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ABSTRACT 
 
 
The first goal of this work was to develop models based on nonlinear ordinary-

differential equations or nonlinear algebraic equations, which produce the lift and drag 

coefficients on a cylinder or a cylinder-like structure. We introduced an improved wake 

oscillator for the lift, which combines the van der Pol and Duffing equations. We 

proposed a two-term quadratic model that relates the drag and lift coefficients, which 

reproduces the phase relationship between the drag and lift and its variation with the 

Reynolds number. We found that a mixed-type (external and parametric) forcing is 

needed to represent the effects of the cylinder motion. 

 

The second goal of this work was to develop a deeper understanding of the shedding and 

fluid forces on a cylinder and how they depend on its oscillatory motion within and 

outside the synchronization (or lock-in) band of frequencies. We performed extensive 

CFD (computational fluid dynamics) simulations and solved the unsteady Reynolds-

averaged Navier-Stokes equations that govern the flow fields around fixed and moving 

(in either the cross-flow or in-line direction) cylinders. We identified various wake modes 

that can exist, depending on the cylinder motion (direction, amplitude, and frequency) by 

using modern methods of nonlinear dynamics. The possible responses can be period-one, 

periodic with large period, quasiperiodic, or chaotic. Moreover, we found that the route-

to-chaos is torus breakdown. We investigated how four frequency sweeps of the cross-

flow motion affect the response curves and the hysteresis phenomenon. We studied in 

detail the effect of the in-line motion on the wake and related this effect to the reduction 

in the lift and mean drag due to a synchronization type that is very different from the one 

due to cross-flow motion. 
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Chapter 1

Introduction

The wake of a fixed body with a long span is characterized by a line of shed vortices

(known as von Kármán vortex street) in wake. The exerted hydrodynamic or aero-

dynamic force on the body due to these variations in the wake is alternating and can

cause considerable fatigue and eventually damage. The exerted force is often resolved

into drag and lift components in the in-line and cross-flow directions, respectively.

The small eddies that can be observed behind a plant stem in a river and the large al-

ternating wind circulations in the lee of a mountain in isolated islands are examples of

this phenomenon but with very different scales. This phenomenon is encountered also

in high-rise buildings, chimneys, towers of wind turbines, launch vehicles on launch

pads, and spars and risers used in the oil and gas industry.

Shedding-control (or anti-shedding) devices are needed to minimize the shedding in-

tensity and protect the body. Helical strakes are commonly used to alleviate this

vortex shedding (Medici, 2004; Constantinides and Oakley, 2006). These devices were

proposed to mitigate the alternating wind loads on Saturn V due to vortex shedding

while the vehicle is being transported to the launch pad or while it is on it (Bar-

ret, 1996). Helical strakes and twisted pairs of cable disrupt the spanwise coherence.
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Other devices are used to suppress vortex shedding through introducing disturbances

at the surface of the body, which interact properly with the vortex shedding (Sarp-

kaya and Isaacson, 1981; Blevins, 1990). For example, streamlined fairings influence

the boundary-layer separation, and hair fairings and ribbons disrupt the vortex for-

mation length. Recent studies proposed the use of roughness distributions (Bernitsas

and Raghavan, 2008) or pivoted plates (Assi and Bearman, 2008) to suppress vortex

shedding.

A circular cylinder is a favored configuration in many studies because of its geo-

metric simplicity and because near-cylinder elements are used in several industrial

applications. Furthermore, unlike square cylinders, galloping does not occur behind

a circular cylinder (Di Silvio et al., 1975; Sarpkaya, 1978). This minimizes the ef-

fects of geometric parameters on the shedding in the wake. Many studies have been

performed to understand and model the phenomena associated with the shedding

problem for fixed and moving cylinders (rigid as well as flexible).

The problem of a cylinder vibrating due to forces exerted by the wake goes back to

the work of Strouhal (1878) in aeroacoustics, which lead to the designation of the

Strouhal number to represent the nondimensional shedding frequency, and to the

work of Rayleigh (1879) on the oscillations of violin strings subject to incoming wind.

However, Birkhoff and Zarantonello (1957) were the first to suggest an oscillator to

model the wake of a cylinder, describing it as “swinging from side to side, somewhat

like the tail of a swimming fish”. They did not specify a particular oscillator but

alluded to a linear one. Seven years later, Bishop and Hassan (1964) performed ex-

periments on a cylinder oscillating harmonically in the cross-flow direction, covering

a range of Reynolds numbers from 5,850 to 10,800. The cylinder motion was adjusted

via a Scotch-yoke mechanism. When the frequency of the cross-flow motion is close to

2



the natural vortex-shedding frequency, the wake responded at the motion frequency

and not at the natural vortex-shedding frequency, and the wake is said to synchro-

nize with the cylinder motion. The response within the synchronization band was

examined for different motion amplitudes. They reported that the width of this band

decreases as the Reynolds number increases. Based on these experiments, Bishop

and Hassan proposed that the synchronized wake can be modeled by a simple forced

oscillator. However, they did not specify a particular oscillator (which they called

“wake” or “fluid” oscillator), but indicated that it is nonlinear and self-excited.

Since then, several models have been proposed for the wake of a fixed cylinder (Hartlen

and Currie, 1970; Blevins, 1974; Balasubramanian and Skop, 1996; Nayfeh et al.,

2003) and an elastically-mounted cylinder (Hartlen and Currie, 1970; Skop and Grif-

fin, 1973 and 1975; Griffin et al., 1973; Skop, 1974; Iwan and Blevins, 1974; Landl,

1975; Currie and Turnball, 1987; Krenk and Nielsen, 1999; Mureithi et al., 2001;

Facchinetti et al., 2004). Each model is a nonlinear ordinary-differential equation,

which when integrated in time, can yield the correct history of the lift coefficient.

Two candidate oscillators have been commonly used so far for the lift force on a cylin-

der in a uniform flow: the Rayleigh oscillator (e.g., Hartlen and Currie, 1970; Mureithi

et al., 2001) and the van der Pol oscillator (e.g., Facchinetti et al., 2004; Nayfeh et

al., 2003; Modarres-Sadeghi et al., 2008). Both are self-excited, self-limiting nonlin-

ear oscillators with cubic nonlinearity. Griffin et al. (1973) and Krenk and Nielsen

(1999) proposed a combination of these two oscillators, whereas Landl (1975) pro-

posed a variant of the van der Pol oscillator with an additional quintic term. Nayfeh

et al. (2003) concluded that the van der Pol oscillator should be used to model the

lift exerted on a fixed cylinder because this oscillator produces a phase angle between

the main lift component and its third harmonic that is closer to that obtained from

3



numerical simulations of the Reynolds-averaged Navier-Stokes equations (RANS) for

a wide range of Reynolds numbers.

The quality of a model is gauged by its capability to capture qualitatively and quan-

titatively the important physical phenomena recorded in experiments or full simu-

lations of the flow (e.g., by solving the Navier-Stokes equations). Examining the

problem of synchronized wakes of moving cylinders in the cross-flow direction shows

that the wake exhibits abrupt changes as one of the problem parameters changes

(e.g., the free-stream velocity, the natural cylinder frequency, forcing frequency and

amplitude). This leads to discontinuous frequency-response curves with two branches,

each one corresponds to a separate synchronized-wake mode. Common wake oscil-

lators for the exerted lift on a moving cylinder are unable to capture this physical

multi-valuedness characteristic. As a critical parameter is crossed, an existing stable

periodic wake configuration loses stability, giving way to another stable configura-

tion. Some existing models replace the multi-valued lift response by a single-valued

one with rapid change (e.g., Hartlen and Currie, 1970) and some capture one branch

only (e.g., Landl, 1975).

Whereas there are some differences between forced and elastically-mounted cylinders,

both exhibit the synchronization phenomenon. Several researchers support the idea

of analogy between the two situations and suggest using the results of the forced case

to understand the elastically-mounted case (Iwan and Blevins, 1974; Zdravkovich,

1982; Botelho, 1983; Wu, 1989; Moe and Wu, 1990; Dahl el al., 2008). At least

qualitatively, the lift exerted on a forced cylinder can be used to predict the ampli-

tudes and frequencies of the vortex-induced vibration (VIV) of elastically-mounted

cylinders. In this Dissertation, we restrict our attention to a forced cylinder.

For the wake of a fixed cylinder, there is a single parameter characterizing the problem,
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namely, the Reynolds number. For a forced cylinder, two extra parameters are needed

to describe the cylinder motion; its nondimensional amplitude and frequency. Some

studies (e.g., Williamson, 1985; Ibrahim, 2005) used another nondimensional group,

namely, the Keulegan-Carpenter number (KC) defined by KC≡ Umax
f D

, where Umax is

the maximum wave speed, D is the cylinder diameter, and f is the wave frequency. It

was introduced by Keulegan and Carpenter (1958) who performed experiments on a

vertical cylinder and a flat plate subject to standing water waves; they measured the

hydrodynamic-mass and hydrodynamic-drag coefficients for different wave patterns.

They found that these coefficients do not depend on the ‘oscillation-based’ Reynolds

number, but on the KC number.

In the case of a cylinder oscillating in a uniform stream, Umax and f correspond to

the motion of the cylinder rather than the fluid. With sinusoidal motion of the type

y = A sin(2π f t) (1.1)

one can show that KC becomes 2πA/D, and hence it is an alternate way for describing

the oscillation amplitude. We do not use it here.

Williamson and Roshko (1988) performed an experimental study for a cylinder un-

dergoing harmonic cross-flow motion in a Reynolds number range from 300 to 1,000.

They used aluminum particles on the fluid surface to visualize the flow. They used

the nondimensional wavelength λ/D of the cylinder motion and its nondimensional

amplitude A/D as the control parameters. They reported different vortex patterns in

the (λ/D, A/D) plane, which was divided into areas covering different synchronized

and nonsynchronized wake configurations.

Gu et al. (1994) also studied experimentally the structure of the near wake of a cylin-

der oscillating harmonically in the cross-flow direction. They used particle imaging

to visualize the streamline patterns and vorticity distributions. The instantaneous
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structure of the near wake was determined using particle tracking velocimetry (PTV)

and particle image velocimetry (PIV). They considered low and moderate Reynolds

numbers of 185 and 5,000 and a nondimensional motion amplitude of 0.2. They

observed vorticity switching in the wake as the motion frequency increases. This

switching is not significantly altered by the presence of small-scale Kelvin-Helmholtz

vortices that coexist with the large-scale (Kármán) vortices.

Carberry et al. (2001) experimentally investigated the wake of a cylinder oscillating

in the cross-flow direction with a nondimensional amplitude of 0.5 and a Reynolds

number of 2,300. The motion was implemented via a stepper motor system. They

concluded that the interaction between the instability waves in the wake and the

motion of the cylinder leads to a transition from one mode to another. This interaction

depends strongly on the ratio of the motion frequency to the natural vortex-shedding

frequency. A jump in the lift force was observed within the synchronization band. A

corresponding jump in the phase of the lift relative to the motion was also observed.

Dong et al. (2004) and Dong and Karniadakis (2005) solved the three-dimensional

Navier-Stokes equations using direct numerical simulation (DNS) to capture the flow

field around a fixed and a driven cylinder in the cross-flow direction with a length-

to-diameter ratio of π with a nondimensional motion amplitude of 0.3 at a moderate

Reynolds number of 10,000. They used the spectral element method with 300 million

degrees of freedom, which reflects a tremendous resolution of the grid as required by

the DNS for this Reynolds number. Different polynomial orders were used, ranging

from 5 to 8. The resolved domain extended 20 diameters upstream and 50 diameters

downstream, with a cross-flow dimension of 40 diameters. The problem was solved in a

coordinate system attached to the cylinder. Good agreement with some experimental

data (Bishop and Hassan, 1964; Gopalkrishnan, 1993; Williamson, 1996; Norberg,
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2003) was observed.

Facchinetti et al. (2004) modeled the VIV problem by coupling van der Pol oscillator

for the lift with a linear oscillator for the cylinder motion. Three types of wake forcing

were investigated: displacement, velocity, and acceleration forcings. Comparing the

outcomes of the model with some experimental results for forced cylinder (Vickery and

Watkins, 1962; Bishop and Hassan, 1964; King, 1977; Griffin, 1980; Pantazopoulos,

1994), they concluded that the acceleration forcing matches the data better than

the other two. Then, they investigated the dynamical behavior of the three forced

oscillators as the reduced velocity is varied in a nonstationary fashion. We note that

there are several limitations in their study. First, the model is based on a constant

Strouhal number and constant amplitude of the lift of the fixed cylinder, regardless of

the Reynolds number. Second, the selected forced-cylinder data used to predict the

van der Pol parameters exhibit large dispersion. Third, the proposed model cannot

capture the 180o-jump in the phase between the displacement and the lift. Fourth,

tuning the forced-oscillator parameters based on a certain set of recorded data and

then using the same parameters to model the VIV problem at a different Reynolds

number may be questionable because, if the VIV is inhibited, the lift model (which

automatically reduces to a free-oscillator) would not be able to reproduce the limit

cycle of the lift.

Kaiktsis et al. (2007) numerically studied the forces exerted on a cylinder driven har-

monically in the cross-flow direction at a Reynolds number of 400. They solved the

two-dimensional Navier-Stokes equations in a coordinate system fixed to the cylinder.

The spectral element method was used with polynomial functions of order 9. The

domain extended 20 diameters upstream, 60 diameters downstream, and 34 diameters

in the cross-flow direction. They considered the cases when the the motion frequency
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is set equal to, lower than, and higher than the natural vortex-shedding frequency.

Therefore, they considered discrete frequencies of motion and did not examine the

frequency-response curves. In their analysis, the lift force was decomposed into a

component in phase with the velocity and a component 180o out of phase with the

acceleration. Variations of these components, along with other flow parameters were

examined over a range of nondimensional motion amplitudes from 0 to 0.6 for the

three forcing cases. Smooth variations of the force coefficients and regular vortex pat-

terns were found when the motion frequency was below the natural vortex-shedding

frequency. Sharp changes in the force coefficients were found when the motion fre-

quency was above the natural vortex-shedding frequency.

