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Online Unmanned Ground Vehicle Mission Planning using Active
Aerial Vehicle Exploration

Anthony J. Wagner

(ABSTRACT)

This work presents a framework for the exploration and path planning for a collaborative

UAV and UGV system. The system is composed of a UAV with a stereo system for obstacle

detection and a UGV with no sensors for obstacle detection. Two exploration algorithms were

developed to guide the exploration of the UAV. Both identify frontiers for exploration with

the Dijkstra Frontier method using Dijkstra’s Algorithm to identify a frontier with unknown

space, and the other uses a bi-directional RRT to identify multiple frontiers for selection.

The final algorithm developed was for to give the UGV intermediate plans when an entire

plan is not yet found. This improves the overall mission tempo. The algorithm is designed

to keep the UGV a safe distance from the unknown frontier to prevent backtracking. All the

algorithms were tested in Gazebo using the ROS framework. The Dijkstra Frontier method

was also tested on the hardware system. The results show the RRT Explore algorithm to

work well for exploring the environment, performing equally or better than the Dijkstra

Frontier method. The UGV intermediate plan method showed a decreased traveled distance

for the UGV but increases in UGV mission time with more conservative distances from

danger. Overall, the framework showed a good exploration of the environment and performs

the intended missions.



Online Unmanned Ground Vehicle Mission Planning using Active
Aerial Vehicle Exploration

Anthony J. Wagner

(GENERAL AUDIENCE ABSTRACT)

This work presents a framework for the exploration and path planning for a collaborative

aerial and ground vehicle robotic system. The system is composed of an aircraft with a

camera system for obstacle detection and a ground vehicle with no sensors for obstacle

detection. Two exploration algorithms were developed to guide the exploration of the aircraft.

Both identify frontiers for exploration with the Dijkstra Frontier method using path planning

algorithms to identify a frontier with unknown space (Dijkstra Frontier), and the other uses

a sampling based path planning method (RRT Explore) to identify multiple frontiers for

selection. The final algorithm developed was for to give the ground vehicle intermediate

plans when an entire plan is not yet found. The algorithm is designed to keep the ground

vehicle a safe distance from the unknown frontier to prevent backtracking. All the algorithms

were tested in a simulation framework using Robot Operating System and one exploration

method was tested on the hardware system. The results show the RRT Explore algorithm

to work well for exploring the environment, performing equally or better than the Dijkstra

Frontier method. The ground vehicle intermediate plan method showed a decreased traveled

distance for the ground vehicle but increases in ground vehicle mission time with more

conservative distances from danger. Overall, the framework showed a good exploration of

the environment and performs the intended missions.



Acknowledgments

I would like to thank all the people who have helped me through the work that went into this

thesis. First, I want to thank my advisor Dr. Kochersberger for giving me this opportunity

and being a great advisor. I would also like to thank the rest of my committee. I want

to thank James Donnelly for providing great help and good company while working on

this project, John Peterson for being the go-to guy for robotics and programming related

questions, and Haseeb Chaudhry for advice and being great for bouncing ideas off. I would

also like to thank Drew Morgan for being a great resource for UAV related questions and

running the lab. Lastly, I would like to thank my friends and family for all the support and

encouragement they have given to me along the way.

iv



Contents

List of Figures viii

1 Introduction 1

2 Review of Literature 4

2.1 Path Planning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 A-star (A*) Search Algorithm . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 D-star (D*) and D-star Lite (D* Lite) . . . . . . . . . . . . . . . . . 7

2.1.4 RRTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Exploration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Frontier Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 System Design 15

3.1 Overall System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 UGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 OCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



3.1.4 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 UAV Exploration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Dijkstra Frontier Exploration . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 RRT Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 UGV Intermediate Plan Method . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Results 39

4.1 Dijkstra Frontier vs RRT Explore Exploration Distance Comparisons . . . . 39

4.1.1 Testing on Demo 1 Environment . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Testing on Demo 2 Environment . . . . . . . . . . . . . . . . . . . . 41

4.1.3 Testing on Demo 3 Environment . . . . . . . . . . . . . . . . . . . . 43

4.1.4 Testing on Demo 4 Environment . . . . . . . . . . . . . . . . . . . . 45

4.1.5 Testing on Demo 7 Environment . . . . . . . . . . . . . . . . . . . . 47

4.1.6 Testing on Demo 8 Environment . . . . . . . . . . . . . . . . . . . . 49

4.1.7 Computation Requirements . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 UGV Intermediate Plan Method Results . . . . . . . . . . . . . . . . . . . . 53

4.3 Field Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Summary & Conclusions 58

Bibliography 60

vi



Appendices 63

Appendix A Gazebo Test Environments 64

A.1 Demo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Demo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Demo 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4 Demo 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.5 Demo 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.6 Demo 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.7 Demo 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.8 Demo 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



List of Figures

1.1 A disaster area that a priori information would be out of date due to the large

amount of debris [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 State transition graph for an infinite environment with four edges from each

node in the graph. Arrows indicate directed edges and circles represent nodes

for each grid cell [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Expansion of Dijkstra’s Algorithm on a sample environment at three different

times in the search. Start is marked as green node and goal is marked as red

node.[16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Expansion of the A* Algorithm[16]. . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 The RRT reaches all areas of the environment fairly quickly (as seen in the

first image) and then with more iterations a denser coverage if the area is

achieved (right image) [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Challenging Environments for RRTs to explore due to the sampling based

nature of the algorithm [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 (a) shows an existing tree created by the RRT algorithm, (b) shows the sam-

pled point (α(i)), its nearest neighbor (qn), and the edge connecting the two

[13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Frontier detection: (a) evidence grid, (b) frontier edge segments, (c) frontier

regions [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

viii



2.8 Maps Generated by Frontier-based exploration of an office from Yamauchi.

a->f Represents time steps of the exploration [17]. . . . . . . . . . . . . . . . 13

3.1 UAV used is a Tarot Hexacopter with custom stereo system and payload box 16

3.2 UGV is a Clearpath Jackal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 OCS setup in the field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 User interface on the OCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Screen-shot of the Simulation Environment in Gazebo . . . . . . . . . . . . . 20

3.6 Diagram of the Dijkstra Frontier Method in Gazebo . . . . . . . . . . . . . . 22

3.7 Flow chart of the Dijkstra frontier method and how it fits in the large scope

of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Flowchart for how the RRT Explore Algorithm fits in the system and the

specific steps of the RRT Explore Algorithm . . . . . . . . . . . . . . . . . . 25

3.9 Mask of the explored area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 RRT (orange) in unknown space (marked black) expanding around the known

space (green) and obstacles (red) . . . . . . . . . . . . . . . . . . . . . . . . 28

3.11 RRT in known (marked green) space expanding; obstacles (red) . . . . . . . 29

3.12 Weights for the Frontier Selection Cost Function . . . . . . . . . . . . . . . . 32

3.13 RRT Explore Diagram with labels; zoomed in on smaller area in environment 33

3.14 Visualization of the RRT Explore Method run on a sample environment,

showing the entire map region . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



3.15 Diagram showing how the UGV is held back when an incomplete plan to the

goal exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.16 UGV Path with Danger Encoded as Color, Danger Areas Marked as Red,

