome bisulfite sequencing technique allows for determination of C 

methylation at the whole genome scale and with single nucleotide resolution. Though considered 
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to be the gold standard for characterizing DNA methylation, its high cost has limited its application 

to large research laboratories. To make the situation worse, the mapping efficiency of existing tools 

has been low, mostly 50-70% as compared to over 95% in regular short reads mapping [54]. A large 

proportion of reads, known as multireads, are routinely discarded from downstream analysis, 

leading to both biased methylation inference and financial loss. To address the problem, we propose 

a Bayesian assignment model to help determine the most likely locations the multireads should be 

mapped to. Results show that the model is effective and can be used to increase the number of 

uniquely mapped read, and thus allows users to make the best use of the data possible.  

Our analysis demonstrates that read length shows a much bigger positive impact on the 

model performance for real data than for simulated data: both the percentage of assignable reads 

and the assignment accuracy rate increase much more with read length increase in real data (Figure 

2.7) than in simulated data (Figure 2.6). This is likely because reads from real data carry more 

information than simulated reads giving the assignment model more power to differentiate among 

the competing locations of multireads, and thus lead to better performance in real data. We note 

that real whole genome bisulfite sequencing experiments usually generate reads with 100bp or 

longer. Even after ends trimming, these reads are mostly longer than 76bp. The results here suggest 

that, with real data, the assignment model is capable of recovering 14-20% of the multireads to their 

true locations (Figure 2.2), and these reads can be included in downstream analysis to provide more 

comprehensive information on methylation at the genome level. It might be interesting to conduct 

a comprehensive survey to examine how these reads that are routinely thrown away affect the 

downstream inference were they included in the downstream analysis.  

Due to the high cost of whole genome bisulfite sequencing, the depth of sequencing 

coverage is often low, approximately 10X for many experiments. This poses an additional 

challenge to downstream analyses such as methylation calling and variant calling. For example, 

Bis-SNP, a program that does methylation calling and SNP calling for bisulfite sequencing data, 

requires an average of 30X coverage for correctly calling 96% of the SNPs [55]. Our results 

demonstrate that even with low coverage of ~5X-10X, the Bayesian scoring model performs well 

and is stable (Tables 2.1 and 2.3). 
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Our Bayesian scoring model enables a high proportion of multireads to be mapped to 

unique locations, which in turn increases the overall amount of sequence data suitable for the 

downstream methylation inference. An interesting issue to examine is whether methylation ratios 

are affected as a result of changes in the compositions of reads. Thus, we took a set of 50,000 

multireads and ~500,000 uniquely mapped reads overlapping with these multireads and another 

set of ~550,000 uniquely mapped reads in these regions from the human whole-genome bisulfite 

sequencing data (SRA accession number SRX306253, GSM1163695, see methods for details) and 

used Bismark for methylation calling. The methylation ratios at CpG sites were very similar 

between the two datasets. We also took a set of 100,000 multireads and ~300,000 uniquely mapped 

reads and another set of ~400,000 uniquely mapped reads around these regions and did the same 

analysis. The methylation ratios were still similar but as expected there were more CpG sites 

covered in the former dataset. Taken together, the results suggest it depends on data coverage and 

percentages of multireads. Specifically, CpG methylation ratios are expected to stay similar if the 

coverage is low, however, more CpG methylation sites will be covered. On the other hand, if the 

coverage is high, CpG methylation ratios are expected to be more accurate and more CpG sites 

will be covered. Again, the advantage of multiread mapping is to gain valuable information from 

“unusable” data by traditional mappers, which benefits the subsequent calling procedure and 

downstream analysis. 

Results for both simulated data and real data (Tables 2.1 and 2.2) show that incorporating 

prior knowledge such as mutation rates and context specific methylation levels into the assignment 

model helps improve the accuracy of the assignment. Moreover, for organisms without such prior 

information, the assignment model can still provide robust assignment, especially reflected by the 

real data. Comparatively, it is clear that information gleaned from uniquely mapped reads plays a 

more important role in correctly assigning multireads.  

A common problem in the development of tools for bisulfite short read mapping is the lack 

of a gold standard. We addressed this by taking advantage of the hairpin bisulfite sequencing data 

that allows the recovery of the original reads (refer to [51] for the mechanism of read recovery), 

and assuming that the unique locations that recovered reads are mapped to are true locations. 

Although we required a high mapping quality (≥30), it is still possible that some of the true 
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locations are false positives. However, the consistency shown between simulated data and real 

data suggests that even if there are false positives in the gold standard, the number should be very 

low. Another concern for using hairpin bisulfite sequencing data is that its characteristics might be 

different from those of the regular bisulfite sequencing data. However, our model performance on 

regular bisulfite sequencing data is very similar to that on hairpin sequencing data, suggesting that 

the hairpin sequencing data is representative and can serve as gold standard for real data.  

 2.5 Conclusion 

   A major problem in mapping bisulfite short reads is the high percentage of multireads 

caused by bisulfite conversion. To our knowledge, no program is devoted to address this problem. 

Here we present a Bayesian model to assign multireads to the best possible locations. Simulation 

and real data results show that our assignment method is effective in mapping multireads with high 

accuracy. We investigated several factors that might affect the model performance, including 

methylation level, coverage, sequencing error, and read length. More specifically, methylation level 

has little effect, whereas sequencing errors have a negative impact on model performance. 

Increasing depth of coverage and read length will increase the accuracy of assigning multireads. 

The model performs quite well even with low read coverage. Therefore, our scoring method can be 

used to effectively improve the mapping results of bisulfite sequencing data.  

Supporting Information 

S2.1 Table: Prior calculation 

Prior probabilities of all possible cases of alignments on the forward direction 

Notation:  

Pr(me) is the probability of methylation event occurring at a position 

Pr(SNP) is the probability of mutation event occurring at a position 

Pr(AB) is the probability of A to B mutation event occurring at a position, i.e. Pr(AT) is 

the probability of A on the reference genome changes to T on the multiread. 

Bases in green are observed bases, in black are unobserved. Cs/Gs in red indicate 

methylated Cs/Gs, in blue unmethylated Cs/Gs. 
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  Table 2.1a: Prior probabilities at A reference genome of forward alignments 

Reference base A A A A 

Unobserved A C G T/C 

Multiread base A C G T 

Inference No mutation A to C 

mutation and 

methylated C 

A to G mutation A to T mutation or A to C 

mutation and unmethylated 

C 

Prior 1-Pr(SNP) Pr(AC)xPr(me) Pr(AG) Pr(AT)+Pr(AC)x[1-Pr(me)] 

 

Note: 1-Pr(SNP) + Pr(AC)xPr(me)+ Pr(AG)+ Pr(AT)+Pr(AC)x[1-Pr(me)]=1 (sum of all priors is 

1) 

 

Table 2.1b: Prior probabilities at C reference genome of forward alignments 

Reference base C C C C 

Unobserved  A C G T/C 

Multiread base A C G T 

Inference C to A 

mutation 

No mutation and 

methylated C 

C to G 

mutation 

C to T mutation or no  mutation 

and unmethylated C 

Prior Pr(CA) [1-Pr(SNP)]*Pr(me) Pr(CG) Pr(CT)+[1-Pr(SNP)]x[1-Pr(me)] 

 

Table 2.1c: Prior probabilities at G reference genome of forward alignments 

Reference base G G G G 

Unobserved A C G T/C 

Multiread base A C G T 

Inference G to A 

mutation 

G to C mutation 

and methylated C 

No 

mutation 

G to T mutation  or G to C 

mutation and unmethylated C 

Prior Pr(GA) Pr(GC)xPr(me) 1-Pr(SNP) Pr(GT)+Pr(GC)x[1-Pr(me)] 

 

Table 2.1d: Prior probabilities at T reference genome of forward alignments 

Reference base T T T T 

Unobserved A C G T/C 

Multiread base A C G T 

Inference T to A 

mutation 

T to C mutation 

and methylated 

C 

T to G 

mutation 

No mutation or T to C mutation 

and unmethylated C 

Prior Pr(TA) Pr(TC)xPr(me) Pr(TG) [1-Pr(SNP)]+Pr(TC)x[1-Pr(me)] 

 

S2.2 Table: Prior probabilities of all possible cases of alignments on the reverse direction 

Table 2.2a: Prior probabilities at A reference genome of reverse alignments 

Reference base A A A A 

Unobserved A/G C G T 

Multiread base A C G T 
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Inference 
No mutation or A to G mutation 

and unmethylated G 

A to C 

mutation 

A to G mutation 

and methylated G 

A to T 

mutation 

Prior [1-Pr(SNP)]+Pr(AG)x[1-Pr(me)] Pr(AC) Pr(AG)xPr(me) Pr(AT) 

 

Table 2.2b: Prior probabilities at C reference genome of reverse alignments 

Reference base C C C C 

Unobserved A/G C G T 

Multiread base A C G T 

Inference 

C to A mutation or C to G 

mutation and unmethylated 

G 

No 

mutation 

C to G mutation and 

methylated G 

C to T 

mutation 

Prior Pr(CA)+Pr(CG)x[1-Pr(me)] 1-Pr(SNP) Pr(CG)xPr(me) Pr(CT) 

 

Table 2.2c: Prior probabilities at G reference genome of reverse alignments 

Reference base G G G G 

Unobserved A/G C G T 

Multiread base A C G T 

Inference 
G to A mutation or no mutation 

and unmethylated G 

G to C 

mutation 

No mutation and 

methylated G 

G to T 

mutation 

Prior Pr(GA)+[1-Pr(SNP)]x[1-Pr(me)] Pr(GC) [1-Pr(SNP)]xPr(me) Pr(GT) 

