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Abstract 

Given a string of characters, that string may contain patterns of characters 

that occur more than once. These are Repeating Patterns. A Maximal Repeating 

Pattern (MRP) is a repeating pattern that is not a substring of a longer repeating 

pattern or occurs at least once where it is not a substring of another repeating pat- 

tern. This report rigorously addresses the computation of MRPs and proposes two 

new categories of repeating patterns whose computational bounds are more attrac- 

tive for use in human-computer interaction where the computational complexity is 

a significant issue. 

A modified trie is used to find Maximal Repeating Patterns in a given text 

string. The advantages in time complexity and memory usage gained by limiting 

the length of MRPs and the usefulness of limiting the spatial context of repeating 

patterns when processing large data sets are explored.



1 Introduction 

1.1 Maximal Repeating Patterns 

Finding repeating text patterns is of interest in several fields. In human- 

computer interaction studies log files are analyzed to detect repeating patterns of 

user commands. These repeating patterns may be indicators of a poorly designed 

human-computer interface, errors in the operating system, or other problems in 

the interface design. In the field of data compression, repeating patterns are found 

and replaced with shorter codes. When these patterns are not substrings of longer 

repeating patterns, they are called Maximal Repeating Patterns. 

In 1989 Antonio Siochi was the first to define and use MRPs in human- 

computer interface analysis. Siochi’s work (Siochi, 1989, 1991) deals with MRPs 

mainly in their connection with user interface analysis. His work failed to illuminate 

some to the subtle aspects of MRPs and their computation. This report rigorously 

explores the definition of MRPs, their computation, and extends the definition 

to several related categories of repeating patterns that are more computationally 

tractable. 

By considering only limited length patterns, the time complexity is signifi- 

cantly reduced because the required data structure (a p-tree, see Section 3.1.5) may 

be drastically reduced in size. By requiring that patterns repeat within some spa- 

tial context, the part of the tree that must be kept in memory at any given time 

may be reduced. The same number of tree nodes as the non-spatially bounded tree 

must still be constructed, added, and deleted, but they need not exist in memory 

all at once. This allows a much larger data set to be processed in primary storage, 

avoiding the time increases associated with using secondary storage. 
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Consider the set of strings &* constructed from a finite alphabet %. Let 

u,w,x,y € O* denote specific strings. If c = uyw, we say that y is a substring of 

z, and we say y is a proper substring of z if ww # 4, where A is the empty string. 

A repeating pattern in a string z is a substring of z that occurs more than 

once in 2Z. 

Given a string S, of length n, constructed from the alphabet ©, where || = 

1. The longest repeating pattern is of length n — 1. A pattern of length n may not 

repeat in a string of length n since it can only occur once (in the first position). In 

the example of S = “aaaa$” the pattern “aaa” occurs twice, at positions one and 

two. 

The shortest repeating pattern for a general string is Oifn <lorlifn>1. 

If the string contains more characters than are in the alphabet, at least one of them 

must repeat. 

A Mazimal Repeating Pattern (MRP) is a repeating pattern in a string, where 

at, least one of its occurrences is not a substring of another repeating pattern. The 

concept of an MRP and the use of a Pat-tree to find them is due to Siochi (Siochi, 

1989; Siochi and Ehrich, 1991). An occurrence of a repeating pattern is considered 

independent if it is not contained in an occurrence of a larger repeating pattern. 

Let S be a string of n characters, S = $18253--+Sn$n+1, where $n41 = $ is 

a special terminating character that occurs nowhere else in S. Let a = S[i,7 + q] 

denote the substring s; ---s;4, of S where a is said to occur at position 2. If a occurs 

at distinct positions 7 and 7, then a@ is a repeating pattern within S. If a = S[z,i4+q], 

then let |a| = ¢ +1 be the length of a. Let a and § be repeating patterns in S. 

The position set P(a@) of a is the set of positions at which a occurs. For example, 
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if a string S is 15 characters long, |@| = 3, and @ occurs at locations 0, 5, and 10, 

then P(Z) = {0,5,10} and the span set of @ is SP = {0,1,2,5,6,7,10,11,12}. The 

complement of the span set of (all the positions not occupied by a character of 

B) is SP(8) = {3,4,8,9,13,14,15}. A repeating pattern a is a Maximal Repeating 

Pattern or MRP of S, if there exists no repeating pattern 8 of S such that a < £, 

or if a repeating pattern @ exists, then P(aw) MN SP() is not the empty set. In other 

words, at least one a@ occurs outside of all occurrences of 8. If @ is not contained in 

another occurrence of a repeating pattern 7, then a is maximal. 

Given a string S, of length n, constructed from the alphabet ©, where |=] = 

I. The longest MRP is also of length n — 1. Since the longest possible repeating 

pattern is of length n —1, and since such a pattern may not be contained in a longer 

repeating pattern (there exist no longer repeating patterns) it is a MRP. “aaa” is a 

MRP of “aaaa$”. 

For a string of length n, there will exist at least one MRP of length log;(n —1) 

or greater. For n < 1, there need not be any repeating patterns. Three are [* 

possible patterns of length k. A string of length n contains n patterns (one starting 

at each position). If n > 1* then at least one of those patterns must repeat. The 

example of “abbbbba$” where the MRPs are “a” and “bbbb” shows that there may 

also be MRPS shorter than length log;(n — 1). 

Siochi’s results suggest that the number of MRPs is a linear function of the 

size of the input, while both the size and frequency of the MRPs is a function 

inversely proportional to the size of the input. 

1.1.1 Examples: 

Because many of them overlap, the MRPs in the examples are boxed and 

underlined to make them easier to read. 

— 3 —



Stochi’s example (prefix example). For the text string “abedyjabedzabc$” , the 

MRPs are “abc” and “abcd”. “abc” is a MRP because it occurs independently of 

“abcd”. 

Substring example. For the text string “abedajabedybc$”, the MRPs are “dc” 

and “abcd”. 

Suffiz example. For the text string “abedtabedybed$” , the MRPs are “bed” 

and “abcd”. These three examples show that a pattern may be a prefix, suffix or 

general substring of a MRP and still be a MRP in its own right. 

Overlap example. For the text string ‘erayyaberyydefeaas” , the MRPs are 

“ger” and “syy”. 

The position of a substring in a pattern is not significant as long as the 

substring occurs independently. An MRP may overlap itself, as one can see in 

a string such as “aaa$”, where the MRP is “aa”. 

1.1.2 k-MRPs 

A k-bounded MRP, or k-MRP is a repeating pattern that is not a substring 

of any other pattern that is less than length k. 

A repeating pattern a of S with |a| < k is a k-MRP if there is no repeating 

pattern 8 of S with |8| < k such that a < f, or if a repeating pattern § exists, then 

P(a) NM SP(f) is not the empty set. 
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For the text string “abcdzabcdybcd$” , The 4-MRPs are “bcd” and “abcd”. The 

3-MRPs are “abc” and “bcd”. The 2-MRPs are “ab”, “bce”, and “cd”. The 1-MRPs 

are “a”, “b”, “ce”, and “d”. Note that as long as the k is as long as or longer 

than the longest MRP, the results are the same as for searching for the unbounded 

MRPs. 