Clear explored space marked white, Unexplored area marked light grey, and

Obstacles marked as dark grey. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.17 UGV Path (blue) with the region around the path measured for danger areas

(pink). Increased danger along the path shows up on a colorscale with the

maximum being encoded as red. . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 RRT exploration method results in less distance traveled by the UAV in the

Demo 1 Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Heatmap for Dijkstra Frontier in Demo 1 Environment . . . . . . . . . . . . 40

4.3 Heatmap for RRT Explore in Demo 1 Environment . . . . . . . . . . . . . . 41

4.4 RRT exploration method results in a longer distance traveled by the UAV in

the Demo 2 Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Heatmap for Dijkstra Frontier in Demo 2 Environment . . . . . . . . . . . . 42

4.6 Heatmap for RRT Explore in Demo 2 Environment . . . . . . . . . . . . . . 43

4.7 RRT exploration method results in less distance traveled by the UAV in the

Demo 3 Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Heatmap shows the erratic exploration behaviour of Dijkstra Frontier in this

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.9 RRT exploration method shows better exploration than Dijkstra Frontier . . 45

x



4.10 RRT exploration method results in similar distances traveled by the UAV in

the Demo 4 Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.11 Heatmap for Dijkstra Frontier in Demo 4 Environment . . . . . . . . . . . . 46

4.12 Heatmap for RRT Explore in Demo 4 Environment . . . . . . . . . . . . . . 47

4.13 RRT exploration method results in less distance traveled by the UAV in the

Demo 7 Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.14 Heatmap for Dijkstra Frontier in Demo 7 Environment . . . . . . . . . . . . 48

4.15 Heatmap for RRT Explore in Demo 7 Environment . . . . . . . . . . . . . . 49

4.16 RRT exploration method results in less distance traveled by the UAV in the

Demo 8 Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.17 Heatmap for Dijkstra Frontier in Demo 8 Environment . . . . . . . . . . . . 50

4.18 Heatmap for RRT Explore in Demo 8 Environment . . . . . . . . . . . . . . 51

4.19 Computational time of each step in the RRT Explore Algorithm . . . . . . . 52

4.20 Mission time and UGV distance for demo 8 environment without a dead end 54

4.21 Mission time and UGV distance for demo 9 environment with a dead end . . 55

4.22 Outdoors Demonstration Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.23 Exploration using Dijkstra Frontier Method in the field . . . . . . . . . . . . 57

A.1 Demo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Demo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Demo 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



A.4 Demo 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.5 Demo 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.6 Demo 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.7 Demo 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.8 Demo 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xii



Chapter 1

Introduction

With powerful computers becoming smaller and lighter, the ability to do more on-board

sensing and autonomy with UAVs is quickly improving. This has allowed for stereo imaging

and autonomous decision making on-board the aircraft.

Ground vehicles are vehicles that operate on the ground to perform a delivery or sensing

mission without a person on-board. Typically the lack of a person is due to some task

requirement that involves hazardous environments, heavy weight, size limitations, or long

endurance missions. The lack of a person means the vehicle is either teleoperated or au-

tonomous. This presents a large challenge especially with developing autonomy to replace

teleoperation. One application of UGVs is reconnaissance, surveillance, and target acqui-

sition (RSTA). This is important to military operators as it allows commanders to have

additional sensing capabilities that can go into areas that would endanger human lives. An-

other application is security. This is similar to RSTA but in known environments, so the

hardware and control can be better tuned for the security application [7].

According to a National Research Council on Army UGV development, increasing the levels

of autonomy in these vehicles would ”greatly expand the list of military uses.” This same

report also stated that autonomous mobility from point A to B is crucial to the ultimate

success and acceptance of UGVs in the military [4].

Traditionally, when an autonomous ground vehicle is navigating from point A to point B it

1



2 Chapter 1. Introduction

uses on-board sensing and a path planning algorithm like D* to navigate. In certain systems,

this can be inefficient as most small ground vehicles move slower than air vehicles can. Using

a UAV to provide sensing and routing to a ground vehicle takes advantage of the speed and

better perspective the vehicle gets from being in the air. Since the UAV is in the air, it

can fly above obstacles meaning it has much more freedom in route planning which helps it

explore faster. Additionally UAVs also have much higher top speeds than UGVs which gives

it another advantage. The advantage of an aerial perspective is especially useful in a post

disaster environment such as after a tornado as seen in Figure 1.1. The large amount of

debris scattered about means a priori information would possibly not be accurate and thus

would not provide a good route for a ground vehicle. Since a UGV traveling over debris

is very slow the aerial perspective would mean a larger area could be explored in the same

amount of time and a better path could be generated for the ground vehicle.

Figure 1.1: A disaster area that a priori information would be out of date due to the large
amount of debris [5].

This work focuses on how to integrate an effective and coordinated approach to explore an

unknown environment to generate a route for a UGV. This involves the development and

bench-marking of two different exploration methods and a method of allowing the UGV to
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move before a complete route is generated to maintain operation tempo.



Chapter 2

Review of Literature

2.1 Path Planning Algorithms

2.1.1 Dijkstra’s Algorithm

Dijkstra’s Algorithm is an algorithm that finds the shortest route between two nodes in a

discrete environment. The discretized environment is in the formulation of a graph. Figure

2.1 shows a graph for an infinite environment where you can travel up, down, left, and

right from each node. The circles represent nodes and the arrows indicate a directed edge

connecting the nodes. It is a search based algorithm that is both optimal and complete and

is a formulation of dynamic programming.

Any path in the graph will traverse a set of nodes and the edges that connect the nodes.

The total cost of a path would be the sum of the cost to traverse that edge. For this to

work, all edges must have some non-negative cost associated with the edge. For each state

x in the graph there exists some cost-to-come C(x) that represents the optimal cost-to-

come C∗(x) from the starting node. To calculate the cost-to-come an incremental search is

performed starting with assigning the C∗(xstart) = 0, since the cost-to-come from the start

node to the goal is zero. Then for all of the neighboring nodes to the current node (has

an edge from the node to the current node) a temporary cost-to-come C(x′) is calculated

as: C(x′) = C∗(x) + l(x, u) where l(x, u) represents the edge cost associated from coming

4



2.1. Path Planning Algorithms 5

Figure 2.1: State transition graph for an infinite environment with four edges from each
node in the graph. Arrows indicate directed edges and circles represent nodes for each grid
cell [13].

from node x along edge u. This temporary cost-to-come represents the current best known

cost-to-come but is not confirmed to be the optimal cost-to-come. These temporary cost-

to-come values are stored in a priority queue called the open list Q. In each iteration of the

search, the node with the current lowest temporary cost-to-come is removed from the queue

and added to a closed list that stores the optimal cost-to-come for each node. Then the

cycle of calculating cost-to-comes for each of its neighbors is repeated. The node with the

current lowest cost-to-come in the open list is known to now be optimal because any other

path would require going through another state in the open list which has higher cost-to-

comes. This cycle is repeated until the termination requirement is met. The termination

requirement is that the goal node is removed from Q, meaning C∗(xgoal) has been found and

the optimal path through the environment can be found.