Ogink and Metrikine (2008) claimed that the component of the lift in phase with the

acceleration has linear correlation with the forcing amplitude (i.e., the acceleration

amplitude, thus the motion amplitude) in the experiments of Gopalkrishnan (1993)

with a cylinder forced in the cross-flow direction at a Reynolds number of 10,000,

which is not satisfied by the classical forced van der Pol model. Hence, they started

from where Facchinetti et al. (2004) ended (i.e., the acceleration-forcing van der Pol)

and modified the cubic term from q2q̇ to 1/(a + b q2)q̇, where a and b (a < 1)

are model-tuning parameters, and q is the model variable representing the ratio of

the lift amplitude for the elastically mounted cylinder (under lock-in conditions) and

the lift amplitude for the fixed cylinder needs to be changed. There are multiple

concerns with this study. First, the experimental data do not in fact show strong

linear correlation with the forcing amplitude as suggested by the figure made by

Ogink and Metrikine (based on the measurements of Gopalkrishnan). Second, the

modified model does not reasonably reproduce the linear correlation on which it was

justified. Third, the results of the modified model do not compare well with the
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experiments with elastically mounted cylinders of Khalak and Williamson (1999) and

Feng (1968) in terms of capturing the multi-valuedness, lock-in range, and hysteresis.

Fourth, as mentioned earlier, the idea of tuning the model parameters based on a

set of data corresponding to a certain Reynolds number and then using them at a

different Reynolds number leads to mismatching in modeling the free-wake case.

For studies of a one-degree-of-freedom moving cylinder, usually the transverse mo-

tion is considered and in-line motion is restrained because some studies show that

induced in-line motion is one order of magnitude smaller than the transverse motion

(Vandiver, 1987; Torum et al., 1996). Tanida et al. (1973) studied a one-degree-

of-freedom cylinder oscillating harmonically in the in-line direction. The first part

of their study considered a single circular cylinder oscillating in a uniform stream,

whereas the second part was dedicated to the case of a cylinder oscillating in the wake

of another cylinder (i.e., tandem cylinders). In both parts, they measured the lift and

drag forces on the oscillating cylinder and observed the synchronization phenomenon

regardless of the existence of the upstream fixed cylinder. For the in-line oscillation

case, the cylinder was made to oscillate harmonically with an amplitude equal to

14% of its diameter. Whereas the amplitude was kept constant, the frequency was

varied from below to above the natural vortex-shedding frequency (or Strouhal fre-

quency according to their terminology). Each experiment corresponded to a single

frequency. Individual experiments lasted for at least 20 s, which was long enough

for the transient to decay and the steady state to develop. The effects of end plates

were minimized by having a proper setup, including a large liquid tank relative to

the cylinder diameter and low turbulence with high uniformity of the velocity distri-

bution along the span of the cylinder. They reported that, during synchronization,

the fluctuating lift ‘vanishes’; its magnitude drops to very small levels. They related
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this to a positive aerodynamic damping induced by the cylinder oscillation, and to

the work done by the drag force.

Kim and Williams (2006) measured the lift and drag forces on a cylinder driven

harmonically in the in-line direction in air at a Reynolds number of 15,200. The

cylinder diameter was 50.8 mm and its length was 610 mm. End plates were 510 mm

apart so the aspect ratio was 10. A printed circuit motor connected to a Scotch-yoke

mechanism was used to control the motion. The main part of the experiment was

conducted at a very small oscillation amplitude of 3.5% of the diameter. Also, the

motion frequency was 0.8 the natural vortex-shedding frequency. This is far beyond

the synchronization in case of in-line motion. Their goal was to study the nonlinear

coupling between the lift and drag. Whereas their study revealed interesting facts

about this nonlinear interaction and explained the structure of the power spectra,

fixing the frequency at a single value did not allow synchronization to take place. It

also did not show how this force coupling changes for different frequencies.

1.1 Synopsis of the Dissertation

We followed computational and analytical approaches in this Dissertation. The analy-

sis and results are presented as follows. We start with a description of the CFD

simulation of the flow field. Then, we present the models proposed for the lift and

drag coefficients on a cylinder. Next, we use modern methods of nonlinear dynam-

ics to characterize the wake responses within and outside the synchronization (or

lock-in) band due to cross-flow motion and study the route to chaos. After that, we

examine how the lift and drag coefficients are affected by the manner in which the

frequency of the cross-flow motion is varied: stationary, quasi-stationary, discrete, or
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nonstationary. Finally, we examine the case of in-line motion and the associated lift

suppression, instantaneous wake symmetry, and mean drag drop, which take place at

a critical motion frequency, and the dependence of that frequency on the Reynolds

number and motion amplitude. We also use higher order spectral methods to analyze

the coupling between the lift and drag below and above that frequency and compare

several features of the synchronization due to in-line motion to that due to cross-flow

motion.
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Chapter 2

Computational Fluid Dynamics

Simulations

The fluid is assumed to be incompressible and two-dimensional. Its motion is governed

by the Navier-Stokes equations

∇ · u = 0 (2.1)

∂

∂t
u+ u · ∇ u = −1

ρ
∇p+ ν ∇2 u (2.2)

To avoid the computational difficulties resulting from the poor coupling between the

continuity and momentum equations, Equations (2.1, 2.2), for incompressible fluids,

we use the artificial-compressibility method (Chorin, 1967; Soh and Goodrich, 1988;

Rogers et al., 1991) and improve the coupling between the pressure and velocity fields

by adding pseudo local time-derivative terms to both the continuity and momentum

equations. Nayfeh et al. (2003) used this method to solve the flow over a fixed cylinder

over a very wide range of Reynolds numbers, and Owis and Nayfeh (2001, 2004) used

it and solve multi-phase flows over axisymmetric projectiles. In vector form, and with

arbitrary Lagrange-Euler description, the governing equations become
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∂

∂t
q̂ +

∂

∂τ
q +

∂

∂x
E − Ev +

∂

∂y
F − Fv = 0 (2.3)

where

q̂ =

⎛⎜⎜⎜⎜⎜⎝
0

u

v

⎞⎟⎟⎟⎟⎟⎠; q =
⎛⎜⎜⎜⎜⎜⎝
p

u

v

⎞⎟⎟⎟⎟⎟⎠; E =
⎛⎜⎜⎜⎜⎜⎝

ρ β̂ u

u (u− ug) + p
u v

⎞⎟⎟⎟⎟⎟⎠; F =
⎛⎜⎜⎜⎜⎜⎝

ρ β̂ v

u v

v (v − vg) + p

⎞⎟⎟⎟⎟⎟⎠

Ev = ν

⎛⎜⎜⎜⎜⎜⎝
0

2∂u
∂x

∂u
∂y
+ ∂v

∂x

⎞⎟⎟⎟⎟⎟⎠; Fv = ν

⎛⎜⎜⎜⎜⎜⎝
0

∂u
∂y
+ ∂v

∂x

2∂v
∂x

⎞⎟⎟⎟⎟⎟⎠
where ug and vg are the velocity components of the grid points in the x and y di-

rections, respectively. The original continuity equation, Equation (2.1), is elliptic in

space, whereas the modified continuity equation is elliptic in space but hyperbolic

in pseudo-time. The pseudo wave speed β̂ provides a mechanism for propagating

information throughout the domain and drives the divergence of the velocity towards

zero at each time step through sub-iterations in the pseudo time τ . Unlike the semi-

implicit method for pressure-linked equations (SIMPLE) of Patankar and Spalding

(1972), no terms are neglected from the differential operator (Fletcher, 1991). The

value of β̂ controls how fast the pseudo terms vanish and the original equations,

Equations (2.1, 2.2), are restored. Examining numerical studies that have employed

the artificial-compressibility method shows that β̂ can vary by orders of magnitude

(Muldoon and Acharya, 2007). Some studies chose β̂ to be close to a dominant
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convective velocity in the problem (Marx, 1994). However, there is no universal op-

timum value for β̂. Rather, it depends on the problem configuration, grid resolution,

and time step. We fix β̂ at 4.0 U2∞ in all of our simulations. We examined different

(smaller and larger) values of β̂ and found that this value is very reasonable in terms

of the rate of convergence at the sub-iteration level.

The modified governing equations are first nondimensionalized using the cylinder di-

ameter D as a reference length, the free-stream velocity U∞ as a reference velocity,

and ρ U2∞ as a reference pressure, where ρ is the fluid density. They are then trans-

formed into curvilinear body-fitted coordinates and integrated over an O-type grid.

We use second-order central differencing in space for the viscous terms and an upwind

scheme for the inviscid terms. We use a second-order three-level implicit scheme for

time integration. The algebraic system of equations is solved using the line-relaxation

scheme. The continuity and momentum equations are solved simultaneously, result-

ing in block tridiagonal systems. This is different from the sequential approach used

in other methods, such as the marker-and-cell (MAC) of Harlow and Welch (1965).

The physical domain and structured grid are shown in Figure 2.1. The near-boundary

cells are shown in Figure 2.2. There are 150 points along the quasi-radial direction and

150 points along the quasi-angular direction. The quasi-angular spacing is uniform.

A total of 150 points are distributed on either the inner boundary of the grid (the

cylinder surface) or the outer boundary of the grid (whose radius is 25 D). These

points are connected by straight quasi-radial lines at each time step, and 150 grid

points are distributed along each of them. The spacing along these lines is nonuniform

and a single-parameter stretching function is used, which is a generalized form of the

one used by Al-Jamal and Dalton (2004). For grid points with radial index i and
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Figure 2.1: The physical domain and the used grid at a zero-displacement instant.

angular index j, the distance from the cylinder surface is obtained from

d(i, j)/D = a e (i−1) ∆ξ(j) − 1 (2.4)

where ξ is the transformed quasi-radial coordinate, ∆ξ(j) is the uniform ξ spacing

along the j-th quasi-radial line, and a is the stretching parameter. At the cylinder

surface, ξ(i = 1, j)=0 and d(i = 1, j)=0. For a fixed cylinder, the grid is not deformed

and the quasi-radial and quasi-angular lines become radial lines and co-centric circles,

respectively, forming a polar orthogonal grid. The first radial spacing (at the cylinder)

is 0.009 D, which increases to 0.724 D in the far field. As a increases, the spacing
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Figure 2.2: Close-up near the inner and outer boundaries of the O-type grid.

near the cylinder decreases, whereas the spacing near the outer boundary decreases.

To avoid extremely elongated cells and to keep the first radial spacing below 0.01 D,

we set a equal to 0.3. Lower values cause the near-surface cells to be very stretched,

whereas larger values cause the near-surface resolution to decrease beyond the desired

level.

We model the turbulence scales using an eddy viscosity. We tried both of the Baldwin

and Barth (1990) and the Spalart and Allmaras (1992) models and found that the

former gives better results for the fixed cylinder, whereas the latter overpredicts the

mean of the drag coefficient. Also, the Baldwin and Barth model is simpler and

easier to implement. It is suitable for both internal and external flows (Brown et al.,

2006). The Baldwin and Barth model is also a reasonable compromise between the

two-equation models, which are more expensive and sometimes their results are in

less agreement with experiments (Campioli, 2005) and the algebraic ones, which are

acceptable only for attached wall-bounded flows (Wilcox, 2001). Since we limit most

of our simulations to low Reynolds numbers (Re 500 and below), the turbulence levels
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are small, thus the choice of the turbulence model is not critical.

At the inflow region, a uniform horizontal flow is applied. At the outflow region, the

pressure is set equal to the free-stream value, whereas the velocities are extrapolated

from the interior domain. At the cylinder surface, no-slip and no-penetration condi-

tions are applied so that there is no relative motion between the cylinder and the fluid

at the surface. This leads to continuous coupling between the exciting motion and

the flow field, where the cylinder velocity is applied as a boundary condition at the

grid points forming the cylinder. Because the motion is specified, the exact cylinder

velocity is computed at each time step without any lagging and without the need of

a predictor-corrector algorithm.
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Figure 2.3: Comparisons of the lift, drag, and mean base pressure coefficients obtained

at Re = 150 with the results of Liu et al. (1998). Part (a) is reprinted with permission

from Elsevier.

In previous studies (e.g., Marzouk et al., 2007; Marzouk and Nayfeh, 2008a), we
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Figure 2.4: Comparison of the pressure coefficient Cp distribution obtained at Re =

100 with the LES results of Dalton (2006). Part (a) is printed with permission from

Professor Charles Dalton.

validated the simulation against several experimental and numerical results. In Fig-

ure 2.3, we compare our results at Re 150 with the results of Liu et al. (1998), who

simulated the laminar flow over a cylinder using also the artificial compressibility

approach. There is good agreement between our results and theirs for the histories

of the lift and drag coefficients, CL and CD, as well as the mean base pressure CPb.

The latter agrees well with the experiments of Williamson and Roshko (1990). In

Figure 2.4, we compare the distribution of the pressure coefficient at Re=100 with

that obtained by Dalton (2006) using LES simulations. The two solutions match

quite well with each other.

Figure 2.5 shows the distribution of the wall pressure coefficient at Re=200 and 400 for

a fixed cylinder; they are in good agreement with the experiments of Norberg (1993).

In the experiments, the pressure fluctuations were measured with an Endevco 8507C

miniature pressure transducer using a 2-mm diameter cylinder with 10-mm end plate

diameter.

We also validate our simulations against some results of Stewart et al. (2005), who
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Figure 2.5: Comparison of the wall pressure coefficient from our simulations with

measurements of Norberg (1993) at Re=200.

used the spectral element method to solve the two-dimensional Navier-Stokes equa-

tions for the flow over an oscillating cylinder in the cross-flow direction at Re=200.

They used a C-type mesh, which extended from 15 diameters upstream to 23 di-

ameters downstream and had a semi-width of 15 diameters. These dimensions are

comparable to ours, but our O-type mesh is larger, which minimizes the blockage ef-

fect. They used Lagrangian interpolating polynomials of eighth order and found that

the nondimensional natural vortex-shedding frequency to be 0.198, which is close to

our value of 0.192 at the same Re. In fact, our value is closer to the measured value

0.190 of Kovasznay (1949), and 0.189 of Roshko (1953). In Figure 2.6, we compare

the time history of our computed CL with that of Stewart et al. for A/D=0.199

and forcing frequency equal to 1.101 times the natural vortex-shedding frequency.

Clearly, there is good agreement not only in the magnitude of CL, but also in the

phase between the displacement Y and CL.

19



Time
990 995 1000

-1

-0.5

0

0.5

1
(b)

(a)

Figure 2.6: Variations of lift coefficient CL and cross-flow motion Y with time for

A/D=0.199 and forcing frequency equal to 1.101 times the naturel vortex-shedding

frequency: (a) Stewart et al. (2005) and (b) our simulation. The solid line is for CL

and the dashed line is for Y .
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We compare our simulations with the reported experimental data of Tanida et al.