1.2 Scope of Work 

Fully-built tree structure. Siochi used position trees to locate MRPs. This 

report will demonstrate and prove the validity of a simpler tree growing algorithm, 

especially when there is a limit on the length of the MRPs. Position trees are often 

implemented with compressed branches to save memory and construction time. A 

noncompressed position tree, or trie, (see Figure 1.1) is a position tree where each 

branch represents only a single character. 

By using a noncompressed tree a simpler tree building algorithm may be used. 

Further, by placing the position data in the nodes, it is not necessary to traverse 

the entire tree and time is saved in the detection algorithm. On average, a tree with 

noncompressed branches will require more memory. However, in the worst case, a 

tree built from a string with only one character that repeats for the entire length is 

not compressible, and both trees require identical space. 

k-bounded patterns. If one can guess a limit to the length of the largest 

MRP or better, the largest MRP useful in a given application, it will be shown that 

O(n log(n)) time complexity can be achieved by limiting tree depth, where n is the 

string length.
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Figure 1.1. Example p-tree for the string “xxyyyaxyydxx$” 

k-bounded iterative algorithm. The k-bounded algorithm has the property 

that if there exists an MRP, 8, such that |8| > &, then all the length k substrings of 

6 will be found. By replacing these substrings with shorter sequences and running 

the algorithm again all the MRPs will eventually be found. Special care must 

be taken, however, to ensure that the replacement sequences do not create new 

repeating patterns, or the algorithm will find extraneous MRPs. 

It is possible to modify Weiner’s Algorithm D, (Weiner, 1973) to build a 

bounded length position tree with compressed branches with nodes that still contain 

all the extra data contained in a p-tree, but this is beyond the scope of this project. 

Using a compressed tree would save memory (and time where virtual memory is 

used to hold part of the tree).



The proposed k-bounded algorithms are of complexity O(n log(n)). Most of 

the subsections of the algorithm are O(n). This is a significant improvement over 

previous algorithms without significant degradation of results (if an appropriate 

value for k is chosen). By restricting the spatial context, it is possible to limit the 

number of branches in the tree at any given time, limiting the size of the entire data 

structure, and allowing large data sets to be processed. 

1.3 Previous Work 

Siochi uses a standard Pat-tree, or position tree (Weiner’s algorithm D, 

Weiner, 1973) builder. Algorithm D restructures the tree during the building phase 

to maintain a compressed tree. A full traversal of the tree is required to detect all 

the MRPs. Although in my algorithm the trees are uncompressed, the tree traversed 

is equivalent to Siochi’s. 

A trie is a recursive tree structure that contains strings. A string is said to 

contained in the trie if the path from the root to a leaf is labeled with that string. 

(Frakes, 1992) A Pat-tree (Gonnet, 1983) or position tree is a trie built from all the 

suffixes in the input string, or a suffix tree. Branches in the tree are labeled with 

characters. The actual string data is not stored in the nodes, but in the arrangement 

of the nodes in the tree. Each of the leaves has the starting position, or index, of 

the first character of the string that it represents stored in it. The root node will 

have one branch for every different character that exists in the input string. 

A given interior node, n, represents the pattern found by concatenating the 

labels of the branches on the path from the root node to n. If n or any of its descen- 

dants branch, then that pattern repeats. The indices in the leaf nodes descended 

from n indicate the starting positions of these patterns in the input string. 
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Figure 1.2. Example trie for the string “xxyyyaxyydxx$” 

2 Problem Definition 

2.1 Standard Problem 

Given a known alphabet and an input string, find and list all the MRPs and 

their positions in the string. 

The distance between two patterns in some string S, is the absolute difference 

between the positions of the first characters of the two patterns. Find and list all the 

MRPs in an input string, considering only patterns that are within some distance 

l of each other.



Present a more lucid definition of MRPs than has previously existed. 

2.2 k-bounded Problem 

Given a known alphabet and an input string, find and list all the k-MRPs and 

their positions in the string. Present and algorithm to do this in less than O(n?) 

time and memory. 

Patterns of length greater than k are ignored, although the possibility of their 

existence may be deduced from the existence of length k patterns. If no length k 

patterns are detected, there are no MRPs of length greater than k. 

Develop an algorithm that finds all the k-MRPs and their positions in the 

string, considering only those that are within some distance | of each other. 

3 Algorithms and Proof 

3.1 Definitions 

3.1.1 Suffixes 

Given an arbitrary string, S, a suffix of S is a substring of S that starts at 

any position and continues to the end of S, for an S of any length. The number of 

suffixes in S is equal to the number of characters in S. Because a terminator ,$, is 

added to the input, null suffixes are not allowed. 
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3.1.2 Occurrence 

An occurrence of a pattern in the string is uniquely denoted by the index of 

its first character in the string. A single pattern may have several occurrences in a 

single string. The first character of a string has index 1. 

3.1.3 Trie 

Trie. Given an alphabet %, a trie is a tree that contains strings made up 

from members of © and have these properties: 

Property 1: A trie is a rooted tree. 

Property 2: The edges joining a node to its children are labeled with distinct ele- 

ments of b. 

Property 3: All leaf nodes are marked. All internal nodes are unmarked or marked. 

[Storer, 88] A trie is said to contain a string if the path from the root to a 

marked node is labeled with that string. 

A trie is said to contain a string if the path from the root to a marked node 

is labeled with that string. 

3.1.4 Pat-tree 

Pat-tree. A Pat-tree of a string is a trie that contains exactly the suffixes 

contained in that string, except that paths for non-branching nodes are compacted 

together (see Figure 3.1) (Weiner, pp. 3). The path from the root node to a 

leaf node is labeled with the string that it represents. Pat-tree has the following 

properties: 
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Figure 3.1. Example Pat-tree for the string “xxyyyaxyydxx$” 

Property 1: A Pat-tree is a trie. 

Property 2: Each leaf is labeled with the index of the string that ends at that leaf. 

Property 8: There is one leaf for each index in the original string. 

Property 4: A Pat-tree contains exactly the suffixes in the original input 

Note that the path from the root node to a node is labeled with is a pattern. 

If that node is a branching node, then that pattern is known to repeat. Since a 

branching node has more than one leaf descended from it, the pattern up to that 

point repeats. 

3.1.5 p-tree 

p-tree. A p-tree is defined as the particular variation of a standard Pat-tree 

used in this algorithm. A p-tree is the same as a Pat-tree, except that there is 

no node compaction (see Figure 1.2). This requires more memory, but simplifies 

construction and later use of the tree. p-tree nodes contain a list of pointers to
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pointer to child list 

int leaves node pointer node pointer 

int branches ; oo 
list of indicies ... 
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pointer to idx nodes next pointer next pointer /—> 

int idx int idx             

Figure 3.3. p-tree node 

the node’s children, the number of branches that node has, the number of leaves 

that are descended from that node, and a list of starting positions of occurrences 

that end with that node or a leaf descended from that node (see Figure 3.3). The 

information about the number of branches and the number of leaves descended from 

a node is used to limit the traversal in the detection step, later. A p-tree has the 

following properties: 

Property 1: <A p-tree is a trie. 