This search method has a time complexity of O(|V | log |V |+ |E|), where |V| is the number

of vertices in the graph and |E| is the number of edges in the graph. The main assumption

of this is that the open list is implemented as a priority queue [13]. A diagram of how the

expansion of nodes added to the closed list and open list progresses is shown in Figure 2.2.
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The expansion from the start node (green) can be seen to be circular in the first to time

snapshots with edge costs representing the Euclidean distance between the nodes. Overall

Dijkstra’s algorithm is a simple optimal and complete search algorithm for a discretized

environment.

Figure 2.2: Expansion of Dijkstra’s Algorithm on a sample environment at three different
times in the search. Start is marked as green node and goal is marked as red node.[16].

2.1.2 A-star (A*) Search Algorithm

A* is an improvement to Dijkstra’s Algorithm with the addition of a heuristic estimate of the

cost-to-go (cost from to get from the current state to the goal). Adding a heuristic directs

the search towards the goal and results in a reduction of the total states explored in the

search. In order to maintain optimality, the heuristic must be what is called an admissible

heuristic. This means that the heuristic cannot overestimate the actual cost-to-go. Normally

the Euclidean distance is used as it cannot overestimate the cost since it ignores obstacles and

the edge costs cannot be less than the straight line distance. The priority of the nodes in the

open list is its current distance value plus the heuristic. Lets say the cost-to-go is denoted as

G∗(x) for a given node x and Ĝ∗(x) as the estimated cost-to-go from the heuristic function.

Then the same priority queue Q is sorted by the sum: C∗(x′) + G∗(x′). Additionally, it
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should be noted that if a heuristic function of 0 the algorithm becomes Dijkstra’s Algorithm

[13].

A diagram of how the expansion of nodes added to the closed list and open list progresses for

A* is shown in Figure 2.3. This can be compared to Figure 2.2 for the Dijkstra algorithm.

It can be seen very clearly that the heuristic directs the search and expands more points

towards the goal for a-star. Dijkstra’s shows a lot more nodes considered which is why it is

not as efficient.

Figure 2.3: Expansion of the A* Algorithm[16].

2.1.3 D-star (D*) and D-star Lite (D* Lite)

D* is similar to A* in that it uses the same method of finding the shortest path with a

heuristic but differs in that the cost values are dynamic. This means that the edge costs

can change during the planning process. A* can be used in dynamic environments but each

time the environment is changed A* must be run from the beginning. The advantage of

using D* over A* with re-planning every time the cost values change is that D* results

in less computation so it is more efficient and faster. This is advantageous in unknown

environments where the map is not known a priori. This works because while the robot is

navigating along the path the costs are updated when an obstacle is encountered and D* will



8 Chapter 2. Review of Literature

update the costs and plan to account for this without having to entirely recompute. [15].

2.1.4 RRTs

Rapidly exploring random tree (RRT) is a sampling based path planning algorithm. While

the previous planning algorithms discussed used a discrete graph to plan on the RRT uses

random samples from a continuous region. The basis of the algorithm is that a tree is gen-

erated by randomly sampling a point in the configuration space and that point is connected

to its nearest neighbor. To plan around obstacles a collision checking routine is in place to

check that the new connection between the sampled point and its nearest neighbor is collision

free before it is added to the tree. An example of an RRT exploring an empty environment

is shown in Figure 2.4 for two different numbers of iterations. The first image shows 45

iterations and shows that the RRT has reached the extents of the environment not not every

area within. After 2345 iterations the coverage is much denser. This is an important trait of

RRTs as even low numbers of samples can completely explore the environment and as more

samples are added the density of the tree increases.

Figure 2.4: The RRT reaches all areas of the environment fairly quickly (as seen in the first
image) and then with more iterations a denser coverage if the area is achieved (right image)
[13].
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The most computationally expensive part of this algorithm is the nearest neighbor search.

For low dimensional RRTs such as the 2D used for ground robot,s a KD-tree will be more

efficient than a naive search. The creation of a KD-tree with k points in n dimensions can

be constructed in O(nk ∗ log(k)) time with a query taking log(k) time.

To use RRTs to find a path to the goal there are two main methods of searching. The first is

a single tree approach that as the tree is being generated will check if the tree has reached a

predefined area around the goal which is considered having found a path. The other method

is to use a bidirectional search where two trees are grown from the start and goal respectively.

This helps expand the tree in environments with ”bug traps” or other challenging regions

that make it difficult for a tree to search in the desired direction [13]. Examples of such

environments are shown in Figure 2.5. (a) shows an environment that is hard for a goal

biased single directional RRT to explore around since the half circle almost entirely blocks

the forward searching direction. This is also a case where biasing the sampling towards the

goal can result in worse performance. (b) shows an environment where using a bi-directional

RRT is very advantageous as the blue tree has a hard time getting out of the enclosure due

to the low probability of sampling a point directly outside the exit. The red tree has less

problems getting in due to the funnel shaped entrance. (c) is very similar to (b) but has

both the red and blue tree inside the trap. Adding an additional green tree can help speed

up the search to get inside the two traps. (d) shows an environment that an RRT is not

suited for at all. Getting a tree to explore in or out of those traps would require an immense

number of samples that would waste a lot of time and computation.

A basic RRT algorithm is shown in Algorithm 1. The first step in the RRT process is to set

the root of the tree q0, which is normally the configuration (x,y coordinates in 2D) of the

robot. Then a cyclic process is repeated for k iterations or until some termination condition

is met. The first step in the cyclic process is to sample a point in the environment α(i). This
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Figure 2.5: Challenging Environments for RRTs to explore due to the sampling based nature
of the algorithm [13].

is added as a vertex in the tree. Next, the nearest neighbor to this point is found using a

nearest neighbor search qn. Finally an edge is added to the tree from qn to α(i). This basic

algorithm is shown in Algorithm 1.

Figure 2.6: (a) shows an existing tree created by the RRT algorithm, (b) shows the sampled
point (α(i)), its nearest neighbor (qn), and the edge connecting the two [13].
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Algorithm 1 Simple RRT
1: G.init(q0);

2: for i = 1 to k do

3: G.add vertex(α(i));

4: qn← nearest(S(G),α(i))

5: G.add edge(qn, α(i));

2.2 Exploration Methods

Miguel Juliá et al defined autonomous exploration as “The ability of mobile robots to au-

tonomously travel around an unknown environment gathering the necessary information

to produce a useful map for navigation.” Exploration has also been loosely used with the

problem of path planning [11]. For this thesis, exploration is defined as the exploration

algorithms that are being used to obtain information for navigation not just path planning.

Within exploration, there are several different areas of interest. Some exploration methods

are focused on minimizing exploration time, others focus on developing better maps. Explo-

ration techniques can also depend on the number of vehicles in the system. There has been

a lot of work looking at multi-vehicle exploration and leveraging the additional vehicles [3]

[6] [12].

2.2.1 Frontier Exploration

One method of exploring unknown environments is the Frontier based method introduced

by Brian Yamauchi. He introduced the concept of frontiers as it applies to autonomous

exploration. A frontier as he defined it is ”regions on the boundary between open space and
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unexplored space.” Autonomous exploration is used to build a map of a region that can be

used for future navigation. Frontiers help address the issue of where to go in an unknown

environment to gain as much information as possible. Directing robots to these frontiers

pushes back the frontiers and adds information. When using frontiers as the way-points for

directing exploration given enough time an entire region will be explored as there will be

frontiers until the entire accessible area is explored.