 

Table 2.2d: Prior probabilities at T reference genome of reverse alignments 

Reference base T T T T 

Unobserved A/G C G T 

Multiread base A C G T 

Inference 
T to A mutation or T to G 

mutation and unmethylated G 

T to C 

mutation 

T to G mutation and 

methylated G 

No 

mutation 

Prior Pr(TA)+p(TG)x[1-Pr(me)] Pr(TC) Pr(TG)xPr(me) 1-Pr(SNP) 
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Figure 2.1S: Histogram of number of genomic locations Bismark found for multireads in 

simulated data (left) and in real hairpin data (right) 

 

Figure 2.2S: Pipeline for generating bisulfite short reads, multireads, and overlap unique 

reads. 
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Figure 2.3S: Histograms of read length from Lane1, Lane2, Lane3, Lane4, and Lane5 

hairpin data 

 

 

 

 

 

 

 



49 
 

 

 

 

 

Chapter 3 

 

Identification of Differentially Methylated 

Sites from Weak Methylation Effect 

 

Abstract 

Motivation: DNA methylation is an epigenetic alteration crucial for differentiating normal and 

stress responses. In order to better understand phenotype changes among cells or tissues during 

development and stress response stages, it is essential to accurately characterize genome-wide 

DNA methylation. Whole genome bisulfite sequencing has made it possible to characterize large-

scale DNA methylation at the single nucleotide resolution. An essential task following the 

generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) 

between different samples. Many statistical methods for DMC detection ignore the dependency of 

methylation patterns across the genome, which could lead to inflated type I error, i.e., identifying 
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DMCs that are not truly significant. Furthermore, small sample sizes and weak methylation effect 

among different phenotype categories make it difficult for these methods to accurately detect 

DMCs. To address these issues, we adopt the wavelet-based functional mixed model (WFMM) 

approach to detect DMCs and compare its performance to that of the most popular DMC detection 

tool methylKit. 

Results: Analyses of simulated data based on a reference data set that measure the effects of 

herbicide glyphosate on Arabidopsis thaliana show that WFMM results in higher sensitivity and 

specificity in detecting DMCs compared to methylKit especially when the methylation differences 

among phenotype groups are small. Moreover, the performance of WFMM depends less on read 

coverage and is robust to sample sizes, making it particularly attractive considering the prohibitive 

cost of bisulfite sequencing. The analysis of the Arabidopsis thaliana data under varying herbicide 

glyphosate dosages and the analysis of monozygotic twins who have different pain sensitivities 

(both datasets have weak methylation effect, i.e. average methylation differences between two 

phenotype groups is less than 0.01) show that WFMM can find more relevant DMCs related to the 

phenotype of interest compared to methylKit. 

#Differentially methylated regions (DMRs) are genomic regions with different DNA methylation 

status across biological samples. DMRs and DMCs are the same concepts, with the only difference 

being how methylation information across genome is summarized. If methylation levels are 

determined by grouping neighboring cytosine sites, then they are DMRs; if methylation levels are 

calculated based on single cytosines, they are DMCs.  

3.1 Introduction 

DNA methylation is an important epigenetic mechanism in controlling gene expression, silencing 

of genes on the inactive X chromosome, imprinted genes, and parasitic DNAs [48]. Accurate 

characterization of DNA methylation is essential for understanding genotype-phenotype 

association, gene-environment interaction, diseases, and stresses [44]. Genome-wide bisulfite 

treated DNA sequencing has enabled the measurement of DNA methylation at the single 

nucleotide resolution. After DNA is treated with sodium bisulfite, unmethylated Cs are converted 

to Ts, whereas methylated Cs remain unchanged. At a single cytosine site, methylation levels are 

estimated by taking the ratio of C/(T+C) where C and T are the counts of cytosines and thymines 
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respectively from all aligned reads at the site. The count of Ts represents the number of 

unmethylated Cs and the count of Cs represents the number of methylated Cs. The most common 

task is to detect differentially methylated cytosine sites across different phenotype samples (e.g., 

dosage vs. non-dosage samples, and patients vs. healthy people). Although numerous statistical 

methods such as Fisher’s exact test and logistic regression have been used for the detection of 

DMCs [41], several challenges remain. First, most current methods make the assumption that 

individual cytosine methylation levels are independent across the genome. This assumption is 

questionable as it has been shown that methylation levels of nearby cytosine sites are highly 

correlated ([42], Figure 3.1). Assuming independence across cytosine sites can lead to 

underestimation of the p-values and inflated type-I error, resulting in mistakenly identifying more 

significant DMCs than the underlying truth Second, due to the high cost of whole genome bisulfite 

sequencing, studies are often done with only a small number of samples for each phenotype, which 

makes it difficult to detect small methylation differences. To address these issues, Lee and Morris 

[56] adapted the wavelet-based functional mixed model (WFMM) developed by Morris and 

Carroll [43] to identify differentially methylated sites. In this paper, we validate the effectiveness 

of WFMM by analyzing two different methylation data sets and compared its performance with 

the commonly used approach methylKit. We introduced an empirical approach to setting the 

tuning parameters to specific methylation profiles in real data to detect more relevant DMCs that 

related to phenotype changes under different stresses. Our results showed that WFMM has 

advantages over methylKit when there is weak methylation effect and sample sizes are small. 

When methylation effect is large enough, WFMM and methylKit are comparable. The paper is 

organized as follows. First, we describe the methodology. Then we describe the simulation studies 

based closely on our herbicide glyphosate experiments with A. thaliana [57]. Finally we evaluate 

the WFMM method on simulated and real datasets from whole genome bisulfite sequencing of A. 

thaliana leaves and whole genome methylation profiles of monozygotic (MZ) twins and make 

comparison with the methylKit program [58].  
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Figure 3.1: Correlation of methylation levels of neighboring cytosine regions in monozygotic twin 

and neirboring cytosines in A. thaliana datasets.  

3.2 Methods 

3.2.1 Wavelet based functional mixed models 

Assume that all methylation measurements come from 𝑁 individuals across all 𝒯 genomic 

locations. A functional mixed effect model can be represented by  

𝑦𝑖(𝑡) = ∑𝑋𝑖𝑗𝐵𝑗(𝑡)

𝐽+1

𝑗=1

+ ∑ 𝑍𝑖𝑚𝑈𝑚(𝑡)

𝑀

𝑚=1

+ 𝐸𝑖(𝑡), 𝑡 ∈ 𝒯 (1)    

where  𝑦𝑖(𝑡) represents the logit-transformation of methylation levels at a genomic location 𝑡 ∈

{𝑡𝑙; 𝑙 = 1,… ,𝒯} for the 𝑖th individual, 𝑖 = 1,… ,𝑁. 𝑋𝑖𝑗 = 1 if individual 𝑖 belongs to treatment 𝑗 

and 0 otherwise, for 1 ≤ 𝑗 ≤ 𝐽 The function 𝐵𝑗(𝑡) represents the fixed effect corresponding to 

treatment and other covariates of interest). 𝑍𝑖𝑚 is a random covariate that takes into account 

variations in 𝑦𝑖(𝑡) that are caused by potential multilevel structures in the measurements (e.g., 
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when multiple subjects from the same family were measured, then each family will introduce its 

own random effect and 𝑍𝑖𝑚 = 1 if individual 𝑖 is from family 𝑚 and 𝑈𝑚(𝑡) is the random effect 

of family 𝑚). 𝐸𝑖(𝑡) is a residual error function. Using vectorized formulation, we may write model 

(1) as 

𝒀(𝑡) = 𝑿𝑩(𝑡) + 𝒁𝑼(𝑡) + 𝑬(𝑡), 𝑡 ∈ 𝒯   (1𝑎)   

where 𝒀(𝑡) = [𝑌1(𝑡), … , 𝑌𝑁(𝑡)]𝑇, 𝑩(𝑡) = [𝐵1(𝑡), … , 𝐵𝐽(𝑡)]
𝑇
, 𝑼(𝑡) = [𝑈1(𝑡), … , 𝑈𝑀(𝑡)]𝑇, and 

𝑬(𝑡) = [𝐸1(𝑡), … , 𝐸𝑁(𝑡)]𝑇 . Here, 𝒀 is a 𝑁 × 𝒯 matrix across all 𝒯 genomic locations for all 𝑁 

individuals. 𝑿 is an 𝑁 × 𝐽 design matrix that indicates which treatment group the 𝑁 individuals 

belong to or other covariates of interest (e.g., a phenotype), the B (𝐽 × 𝒯) matrix contains the 

fixed effects of the covariates. The 𝑡th column of B, denoted by 𝒃𝑡, is a 𝐽-dimensional vector 

describing the effects the 𝐽 covariates on 𝒀 at genomic location 𝑡. 

For example, if we let the 𝑖th row of 𝑿 be a 1/0 vector to indicate which of the herbicide 

glyphosate dosage groups the 𝑖th plant was treated, 𝑖 = 1,… ,𝑁, then 𝒃𝑡 corresponds to the effect 

of dose levels on 𝒀 at genomic location 𝑡. In equation (1a), Z is a design matrix for random effects 

that takes into account variations in 𝒀 that are caused by potential multilevel structures in the 

measurements; U contains the corresponding random effects; and E is an 𝑁 × 𝒯 matrix of residual 

errors. We assume that E is multivariate normal with mean 0 and variance-covariance matrix S. 

