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The Role of Actively Created Doppler shifts in Bats –
Behavioral Experiments & Biomimetic Reproductions

Xiaoyan Yin

(ABSTRACT)

Many animal species are known for their unparalleled abilities to encode sensory information

that supports fast, reliable action in complex environments, but the mechanisms remain

often unclear. Through fast ear motions, bats can encode information on target direction

into time-frequency Doppler signatures. These species were thought to be evolutionarily

tuned to Doppler shifts generated by a prey’s wing beat. Self-generated Doppler shifts from

the bat’s own flight motion were for the most part considered a nuisance that the bats

compensate for. My findings indicate that these Doppler-based biosonar systems may be

more complicated than previously thought because the animals can actively inject Doppler

shifts into their input signals. The work in this dissertation presents a novel nonlinear

principle for sensory information encoding in bats. Up to now, sound-direction finding has

required either multiple signal frequencies or multiple pressure receivers. Inspired by bat

species that add Doppler shifts to their biosonar echoes through fast ear motions, I present a

source-direction finding paradigm based on a single frequency and a single pressure receiver.

Non-rigid ear motions produce complex Doppler signatures that depend on source direction

but are difficult to interpret. To demonstrate that deep learning can solve this problem,

I have combined a soft-robotic microphone baffle that mimics a deforming bat ear with

a CNN for regression. With this integrated cyberphysical setup, I have able to achieve a

direction-finding accuracy of 1 degree based on a single baffle motion.
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(GENERAL AUDIENCE ABSTRACT)

Bats are well-known for their intricate biosonar system that allow the animals to navigate

even the most complex natural environments. While the mechanism behind most of these

abilities remains unknown, an interesting observation is that some bat species produce fast

movements of their ears when actively exploring their surroundings. By moving their pinna,

the bats create a time-variant reception characteristic and very little research has been

directed at exploring the potential benefits of such behavior so far. One hypothesis is that

the speed of the pinna motions modulates the received biosonar echoes with Doppler-shift

patterns that could convey sensory information that is useful for navigation. This dissertation

intends to explore this hypothetical dynamic sensing mechanism by building a soft-robotic

biomimetic receiver to replicate the dynamics of the bat pinna. The experiments with

this biomimetic pinna robot demonstrate that the non-rigid ear motions produce Doppler

signatures that contain information about the direction of a sound source. However, these

patterns are difficult to interpret because of their complexity. By combining the soft-robotic

pinna with a convolutional neural network for processing the Doppler signatures in the time-

frequency domain, I have been able to accurately estimate the source direction with an error

margin of less than one degree. This working system, composed of a soft-robotic biomimetic

ear integrated with a deep neural net, demonstrates that the use of Doppler signatures as a

source of sensory information is a viable hypothesis for explaining the sensory skills of bats.
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Chapter 1

Introduction

1.1 Bat Biosonar System

Bats (order Chiroptera) are a group of animals that have achieved a remarkable evolu-

tion success and are known for their echolocation ability [2]. By emitting calls out to the

surroundings and then receiving echoes that reflect from various targets nearby, bats can

identify, locate, and characterize the targets in the darkness [3]. To date, up to 1,400 bat

species have been documented [3], and they are traditionally categorized into two suborders:

megabats and microbats. The former is largely fruit-eating, and the latter includes about

1,200 species that echolocate [4].

Biosonar is widely utilized for navigation, foraging, and hunting in different environments.

Like other echolocating animals, such as birds [5], whales [6] and dolphins [7], bats have

outstanding echolocation performance. They have developed a sophisticated biosonar system

through the long evolution process of about 50 million years [8]. Bats send out sound waves

that bounce off prey and potential obstacles to probe their surroundings [2, 3]. The ability

to extract remarkably detailed information about their environment from biosonar signals

allows bats to accomplish extraordinary sensing and navigation tasks.

Bats are the only mammals capable of genuine sustained flight, and they could do maneuvers

such as tight turns, hovering, and perched landing in an upside-down manner [9]. They could

1



2 Chapter 1. Introduction

swoop close to the water surface and drink from it at fast speed [10]. Bats are social animals,

and some species form large colonies up to a few millions of individuals [11, 12]. They can

travel around 50 miles per night and always manage to get back to their home [13]. They

could fly in swarms and manage to maneuver without crashing into each other based on

some swarming mechanics like vocalization cessation [14], offensive jamming during feeding

competition [15], leader-follower interactions [16] and pulse emission rates adjustment [17].

Bat calls range in frequency from 11 kHz [18] to 212 kHz [19]. The primary frequency of many

insectivorous bats range from 20 kHz to 60 kHz [20], which extends beyond normal human

hearing range (between 20 Hz and 20 kHz) [21]. These calls typically vary in intensity from

60 dB to 140 dB [22].

Big brown bat can hear a frequency of 1 kHz at its lowest and up to 120 kHz at its highest [23].

Bat calls can be categorized into four types: frequency modulated (FM), constant frequency

(CF), or a combination of constant frequency / frequency modulation (CF/FM) or frequency

modulation/constant frequency/frequency modulation (FM/CF/FM) pulses [24]. Different

echolocation calls determine the type and quality of the information that contained in re-

turning echoes. Bats developed different calls, for example in terms of frequency, duration,

and intervals between pulses, to meet diverse sensory needs [25].

For instance, Horseshoe bats (rhinolophids, Rhinolophidae) and Old World leaf-nosed bats

(hipposiderids, Hipposideridae) are two closely related bat families [26] noted for their so-

phisticated biosonar systems that share similar types of calls in frequency. Both bat species

composite calls with CF and FM components to achieve target detection, classification, and

locating [27]. The CF components promote detection [27] and classification [28] classifica-

tion of insect prey by the Doppler shift caused by the insect wing beats and the final FM

component enhances the positioning of the targets [29]. To detect the size of insect preys,

horseshoe bats adapted the frequency of the emission in the process of evolution by exploiting



1.1. Bat Biosonar System 3

different harmonics in sets of harmonic bands [30].

Besides frequency, the duration and pulses intervals are the other two main features that well

exploited by the bat biosonar system�[25]. The duty cycle is a ratio of time that the signal

is on compared to the time that signal is off. In the low-duty cycle echolocation, bats assign

calls based on the estimate of the distance to the prey such that the returning echoes are

separated. In the high-duty cycle echolocation, bats separate the emission and echo based

on the information in frequency�[25]. Bats are sensitive to a certain range of frequency. The

receiving echoes contain Doppler shift caused by their flight and the Doppler shift reveals

information relating to the location and motion of the prey. To keep echoes returning at the

optimal frequency bands, bats adapted to adjust the frequency of the emitting pulse based on

the flight speed�[25]. The signal overlap zone (SOZ) was determined by the overlap between

target echoes and the emitted call [31]. When bat approach targets, to avoid the overlap

between pulse and echo, they usually reduce call duration to keep the SOZ not longer than

the distance to the target [25]. To guarantee all echoes returning from the former pulses

received before the next emission, bats flying in open spaces use longer pulses with longer

intervals between pulses than those flying in clutter [25].

Bats actively modify the duration, direction, timing, intensity, and spectral content of their

calls in response to information carried by the echoes, which allows them to flexibly react to

changes in the environment [32], such as the trajectory of a target [33]. The big brown bat

(Eptesicus fuscus) generates FM echolocation signals to hunt for flying insects [34]. When

approaching the prey and start the target capture, bat increases the rate of the sonar calls and

locks the sonar beam onto the target [35, 36]. Early experiments on the bat target tracking

indicated that big brown bats use a non-predictive strategy (only using the information from

the last returning echo) [37, 38], while recent evidence showed that bats also leverage a more

sophisticated prediction model for moving target’s trajectory by integrating signals over time
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to achieve the prey capture under conditions of uncertainty [32]. When the prediction of

the target trajectory is disrupted by a sudden target maneuver, the bat rapidly increases

sonar scan frequency to recapture and update the internal state of the target trajectories to

re-enable tracking of the escaping prey [32].

In fact, a new study has reported that bats have a very good sense of their surrounding

environments, to the extent that they can perform large-scale environment mapping, and

reason map-based navigation [39]. The binaural differences in return time, intensity, and

echo spectrum encode the rich information on target location in terms of azimuth, elevation

and distance [40, 41, 42, 43, 44, 45], which allow the bats to map environment and targets

in a three-dimensional space. Some studies have examined the precision of such mapping

capability: the acuity for the big brown bat to separate pairs of horizontal rods in the vertical

plane was 3 ° [40], while the tracking accuracy of the same bat species in the horizontal plane

is 1.6 ° [46].

Equipped with such intricate biosonar system, bats become the only mammals that are

capable of (advanced) powered flight, such as complex maneuvers [9], commute long dis-

tances [13], fly fast & high [47]. Bats have developed a very unique flying system that

differs from all other flying animals in wing structure and flying kinematics [48]. The size of

the wingspans range from giant flying fox with 1.5 m to the tiny bumblebee bat with only

15 cm [49]. Unlike the more rigid wings of birds and insects, soft bat wings are much more

pliable due to the extra degree of freedoms allowed by the flexible membrane and multiple

joints [50]. Touch-sensitive receptors are distributed on the small bumps of the wing sur-

face, enabling the bats to feel and adapt to the changing airflow while allowing the accurate

execution of subtle maneuvers for in-flight prey capture [51].
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1.2 Emitter and Receiver Dynamics of Bats

In echolocating bats, sophisticated motor dynamics are found in the emission and reception of

sonar pulses [52]. Most echolocating bats emit sound through the mouth [53] or noseleaf [12].

Beamforming tests reported that mouth-emitting Bodenheimer’s pipistrelle bats (Hypsugo

bodenheimeri) dynamically adjust their mouth gape to optimize the space that they sense in

both natural field conditions and a controlled experimental environment [54]. Bat typically

narrowed the beam when approaching a limited area and widened it within a few dozen

milliseconds when entering an open area. [54].

Bat species send out ultrasound via the nostrils have a noseleaf to assists in forming the

emission beam. [55]. Horseshoe bat, as an example, has highly evolved noseleaves that consist

of three parts: anterior leaf, sella, and lancet [12]. Beyond the static geometrical complexity

of the noseleaf and their shape features, the emitter also has a dynamic dimension [12].

Greater horseshoe bats move both anterior leaf and lancet during pulse emission [56, 57].

Similar acoustic dynamics in the emission beam was also reported for the Japanese horseshoe

bat (Rhinolophus ferrumequinum nippon) [58].

The research found that the noseleaf can enhance the emission in the forward direction

and also could narrow the beam width. [59]. In an experiment of the noseleaf bat of family

Phyllostomidae (Carollia perspicillata), by bending the noseleaf lancet backward and fixed it

to the bat’s forehead, researchers found that this approximately doubles the vertical range of

the emission beam while keeping the horizontal spread unaffected, which indicated that the

noseleaf played a role in target elevation determination [60]. The numerical studies [61, 62,

63] also suggested that noseleaf structures and changes affect the emission beam properties.