Property 2: Each leaf is labeled with the index of the string that ends at that leaf. 

Property 3: There is one leaf for each index in the original string. The leaf nodes 

have a one to one mapping to the characters of the input string. 

Property 4: The path from the root node to a leaf node is labeled with the suffix 

that starts at the character to which the leaf maps. 

3.1.6 Definition of a k bounded p-tree 

k-bounded p-tree. For the k bounded algorithm, bounded p-trees are used. 

The depth of the bounded tree is limited to k + 2 and the leaf nodes contain lists 

of indices, instead of single values. These values have the 1 to 1 mapping to the 

input that the leaf nodes have in an unbounded p-tree. A leaf node contains index 

values for the leaves that would descend from it in the unbounded version except



that the strings passed to InsertString (see Section 3.1.2) are limited to length k. 

The bounded version is built in the same manner as the unbounded version. (See 

Example 3.11) A k bounded p-tree has the following properties: 

Property 1. A k bounded p-tree is a trie. 

Property 2. Each leaf is labeled with the indices of the string(s) that end at 

that leaf. 

Property 8. There is one index entry for each character in the original string. 

The index entries have a one to one mapping to the characters of the input string. 

Property 4. The path from the root node to a leaf node is labeled with the 

suffix that starts at the character(s) to which the entries in the index map. 

3.2 Tree Builder 

3.2.1 Tree Building Algorithm 

Build the tree by inserting each of the suffixes into the tree. BuildTree takes 

a string S, terminated by $, as an argument and returns the root node of a p-tree 

constructed from all the suffixes in S. 

Algorithm: BuildTree(S) 

(1) Let R be a new, empty p-tree 

(2) For every suffix $;3;418i42°'+ $n$n41, do 

(3) InsertString(s;5;41$i42 °° $n$n41, R,t) 

(4) Return R 
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Example 3.1. For the input string “xxyyyaxyydxx$”, BuildTree will send the 

following suffixes to InsertString: “xxyyyaxyydxx$”, “xyyyaxyydxx$”, “yyyaxyy- 

dxx$”, “yyaxyydxx$”, “yaxyydxx$”, “axyydxx$”, “xyydxx$”, “yydxx$”, “ydxx$”, 

“dxx$”, “xx$” , “x$”, and oor 

AddPtr takes the current node and a character as an argument. If the current 

node has a child labeled with that character it returns a pointer to that child. 

Otherwise it creates a new node and a pointer, labeled with that character, to it 

from the current node. 

InsertString takes a string, x, a node and an index number, index, as ar- 

guments. The string is added to the tree. Insert string requires the terminating 

character $ to be unique in the string, i.e., $ ¢ D. 

Algorithm: InsertString(r1 22 --- 2p, node, index) 

(1) Is there a child of node connected by an edge labeled with x1? 

(2) If so: 

(3) Delete node’s list of indices. 

(4) If not, create one by calling AddPtr(node, xj). 

(5) Increment node’s branch counter. 

(6) Add indez to the child’s list of indices. 

(7) Increment node’s leaf counter. 

(8) Call InsertString(rer3 +--+ tn, child, index). 

(9) Return. 

Example 3.2. Examples 3.2.1 through 3.2.11 show the intermediate steps of 

building the p-tree, after each suffix is added. 
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Examples 3.2.1, 3.2.2, 3.2.3, 3.2.4, and 3.2.5 

3.2.2 Proof of Tree Building 

The proof of correctness of the tree building algorithm is by induction on the 

length of the string, n. A p-tree is correct if it has the four properties listed in 3.1.5. 

Given a string, 8, it is shown why the tree for the string af is correct if the string 

for @ is correct. This may seem backwards, but the tree for af is the tree for 8 with 

the string af inserted into it. 

Lemma 3.1: The algorithm InsertString is correct for n > 1. 

Proof by Induction on the length of the string z. 
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Examples 3.2.6, 3.2.7, and 3.2.8 

Part I: (base cases) 

n = 0: InsertString returns with no changes to the tree. 

m= 1: x = “$”. Because all the suffixes are unique, there will not be a 

branch labeled with ‘$’, therefor a new node will be created. Since a new pointer is 

added, the branch counter is incremented. Since a new leaf will be added the leaf 

counter is incremented. The index of the new leaf is added to the idxs list of the 

669 new node. InsertString is called with x = “”. All the properties are met: The tree 

is still a trie (Property 1). One new leaf with a properly labeled path is created 

(Properties 3 and 4). The new leaf contains its index (Property 2). The new leaf 

has zeros for the branch and leaf counters (zeroed in the node creation process). 
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Examples 3.2.9 and 3.2.10 

The old node has incremented leaf and branch pointers. Example 3.3.1 shows the 

original old node with values of L, B and I for the number of leaves, number of 

branches, and the index list. Example 3.3.2 shows both nodes, after the values have 

been changed. Note that the old node may or may not have any descendants before 

InsertString is called with x = “$”. 

(Basis) n = 2: s = “a$” where ‘a’ is a character. Either the node has an 

edge labeled ‘a’ or not. 

Case 1: The node does not have a child connected by an edge labeled ‘a’. 

A new node will be created. Since a new pointer is added, the branch counter is 

incremented. Since a new leaf will be added the leaf counter is incremented. The 
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Example 3.2.11 

leaves:L+1 

branches:B+1 

idxs:1+i 

$ 

leaves: L leaves: 0 

branches: B branches: 0 

idxs:1 idxs:{i}             

Examples 3.3.1 and 3.3.2 

index of the new leaf is added to the idxs list of the new node. InsertString is 

called with « = “$” and node = the new child of node. This is known to properly 

add a leaf node. All the properties are met: The tree is still a p-tree (Property 

1). One new leaf with a path of “a$” is created (Properties 3 and 4). The new 
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leaves: L+1 

branches: B 

idxs:{} 

  

  

leaves: L+1 

branches: B 

idxs:{} 

a 
  

  

  

  

leaves: L 

branches: B 

idxs:| 

a 

leaves:1 

branches: 1 

idxs:i 
  

  

      

leaves: 0 

branches: 0 

idxs:i 

$ 

        

leaves: 0 

branches: 0 

idxs:i 
    

Examples 3.4.1, 3.4.2 and 3.4.3 

leaf contains its index (Property 2). The new leaf has zeros for the branch and leaf 

counters (zeroed in the node creation process). The old node has incremented leaf 

and branch pointers. The new node has leaf and node counters of 1 and index list 

containing index. Example 3.4.1 shows the original node. Example 3.4.2 shows the 

tree after the ‘a’ has been added but before InsertString is called with x = “$”. 

Example 3.4.3 shows the final state of the tree after InsertString returns. 