For example, in our A. thaliana experiment, there are four plants for each of the 0%, 5%, 10% 

glyphosate-treated group. Therefore, the 𝑿 design matrix is a 12×3 and B is a 3× 𝒯 matrix, where 

𝒯 is the number of cytosine locations. Since the A. thaliana data does not involve multilevel 

structures, the random effect term in equation (1a) is omitted. The resulting functional model can 

be rewritten as 

𝒀(𝑡) = 𝑿𝑩(𝑡) + 𝑬(𝑡),   𝑡 ∈ 𝒯  (1b) 

where 
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𝐗 =

[
 
 
 
 
 
 
 
 
 
 
 
1  0  0
1  0  0
1  0  0
1  0  0
0  1  0
0  1  0
0  1  0
0  1  0
0  0  1
0  0  1
0  0  1
0  0  1]

 
 
 
 
 
 
 
 
 
 
 

     and    𝑩 = [𝒃𝟏  𝒃𝟐  𝒃𝟑 …𝒃𝓣 ], 

each 𝒃𝒕 is a column vector consisting of p=3 elements/groups giving the mean methylation profiles 

for each group at a given genomic location t. 

To incorporate nearby methylation correlations across all genomic locations 𝒯 into the 

model, we first use a basis function transform to transform model (1b) from the original data space 

into the basis space, and then fit the basis space model to estimate parameters. Finally, we 

transform results back to the original data space for inference. In particular, we apply the discrete 

wavelet transform (DWT) to each row of 𝒀 to obtain a 𝑁 × 𝒯* matrix of wavelet coefficients D. 

The corresponding wavelet space model can be obtained by post-multiplying both sides of 

Equation (1b) by 𝜱′, the wavelet transformation operator:  

𝒀𝜱′ = 𝑿𝑩𝜱′ + 𝑬𝜱′       (1b) 

 

D=XB*+E*                (2) 

 

where 𝜱′ is a 𝒯 × 𝒯* wavelet transformation operator, D=Y𝜱′, B*=B𝜱′ and E*=E𝜱′. The model 

(2) is a wavelet space model with D, B* and E* representing the wavelet coefficients of Y, B, and 

E respectively. We adopt a Bayesian approach to fit model (2) following Morris and Carroll (2006) 

[43]. The posterior samples of the parameters in (2) are obtained by employing a Markov chain 

Monte Carlo (MCMC) algorithm.  Inverse DWT is finally applied to the posterior samples of B* 

to obtain posteriors for B in the data domain, which were subsequently used to identify DMCs 

following a Bayesian false discovery rate approach.  
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3.2.2 Bayesian false discovery rate (FDR) 

Based on the posterior samples of B, we can identify significant regions either on B or on the 

contrast effects that contains the differences between covariate effects in B. For example, in the 

A. thaliana data example, since we are interested in identifying DMCs with different dosage 

effects, we will calculate the contrast effects by pre-multiplying B with a contrast effect operator 

(
−1 1 0
0 −1 1

−1 0 1
), which transforms the effect of each dosage level to the contrast effects of level 

2 vs. level 1, level 3 vs. level 2, and level 3 vs. level 1 respectively. We will apply this operator 

to all posterior samples of B to obtain the posterior samples of the contrast effects. Denote 𝐶𝑎(𝑡), 

𝑡 ∈ {𝑡𝑙; 𝑙 = 1, … , 𝑇}  the 𝑎th contrast effect, identifying significant DMCs on 𝐶𝑎(𝑡) amounts to 

identifying locations on 𝐶𝑎(𝑡) that are large in magnitude. We achieve this by performing a 

Bayesian multiple testing that controls the overall false discovery rate following Morris et al. 

[43], Zhu et al. [59], and Lee and Morris [56].  

Specifically, in the Bayesian FDR approach, we detect locations in {𝑡𝑙; 𝑙 = 1,… , 𝑇} that has 

𝐶𝑎(𝑡) values greater than some threshold 𝛿 (in absolute value) based on G posterior samples of 

𝐶𝑎(𝑡) for all contrast effects. We first calculate the pointwise posterior probability of at least 𝛿 

difference at 𝑡𝑙 by calculating 𝑝̂𝑎(𝑡𝑙) = Pr{|𝐶𝑎(𝑡𝑙)| > 𝛿|𝒀} ≈
∑ 𝐼{𝐺

𝑔=1 |𝐶𝑎(𝑡𝑙)
(𝑔)|>𝛿}

𝐺
, where 𝐶𝑎(𝑡𝑙)

(𝑔) 

denotes the 𝑔th sample of 𝐶𝑎 at 𝑡𝑙. Then, we find a cut-point 𝜙𝛼  for 𝑝̂𝑎(𝑡𝑙) so that the expected 

global Bayesian FDR is less than or equal to a pre-specified level 𝛼. We claim all of the 𝑡𝑙 on 

which 𝑝̂𝑎(𝑡𝑙) >  𝜙𝛼 as genomic locations with 𝐶𝑎(𝑡𝑙) greater than 𝛿.   

3.3 Data and Simulation 

3.3.1 A. thaliana treated with herbicide glyphosate experiment  

We previously investigated methylation profiles of twelve A. thaliana plants induced by herbicide 

glyphosate at different dosage concentrations [57]. Blocks of four A. thaliana plants were 

randomly assigned to glyphosate treatment at three different dosages, 0%, 5%, and 10%. Following 

glyphosate treatment, these plants were transferred to a growth chamber with a 12-hour light cycle 

and light intensity of 90 µmol m-2 s-1 and let grow for approximately 2 weeks for the 0% and 5% 
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glyphosate-treated plants and 8 weeks for the 10% glyphosate-treated plants until fully-developed 

siliques were formed [57]. The tissue samples from these twelve plants were sent to Genomics 

Research Laboratory at Biocomplexity Institute of Virginia Tech for bisulfite sequencing. First, 

the sequenced reads’ quality was checked using FastQC [60] to eliminate adapter sequences and 

barcodes using Trimmomatic [61] and FastX Tookit [62]. Low quality reads (quality score Q<30) 

were exclueded. After all quality checks, bisulfite short sequences were aligned to A. thaliana 

(TAIR 10) reference genome using Bismark aligner (v 0.14.5) using default parameters (-n 1 -l 

50) [4]. Cytosine methylation level information was extracted from aligned reads using Bismark 

[4] methylation extractor. In total, there are 3,348,756 cytosines in the dataset for detecting 

significant methylated cytosines differentiating glyphosate dosage groups. 

3.3.2 Methylation level simulation 

We aimed to generate methylation profiles that closely mimic the real data collected from our 

experiment ([57], Figure 3.1S). We generated two sets of methylated cytosines, one set with 

correlation among nearby cytosine sites and the other set without methylation correlation. For 

uncorrelated dataset, we first randomly selected 10,000 out of 100,000 cytosine sites as DMCs 

(~10% of all cytosine sites are differentially methylated). The average methylation levels for each 

of the three dosage groups, i.e., no treatment (0%) or two different sub-lethal doses (5% and 10%) 

of herbicide glyphosate were generated from estimating the real A. thaliana dataset. To illustrate, 

from the real A. thaliana dataset, for each cytosine site, pairwise mean methylation differences 

between 0% vs 5%, 5% vs. 10% and 0% vs 10% were calculated. If one of the mean methylation 

differences was greater than 0.04, cytosine sites were considered differentially methylated, 

therefore the methylation levels at these cytosine sites were used to generate methylation profiles 

for differentially methylated sites (true positive methylation differentiation) in simulated data. If 

none of the mean methylation differences between any of the two groups were greater than 0.04, 

cytosine sites were considered nondifferential. Thus, methylation levels at these nondifferential 

sites were used to generate not differentially methylated sites (true negative methylation 

differentiation) in simulated data (Figure 3.2S).  

To generate correlated simulated datasets, we first divided the real A. thaliana dataset into 

blocks of 100,000 cytosine sites and we randomly chose blocks to generate methylation profiles 
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for simulated data. For each random block, if one of the mean methylation differences was greater 

than 0.04, cytosines were considered differentially methylated, therefore the methylation levels at 

these cytosine sites were used to generate methylation profiles for differentially methylated sites 

in simulated data with correlation. Otherwise, sites were considered nondifferential and used to 

simulate true negative methylation profiles (Figure 3.2S). Individual methylation levels for each 

of the three dosage groups from both correlated and uncorrelated datasets were generated from 

truncated normal distribution ranged from 0 to 1 with mean and standard deviations calculated 

from the real A. thaliana dataset.  

We changed methylation difference profiles by changing cutoff value for a cytosine site to 

be considered differentially methylated by increasing 0.04 to 0.08, 0.1, 0.12, 0.15, 0.2, and 0.25. 

To illustrate, with the cutoff value 0.25, only cytosines with at least one of the pairwise mean 

methylation differences greater than 0.25 are considered differentially methylated. We also 

increased sample sizes for each dosage group from 4 to 10, 20, 30, and 40 to examine how the 

WFMM method performs under different scenarios and compared its performance to the 

commonly used program methylKit [58]. 

3.4 Results 

3.4.1 Simulation results  

(1) Effect of the degree of methylation difference  

The degree of methylation difference between different phenotypes is an obvious factor to consider 

when examining the performance of tools for detecting differentially methylated cytosines. 