On the reception side, horseshoe bats have quite big outer ears (pinnae) (22 mm to 23 mm)

compared to their head (20 mm) [64]. In the horseshoe bat, there are about 20 muscles
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related to the pinna actions, with many of them are entirely located on the pinna [65] to

allow the bat execute complex ear motions during biosonar behaviors [66, 67, 68].

Two types of pinna motions have been found for Horseshoe bats and Old World leaf-nosed

bats: rigid and non-rigid [69]. The non-rigid motion causes substantial changes in the ear

structure to compare to the rigid one [69]. Pinna motions in the horseshoe and hipposiderid

bats could serve the animals’ sensing in different ways: (i) a rigid component that reorients

the beampattern [70], (ii) a non-rigid, linear component that changes the pinna’s beampat-

tern by the pinna geometry. The rigid component can be easily understood as a scanning

operation where the most sensitive coverage of the beampattern is re-pointed in different

directions. The non-rigid, linear motion components have been demonstrated to enhance

the encoding of sensory information related to direction-finding [71].

Conspicuous pinna motions [67, 68, 72, 73, 74] are an integral part of biosonar behaviors

in horseshoe bats and Old World leaf-nosed bats (families Rhinolophidae and Hipposideri-

dae) [12, 75]. These motions have been reported to improve sensing and navigation per-

formance [71, 76, 77], but the functional role of these dynamic features and the underlying

mechanisms have yet to be fully understood [12]. Emitter or receiver motions can result

in Doppler shifts, i.e., nonlinear scaling of signals in time and frequency in the acoustic

domain [12]. Bats’ own flight motions are sources of self-generated Doppler shifts that are

regarded mostly as undesirable side-effects of the animals’ mobility that need to be compen-

sated for [78]. To date, prey-generated Doppler shifts are the only well-established solution

to the problem of identifying prey in the clutter with active biosonar [79]. The possibility of

pinna-induced Doppler shifts had been conjectured in the early work of Pye [67, 68, 80]. In

general, horseshoe bat pinna motions are unlikely unintentional byproducts since the animals

have actively seek to produce them, e.g., through an elaborate pinna musculature [72].
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1.3 Experimental Study of Biosonar Dynamics in Bats

Evolution has shaped the powerful abilities of animals and as manufacturing materials,

actuators, and controls developed, it is possible to mimic the natural world. Such aims,

however, are restricted by the short of development of sophisticated actuators for biomimetic

dynamics, and at a more fundamental level, by deep gaps in the understanding of the basic

mechanics of the 3D complicity of animal motions [48]. So that learning the animal dynamics

is not only contributing insight to the biological system but also could provide adequate

thoughts to the engineered design.

Bat as the only flying mammals capable of sophisticated biosonar dynamics has been stud-

ied at spatial and temporal scales cover the motion of their emitter [57, 81, 82, 83, 84, 85]

and receiver [69, 86, 87] to the maneuvering flight [48, 88, 89, 90, 91, 92]. Normally, the

motions are captured by the high-speed video cameras, and then the recordings are digi-

tized to provide a qualitative understanding of animal motion or quantitative analysis by

the 3D reconstruction [90]. Software techniques for image processing and trajectories 3d re-

construction from multiple calibrated cameras with applications to the biological area were

well-established. [93].

Extracting the positional information from video recordings includes two coupled problems:

identifying the specific objects or landmarks from the video frames and reconstructing the

identified object by mapping pixel coordinates from one or more cameras to 2D or 3D co-

ordinates [93]. Landmarks usually are identified either by manually picking, which can be

very time-consuming, or by software. A new learning technique (DeepLabCut) for 3D pose

estimation by combining transfer learning and deep neural networks. enable to track fea-

tures automatically with minimal training data (typically 50-200 frames). This technique

has already been used for the study in both lab and wild animals, for example, pose es-
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timation [94] and social behavior in bats [95]. After reconstructing the 3D trajectory of

the landmarks, the velocity, acceleration, rotation angle, etc., could be calculated for further

analysis. The well-established motion capture and information extraction system have enable

the experimental measurements and analysis of the bat and its replications’ ear [69, 86, 87]

and noseleaf [57, 81, 82, 83, 84, 85] motions.

The high maneuverability and stability of bat flight have arisen rich research in flapping-wing

flight mechanics. Research studies the kinematics of bat flight [96, 97, 98, 99, 100] to deter-

mine the fundamental kinematics. Experiments with around 20 reflective markers placed on

the wing in straight and turning flight[48] completed under both the natural environment

and in a wind tunnel at different speeds [101] show that dimensional complexity of the kine-

matics did not change with flight speed [101]. Except for the utilization of modern wind

tunnel technology, the quantitative experimental study takes advantage of flow visualization

techniques, like particle image velocimetry (PIV) [48, 91, 92], to measure the wake veloc-

ity structure in bat flight. To better understand the aerodynamics of bat flight, the flight

trajectory estimation has been analyzed with a multi-view camera system [88, 89] and the

detailed force measurements were computed via computational fluid dynamics analysis [48].

1.4 Bat-inspired Sensing Systems

Inspiration from biosystems has long been a popular drive for designing robots that walk,

run, swim, or fly. The ultra efficiency, adaptability, maneuverability of biomechanics, refined

by natural evolution, promises to improve the current robotics system [90]. Studies on the

motion of humans [102], insects [103], snakes [104], bats [105], fish [106], etc., have served

as a basis for robotic design. Bat capable of the sophisticated biosonar system and the

complicated flight maneuvers, keep inspiring engineers to design different types of sensors
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and robotics to understand and replicate the success of bat flying system.

To better understand how the shape-changing of the noseleaf and pinna influence the acoustic

characteristics of the emission and reception, biomimetic systems such as robotic sonar heads

based on horseshoe bats with actuated flexible baffles were developed. The latest version

of the biomimetic pinna model achieved motor feedback based on the development of a soft

actuation system along with a prototype strain sensor [107]. Sonar [108] and radar [109, 110,

111] are two well-known sensor techniques to the public, which have apparent parallels with

bat biosonar where in both cases FM waveforms (“chirps”) are used for distance estimation

and Doppler shifts are used for relative velocity inference [12, 25]. Inspired by bat’s capability

to distinguish the different type of preys from the clutter-producing background vegetation,

a mobile robot equipped with an acoustic sensor can accurately classify terrain types [112],

as well as distinguish walls, fences, and hedges [113] based on the analysis of sonar echoes

and machine learning techniques. Different biosonar behaviors in bat’s prey searching [114],

target positioning [115, 116, 117, 118] and crowd swarming [119] in space, motivate the bat-

inspired algorithm (a swarm-based intelligent system) implemented in the wireless sensor

network. Such techniques are applied in various situations to carry out different tasks like

search, rescue, disaster relief, target tracking in complex environments [115].

Inspired by nature, engineers have designed flying robots like insect-size [120] and bird-

size [121] flapping robots that can be applied in surveillance and rescue missions [122]. Other

than birds and insects, the bat maneuvers have also been extensively studied to generate new

design principles for flapping-wing robots. In general, it is very difficult to study the aerial

locomotion of bats due to the complex relationships between their morphology and flight

capabilities [122]. The researcher built many different types of bat-inspired fly robotics in

recent years to understand how bats manage their body posture and position by the intricate

interactions of nonlinear aerodynamic forces and their musculoskeletal control [122]. An early
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attempt of a bat-inspired flapping-flight platform was designed and built with shape memory

alloy muscles and joints [123]. To study the relationship between kinematics, power input,

and aerodynamic output, a multi-articulated bat-wing was constructed to measure power

input and force output simultaneously that across a range of kinematic parameters [124]. The

researcher also developed a miniature integrated jumping and gliding robot, the “MultiMo-

Bat”, to mimic the locomotion strategy of vampire bats [125]. More recently, a biologically

inspired soft robot called Bat Bot (B2), a flapping machine with five degrees of actuation,

was developed [122] based on the previous work [124, 126] studying bats’ physiology and

flight specializations.



Chapter 2

Discoveries in the Bat’s Biosonar

System

2.1 Title

Fast-moving Bat Ears Create Informative Doppler Shifts

2.2 Abstract

Many animals have evolved adept sensory systems that enable dexterous mobility in complex

environments. Echolocating bats hunting in dense vegetation represent an extreme case of

this where all necessary information about the environment must pass through a parsimo-

nious channel of pulsed, one-dimensional echo signals. We have investigated whether certain

bats (rhinolophids and hipposiderids) actively create Doppler shifts with their pinnae to en-

code additional sensory information. Our results show that the bats’ active pinna motions

are a source of Doppler shifts that have all attributes required for a functional relevance: (i)

The Doppler shifts produced were several times larger than the reported perception thresh-

old; (ii) the motions of the fastest moving pinna portions were oriented to maximize the,

Doppler shifts for echoes returning from the emission direction indicating a possible evolu-

11
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tionary optimization; (iii) pinna motions coincided with echo reception; (iv) Doppler-shifted

signals from the fast-moving pinna portion entered the ear canal of a biomimetic pinna

model; (v) the time-frequency Doppler shift signatures were found to encode target direc-

tion in an orderly fashion. These results indicate that instead of avoiding or suppressing all

self-produced Doppler shifts, rhinolophid and hipposiderid bats actively create Doppler shifts

with their own pinnae. These bats could hence make use of a previously unknown nonlinear

mechanism for the encoding of sensory information that based on Doppler signatures. Such

a mechanism could be a source for the discovery of sensing principles that would not only

be new to sensory physiology but could also to the engineering of sensory systems.

2.3 Introduction

Conspicuous pinna motions [67, 68, 72, 73, 74] are an integral part of biosonar behaviors

in horseshoe bats and Old World leaf-nosed bats (families Rhinolophidae and Hipposideri-

dae, [12, 75]). These motions have been demonstrated to enhance sensing and navigation

performance [71, 76, 77], but the functional role of these dynamic features and the under-

lying mechanisms have yet to be fully understood [12]. In the acoustic domain, source or

receiver motions can result in Doppler shifts, i.e., nonlinear scaling of signals in time and

frequency. The possibility of pinna-induced Doppler shifts had been mentioned as an aside

in early work by Pye [67, 68, 80], but has not been considered further – let alone investi-

gated in any depth – in the literature since. This complete neglect is regrettable, because

ear-generated Doppler shifts could constitute a previously unknown, nonlinear mechanism

for the active encoding of sensory information. To test this hypothesis, we have carried

out a quantitative experimental investigation of the hypothesis that pinna motions cause

functionally-relevant Doppler shifts in bats. For pinna-generated Doppler shifts to have a
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functional role, five necessary conditions must be met: (i) pinna surface speeds must be high

enough to produce Doppler shifts that exceed the animal’s perception threshold (here we

use the ∼50 Hz standard deviation of Doppler shift compensation, [127, 128, 129, 130]), (ii)

the directions of pinna surface velocity and echo propagation must be aligned well enough

to translate the surface speeds into sufficiently large Doppler shifts, (iii) fast pinna motions

must occur during echo reception, (iv) Doppler-shifted waves from the fast moving portions

of the pinna surface must enter the ear canal, and (v) the Doppler signatures must convey

useful sensory information.