(1973) for a cylinder oscillating harmonically in the in-line direction. Their exper-

iments were conducted in oil at Re=80, with an in-line motion amplitude of 14%

of the cylinder diameter. To reduce three-dimensionality effects, measurements were

taken at the central section of the test cylinder. Figure 2.7 shows the component of

the drag coefficient CD in phase with the velocity of the in-line motion as a function

of the nondimensional motion frequency fE . Again, there is good agreement between

our simulations and the measurements.
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Figure 2.7: Comparison between our simulations and the measurements of Tanida et

al. (1973) for the CD component in phase with the harmonic in-line cylinder velocity

CD,V at Re=80 with A/D=0.14.
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Chapter 3

Improved Models for the Lift and

Drag on a Fixed Cylinder

3.1 Synopsis

This chapter presents an improved wake oscillator to model the lift coefficient on a

fixed cylinder in a uniform stream. A quadratic algebraic equation is also proposed to

relate the drag coefficient to the lift coefficient. Unlike previously-proposed models,

the developed model captures not only the basic features of the wake, such as the

frequency and amplitude of the lift and drag, but also detailed features, such as the

phase angle between the lift and drag.

3.2 Lift and Drag on a Fixed Cylinder

It is very useful to start by examining the typical behavior of the lift and drag co-

efficients. This will facilitate the rest of the discussion in this chapter. Figure 3.1

shows time histories and corresponding power spectra (magnitude power) of CL and
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Figure 3.1: Time histories and corresponding power spectra of the lift and drag

coefficients obtained from the CFD simulation at Re = 500.
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Figure 3.2: Projection of the phase portrait onto the CD − CL plane at Re = 500.

CD on a fixed cylinder at Re = 500. The lift power spectrum shows a large peak with

amplitude a1 at the natural vortex-shedding frequency fs and a smaller peak a3 at

the its third harmonic 3fs. The corresponding time history shows the lift coefficient

fluctuating periodically about the origin. Therefore, one infers that the lift coefficient

oscillates at the shedding frequency and that its behavior is influenced by cubic, and,

to lower extent, higher-order odd nonlinearities.

By contrast, the drag power spectrum shows a large peak a2 at twice the shedding

frequency (2fs) and a smaller peak a4 at the even harmonic 4fs. The corresponding

time history shows the drag fluctuating periodically about a non-zero mean that

reaches a constant value at steady state. This implies that the drag coefficient consists

of a slowly varying mean term and a fluctuating term. The fluctuating term mainly

varies quadratically with the lift coefficient, as the influence of the higher order even

nonlinearities is quite small. The corresponding drag-polar plot in Figure 3.2 clearly

illustrates this quadratic coupling between the drag and lift coefficients.
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3.3 Modeling Background - Lift

Nayfeh et al. (2003) investigated two wake-oscillator models of the lift, namely, the

van der Pol and Rayleigh oscillators. Using higher order spectral moments analysis,

they found that for, a few cases, the phase angle φ13 between the lift components at fs

and 3fs is around 90
◦. Consequently, they concluded that the van der Pol oscillator

C̈L + ω2CL = μĊL − αC2LĊL (3.1)

is the more suitable choice as an efficient and simple model for the steady-state lift

coefficient. The angular frequency ω in equation (7) is related (but not equal) to

the angular shedding frequency ωs = 2πfs and the parameters μ and α represent

the linear and nonlinear damping coefficients, respectively. The values of μ and α

are taken positive, so that the linear damping is destabilizing while the nonlinear

damping is stabilizing. As a consequence, small disturbances grow and large ones

decay, both eventually approaching a stable limit cycle. The values of the parameters

in Equation (3.1) depend on the Reynolds number and their values are estimated

based on the steady-state CFD lift data.

Using the method of multiple scales (Nayfeh, 1973, 1981) and assuming that the

oscillator is weakly damped (i.e., μ = O( ) and α = O( )) where 1 is a small

bookkeeping parameter), we obtained the following second-order approximate solu-

tion:

CL(t) = a(t) 1 +
1

16ω2
μ− 1

4
αa(t)2

2
sin[ωt+ θ(t) + η(t)]

− α

32ω
a(t)3 sin[3ωt+ 3θ(t)] + · · ·

≡ a1(t) sin[ωt+ θ(t) + η(t)]− a3(t) sin[3ωt+ 3θ(t)] + · · · (3.2)

where η(t) = tan−1 16ω
αa(t)2−4μ and the amplitude a(t) and phase θ(t) are governed by
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the modulation equations

ȧ =
1

8
(4μa− αa3) (3.3)

θ̇ = − 1

8ω
μ2 − 3

2
αμa2 +

11

32
α2a4 (3.4)

Setting ȧ = 0 in Equation (3.3), we obtain the steady-state values of a from the

solution of a(4μ − αa2) = 0. There are two possibilities: the trivial solution a = 0

and the nontrivial solution a = 2 μ/α. For the nontrivial solution, it follows from

Equation (3.2) that

a1 = 2
μ

α
and a3 =

μ

4ω

μ

α
(3.5)

Moreover, we find that the angle η = 1
2
π and, from Equation (3.4), we obtain the cor-

responding expression for θ̇ = −μ2/16. Consequently, the angular shedding frequency
is given by

ωs = ω + θ̇ = ω − μ2

16ω
(3.6)

Equation (3.6) shows that the angular frequency ω of the van der Pol oscillator is not

exactly equal to the angular shedding frequency ωs, as one would predict from a first-

order expansion (Nayfeh et al., 2003). Hence, an improved second-order approximate

expression for the steady-state lift coefficient becomes

CL(t) ≈ a1 cos(ωst) + a3 cos(3ωst+ 1
2
π) (3.7)

The methodology used to identify the system parameters for a given Reynolds number

is as follows:

1. The CFD solver is used to calculate the time history of the lift coefficient.

2. Spectral analysis is performed on the steady-state part of the CFD data to

extract the values of a1, a3, and fs (or ωs).
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3. Equations (3.5) and (3.6) are then solved for the nonlinear and linear damping

coefficients α and μ and the angular frequency ω.

4. With all of the parameters identified, Equation (3.1) is numerically integrated

using a Runge-Kutta routine and the results are compared with the CFD results.

3.4 Modeling Background - Drag

Referring to Figure 3.1, we note that the drag consists of two major components.

The first is a mean component that monotonically approaches a constant value in the

steady state; this component is assumed to be independent of the lift. The second is

an oscillatory component related to the lift and has a frequency equal to twice the

lift frequency of oscillation.

Since the lift and drag have a common source, the pressure distribution on the cylinder

surface, and in view of this two-to-one frequency relationship, Nayfeh et al. (2003)

reasoned that the drag is quadratically related to the lift in some fashion. They

examined the phase relation between the periodic components of the drag and lift

and found that it is near 270◦. Hence, they inferred that the periodic component of

the drag must be proportional to −CLĊL and proposed the drag model

CD(t) = CD − 2 a2
ωsa21

CL(t)ĊL(t) (3.8)

where a2 is the amplitude of the drag component at 2 fs and denotes the mean

value. For steady-state behavior, the mean component of the drag CD = CD ss is

constant. The constant value CD ss is determined from the CFD steady-state time

history of the drag and the value of a2 is determined from its spectral analysis.
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3.5 Motivation for Improved Lift and Drag Models

The results presented in the previous section are solely based on matching the ampli-

tudes and frequencies of the CFD and model results. Even though the agreement was

generally acceptable, phase errors exist, especially in the drag, and we believe that

the models need to be improved. Although the use of higher order spectral analysis

of the CFD results showed that the phase φ13 between the lift components at fs and

3fs is nearly 90
◦, it actually differs from one case of Reynolds number to another. In

fact, in some of our calculations, we found up to ±25◦ deviation from 90◦. Obviously,
this wide variation in the phase is not fully accounted for in the van der Pol model in

Equation (3.1). This fact does not produce a real problem as long as one is concerned

with the time histories because a3 is usually two orders of magnitude smaller than

a1. However, we would like to have the to be model very accurate in both of the time

and spectral domains as we believe this excellent matching is important in case of

extending the model to the moving-cylinder case.

Similarly, for the drag CFD calculations, we found that the phase φ12 between the

lift component at fs and the drag component at 2fs deviates from 270◦ by as much

as 85◦. Qin (2004) proposed that the quadratic term in the drag model should be of

the form C2L instead of −CLĊL. He also found suggested a linear lift term in the drag
model to account for linear coherence at fs and 3fs. Thus, the model contained only

a single linear term and a single quadratic term. Because we found that the drag

components at fs and 3fs are negligible with respect to the fundamental one, we do

not have linear terms in our drag model.
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3.6 Improved Lift Model

Here, we modify the van der Pol oscillator by adding a Duffing-type nonlinearity to

Equation (3.1), resulting in the new lift model

C̈L + ω2CL = μĊL − αC2LĊL − γC3L (3.9)

The coefficient γ is determined based on matching the phase φ13 obtained from the

CFD data to the phase obtained from solving Equation (3.9). In this process, we use

the method of harmonic balance to determine approximate solutions of the model.

These solutions along with spectral analysis of the CFD data are used to identify all

of the parameters in Equation (3.9).

Table 3.1: Lift parameters at different Reynolds numbers.

Re = 300 Re = 500 Re = 1, 000

fs 0.211 0.217 0.229

a1 0.914 1.009 1.229

a3 0.012 0.022 0.042

φ13 94◦ 95◦ 108◦

ωs 1.324 1.364 1.441

ω 1.324 1.375 1.568

μ 0.141 0.242 0.383

α 0.677 0.956 1.044

γ −0.025 −0.031 −0.322

We seek a solution for the lift coefficient of the form

CL(t) = c1 cos(ωst) + c2 sin(ωst) + c3 cos(3ωst) + c4 sin(3ωst) (3.10)
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Figure 3.3: Comparisons of the steady-state time histories of the lift coefficients

obtained with the CFD simulation and the improved model: (a) Re = 300 and (b)

Re = 500.

Then, upon substituting Equation (3.10) into Equation (3.9) and separating the terms

multiplying the different sine and cosine functions, we obtain the linear system

Ay = b (3.11)

where yT = {ω2,μ,α, γ}, bT = {c1, c2, 9c3, 9c4}ω2s , and the Aij entries of the matrix
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A are

A11 = c1, A21 = c2, A31 = c3, A41 = c4,

A12 = −c2ωs, A22 = c1ωs, A32 = −3c4ωs, A42 = 3c3ωs,

A13 =
1

4
c32 − c4c22 + c21c2 + 2c23c2 + 2c24c2 − 2c1c3c2 + c21c4 ωs,

A23 =
1

4
−c31 − c3c21 − c22c1 − 2c23c1 − 2c24c1 − 2c2c4c1 + c22c3 ωs,

A33 =
1

4
−c32 + 6c4c22 + 3c21c2 + 3c34 + 6c21c4 + 3c23c4 ωs,

A43 =
1

4
−c31 − 6c3c21 + 3c22c1 − 3c33 − 3c3c24 − 6c22c3 ωs,

A14 =
1

4
3c31 + 3c3c

2
1 + 3c

2
2c1 + 6c

2
3c1 + 6c

2
4c1 + 6c2c4c1 − 3c22c3 ,

A24 =
1

4
3c32 − 3c4c22 + 3c21c2 + 6c23c2 + 6c24c2 − 6c1c3c2 + 3c21c4 ,

A34 =
1

4
c31 + 6c3c

2
1 − 3c22c1 + 3c33 + 3c3c24 + 6c22c3 ,

A44 =
1

4
−c32 + 6c4c22 + 3c21c2 + 3c34 + 6c21c4 + 3c23c4

The cj are determined by matching the solution in Equation (3.10) with the steady-

state CFD simulation, which is expressed as

CL(t) = a1 cos(ωst) + a3 cos(3ωst+ φ13) (3.12)

This yields the coefficients c1 = a1, c2 = 0, c3 = a3 cosφ13, and c4 = −a3 sinφ13.
Listed in Table 3.1 are the results for the cases Re = 300 and 500. From the values of

α and γ, the Duffing cubic term is small, but should not be neglected in the modeling.

In Figure 3.3, we plot the steady-state time histories of the lift coefficient obtained

from the improved model and the CFD simulations. For both cases, there is excellent

agreement between the two results.
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3.7 Improved Drag Model

In the simulations we have conducted thus far, we found that the phase φ12 is not

around 270◦; the actual value of the phase may vary from one case of Reynolds

number to another by up to 85◦, which is quite significant. Therefore, we propose a

new model in which the drag is proportional to both CLĊL and C
2
L in the following

manner:

CD(t) = CD + 2k1
a2
a21

C2L − C2L + 2k2
a2
ωsa21

CLĊL (3.13)

The first expression in Equation (3.13) represents the mean component of the drag,

which reaches a constant value CD ss in the steady state. The term − C2L in the

second expression in Equation (3.13) negates the DC component introduced by C2L.

The contributions of both quadratic expressions to the overall behavior of the drag

are determined by matching the amplitude a2 and phase φ12 obtained from the model

with the CFD results at steady state.

To this end, we substitute Equation (3.12) into Equation (3.13), expand the result,

and obtain

CD(t) = CD ss + a2 [k1 cos(2ωst)− k2 sin(2ωst)] + · · · (3.14)

Then, by comparing Equation (3.14) with the CFD result

CD(t) = CD + a2 cos(2ωst+ φ12) + · · · (3.15)

we obtain k1 = cosφ12 and k2 = sinφ12. In Table 3.2, we present the drag model

parameters for Re = 300 and 500. It is clear from the values of k1 and k2 that the

term C2L can play a role nearly as influential as the term CLĊL on the behavior of the

drag coefficient.
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Table 3.2: Drag parameters at different Reynolds numbers.

Re = 300 Re = 500 Re = 1, 000

CD ss 1.38 1.37 1.41

a2 0.080 0.065 0.152

φ12 335.1◦ 334.9◦ 331◦

k1 0.907 0.906 0.875

k2 −0.421 −0.424 −0.485

In Figure 3.4, we plot the steady-state time histories of the drag coefficient for Re =

300 and 500. Results obtained from the improved drag model are compared with the

CFD simulation results and excellent agreement is demonstrated for all of the cases

presented.
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Figure 3.4: Comparisons of the steady-state time histories of the drag coefficient

obtained from the CFD simulation and the improved model: (a) Re = 300 and (b)

Re = 500.
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Chapter 4

Improved Wake Oscillator for a

Cylinder with Cross-Flow Motion

4.1 Synopsis

In this chapter, we extend the free-wake oscillator presented in the previous chapter

to an oscillator for the wake of a cylinder moving in the cross-flow direction. We

consider several forced oscillators that employ common forcing terms as well as in-

troduce oscillators with new forcing types. Each model corresponds to a different

structural coupling (or forcing) term, which can be external (additive), or parametric

(multiplicative), or a combination of both. We evaluate the performances and stabil-

ity limits of these oscillators and their ability to model the wake of a moving cylinder

using analytical techniques. We investigate the impact of the model parameters on

their prediction for different excitation frequencies. These parameters give a great

deal of flexibility to the proposed oscillators, enabling their tuning for a wide range

of problems. The new oscillators have dual forcing types (external and paramet-

ric), with either velocity-based or acceleration-based forcing. They can capture the
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multi-valuedness and jumps in the frequency-response curves, in contrast to existing

models that either capture one branch of the frequency-response curve (low amplitude

or large amplitude) or replace the jump by a steep variation.