Therefore, we examined the performance of the WFMM method through receiver operating 

characteristic (ROC) curve analysis and compared it to methylKit [58] for different degree of 

methylation difference. Figure 3.2 shows the performance of the two methods with different 

methylation difference cutoffs. We used Youden’s rule to find the optimal threshold for the delta 

parameter (𝛿) in WFMM and the qvalue parameter in methylKit. MethylKit uses qvalues, the 

adjusted P-values for multiple testing correction. According to Youden’s rule, the optimal 

threshold is where the sum of sensitivity and specificity is maximized. Figure 3.2 shows that 

overall WFMM performs better than methylKit with higher sensitivity and specificity in both 
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correlated and uncorrelated scenarios. When differentially methylated cutoff is 0.04 or 0.08 and in 

both correlated and uncorrelated cytosines, the optimal value for delta 𝛿 parameter in WFMM is 

0.01 and the optimal value for qvalue parameter in methylKit is 1.00. Noteworthy is that there is 

an improved performance in WFMM, i.e., higher specificity and slightly higher sensitivity in 

correlated data compared to uncorrelated data whereas methylKit performance is similar in both 

scenarios.  
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Figure 3.2: ROC curve comparison between WFMM (blue curve) and methylKit (red curve) when 

differentially methylated cutoff is 0.04 in correlated cytosines (top left), uncorrelated cytosines 

(top right) and when differentially methylated cutoff is 0.08 in correlated cytosines (bottom left), 

uncorrelated cytosines (bottom right). 

Figure 3.3 shows that as increasing differentially methylated cutoff from 0.1, 0.12, 0.15, 0.2 and 

0.25, the gaps in ROC curves between WFMM and methylKit become narrower. Specifically, 

there is little improvement in WFMM whereas the performance of methylKit improves with 

increasing differentially methylated cutoff values. When differentially methylated cutoff is 0.2 or 

0.25, WFMM and methylKit perform similarly. To illustrate, when differentially methylated cutoff 

= 0.25, at an optimal threshold 𝛿=0.013 in WFMM, and at an optimal threshold qvalue=0.76 in 

methylKit, WFMM has higher sensitivity (0.953 vs. 0.806) but lower specificity (0.696 vs. 0.828) 

than methylKit. Therefore, there is a trade-off between two methods.  
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Figure 3.3: ROC curve comparision in ROC curve comparison between WFMM (blue curve) 

and methylKit (red curve) as differentially methylated cutoff increases from 0.1, 0.12, 0.15, 0.2 

and 0.25.  

(2) Effect of sample sizes 
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Overall, when sample sizes increase from 4, 10, 20, 30, to 40, WFMM performance remains robust 

(Figure 3.4). There is a moderate improvement in sensitivity and specificity when sample size 

increases from 4 to 10. There is only slight improvement in sensitivity and specificity in sample 

sizes of 10 or greater. In contrast, increase in sample sizes results in dramatic improvement in 

specificity in methylKit while sensitivity only improves slightly (Figure 3.4). Therefore, increase 

in sample sizes significantly improves methylKit’s  performance whereas only slightly for 

WFMM. It can be inferred that increased sample sizes give methylKit more power to detect small 

methylation differences across different phenotype groups whereas WFMM performance is more 

stable because the method incorporates methylation levels of nearby cytosines to make inference 

rather than solely relies on sample sizes.  

 

Figure 3.4: Effect of different sample sizes on WFMM with 𝛿=0.01 and methylKit with adjusted 

setting (qvalue=1.00 and difference=4) performance on correlated simulated data when 

differentially methylated cutoff is 0.04.  

3.4.2 Real data from herbicide glyphosate treatment of Arabidopsis thaliana 

We applied WFMM and methylKit on dataset generated from our herbicide glyphosate treatment 

experiment on A. thaliana.  WFMM was able to detect 557,664 DMCs (~17% of all cytosines in 
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A. thaliana genome) corresponding to 15,823 TAIR genes recognized from DAVID [63]. In 

contrast, methylKit detected only 48,041 DMCs (~1.43% of all cytosines in A. thaliana genome)  

corresponding to 12,166 TAIR genes with default settings (qvalue=0.01 and difference=25), and 

1,338,219 DMCs (~40% of all cytosines in A. thaliana genome) corresponding to 30,947 TAIR 

genes with adjusted settings (qvalue=1.00 and difference=4).  Table 3.1 shows the breakdown of 

the number of significant DMCs and TAIR genes for each chromosome in A. thaliana genome. 

Chromosomes 1 and 5 have the most number of genes responding to herbicide glyphosate stress. 

Analysis of overlapping DMCs between WFMM and methylKit (Figure 3.5) shows that there are 

33.6% and 21.7% common DMCs detected by both WFMM and methylKit in simulated and real 

dataset respectively. The similarity in proportions of common DMCs detected by both methods 

and of DMCs detected by only one of the two methods shows that simulation is reflective of real 

data.  

Table 3.1: Number of significant DMCs, genes  recognized by DAVID by applying WFMM with 

𝛿=0.01 and methylKit with default setting (difference=25, qvalue=0.01) and methylKit with 

adjusted setting (difference=4, qvalue=1.00) on real A. thaliana dataset. 

 

 

Chrom

osome 

WFMM 

𝛿=0.01, 

Number 

of DMCs 

methylKit 

default, 

qvalue=0.01, 

difference=25, 

Number of 

DMCs 

methylKit 

qvalue=1.00, 

difference=4, 

Number of 

DMCs 

WFMM 

𝛿=0.01, 

Number 

of 

significant 

genes 

MethylKit 

default, 

qvalue=0.0

1, 

difference=

25, 

Number of 

significant 

genes 

MethylKit 

qvalue=1.0

0, 

difference=

4, Number 

of 

significant 

genes 

Chr1 133,512 12,048 294,153 4,041 3,098 7,760 

Chr2 87,488 7,627 244,683 2,417 1,887 5,129 

Chr3 113,229 9,863 274,382 3,180 2,459 6,254 

Chr4 91,327 7,708 227,539 2,563 1,943 4,815 

Chr5 123,027 10,776 290,090 3,622 2,779 6,989 

ChrC 9,081 19 7306 0 0 0 

ChrM 0 0 66 0 0 0 

Total 557,664 48,041 1,338,219 15,823 12,166 30,947 
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Figure 3.5: Percentages of overlapping DMCs from methylKit with adjusted settings 

(difference=4, qvalue=1.00) and WFMM with 𝛿=0.01 in correlated simulated data when 

differentially methylated cutoff is 0.04 (left panel) and in real data (right panel).  

Functional annotation results of significant genes detected by WFMM and methylKit show 

similar results between both methods (Figure 3.6). The most significant gene ontology (GO) terms 

in WFMM are also in top 50 significant methylKit GO terms. Malay Das et. al [64] did similar 

experiment applying herbicide glyphosate to A. thaliana plants and identified 484 genes that might 

be responsive to glyphosate stress. Comparatively, methylKit with default settings identified 

12,166 genes, 181 of which overlap with Malay Das et al., and with adjusted settings 

(difference=4, qvalue=1.00), identified 30,947 genes, 466 of which overlap with Malay Das et al.. 

WFMM with 𝛿=0.01 identified 12,166 genes, 238 of which overlap with Malay Das et. al. (Table 

3.2). Thus, WFMM is slightly better than methylKit with default settings by identifying slightly 

more relevant genes related to glyphosate responses. For a fair comparison, of 3000 top most 

significant genes, methylKit with default settings has 39 overlapped genes, methylKit with 

adjusted settings (difference=4, qvalue=1.00), 41 overlapped genes and WMFF with default 

setting 𝛿=0.01, 51 overlapped genes which also identified by Malay Das et. al [64] (Table 3.2). 

Though there are minor differences in gene clusters from methylKit and WFMM 𝛿=0.01, the GO 

analysis between two methods are very similar (Figure 3.6, Figure 3.7). 
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Figure 3.6:  Gene Ontology for significant differentially methylated TAIR genes detected by 

WFMM with 𝛿=0.01 (left panel) and methylKit with default settings (difference=25, 

qvalue=0.01) (right panel). 
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Figure 3.7: Gene Clusters of the top 3,000 most significant genes from WFMM with 𝛿=0.01 

(top panel), methylKit with default settings (difference=25, qvalue=0.01) (middle planel), and 

methylKit with adjusted settings (difference=4, qvalue=1.00) (bottom panel). 

Table 3.2: Number of intersecting genes between 484 genes identified by Malay Das et al. [64]  

that are related to herbicide glyphosate stress and significant genes identified by WFMM and 

methylKit. 

Methods Number of 

significant genes 

Number of shared 

genes in all 

significant genes 

Number of shared 

genes in top 3000 most 

significant genes 

WFMM 𝛿=0.01 15,823 238 51 

methylKit default, 

qvalue=0.01, 

difference=25 

12,166 181 39 
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methylKit adjusted, 

qvalue=1.00, 

difference=4 

30,947 466 44 

 

3.4.3 Real data from monozygotic twin data with different pain sensitivity scores 

We used the methylation profiles generated from MeDIP-sequencing data of 25 MZ twin pairs (50 

MZ twins) who were discordant for heat pain sensitivity for model comparison. Heat pain tolerance 

between twins was determined experimentally using quantitative sensory testing. Datasets were 

downloaded from [65] with sample IDs from GSM1278649 to GSM1278698. The methylation 

levels in these datasets were summarized by combining cytosine regions rather than single cytosine 

sites. In total, there are 5,735,431 DMRs in these datasets. We assigned MZ twins in each of 25 

MZ pairs to two groups (high vs low pain temperatures) according to MZ twins’ pain sensitivity 

temperatures. For example, for a MZ twin pair from family ID 1, MZ twin 1 and MZ twin 2 have 

pain sensitivity temperature of 44.7 and 47.8 respectively. Therefore, we assigned MZ twin 1 to 

the low pain sensitivity temperature group and MZ twin 2 to the high pain sensitivity temperature 

group. We then applied WFMM and methylKit to the 50 MZ twins’ methylation profiles with high 

vs. low pain sensitivity temperatures as phenotype groups. There were no significant DMRs 

detected by both WFMM with 𝛿=0.01 and methylKit default settings or methylKit adjusted 

settings (difference=0.04, qvalue=1.00). This can be explained that the mean methylation 

differences between high vs. low pain temperature groups are very small (~4.1% of all mean 

methylation differences across DMRs < 10-5) (Figure 3.3S). Therefore we adjusted parameter 

settings in both WFMM with 𝛿=3.44x10-5 and methylKit (difference=4.34x10-5, qvalue=1.00). 