2.4 Materials and Methods

2.4.1 Overall Experimental Setup and Animal Care

During the experiments, each bat was placed on a platform consisting of a piece of planar

wire-mesh grid that was rotated 45◦ relative to the horizontal so that the bat’s head was

lower than its feet when positioned on the platform. On this platform, the bat was positioned

in the center of the setup (Fig. 2.1B) and at a distance of 50 cm from the microphones in the

array that was used to record the ultrasound and 55 cm from the high-speed video cameras

that were used to record the pinna motions. All potential sound-reflecting surfaces in the

setup where clad in sound-absorbing foam during the experiment.

Two adult greater horseshoe bats (Rhinolophus ferrumequinum) were taken from a cave near

Jinan, Shandong province and five hipposiderid bats, two greater Himalayan roundleaf bats

(Hipposideros armiger) and three Pratt’s roundleaf bats (Hipposideros pratti) were taken

from caves in two different regions in southern China, in the vicinity of Sanming city, Fujian

province, and Suiyang city, Guizhou province.
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Figure 2.1: Experimental setup for the animal experiments. A) example high-speed
video frame showing the landmark points placed on the pinna rim (point numbers 1 to 15),
noseleaf (point numbers 22 to 28), and head (point numbers 16 to 21) of a hipposiderid
bat to facilitate motion capture B) setup consisting of an array of four high-speed video
cameras, LED illumination from two directions, and an array of seven measurement micro-
phones. High-speed cameras and microphone data acquisition were synchronized. C) 3D
reconstructions of the motion trajectories of the points shown in (A). The arrow indicates
the motion direction with time. The rim of the pinna and the end point of the motion shown
on panel A).

The bats were kept in indoor flight rooms (each 1.3 m wide, 6 m long, and 3 m high) separated

by genus. The rooms provided a controlled environment with constant temperature (23℃)

and humidity (60%). In order to ensure that the bats were active during the times of the

experiments, the day- and nighttime of animals were switched in the flight rooms. The daily

light-dark cycle in the rooms consisted of 10 hours light and 14 hours darkness. The bats

were fed a daily diet of mealworms enriched with vitamins and mineral supplements and

were provided water adlibitum.

2.4.2 3D Reconstruction of Pinna Motions

Quantitative characterizations of the pinna motion kinematics were obtained based on three-

dimensional reconstructions of the time-trajectories (Fig. 2.1C) belonging to discrete land-

mark points that were placed on the pinna (Fig. 2.1A). The landmark points were placed on
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the bats using a nontoxic dye before the experiments and removed (washed off) immediately

after the end of each experiment. For each experiment, approximately 60 different landmark

points were distributed over the pinna surface with an emphasis on coverage of the pinna

rim. Five to seven additional landmark points each were placed on the top of the head and

the noseleaf of the animal to provide an anatomical frame of reference for the pinna motions.

Video image sequences with views of the bats’ heads, their pinnae, and the associated land-

marks were captured using an array of four high-speed video cameras (GigaView; South-

ern Vision Systems, Huntsville, AL, USA) with 50 mm lenses (Rodagon, Rodenstock, Feld-

kirchen, Germany). All cameras were operated with a frame rate of 400 Hz and a digital

image resolution of 1280×1024 pixels. The high-speed cameras were calibrated to obtain

estimates of their internal and external parameters based on calibration images taken of

a checkerboard pattern from different viewing directions [131]. The image coordinates of

each landmark point were obtained using video frames from at least two different high-speed

video cameras that had imaged the landmark of interest at the respective time. The image

locations of the landmark were picked manually in the rectified video frames. The high-speed

video cameras to be included in the stereo reconstruction were selected manually based on

how well their images had captured the landmark points during a given motion. Finally, the

image coordinates were used to reconstruct the three-dimensional location of the landmark

points using stereo triangulation [131].

2.4.3 Ultrasound Recording

A capacitive measurement microphone (1/8” pressure-field microphone, type 40 DP, with

type AL0003 preamplifier, G.R.A.S. Sound & Vibration, Holte, Denmark) was used to record

the echo returns at the position of the bats. The microphone was placed approximately one



16 Chapter 2. Discoveries in the Bat’s Biosonar System

centimeter above the bat’s head. The microphone was calibrated with a sound level calibrator

(type 4231, Brüel & Kjær, Nærum, Denmark) at 114 dB SPL and a frequency of 1 kHz. The

output signals of the microphone were digitized with a sampling rate of 512 kHz and 16 bits

resolution (common-mode rejection ratio 75 dB, PXIe-6358 data acquisition board, National

Instruments, Austin, TX, USA). Additional microphones (measurement microphones, type

40 DP, G.R.A.S. and capacitive MEMS microphones, Momimic, Dodotronic, Rome, Italy)

were placed in a vertical and a horizontal line array to record the emissions of the bats in the

setup. The microphones and the high-speed video cameras were triggered simultaneously

using a custom LabVIEW control software. The control system produced a constant time

offset of 16 ms between video and audio recordings that was compensated for during data

analysis.

2.4.4 Biomimetic Pinna Experiments

A biomimetic pinna shape was designed based on the µCT scan of an adult horseshoe bat

pinna specimen. The shape was simplified by eliminating small geometric detail in the

digital domain (Autodesk Maya [132]) while keeping the overall shape of the original. The

simplified design was used to create a rigid physical model of the pinna shape with additive

manufacturing. This rigid physical model was used to create a mold and then cast a flexible

biomimetic pinna in silicone (Ecoflex, Smooth-On, Inc., Macungie, PA, USA) (Fig. 2.2A).

The biomimetic pinna designed and fabricated in this way had a height of 5.8 cm, i.e., about

twice the size of the pinna in greater horseshoe bats. An electrostatic loudspeaker (Series 600

open face ultrasonic transducer, SensComp, Livonia, MI, USA) was used to emit ultrasonic

pulses with a constant carrier frequency of 90 kHz (resting cf-frequencies in greater horseshoe

bats have been reported to fall slightly above 80 kHz (12), but can exceed 100 kHz in other

species of the genus [133]) and a duration of 150 ms (in greater horseshoe bats, pulse durations
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Figure 2.2: Biomimetic pinna. A) overview of the device, B) motor and cam shaft, C)
pinna holder with the artificial ear canal.

up to 60 ms have been reported [134]). The parameters of the biomimetic pinna experiments

were chosen for greater ease of experimentation without creating any differences that could

affect the applicability of the results to the question whether pinna motions in the bats could

create Doppler shifted signal components that enter the ear canal. The signal length was

chosen so that the Doppler shift signature of a full forward and backwards pinna motion

cycle could be recorded.

The signals mimicking the “echoes” impinging on the biomimetic pinna were emitted by a

loudspeaker that was positioned at a distance of 50 cm in front of the biomimetic pinna. A

capacitive MEMS microphone (Momimic, Dodotronic, Rome, Italy) was coupled to the pinna

via an artificial ear canal (length 9 mm, diameter 4 mm) to record the received ultrasonic

signals (Fig. 2.2C). The output of the microphone was digitized with a sampling frequency of

500 kHz and a resolution of 16 bits (PXIe-6356 data acquisition board, National Instruments,

Austin, TX, USA). The 3d trajectory of the tip point of bat’s moving ear was reconstructed

based on the video frames recorded with two synchronized GoPro HERO3+ cameras (Dual



18 Chapter 2. Discoveries in the Bat’s Biosonar System

HERO System, GoPro, San Mateo, CA, USA) at a frame rate of 120 Hz.

For recording direction-dependent Doppler signatures, the biomimetic pinna assembly (Fig. 2.2A)

was mounted on a pan-tilt unit (model PTU-46-17.5, FLIR Systems, Inc., Burlington, ON,

Canada). The pinna was rotated over a range of 180 ° in azimuth and 60 ° in elevation cen-

tered on the front facing direction of the pinna aperture in steps of 3 °. Hence there were 61

different azimuth and 21 different elevation values, resulting in a total of 1,281 different di-

rections that were surveyed in these experiments. For each of these directions, narrow-band

ultrasonic pulses were emitted at the biomimetic pinna as described above. During each of

the 150-millisecond recordings, the biomimetic pinna was held static for 20 ms and was in

motion for the remaining 130 ms. For each of the motions, an estimate of the maximum

Doppler shift was obtained from speed estimates for a landmark point that was placed on

the pinna tip.

2.4.5 Data Sets and Processing

Pinna motion speeds: A total of 30 pinna motion sequences were analyzed for each of the

three species studied. These sequences came from a total of seven different individuals. The

individuals and analyzed sequences were distributed as follows: Hipposideros armiger: two

individuals with 5 and 25 sequences each, Hipposideros pratti: three individuals with 2, 9, and

19 sequences each; Rhinolophus ferrumequinum: two individuals with 12 and 18 sequences

each. For each of these motion sequences, the 3d trajectories (Fig. 2.1C) of landmark points

placed near the pinna tip were reconstructed as a basis for estimating the motion speeds.

Angle between directions of pinna surface motion and sound radiation: To investi-

gate the angle between the direction of the pinna surface velocity and the direction of sound

radiation, 3d motion trajectories were estimated for 39 points distributed approximately
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uniformly over the ear surface. For this experiment, 10 video frames representing a single

pinna motion sequence obtained from a Hipposideros pratti individual were analyzed. The

point in time when most landmark points had a high speed, i.e., close to maximum speed,

was picked to show the ear motion direction and the normal of the noseleaf fitting plane was

used as the pulse direction. To visualize the distribution of speed, angle, and Doppler shift

over the inner surface of the pinna, a two-dimensional Gaussian was used as a radial basis

function kernel to interpolate the values of these variables over the entire ear surface based

on the measurements taken from the 39 landmark points.

Time relationship between pinna motions and echoes: A total of 132 sequences of

synchronized high-speed video and ultrasound recordings were analyzed to investigate time

relationship between pinna motions and the echoes. These sequences were distributed as

follows: Hipposideros armiger: 39 sequences from 2 individuals, Hipposideros pratti: 57

sequences from 3 individuals, Rhinolophus ferrumequinum: 36 sequences from 2 individuals.