To detect frontiers Yamauchi’s proposed method is using ”a process similar to edge detection

and region extraction in computer vision” to find these boundaries. Once edge detection is

run on the map to detect all frontier cells he used region extraction to find threshold-ed

region sizes and then grouped cells into regions. An example of this is shown in Figure 2.7.

Figure 2.7: Frontier detection: (a) evidence grid, (b) frontier edge segments, (c) frontier
regions [17].

As far as an algorithm to select the best frontier to go to Yamauchi proposed sending the

robot to the nearest accessible and unvisited frontier. Yamauchi implemented this method
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on a mobile robot with a laser range finder, sonar sensors, and infrared sensors. This setup

was tested in an office space and the results are shown in Figure 2.8.

Figure 2.8: Maps Generated by Frontier-based exploration of an office from Yamauchi. a->f
Represents time steps of the exploration [17].

Work has been done to expand this method. A method of weighted frontiers was used to help

maximize the amount of space explored and help the UAV localize itself. This was important

as when using SLAM. SLAM stands for Simultaneous localization and mapping and is a
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method of using Bayesian techniques to both build a map and localize on a robot. When

trying to maximize the robots ability to localize with SLAM keeping a certain number of

recognized landmarks is important and thus sending the robot too far into unexplored space

would possibly result in loss of localization and mapping accuracy. Using a weighted method

improves Yamauchi’s method with a better selection of the identified frontiers [1]. Using

differently weighted criteria has been used a lot in different frontier selection algorithms.

Burgard et al used a weighted cost of reaching a frontier with its expected benefit derived

from an expected increase in map entropy [2]. Gonzáles-Baños and Latombe used the same

two criteria of distance and benefit but combined them using an exponential function [8].

2.2.2 Other Methods

One exploration method used in 2005 on a UAV was a method based on model predictive

control (MPC). Their exploration was to find a path for a large UAV (Yamaha RMAX)

through a dense unknown urban environment. An on-board laser scanner was used as the

obstacles detection sensor. They used a cost function that minimized penalties for tracking

and obstacle avoidance [14].

There has also been some work with collaborative UAV UGV exploration. A UAV would

follow a UGV in an indoor environment and aid in situational awareness with its better

vantage point. An augmented reality (AR) tag was used for the UAV tracking the UGV and

SLAM was used to localize and map the environment for the exploration. An AR tag is a

square black and white marker used for measuring the position and pose of the tag using a

camera [10].



Chapter 3

System Design

3.1 Overall System Architecture

This collaborative UAV UGV system has been in development by the Unmanned Systems

Lab for the past few years. Major focuses have been the custom stereo system, mapping

algorithms, and the overall software design. The system has three major components. The

UAV called Pinocchio in hardware and Iris in software, the UGV called Anubis, and the

operator control station (OCS). The UAV is shown in Figure 3.1 and the UGV is shown in

Figure 3.2. The framework used for this system is Robot Operating System (ROS). This

framework and collection of tools allow for a system like this to be developed quickly. In

addition to the hardware setup, there is also a simulation environment to test code before

it is implemented on hardware. The simulation is run using Gazebo which integrates nicely

with the ROS system.

All of the major functions run on-board the aircraft. This includes mapping and UGV path

planning. The UGV only handles its localization and trajectory following. The OCS handles

visualization and user interaction for sending goals to the system.

15
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3.1.1 UAV

The UAV is a Tarot 960 frame capable of a max takeoff weight of 22 lbs. This gives us enough

payload to carry all of the computer, networking, and sensors. With our configuration, it

gets approximately 18 minutes of flying time running on two 10 Ah 6S lithium polymer

batteries. The payload box on the aircraft contains the networking equipment, RTK GPS,

and an NVIDIA Jetson TX2 as the main computer. The main sensor on-board used for

mapping is a custom 600mm stereo camera. This uses two Point Grey GigE cameras with

16mm lenses. The TX2 allows a CUDA accelerated stereo-matching algorithm [9] allowing

the stereo system to run at 3Hz. The exploration algorithm and the UGV planner run on

the TX2 aboard the aircraft.

Figure 3.1: UAV used is a Tarot Hexacopter with custom stereo system and payload box
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3.1.2 UGV

The UGV is a Clearpath Robotics Jackal. This is an off the shelf robot that comes with ROS

integration. This is a simple skid steer robot that can handle fairly gentle off-road terrain.

This fact makes it important that the aircraft can scout ahead and prevent the Jackal from

going into terrain it cannot handle. The main things added to the Jackal are RTK GPS,

communications equipment and a custom version of the ROS navigation package move_base

that handles the execution of plans generated by the aircraft.

Figure 3.2: UGV is a Clearpath Jackal

3.1.3 OCS

The operator control station is the simplest part of the system. It is a desktop computer with

two monitors to allow the user to see what is going on in the system and to send navigation

goals. The main user interaction is through the program RVIZ, which is a 3D visualizer for

the Robot Operating System (ROS) framework. This allows the user to see the maps being
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generated by the aircraft, the positions of the vehicles, and click on the map to specify the

goal position of the UGV.

Figure 3.3: OCS setup in the field

3.1.4 Simulation Environment

Having a simulation environment for the system is incredibly important. This runs all

of the software that runs on hardware with the computer simulating the vehicles and the

environment. The backbone of the simulation is the program Gazebo. This handles the

simulation of the environment, virtual cameras, and the vehicle physics. Clearpath provides

the software to simulate the Jackal in Gazebo. The aircraft simulation is run using the

Gazebo software in the loop (SITL) provided by the PX4 firmware developers. The only

main difference between the hardware and simulation environment is that the simulation uses
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Figure 3.4: User interface on the OCS

a depth camera to simulate the stereo system on the real aircraft. Overall the simulation

environment is invaluable due to the fact the software can be validated before testing on

hardware and that more tests can be done because there are none of the issues of testing in

the field such as weather and field availability.

3.2 UAV Exploration Methods

In developing a method to properly explore for the UGV path generation two different

methods were developed and tested. The first method developed was based on a simple

analysis of what the algorithm needed to do. Fundamentally the problem is to determine

which frontier is blocking a valid path. If we treat the unknown space in the environment

as high cost but traversable, the path generated by the path planner will result in a frontier
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Figure 3.5: Screen-shot of the Simulation Environment in Gazebo

at the intersection of known and unknown space. This method will be called the Dijkstra

Frontier method. The second method came from the observed shortcomings of the Dijkstra

Frontier method. This method uses a bi-directional RRT to find multiple frontiers of interest

impeding the path of the UGV and uses a scoring method to select the best frontier to explore.