These parameter settings from both methods were determined by empirical function applied on the 

real twin data and further described in the discussion section. For the 769 significant DMRs 

detected by WFMM with 𝛿=3.44x10-5, there were 236 genes recognized by the gene function 

enrichment program DAVID (Table 3.3). These genes were clustered into 5 groups by DAVID 

(Figure 3.8 left panel). For 2,023 significant DMRs from MethylKit (difference=4.34x10-5, 

qvalue=1.00), there were 892 genes recognized by DAVID (Table 3.3) that were clustered into 32 

clusters (Figure 3.8 right panel). The most important gene groups were ranked by enrichment 

scores (EASE scores). EASE scores are calculated from geometric mean of all enrichment P-

values for each annotation term of all gene members in a gene group [66]. Two gene clusters that 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1278649
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have the highest EASE scores from significant differentially methylated genes detected by WFMM 

contain myelin transcription factor 1 like (MYT1L, enrichment score=1.19) and transient receptor 

potential cation channel subfamily C member 1(TRPC7, enrichment score=0.90). MYT1L 

functions in the developing mammalian central nervous system. TRPC7 was identified by Bell 

et.al [65] responsive to heat pain sensitivity. In comparison, methylKit was not able to capture 

relevant gene clusters pertaining to pain sensitivity in its first top 17 clusters.  In the 18th cluster, 

two genes (out of the 112 genes in this cluster) ST6GALNAC1 and TRPC7 were also found 

involved in heat pain sensitivity by Bell et al. [65]. It is remarkable that WFMM was able to capture 

the significant gene groups related to pain sensitivity using only the 25 MZ twin pairs’ methylation 

profiles whose methylation differences are very small whereas Bell et al. [65] had to use the 

methylation profiles of 25 MZ twin pairs together with 50 unrelated individuals in a meta-analysis 

to capture the genes responsible for heat pain sensitivity.  

Table 3.3: Number of significant DMCs, genes  recognized by DAVID by applying WFMM with 

𝛿=3.44x10-5 and difference=4.34x10-5, qvalue=1.00 on 25 monozygotic twin pairs with different 

pain sensitivity temperature. 

 

 

 

 

 

 

 
 

Methods Number of 

significant DMRs 

Number of significant 

genes using DAVID 

WFMM 

𝛿=3.44x10-5 
769 236 

methylKit 

adjusted, 

qvalue=1.00, 

difference=4.34

x10-5 

2023 892 
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Figure 3.8: Gene clusters of significant genes detected by WFMM with 𝛿=3.44x10-5 (left panel) 

and methylKit (difference=4.34x10-5, qvalue=1.00) (right panel). 

3.5 Discussion 

Though there are numerous statistical methods for detecting differentially methylated cytosine, 

small sample sizes and small methylation differences in methylation data across phenotype groups 

remain a challenge for the commonly used methods [56]. Our analysis of the datasets demonstrated 

that the wavelet-based functional mixed model has several advantages. Firstly, the method is 

flexible and can be applied to different experimental designs and does not depend on coverage 

depth. Secondly, simulation results show that the WFMM method is robust even when sample 

sizes are small. Thirdly, the method is particularly effective for cases where methylation 

differences across phenotype groups are relatively small, for example, as demonstrated in our MZ 

twin pair analysis, the method is able to capture significant regions that are relevant to the 

phenotype of interest. Fourthly, if there is strong methylation correlation in the data, the method 

is able to take it into account for the inference, thus having more power in calling of DMCs/DMRs, 

as illustrated in the A. thaliana data and MZ twin data analysis. Finally, default settings of DMR 

analysis tools might not be the most suitable for some methylation profiles as shown in the 

Arabidopsis and twin datasets. We recommend some empirical rules to adjust the default settings 

so that the method can be better adapted to different methylation profiles of real datasets. For 

methylKit, we suggest to set the “diff” parameter to be at the 100(1-E)th quantile of the absolute 

pairwise methylation level differences between two phenotype groups across the whole genome, 
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where E is an expected percentage of methylation differences across all cytosines for a particular 

dataset based on prior knowledge. For example, in our Arabidopsis data, we expect ~10% (E=10%) 

of cytosines to be DMCs. Therefore, we set diff = 0.04 (corresponding to the 90th quantile of the 

absolute pairwise methylation level differences between phenotype categories). In the twin dataset, 

we expect E=0.3%, therefore, we adjust diff in methylKit to 4.34x10-5 (i.e., the 99.7th quantile of 

the absolute pairwise methylation level differences across whole human genome). In methylKit, 

the qvalue parameter should also be adjusted accordingly. If diff is very small (<0.1), set qvalue 

=1.00 to collect all significant DMRs. Similarly, we can adapt WFMM to be more tailored to 

different methylation profiles by controlling the 𝛿 parameter, setting 𝛿 to be the difference between 

the 100(1-E)th quantile of the absolute pairwise methylation differences between two phenotype 

groups across the whole genome and the standard deviation of the methylation differences. For 

example, in our A. thaliana dataset, the 90th quantile of the absolute pairwise methylation level 

differences between dosage categories is 0.04 and the standard deviation of pairwise methylation 

level differences between phenotype categories is 0.03, therefore, 𝛿 = 0.04 - 0.03 = 0.01. In the 

twin dataset, the corresponding 99.7th quantile and standard deviation are 4.34x10-5 and 9.2x10-6, 

respectively, therefore, we use 𝛿 =4.34x10-5 - 9.2x10-6 = 3.44x10-5. In this way, a better DMC 

detection result can be achieved based on different methylation datasets. 
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Supporting Information 

 
 

Figure 3.1S: Pairwise mean methylation Difference Profile of 12 A. Thaliana plants after 

glyphosate treatment 

 

 

Figure 3.2S: Methylation level simulation at cytosine sites. Uncorrelated methylated cytosine 

simulated data (left panel) and correlated methylated cytosine simulated data (right panel) 
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Figure 3.3S: Mean methylation profiles between higher and lower pain temperature group in 25 

MZ twin pairs 

Table 3.1S Number of significant DMCs, genes  recognized by Ensemble by applying WFMM 

𝛿=4x10-5 and qvalue=1.01, difference=0.07 on 25 monozygotic twin pairs with different pain 

sensitivity temperature for each chromosome.  
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Chrom WFMM 

𝛿=4x10-5, Number 

of DMRs 

MethylKit, 

qvalue=1.01, 

difference=0.07, 

Number of 

DMRs 

WFMM 

𝛿=4x10-5, Number 

of significant genes 

from Ensemble 

MethylKit, 

qvalue=1.01, 

difference=0.07, 

Number of 

significant genes 

from Ensemble 

Chr1 53 59 21 35 

Chr2 23 28 9 23 

Chr3 3 3 1 2 

Chr4 25 17 10 9 

Chr5 10 16 3 8 

Chr6 40 21 11 8 

Chr7 31 25 19 15 

Chr8 36 33 11 12 

Chr9 22 21 5 7 

Chr10 50 40 11 9 

Chr11 20 20 9 11 

Chr12 0 15 0 9 

Chr13 0 6 0 2 

Chr14 7 13 4 4 

Chr15 8 11 1 3 

Chr16 78 54 21 25 

Chr17 27 24 10 13 

Chr18 11 15 5 7 

Chr19 12 45 4 21 

Chr20 10 30 5 11 

Chr21 9 20 4 10 

Chr22 19 30 3 9 

Total 494 546 167 253 
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Chapter 4 

 

 

Identification of factors contributing to 

microbiome regrowth in Simulated 

Reclaimed Water Distribution Systems 

 

4.1 Introduction 

Population growth and climate change leave billions of people around the world living in water 

scarcity conditions. Therefore, utility of reclaimed water (highly treated wastewater) plays an 

essential role in water sustainability [67].  Recently, researchers discovered microbial regrowth 

problems in potable water distribution systems (PWDs) [68]. In particular, microbial populations 

including opportunistic pathogens are observed to regrow in PWDs. Studies have shown that 

though many microbes in PWDs are benign, some microbes, including opportunist pathogens such 

as Legionella pneumophila, Acanthamoeba polyphaga, Mycobacterium avium, Naegleria fowleri 

and Pseudomonas aeruginosa can be a public health threat, especially for immunocompromised 

population [69]. Reclaimed water distribution systems (RWDs) share some similar characteristics 

of PWDs, thus we hypothesize that RWDs would encounter the same issues as PWDs.  Previously, 

researchers have shown that it is impossible to remove all microbes from PWDs. Rather, we can 

only shift the microbial community to more favorable for humans [70]. This can be done through 

controlling various fundamental factors pertaining to the water system, for example, disinfect 
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types, limiting nutrients (N, C and P), water age, dissolved oxygen, temperature or pH in PWDs. 