From these sequences, a total of 132 echoes were analyzed.

Biomimetic pinna experiments: For each of the two experimental conditions, moving

pinna and static pinna, 30 ultrasound recordings (duration 35 ms for each recording, sampling

rate 500 kHz) were obtained. The ultrasound recordings were transformed into the frequency

domain using a discrete Fourier transform with a 17,500-point Hamming window spanning

the entire signal duration. The 30 repetitions among the recordings were used to estimate the

average and the standard deviation of the spectrum. The spectrum estimates show a clear

spectral broadening for the pinna motion condition when compared to the static condition

(Fig. 2.3) validating the presence of pinna-motion-induced Doppler shifts in the ultrasonic

signals entering the ear canal of the biomimetic pinna.

In order to compare the time course of the pinna motion to that of the spectral composition

of the recorded ultrasonic signals, a spectrogram representation of the ultrasound signals
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Figure 2.3: Doppler shifts received at the ear canal of biomimetic pinna. Power
spectral density of the signal received in ear canal with (black lines) and without (gray lines)
ear motions. Dashed lines show the standard deviations of the spectrum estimates (N = 15
for each condition).

was computed using a short-time Fourier transform with a 6000-point Hanning window and

50% overlap. The results (example in Fig. 2.9A) show that the estimates for pinna surface

speeds are good predictors for the largest Doppler-shift magnitudes observed in the respective

spectrogram.

To obtain Doppler signatures from the ultrasound recordings, spectrograms were computed

using a short-time Fourier transform with a 6000-point Hanning window and 50% overlap.

The power spectral density values of each of these spectrograms were normalized by their

respective maximum over all times and frequencies.

Clustering of Doppler signatures: For clustering of the Doppler signatures, the spec-

trogram representations of the Doppler signatures were subsampled in the time as well as in

the frequency domain. Subsampling in time used 35 points that were equally spaced along

the signatures’ duration. In the frequency domain, 25 point were equally spaced over the
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frequency band that ranged between Doppler shifts of minus and plus 1 kHz. The data ma-

trices representing these subsampled spectrograms were rearranged into feature vectors (of

length 875) that contained all power spectral density values of the resampled spectrograms.

The vector representation of the subsampled spectrograms were used to cluster the mea-

sured Doppler signatures using a spectral clustering approach [135] based on a normalized

algorithm [136] was used (Matlab implementation by I. Bürk [137]). The input data for the

clustering was a matrix containing 1281 data points (i.e., Doppler signatures), each with 875

dimensions (spectrum amplitudes over time and frequency). The number of clusters was

fixed at 50.

Upper bound on number of resolvable directions: An upper bound on the number

of directions that could be distinguished based on the associated Doppler signatures was

estimated by virtue of on an information-theoretic paradigm that treats direction-finding as

a communication problem (20).
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Figure 2.5: Doppler signatures created by ear motion. A) example of raw spectrogram,
B) smoothed spectrogram (2-D Gaussian image filter with a mask size of 3 pixels and a
standard deviation of 0.5 pixels).

The approach assumes that the space of all possible directions that the biosonar target could

be located at is divided into a grid of cells that can be labelled L = 1,2,…, N cells (Fig. 2.4,

where N is assumed to be 1,281). To match the experiments with the biomimetic sonar

head, the biosonar target could be located anywhere in the region of this direction space

that falls within the interval [-90 °, 90 °] for the azimuth value and the interval [-30 °, 30 °] for

the elevation value. If this region of the direction space is covered by 1,281 cells, for example,

and all cells are equally likely, the target direction will take at most log2(1281) ≈ 10.3 bits

to describe by virtue of these cells. The problem of finding the direction of a biosonar

target can be thought of as communication problem in which the target transmits a message

through the echoes. The content of this message is which grid cell contained the target and

the message is received by the ear. The objective for the direction finding algorithm is to

minimize the probability of choosing an incorrect grid cell for the target direction based on

this message.

The method is based on a Gaussian channel model and the mutual information between the
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source location and the (noisy) observations. It has been previously applied to the problem

of encoding target-direction information by changing pinna shapes (9). To carry out this

analysis on the Doppler signatures, the downsampled spectrograms (35 points in time and 25

points in frequency, s. above) were used. To avoid overestimates of the maximum number of

discernible directions due to high spatial frequency content in the spectrogram images that

may not represent reproducible features of the signatures, the spectrograms were smoothed

by a 2-d Gaussian smoothing kernel (Fig. 2.5) (filter size 3 pixels, standard deviation 0.5

pixels). The spectrogram data was further compressed using principal component analy-

sis (PCA). With this compression, the spectrogram data vectors were shortened in length

from 875 to 13. These retained 13 eigenvectors accounted for 80% of the variability in the

spectrogram data prior to this compression.

Under the Gaussian channel assumption, an upper bound on channel capacity (C, in bits)

can be computed as (20):

C ≤ Imax(x,y) =
1

2
log2

|Kyy|
|Knn|

, (2.1)

where x represents the Doppler signatures associated with a given direction, y the noisy

observations of these Doppler signatures, i.e., y = x + n, where n is a vector of Gaussian

white noise with variance σ2. The matrices Kyy and Knn are the covariance matrices of

the observations and the additive noise respectively. The covariance matrices, e.g., for x are

given by:

KXX = E[(x − E(x))(x − E(x))T ]. (2.2)

Finally, the signal-to-noise ratio (SNR) is related to the covariance matrix as
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SNR = 10 log10
trace(Kxx)

trace(Knn)
(2.3)

The directional resolution enabled by the Doppler signatures can be expressed by the upper

bound on channel capacity (C) or alternatively as the corresponding maximum number of

distinguishable directions (given by 2C).

To characterize the relationship between directional resolution and SNR, estimates for C

were obtained for SNR values ranging from 0 to 16 dB.

2.5 Results

2.5.1 Fast Pinna Motion Speed

Using reconstructed 3d trajectories of landmark points placed on the pinna tips of individ-

uals from three species with fast pinna motions (greater horseshoe bat, Rhinolophus fer-

rumequinum, and two hipposiderid species, Hipposideros armiger and Hipposideros pratti,

Fig. 2.6), motion speeds up to ∼2.2 m/s were found (Fig. 2.6A). While the ranges of the

speed values overlapped among all species, there were statistically significant differences be-

tween them (Tukey’s range test, p <0.0001 for all differences). Since all three species share a

constant-frequency - frequency-modulated (cf-fm) biosonar system [19, 138], we have used the

cf-component of the strongest (second) harmonic of the animals’ biosonar pulses [139, 140] for

estimating the Doppler shifts corresponding to the tip speeds. Maximum Doppler shifts were

calculated under the assumption that the direction of the maximum pinna surface velocity

is aligned with the radiation direction of the echoes. The highest Doppler shift determined

in this way was 383 Hz (for H. pratti, Fig. 2.6B). For the Doppler shifts, the difference be-



2.5. Results 25

BA
2.0

1.5

1.0

0.5

0

P
in

n
a

ti
p

sp
ee

d
[m

/s
]

D
o
p
p
le

r
sh

if
t

[H
z]

H. armiger H. pratti R. ferrumequinum H. armiger H. pratti R. ferrumequinum

Species Species

400

350

300

250

200

150

100

50

0

Figure 2.6: Pinna tip speeds and maximum Doppler shifts for all three bat species
studied. A) Pinna tip speeds calculated from reconstructed 3d trajectories of landmarks
placed on the pinna tip. B) Maximum Doppler shifts calculated under the assumption that
the pinna moves in the direction of sound propagation (center line: median, box edges:
25th and 75th percentiles, whiskers: minimum and maximum values). Maximum Doppler
shifts were calculated under the assumption that the direction of the maximum pinna surface
velocity is aligned with the radiation direction of the echoes.

tween the two hipposiderid species was no longer significant (p=0.47), but the difference

between the hipposiderids and the horseshoe bats remained significant (with p <0.0001).

The greater similarity in the Doppler shifts among the hipposiderids was due to the higher

speeds occurring in the species with the lower cf-frequency (H. pratti, cf at ∼60 kHz vs.

∼70 kHz in H. armiger). Hence, it could be hypothesized that the pinna motion speeds in

these hipposiderid species are adapted to produce similar Doppler shifts regardless of carrier

frequency.

2.5.2 Direction Between Motion and Echo

Doppler shifts do not only depend on the speeds involved, but also on how the velocity

vectors of these motions are oriented with respect to propagation vectors of the incoming

echoes. The maximum Doppler shifts for a given speed are only realized if the velocity
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vectors are parallel to the direction of sound propagation. We have used dense sampling of

the pinna surface with landmark points to reconstruct the distribution of speeds and velocity

vectors across most of the inner pinna surface. Based on ultrasonic array recordings done in

the same experiments as the pinna surface velocity measurement, we have determined the

direction in which most pulse energy was emitted as an estimate for where the bats were

directing their biosonar beams and presumably were expecting the echoes to return from.

We found that the highest speeds occurred in a region along the outer pinna rim that was a

good match for where the orientations of the velocity vectors at maximum speed were close

to parallel to the direction of sound radiation (Fig. 2.7). This spatial coincidence between

high surface speeds and small angles between motion and sound radiation vectors could be

hypothesized to be an adaptation that maximizes the Doppler shifts resulting from the pinna

motions.

2.5.3 Motion Occur During Echo

For any potential impact on echo perception, the fast pinna motions must occur during

echo reception. In order to assess whether this is the case, we have analyzed pinna motion

speeds during echo returns with synchronized arrays of high-speed cameras and ultrasonic

microphones. This data contained only pulse-echo sequences that were accompanied by fast

pinna motions. We found that all echoes in these sequences coincided with Doppler shifts

that exceeded the 50 Hz-accuracy reported for Doppler-shift compensation [127]. Depending

on species, between 33% and 82% of the echoes coincided with pinna motions fast enough to

produce Doppler shifts that exceeded this threshold three times (Fig. 2.8). Hence, this data

suggests that all echoes in echolocation sequences accompanied by pinna motions contain

Doppler-shift signatures that should be perceivable by the bats.
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2.5.4 Doppler Shift From Recording and Calculation are Matching

Since only certain regions of the pinna surface (near the outer rim) move at speeds that

are sufficiently large for the creation of perceivable Doppler shifts, we have investigated

whether signal components diffracted by these regions enter the ear canal and could hence

be perceived by the animals and supply useful sensory information. These experiments

were based on a biomimetic pinna with a static geometry and deformation patterns that

were qualitatively similar to the bats’ pinna. We found that the biomimetic pinna motions

produced strong Doppler signatures in the ultrasonic signals received inside the ear canal

(Fig. 2.9A). As could be expected from the continuous distributions of speed over the pinna

surface, the acoustic effects of the pinna motions took the form of spectral broadenings.