3.2.1 Dijkstra Frontier Exploration

The first method explored was the Dijkstra Frontier method and is the much simpler of

the two. This method is similar to using D* or re-planning with Dijkstra/A*. The main

difference is how it handles where it is planning from and how it deals with the multiple

agents. Traditional exploration with a UGV and D* or re-planning would involve updating

or re-planning every-time the costs in the map update and would plan from the current

location of the ground vehicle. The difference in this system is that the UGV is not doing

the exploring but rather the UAV. If we were to just transfer the method of the ground
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vehicle to the air vehicle we would run into several issues. The first is that the UAV is not

bound by the same constraints of obstacles. So if the UAV senses an obstacle in front of it on

the ground it can go over it. This has several ramifications. The first is that the UAV could

overshoot over an obstacle and continue exploring on the other side of an obstacle and thus

would never find a valid path for the UGV. The second is that this means the exploration

could benefit from going over obstacles and not trying to avoid them.

Algorithm 2 Dijkstra Frontier
1: validUGVGoal← generatePlan(obstacleMap,allowUnknown = false)
2: while not validUGVGoal do
3: validUGVGoal← generatePlan(obstacleMap,allowUnknown = true)
4: for waypoint in path do
5: cost← cellCostAtWaypoint
6: if cost == unknownCost then
7: Frontier← waypoint
8: break
9: Send UAV to Frontier

10: validUGVGoal← generatePlan(obstacleMap,allowUnknown = false)
11: Send UGV to ugvGoal

The algorithm was designed with these issues taken into consideration. In order to ensure

that with enough time and if a valid plan does exist that the UAV will find one, we generate

plans from the current UGV location so that the frontiers found will always be impeding the

valid path. To find the frontier for exploration, a plan from the current UGV location is made

to the goal. The unknown space is treated as high cost but still traversable (Algorithm 2 Line

3). This results in a path going through known space and eventually going into unknown

space if a valid plan does not exist yet. A valid plan in this context means that there is a

path that goes to the goal without going through unknown space. This is specifically checked

by running the planner without allowing unknown space to be traversed and checking if a

valid path is returned. To find where the frontier is located, we iterate through the plan

generated and extract the cost at each waypoint in the path (Line 5) and check whether the
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cost at that point is the value that represents known space (-1). Once a point is found in

unknown space we extract that point as the UAV waypoint (Line 7). After the UAV reaches

its waypoint the planner is run where unknown space is not allowed and if it returns a valid

plan we know the exploration is done. If no valid path is returned the cycle is repeated.

A visual of the algorithm in action is shown in Figure 3.6. A representation of the overall

states of the algorithm is shown in Figure 3.7.

Figure 3.6: Diagram of the Dijkstra Frontier Method in Gazebo

To maximize the amount of information gained the actual point the UAV explores is offset

by a fixed amount along the vector of the UAV to the frontier. If the UAV went exactly

to the frontier point identified half of the field of view (FOV) of the stereo system would

be in known space. This is inefficient in that less information is gathered but would also

result in longer overall exploration times due to having to do approximately twice as many

exploration cycles.
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Figure 3.7: Flow chart of the Dijkstra frontier method and how it fits in the large scope of
the system

3.2.2 RRT Exploration

The second method developed is based on some of the observed issues of the Dijkstra Frontier

method. This was mainly that sometimes the exploration would oscillate between exploring

two sides of an obstacle and make the UAV travel a longer distance. This method attempts

to address that by using RRTs to generate multiple path options so that the UAV can select

closer frontiers that may be along a sub-optimal path that is closer to the UAV.



24 Chapter 3. System Design

RRTs were selected to handle this problem for several reasons. The first reason is that it

is a sampling based path planning technique which means that sub-optimal paths can be

generated. The problem with Dijkstra frontier method was that Dijkstra and similar method

provide an optimal path and have no way of trying to get multiple sub-optimal paths in the

environment. Weighted A* will produce sub-optimal paths but not necessarily the multiple

options in the environment. The second reason for RRT is that RRT is single query and we

are asking to plan once for each exploration cycle as compared to a probabilistic road-map

which can be queried multiple times for the same static environment.

To properly find the frontiers, a bi-directional RRT is used to search from the goal and the

start point where the RRTs are constrained to unknown and known space respectively. The

RRT at the start point starts in known space and thus expands out in the explored space.

The RRT at the goal explores outwards in the unknown space. Thus looking at the possible

connections of the two RRTs will find the frontiers. Since the known space will only expand

the RRT inside the known space is expanded on each iteration cycle and is not regenerated

each cycle. The RRT in known space is regenerated each time for simplicity sake as the size

environments that this was used for did not present speed issues. This could be improved

by using a method to update the tree to remove branches that now intersect with found

obstacles and known space.

The next section will detail the specifics of the RRT exploration method as it is implemented.

The RRT exploration algorithm is implemented as its own class that is called inside the UAV

manager node on the aircraft. It is inside similar logic to the Dijkstra Frontier method as

it goes to frontiers until a valid path the UGV goal is found. The call to generate a plan is

provided with the following information: ku the number of iterations for adding nodes in the

unknown tree, ke the number of iterations for adding nodes to the known tree each cycle,

the obstacle map, the UGV goal, and the current UAV position.
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Figure 3.8: Flowchart for how the RRT Explore Algorithm fits in the system and the specific
steps of the RRT Explore Algorithm

Mask Generation

The first step in the RRT explore algorithm is to generate some binary masks to help the

algorithm later quickly identify certain regions. The three masks generated is known space,

unknown space, and obstacles. These are implemented as OpenCV masks so that they can

be used with other OpenCV functions. An example of the explored area mask is shown in
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Figure 3.9.

Figure 3.9: Mask of the explored area

RRT Generation

The basics of the RRT implemented are as shown in Algorithm 1. To start a point is selected

as the root of the tree to which all branches will eventually lead back to. A random point is

sampled inside the region of the obstacle map. The nearest neighbor to this point is found

using a simple search since the number of points is relatively low. The RRT implemented

uses the fixed length branch method. This means that each branch added is a specified

length in the direction of the sampled point from the sampled point’s nearest neighbor. This

improves how well it can expand in tight spaces. Before the branch is added to the tree

it is collision checked with obstacles. This is done using the masks previously generated.

Using the OpenCV line iterator the pixels of the branch are iterated through and if any go

outside the mask a collision is detected. If no collision is detected the branch is added to the
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tree. The RRT is implemented as an array of a custom data structure. It contains location

information and points to its parent node (nearest neighbor to sampled point). The data

structure for nodes in the tree also contains a distance to root of the tree element that is

used in the RRT connection step. Each time a node is added its root distance element is

created to be the sum of the distance to its parent node and the parent node’s root distance.

Unknown Area RRT Generation

The second step after the mask generation is to generate the RRT in the unknown area.

Since the unknown area is unknown and shrinking the RRT cannot be regenerated without

an algorithm to collision check the existing tree with areas that were updated. Thus for

simplicity, sake the RRT in unknown space is entirely regenerated. This has some impact

on how fast the algorithm runs but the tree is able to expand quickly in the unknown space

since there is more space for it to operate. The unknown tree is generated with the root of

the tree at the goal defined for the UGV and expands outwards. The variable ku is used to

define how many iterations are used to add to the unknown tree. In the trials done for this

research values in the range of 500-2000 were used. This number can be selected based on

the size of the environment and performance considerations.
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Figure 3.10: RRT (orange) in unknown space (marked black) expanding around the known
space (green) and obstacles (red)

Known Area RRT Expansion

The third step is to expand the known tree. This follows the same basic RRT algorithm

as the unknown tree but is inside the known space and is expanded instead of regenerated.