Our knowledge of PWDs can help understand RWDs. For example, opportunistic pathogens are 

naturally occurring in PWDs and thrive under certain conditions. Biofilm is likely where 

opportunistic pathogens live and bulk water is likely where they spread and come into contact with 

humans. Several other fundamental factors can affect regrowth of opportunistic pathogens in 

PWDs, such as nutrients, water age, and disinfectants. We should take these fundamental factors 

into consideration to shape a healthy microbiome in RWDs. However, these factors might not have 

the same impact on RWDs. To illustrate, in PWDs, assimilable organic carbon (AOC) with 

concentration of 10-20 ug/L is reported to limit regrowth of opportunistic pathogens. Chloramine 

or chlorine, in some cases, is reported to control Legionella spp [68]. However, AOC has much 

higher concentrations in RWDs than PWDs [68], therefore it might no longer control opportunistic 

pathogen regrowth in RWDs. Moreover, no impact of chloramine or chlorine on control of 

Legionella spp. is found in RWDs [70].  

In addition, RWDs is treated-waste water, there are concerns that go beyond the existing 

problems in PWDs. RWDs might have added new and/or worsen the existing problems, 

contributing to potential public health threats. There are two main reasons for these rising 

concerns. First, RWDs’ microbial compositions (e.g., viruses, bacteria, and archaea) are mostly 

uncharacterized. Second and more importantly, RWDs contain more antibiotic resistant bacteria 

(ARBs), and antibiotic resistance genes (ARGs). During wastewater treatment, both residual 

antibiotics and ARBs are injected into wastewater, and certain conditions are imposed and  further 

the spread of antibiotics resistance [71]. For example, in highly concentrated bacterial areas during 

sludge treatment, sharing ARGs among bacteria is facilitated through horizontal gene transfer [72]. 

These bacteria can persist or even multiply through wastewater treatment [71], thus contributing 

to the spread of antibiotic resistance. In summary, there are three objectives in this chapter 1) 

evaluate effects of several factors on shaping microbial communities, 2) identify the interplay of 

water chemistry, water age and microbial regrowth, and 3) characterize co-occurrence of ARGs 

and mobile genetics elements (MGEs), i.e., plasmids in simulated RWDs. 
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This chapter is largely contributed by Ni (Joyce) Zhu who constructed, maintained as well as 

collected and analyzed water samples from the simulated reclaimed distribution systems. The 

author performed all the statistical analysis in this chapter.  

4.2 Materials and Methods 

Experimental Design: The reclaimed water was collected twice weekly in Blacksburg-

Christiansburg area. The wastewater was treated with activated sludge followed by 

nitrification/denitrification. High AOC and low AOC source water were collected via aerobic 

biological filtration as describe by Wang et al. [73]. After chlorinated to remove ammonia, the 

water was subject to no secondary disinfection, chloramination, or chlorination at varying 

concentrations. All treated water was kept in a constant temperature room at 14°C, 22°C, 30°C, 

22°C and 14°C for a period of two months at each temperature. Bulk water and biofilm water were 

collected at two different water ages at the end of each two months. Joyce Zhu designed a network 

of simulated RWD to investigate how disinfection behaves differently under different conditions. 

Six 4-inch in diameter PVC pipe connected by narrow 3/8-inch in diameter tubing provided a 

hybrid design that enabled examination of extended water ages and collection of biofilms under 

fast shear conditions. The conditions investigated were: 1) high and low organic carbon levels; 2) 

three disinfectant conditions (no residual, 4 mg/L of chlorine, 4 mg/L of chloramine); and 3) four 

water ages (0, 1, 2.5 and 5 days). A temperature cycle of from 14°C-22°C-30°C-22°C-14°C was 

implemented to simulate a seasonal effect (Figure 4.1). 
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Low AOC High AOC 

Figure 4.1: Simulated reclaimed water distribution investigating different behavior of disinfection 

under varying water conditions. Photos taken by Joyce Zhu. 

Collection of water chemistry: total cell counts (counts/uL) were collected by flow cytometer 

technology. Disinfectant concentrations (mg/L), dissolved oxygen (mg/L), and nitrite 

concentrations (mg/L) were also measured.  

Quantification of microbiome profiles: A whole sample metagenomics approach was applied to all 

water samples collected at the end of the experiment to generate relative abundances and diversity 

of ARGs in RWDs. Metagenomic DNA library was prepared using SwiftBio amplification. The 

samples then were subject to deep sequencing using an Illumina HiSeq 2500 at the Biocomplexity 

Institute of Virginia Tech facility. Data processing and normalization were done using Metastorm 

pipeline [74]. Samples were then submitted to deepARG [75] and ACLAME [76] for assembly 

analysis for ARGs and MGEs. The GreenGenes [77] database was used for phylogenetic and 

functional analysis for the bacterial community. In the end, there are 36 water samples for analysis.  

Statistical Analysis: First, outlier detection methods are conducted to check if the data is consistent 

among replicates. Then, diversity analysis and multivariate analysis are conducted to identify 

significant population shifts of ARBs and ARGs under varying conditions. Specifically, the 

nonparametric method, analysis of similarity (ANOSIM) is applied along with nonmetric 

multidimensional scaling (NMDS) plots to determine which factors significantly affect ARG 
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populations. Negative binomial mixed models are also applied to examine the effect of water 

chemistry and water age on bacterial regrowth with water chemistry and water age. Finally, 

network analyses are conducted to find communities and co-occurrence patterns among ARGs and 

plasmids. We first construct a network based on Spearman’s correlation for any ARG pairs or 

ARG-plasmid pairs. Edges are created between an ARG pair or an ARG-plasmid pair if their 

Spearman’s correlation ρ is greater than 0.8 and the adjusted p-value for multiple testing is less 

than 0.01. Bayesian networks are also constructed based on abundance profiles of 655 ARGs and 

100 genuses and 100 species across all water samples using the max-min hill-climbing algorithm. 

Assembled data are also used to construct the ARG-ARG and ARG-plasmid co-occurrence 

networks as a way to validate the two network models. 

4.3 Results 

4.3.1 Consistency of the simulated RWDs 

For water samples at 300C and treated with chlorine, three replicated measurements from the 

simulated RWDs for each sample were collected to make sure that the system runs consistently. If 

the system runs consistently, we expect to get similar measurements for each replicate in each 

ARG class in a given sample. We can simply check if there is any outlier in all three replicates and 

if replicates have any effect on ARG abundance. Data used for this analysis is the normalized count 

data for each ARG class.  We performed Grubbs’ outlier detection test for all three replicates for 

each ARG class. Grubbs’ test gives p-values indicating if there is any extreme value among there 

replicates, for example, if p-value < 0.05, there is an outlier among there replicates. We also adjust 

p-values for multiple testing using the false discovery rate. If adjusted p-values>0.05, there would 

be no outlier, otherwise there would be an outlier among the three measurements. The ANOVA 

analysis on samples for each ARG class is performed to determine if replicates have any effect on 

ARG abundance. P-values from the ANOVA analysis are also adjusted for multiple testing. There 

are no suspected outliers since all adjusted p-values from Grubbs’ test are greater than 0.05 (Table 

4.1 left panel). Though there are small variations in some samples in the system, the replicate 

measurements are quite consistent within each ARG class. There is also no replicate effect on any 

of the ARG classes since there are no p-values and adjusted p-values<0.05 (Table 4.1 right panel). 

Finally, we apply ANOSIM on all replicated samples treated with chlorine at 300C. Replicate is 
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included as a factor in the model. Replicate has an R-value of -0.055 and p-value of 0.777. 

Therefore, replicate has no effect on ARG composition. From the above outlier detection, 

ANOVA, and ANOSIM results, we can conclude that the system is consistent. 

Table 4.1: p-values and p-values adjusted for multiple tests from Grubb’s outlier test (right panel). 

p-values for replicate effect from the ANOVA test (right panel) 

ARG class Sample IDs p-values p-values 

adjusted 

rifampin 30.H.5.W.Cl2 0.003 0.324 

tetracycline 30.H.5.W.Cl2 0.013 0.576 

aminocoumarin 30.H.2.W.Cl2 0.016 0.576 

bacitracin 30.H.5.W.Cl2 0.023 0.621 

multidrug 30.H.2.W.Cl2 0.029 0.626 

 

4.3.2 Decay pattern of disinfectant types in RWDs 

Overall, there is a decay pattern for both disinfectant types as temperature increases under both 

high and low AOC (Figure 4.2). Chlorine tends to decay faster than chloramines. Furthermore, 

under low AOC, decay occurs slower in both disinfectant as temperature increases compared to 

high AOC.  

HIGH 

AOC 

 

LOW 

AOC 

 

Figure 4.2: Decay pattern of chloramines and chlorine disinfectant in RWDs 

ARG class p-values 

glycopeptide 0.121 

peptide 0.264 

pleuromutilin 0.308 

tetracycline 0.349 

thiostrepton 0.398 
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4.3.3 Relationship of water chemistry, water age, and microbial regrowth 

We also examine how water chemistry (AOC, disinfectant types, etc.) affects cell counts. We tried 

to fit the total cell counts with Poisson regression, Poisson mixed models, negative binomial, and 

negative binomial mixed models. We chose negative binomial mixed models since it has the lowest 

Akaike Information Criterion (AIC=3913.716). Pearson’s chi-square test for goodness of fit gives 

p = 0.805, suggesting the negative mixed model fits the total cell counts data. By applying negative 

binomial mixed models on cell counts, water chemistry factors that have the most effect on 

bacterial regrowth are identified. Most regrowth occurs at the high temperature (30oC). Chlorine 

condition has significantly negative effect on cell counts whereas chloramine does not (Table 4.2). 

AOC is marginally significant in determining microbial regrowth (p=0.067). Low AOC nutrients 

keep regrowth of resistome at a lower rate (80.2% lower compared to high AOC). The results 

shown in Table 4.2 are consistent with findings shown in Figure 4.3.  