We found the pinna tip velocity to be a useful predictor of the maximum Doppler shift

(Fig. 2.9A). The sign of the observed Doppler shifts depended on the direction of the pinna

motions. Since the bat species studied here exhibit alternating ear motions with one ear
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moving forward while the other moves backward [67], the spectral spread of a combined

binaural input could be about twice that produced by a single ear at any given time.

2.5.5 Doppler Shift Patterns

Finally, we found that the time-frequency Doppler signatures were direction-dependent

(Fig. 2.9) and could hence be used to obtain information on the direction of a biosonar target.

To quantify the available information, we have used an information-theoretic paradigm [141]

that puts an upper bound on the number of directions that could be resolved as a function

of the available signal-to-noise ratio (Fig. 2.9B). The results indicate that the Doppler sig-

natures would be suitable to distinguish a large number of different target directions - even

at fairly low signal-to-noise ratios, e.g., at a signal-to-noise ratio of 12 dB, up to about one

million different directions could be theoretically distinguished. Furthermore, the Doppler

signatures varied with direction in a systematic fashion. This was evident from the re-

sults of clustering the Doppler signatures based on their spectrogram representation yielded

contiguous partitions of the direction space (Fig. 2.9C). This should help exploiting the

direction-dependence of the Doppler signatures (Fig. 2.10) since small errors in estimating

the Doppler shifts should result in likewise small errors in the direction estimates.

2.6 Discussion

All Doppler shifts that occur in bat biosonar can be classified as either prey-generated or

self-generated. At present, prey-generated Doppler shifts are the only well-established solu-

tion to the problem of identifying prey in clutter with active biosonar [79]. The importance

of prey-generated Doppler shifts is evident from numerous, far-reaching adaptations in bats
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that range from pulse design to behavior and from the inner ear [142] to the auditory cor-

tex [143, 144]. As of now, only the bats’ own flight motions have been considered as sources

of self-generated Doppler shifts. The resulting Doppler shifts have been regarded mostly as

undesirable side-effects of the animals’ mobility that need to be compensated for [78]. The

possibility of flight-induced Doppler shift conveying information to support navigation has

only been investigated using computational methods so far [145] and there is no published ex-

perimental evidence that bats make use of flight-induced Doppler shifts. Fast pinna motions

constitute a previously unknown second source of self-generated Doppler shifts. In general,

horseshoe bat pinna motions are unlikely byproducts since the animals seem to go such a

great length to actively produce them, e.g., through an elaborate pinna musculature [72].

Furthermore, it has been reported that surgical disruptions of the pinna mobility have let

to performance deficits in horseshoe bats [72, 76]. Similarly, the match between the regions

of highest pinna surface speeds and the best alignment of the motion and sound propaga-

tion directions found here could be seen to argue in favor of functional significance of the

Doppler shift to which the system has been evolutionarily adapted. However, much more

data covering a larger number of species would be needed to test this hypothesis thoroughly.

Taking into account our current results, pinna motions in horseshoe and hipposiderid bats

could serve the animals’ sensing in three different, but non-exclusive ways, i.e., through: (i)

a rigid component that reorients the beampattern [70], (ii) a non-rigid, linear component

that changes the pinna’s beampattern by virtue of the pinna geometry, and (iii) a non-

linear, Doppler-based component. The rigid component is shared by many animals (e.g.,

head motions in humans) as well as technical sonar and radar systems. It can be readily

understood as a scanning operation where the most sensitive region of the beampattern

is moved into different directions. The non-rigid, linear motion components have recently

been demonstrated to enhance the encoding of sensory information related to direction-
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finding [71]. Changing the pinna geometry to produce a different beampattern shape can

be seen as an alternative to change the frequency for a fixed pinna geometry [146]. The

non-linear transformations due to the pinna-generated Doppler shifts described here add

an additional quality to the pinna motions in bats. It remains to be determined if the

Doppler-transformations of the echoes serve a functional purpose in the animals. If they

are an integral part of the peripheral dynamics of the bats’ biosonar system as the evidence

presented here suggests, this would mean that the bats are able to harness non-linear effects

that could lead to new functional principles for enhance sensing of natural environments and

enable engineered sensory systems with the same capabilities.
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Applications of the Soft Robotics

3.1 Title

Integration of Deep Learning and Soft Robotics for a Biomimetic Nonlinear Sensing Paradigm

3.2 Abstract

Determining the direction of an impinging sound or radio wave is a fundamental capability for

technologies such as sonar, radar, and satellite communication. Up to now, sound-direction

finding has required either multiple signal frequencies or multiple pressure receivers. Inspired

by bat species that add Doppler shifts to their biosonar echoes through fast ear motions, we

present a source-direction finding paradigm based on a single frequency and a single pressure

receiver. Non-rigid ear motions produce complex Doppler signatures that depend on source

direction but are difficult to interpret. To demonstrate that deep learning can solve this

problem, we have combined a soft-robotic microphone baffle that mimics a deforming bat

ear with a CNN for regression. With this integrated cyberphysical setup, we have been

able to achieve a direction-finding accuracy of less than 1 degree based on a single baffle

motion. Hence, our results demonstrate that deep learning can make complex nonlinear

signal transformations accessible.

34
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3.3 Introduction

Determining the direction of an impinging sound or radio wave is a fundamental capability

for a broad range of technical application areas such as sonar [108], radar [109], satellite com-

munications [147], and GPS [148]. Since the propagation direction of a wave is a vector, it is

most readily determined based on measurements of vector-valued physical quantities directly

linked to it. For acoustic waves, for example, the direction of propagation can be determined

from measurements of the particle velocity vector [149, 150]. However, while deriving esti-

mates of the wave propagation direction from a related vector quantity is straightforward,

obtaining the respective measurements can be complicated. Hence, a frequently used alter-

native has been to shift the effort from the basic physical measurement to the estimation

stage. For acoustic waves, this is being done by measuring sound pressure, i.e., a simple

scalar quantity that can be determined by a conventional microphone. Since estimating

a direction vector from a single scalar value is an ill-posed problem, the missing informa-

tion has to be filled in by using multiple measurements. These additional measurements

are typically either acquired along the spatial or the frequency dimension. To obtain more

measurements along the spatial dimension, multiple microphones are used to form an ar-

ray [151]. In human hearing, binaural estimation of the horizontal angle of a sound source

follows this approach [152]. Alternatively, a single receiver can be moved in space to collect

signals from different positions at different times as is the case in synthetic aperture sonar

and radar (SAS, SAR [153, 154]). Along the frequency dimension, multiple measurements

can be obtained by analyzing input amplitudes for different frequencies. In human hearing,

this is the case for determining the direction of a sound source in elevation [155]. Hence,

telling the direction of a sound source from scalar pressure measurements currently requires

either multiple receivers or multiple signal frequencies. Both of these approaches have draw-

backs. Multiple signal frequencies can only be used if the source produces them. Working
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with multiple receivers increases system size and power requirements both at the sensor and

the computational stage of the array. Because of these drawbacks, the work presented here

has investigated the possibility of a novel paradigm that is based on a single receiver and a

single signal frequency.

The single receiver - single frequency paradigm explored here has been inspired by the

biosonar sensing system of bats. Bats are small flying mammals that have to be highly

parsimonious in terms of the number of emitting and receiving elements as well as comput-

ing power. Bat biosonar is limited to one emitter (mouth or nose) and two receivers for

ultrasound. Their brain mass is typically less than one gram [156]. To get around these con-

straints, bat species with sophisticated biosonar systems have evolved interfaces for sound

reception, i.e., outer ears (pinnae) that higher degrees of static as well as dynamic com-

plexity than can be found in engineered sonar systems [1, 69, 157, 158, 159]. Bat pinna

have static complexity in their geometry which includes overall shape as well as local shape

features such as grooves and ridges. The pinnae also have dynamic complexity, because they

are actuated by an intricate musculature that allows the bats to change the shape of their

pinnae during echo reception. Furthermore, these shape changes are associated with surface

velocities that are large enough to cause nonlinear effects, i.e., Doppler shifts in the echoes

that are transferred from the pinna to the ear canal ([1], Fig. 3.1A).

The hypothesis underlying the current work is that the dynamic, nonlinear complexity results

in encoding of additional sensory information, esp. on source direction, that can be used

to overcome the limitations of the traditional direction-finding paradigms. There are two

challenges to investigating this hypothesis and making use of this additional information:

(i) replicating the dynamic geometric complexity and (ii) interpreting the complex nonlinear

signals.

Here, a solution to these problems is presented that makes use of a combination of soft
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robotics and deep learning. A soft-robotic biomimetic receiver is used to replicate the dy-

namics of the bat pinna and a deep neural network is used to interpret the signal patterns

created. Besides testing the specific hypothesis regarding the existence of a single frequency

- single receiver paradigm for finding the direction of a sound source, this work is intended

to explore the idea of soft robotics and deep learning to recreate and deal with biological

complexity.

3.4 Materials and Methods

3.4.1 Experimental Setup

The geometry of the biomimetic pinna was derived from the pinna shapes of hipposiderid

bats and the closely related rhinolophid bats based on micro CT scans of biological speci-

mens [160]. The specimen shapes were simplified by removing geometrical detail below the

scale of the employed wavelengths as well as local disruptions of the overall pinna’s symme-

try. The pinna shape was scaled to a total length of 5.8 cm, i.e., about twice the size in the

animals and cast in silicone (Ecoflex, Smooth-On, Inc., Macungie, PA, USA). It was inter-

faced with a capacitive MEMS microphone (Momimic, Dodotronic, Rome, Italy) to record

the received ultrasonic signals via an artificial ear canal (length 9 mm, diameter 4 mm).

The pinna deformations were actuated by a DC servo motor (Maxon RE25 and HEDL

encoder combo, Maxon Motors, Switzerland). To couple the pinna and the motor, a cam

(length 4.6 cm) was mounted onto the motor shaft and its free end connected to the pinna

tip with a string. Rotating the cam about the motor shaft hence resulted in deformation of

the pinna by pulling its tip downwards and sideways. The tip achieved maximum speeds of

about 3 m/s and maximum displacements of about 4 cm. The pinna model and its deformation
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Figure 3.1: Experimental setup: A) Biological inspiration from the Doppler shifts pro-
duced on the surface of a bat pinna (Pratt’s roundleaf bat, Hipposideros pratti). Doppler
shift amplitudes were derived from the velocities of the pinna surface relative to the prop-
agation direction of the incoming ultrasonic wave are color-coded on the pinna surface [1].
B) Biomimetic silicone pinna mounted on a pan-tilt unit used to orientate the setup for
direction sampling and source tracking. The pinna is deformed by a servo motor via a cam
and string attached at the pinna tip. C) electrostatic loudspeaker with a screen attached for
quantifying the alignment of the pinna with the speaker. D) biomimetic pinna mounted on
a pan-tilt-unit with a laser pointer to indicate the orientation of the pinna aperture.
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mechanism were mounted on a pan-tilt unit (PTU-46-17.5, FLIR Systems, Inc., Burlington,

ON, Canada) that was used to create rotations that covered 180 ° in azimuth and 60 ° in

elevation. For collection of the training, validation, and testing data, these direction ranges

were both sampled in steps of 3 °, resulting in 61 different values for azimuth, 21 for elevation,

and hence a total of 1,281 unique sampled directions across both dimensions.