The known tree is able to be expanded since the cleared space in the known area will not

change since this is for a static environment. Thus all existing branches in the tree will

remain valid for the lifetime of the exploration. Expanding is also necessary for the RRT to

expand properly. Since the known space is smaller and will have obstacles in the way a lot

more iterations is required to find a valid path between two points. Thus expanding with

each cycle gives a lot of iterations and spreads the computation over the life-cycle of the

exploration.
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Figure 3.11: RRT in known (marked green) space expanding; obstacles (red)

KD-Tree Generation

The fourth step in the process is to generate a KD-tree for the points in the unknown RRT.

This will be used in the connection phase of the algorithm as a large number of nearest

neighbor queries are going to be made. The nodes in the KD-tree are the x and y coordinates

of the nodes in the unknown tree. An existing implementation of KD-tree was used.

RRT Connection

The fifth step is connecting the two RRTs. Connecting the two trees will find the possible

paths in the environment. Due to the large number of nodes in both trees, the number

of combinations of nodes produces a large number of possible connections. To reduce this

to a more reasonable amount a ”best” connection is generated for each node in the known

tree. The first step in this is to identify its nearest neighbors for a node in the unknown
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tree. Its nearest neighbors are determined on a fixed neighborhood size. Once its nearest

neighbors are determined each connection to the neighbor is collision checked. For all the

valid connections, a cost function related to these connections is used to determine the best

connection. This function is a weighted sum of the distance through the tree from start to

goal and the distance between the two neighbors. The distance between the start and goal

is calculated using the root distance element in the two nodes. The weighting used in this

implementation was a weight of 0.1 for the total distance and 1.0 for the distance between

the two nodes. This weighting scheme was determined to find the balance from finding the

shortest overall path but also making sure it is a reasonably close connection. This step of

connecting is repeated for each node in the known tree to find multiple paths. An example

of the connections generated can be seen in Figure 3.13. The connections are represented as

yellow lines.

Frontier Extraction

The sixth step is to extract the frontiers from the connections. To get the navigation point

for the UAV the point in which the path crosses from known to unknown space needs to

be identified. Each connection is stored with both the start and end points. To extract the

frontier each point is converted to an OpenCV point and the line iterator is used to iterate

through the pixels along the path until unknown space is reached. This point is identified

as that connection’s frontier. All of the frontiers are stored for the next step. The extracted

frontier can be seen in Figure 3.13 where the yellow lines are connections and the pink dot

is the extracted frontier.
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Frontier Selection

The seventh step is to select the best frontier for the UAV to visit. To select the best

frontier to visit a cost function is used. The cost function is the weighted sum of the straight

line distance to the goal and the straight line distance to the UAV. These two parameters

are used to balance between finding the shortest path for the UGV and minimizing how

much the UAV has to travel. Using static weights would work but would not account for

how the importance of the two variables change as the exploration frontier gets closer to

the goal. When closer to the goal distance to the goal is more important than distance

to UAV as going to a point closer for the UAV but that is further from the goal would be

inefficient. When the exploration is near the beginning reducing UAV travel distance is more

important. To handle this the costs are determined based on how close the frontier is to the

goal. The selected weights as a function of frontier distance to goal are shown in Figure 3.12.

For the weight functions, a logarithm was chosen for the goal distance weight as it has an

increased weight near the goal and fades out as we get away from the goal but not linearly.

A linear ramp that saturates was chosen for the UAV distance as we want it to increase as

we get away from the goal but should eventually level out. The exact weights were selected

based on empirical observations and tuned manually based on watching the performance of

the exploration. While the exact values could be tuned more exactly by running a lot of

simulations the optimal values would change from environment to environment. Thus these

values that worked generally well across the different environments tested were selected. The

formulas for the weights are below with the selected values used.

weightGOALdistance = −0.1 ∗ log(dgoal) + 1

weightUAV distance = min((0.027) ∗ dgoal + 0.2, 1.0)
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Once the cost for all of the frontiers is calculated the one with the minimum cost is selected

and the waypoint is sent to the navigation handler. This then directs the UAV to the selected

frontier via a straight line path.

Figure 3.12: Weights for the Frontier Selection Cost Function

Visualization

In order to see what the RRT Explore method is doing a visualization step is done. A map

of the environment is made and the different regions (unknown, known, and obstacle) are

marked in an image with different colors. In this case unknown space as black, known space

as green, and obstacles as red. The two RRTs are drawn as well with blue representing

the known RRT and orange representing the unknown RRT. The best connections are also

drawn as yellow lines and the frontiers identified are drawn as pink dots. A close up and

labeled view of this is shown in Figure 3.13. An example of the visualization with the whole

map is shown in Figure 3.14. This visualization is good for seeing how the algorithm is
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performing in the environment and if the parameters are working well for the environment.

Figure 3.13: RRT Explore Diagram with labels; zoomed in on smaller area in environment
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Figure 3.14: Visualization of the RRT Explore Method run on a sample environment, showing
the entire map region

3.3 UGV Intermediate Plan Method

Allowing the UGV to move while a complete plan is not found yet allows the overall mission

time to be reduced. If the UGV waited at the start until the UAV was done exploring the

UGV would follow a valid plan but wastes time that it could have been moving. intermediate

plans can be given to the UGV but they risk leading the UGV down a path that is not valid

and it will have to backtrack. Thus a balance between directly following the UAV and

waiting at the start must be found. Figure 3.15 shows how the UGV can be sent partway to

the frontier. The method proposed here uses a safe follow back distance along with looking

for ”danger areas” along the current path to the frontier.

The first part of the intermediate plans for the UGV is to generate a path to the frontier.
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Figure 3.15: Diagram showing how the UGV is held back when an incomplete plan to the
goal exists

Since the frontier is right on the edge and sending the UGV there would put it too close

to the frontier, a point in towards the known area is used. In the case of the RRT explo-

ration method the node in the known area that makes up the connection for the frontier is

used. With a path generated the area near the frontier dangerous areas that could lead to

backtracking need to be identified. Danger areas for the UGV would be near where obsta-

cles abut with unknown space. To quickly identify these regions the existing unknown and

known area masks are used. The obstacle mask is inflated so it will overlap with areas in the

unknown mask and a bit-wise and operation is done to quickly identify the danger regions.

Once the danger areas are identified and stored as a mask the danger along the path needs

to be quantified. To do this an area on either side of the path is examined for grid cells

marked as dangerous. To measure on either side of the path two points on either side of the
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path are generated that form a line perpendicular to the path at that point. Using these two

points the line iterator from OpenCV is used to iterate through the grid cells perpendicular

to the path and accumulate the total danger at that point in the path. This is repeated

for all points in the path to generate a danger score along the path. Figure 3.17 shows the

measured region on either side of the path.