Case 2: The node does have a child connected by an edge labeled ‘a’. Since 

anew pointer is not added, the branch counter is not incremented. Since a new leaf 

will be added the leaf counter is incremented. The index of the new leaf is added 

to the idxs list of the new node. InsertString is called with x = “$” and node = the 

child of node. This is known to properly add a leaf node. All the properties are met: 

The tree is still a p-tree (Property 1). One new leaf with a path of “a$” is created 

(Properties 3 and 4). The new leaf contains its index (Property 2). The new leaf 

has zeros for the branch and leaf counters (zeroed in the node creation process). 

The old node has incremented leaf and branch pointers. The new node has leaf 

and node counters of 1 and index list containing index. Example 3.5.1 shows the 

original nodes. Example 3.5.2 shows the tree after the ‘a’ branch has been traversed 
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leaves: U+1 

branches: V 

idxs:{} 
  

a         

      

      

leaves: U leaves: U+1 leaves: L+1 

branches:V branches: V branches: B+1 

idxs:{} idxs:{} idxs: {} 

| $ 
a a 

leaves: L leaves: L teaves: 0 

branches: B branches: B branches: 0 

idxs:! idxs: | idxs: i                   

Examples 3.5.6, 3.5.7 and 3.5.8 

but before InsertString is called with x = “$”. Example 3.5.3 shows the final state 

of the tree after InsertString returns. 

Part ITI: (induction) 

Assume: InsertString($$,node,index) is correct. 

Prove: InsertString(a($,node,index) is correct 

Case 1: node does not have a child connected by an edge labeled ‘a’. Since 

anew pointer is added, the branch counter is incremented. Since a new leaf will be 

added the leaf counter is incremented. The index of the new leaf is added to the 

idxs list of the new node. InsertString is called with x = “$$” and node = the new 

node. This is assumed to work, as it maintains the four properties in 3.1.5. 

Case 2: node does have a child connected by an edge labeled ‘a’. Since a 

new pointer is not added, the branch counter is not incremented. Since a new leaf 

will be added the leaf counter is incremented. The index of the new leaf is added 

to the idxs list of the new node. InsertString is called with x = “@$” and node = 

the child of node connected by the edge labeled ‘a’. This is assumed to work, as it 

maintains the four properties in 3.1.5. 
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All nodes have correct branch and leaf counters and index lists. The path to 

each leaf is labeled with the suffix used to create it. Each leaf has a unique index 

corresponding to the index of the suffix. 

By parts I and II, Lemma I is correct. 

Proof of BuildTree. 

Theorem 3.1: The algorithm BuildTree is correct 

Proof by Induction on the length of S. 

Part I: (base case) 

n = 1: BuildTree calls InsertString(“$” ,root,i), creating one leaf with an 

index of i and a path labeled “$”(Lemma 3.1). This correctly maintains the four 

properties in 3.1.5. 

(Basis) n = 2: BuildTree calls InsertString( “aS”, root, i) and Insert- 

String(“$”, root, i+1) creating two leaves with indices of i and i+1 respectively, 

and paths labeled “a$” and “$”. This also correctly maintains the four properties 

in 3.1.5. 

Part II: (induction) 

Assume: BuildTree($$) holds, producing |@|+1 leaves numbered from 1 to 

|B|+1 

Prove: BuildTree(a/$). 

Build tree calls InsertString(“a8$”, root, i), InsertString(“G$”, root, i) --- 

InsertString(“$”, root, i). Calling InsertString(“8$”, root, i) --- InsertString(“$”, 
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root, i) is the same as calling BuildTree(8$), which is assumed to produce a tree 

that maintains all four properties. Calling InsertString(“a8$”, root, 1) produces 

one leaf (Property 3) with index i (Property 2), and a path to it labeled “af$” 

(Property 4). The tree created is still a p-Tree (Property 1). 

By Parts I and II, Theorem 3.1 is correct for n > 1. 

3.3 Detection 

3.3.1 Detection Algorithm 

The MRP detection algorithm makes use of a data structure called mlist. 

mist is a list of occurrences, denoted by their starting and ending indices in S. In 

the worst case, n items will be inserted into mlist. If mlist is implemented as a 

flat list, the detection algorithm requires O(n?) time complexity because the list 

has to be traversed for each insertion. If mlist is implemented as a balanced tree, 

sorted by starting index, the algorithm is O((nlog(n)). (nm searches of a balanced 

tree of maximum depth log(n).) FindMRP takes a node, the root of the p-tree to 

be searched, as an argument and sends all the repeating patterns to mlist using 

AddNode. FindMRP traverses the tree and sends the occurrences of repeating 

patterns represented by nodes with branches to mlist. Since any maximal repeating 

pattern that repeats must end at a branching node, only nodes that branch need 

be considered. This is shorter, in general, than traversing the entire tree because 

branches are only followed to their last branch. Further, if all of a node’s direct 

descendants have branches in their trees, then that node can be ignored also, because 

its pattern is always a substring of a longer pattern and is not independent. Depth 

is a global variable that is initialized to zero before FindMRP is first called. mrplist 

is a global list of MRP occurrences, sorted by their starting position in the input. 

It empty when FindMRP is first called.



Algorithm: FindMRP(node) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Does node have more than one leaf descended from it? 

If not, return. 

Increment depth. 

Does node have exactly one branch? 

If so: 

Let child be the node on that branch. 

Call FindMRP(child). 

Decrement depth. 

Return. 

For all child, child child of node do: 

Does child have exactly one leaf descended from it? 

If so: 

Let nnode be a new mrpnode created with child’s list of indicies and depth 

Call AddNode(mrplist, nnode). 

If not: 

Call FindMRP(child). 

Return 

AddNode takes as an argument an occurrence (a start and stop index) of 

a pattern and adds it to the list of MRPs, provided it is not a substring of any 

previous member of the list. It also removes any occurrences from the list that are 

substrings of the new member. 

Let L be the list of MRPs. 

Let 6 be the occurrence to be added. 
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Example 3.6. p-tree for the string “ababbabc$” 

Algorithm: AddNode(L,6) 

(1) For every p € LE do 

(2) If (p is entirely contained in 5) delete p from L 

(3) If (0 is entirely contained in p) 

(4) delete b from L 

(5) Return 

(6) Add 6 to L 

(6) Return 

Example 8.6. Example 3.6 demonstrates how FindMRP detects repeating 

patterns and adds occurrences to mlist. FindMRP starts at the root node with 
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the depth counter initialized to 0. First FindMRP considers the ‘a’ branch and 

determines that there is more than one leaf descends from it. Each node contains 

a count of the number of branches it has and the number of leaves that descended 

from it (see Figure 3.3). The depth counter is incremented, and FindMRP is called 

on node A. Node A does not branch, so no occurrences are sent to mlist. Node A 

has a single child, node B, so the depth counter is incremented again and FindMRP 

is called on node B. At node B, each of the three branches, ‘a’, ‘b’, and ‘c’, have 

only one leaf each. The pattern represented by node B is “ab”. The depth of node 

B is 2, the same as the length of the pattern it represents. FindMRP constructs 

the occurrences (1,2),(3,2), and (6,2) from the indices in node B’s children (1,3, 

and 6) and the depth of node B (2). FindMRP sends the occurrence (1,2) (the 

occurrence starting at character 1 that is 2 characters long, or the first “ab” in the 

input string) to mlist for the ‘a’ branch, the occurrence (3,2) for the ‘b’ branch, 

and the occurrence (6,2) for the ‘c’ branch. Each of these occurrences represents 

the pattern “ab” from the input string. mlist is now (1,2),(3,2),(6,2). The depth 

counter is decremented and FindMRP returns to node A. The depth counter is 

decremented again and FindMRP returns to the root node. Note that none of the 

nodes below node B are ever traversed. 