An electrostatic loudspeaker (Series 600 open face ultrasonic transducer, SensComp, Livonia,

MI, USA) was used to emit ultrasonic pulses that served as input signals from a distance of

50 cm. The pulses had a constant carrier frequency of 90 kHz and a duration of 250 ms. Each

pulse was gated by raised-cosine envelope. The pulse signals were converted to analog with

a sampling rate of 500 kHz and a resolution of 16 bits (PXIe-6356 data acquisition board,

National Instruments, Austin, TX, USA). The pulse emissions and the pinna deformations

were synchronized so that two pinna-deformation cycles (period length about 100 ms) were

completed during each pulse reception.

3.4.2 Data Preprocessing

The ultrasonic signals received by the capacitive microphone mounted in the ear canal of the

biomimetic pinna were digitized with a sampling frequency of 500 kHz and a resolution of

16 bits (PXIe-6356 data acquisition board, National Instruments, Austin, TX, USA). Each

recording had a duration of 250 ms and hence contained 125,000 samples. The recorded

signals were transformed into spectrogram time-frequency representations using short-time

Fourier transforms with a 5500-point Hann window and 0% overlap. The spectrograms were

clipped along the frequency axis to the region that contained all expected Doppler shifts

(from -1 to 1 kHz). The result was square matrix (22×22) with normalized power-spectral-

density values that served as input to the DNN estimator.
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3.4.3 Convolutional Neural Network Training

A convolutional neural network (CNN) was used for solving the direction-estimation problem.

The architecture of the network (Fig. 3.2) was inspired by a DNN for image-based regression,

i.e., estimating the value of a continuous variable from images [161] that was in turn based

on the VGG CNN architecture that has been designed for image recognition[162]. The

network contained a total of 18 convolution layers. In each of these layers, a two-dimensional

convolution was followed by batch normalization and a ReLU activation function. The

convolution layers were organized into three sets containing six layers each. Each set of
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convolution filters had its own number of different filters (32, 64, and 128). The CNN had

1,067,874 parameters in total. Of these parameters, 1,065,186 were trainable (convolution

layers 1,061,472, normalization layers 2,688, fully dense layer 1,026) and the remaining 2,688

(mean and variance parameters of the normalization layers) were fixed. A Xavier Glorot

uniform initialization was used to assign initial values to the parameters and mean-squared-

error served as a loss function. Parameter values were adjusted during training using the

Adam algorithm [163] with an initial learning rate of 0.01 and a moderate decay of 0.0001

of the learning rate per epoch number. The batch size was set to 32 throughout. The CNN

was implemented using the Keras library running on top of the TensorFlow library. The

entire data set of 25,620 recorded Doppler signatures was split into 85% (21,777 signatures)

training data, ∼13.8% (3,543 signatures) validation data, and ∼1.2% (300 points) testing

data.

3.4.4 Direction Estimation Testing

To test the direction estimation with hardware in the loop, a laser pointer was attached to

the pan-tilt unit and aligned with the normal of the pinna aperture (Fig. 3.1D). To assess

how well the output of the CNN was able to align the pinna with the direction of sound

source, a screen with a square grid (grid pitch 6.5 mm, size 34×38 mm) was mounted next to

the loudspeaker (Fig. 3.1C). The distance between loudspeaker and pinna was kept at 50 cm

as was the case for the collection of the training data. At the beginning of each experiment,

pinna and loudspeaker were aligned so that the laser beam pointed at the loudspeaker’s

screen while the pan-tilt unit was oriented to the center of its azimuth range (0 °). After this

initial alignment, the pan-tilt unit was rotated to one of 61 test positions that were evenly

distributed from -90 ° to 90 ° in azimuth. For each of the resulting loudspeaker directions,

a single ultrasonic input signal was recorded. A simple linear, feed-forward controller was
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then used to drive the pan-tilt unit and rotate the pinna in the estimated direction of the

sound source. The direction error was then estimated from the position of the laser point

on the screen that was attached to the loudspeaker.

3.5 Results

3.5.1 Doppler-shift Signature Associated With Different Direc-

tions

The motions of the soft-robotic pinna were found to generate Doppler shifts that were com-

mensurate with the associated velocities, i.e., Doppler shifts up to 800 Hz for speeds up to

3 m/s and 90 kHz carrier frequency. The variability in the velocities across the pinna surface

as well as over time resulted in complicated Doppler signatures that were picked up by the

microphone in the ear canal of the biomimetic pinna (Fig. 3.3). Qualitative inspection of

these signatures gave an impression of distinct patterns associated with different directions

and also suggested a certain level of repeatability, i.e., patterns obtained in repeated trials

conducted with the same direction of sound incidence tended to resemble each other.

3.5.2 Deep Learning of Direction Finding from Doppler Signatures

The deep regression network was able to learn the direction-finding task based on the Doppler

signatures and reached a terminal rms validation error value of around 0.5 ° within 100 epochs

(Fig. 3.4A, validation error 0.67 ° and training error 0.51 ° at 100 epochs). The network that

achieved the lowest validation error 0.55 ° at 100 epochs was able to perform on a test data

set of 300 signals that had neither been used in training nor in validation with an 0.46 ° in
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Figure 3.3: Doppler shift signatures associated with different directions: Normalized
spectrograms of ultrasonic signals received from directions ranging over 90 ° in azimuth and
60 ° in elevation. The direction associated with each spectrogram is given as [azimuth,
elevation] in the respective panel. The frequency axis of the spectrogram has been centered
at the emitted frequency and hence directly gives the value of the Doppler shift.
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Figure 3.4: Deep learning of direction finding from Doppler signatures: A) training
and validation loss; B) prediction results. All errors (training, validation, and prediction)
were quantified as a root-mean-square error. The averages for training (thick black solid
line) and validation losses (thick gray solid line) were based on 20 repetitions of the learning
process. The standard deviations in this sample are indicated by thin dashed black lines
and thin gray lines respectively. After training, the prediction accuracy of the network was
tested with 300 inputs. Prediction results are given for azimuth (main graph) and elevation
(lower inset). To further characterize the variability of the estimates as a function of the
true direction, fits of Gaussian distributions to the prediction values for three different true
azimuth values (-45 °, 0 °, 45 °, N= 21, 23 ,23 respectively pooled from the five nearest
directions).

azimuth and 0.56 ° in elevation (Fig. 3.4B, The az and el errors are significantly different

(t-test, N =300, p=3.74E-09)).

3.5.3 Accuracy of Direction Finding with the Dynamic Soft-robotic

Pinna

Testing the DNN direction estimator in an online loop that included the pinna hardware

and a pan-tilt unit for source-tracking confirmed the results obtained offline (Fig. 3.5). The

rms prediction error for the DNN operating in this experiment was 0.7 ° (standard deviation
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Figure 3.5: Accuracy of direction finding with a dynamic soft-robotic pinna: The
ability of the soft-robotic pinna mounted on a pan-tilt unit to track a sound source in azimuth
was assessed in two different ways: (i) by virtue of the azimuth value that was predicted
by the DNN (dashed line) and (ii) by the pointing direction of a laser pointed mounted on
the pinna (solid line). Perfect predictions are indicated as a reference (dotted line). The
soft-robotic pinna was presented with ultrasound signals from N=61 different directions in
azimuth.

4.6 °). The laser pointer mounted alongside the pinna was able to track the sound source with

an rms error of 0.9 ° (standard deviation 4.9 °). The difference between the rms errors for

estimation only and laser pointer orientation were not significantly different (t-test, N=61,

p=0.86).
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Figure 3.6: Direction-finding paradigms: A) single sensor with multiple frequencies, B)
single frequency with multiple sensors, C) single frequency with a single dynamic sensor.

3.6 Discussion

The results presented here demonstrate a novel paradigm for finding the direction of a wave

source that does away with the need of having either multiple frequencies or multiple receivers

(Fig. 3.6). It achieves this by introducing nonlinear complexity into the input signals. In

the current incarnation of the paradigm, this has been achieved by virtue of the dynamic

geometrical complexity of soft robotics and the resulting signal complexity has been mastered

using deep learning.

It remains to be seen how much geometrical and signal complexity is required to reach the

current level of direction-finding performance or how much further optimization could be

possible. Irrespective of future insights into these questions, the current results demonstrate

that deep-learning methods can be a good match for biomimetic complexity as they can

turn a complex soft-robotic sensor into a useful direction-finding device without the need to
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develop a quantitative understanding of the relationship between the complexities of sensor

behavior and the encoded information.

The direction-finding performance achieved here (∼0.5 °) compares very favorably with what

has been reported for bats and humans so far: The acuity of human observers for localizing

sound in the vertical has been estimated as 12 ° (monaurally) and 9 ° (binaurally) [164]. For

a bat species not known for fast pinna motions or exploiting Doppler shifts (big brown bat,

Eptesicus fuscus), the acuity for separating pairs of horizontal rods in the vertical plane was

found to be 3 °[40]. Another study of the same bat species has reported a tracking accuracy

of 1.6 ° in the horizontal plane [46]. Replicating direction finding in big brown bats based

on compressed external ear transfer functions with a fully-connected, three-layer backprop-

agation network has achieved accuracies of 7.5 ° in azimuth and 8.9 ° in elevation [165].

The higher accuracy achieved here could be explained by two non-mutually exclusive hy-

potheses: First, the human and bat experiments could have contained additional sources

of variability that degraded their results. Second, bat species with fast ear motions could

have access to better sensory information than humans and big brown bats. The second

hypothesis could be tested by performing direction-finding experiments with rhinolophid or

hipposiderid bats. If such experiments were successful, the results presented here could make

a contributions to a better understanding of the diversity in bat biosonar function beyond

the introduction of a general sensing paradigm.