To prevent the UGV from backtracking it should be held back a certain distance from danger

areas. A fixed distance from danger is defined as the follow back distance. Different follow

back distances were tested in the results section (4). A sliding window with equivalent length

of the follow back distance is applied to the path danger vector starting at the end nearest

the frontier. This window is slid back towards the start until the sum of the path danger in

the window is less than a threshold. The starting point of this window is then selected as

the end waypoint for the UGV. The generated path up to this waypoint is sent for execution

by the UGV. A sample path generated is shown in Figure 3.16 without the measured region

and with in Figure 3.17.
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Figure 3.16: UGV Path with Danger Encoded as Color, Danger Areas Marked as Red, Clear
explored space marked white, Unexplored area marked light grey, and Obstacles marked as
dark grey.
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Figure 3.17: UGV Path (blue) with the region around the path measured for danger areas
(pink). Increased danger along the path shows up on a colorscale with the maximum being
encoded as red.
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Results

4.1 Dijkstra Frontier vs RRT Explore Exploration Dis-

tance Comparisons

Both algorithms were tested on different environments setup in Gazebo. Each environment

consists of a different configuration of obstacles designed to challenge the algorithms. Di-

agrams of each environment are shown in Appendix A. The total distance traveled by the

UAV finding a path for the UGV was recorded for 50 simulation runs for both the Dijkstra

Frontier method and the RRT Explore method. Box and whisker plots are presented for

each method to show the difference in the traveled distance. Additionally heatmaps were

generated to show where the UAV was over the course of the 50 simulations.

4.1.1 Testing on Demo 1 Environment

The demo 1 environment is designed to simulated several small buildings in the environment.

The distance results for demo 1, shown in Figure 4.1, show on average the RRT Explore

method had shorter exploration distances than the Dijkstra Frontier method. Both method

have shown the best performance to be similar, around 70m, but the upper end of the

RRT Explore method is much lower. The heatmaps (Figure 4.2 & 4.3) show the Dijkstra

Frontier heads straight for the goal but when an obstacle is encountered searches all around

39



40 Chapter 4. Results

the obstacles. The RRT method does not make a straight line towards the goal since it is

a sampling based method. The RRT method does show that it commits to exploring one

side without oscillating back and forth between sides of an obstacle. This is what results in

shorter exploration distances for the RRT method.

Figure 4.1: RRT exploration method results in less distance traveled by the UAV in the
Demo 1 Environment.

Figure 4.2: Heatmap for Dijkstra Frontier in Demo 1 Environment
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Figure 4.3: Heatmap for RRT Explore in Demo 1 Environment

4.1.2 Testing on Demo 2 Environment

The demo 2 environment is designed to simulate an environment where an obstacle has one

side that is much better to explore than the other. This is done by offset rows that make

the shortest path right through the center but if the other sides are explored result in longer

exploration distances. The distances for this environment show that the Dijkstra Frontier

method out performs the RRT Explore method. This is expected as this is one of the worst

case scenarios for the RRT Explore method. Since the RRT Explore method is designed to

reduce oscillations while exploring it commits to one side more than the Dijkstra frontier

method which is always looking for the optimal path. This can be seen in the heatmaps

as well (Figure 4.5 & 4.6). The Dijkstra Frontier method shows a pretty direct exploration

through the center of the environment and never goes to the long sides of the obstacles. This

is in stark contrast to the RRT Explore method which over the course of the 50 simulations

explored pretty much every path possible resulting in longer exploration times.
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Figure 4.4: RRT exploration method results in a longer distance traveled by the UAV in the
Demo 2 Environment.

Figure 4.5: Heatmap for Dijkstra Frontier in Demo 2 Environment
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Figure 4.6: Heatmap for RRT Explore in Demo 2 Environment

4.1.3 Testing on Demo 3 Environment

The demo 3 environment is an absolute worst case environment with an extremely long

dead end. The result of this test show the largest advantage of all the environments for the

RRT Explore method. It averaged over 100m less of exploration distance than the Dijkstra

Frontier method. The heatmaps also show this very well (Figure 4.8 & 4.9). The Dijkstra

Frontier method shows exploration all over the environment while the RRT Explore method

shows a very direct into the dead end and then backtracks out before heading to the goal.
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Figure 4.7: RRT exploration method results in less distance traveled by the UAV in the
Demo 3 Environment.

Figure 4.8: Heatmap shows the erratic exploration behaviour of Dijkstra Frontier in this
Environment
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Figure 4.9: RRT exploration method shows better exploration than Dijkstra Frontier

4.1.4 Testing on Demo 4 Environment

The demo 4 environment is fairly simple with a few obstacles right before the goal. The

results (Figure 4.10) show that both algorithms perform similarly with the means very close,

and the minimum and maximum values similar as well. The interquartile range for the RRT

method is slightly larger and higher as the RRT method does search directly ahead as the

Dijkstra Frontier method does. The straight line searching is well seen in Figure 4.11. The

more erratic searching in free space for the RRT method can be seen in Figure 4.12. This is

a result of the random nature of the sampling based path planning.
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Figure 4.10: RRT exploration method results in similar distances traveled by the UAV in
the Demo 4 Environment.

Figure 4.11: Heatmap for Dijkstra Frontier in Demo 4 Environment



4.1. Dijkstra Frontier vs RRT Explore Exploration Distance Comparisons 47

Figure 4.12: Heatmap for RRT Explore in Demo 4 Environment

4.1.5 Testing on Demo 7 Environment

The demo 7 environment was setup to really test the advantage of the RRT Explore method.

The Dijkstra Frontier method tends to oscillate between the sides of a large obstacle, so two

large obstacles were placed in between the start and the goal. The results (Figure 4.13)

show very clearly that the RRT explore method does achieve better exploration with large

obstacles in its way. The mean exploration distance was approximately 90 m longer for the

Dijkstra Frontier method. This behaviour can also be seen very clearly in the heatmaps

(Figure 4.14 & Figure 4.15). The Dijkstra Frontier method shows exploration all over the

environment while the RRT method shows fairly direct exploration around the perimeter of

the obstacles.
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Figure 4.13: RRT exploration method results in less distance traveled by the UAV in the
Demo 7 Environment.

Figure 4.14: Heatmap for Dijkstra Frontier in Demo 7 Environment
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Figure 4.15: Heatmap for RRT Explore in Demo 7 Environment

4.1.6 Testing on Demo 8 Environment

The demo 8 environment is designed to emulate a dense environment with a lot of small

buildings in between the start and the goal. The results (Figure 4.16) show that the RRT

out preformed the Dijkstra Frontier method by around 40m on average. Upon inspection

of the heatmaps (Figure 4.17 and Figure 4.18) the main difference between the two is a

tendency for the Dijkstra Frontier method to do more exploration around the obstacles

similar to demo 7.
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Figure 4.16: RRT exploration method results in less distance traveled by the UAV in the
Demo 8 Environment.