4.2 Analysis

We start with the forced version of the improved free-wake oscillator developed by

Marzouk et al. (2007) for the lift coefficient on a fixed cylinder. This model with a

generic forcing term is

C̈L + ω2 CL − μ ĊL + α C2L ĊL + γ C3L = Forcing (4.1)

For the free-wake case (i.e., fixed cylinder), there is no forcing term and the right-hand

side of Equation (4.1) is zero. We pick a typical case of a low Reynolds number where

two-dimensionality can be reasonably assumed. Our aim is to choose the forcing term

on the right-hand side of Equation (4.1) to predict the lift on a cylinder undergoing

forced oscillations. We do not try to fit a certain set of experimental or numerical data.

Rather, we search for the proper forcing terms that enable the model to capture the

multi-valuedness of the response (and hence the hysteretic phenomenon). Therefore,

we do not compare CL(t) in the subsequent sections with a particular set of data. Any

stable point on the frequency-response curves to be presented later corresponds to a

version of Equation (4.1) with a unique right-hand side. This version of the equation

can be integrated numerically and the resulting CL(t) is periodic, like the one shown

in Figure 3.3 but with different frequency and amplitude.

The numerical and experimental studies (e.g., Parkinson et al., 1968; Korpus et al.,

2000; Carberry et al., 2001 and 2002; Marzouk and Nayfeh, 2007 and 2008a) show that

the frequency-response curve of the lift exhibits a softening-type nonlinearity. The
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amplitude of the synchronized lift is small at low frequencies and suddenly increases

to high values as a critical frequency is exceeded. We tried several forcing terms

in Equation (4.1) and examined the synchronized response for each case. A good

candidate for the synchronized wake oscillator should be able to capture the observed

jump in the response and its softening behavior. We used the method of harmonic

balance to compute periodic solutions and verified the results using a fourth-order

Runge-Kutta scheme.

We express the synchronized lift coefficient (CL) as

CL (t) =
i, odd

ai cos (i Ω t) + bi sin (i Ω t) (4.2)

It is reasonable to keep the first and third harmonics only because higher harmonics

have relatively negligible amplitudes. We note that the lift spectrum consists of a

main peak (at the forcing frequency Ω) and its odd harmonics only. This holds

for free wakes also, but the main lift component is at the natural vortex-shedding

frequency, ωs, which is the angular natural vortex-shedding frequency.

It is better to use relative quantities when showing the results rather than the absolute

ones. The results are presented in terms of the lift amplitude CL of the forced wake

relative to the free wake value CLo and the angular forcing frequency Ω relative to

the angular natural vortex-shedding frequency ωs of the free wake.

4.3 Oscillators with External Forcing

We start with external forcing terms and consider three cases where the forcing is

harmonic and related to either the displacement, velocity, or acceleration; that is,

Forcing = K cos (Ω t) (4.3)
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Forcing = −K Ω sin (Ω t) (4.4)

Forcing = −K Ω2 cos (Ω t) (4.5)

The responses of the wake oscillator with different forcing amplitudes K are shown

in Figure 4.1.
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Figure 4.1: Prediction of the wake oscillator with external forcing having different

amplitudes.
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Whereas the three forcing types result in quite similar response profiles, the acceleration-

type forcing causes the frequency-response curve to be biased to the high-frequency

side. Using a displacement-type forcing results in an opposite effect. Because all of

the responses are continuous and single-valued, these forcing types do not reproduce

all of the features of the wake. This is a very important finding and explains why the

models proposed in the literature do not capture the discontinuity in the response be-

cause they typically have an external velocity-type forcing term, as in Equation (4.4).

We should add here that this velocity-type forcing was merely an arbitrary choice by

Hartlen and Currie (1970) and was not based on any, even simplified, analysis.
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Figure 4.2: Stable solution of the forced oscillator.
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Figure 4.3: Unstable solution of the forced oscillator.

A horizontal line in each plot in Figure 4.1 at a value ≈ 0.707 represents the stability
limit. The lift is periodic and synchronized at the forcing frequency above these lines,
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whereas it is either periodic with a large period or aperiodic and nonsynchronized

below them. We are not interested in these unstable solutions and thus do not show

them in Figure 4.1 and the subsequent figures. At these stability limits, instability

occurs, resulting in the periodic solution losing stability. An example of a stable

periodic CL(t) is given in Figure 4.2, and an example of an unstable solution is given

in Figure 4.3. These examples correspond to the points Ω/ωs=0.8 and 0.75 in the

middle plot of Figure 4.1, with the forcing amplitude K=0.5.

Before proceeding to other forcing types, we verified that two odd-harmonic terms

produce accurate results. Adding even harmonics to Equation (4.2) has no effect

because their amplitudes turn out to be zeros. Also, adding a fifth-harmonic term

has almost no effect on the wake response, as shown in Figure 4.4.
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Figure 4.4: Responses predicted with external acceleration-based forcing for different

numbers of harmonic terms in the method of harmonic balance.
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4.4 Oscillators with Parametric Forcing

We next study parametric (or multiplicative) forcing terms of the following types:

Forcing = K cos (Ω t) C2L (4.6)

Forcing = −K Ω sin (Ω t) C2L (4.7)

Forcing = −K Ω2 cos (Ω t) C2L (4.8)

The responses of the oscillators for the same forcing amplitude of K = 1.2 are given

1.2 C L
2 cos(Ω t)

-1.2 C L
2 Ω 2cos(Ω t)

-1.2 C L
2 Ω sin(Ω t)
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Figure 4.5: Frequency-response curves of wake oscillators with parametric forcing.

in Figure 4.5. This forcing amplitude was selected so that the response range matches

the high-amplitude lift obtained for this forced wake problem in some numerical and

experimental studies. Also, the choice of C2L rather than CL was necessary to avoid

a DC component and even harmonics in the response. To illustrate this, we show in

Figure 4.6 a case for the following parametric forcing:

Forcing = K cos (Ω t) CL (4.9)

There exists only one stable period solution at a certain frequency, indicating the

synchronized CL is single-valued and not multi-valued. Also, there are no stable
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Figure 4.6: The mean (top) and amplitude (bottom) of the lift of a wake oscillator

with linear parametric forcing.

periodic solutions for Ω > ωs. Moreover, there is a significant mean component in

the response. Because all of these characteristics are at variance with numerical and

experimental results, this forcing type is ruled out.

4.5 Oscillators with Mixed Forcing

Because neither the external forcing by itself nor the parametric forcing by itself could

capture the desired multi-valued responses, the question arises whether a combina-

tion of them could capture the dynamics. To answer this question, we consider the

following forcing terms:

Forcing = −K1 Ω sin (Ω t)−K2 Ω
2 sin (Ω t+ β) C2L (4.10)

42



Forcing = −K1 Ω
2 cos (Ω t)−K2 Ω

2 cos (Ω t+ β) C2L (4.11)
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Figure 4.7: Frequency-response curves of wake oscillators with mixed external-and-

parametric velocity-based forcing (zero and positive phase β).

The forcings in Equations (4.10) and (4.11) involve a phase angle β between the

parametric and external parts. We found that this phase is very important and has

a key role in tuning the response. A positive phase yields a hardening-type nonlinear

response, whereas a negative phase yields a softening-type nonlinear response. Thus,

we need to choose negative values for β. This effect of β and sample response curves

generated using the velocity-based forcing of Equation (4.10) are given in Figure 4.7

for zero and positive phase values and in Figure 4.8 for zero and negative phase

values. Similar results for the acceleration-based forcing of Equation (4.11) are given

in Figure 4.9.

These figures provide the answer to the raised question, which is yes. Multi-valuedness

is achieved when a combination of external and parametric forcing is used. To illus-

trate this, one can look, for example, at the curve corresponding to β = 135o in

Figure 4.7. There are two detached branches: one in the range 1.099 ≥ Ω/ωs ≥ 1.200
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Figure 4.8: Frequency-response curves of wake oscillators with mixed external-and-

parametric velocity-based forcing (zero and negative phase β).
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Figure 4.9: Frequency-response curves of wake oscillators with mixed external-and-

parametric acceleration-based forcing (zero, positive, and negative phase β).

and the other in the range 0.825 ≥ Ω/ωs ≥ 1.137. Consequently, there is a nar-

row range of overlap (1.099 ≥ Ω/ωs ≥ 1.137), where two possible solutions coexist:
one corresponds to a high-amplitude periodic CL with CL/CLo ≈ 1.4 and the other
corresponds to a low-amplitude periodic CL with CL/CLo = 0.99-1.13. The initial

conditions will determine which of these solutions would be realized. In physical sit-
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uations, a riser, an umbilical, a tower of an offshore wind turbine, or a cylinder-like

structure subject to an oscillatory incoming stream (due to the existence of an up-

stream bluff structure that causes vortex shedding) or due to turbulence will initially

experience the low-amplitude CL solution if the ratio of the oscillation frequency to

the Strouhal frequency lies within this overlap range. As this frequency ratio is de-

creased beyond the range of the low-amplitude branch, a sudden jump-up occurs from

the low-amplitude branch to the large-amplitude one (at Ω/ωs=1.099 in the current

example). If this ratio is decreased further, CL follows the large-amplitude branch.

However, if this ratio is increased beyond the range of the large-amplitude branch

(i.e., beyond Ω/ωs= 1.137 in the current example), a jump-down occurs from the

upper branch to the lower branch. Therefore, multi-valuedness results in a hysteresis.

We emphasize that the change in the frequency ratio is not only dependent on the

frequency of the oscillatory flow (or the oscillatory cylinder), but also on the Strouhal

frequency of the non-oscillating stream (i.e., uniform) or non-oscillating cylinder (i.e.,

fixed). Thus, this frequency ratio depends also on the Reynolds number (or the

velocity of the incoming stream, which can change in time).

There is no substantial difference between the response with the forcing in Equa-

tion (4.10) and with that in Equation (4.11). However, the physical meaning of each

forcing type might result in favoring one over the other. The choice depends on

whether the cylinder acceleration or velocity is the dominant in driving the wake.

We then examine the effect of the forcing amplitudes (K1 and K2). In Figure 4.10,

we use the same value for both amplitudes and fix the phase β at -160o. Increasing

K1 and K2 broadens the range of stable responses and increases their amplitude. In

Figure 4.11, we consider the cases K1 = 2K2 and K1 = K2/2. For the first case

(stronger external part of the forcing), multi-valuedness is lost, and the two branches
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Figure 4.10: Frequency-response curves of wake oscillators with mixed external-and-

parametric acceleration-based forcing when β = -160o.
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Figure 4.11: Frequency-response curves of wake oscillators with mixed external-and-

parametric acceleration-based forcing when β = -160o.

of the response curve merge together. Also, the stable response is shifted toward the

low-frequency side and its amplitude is increased. Opposite effects result when the

parametric part of the forcing overpowers the external one. The forcing parameters (β,

K1, and K2) can be chosen so that the oscillator accurately models the synchronized

lift for arbitrary flow conditions.
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Chapter 5

Characterization of the Modes in

the Wake

5.1 Synopsis

In this chapter, we study the modes that can occur in the wake of a cylinder driven

in the cross-flow direction within and outside the frequency band of synchronization.

Within this band, shedding is locked onto the oscillation frequency and a period-1 re-

sponse is obtained. However, complex modes take place outside the synchronization

band and conventional analysis techniques (such as time histories or power spec-

tra) might fail to characterize and distinguish some of these modes. We combine

power spectra with phase portraits and Poincaré sections and show that the non-

synchronized responses may be periodic with large period, quasiperiodic, or chaotic.

Moreover, we show that the route to chaos is torus breakdown.
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5.2 Analysis

We consider the flow over a rigid cylinder, which is forced to move harmonically in

the cross-flow direction with a nondimensional amplitude A/D and frequency fE (the

subscript E stands for excitation). We use the lift coefficient to characterize the flow

response to the applied cylinder motion. Depending on the amplitude and frequency

of this motion, the nonlinearity of the flow may cause the shedding frequency and

hence the frequency of the lift to be synchronized with the motion. This phenomenon

is also referred to as fundamental synchronization. Consequently, the synchronized

lift is periodic with a period equal to the period of the cylinder motion and we refer

to this motion as period-one motion. We note that the lift on a fixed cylinder is also

periodic, but the period is Ts = 1/fs, in contrast to TE = 1/fE in the synchronized

case of a driven cylinder. The lift in this problem has been modeled by a forced

single-degree-of-freedom nonlinear oscillator with cubic nonlinearity (e.g., Hartlen and

Currie, 1970; Iwan and Blevins, 1974; Marzouk and Nayfeh, 2008b). As the frequency

of excitation is decreased or increased outside the fundamental synchronization region,

the synchronized response bifurcates and exhibits different behaviors, which are more

complex than the period-one response (Bishop and Hassan, 1964; Williamson and

Roshko, 1988; Korpus et al., 2000; Baek and Lee, 2001; Dong and Karniadakis,

2005; Zheng and Zhang, 2008). In this chapter, we use modern methods of nonlinear

dynamics to characterize these complex responses (Nayfeh and Balachandran, 1995).

These methods include power spectra, phase portraits, and Poincaré sections.

We simulated the flows over fixed and driven cylinders at Re=500. This choice of

Re is a reasonable compromise between two factors. The first is to avoid the highly

dissipative regime at lower Re, which can remarkably suppress or even eliminate

the nonlinear phenomena in the flow (Blackburn and Henderson, 1996 and 1999).
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Placzek et al. (2009), for example, did not obtain bistability in the wake because

of the low Reynolds numbers they considered (Re=100). The second is to reduce

three-dimensional effects, which become strong at higher Re. We should add that

the motion increases the spanwise coherence and makes the flow field closer to two-

dimensional (Blevins, 1990; Meneghini et al., 1997; Saltara et al., 1998; Blevins and

Coughran, 2008). For the fixed-cylinder case, our calculated natural vortex-shedding

frequency fs, standard deviation of the lift coefficient, mean drag coefficient, and stan-

dard deviation of the drag coefficient are 0.217, 0.713, 1.36, and 0.072, respectively.