Chapter 4

Summary and Conclusions

4.1 Major Findings

I have developed a soft robotic to investigate the functionality of the fast ear motion of

some bat species. In the first part, I have completed the animal experiments to prove that

the Doppler shift generated by the fast ear motion will enter into the ear canal, hence to

constitute a nonlinear mechanism for the active encoding of sensory information. In the

second part, I have developed a soft robotic to mimicked the fast ear motion to able to

achieve the sound source direction finding based on the Doppler shift signatures. I have then

developed a novel biomimetic nonlinear sensing paradigm by integrating deep learning and

soft robotics. The detailed findings are:

• The fastest pinna tip motion speed recorded in the lab environment is ∼2.2 m/s that

gives a Doppler shift of 383 Hz which is more than seven times the Doppler shift

compensation threshold (50 Hz).

• The highest speeds occurred in a region along the outer pinna rim that was a good

match for where the orientations of the velocity vectors at maximum speed were close

to parallel to the direction of sound radiation.

• All echoes in echolocation sequences accompanied by pinna motions contain Doppler-

shift signatures that should be perceivable by the bats.

48
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• The time-frequency Doppler signatures were direction-dependent and could hence be

used to obtain information on the direction of a biosonar target.

• Fast pinna motions constitute a previously unknown second source of self-generated

Doppler shifts which could constitute a nonlinear mechanism for the active encoding

of sensory information.

• A deep regression network was able to learn the direction-finding task based on the

Doppler signatures and reached a terminal rms validation error value of around 0.5 °

within 100 epochs.

• Tested the DNN direction estimator in an online loop that included the pinna hardware

and a pan-tilt unit for source-tracking confirmed the results obtained offline

• Established a novel paradigm for finding the direction of a wave source that needs a

single frequency with a single dynamic sensor

• Demonstrated a good example of the integration of deep learning and soft robotics for

a biomimetic nonlinear sensing paradigm.

4.2 Discussion

Two types of pinna motions have been found for Horseshoe bats and Old World leaf-nosed

bats: rigid and non-rigid [69]. The non-rigid motion causes substantial changes in the ear

structure to compare to the rigid one [69]. Pinna motions in the horseshoe and hipposiderid

bats could serve the animals’ sensing in different ways: (i) a rigid component that reorients

the beampattern [70], (ii) a non-rigid, linear component that changes the pinna’s beampat-

tern by the pinna geometry. The rigid component can be easily understood as a scanning
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operation where the most sensitive coverage of the beampattern is re-pointed in different

directions. The non-rigid, linear motion components have been demonstrated to enhance

the encoding of sensory information related to direction-finding [71]. Changing the pinna

geometry to produce a different beampattern shape can be seen as an alternative to change

the frequency for a fixed pinna geometry [146]. The non-linear transformations due to the

pinna-generated Doppler shifts described here add an additional feature to the pinna motions

in bats. It remains to be determined if the Doppler-transformations of the echoes serve a

functional purpose in those animals. If they are an integral part of the peripheral dynamics

of the bats’ biosonar system, as the evidence presented here suggests, this would mean that

the bats can harness nonlinear effects that could lead to new functional principles for en-

hance sensing of natural environments and enable engineered sensory systems with the same

capabilities.

The results obtained from the soft robotics demonstrate a novel paradigm for finding the

direction of a wave source that does away with the need of having either multiple fre-

quencies [155] or multiple receivers [151]. This abolishes previous limitations on what was

technologically feasible, which was achieved by introducing nonlinear complexity into the

input signals. This achievement implies that bioinspired robotics is a generic approach that

not only brings new insight into the engineering area but also provides a novel way to help

understand and explain the biological world. For example, the spring-loaded inverted pendu-

lum (SLIP) model was used to study walking dynamics and gait transitions between walking

and running [166] and a mobile robot employing insect strategies for navigation [167].

The accomplishments achieved in this research were only possible because the dynamic ge-

ometrical complexity of soft robotics and the resulting signal complexity has been com-

prehended using deep learning techniques. And similar success has been found at analyzing

complex single-molecule emission patterns [168] and analyzing fringe patterns [169] with deep
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learning. Without deep learning, it would have been extremely hard to decipher the complex

Doppler signatures generated by the irregular, non-stationary geometry of the biomimetic

pinna. Hence, the results presented in this dissertation served as a great example of how

biomimetic soft-robotics and deep learning can be integrated. Our study demonstrates that

deep learning can make complex nonlinear signal transformations accessible. Related success

include a vision-based robotic grasping system using deep learning for 3D object recognition

and pose estimation [170] and a deep learning algorithm for visual-based robot naviga-

tion [171]

The direction-finding performance achieved here (∼0.5 °) compares very favorably with what

has been reported for bats and humans so far [40, 46, 164, 165]. One of the hypotheses is

that bat species with fast ear motions could have access to better sensory information than

humans and big brown bats. This hypothesis could be tested by performing direction-finding

experiments with rhinolophid or hipposiderid bats. If such experiments were successful, the

results presented here could make a contribution to a better understanding of the diversity

in bat biosonar function beyond the introduction of a general sensing paradigm.

4.3 Suggestions for Future Work

• It remains to be seen how much geometrical and signal complexity is required to reach

the current level of direction-finding performance or how much further optimization

could be possible.

• The hypothesis that bat species with fast ear motions could have access to better

sensory information than humans and big brown bats could be tested by performing

direction-finding experiments with rhinolophid or hipposiderid bats.
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Appendix A

Matlab Code for Spectrogram

Extraction

1 %% This Matlab s c r i p t i s used to compute the spectrogram of a waveform ...

r e c o r d i n g .

2 %% The epectrograms are cropped to the expected range o f the Doppler

3 %% s h i f t s ( emitted f requency +/- 1 kHz) .

4 %% The cropped spectrograms se rve as input to the CNN e s t i m a t o r .

5

6 % Author : Xiaoyan Yin

7 % Mechanical Engineer ing , V i r g i n i a Tech

8 % emai l : xiaoyan6@vt.edu

9 % Feb 2019 ; Last r e v i s i o n : 23 -Nov-202

10

11 % Each reco rd ing ( acqdata ) conta in s 125 ,000 samples ( r e co rd ing

12 % durat ion : 250 ms , sampling ra t e : 500 kHz)

13 % The output ( Dopp le rSh i f t ) i s a 22 -by -22 matrix r e p r e s e n t i n g the

14 % cropped spectrogram.

15

16 % - - - - - - - - - - - - - BEGIN CODE - - - - - - - - - - - - - -

17

18 %% Load data from f i l e
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19 acqdata = load ( ' . . / data / Recording.mat ' , ' acqdata1 ' )

20 acqdata = s t r u c t 2 c e l l ( acqdata ) ;

21 acqdata = ce l l 2mat ( acqdata ) ;

22

23 %% High - pass f i l t e r ( removes low - f requency no i s e )

24 f c = 10000; % Cut - o f f f requency

25 f s = 500000; % Sampling ra t e

26 [ b , a ] = butte r (6 , f c /( f s /2) , ' high ' ) ; % Butterworth f i l t e r o f order 6

27 acqdata = f i l t f i l t (b , a , acqdata ) ; % Apply the f i l t e r

28

29 %% Compute the spectrogram with a 5 ,500 - po int Hann window and 0% over lap

30 [ S , F ,T,P]= spectrogram ( acqdata , hanning (5500) ,0 ,5500 ,500000 , ' yax i s ' ) ;

31

32 % Normalize the power - s p e c t r a l - dens i ty va lue s by the maximum taken over

33 % the e n t i r e spectrogram

34 NorPSD = P./max(P ( : ) ) ;

35

36 % Convert to l oga r i thmi c power s p e c t r a l dens i ty [ dB s c a l e ]

37 LogNorPSD=10∗ log10 (NorPSD) ;

38

39 % Crop to the f requency reg i on o f p o s s i b l e Doppler s h i f t s ( from -1 kHz to ...

1kHz around emitted f requency )

40 Dopple rSh i f t = [ ] ;

41 f o r i = 1001 : -1 : 980 ,

42 Dopple rSh i f t = [ Dopp le rSh i f t ; LogNorPSD( i , : ) ] ;

43 end

44

45 % Plot the Doppler s h i f t spectrogram

46 f i g u r e (1 )

47 s f = s u r f (T∗1000 ,F(980 : 1001 , 1 ) -90000 , Dopp le rSh i f t )

48 co l o rba r
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49 colormap ( j e t ) ;

50 s f .EdgeCo lor = ' none ' ;

51 view (0 ,90 )

52 c a x i s ( [ - 6 0 , - 0 ] ) ;

53 xlim ( [ 5 .5 ,236 . 5 ] )

54 ylim ( [ - 1 0 0 0 , 9 0 0 ] )

55 g r id on

56 x l a b e l ( 'Time (ms) ' )

57 y l a b e l ( ' Doppler s h i f t (Hz) ' )

58 t i t l e ( ' Spectrogram ' )

59

60 % save the r e s u l t i n g p l o t to a PNG f i l e

61 saveas ( f i g u r e (1 ) ,” . . / r e s u l t s / Spectrogram.png ”)

62

63 % - - - - - - - - - - - - - END OF CODE - - - - - - - - - - - - - -
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Python Code for CNN Training

1 # -∗ - coding : utf -8 -∗ -

2 ”””

3 Created on Sun Aug 2 15 : 37 : 56 2020

4

5 @author : Xiaoyan Yin

6 ”””

7 # Import the nece s sa ry packages

8 from ten so r f l ow import keras

9 from k e r a s . o p t i m i z e r s import Adam

10 from sk l e a rn .mode l_s e l e c t i on import t r a i n _ t e s t _ s p l i t

11 import pandas as pd

12 import numpy as np

13 import math

14 import m a t p l o t l i b . p y p l o t as p l t

15 import s c i p y . i o as sp i o

16 from k e r a s . c a l l b a c k s import Cal lback

17 from k e r a s . l a y e r s . n o r m a l i z a t i o n import BatchNormalizat ion

18 from k e r a s . l a y e r s . c o n v o l u t i o n a l import Conv2D

19 from k e r a s . l a y e r s . c o n v o l u t i o n a l import MaxPooling2D

20 from k e r a s . l a y e r s . c o r e import Act ivat ion

21 from k e r a s . l a y e r s . c o r e import Dense

22 from k e r a s . l a y e r s import F lat ten
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23 from k e r a s . l a y e r s import Input

24 from keras .mode l s import Model

25

26 # Prepare the input data and l a b e l s ( supe rv i s ed l e a r n i n g )

27 #input_data = ” . . / data /sample - d a t a . t x t ”

28 mat = sp io . l oadmat ( r ' . . / data /DATA.mat ' ) #load mat f i l e

29 PosData = mat [ 'DATA' ] #p o s i t i o n data

30 # Normalize the input datase t

31 MinValue = PosData.min ( )

32 NorPosData = [ x - MinValue f o r x in PosData ]

33 NorPosData = np.array ( NorPosData )

34 MaxValue = NorPosData.max ( )

35 NorPosData = NorPosData/MaxValue

36 # Rearrange the datase t s t r u c t u r e

37 DATA = np . z e ro s ( (25620 ,22 ,22) , dtype=” f l o a t ”)

38 f o r i in range (0 , 25619 + 1) :