Table 4.2: The effect of water chemistry and water age on bacterial regrowth 

Water Chemistry  Coefficient Estimate P-value 

Temperature  0.105 0.031* 

AOC Low -0.802 0.067. 

Disinfectant Types Chlorine(Cl2) -3.034 1.71e-08 *** 

Chloramine (NH2Cl) 0.035 0.948 

Water Age  1 0.012 0.947 

2.5 -0.123     0.509 

5 0.030 0.869 

F -0.109     0.608 
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Figure 4.3: The effect of water chemistry and water on observed total cell counts 

4.3.4 Factors that affect ARG profiles in the simulated RWDs 

Based on Bray-Curtis dissimilarity on all water samples, the ARG compositions are significantly 

different for three condition comparisons, biofilm vs. bulk water (R=0.313, p-value=0.001), 
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different disinfectant types (R=0.228, p-value=0.003), and different temperatures (R=0.258, p-

value=0.002). The ARG compositions are similar under two water age conditions (R=-0.013, p-

value=0.607).  At 300C, the ARG communities are even more distinctive under biofilm vs. bulk 

water (R=0.6, p-value=0.001), and different disinfectant types (R=0.374, p-value=0.003). There is 

still no difference in ARG compositions under two different water age conditions (R=-0.046, p-

value=0.707). It is noteworthy that at 300C disinfectant types are influential in shaping the 

resistome especially in water, i.e., there are clear groupings of disinfectant types in bulk water 

(Figure 4.4 left). NMDS plot also reveals that at 300C and in bulk water, MSBA, TETA, MDTC, 

MUXC,  LLMA in tetracycline  and aminocoumarin categories are the most affected by chlorine 

(Cl2); BACA, MUXB, MDTB, MUXA (belong to bacitracin and aminocoumarin categories) by 

chloramines (NH2Cl); TET33, NJ69_08675, ILES2, VANRC, TETX, SUL2, and ARNA 

prominently in polymyxin, macrolide-lincosamide-streptogramin and chloramphenicol categories 

by no disinfectant. At 300C, biofilm environment has more diverse ARG compositions. Also both 

disinfectants reduce diversity in ARG communities. Chloramines keep ARGs the least diverse 

(Figure 4.4 right).  

 

 

Figure 4.4: NMDS plot on biofilms (B) vs. bulk water (W) and disinfectant types at 300C (left) 

and ANOSIM plots on diversity under biofilms (B) vs bulk water (W) and under different 

disinfectant types at 300C (right) 

 

In addition, Simpson diversity indices of ARG communities are calculated and compared across 

all samples. Mixed ANOVA on diversity indices is applied to determine which factors 

significantly affect ARG diversity. Results from the mixed ANOVA show that biofilms vs. bulk 
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water have significant effect on ARG diversity (p-value<0.05), whereas disinfectant types, 

temperature, and water age have no significant impact on ARG diversity. ARGs are more diverse 

in biofilms environment than in bulk water. At 30oC, ARGs tend to be less diverse than at 22 oC. 

Disinfectants tend to keep ARG communities less diverse. Chlorine tends to keep ARGs at least 

diversity (Figure 4.5). These univariate results are mostly consistent with ANOSIM multivariate 

results.  

 

Figure 4.5: Simpson diversity plots across all samples 

 

Wilcoxon Mann-Whitney tests are conducted on abundance to determine factors that may control 

the total ARG abundance across samples. Total ARG abundance is significantly smaller in 

biofilms compared to bulk water (average total abundance in biofilms and water are 53.713 and 

75.645 respectively, with p-value=0.003) (Figure 4.6 upper) while temperature, disinfectant types 

and water age are not significant in controlling total ARG abundance, i.e., p-value>0.05. Average 

total ARG abundance tends to increase with temperature even though average total ARG 

abundance is more similar between 220C and 300C. Average total abundance tends to be the lowest 
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under chloramines followed by no disinfectant (24.187 and 29.986 respectively) and average total 

abundance tends to be the highest in chlorine (75.185) (Figure 4.6 upper).  

 

ARG composition plots (Figure 4.6 lower) reveal that ARG compositions differ across disinfectant 

types. At 300C and under chloramines, ARG compositions are the least diverse followed by 

chlorine. These observations are consistent with ANOSIM analysis. In summary, the multivariate 

nonparametric method, ANOSIM, works the best for the data because it does not assume any 

particular distribution imposed for ARG abundance and it takes into consideration all ARG 

abundance profiles rather than collapses all ARG profiles into one diversity index per sample. 

ANOSIM reveals that water/biofilm and disinfectant types play a significant role in shaping the 

resistome. In particular, the selective effect of disinfectants is the most pronounced in the water 

phase where the bacteria are in the most direct contact with the disinfectants. Higher ARG diversity 

observed in biofilms suggests that biofilm tends to serve as a reservoir for ARG exchange and 

accumulation, even though lower ARGs abundance is observed. Disinfectants reduce ARG 

abundance as well as ARG diversity. Disinfectants are more in shaping the resistome of bulk water 

than that of biofilms. It is remarkable that bacitracin and multidrug are the most abundant in all 

water samples.  

 

140C 220C 300C 
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Figure 4.6: Absolute abundances (upper) and relative abundances (lower) of ARG classes in 

RWDs 

4.3.5 Correlation analysis of water chemistry and ARG abundance  

Spearman’s correlations between ARG abundance and concentrations of dissolved oxygen and 

two disinfectant types across samples were calculated. We reported the most significant 

correlations (p-value<0.05) with the highest Spearman’s correlation values. ARG abundance 

across samples are positively correlated to dissolved oxygen and chlorine concentrations (Table 

4.3a, b). ARGs in multidrug category have the highest correlation with dissolved oxygen (Table 

4.3a). It is likely that the antibiotic resistance mechanism is also shared as a defense mechanism 

to cope with lower dissolved oxygen. Most ARGs that are highly correlated with chlorine belong 

to the beta_lactam group (Table 4.3b). ARG abundances across samples are observed to have the 

strongest positive or negative correlation with chloramines. 

Table 4.3a: Spearman correlation between 

ARG abundance and dissolved oxygen 

Table 4.3b: Spearman correlation between 

ARG abundance and chlorine 

ARGs 
Spearman 

correlation 
ARG class 

ACRB 0.671 multidrug 

MDTD 0.654 multidrug 

ACRA 0.646 multidrug 

OPRN 0.640 multidrug 

MEPB 0.633 multidrug 

ARG 

Spearman 

correlation 

 

ARG class 

VANRI 0.656 glycopeptide 

MSRB 0.654 MLS 

ARR.2 0.654 rifampin 

AB182_22595 0.633 beta_lactam 
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CATB9 0.600 
chlorampheni

col 

EMRA 0.599 quinolone 

MEXA 0.597 multidrug 

 

OXA.129 0.633 beta_lactam 

AADK 0.633 aminoglycoside 

WM16_03815 0.633 beta_lactam 

AADA7 0.601 aminoglycoside 

DSX2_1119 0.600 beta_lactam 

MEXP 0.593 multidrug 

 

Table 4.3c: Spearman correlation between ARG abundance and chloramines 

 

 

 

 

 

 

 

 

 

 

 

 

 

The multivariate regression tree (MRT) analysis is first carried out on ARG profile for all samples 

and adjusted for all water chemistry parameters, dissolved oxygen, cell counts, nitrite 

ARG Spearman’s correlation 

(ARGs vs. Chloramines) 

ARG class 

ADER 0.777 tetracycline 

AAC-3’-IIB 0.742 aminoglycoside 

ADEB 0.740 multidrug 

MAB_2875 0.726 unknown 

FLOR 0.721 multidrug 

TETZ 0.719 tetracycline 

AAV95_16190 0.714 beta_lactam 

CCNA_03676 0.714 aminoglycoside 

EFPA 0.708 multidrug 

MACB -0.857 macrolide-lincosamide-streptogramin 

TURPA_2231 -0.785 macrolide-lincosamide-streptogramin 

AMS22_10315 -0.757 macrolide-lincosamide-streptogramin 

DFRA3 -0.748 trimethoprim 

RAHAQ2_0060 -0.744 macrolide-lincosamide-streptogramin 

ARNA -0.730 polymyxin 

MPHA -0.722 macrolide-lincosamide-streptogramin 

CCC_03326 -0.713 beta_lactam 

OTRA -0.713 tetracycline 
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concentrations and disinfectant types to determine the tree splits. Of all the factors considered, 

only disinfectant types are significant in determining the tree splits of the ARG abundance. We 

further carry out the MRT analysis on ARG profile for samples from chlorine and chloramine 

separately to determine whether there exists critical concentration values for each of the 

disinfectant types that effectively shape the ARG profile. For chlorine samples, the tree split is at 

chlorine concentration of 0.09 mg/L. Samples with chlorine concentration of 0.09 mg/L or greater 

have higher average ARG abundance (5.61 compared to 1.09 in lower concentration samples). For 

chloramine samples, the tree split is at chloramine concentration of 0.43 mg/L. Samples with this 

concentration or greater have lower average ARG abundance (0.535 compared to 0.584 in samples 

with lower concentration) (Figure 4.7). It is noticeable that there is a bigger difference in average 

ARG abundance in the tree split in chlorine samples with even small concentration compared to 

chloramine samples (4.51 vs. 0.049). The multivariate regression tree analysis for chloramines 

gives counterintuitive results since we expect that higher disinfectant concentrations lower total 

ARG abundance. This is likely due to small sample sizes and further validation is needed.  