Next, FindMRP considers the ‘b’ branch from the root node. This branch also 

has more than one leaf and must be traversed. The depth counter is incremented 

to 1 and FindMRP is called on node C. First the ‘a’ branch is considered. The ‘a’ 

branch has more than one leaf so the depth counter is incremented and FindMRP 

is called on node D. Node D is like node A, with only one branch, but has multiple 

leaves descending from it. The depth counter is incremented again and FindMRP 

is called on node E. Node E has two branches, each with exactly one leaf descended 

from them. Since the depth is 3, FindMRP will add the occurrences (5,3) and (2,3) 

to mlist. The occurrence (3,2) is entirely contained in the occurrence (2,3), so mlist 
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automatically deletes (3,2) when (5,3) is added. The occurrence (6,2) is contained 

in (5,3) and is deleted. The depth counter is decremented and FindMRP returns 

to node D. When FindMRP leaves node E, mlist is {(1,2),(2,3),(5,3)}. At node D, 

the depth counter is decremented again and FindMRP returns to node C. 

After returning to node C from the ‘a’ branch, FindMRP considers the ‘b’ 

branch. The ‘b’ branch has only one leaf descended from it so FindMRP adds 

the occurrence (4,1) to mlist. The occurrence (4,1) is entirely contained in the 

occurrence (2,3), so (4,1) is deleted immediately. Similarly, the ‘c’ branch has only 

one leaf descended from it and FindMRP adds the occurrence (7,1) to mlist. The 

occurrence (7,1) is entirely contained in the occurrence (5,3), so (7,1) is also deleted 

immediately. The depth counter is decremented and FindMRP returns to the root 

node. mlist remains unchanged. 

FindMRP next considers the ‘c’ branch from the root node. The ‘c’ branch 

has only one leaf, and since the depth is currently 0, FindMRP knows that this 

represents a singleton character. This branch is skipped. 

The last branch, the ‘$’ branch also represents a singleton character. It is also 

the terminating character for the string. This branch is also skipped. 

When FindMRP returns from the root node, mlist is {(1,2),(2,3),(5,3)}, rep- 

resenting the patterns “ab”, “bab”, and “bab”, respectively. 

Example 8.7. Example 3.7 works the same way. At node B, FindMRP 

adds the occurrences (1,2) and (2,2) to mlist. Note that these overlap, but neither 

fully contains the other, so neither is deleted by mlist. At node C, FindMRP adds 

the occurrences (3,2) and (5,2). At node D the occurrences (7,1), (4,1), and (6,1) 

are added. (4,1) and (6,1) are deleted because they are contained in (3,2) and 
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Example 3.7. p-tree for the string “aaababb$” 

(5,2), respectively. The final mlist is {(1,2),(2,2),(3,2),(5,2),(7,1)} representing the 

patterns “aa”, “aa”, “ab”,“ab”, and “b”. Note that no occurrences are added at 

node A, because none of its children have only one leaf descended from it. 

3.3.2 Proof of Detection Algorithm 

Lemma 3.2: All members of mlist are MRPs. Proof by contradiction. 

Suppose an occurrence, o, of pattern p, exists in mlist at the conclusion of the 

algorithm. Assume that p is not an MRP. If p is not an MRP then either p does 

not repeat or p is not maximal and o is not independent. If p does not repeat, then 
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o would not exist in mlist because only occurrences of repeating patterns are added 

to mlist. p must repeat. If p is not maximal and o is not independent, there must 

exist o’, occurrence of p’, such that p < p’ and o is entirely contained in o'. If o 

is entirely contained in o’ then o would have been removed from mlist. o exists in 

mlist. Therefore o’ does not exist. p is maximal or o is independent. 

Since p is maximal or o is independent and p repeats, p is an MRP. 

All members of mlist are MRPs. 

Lemma 3.3: All MRPs are placed in mlist. Proof by contradiction. 

Suppose an occurrence, o, of pattern p, does not exist in mlist. Assume that 

p is an MRP. If p is an MRP, then p repeats. All occurrences of all repeating 

patterns are added to mlist. If o does not exist in mlist and p repeats, o must have 

been removed from mlist. Only occurrences that are entirely contained in other 

occurrences are removed from mlist. If o was removed from mlist, then there must 

exist o’, an occurrence of p’, such that o is entirely contained in o’. If o is entirely 

contained in o’ then o is not an occurrence of an MRP. By contradiction o does not 

exist. Therefore, all occurrences of MRPs are placed in mlist. 

Theorem 3.2: By Lemmas 3.2 and 3.3, FindMRP finds all the MRPs and 

only the MRPs. 

3.4. k-bounded Problem 

Often it is enough to limit the search to patterns of some fixed length k, or 

less. This allows us to limit the depth of the p-tree, reducing build time and memory 

used. Let / = ||, the number of characters in the alphabet ©. The maximum size 
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of the p-tree is limited by the number of branches possible at each node, J, not 

the number patterns in the p-tree. Construction time for the p-tree is O(nk) and 

memory used is oon l) = O(1), and the size of a full tree of depth k +2. Note 

that as k approaches n, the algorithm returns to O(n”). Extracting the k-MRPs 

from the tree takes O(n) time. The complexity for simply finding all the repeating 

patterns of length k or less, after the tree is built, is O(nk). 

3.4.1 k-bounded Tree Builder 

Build the tree by inserting each of the suffixes into the tree. BuildBoundedTree 

takes a $-terminated string S and k, the maximum pattern length, as arguments 

and returns the root node of a p-tree constructed from all the substrings of length 

k or less. 

Algorithm: BuildBoundedTree(s1...,, k) 

(1) Let R be a new, empty p-tree 

(2) For every suffix 5;3;415;42°-: $n8n41, do 

(3) InsertString($;5;418:+2 °** $n$min(itk,n)> 2?) 

(4) Return R 

Example 8.8. For the input “xxyyyaxyydxx$” and k = 3, BuildBoundedTree 

9 06 29 66 06 will send the following suffixes to InsertBoundedString: “xxy”, “xyy”, “yyy”, “yya”, 

ac ” yax ; “axy” ; “xyy” ; “yvyd” , “vdx” , “dxx” , yy $” ; “y$” , and “og . 

Insert BoundedString takes a string x, a node, n, an index number, index, 

and the maximum length pattern to be found, k, as arguments. The string is 

added to the tree. InsertBoundedString requires the terminating character ‘$’ to 
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Examples 3.9.1, 3.9.2, 3.9.3, 3.9.4, and 3.9.5 

be unique in the string. Depth is a global variable that is initialized to zero before 

Insert BoundedString is called the first time. 