39 T = NorPosData [ : , : , i ]

40 DATA[ i , : , : ] = T

41 DATA = np.reshape (DATA, (25620 , 22 , 22 , 1 ) )

42 # Load l a b e l datase t

43 l a b e l = pd.read_csv ( ' . . / data / Labe l . c sv ' )

44 l a b e l = np.array ( l a b e l )

45 # Normalize the l a b e l data

46 l a b e l = l a b e l /180

47

48 # S p l i t the data in to 3 par t s : t r a in ing , v a l i d a t i o n and t e s t i n g

49 s p l i t = t r a i n _ t e s t _ s p l i t ( l abe l , DATA, t e s t _ s i z e=0.15 , random_state=42)

50 ( trainAttrX , otherAttrX , trainImagesX , otherImagesX ) = s p l i t

51

52 s p l i t = t r a i n _ t e s t _ s p l i t ( otherAttrX , otherImagesX , t e s t _ s i z e=0.9219 , ...

random_state=42)
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53 ( testAttrX , valAttrX , testImagesX , valImagesX ) = s p l i t

54

55 # Build the t r a i n i n g model

56 de f create_cnn ( width , height , depth , f i l t e r s =(32 , 64 , 128) , r e g r e s s=False ) :

57 # i n i t i a l i z e the input shape and channel dimension , assuming

58 # TensorFlow/ channels - l a s t o rde r ing

59 inputShape = ( height , width , depth )

60 chanDim = -1

61 # d e f i n e the model input

62 inputs = Input ( shape=inputShape )

63 # loop over the number o f f i l t e r s

64 f o r ( i , f ) in enumerate ( f i l t e r s ) :

65 # i f t h i s i s the f i r s t CONV l a y e r then s e t the input

66 # approp r i a t e l y

67 i f i == 0 :

68 x = inputs

69 # CONV => BN => RELU=> POOL

70 x = Conv2D( f , (3 , 3) , padding=”same ”) ( x ) ;

71 x = BatchNormal izat ion ( ax i s=chanDim) ( x )

72 x = Act ivat ion (” r e l u ”) ( x )

73 x = Conv2D( f , (3 , 3) , padding=”same ”) ( x )

74 x = BatchNormal izat ion ( ax i s=chanDim) ( x )

75 x = Act ivat ion (” r e l u ”) ( x )

76 x = Conv2D( f , (3 , 3) , padding=”same ”) ( x )

77 x = BatchNormal izat ion ( ax i s=chanDim) ( x )

78 x = Act ivat ion (” r e l u ”) ( x )

79 x = Conv2D( f , (3 , 3) , padding=”same ”) ( x )

80 x = BatchNormal izat ion ( ax i s=chanDim) ( x )

81 x = Act ivat ion (” r e l u ”) ( x )

82 x = Conv2D( f , (3 , 3) , padding=”same ”) ( x )

83 x = BatchNormal izat ion ( ax i s=chanDim) ( x )
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84 x = Act ivat ion (” r e l u ”) ( x )

85 x = Conv2D( f , (3 , 3) , padding=”same ”) ( x )

86 x = BatchNormal izat ion ( ax i s=chanDim) ( x )

87 x = Act ivat ion (” r e l u ”) ( x )

88 x = MaxPooling2D ( poo l_s i ze =(2 , 2) ) ( x )

89 x = Flat ten ( ) ( x )

90 # check to see i f the r e g r e s s i o n node should be added

91 i f r e g r e s s :

92 x = Dense (2 , a c t i v a t i o n=” l i n e a r ”) ( x )

93 # cons t ruc t the CNN

94 model = Model ( inputs , x )

95 # return the CNN

96 model.summary ( )

97 re turn model

98

99 # Hyperparameter c o n f i g u r a t i o n

100 model = create_cnn (22 , 22 , 1 , r e g r e s s=True ) #input s i z e i s 22x22

101 opt = Adam( l r =1e -2 , decay=1e -2 / 100) #s e t l e a r n i n g ra t e and ...

decay parameters

102 model .compi le ( l o s s =”mean_squared_error ” , opt imize r=opt ) #s e t l o s s func t i on

103

104 # Cal lback f o r l o s s l ogg ing per epoch

105 c l a s s LossHis tory ( Cal lback ) :

106 de f on_train_begin ( s e l f , l o g s ={}) :

107 s e l f . l o s s e s = [ ]

108 s e l f . v a l _ l o s s e s = [ ]

109 s e l f . t r a i n _ l o s s e s = [ ]

110

111 de f on_epoch_end ( s e l f , batch , l o g s ={}) :

112 s e l f . l o s s e s . a p p e n d ( l o g s . g e t ( ' l o s s ' ) )

113 s e l f . v a l _ l o s s e s . a p p e n d ( l o g s . g e t ( ' va l_ lo s s ' ) )
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114 s e l f . t r a i n _ l o s s e s . a p p e n d ( l o g s . g e t ( ' t r a i n _ l o s s ' ) )

115

116 # Def ine the t r a i n i n g parameters

117 de f run_myCNN() :

118 h i s t o r y = LossHis tory ( )

119 pr in t (” running model . . . ”)

120 m o d e l . f i t ( trainImagesX , trainAttrX , va l idat ion_data=(valImagesX , ...

valAttrX ) ,

121 epochs =100 , batch_size =32, c a l l b a c k s =[ h i s t o r y ] )

122 re turn h i s t o r y

123 # Training

124 h i s t o r y = run_myCNN( )

125 # The l o s s va lue s ( mean_squared_error )

126 l o s s = h i s t o r y . l o s s e s

127 va l_ lo s s = h i s t o r y . v a l _ l o s s e s

128 t r a i n _ l o s s = h i s t o r y . l o s s e s

129

130 # P r e d i c t i o n s ( azimuth , e l e v a t i o n ) o f t e s t i n g datase t

131 p r e d i c t i o n = mode l .p r ed i c t ( testImagesX )

132

133 # Convert the l o s s va lue s to RMSE ( root - mean squared e r r e r ) in degree

134 va l_ lo s s = np . sq r t ( va l_ lo s s ) ∗180

135 t r a i n _ l o s s = np . sq r t ( t r a i n _ l o s s ) ∗180

136

137 #convert the p r e d i c t i o n va lue s to degree

138 p r e d i c t i o n = p r e d i c t i o n ∗180

139

140 # Get RMSE va lue s o f the p r e d i c t i o n s f o r both azimuth and e l e v a t i o n

141 Truth = testAttrX ∗180 #True va lue s in degree

142 D i f f = Truth - p r e d i c t i o n #D i f f e r e n c e between truth and p r e d i c i t o n

143 RMSEA = math.sqrt (sum( D i f f [ 0 : 2 9 9 , 0 ] ∗ D i f f [ 0 : 2 9 9 , 0 ] ) /300) #RMSE of azimuth
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144 RMSEE = math.sqrt (sum( D i f f [ 0 : 2 9 9 , 1 ] ∗ D i f f [ 0 : 2 9 9 , 1 ] ) /300) #RMSE of e l e v a t i o n

145

146 # plo t the p r e d i c t i o n o f the t e s t i n g datase t

147 #azimuth

148 f i g = p l t . f i g u r e ( )

149 ax = f ig .add_subp lo t (111)

150 x1 , y1 = [ 0 , 1 8 0 ] , [ 0 , 1 8 0 ]

151 p l t . p l o t ( x1 , y1 )

152 p l t . p l o t ( Truth [ : , 0 ] , p r e d i c t i o n [ : , 0 ] , ' r ∗ ' )

153 p l t . x l a b e l ( ' True ( degree ) ' )

154 p l t . y l a b e l ( ' Pr ed i c t i on ( degree ) ' )

155 p l t . t i t l e ( ' Pr ed i c t i on o f azimuth ' )

156 p l t . x l i m (0 ,180)

157 p l t . y l i m (0 ,180)

158 p l t . g r i d ( True )

159 ax . s e t_aspec t ( ' equal ' , ad ju s t ab l e=' box ' )

160 # save the r e s u l t i n g p l o t to a PNG f i l e

161 p l t . s a v e f i g (” . . / r e s u l t s / predict ion_azimuth.png ”)

162 pl t . show ( )

163 p l t . c l o s e ( )

164

165 #e l e v a t i o n

166 f i g = p l t . f i g u r e ( )

167 ax = f ig .add_subp lo t (111)

168 x2 , y2 = [ 0 , 6 0 ] , [ 0 , 6 0 ]

169 p l t . p l o t ( x2 , y2 )

170 p l t . p l o t ( Truth [ : , 1 ] , p r e d i c t i o n [ : , 1 ] , ' r ∗ ' )

171 p l t . x l a b e l ( ' True ( degree ) ' )

172 p l t . y l a b e l ( ' Pr ed i c t i on ( degree ) ' )

173 p l t . t i t l e ( ' Pr ed i c t i on o f e l e v a t i o n ' )

174 p l t . x l i m (0 ,60 )
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175 p l t . y l i m (0 ,60 )

176 p l t . g r i d ( True )

177 ax . s e t_aspec t ( ' equal ' , ad ju s t ab l e=' box ' )

178 # save the r e s u l t i n g p l o t to a PNG f i l e

179 p l t . s a v e f i g (” . . / r e s u l t s / p r ed i c t i on_e l eva t i on .png ”)

180 pl t . show ( )

181 p l t . c l o s e ( )

182

183 #plo t the t r a i n i n g and v a l i d a t i o n l o s s

184 f i g = p l t . f i g u r e ( )

185 ax = f ig .add_subp lo t (111)

186 x3 = range (1 ,101)

187 p l t . p l o t ( x3 , t ra in_lo s s , l i n e s t y l e=' s o l i d ' , c o l o r=' r ' )

188 p l t . p l o t ( x3 , va l_loss , l i n e s t y l e=' s o l i d ' , c o l o r='b ' )

189 p l t . x l a b e l ( ' Epoch ' )

190 p l t . y l a b e l ( ' Root - mean - square Error ( degree ) ' )

191 p l t . t i t l e ( ' Train ing ( red ) and v a l i d a t i o n ( blue ) l o s s e s during l e a r n i n g ' )

192 p l t . x l i m (0 ,100)

193 p l t . y l i m (0 ,12 )

194 p l t . g r i d ( True )

195 # save the r e s u l t i n g p l o t to a PNG f i l e

196 p l t . s a v e f i g (” . . / r e s u l t s / TrainingAndVal idat ionLoss .png ”)

197 pl t . show ( )

198 p l t . c l o s e ( )
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