 

Figure 4.7: Multivariate Regression Tree on ARG profile 

4.3.6 Network analysis on assembled data 

To investigate co-occurrence of ARGs with mobile genetic elements and pathogens, we assembled 

the metagenomic short reads into contigs using the assembly pipeline from MetaStorm [74]. The 

assembled contigs were analyzed for plasmids using the ACLAME database [76]. The GreenGenes 

database [77] is used to for bacterial phylogenetic and functional analyses. The read matches were 
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filtered out if e-value > 10-10, coverage<90%, or sequence identity < 60% to ensure high quality 

co-occurrence from the contigs.  In total, there are 45,066 scaffolds, 557 (1.24%) of which contain 

one or more ARGs and 501 (1.11%) contain both ARGs and plasmids. Of all 577 scaffolds from 

deepARG [75], 92 (15.95%) scaffolds have ARG co-occurrence. UPPP (of bacitracin class) and 

DFRE (of trimethoprim class) are the most co-occuring across all samples (24 occurences), 

followed by UPPP and CEOB (multidrug) (13 co-occurences) (Figure 4.8). Other most significant 

connections include DFRE and BACA (8 co-occurences), DFRE and CEOB (7 co-occurences), 

UPPP and ACRB (7 co-occurences), and UPPP and MEXF (7 co-occurences). Most of the high 

frequency co-occuring ARGs are found to be general housekeeping genes that have no specific 

targeted mechanism towards individual antibiotics. Other commonly co-occurred ARGs include 

SUL1 and TET genes. Co-occurrence of these antibiotic-specific genes with broad-spectrum 

resistance genes could enhance the propagation of these genes.  

 

Figure 4.8: The ARG co-occurrence network constructed based on ARGs occurring on the same 

scaffolds using de novo assembly of metagenomic sequences. The sizes of ARG nodes correspond 
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to degrees of the nodes. The thickness of edges reflects the number of ARG connections occurring 

on the same scaffolds across all water samples.  

 

 

Figure 4.9: Network constructed based on ARGs and plasmids occurring on the same scaffolds 

using de novo assembly of shotgun metagenomic sequences. The size of the node corresponds to 

the degree of the node. The thickness of the edge reflects the number of ARG-plasmid co-

occurrence on the same scaffolds across all water samples. For clarity, only the top 50 ARGs or 

plasmids with the highest connections with other ARGs or mobile genetic elements are shown. 

Network analysis from the assembled data shows that UPPP, BACA (bacitracin), DFRE 

(trimethoprim), CEOB, MEXF, ACRB (multidrug), and ROSA (polymyxin) are ARGs most 

frequently found in plasmids while pGMI1000MP, 1, pSymB, megaplasmid, and pRSPA01 are 

plasmids that are most frequently associated with ARGs.  Association of these ARGs with mobile 

genetic elements such as plasmids indicates the likelihood of these ARGs to spread to susceptible 

bacteria through horizontal gene transfer and conferring resistance.  
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4.3.7 Modeling co-occurrence of ARGs based on ARG abundance  

Several networks are constructed on ARG abundance. One network is constructed based on the 

pairwise Spearman’s correlations between 655 ARG subtypes across all water samples. Only ARG 

pairs with Spearman’s correlation ρ>0.8 and the adjusted p-value for multiple tests <0.01 are 

retained in the network. In addition, a Bayesian network is constructed using the max-min hill 

climbing algorithm.  

 

Figure 4.10: The network constructed on Spearman’s correlations on ARG abundance with ρ>0.8 

and the adjusted p-value for multiple tests <0.01. For clarity, only the top 58 ARGs with the highest 

connections with other ARGs are shown.  
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Figure 4.11: The Bayesian network constructed on ARG abundance using the max-min hill 

climbing algorithm. Only ARGs’ edge connections with p>0.8 are kept in the network. In addition, 

the top 58 ARGs with highest connections with other ARGs are retained.  

The Bayesian ARG network is more consistent with the network constructed from assembled data 

than Spearman’s correlation network (Figure 4.10) as 43.10% of the most connected ARGs from 

the Bayesian network agree with the top ARG hubs from the network based on assembled data 

compared to 5% for the network based on Spearman’s correlation). The Bayesian network also 

identifies UPPP and DFRE as the most connected ARGs (Figure 4.11) 

4.3.8 Modeling co-occurrence of ARGs and microbial taxa based on abundance data 

As the above analysis shows that the Bayesian network is a better fit for our data; subsequent 

networks were constructed based on the Bayesian network on abundance profiles of ARGs and 

microbial taxa. The similarity between ARGs and microbial taxa profiles across samples indicates 

co-occurrence of ARGs and microbial taxa. In addition, co-occurrence of ARGs and microbial 

taxa may provide ARG-host information, i.e., the kinds of microbial species that carry ARGs. For 

example, at the genus level, Sphingomonas stands out as having the most connections with 
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different types of ARGs. It is a host for glycopeptide resistant genes (VAND and vanRN) and beta 

lactam resistant genes (e.g., IMP-47, mrdA, blaTER-2, and WS70_25295) and aminoglycoside 

resistant genes (e.g., LHA_1702, AAC(3)-Id, and aadA15).

 

 

Figure 4.12: The Bayesian network of ARGs and bacterial taxa constructed based on ARG 

abundance profiles and taxa profiles at the  genus level. Edge connections with p>0.8 are kept in 

the network.  

At the species level, Gelatinosus hosts the most ARGs (13 ARGs), including glycopeptide resistant 

genes (VAND and VANRC), polymyxin (BASR), beta_lactam (OR214_01020, BL2C_PSE3), 

aminoglycoside (ANT1_1), and trimethoprim (DFRK). Analysis at both genus and species levels 

showed consistent results that glycopeptide resistant genes, beta-lactam genes, and 

aminoglycoside are likely to be preferred by microbial hosts.  
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Figure 4.13: The Bayesian network of ARGs and bacterial species constructed based on ARG 

abundance profile and taxa profiles. For clarity, only edges with p>0.8 are kept.  

4.4 Conclusions 

Overall several observations can be made from the study of the simulated water distribution 

system. First, temperature and disinfectant types are important factors in influencing microbial 

regrowth. In particular, as temperature increases, regrowth occurs more often. Chlorine reduces 

microbial regrowth but chloramine does not. Second, biofilm/bulk water, disinfectant types, and 

temperature have significant contribution to the shaping of microbial communities. At 300C, 

biofilm environment has more diverse microbial compositions than water. Also disinfectants can 

reduce the diversity of the microbial communities and comparatively, chloramines has a stronger 

effect on the diversity reduction than chlorine. ARGs are the most diverse at 220C and the least 

diverse at 300C. Network analysis on assembly data reveals that UPPP and DFRE are the most co-
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occurred ARG pair. The Bayesian networks constructed for ARG and genuses/species abundances 

reveal important host information of ARGs.  
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Chapter 5 

 

CONCLUSION 

 
Mapping whole-genome bisulfite short reads is challenging because of reduced complexity in 

genome sequences due to bisulfite treatment and increased search space after PCR amplification 

in the experiment. This thesis evaluates different bisulfite short read mapping tools and develops 

a framework for bisulfite sequencing analysis. First, we compared five different bisulfite short read 

mappers. Though Bismark is not the fastest mapper, it has the highest mapping efficiency and is 

highly recommended for bisulfite short reads alignment. Pre-processing data, i.e., trimming bad 

quality bases in short reads improves mapping efficiency. Sequencing errors have a negative 

impact on mapping efficiency for all the mappers. Second, we developed a Bayesian framework 

that takes advantage of uniquely mapped reads to differentiate ambiguously mapped short reads. 

By applying the Bayesian scoring model BAM-ABS on simulation and real hairpin mouse data, 

we showed that up to 70% of the ambiguously mapped short reads were assigned to unique 

locations with 90% accuracy. Thus, BAM-ABS is effective in mapping multireads to unique 

locations. Moreover, BAM-ABS showed robust performance for data with different methylation 

rates. As expected, increase in depth coverage and read length improves the performance of BAM-

ABS while sequencing error decreases its performance. BAM-ABS assumes most of the variants 
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between uniquely mapped reads and multireads are homozygous. However, this may not be 

applicable to all cases. Therefore, for future work, improvement can be made by incorporating 

heterozygous variants into the scoring model. 

The subsequent step after bisulfite short read alignment is to detect differentially methylated sites 

between phenotype groups. The traditional techniques for DMR detection do not take correlation 

among cytosine sites into consideration and inaccurately detect DMRs when there are small 

methylation differences with small sample sizes between phenotype categories.  This thesis 

evaluates the traditional (methylKit) and Bayesian WFMM methods for DMR detection using 

simulated and real data with small methylation effect. Results show that WFMM has higher 

sensitivity and specificity than methylKit when methylation effect is small (i.e., average 

methylation differences between phenotype categories <0.01). We also suggest empirical rule to 

tune parameters to be reflective of specific methylation profiles. The method can be easily turned 

into a classifier for general machine learning purpose that can incorporate spatial and temporal 

correlation in the data.  

Reusing treated waste water is essential for water sustainability. Our study of simulated RWDs 

shows that biofilm/bulk water, temperature, and disinfectant types play an important role in 

shaping microbiomes. ARGs are the most diverse under biofilm environment or at 22oC. 

Increasing temperature to 30oC and injecting disinfectant in water reduce microbial diversity. 

Network analysis of assembled data on ARG abundance shows that UPPP and DFRE are the most 

co-occurred. This network serves as a validation of network modeling. Results show that Bayesian 

networks fit our ARG profile data better than the network based on simple Spearman’s correlation 

coefficients.  
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