Figure 4.17: Heatmap for Dijkstra Frontier in Demo 8 Environment
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Figure 4.18: Heatmap for RRT Explore in Demo 8 Environment

4.1.7 Computation Requirements

The computational speed performance was measured on two computers for each step in the

RRT Explore algorithm. The desktop tested has an AMD 1800X CPU, 32 GB of RAM,

and a GTX 980Ti Graphics card. The other computer tested is the computer on-board the

aircraft. This is a Nvidia Jetson TX2. Each step described in the algorithm was measured for

how long the step took in milliseconds. Additionally a visualization step was measured but

this does not need to run for the algorithm to work and the time for the UGV intermediate

plan was measured. The computation times were drawn from averaged values running in

the same environment. The measured times are presented in Figure 4.19. The results show

that the longest step is the intermediate plan generation for the UGV. This is mostly due

to having to access a lot of information along the path. This step can be run while the

UAV is moving to a waypoint to increase operational speed. The longest step of the RRT

Explore algorithm is the unexplored Tree generation. This makes sense as the unexplored

tree is regenerated each time unlike the explored tree which takes considerably less time.
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This could be sped up using a more clever way to generate the unexplored tree allowing it to

be modified instead of entirely regenerated. The connection, mask generation, and KD-Tree

generation all take very little time under 70ms for both computers.

On average the TX2 took 1.7 times longer to run the algorithm but with a cycle time of

almost under 1000ms this algorithm runs fast enough on the aircraft to finish exploration

in a reasonable amount of time and does not contribute much to the overall operation time.

This 1000ms is almost 66% from the UGV intermediate plan method which is not needed

for the RRT Exploration algorithm.

Figure 4.19: Computational time of each step in the RRT Explore Algorithm
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4.2 UGV Intermediate Plan Method Results

The next tests were done on the UGV intermediate plan method to validate its performance.

Two environments were used. The demo 8 environment was used to simulate a simple

environment with obstacles but without dead ends. The demo 9 environment was used to

simulate an environment with a dead end. The follow back distance parameter was varied

from 0 to 10 meters and 30 simulations were run for each follow back parameter.

The results from the no dead end environment is plotted in Figure 4.20. Both the total

distance traveled by the UGV and the total mission time (time from start to UGV reaching

goal) were plotted. For this environment the total distance traveled by the UGV slightly

decreased as the follow back distance increased which is as expected. The total distance

should decrease with increased follow back distance because the UGV holds longer for a

valid path which results in a more accurate path which reduces distance. Especially for the

really long follow back distances it was observed that sometimes the UGV was held until

the entire plan was generated. The total mission time increased with follow back distance.

This is as expected as holding the UGV further back increases the time spent. Since the

environment has no dead ends larger follow back distances do not benefit mission time since

the UGV never has to back track.

The results from the environment with a dead end is plotted in Figure 4.21. The total

UGV distance shows a much more dramatic decrease in distance traveled as compared to

the no dead end environment. This larger difference is due to the fact that shorter paths

are generated once the UAV is done exploring the dead end and the follow back distance

holds the UGV further from the end of the dead end. Additionally the extra back-tracking

adds distance. The total mission time did not increase as much as with the no dead end

environment. This is because the time savings from less back-tracking out of the dead end
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counteracts the time cost from holding the UGV in place longer.

Overall the proposed method for controlling the UGV when the entire global plan is not

yet known shows that holding the UGV back can result in distance traveled savings but not

necessarily mission time savings. In environments with no dead ends holding the UGV back

only increases mission time. Only when there are possible dead ends should the UGV start

to be held back more. It should be noted that this is also most likely a function of the UAV

and UGV speed as if the UAV and UGV can move similar speeds than there will be no time

savings from holding the UGV back. If the UGV is significantly slower there should be a

point when holding the UGV back will result in time savings.

Figure 4.20: Mission time and UGV distance for demo 8 environment without a dead end
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Figure 4.21: Mission time and UGV distance for demo 9 environment with a dead end

4.3 Field Testing

The Dijkstra frontier method was tested in the field as a part of a larger systems test. The

test layout is shown in Figure 4.23. To test the system the UGV was placed near a large

barn. Once the air vehicle has taken off and is over the ground vehicle the user specified

a goal around the corner of the barn using the OCS. The UAV then explored around the

building. Two snapshots from the OCS are shown in Figure 4.22 showing the exploration.

The result of the experiment was that the UAV was able to successfully explore and find a
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path for the UGV. Only two issues presented itself during the test and were not related to

the exploration algorithm. The first was that the stereo system on the aircraft was slightly

out of calibration and was using an older set of cameras which have since been upgraded.

Due to this the final UGV plan shows an incursion with the building where the stereo camera

failed to see the building. The second was that obstacle inflation in the cost map was not

yet properly handled and the UGV wanted to clip the corner of the building. Overall the

tests outdoors showed a good and quick exploration of the environment on real hardware in

the real world.

Figure 4.22: Outdoors Demonstration Setup
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Figure 4.23: Exploration using Dijkstra Frontier Method in the field
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Summary & Conclusions

This work presents a framework and algorithms for the directed exploration of an environ-

ment with a UAV to find a path for a ground vehicle in an unknown environment. Two

algorithms for exploration were presented. The Dijkstra Frontier method which uses Dijk-

stra’s algorithm to develop a plan which is allowed in unknown space. From this plan, a

frontier for exploration is identified. The second method was an RRT based method called

RRT Explore. This method uses a bi-directional RRT, where each side of the RRT is con-

fined to known and unknown space. From this, a connection step is done and possible

frontiers are found and selected from using a cost function. The RRT Explore method was

developed to overcome some of the shortcomings of the Dijkstra Frontier Method which the

results showed has been accomplished. In multiple demonstration environments setups the

RRT explore method equally performed or outperformed the Dijkstra Frontier method. The

Dijkstra Frontier method was shown to work on the real world system. Additionally, the

RRT Explore method was shown to execute on the on-board computer fast enough to run

this in the real world on the system.

The second part of this work was the navigation framework for controlling the UGV. When

a complete plan is not yet known there are multiple options for where to send the UGV. The

framework developed used a Dijkstra generated plan to the frontier the UAV is exploring.

Along this plan a danger value was calculated for each grid cell the path traversed based upon

the proximity to obstacles that touch unknown space. Using this danger value the UGV was

58
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sent as far down the path as possible that does not exceed a specified danger threshold along

the remainder of the path. This was tested in two environments. An environment with and

without a dead end. The results showed that the method reduces the total distance traveled

by the UGV in both environments. It also showed that when there is no dead end the further

the UGV is held back from danger the longer the mission takes. When there is a dead end

the mission time still increases but only slightly. Thus this method can be used and should

be tuned by the operators for the type of environment its operating in and whether mission

time or UGV distance traveled is more critical.

Only the Dijkstra frontier method was tested on the real system and showed successful

operation. The Dijkstra Frontier, RRT Explore, and UGV intermediate plan methods were

all validated using Gazebo simulation. Overall this framework works well for generating

valid plans for the UGV and getting the UGV to its goal in a timely manner.
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Appendix A

Gazebo Test Environments

The following appendix shows the different demonstration (demo) environments that were

setup in Gazebo to test the framework.

A.1 Demo 1

Figure A.1: Demo 1
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A.2 Demo 2

Figure A.2: Demo 2
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A.3 Demo 3

Figure A.3: Demo 3
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A.4 Demo 4

Figure A.4: Demo 4
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A.5 Demo 5

Figure A.5: Demo 5
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A.6 Demo 7

Figure A.6: Demo 7
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A.7 Demo 8

Figure A.7: Demo 8
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A.8 Demo 9

Figure A.8: Demo 9
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