Algorithm: InsertBoundedString(21 29 --- 2, node,index,k) 

(1) Is depth =k+1? 

(2) If so: 

(3) Add index to node’s list of indicies. 

(4) Return. 

(5) Is there a child of node connected by an edge labeled with x? 

(6) If so: 

(7) Delete node’s list of indicies. 

(8) If not, create one by calling AddPtr(node, x). 

(9) Increment node’s branch counter. 

(10) Add index to the child’s list of indicies. 

(11) Increment node’s leaf counter. 

(12) Call InsertString(r223 --- 2p, child, index). 

(13) Return. 

Example 3.9. Examples 3.9.1 through 3.9.11 show the intermediate steps of 

building the p-tree, after each suffix is added. 
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Examples 3.9.9 and 3.9.10 

  

          2,7 
  

  

Example 3.9.11 

3.4.2 Proof of k-bounded Tree Building 

The first k characters of each suffix are placed into the p-tree, and there are 

exactly n entries in the index lists in the leaf nodes in the tree. These entries have 

the same one to one mapping to the characters of the input string as the leaves in 

the unbounded tree. 
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The proof of correctness of the tree building algorithm is by induction on the 

length of the string. Again, a k-bounded tree is correct if Properties 3.1.6. hold. 

Given a string, 8, it is shown why the tree for the string a is correct if the string 

for @ is correct. 

Lemma 3.4: The algorithm Insert BoundedString is correct. 

Proof by Induction on the length of the string z. 

Part I: (base case) 

n = 0: If depth = k, InsertBoundedString adds index to the current leaf’s 

list of indices. Otherwise, Insert BoundedString returns with no change to the tree. 

This allows the depth k leaves to have multiple index values. 

InsertBoundedString returns with no changes to the tree. 

(basis) n = 1: s = “a” where ‘a’ is a character. Either node has a pointer 

labeled ‘a’ or not. In either case the resulting tree is a p-tree (Property 1). 

Case 1: node does not have a child connected by an edge labeled with ‘a’. 

Since a new pointer is added, the branch counter is incremented. Since a new leaf 

will be added the leaf counter is incremented. The index of the new leaf is added to 

the idxs list of the new leaf node. All the properties are met: One new index value 

with a path of “a” is created (Properties 3 and 4). The new leaf contains its index 

(Property 2). The new leaf has zeros for the branch and leaf counters (zeroed in the 

node creation process). The old node has incremented leaf and branch pointers. 

Case 2: node does have a child labeled ‘a’. Since a new pointer is not 

added, the branch counter is not incremented. Since a new leaf will be added 

6699 the leaf counter is incremented. InsertString is called with x = and node =



GetPtr(node, ‘a’). This is assumed to properly add a leaf node. All the properties 

are met: One new leaf with a path of “a” is created (Properties 3 and 4). The new 

leaf contains its index (Property 2). The new leaf has zeros for the branch and leaf 

counters (zeroed in the node creation process). The old node has incremented leaf 

and branch pointers. The new node has leaf and node counters of 1 and index list 

containing index. 

Part IT: (induction) 

Assume: InsertString({, node, index) is correct. 

Prove: InsertString(a{, node, index) is correct 

Case 1: node does not have a child connected by an edge labeled with ‘a’. 

Since a new pointer is added, the branch counter is incremented. Since a new leaf 

will be added the leaf counter is incremented. The index of the new leaf is added 

to the idxs list of the new node. InsertString is called with x = “8” and node = 

GetPtr(node, ‘a’). This is assumed to be correct for “8” (Properties 2 and 3). Since 

the new branch is appended to a node with a path labeled “a”, the new an entire 

path of af is created (Property 4). The tree is still a p-tree (Property 1). 

Case 2: node does have a child connected by an edge labeled with ‘a’. Since 

a new pointer is not added, the branch counter is not incremented. Since a new leaf 

will be added the leaf counter is incremented. The index of the new leaf is added 

to the idxs list of the new node. InsertString is called with x = “#” and node = 

GetPtr(node, ‘a’). This is assumed to be correct for “G” (Properties 2 and 3). Since 

the new branch is appended to a node with a path labeled “a”, the new an entire 

path of af is created (Property 4). The tree is still a p-tree (Property 1). 
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All nodes have correct branch and leaf counters and index lists. The path to 

each leaf is labeled with the suffix used to create it. Each leaf has a unique index 

corresponding to the index of the suffix. 

By parts I and II, Lemma 3.4 is correct for n > 1. 

Proof of ButldBounded Tree. 

Theorem 3.3: The algorithm BuildTree is correct 

Proof by Induction on the length of S. 

Part I: (base case) 

nm = 1: BuildTree calls InsertString(“a” ,root,z), creating one leaf with an 

index of 7 and a path labeled “a”. This upholds the four properties in 3.1.6. 

6099 (Basis) n = 2: BuildTree calls InsertString(“a” root, 7) and InsertString(“”, 

root, 1 +1) creating two leaves with indices of and 7 + 1 respectively, and paths 

labeled “a” and “”. This upholds the four properties in 3.1.6. 

Part II: (induction) 

Assume: BuildTree(f) holds, producing |§|+1 leaves numbered from 1 to 

|G|+1. In other words, assume that the four properties in 3.1.6 are maintained. 

Prove: BuildTree(a). 

Build tree calls InsertString( “a8” ,root, 7), InsertString(“” ,root,2) --- Insert- 

6099 String(“” ,root,7). Calling InsertString(“6”, root,z) --- InsertString(“” ,root, 2) is the 

same as calling BuildTree(), which is assumed to produce |(|+1 leaves numbered 
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from 1 to |8|+1. Calling InsertString(“a8”, root,2) produces one leaf with index 2, 

and a path to it labeled “af”. InsertString is assumed to maintain the properties 

if a k bounded p-tree, with respect the suffix that it is given. If all the substrings 

are added to the tree by InsertString, the tree will be a proper p-tree. 

By Parts I and II, Theorem 3.3 is correct for n > 1. 

3.4.3 k-bounded Detection 

Since the definition of k-bounded MRPs basically ignores patterns longer than 

k, and builds a truncated tree, the same detection algorithm may be used on the 

truncated tree to find the k-MRPs. The only modification is that the leaf nodes in 

the tree need to be able to hold more than one index, and the detection algorithm 

needs to add all indices to MRPlist. 

3.4.4 Proof of k-bounded Detection 

The same list adder is used in k-bounded detection. The difference is that since 

the tree is limited to patterns of length k, only patterns of length k or less are added. 

No changes to MRPlist or the adder are needed. Since there are no differences 

between the unbounded detection algorithm and the k-bounded detection algorithm, 

the proof for the unbounded case also applies to the k-bounded case. 

3.5 Local MRPs 

Sometimes it is interesting to determine the MRPs that occur close to each 

other and disregard any that occur more than a certain distance from each other. 
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This can be useful in Human Computer Interaction studies where a command log 

is being analyzed. Frequently used patterns (or rather, patterns used close to each 

other) will be detected, but commands used only once a day might not. 