These results are in agreement with different experimental and numerical studies,

such as those of Roshko (1953) (fs=0.21 from wind-tunnel experiments on a cylinder

with a length-to-diameter ratio of 625), Wen et al. (2004) (mean CD=1.4 from soap

film experiments), and Norberg, (2003) (standard deviation of CL=0.67 from 2D and

3D simulations).

The nondimensional cross-flow displacement Y (t) is described by

Y (t) =
A

D
sin (2π fE t) (5.1)

The motion starts from the beginning of the simulation and lasts long enough for the

steady state to develop. We typically run the simulation for 1,000 nondimensional

time units (about 215 times the natural shedding period), which provides sufficiently

long intervals of lift and drag coefficients free of transient effects.

5.3 Magnification of the Lift and Drag

We set A/D=0.25 and vary FE ≡ fE/fs from 0.5 to 2.0. This amplitude choice is

based on an earlier study (Marzouk and Nayfeh, 2007), where we found that this

value is reasonably high enough for nonlinear effects to develop in the flow. We start
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with a survey of the responses in the interval 2.0 ≥ FE ≥ 0.5 and plot measures of
them in Figure 5.1. Within the synchronization region, the lift and drag are peri-

odic with periods TE and 2TE, respectively, and hence we could use their maxima

as the measures. On the other hand, because the responses outside the synchro-

nization region are modulated, we use magnification factors as the measures. The

magnification factors are defined as the standard deviations scaled with respect to

those of the fixed-cylinder case (0.713 for CL and 0.072 for CD). We note that there

are two jumps in the curves at both ends of the synchronization region, where the

synchronized responses lose stability. Another jump in the lift occurs within the syn-

chronization region, which corresponds to an abrupt change in the wake, as observed

in various experimental and numerical studies, such as the experiments of Williamson

and Roshko (1988) at 100≥Re≥300 and the simulations of Korpus et al. (2000) at
Re=3,800. Next, we use different analysis tools to characterize the simulated results,

starting with the periodic ones.
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Figure 5.1: Magnification factors of CL and CD within (curve without markers) and

outside (curve with markers) the synchronization region.
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5.4 Longtime Histories

One might be able to use longtime histories of low-order periodic responses to char-

acterize them. In Figure 5.2, we show the time series of CL for three cases: period-1

(synchronized), period-2, and period-3 responses. The time series in Figure 5.2a is for

a period-1 at FE=0.98; it is a uniform trace and its envelope is flat. Moreover, it is

nearly harmonic and has a dominant frequency, which, in this case, is the forcing fre-

quency. In Figures 5.2b and 5.2c, we show the time series for FE = 1.8 and FE = 1.4,

respectively. In Figure 5.2b, a complete cycle of CL takes place over 5.11 time units,

which is twice the period of the excitation (TE=2.555 time units); therefore, it is

a period-2 response. In Figure 5.2c, a complete cycle of CL takes place over 9.86

time units, which is three times the period of the excitation (TE=3.29 time units);

therefore, it is a period-3 response. For these period-n responses, each CL cycle has

n different peaks. The CD time series corresponding to the cases in Figure 5.2 are

shown in Figure 5.3. For the synchronized case, CD is near harmonic as is the case

for CL, but with frequency 2fE. For the period-2 and period-3 responses, the CD

time series are not as helpful as those of CL in recognizing the type of the response

because of the intensified modulation. We conclude that it is not easy to determine

the period from a time series to the accuracy needed and hence ascertain the order of

periodicity from the time series even for period-2 and period-3 responses. Next, we

check whether the spectrum is a better tool for characterizing periodic responses.
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Figure 5.2: Longtime history of CL: (a) period-1 response at FE = 0.98, (b) period-2

response at FE = 1.80, and (c) period-3 response at FE = 1.40.
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Figure 5.3: Longtime history of CD: (a) period-1 response at FE = 0.98, (b) period-2

response at FE = 1.80, and (c) period-3 response at FE = 1.40. The solid horizontal

lines correspond to the mean values.
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5.5 Power Spectra

In Figure 5.4, we show the power spectra of CL for the time series in Figure 5.2. The

spectrum of CL in Figure 5.4a has a sharp spike at fE and a two orders of magnitude

smaller third superharmonic at 3fE. Hence, there is no ambiguity in concluding

that its corresponding response is periodic with period TE = 1/fE, and hence it is a

period-1 response. In addition to the strong spike at the excitation frequency fE and

its superharmonics mfE, the spectrum in Figure 5.4b has spikes at kfE/2, where k

is an integer, indicating that the period of the response is 2/fE, which is double that

of the excitation. Therefore, it is a period-2 response. Also, in addition to the strong

spike at the excitation frequency fE and its superharmonics mfE, the spectrum in

Figures 5.4c has spikes at kfE/3, where k is an integer, indicating that the period of

the response is 3/fE, which is three times that of the excitation. Therefore, it is a

period-3 response. Similarly, the spectrum in Figure 5.5a has spikes at kfE/4, where

k is an integer, indicating that the period of the response is 4/fE. Therefore, it is

a period-4 response. The spectrum in Figure 5.5b has spikes at the subharmonics

fE/5 and 3fE/5 and hence the corresponding response is period-5. The spectrum in

Figure 5.5c has a number of spikes below fE, which seem to be at kfE/9 and hence its

corresponding response might be a period-9. This is confirmed below using its one-

sided Poincaré section. As the period of the response becomes longer and the number

of spikes below fE increases, as in the last case, determining with sufficient accuracy

whether their corresponding frequencies are commensurate with fE might not be

feasible and hence such responses might be confused with quasiperiodic responses.

For such responses, we use their one-sided Poincaré sections.

The spectra of the corresponding CD of the period-n responses in Figure 5.4 are shown

in Figure 5.6. In addition to the considerable DC component in the CD spectra, they
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differ from the CL ones in that they have twice the number of dominant spikes. For

example, the period-2 response has two CL-spectrum spikes at fE and fE/2, whereas

it has four CD-spectrum spikes at 2fE, 3fE/2, fE , and fE/2.
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Figure 5.4: Power spectra of CL: (a) period-1 response at FE = 0.98, (b) period-2

response at FE = 1.80, and (c) period-3 response at FE = 1.40.
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Figure 5.5: Power spectra of CL: (a) period-4 response at FE = 1.20, (b) period-5

response at FE = 1.60, and (c) period-9 response at FE = 0.68.
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Figure 5.6: Power spectra of CD: (a) period-1 response at FE = 0.98, (b) period-2

response at FE = 1.80, and (c) period-3 response at FE = 1.40.
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5.6 Phase Portraits and Poincaré Sections

Next, we use two-dimensional projections of the phase portraits (or the Lissajous

curves) onto the ĊL − CL plane to characterize period-n responses. A periodic re-

sponse corresponds to a closed orbit in the state space. In Figure 5.7, we show

two-dimensional projections onto the ĊL − CL plane of the orbits of six period-n
responses: period-1 at FE = 0.98, period-2 at FE = 1.80, period-3 at FE = 1.40,

period-4 at FE = 1.20, period-5 at FE = 1.60, and period-9 at FE = 0.68. Clearly,

the lower order orbits close on themselves, but it is not clear whether the period-

9 orbit closes on itself. The period-1 response loops once before it closes on itself,

whereas the period-n for n ≥ 2 loops n times before it closes on itself.
As n increases (as in the period-9 case), one cannot recognize the number of peaks

in a CL cycle, whether the spikes below fE are its subhormonics, the number of

subharmonics, whether the orbit closes on itself, and the number of loops in the phase

portrait. A more reliable method is needed, which is the one-sided Poincaré section of

the orbits. They are generated by sampling the longtime time series every excitation

period TE = 1/fE. In Figure 5.8, we show Poincaré sections of the portraits in

Figure 5.7 using the same range for the variables. With such sampling, we eliminated

the component at the sampling frequency from the response and reduced its dimension

by one. Therefore, the single-loop orbit of the period-1 response is reduced to a single

point as in Figure 5.8a, the two-loop orbit of the period-2 response is reduced to two

points as in Figure 5.8b, and, in general, the the multi-loop orbit of a period-n

response is reduced to n points falling on a closed curve as in Figures 5.8c-f. The

locations of the n points in the Poincaré section are not unique and depend on the

time at which sampling starts. Comparing Figure 5.8f with Figure 5.7f demonstrates

the effectiveness of this method in identifying period-n responses with any n.
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Figure 5.7: Orbits in the ĊL-CL plane: (a) period-1 response at FE = 0.98, (b)

period-2 response at FE = 1.80, and (c) period-3 response at FE = 1.40, (d) period-4

response at FE = 1.20, (e) period-5 response at FE = 1.60, and (f) period-9 response

at FE = 0.68.
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Figure 5.8: Poincaré sections of the orbits in Figure 5.7: (a) period-1 response at

FE = 0.98, (b) period-2 response at FE = 1.80, and (c) period-3 response at FE =

1.40, (d) period-4 response at FE = 1.20, (e) period-5 response at FE = 1.60, and (f)

period-9 response at FE = 0.68. The axes limits are the same as those in Figure 5.7.
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Next, we examine the choice of the Poincaré sections. Specifically, we consider

Poincaré sections in the CL-CD plane rather than the ĊL-CL plane. We show in Fig-

ure 5.9 the CL-CD orbits for the period-n responses examined in Figures 5.7 and 5.8.

Each loop in the ĊL-CL plane corresponds to two loops in the CL-CD plane, which is a

consequence of the two-to-one frequency relationship between CL and CD as demon-

strated, for example, by Figures 5.4a and 5.6a. This makes the projections onto the

CL-CD phase plane less suitable for characterizing period-n responses. On the other

hand, the Poincaré sections in the CL-CD plane (shown in Figure 5.10) are as useful

as those in the ĊL-CL plane because they have the same number of points, which

means that two loops of a CL-CD orbit correspond to a single point in the respective

Poincaré section.
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Figure 5.9: Orbits in the CL-CD plane: (a) period-1 response at FE = 0.98, (b)

period-2 response at FE = 1.80, and (c) period-3 response at FE = 1.40, (d) period-4

response at FE = 1.20, (e) period-5 response at FE = 1.60, and (f) period-9 response

at FE = 0.68.
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Figure 5.10: Poincaré sections of the orbits in Figure 5.9: (a) period-1 response at

FE=0.98, (b) period-2 response at FE=1.80, (c) period-3 response at FE=1.40, (d)

period-4 response at FE=1.20, (e) period-5 response at FE=1.60, and (f) period-9

response at FE=0.68. The axes limits are the same as those in Figure 5.9.
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5.7 Quasiperiodic versus Chaotic Responses

A slight increase or decrease in the excitation frequency from a particular value that

corresponds to a period-n response changes it to a quasiperiodic one, which we ex-

amine next along with chaotic responses and investigate the tools that discriminate

between them. To this end, we selected two quasiperiodic responses (at = 0.77 and

= 1.00) and two chaotic responses (at = 1.10 and = 1.30). We apply the same tools

used to characterize period-n responses, especially their power spectra and Poincaré

sections. So, we start with the longtime history for CL, its power spectrum, and then

the projection of its phase portrait and Poincaré section onto the ĊL-CL and CL-CD

planes.

We show the time series of CL for the two quasiperiodic responses in Figures 5.11a and 5.11b

and for the two chaotic responses in Figures 5.11c and 5.11d. The common feature

in these four figures is the presence of many sinusoids, resulting in complex time

series. Whereas a quick look at Figures 5.11a and 5.11d might suggest that they

correspond to period-n responses, careful examination reveals that there is actually

no robust period at which either of these responses is repeated as was the case in

Figures 5.2b and 5.2c. Also, there is a beating behavior in Figure 5.11c that looks

similar to the one in Figure 5.11b. This can lead to a mistaken deduction that both

responses are of the same type.

In Figure 5.12, the spectra of CL for the same cases are shown. The fact that the

spectra in Figures 5.12a and 5.12b feature many discrete spikes suggest that they

correspond to either period-n or quasiperiodic responses, depending on whether the

spikes are commensurate or incommensurate with fE. Because it would be difficult to

accurately compute the locations of the discrete spikes, the power spectra would not

be sufficient to conclude that these responses are quasiperiodic. On the other hand,
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the broadband character of the spectra in Figures 5.12c and 5.12d suggest that they

correspond to chaotic responses.

Because the orbits or trajectories of quasiperiodic and chaotic responses do not close

on themselves, phase portraits are not useful to discriminate between them or to dis-

criminate them from period-n responses with large n. Therefore, we turn to Poincaré

sections. In these sections, period-n responses correspond to n discrete points, qua-

siperiodic responses correspond to infinitely many points falling on a closed curve,

and chaotic responses correspond to neither a finite number of points nor infinitely

many points falling on a closed curve. Because each of the Poincaré sections in Fig-

ures 5.13a and 5.13b is an infinite number of points falling on a closed curve, their

corresponding responses are quasiperiodic. On the other hand, because each of the

Poincaré sections in Figures 5.13c and 5.13d is neither a finite number of points nor

an infinite number of points falling on a closed curve, the corresponding responses

are chaotic, thereby confirming the conclusion from their broadband spectra.
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Figure 5.11: Longtime history of CL: (a) quasiperiodic response at FE=0.77, (b)

quasiperiodic response at FE=1.00, (c) chaotic response at FE=1.10, and (d) chaotic

response at FE=1.30. All figures have the same time range.
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Figure 5.12: Power spectra of CL: (a) quasiperiodic response at FE=0.77, (b) qua-

siperiodic response at FE=1.00, (c) chaotic response at FE=1.10, and (d) chaotic

response at FE=1.30.
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Figure 5.13: Poincaré sections of the orbits for: (a) quasiperiodic response at

FE=0.77, (b) quasiperiodic response at FE=1.00, (c) chaotic response at FE=1.10,

and (d) chaotic response at FE=1.30.

5.8 The Route to Chaos

We finally examine the route to chaos. To this end, we focus on the transition from

a quasiperiodic response at FE=1.00 (shown in Figure 5.14a) to a chaotic response

at FE=1.10 (shown in Figure 5.14d). The nearly closed curve in the ĊL-CL Poincaré

section at FE=1.00 corresponds to a two-period quasiperiodic (or two-torus) response.