3.5.1 Local MRP 

A pattern p is a local MRP of S if there exists s’ < S$, such that p is an 

MRP of s’. Note that all repeating patterns of S are local MRPs to some substring 

of S. In the extreme case, any two repeating patterns are local to the substring 

that begins at the beginning of the first pattern and ends at the end of the second 

pattern. 

Local MRPs Within a Radius of |. A pattern p, occurring at location r is a 

local MRP with radius | if p is an MRP of the pattern S[r,max(|S|,r+J)]. A pattern 

of S is considered to repeat if two or more occurrences start within | characters. 

It is possible for the MRPs detected to have lengths longer then /. Consider the 

example where S = “ababababab$” and / = 4. When r = 4, the p-tree will contain 

the strings: “ababababab$”, “babababab$”, “abababab$”, and “bababab$”. The 

MRPs detected will be “abababab”, and “bababab”. 

3.5.2 Global MRP 

An MRP is a global MRP if it is an MRP of S. Section 1.1.1 defines global 

MRPs.



3.5.3 Detection of Local MRPs 

If it is only important or useful to detect patterns that are MRPs in some 

locality, it is possible to conserve considerable memory, although time complexity 

is not improved because the pattern length, k, is potentially unbounded. If both k 

and R are bounded the algorithm becomes linear. (n insertions of length k strings 

and a traversal of n branches of length R.) 

Detection of MRPs Within a Radius of |. If it is decided that only patterns 

that repeat within ] characters of each other are interesting, it is only necessary 

to maintain /+ 1 branches in the p-tree. When the r + [** branch is added; the 

r*t branch is traversed, adding any repeating patterns to MRPlist; then the r‘* 

branch is removed, decrementing the appropriate counters in the nodes. Since each 

branch of the tree is fully traversed, this will add slightly to the cost of the detection 

algorithm, but the complexity will not change. Instead of using O(n?) memory, the 

tree will take O(/n) memory. 

At the end of the algorithm, MRPlist will contain all the patterns of S that 

are local MRPs with a radius of /. To get only the patterns that are MRPs within 

radius | of character r, take only those entries that have a starting index between I 

and /+r. This is a quick calculation since MRPlist is sorted by starting index. 

3.6 Local k-MRPs 

If it is further possible to limit interesting MRPs to a length of k, then it is 

possible to save even more memory by using a tree with radius r, as described in 

Section 3.5.3 but limit the depth of the tree to k. A radius r, k-bounded p-tree



takes O(/k) memory (a maximum of | branches, each with a maximum depth of 

k + 2) no matter what size the input is. The mlist, however, still requires O(n) 

memory in the worst case. 

3.7 Local MRPs and Large Input Sets 

If it is desired to detect local k-MRPs in a very large data set, it is possible 

to set up a circular buffer of length k for the input. This requires that only k 

characters of the input to be stored in memory at any one time. However, if the 

actual patterns of the MRPs are desired, and not just the locations, MRPlist must 

be modified to retain them. This would cost at most, O(nk) memory (a possible n 

patterns of length k). The total size of the input must still be indexable (smaller 

than the largest integer type on the machine it is run on). 

Example 8.7.1. Suppose that S = “abxabya$” and k = 4. The first k char- 

acters of the input are read into the buffer. The buffer will then contain “abxa”. 

The string “abxa” is added to the p-tree. The next character of the input is read in 

and the first character is dropped from the buffer. The buffer is then “bxab”. This 

string is added to the p-tree. The next character is read in and the second charac- 

ter is dropped from the buffer. The buffer contains “xaby”. The third character is 

dropped and the next character is read into the buffer. The buffer is then “abya”. 

This string is added to the tree. 

The p-tree now contains the three strings: “abxa”, “bxab”, “xaby”, and 

“abya”. The branch “abxa” is traversed, and removed. As is it traversed, the 

occurrence (1,1) is added to MRPlist because it repeats. Since there are no other 

entries in MRPlist at this time, it is not deleted. “a” is a radius 4 local MRP of 

“abxabya$”. After this step the p-tree contains only “bxab”, “xaby”, and “abya”.



The next string, “bya$” added to the p-tree. The “bxab” branch is traversed 

and removed, adding (2,1) to MRPlist. The string “ya$” does not add any occur- 

rence to MRPlist. The string “a$” adds the occurrences (4,1). This represents the 

pattern “a”, but is not deleted because it is an independent occurrence. The string 

“$” also does not add any occurrences. 

The final MRPlist is {(1,1),(2,1),(4,1)}, representing the patterns {“a”, “b”, 

ee” } . 

Alternatively, for unlimited size input, using a circular buffer for the input, 

modify MRPlist to hold only patterns and not the indices. The limiting factor 

would then be fitting MRPlist into memory. Since at most, only the last | entries 

in MRPlist are necessary to determine if a new entry is an MRP, only O(/k) space 

is required, if the rest of MRPlist is spooled off to disk. The entire file could still 

be quite large but not require much memory. 

4 Performance Analysis 

4.1 Performance of Standard Algorithm 

4.1.1 Time Complexity of Different Parts of the Unbounded Algorithm 

Let 7 = the number of legal characters in the alphabet. 

Let & = the limit on the length of the MRPs. 

Let g = the number of nodes that have to be added for a given string. 

ReadInput. The input is read in character by character. There are n charac- 

ters so this takes O(n) time.



InsertString. Each node may have up to / branches. The list of branches 

must be traversed to determine if a given node already has a branch with a given 

label. This takes at most O(/) time. For a string of length m to be added to the 

tree, there are m — q nodes that have children along the path of the pattern to 

be inserted. There are g nodes that need to be created. New nodes do not have 

branches to be traversed. Therefore, InsertString takes O(1)O(m — q) + O(gq) or 

O(m) time. 

BuildTree. BuildTree causes InsertString to add n + (n —1)+(n—2)...241 

nodes to the tree. This is 0,7 = noth or O(n?).   

FindMRP. At most, the traversal will cover every node once, and there are 

O(n?) nodes in the tree. This is O(n”). 

AddNode. ‘There are n additions to the list of MRPs which may contain 

up to n patterns. Because [at least a partial] list traversal is required for each 

steps and is O(n). If the list is organized addition, the algorithm requires nitn 

in a balanced tree, sorted by starting index of the occurrence, insert time can be 

reduced to O(log(n)) for a total time of O(n log(n)). Since items in the MRPlist 

have unique starting positions, they are easy to sort. 

Theorem 4.1: The total time complexity of the unbounded algorithm is 

O(n”). The proof is in the preceding arguments. 

4.1.2 Space Complexity and Large Input 

The p-tree may require up to O(n”) nodes. There can be as many as n entries 

in MRPlist. Total space required is O(n”). Since the input string is indexed, the 

input size is limited to the largest index type on the implementation platform. Using 

Borland C+4, this is longint. 
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4.2 Performance of k-bounded Detector 

4.2.1 Complexity of Different Parts of the Algorithm 

Let | = the number of legal characters in the alphabet. 

Let k = the limit on the length of the MRPs. 