It distorts and wrinkles at a slightly higher FE=1.02, as shown in Figure 5.14b. Then

the torus starts to break down, as shown in Figure 5.14c, at FE=1.06. In Figure 5.14d,

the broken torus is shown, where a chaotic response is taking place at FE=1.10.
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This sequence means that the route to chaos is quasiperiodic, with torus-breakdown

scenario.
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Figure 5.14: Poincaré sections showing the transition from a quasiperiodic response

to a chaotic one. The route to chaos is demonstrated by four increasing values of FE,

namely, (a) 1.00, (b) 1.02, (c) 1.06, and (d) 1.10.
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Chapter 6

A Cylinder Driven in the

Cross-Flow Direction with

Different Frequency-Sweep Types

6.1 Synopsis

In the preceding chapter, we considered cross-flow motion of a cylinder over a wide

range of frequencies. However, each frequency is isolated and corresponds to a sim-

ulation where the motion pattern is unchanged. Consequently, the jump down and

multi-valuedness are missed and hence the hysteresis could not be predicted. This

chapter focuses on the synchronization band but addresses changes in the frequency-

response curves of the force coefficients when the cross-flow motion frequency is var-

ied in four different fashions: stationary, quasistationary, discrete, and nonstationary.

Because the motion acts as an excitation to the natural wake, we will refer to it as

“forcing” and to its frequency as “forcing” frequency. In the stationary case (also
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called sine dwell), the forcing frequency is incremented by a small amount and the

simulation is carried out long enough for the transients to die out before it is incre-

mented again. The resulting frequency-response curves are bent to the left, indicating

a softening-type nonlinearity, and exhibit a region of two coexisting stable responses

(i.e., bistability). This bistability causes jumps and hysteresis. In the quasistationary

case, again the forcing frequency is incremented, but the simulation is not carried

long enough for the transients to die out. Again, the resulting frequency-response

curves are bent to the left, exhibit bistability, jumps, and hysteresis, but the width

of the hysteresis region is narrower. In the discrete variation, the forcing frequency

is again incremented, but the simulation starts from a cylinder at rest in a uniform

flow. Consequently, the jump down and multi-valuedness are missed and hence the

hysteresis could not be predicted (as in the preceding chapter). In the nonstationary

case, the frequency is varied continuously in a linear fashion with different rates. The

resulting frequency-response curve depends on the rate at which the forcing frequency

is changed. We highlight the effects of these fashions on the hysteresis and bistabil-

ity phenomena and provide interpretations, based on known behaviors of nonlinear

systems, of reported observations of interest in previous studies in the literature.

6.2 Stationary Sweeps

We start with the results of the stationary sweep, which is also called sine dwell. In

this case, we vary the forcing frequency in a piecewise continuous function and dwell

on each frequency long enough for the transients to die out and the steady state to

be reached. We increment the frequency during the simulation so that the initial

condition for the simulation with the new frequency is the final state obtained in the
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previous frequency. In experimental settings, either the oscillation frequency or the

velocity of the incoming stream is varied. Either one will change the nondimensional

forcing frequency. In our simulations, we avoid discontinuities in the cylinder motion

because they are not realistic and do not occur in experimental settings. A disconti-

nuity in the cylinder velocity after incrementing the frequency results in a fictitious

sudden change in the no-slip boundary condition, which induces inaccuracies and

additional transients at the beginning of the new frequency interval. The numerical

results of Meneghini and Bearman (1996) exhibit sharp glitches in the lift and drag

and subsequent transients caused by the discontinuity in the cylinder speed (thus

discontinuity in the no-slip boundary condition). Moreover, the finite-volume based

simulations of Siegel et al. (2006) also exhibit glitches when a cylinder motion is in-

troduced as an active-control technique for the wake. To eliminate such discontinuity,

Blackburn and Henderson (1999) implemented a phase-angle-adjustment algorithm

to mimic the experimental behavior. However, no details were given about the perfor-

mance of their algorithm and to what level the discontinuities in the cylinder motion

were reduced.

In this study, we implemented an algorithm to eliminate such discontinuities as fol-

lows. We consider the case of incrementing the forcing frequency f1, which lasts until

a nondimensional simulation time t1,fin, to a subsequent frequency f2, which starts

at t1,fin+∆t and ends at t2,fin, where ∆t is the nondimensional time step. Then, the

cylinder motion is described as

Y (t) = Y1(t) = A sin (2 π f1 t) t1,fin ≥ t (6.1)

Y (t) = Y2(t) = A sin (2 π f2 [t+ k∆ t]) t2,fin ≥ t ≥ t1,fin +∆t (6.2)
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whereA is the nondimensional cylinder amplitude and k is an integer. The adjustment

time k∆t is chosen by minimizing the non-negative deviation function

δ(f1, f2) ≡ |Y2(t1,fin +∆t)− Y1(t1,fin +∆t)| (6.3)

We also keep |f1 − f2| and ∆t small so that δ(f1, f2) is practically zero. Maintaining
continuity of the displacement Y (t) of the cylinder guarantees continuity of its velocity

Ẏ (t).

Time

Y

2390 2395 2400 2405 2410

-0.2

0

0.2

Time

C
L

2390 2395 2400 2405 2410
-2

-1

0

1

2

Figure 6.1: Time histories of the displacement and lift coefficient with a stationary

forcing around a frequency-stepping instant (nondimensional time = 2,400) when the

smoothing method is not used.

To demonstrate performance of the smoothing algorithm and its important influence

on the results for stationary sweeps, we select a frequency-stepping case starting from

type-B attractor. The time histories of the displacement and velocity of the cylinder

and the associated lift coefficient around a frequency-stepping instant are presented

in Figures 6.1 and 6.2 without and with smoothing, respectively. In both figures, the

forcing frequency is stepped down at a nondimensional time of 2,400. Comparing the
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Figure 6.2: Time histories of the displacement and lift coefficient with a stationary

forcing around a frequency-stepping instant (nondimensional time = 2,400) when the

smoothing method is used.

two figures demonstrates the efficiency of the smoothing; the discontinuities in the

displacement and velocity and hence the glitches in the lift are eliminated. Whereas

visual inspection of Figure 6.2 suggests that there are no transients following the

frequency stepping, there are small transients and hence we still need to wait long

enough before the next frequency stepping. It follows from Figure 6.1 that the lift

before the frequency stepping is of type-A (small), whereas it follows from Figure 6.2

that it is of type-B (large). This is due to an expedited transition from the type-

B attractor to the type-A attractor resulting from the impulsive transients at the

previous frequency stepping. The forcing frequency before the stepping is 0.208052,

which belongs to the hysteresis region and the coexistence of two attractors coexist.

This is another and more important effect of spurious discontinuities in the motion

history besides the need to wait long enough for the transients to die out completely.
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The stationary frequency-response curves for the lift and mean drag coefficients are

presented in Figures 6.3 and 6.4, respectively. In the synchronized region, the lift

coefficient exhibits bistability and hence hysteresis. A small-amplitude (type-A mode

or attractor) stable branch coexists with a large-amplitude (type-B mode or attractor)

stable branch. The former occurs at lower frequencies, whereas the latter occurs

at higher frequencies, indicating a softening-type nonlinearity. Each attractor has

its basin of attraction, which is the set of initial conditions for which the solution

asymptotically tends to that attractor. Theoretical analysis suggests the existence of

a third unstable branch (saddles) connecting the two stable branches. Whereas this

saddle branch corresponds to the locus of solutions to the Navier-Stokes equations, it

is unrealizable numerically and cannot be determined experimentally. According to

methods of nonlinear dynamics, the stable manifolds of the saddle divide the state

space into two regions, which are the basins of attraction of the two stable solutions.
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Figure 6.3: Frequency-response curves for the lift coefficient with a stationary forcing.

Starting the simulation at a frequency corresponding to the small-amplitude attrac-
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Figure 6.4: Frequency-response curves for the drag coefficient with a stationary forc-

ing.

tor (such as point a in Figure 6.3) and increasing it by increments of 2.2×10−4 every
600 time units, we find that the lift increases slowly until the frequency reaches

fB=0.20827. As the frequency is increased further, a jump-up from the small-

amplitude branch to the large-amplitude branch takes place (from point c to point

d in Figure 6.3). As the frequency is increased further, the lift decreases slowly but

remains high. Starting the simulation at a frequency on the large-amplitude branch

(such as point e in Figure 6.3) and slowly decreasing it, we find that the lift increases

slowly until it is decreased below fA=0.20762, resulting in a jump-down of the lift

from the large-amplitude branch to the small-amplitude branch (from point f to point

b in Figure 6.3). As the forcing frequency is decreased further, the lift decreases slowly

following the small-amplitude branch.

We examine different characteristics of the lift and drag coefficients of the two at-

tractors. We present in Figure 6.5 the time histories of the lift coefficient and the

cylinder displacement for two cases corresponding to points b and f in Figure 6.3.
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Figure 6.5: Time histories of the scaled cylinder motion (dashed line) and the lift

coefficient (solid line) for type-B and type-A attractors. Each plot corresponds to a

window of 20 time units.

In order to enhance the contrast between the two attractors, we scale the cylinder

displacement Y (t) oscillation such that its amplitude is equal to the amplitude of the

lift coefficient. In addition to the remarkable difference in the amplitudes of the two

attractors (a factor of four), the type-B attractor is in phase with Y (t), whereas the

type-A attractor is 125o degrees out of phase with Y (t).

Projections of the two attractors onto the lift-displacement plane in Figure 6.6 are of

special importance. These projections are presented in Figure 6.6. The B attractor is

characterized by a curve that closes on itself every oscillation period, forming a single

loop. This loop is squeezed and nearly a straight line. Because the enclosed area

of this loop represents the nondimensional mechanical energy transferred to the flow

from the cylinder over each oscillation period, this energy transfer seems to sustain

this attractor and its associated vortex pattern. On the other hand, the A attractor is

characterized by another trajectory that also closes on itself every oscillation period,

but its loop has a finite enclosed area and its direction is reversed (counterclockwise).

Therefore, for the type-A attractor, the flow is actually transferring energy to the
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cylinder, which is reflected in vorticity attenuation in the wake as observed experi-

mentally (Zdravkovich, 1982; Gu et al., 1994) and numerically (Marzouk and Nayfeh,

2008a).
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Figure 6.6: Lissajous curves in the lift-displacement plane for type-B and type-A

attractors. Directions of the curves are indicated.

The Lissajous curves in the lift-drag plane form a figure eight as a result of the 2:1

frequency relationship between the drag and the lift. Again, the curves of type-A and

type-B attractors differ not only in terms of their size, but also in their direction as

shown in Figure 6.7. In the former case, the amplitude of the positive or negative

lift coefficient continues to increase after the drag coefficient reaches its maximum.

In the latter case, the maximum amplitude of the lift coefficient coincides with the

maximum drag coefficient, and they simultaneously decrease afterwards. We found

that the direction of the type-A Lissajous curve is the same as what we obtained for

the case of a fixed cylinder.
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Figure 6.7: Lissajous curves in the lift-drag plane for type-B and type-A attractors.

Directions of the curves are indicated.

6.3 Quasistationary Sweeps

If the interval of any forcing frequency is shortened such that the transients did not

die out, then the results will not be robust and the jump locations will be erroneous.

This is because the transients might produce initial conditions lying in the basin of

attraction of the other attractor, thereby expediting the jump. We refer to such cases

as quasistationary sweeps.

To demonstrate the difference between this sweep and the stationary one, we present

in Figures 6.8 and 6.9 the frequency-response curves obtained for the lift and drag

coefficients, when the forcing frequency is incremented every 300 time units. Compar-

ing these curves to their stationary counterparts in Figures 6.3 and 6.4, we conclude

that the width of the hysteresis is reduced to two thirds of that of the stationary

case. Such influence of the dwell time on the forcing frequency should be examined

in experimental and numerical studies for similar problems to ensure that the results

are stationary and not quasistationary. Blackburn and Henderson (1999) reported a
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Figure 6.8: Frequency-response curves for the lift coefficient with a quasistationary

forcing.
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Figure 6.9: Frequency-response curves for the drag coefficient with a quasistationary

forcing.

range of weakly chaotic regime within the lock-in spectrum in their applied sine-dwell

forcing. The forcing frequency was incremented approximately every 50 cycle, which
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is in the order of 250 time units. Therefore, their results might be quasistationary

rather than stationary, which explains the weakly chaotic range. This is supported

by the fact that this range takes place at the boundary of their reported hysteresis.

Therefore, this range can be actually part of unresolved hysteresis and the reported

response is a transient, which is expected to settle at one attractor but the dwell time

is insufficient for this to be completed.

6.4 Discrete Sweeps

If the forcing frequency is constant over the entire simulation, starting from a cylin-

der at rest and uniform flow, we do not find the hysteresis. For forcing frequencies

below fA, the steady-state solution locks onto the type-A attractor; and for forcing

frequencies above fB, it is locks onto the type-B attractor. In the hysteresis inter-

val between fA and fB, both attractors coexist, and the initial conditions determine

the steady-state solution. We refer to these cases by discrete forcing, and the corre-

sponding frequency-response curves of the lift and drag coefficients are presented in

Figures 6.10 and 6.11, respectively. At the ends of these curves, the locked solution

loses stability and becomes aperiodic as indicated in Figure 6.11, where an abrupt

change takes place in the discrete frequency-response curve for the mean of the drag

coefficient at these two instability points.

In previous experiments (Carberry et al., 2001) of discrete forcing at a higher Re of

2,300, it was observed that there is a very narrow range of forcing frequencies near the

frequency that separates the two branches of the frequency-response curve of the lift.

Over this range, CL has a large amplitude for a certain interval of time and a small

amplitude over another interval even though the forcing frequency is unchanged. We
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Figure 6.10: Frequency-response curve for the lift coefficient in the case of discrete

forcing.
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Figure 6.11: Frequency-response curve for the drag coefficient in the case of discrete

forcing. The dashed lines correspond to aperiodic time histories of the drag coefficient.

found a similar behavior. We interpret this by an initial condition of the flow and

CL that lies in the basin of attraction of the type-B attractor but near the basin of

attraction of the type-A attractor. A large basin of attraction of the type-A attractor
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causes the transients of CL to be close to the type-B attractor.

6.5 Nonstationary Sweeps

Sweeping the forcing frequency as a linear function of time is referred to as nonsta-

tionary (or continuous) forcing. We investigate its effect on the frequency-response

curve under different rates of forward and backward sweeps when the frequency is

increased or decreased gradually across the ‘virtual’ stationary jump locations (i.e.,

which would happen in case of stationary forcing). The stationary jumps are replaced

by nonstationary variation, where the lift switches gradually from the small-amplitude

attractor to the large-amplitude attractor and vice versa. This mechanism is denoted

by passage through resonance. In the forward sweep, the amplitude of the lift coef-

ficient overshoots the stationary curve, oscillates around it, and finally settles on it.

Decreasing the rate of sweep results in a decrease in the overshoot and a decrease in

the frequency at which it occurs. Similarly, in the backward sweep, the jump-down

is replaced by a gradual switch from the upper branch to the lower branch, an oscil-

lation around the lower branch, and a final settlement on it. The frequency-response

curves of the lift coefficient obtained for slow and fast sweeps are compared to the

stationary frequency-response curve in Figure 6.12. We considered two absolute rates

of frequency sweeps |d f/d t|=1×10−5 and 2×10−5 for each of the forward and back-
ward sweeps. Here, we do not have access to the saddle, therefore we approximate it

by a straight line connecting the two ends of the stable branches for illustration.
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Figure 6.12: Frequency-response curves for the lift coefficient with stationary forcing

and different nonstationary forcing.
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Chapter 7

Wake Changes Due to In-Line

Cylinder Motion

7.1 Synopsis

In this chapter, we study in detail the flow field around a cylinder in a uniform stream

while undergoing in-line harmonic motion (rather than the cross-flow one as in pre-

vious chapters). Below a critical forcing frequency, the lift and drag responses can be

period-n, quasiperiodic, or chaotic. Above this critical frequency, they both become

synchronized with the cylinder motion. The lift nearly vanishes due to instantaneous

symmetry in the wake, the mean drag drops and saturates at a value independent of

the motion frequency, and the oscillatory drag is quadratically dependent on it. We

relate these features to changes in the wake and the surface-pressure distribution. We

examine the effects of the amplitude of motion and the Reynolds number on the crit-

ical frequency. Second- and higher-order spectral analysis shows remarkable changes

in the linear and quadratic coupling between the lift and drag when synchronization

takes place, which destroys the two-to-one coupling between them that exist in the
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case of no motion or synchronization due to cross-flow motion. We contrast some

features of the synchronized responses in the case of in-line motion to that in the case

of cross-flow motion.

7.2 In-Line Motion

The motion of the cylinder is described by the following sine function:

X (t) =
A

D
sin(2π fE t) (7.1)

where A/D and fE are the nondimensional amplitude and cyclic frequency of the

motion, respectively. We investigate several flow properties over a wide range of fE

while fixing A/D at 0.20. This value allows us to compare the flow features for this

case with those obtained for a cylinder with cross-flow motion at the same amplitude

and Re (Marzouk and Nayfeh, 2008c). The majority of the results correspond to

Re=500; the others correspond to Re=300.

7.3 Effects of Motion Frequency

Synchronization is illustrated in Figure 7.1, which shows the ratio fv/fs as a function

of the ratio fE/fs. The frequency fv is the actual nondimensional vortex-shedding

frequency, whereas fs is the natural nondimensional vortex-shedding frequency (again,

we found this to be 0.217). When fE ≈ 2fs, shedding is synchronized at fE . Hence,
the graph of fv/fs with fE/fs is a straight line with unity slope; it starts at the critical

value fE/fs = 1.81 and extends to fE/fs=3.33. Beyond this value, the synchronized

shedding bifurcates and becomes nonsynchronized with less regular pattern and with

asymmetric lift. We refer to this range of fE as post-synchronization compared to
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Figure 7.1: Calculated fv/fs versus fE/fs. Post-synchronization region is indicated

by a slope of unity in the simulation results.

pre-synchronization when fE is below the critical value. This range is in contrast

to the range of fE/fs=0.82 to 1.04 for the case of cross-flow motion at the same

amplitude and Re. So, the synchronization range here is not just shifted, but it is

also broadened.

Variation of the RMS CL with fE is shown in Figure 7.2. The results are presented

in terms of relative values; in other words, the RMS CL is presented relative to its

value in the case of A/D=0. Similarly, we use the ratio fE/fs to express changes in

fE. The lift reduction is clear in this figure; the relative RMS CL is reduced by two

orders of magnitude from 1.696 at fE/fs=1.80 to 0.0087 (a reduction of 99.5%) at

the critical fE/fs=1.81, corresponding to the beginning of synchronization.

We decompose the steady-state CD(t) into a constant mean component CD and

an oscillatory component CD,osc and analyze each one separately. Variation of the

relative mean CD with fE/fs is shown in Figure 7.3. Synchronization of the drag

causes a reduction in its mean value from 1.32 to 0.77 (a reduction of 42%). In the
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Figure 7.2: Calculated relative RMS CL versus fE/fs.

post-synchronization cases, CD is independent of fE. This is remarkably different

from the behavior of CD,osc, whose RMS value grows monotonically with fE as shown

in Figure 7.4. This growth can be represented by a quadratic function, as shown in

Figure 7.5.
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Figure 7.3: Calculated relative CD versus fE/fs.

The nondimensional mechanical work done by the cylinder on the flow per motion
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Figure 7.4: Calculated relative RMS CD,osc versus fE/fs.
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Figure 7.5: Calculated and fitted relative synchronized RMS CD versus fE/fs.

cycle TM (starting from an arbitrary time to) is

Wcyc = −A
D
2πfE

to+TM

to

CD(t) cos (2πfE t) d t (7.2)

The minus sign on the right-hand side of Equation (7.2) ensures the correct sign for

Wcyc so that, when the cylinder velocity and the drag are in the same direction,Wcyc is
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negative and work is actually done by the flow on the cylinder. We carry out the above

integration numerically using the trapezoidal rule. The results of Wcyc as a function

of fE/fs are given in Figure 7.6. The sign of Wcyc is always positive, indicating that

work is being done on the flow by the cylinder. This is another difference with the

case of cross-flow motion, where Wcyc takes on both negative and positive values,

depending on fE.

To first order, the steady-state synchronized drag can be approximated as

CD(t) = CD + |CD,osc| sin (2πfE t+ ψ) (7.3)

where | . | indicates an amplitude and ψ indicates the phase angle by which CD leads
X. Substituting Equations (7.3) and (7.1) into Equation (7.2) leads to the following

expression:

Wcyc = −π A
D
|CD,osc| fE sin(ψ) (7.4)

Equation (7.4) implies that ψ must be negative to yield positive Wcyc. We computed

ψ for the synchronized drag cases and found that it is always negative varying from
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−0.262 (−15o) to −0.175 (−10o), as shown in Figure 7.7. For cross-flow motions,
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Figure 7.7: Variation of the phase angle ψ of the synchronized CD with fE/fs.

a sudden change in the phase between the synchronized lift and the motion was

reported in different studies (e.g., Zdravkovich, 1982; Staubli, 1983; Lu and Dalton,

1996; Marzouk and Nayfeh, 2008c); we also found it to occur for the current Re and

motion amplitude. Such a feature does not occur in the examined in-line motion.

We compute the average dissipated power in the flow at each forcing frequency. Its

dimensional expression is

P̂ave =
1

t̂2 − t̂1
t̂2

t̂1

F̂x Û∞ − ˆ̇x d t̂ (7.5)

where F̂x is the dimensional drag force, t̂1 and t̂2 are arbitrary (but appropriate for

statistical analysis), and Û∞ − ˆ̇x is the relative velocity between the cylinder and

free-stream fluid in the F̂x direction. Combining Equations (7.5) and (7.1) yields the

following nondimensional expression for the average dissipated power:

Pave =
1

t2 − t1
t2

t1

CD(t) [1−A/D 2π fE cos (2πfE t)] d t (7.6)
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We use at least 40 motion periods to evaluate the integrand in Equation( 7.6). When

A/D=0, Pave reduces to CD .
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Figure 7.8: Calculated relative Pavg versus fE/fs.
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Figure 7.9: Calculated and fitted relative Pavg for the synchronized cases versus fE/fs.

In Figure 7.8, we show variation of the relative Pave with fE/fs. Over the pre-

synchronization frequencies, Pave increases slowly, whereas it increases quickly in a
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monotonic cubic fashion over the post-synchronization frequencies, as indicated by

the polynomial fit in Figure 7.9. This cubic profile can be explained as follows.

The first term in the integrand in Equation (7.6) gives CD , which remains un-

changed with fE for post-synchronization cases, as shown in Figure 7.3. Therefore,

Pave is controlled by the second term in the integrand, in which CD(t) is multi-

plied by fE . Due to the approximation in Equation (7.3), we find that this term

becomes −√2 π sin(ψ) (A/D) fE RMS CD,osc, which is proportional to the prod-
uct of RMS CD,osc and fE. The angle ψ varies weakly with fE, as in Figure 7.7,

and RMS CD,osc increases quadratically with fE as shown in Figure 7.5; hence Pave

increases cubically with fE.

7.4 Synchronization Map
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Figure 7.10: Locus of the critical fE in the (A/D)− (fE/fs) plane.

We found that increasing the motion amplitude decreases the critical frequency at

which the lift reduction starts. There is a threshold of this amplitude below which
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Figure 7.11: Loci of the critical fE in the (A/D) − (fE/fs) plane at Re=500 (solid
line) and Re=300 (dashed line). The threshold (A/D) is indicated by a solid circle.

the lift does not exhibit this feature for any forcing frequency. We found that the

threshold here is (A/D)=0.157. Figure 7.10 shows the locus of the critical frequency

in the (A/D) − (fE/fs) plane. Similar variations of the lift and drag with fE take
place at other Reynolds numbers. The loci of the critical frequencies at Re=500 and

300 are compared in Figure 7.11. The locus when Re=300 is nearly a straight line

with a negative slope, and the threshold A/D is increased to 0.2. The need for a

larger motion for the lift reduction to develop at lower Re can be explained by the

higher viscous dissipation. This explains the absence of such a feature at Re=80 in

the experiments of Tanida et al. (1973) and our simulations.

7.5 Pre- and Post-Synchronization Modes

Next, we present several lift and drag response modes that occur before and after the

onset of synchronization. These modes are quantitatively and qualitatively different.
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Before the critical frequency, we found lift and drag responses that are either period-

n, quasiperiodic, or chaotic motions. The best method to distinguish among these

responses is Poincaré sections. In Figure 7.12, we show the Poincaré sections of CL

for representative nonsynchronized cases: i) quasiperiodic response at fE/fs=0.4, ii)

period-6 response at fE/fs=0.72, iii) chaotic response at fE/fs=0.73, and iv) period-

2 response at fE/fs=1.7. The corresponding Poincaré sections of CD are shown in

Figure 7.13, which clearly indicate that both of the lift and drag have the same

response type.
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Figure 7.12: Poincareé sections of nonsynchronized CL: i) fE/fs=0.4, ii) fE/fs=0.72,

iii) fE/fs=0.73, and iv) fE/fs=1.7.
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Figure 7.13: Poincaré sections of nonsynchronized CD: i) fE/fs=0.4, ii) fE/fs=0.72,

iii) fE/fs=0.73, and iv) fE/fs=1.7.
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Figure 7.14: Steady-state CL and CD versus time for fE/fs=1.7.
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Figure 7.15: Steady-state CL and CD versus time for fE/fs=1.81.

The period-2 mode of the lift and drag takes place for a wide range of fE/fs (from

1.15 to 1.8). It is followed by synchronization, which is accompanied by large changes

in CL and CD as one can see from comparison of the amplitudes and patterns of

the time histories in Figure 7.14 to those for the synchronized case at fE/fs=1.81 in
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Figure 7.15.
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Figure 7.16: Poincaré sections of CL and CD for fE/fs=1.81.
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Figure 7.17: Poincaré sections of CL and CD for cross-flow motion at fE/fs=1.

The synchronized lift and drag are characterized by a single point in the Poincaré

sections in Figure 7.16. We pay attention to the changes that occur in the lift and

drag and their coupling due to synchronization. To achieve this, we compare their

spectra and cross-bicoherence to those we found for the period-2 case at fE/fs=1.7
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(the Poincaré sections of CL and CD for this case were shown already in the last

plots of Figures 7.12 and 7.13, respectively) and also to those we found for another

synchronized case at fE/fs=1 for a cross-flow motion. The Poincaré sections of CL

and CD for the latter case are shown in Figure 7.17. Whereas each of these sections

contains a single point, as was the case in the synchronized cases due to the in-line

motion, we show below that the synchronized CL is period-1 for both cases and CD is

period-1 in case of in-line motion but period-1/2 in case of cross-flow motion. Because

one cannot distinguish between the two cases using the Poincaré sections for CD, we

use second- and third-order spectral analysis to differentiate between them.
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Figure 7.18: Spectra of CL and CD at fE/fs=1.7.

The spectra of CL and CD for the period-2 case at fE/fs=1.7 are shown in Figure 7.18.

The frequency f is scaled with fE to better indicate the positions of the fundamental

components and their superharmonics and subharmonics. The fundamental compo-

nent of CL is at fE/2, whereas the fundamental component of CD is at fE. There are
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odd and even superharmonics of CL, but the odd harmonics are stronger. There are

fractional superharmonics in the spectrum of CD, but the integer ones are stronger.

The spectra of CL and CD for the synchronized case at fE/fs=1.81 are shown in

Figure 7.19. The fundamental component of CL is now at fE and the fundamental

component of CD is still at fE. Whereas there are still even and odd superharmonics

in the spectrum of CL (as in the pre-synchronization case), their amplitudes decay

monotonically and there is no bias towards the odd superharmonics. The fractional

superharmonics in the spectrum of CD have disappeared.
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Figure 7.19: Spectra of CL and CD at fE/fs=1.81.

The spectra of CL and CD for the synchronized case at fE/fs=1 for cross-flow mo-

tion are shown in Figure 7.20. One of the main differences between this mode of

synchronization and the one due to in-line motion is that CD is synchronized at 2fE

in the case of cross-flow motion rather than at fE. Also, the spectrum of CL consists

mainly of odd harmonics, and the spectrum of CD consists mainly of even ones. It
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should be mentioned here that, in the no-motion case, the spectra of CL and CD are

qualitatively very similar to those in Figure 7.20 (after scaling f with fs instead of

fE).
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Figure 7.20: Spectra of CD and CL for cross-flow motion at fE/fs=1.

If we define a total force coefficient CT as C2L + C
2
D and its angular orientation βT as

arctan(CL/CD), measured in the counterclockwise direction from the positive x-axis,

then the near-harmonic profiles of both CT and βT in the case of synchronization due

to cross-flow motion (as shown in Figure 7.21 for fE/fs=1) or in the no-motion case

are totally altered in the case of synchronization due to in-line motion (as shown in

Figure 7.22 fE/fs=1.81). In the former cases, the frequency of CT is equal to 2 fE

(or 2 fs), which is twice the frequency of βT . Also, the angle βT is limited to the

first and fourth quadrants, thus CD is always positive. With in-line synchronization,

the profile of βT becomes nearly a step function equal to either 0
o or ± 180o. This

effect is a consequence of the extreme reduction in CL. The interval when |βT | ≈180o
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corresponds to negative CD.
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Figure 7.21: Steady-state CT and βT for cross-flow motion at fE/fs=1.
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Figure 7.22: Steady-state CT and βT versus time for fE/fs=1.81.

104



7.6 Higher-Order Spectral Analysis

To examine the type of quadratic coupling between CL and CD, we calculate the

magnitude-squared cross-bicoherence b2LLD(f1, f2) as

b2LLD(f1, f2) =
|MLLD(f1, f2)|2

MLL(f1)MLL(f2)MDD(f1 + f2)
(7.7)

where

MLLD(f1, f2) = E L̃∗(f1) L̃∗(f2) D̃(f1 + f2) (7.8)

is the cross-bispectrum, L̃(f) and D̃(f) are the discrete Fourier transforms of CL(t)

and CD(t), respectively; E indicates the expected value (or time average); and the

superscript ∗ indicates the complex conjugate. The auto-power spectra MLL(f) and

MDD(f) of CL and CD are given by

MLL(f) = E L̃∗(f) L̃(f) (7.9)

MDD(f) = E D̃∗(f) D̃(f) (7.10)

The corresponding magnitude-squared cross-bicoherence for the CL and CD spectra in

Figure 7.18 is shown in Figure 7.23. The presence of many quadratically interacting

lift components is noticeable. A fractional subharmonic or superharmonic in CD at

1
2
m fE is formed by quadratic coupling between the CL components at (m + k) fE

and −(k+ 1
2
m) fE, where k ≥ 0 is an integer. These coherence points are located in

the difference region of b2LLD. They are in addition to other couplings between the CL

components at (1
2
m − k) fE and k fE, where k > 0 is an integer. These coherence

points are located in the sum region of b2LLD.
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Figure 7.23: Magnitude-squared cross-bicoherence for fE/fs=1.7.
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Figure 7.24: Magnitude-squared cross-bicoherence for fE/fs=1.81.
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The number of coherence points is reduced in the synchronized cases, as shown in

Figure 7.24, which corresponds to the spectra of CL and CD in Figure 7.19. This is

because there are phase-coherent components at fractions of fE . The fundamental

frequency of CD at fE is formed by the interaction of the components of CL at k fE

and −(k + 1) fE, where k ≥ 0 is an integer. Similarly, the superharmonic in the

spectrum of CD at 2fE is formed by the interaction of the components of CL at

k fE and −(k + 2) fE in addition to self-interacting CL component at fE. A similar
structure occurs for the higher superharmonics in CD.

f / f E

f/
f E

0 0.5 1 1.5 2 2.5 3 3.5

-3

-2

-1

0

1

2

3
b2

LLD
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1sss

Figure 7.25: Magnitude-squared cross-bicoherence b2LLD for cross-flow motion at

fE/fs=1.

The bicoherence plot is even simplified further for synchronization cases due to cross-

flow motion, as shown in Figure 7.25, which corresponds to the CL and CD spectra

in Figure 7.20. This is because of the presence of half the number of significant

superharmonics in the CL (odd ones) and CD (even ones) spectra. The fundamental
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component of CD at 2fE is formed by self-interacting CL component at fE in addition

to the interaction of the components of the CL at 3fE and −fE. The small CD
subharmonic at fE is formed by the interaction of the components of CL at 2fE and

−fE.
The bicoherence analysis provides information about the quadratic coupling of the

CL components in the CD components. To examine the linear correlation between the

CL and CD components, we use the (linear) cross-power spectrum MLD(f), defined

as

MLD(f) = E L̃∗(f) D̃(f) (7.11)
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Figure 7.26: Absolute of cross-power spectrum |MLD| for fE/fs=1.7.

Figures 7.26-7.28 show the absolute value of the cross-power spectrum |MLD(f)| cor-
responding to the CL and CD spectra in Figures 7.18-7.20, respectively. For the

pre-synchronization case, |MLD(f)| in Figure 7.26 indicates that all CL components
are linearly coupled with the respective CD components. The couplings at fE/2 and

fE are both one order of magnitude larger than the one at the subsequent superhar-
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monic at 3fE/2. For the synchronized cases with either in-line or cross-flow motions,

linear couplings occur at fE and its integer superharmonics. The decay of |MLD(f)|
at higher superharmonics is faster in the case of in-line motion.
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Figure 7.27: Absolute of cross-power spectrum |MLD| for fE/fs=1.81.

f / f E

|M
L

D
|

0 0.5 1 1.5 2 2.5 3 3.5 4
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 7.28: Absolute of cross-power spectrum |MLD| for cross-flow motion at

fE/fs=1.
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7.7 Wake Structure and Surface Pressure

In the remaining part of this chapter, we relate the large differences in the post-

synchronization cases, including the lift reduction and the saturation of the mean

drag, to changes in the vortex shedding and the pressure distribution on the surface

of the cylinder.

i ii

Figure 7.29: Vorticity contours when X=0 for synchronized cases: i) fE/fs=1.81

and ii) fE/fs=3. Positive (counterclockwise) vortex is being shed from the bottom

surface.

In Figure 7.29, vorticity contours in the near field for two post-synchronization cases

(at fE/fs=1.81 and 3) are shown at the instant when X(t)=0 and increasing (from

negative to positive), and therefore Ẋ is maximum. The typical von Kármán vortex

street with 2S mode is replaced by two parallel 1S streets: one with positive vortices

located behind the bottom point of the surface and the other with negative vortices

located behind its top point. This instantaneous symmetry in the wake is what

causes the reduction in CL because the lift force is a result of the instantaneous

imbalance in the surface pressure (which is related to the vortex strength at the

surface) between the top and bottom parts of the surface. As fE increases, the vortex

shedding frequency also increases and the shed vortices along each street become
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closer and those being shed from the surface become stronger (higher vorticity levels).

So, we expect more negative pressure at the locations of these vortices on the surface

of the cylinder.

Figure 7.30 shows distributions of the mean pressure coefficient CP at the surface for

the same two post-synchronization cases shown in Figure 7.29. The distributions in

this figure are almost symmetric about the base point (where the angular coordinate θ

is 180o), which causes the mean CL to be zero. Whereas this figure cannot reveal much

about the large reduction in the RMS CL due to synchronization, we use it to interpret

the reduction and saturation behavior of the mean CD due to synchronization. The

value of CD is mainly due to the imbalance in CP between the upstream and

downstream parts of the surface. The upstream CP is close to unity, whereas the

downstream CP is negative. We recall that the part of the surface near the base

point (θ=180o) is nearly isolated from shed vortices in the post-synchronization cases,

as shown in Figure 7.29. This is reflected in the ‘bump’ in the downstream CP at

fE/fs=1.81; it explains the 42% reduction in CD once synchronization occurs.
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Figure 7.30: Surface distribution of CP for synchronized cases: i) fE/fs=1.81 and

ii) fE/fs=3. The angle θ is 0 at the stagnation point and 90
o at the top point.

To interpret the saturation behavior, we compare the two surface distributions of CP
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at fE/fs=1.81 and 3. The downstream bump becomes stronger in the latter case,

which results in a reduced CD for this high-frequency synchronized case. However,

this is counteracted to a large extent by a reduction (more negative) in CP over

θ = 30o-90o and 270o-360o. Therefore, variations in CD for the post-synchronization

cases are minimal.

θ

C
P

0 60 120 180 240 300 360
-5.0

-3.0

-1.0

1.0

3.0i

θ

C
P

0 60 120 180 240 300 360
-5.0

-3.0

-1.0

1.0

3.0ii

θ

C
P

0 60 120 180 240 300 360
-5.0

-3.0

-1.0

1.0

3.0iii

θ

C
P

0 60 120 180 240 300 360
-5.0

-3.0

-1.0

1.0

3.0iv

Figure 7.31: Surface distribution of CP over one motion cycle for fE/fs=1.81. The

motion sequence is: i) X=0 and Ẋ is maximum, ii) X is maximum and Ẋ=0, iii)

X=0 and Ẋ is minimum, and iv) X is minimum and Ẋ=0.

To support and augment the above discussion on CL, CD, and surface CP , we exam-

ine the surface distributions of CP over one motion cycle for the post-synchronization

case at fE/fs=1.81 in Figure 7.31. The surface CP is shown at four equally-spaced

instants of time. The surface CP exhibits instantaneous symmetry about the x-axis.

This is due to the instantaneous symmetry of the magnitude of the vorticity at the

surface. Because the peaks and valleys in CL(t) are mainly due to the difference
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between CP at the top and bottom parts of the surface, these peaks and valleys are

reduced in the post-synchronization cases due to the strong reduction in the CP dif-

ference that contributes to |CL|. These CP snapshots also explain the increase in
RMS CD,osc with fE for the post-synchronization cases even though CD remains

unchanged. Because the surface distribution of CP becomes more distorted as fE

increases (as in Figure 7.30), the distortion in the instantaneous CP distributions is

strengthened also. The RMS CD,osc depends on the instantaneous CP imbalance be-

tween the upstream and downstream parts of the surface. This imbalance increases

steadily with fE as a result of the intensified vorticity at the surface.
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Chapter 8

Summary and Conclusions

This dissertation research is another step toward increasing the understanding of the

wake of a circular cylinder. To accomplish this, we used analytical and numerical

approaches to examine the performance of exiting wake models and then proposed

improved wake models. We applied different analysis techniques to characterize the

types of wakes excited by the cylinder motion. We showed the limitations of each

technique in terms of its ability to distinguish among the complex wake responses.

We studied changes in the wake and induced fluid force due to cross-flow motion

with frequency sweeps, and provided interpretations for some reported results of

interest in the literature based on the behavior of the nonlinear systems. We showed

that relevant experimental studies with sine dwell need to be checked carefully to

ensure that the results correspond to stationary forcing and not to quasistationary

forcing. We studied in detail the effects of in-line motion on the wake from several

perspectives, including the magnitude and response type of the lift and drag, their

linear and quadratic couplings, the mechanical work done on the flow, the wake

structure, and the surface pressure distributions. In the following, we provide a list

of the main conclusions we have from our study:
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• We modeled the lift and drag coefficients on a fixed cylinder in a uniform flow

through a free-wake oscillator for the lift coefficient and a quadratic algebraic

function for the drag coefficient. The models account for the coupling between

these coefficients. For the lift coefficient, the van der Pol oscillator was modified

by adding a Duffing-type cubic term. Then, the values of the model parameters

were estimated by matching an approximate solution of the model, obtained by

the method of harmonic balance, to the results we obtained from CFD (com-

putational fluid dynamics) simulations. As for the oscillating drag coefficient,

we modified the single-term quadratic model by introducing a second quadratic

term so that the exact phase between the drag and lift can be reproduced.

We examined the models performance for two different values of the Reynolds

number and found they reproduce the lift and drag coefficients obtained from

time-consuming CFD calculations. By building a database for the model pa-

rameters over a finite numbers of Reynolds numbers, one can use these models

to evaluate the force coefficients at any arbitrary Reynolds number within the

database (interpolation might be needed) and hence avoid the CFD calcula-

tions. The time required to find longtime histories of these coefficients using

CFD simulations is about three orders of magnitude larger than the time needed

to solve the proposed models, although the accuracy is almost the same. More-

over, these models provide valuable information about characteristics of these

coefficients and the system dynamics, such as the order of the nonlinearity,

which cannot be revealed from CFD simulations.

• We extended our improved free oscillator for the lift coefficient by accounting
for harmonic motion of the cylinder in the cross-flow direction. The objective

was to choose an appropriate forcing term that represents the coupling with
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cylinder motion. We examined the influences of existing forcing forms, a sin-

gle external-forcing term, and found that this simple forcing fails to capture

the wake bistability, which is a key feature in the wake of a moving cylinder.

We also found that parametric forcing is not satisfactory. Consequently, we

introduced mixed forcing (external plus parametric) to capture the bistability

and hysteresis. We found that velocity-based and acceleration-based forcing

produce similar responses. The proposed models have three parameters: two

amplitudes for the two parts of the forcing and a third for their phase angle.

The phase should be negative for softening-type frequency-response curves.

• We used the CFD simulations and studied the effect of the frequency of a cross-
flow motion on the flow in terms of the magnification of the lift and drag forces

within and outside the synchronization band of forcing frequencies. Within

this band, shedding is entrained by the cylinder motion and the flow response

(i.e., the lift coefficient) is synchronized with the motion frequency and hence

it is referred to as period-1 response. Outside this synchronization region, the

response is complex, making it challenging to identify its type. Using modern

methods of nonlinear dynamics, such as power spectra, phase portraits, and

one-sided Poincaré sections, we identified three types of responses: period-n

with n > 1, two-period quasiperiodic (or ‘two torus’), and chaotic responses.

We used the Poincaré sections and found that we have a quasiperiodic route to

chaos with torus-breakdown scenario.

• We used the CFD simulations and studied the flow past a cylinder oscillating
in the cross-flow direction, under synchronization condition, with four types

frequency sweep: stationary, quasistationary, discrete, and nonstationary. We
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identified several nonlinear phenomena, such as hysteresis, bistability, overshoot,

and passage through resonance. The first one was investigated in terms of the

effect of the rate of the frequency sweep and the last two require nonstationary

forcing to develop. We identified a small (or type-A) attractor and a large

(or type-B) attractor. The coexistence of two stable solutions, or the bistability,

causes a hysteresis region. The jump between the attractors depends on whether

the frequency is increased or decreased. Within the hysteresis region, the initial

conditions determine the attractor.

• We used the CFD simulations and studied the problem of a cylinder under-

going harmonic in-line motion in a uniform stream for different motion (or

wake excitation) frequencies fE. Depending on the Reynolds number and the

nondimensional amplitude of motion A/D, synchronization can occur. When

nonsynchronized, the lift and drag can be periodic with large periods, quasi-

periodic, or chaotic. The synchronization occurs at lower values of the forcing

frequency fE when either A/D or the Reynolds number increases. When syn-

chronization occurs, the lift and drag are both synchronized at fE, the lift

has almost zero amplitude, the mean drag drops and saturates at a constant

value regardless of fE but its RMS value grows quadratically with fE, the wake

structure and shedding change and become instantaneously symmetric, and the

coupling between the lift and drag changes. Whereas the linear coupling be-

tween the synchronized lift and drag is similar for the in-line and cross-flow

motions, their quadratic coupling is different. The drag excites the lift for all

cases, synchronized or not, and mechanical work is done on the flow by the drag

and the motion. The instantaneous symmetry in the vortex structure affects

the surface distribution of the pressure, which in turn explains the qualitative
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and quantitative changes in the lift and drag when they become synchronized.
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