Let g = the number of nodes that have to be added for a given string. 

ReadInput. ‘The input is read in character by character. There are n charac- 

ters so this takes O(n) time. 

InsertBoundedString. Each node may have up to / branches. The list of 

branches must be traversed to determine if a given node already has a branch with 

a given label. This takes at most O({/) time. For a string of length k, there are k — q 

nodes that have children along the path of the pattern to be inserted. There are q 

nodes that need to be created. New nodes do not have branches to be traversed. 

Therefore, InsertString takes O(/)O(k — ¢) + O(q) or O(k) time. 

BuildBoundedTree. While reading the input it is passed through a filter to 

remove illegal characters. This adds nothing to the O(n) time for reading a string 

character by character. Then, for each character in the input, InsertString is called. 

Therefore BuildTree takes O(n) + O(n)O(k) or O(nk). 

FindMRP. There can be at most n(k —1) +1 nodes in a tree of depth & that 

is has exactly n leaves. If 1 < n, then the depth 1 layer will have at most / nodes, 

because the root node can have at most / branches. FindMRP is a traversal of the 

tree so it takes O(nk) time. 

AddNode. There are n additions to a list of up to length n. Because (at least 

a partial) list traversal is required for each addition, the algorithm requires n'tn 
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steps and is O(n”). If the list is organized in a balanced tree, sorted by starting 

position of the occurrence, insert time can be reduced to log(n) for a total time of 

O(n log(n)). 

4.2.2 Complexity When Both k and R are bounded 

ReadInput. The input is read in character by character. There are n characters 

so this takes O(n) time. 

InsertBoundedString. Each string inserted into the tree is of length k or less. 

This takes O(k) time. 

BuildBoundedTree. ‘There are n strings inserted into the tree. This takes 

O(nk) time. 

FindMRP. There are n branches of up to length k& to traverse. This takes 

O(nk) time. 

AddNode. Since only the last R patterns need be considered, there will be as 

many as n inserts into a sorted list of length R. This is O(n log(R)). 

The total complexity is O(n +k +nk+nk-+nlog(R)) or O(n). 

4.2.3 Space Complexity and Large Input 

The p-tree may require up to O(nk) nodes. There can be as many as n entries 

in MRPlist. Total space required is O(nk). Since the input string is indexed, the 

input size is limited to the largest index type on the implementation platform. Using 

Borland C+-, this is longint(). 

Theorem 4.2: The total time complexity of the unbounded algorithm is 

O(n log(n)). The proof is in the preceding arguments.



5 Implementation and Empirical Results 

A working implementation was developed and compiled using Borland C++ 

4.0 on an IBM clone 486, running DOS 5.0, 4Dos 4.0, and MS-Windows 3.1. The 

program was tested with input files ranging from 100 bytes to 5 megabytes and run 

with a variety of parameter combinations. 

Figure 5.2 shows the marked improvement in runtimes gained by limiting 

the pattern length over a variety of input sizes. Figure 5.1 shows that enforcing 

locality does not reduce the complexity of the problem. Figures 5.3 and 5.4 show 

the runtimes for a variety of k and R values. 

Limitations. Since I use the index numbers of the string, I am limited to input 

sizes smaller than (long unsigned) integers on whatever platform the algorithm is 

running on. 

6 Summary 

This work extends Siochi’s work and sets forth straightforward algorithms that 

are useful in a variety of practical situations. By reducing the problem complexity 

by either limiting the length of patterns considered or by limiting the context in 

which the patterns must repeat, the algorithms are feasible for a wider variety of 

applications. 

6.1 Multiple Character Tokens 

In certain applications like Human Computer Interaction, the input data will 

be a stream of tokens. These tokens could represent the commands used by a user 

over the course of a day. The algorithms do not differentiate between single char- 

acter tokens and multiple character tokens. Multiple character tokens would only 

be longer repeating patterns. Care must be taken to remove the strings containing 
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fragmented tokens from the final output. If these tokens were to start or are de- 

limited with a single (or one of a few) character not used elsewhere in the input an 

exclusion filter (see Appendix I) can be used to eliminate repeating patterns that 
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start with fragmented tokens. 
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Appendix I 

mrp 

Usage: mrp [-hlt] [-rR] [-kK] [-mM] |-f<filter file>] |-e<exclusion file>] 

The mrp command reads from standard input, finds the maximal repeating patterns 

and writes them to standard output. 

FLAGS 

-h Displays this help message. 

-l Displays the locations of the patterns in the output. By default, locations 

are NOT printed. Locations are of the form [startpos, length]. 

-t Disables the printing of the text of the patterns found. If R and K are both 

nonzero, only pattern location may be displayed. Otherwise patterns are printed 

by default. Note that the text patterns are terminated with a $ (dollar sign). The 

text patterns cannot be printed when both R and K are nonzero because the input 

string is discarded as it is processed in order to conserve memory. 

OPTIONS 
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-rR Only patterns that start within R characters of each other are considered. 

If R is 0 then all patterns are considered. (R is the radius or locality in which 

patterns will be checked for in.) Set R to a non zero value for very large data sets. 

Only R strings are kept in memory at any one time. The 7?’ suffix is removed from 

the tree when the 7 + R** suffix is added. Memory use for the tree is then O( Rn) 

rather than O(n). For most applications a value for R of between 200 and 1000 is 

recommended. 

-kK Ignore patterns of length greater than K. The length K prefixes of longer 

patterns will be detected. If K is set to 0, then unlimited length patterns are 

considered. WARNING: Setting K to 0 will use enormous amounts of memory. K 

defaults to 100. This limits the depth of the tree to K+2 (K characters, plus the 

root node and a leaf node). Memory use for the tree is then O(n’) rather then 

O(n?). 

If both R and K are set to nonzero values then memory use for the tree is 

O( RE). Memory used for mlist is still O(n), however. 

-f<filter file> Use <filter file> to redefine the input filter. Non valid charac- 

ters are removed from the input as they are read in and Ignored. The default filter 

allows all printable characters, except space. This is primarily an error prevention 

feature to disallow unexpected characters into the data. 

-e<exclusion file> Use <filter file> to redefine the exclusion filter. The 

exclusion filter determines valid starting characters for patterns. Patterns that 

start with excluded characters are ignored. For example, it is possible to set an 

exclusion filter to that only patterns that start with capital letters are considered. 

Only patterns starting with valid characters are added to tree. By only allowing a 

few characters to start valid patterns, the number of strings to added to the tree 

can be drastically reduced. This does not affect the order of the algorithm because 

the number of strings to be inserted into the tree remains O(n), although with a 

lower constant. In some applications the data will consist of multi-character tokens. 
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If these tokens either begin or end with a few common characters or are delimited 

with a specific character, creating an exclusion list of these characters would filter 

out a great deal of extraneous information. 

Caution: When a small list of valid starting characters is combined with a 

small radius, it is possible to detect few or no MRPs because the tree will be very 

sparse. 

-mM Where M is the minimum length of patterns to be considered 

CAUTIONS 

This program can use enormous amounts of memory(n?), especially if poor 

parameters are chosen. Since most data sets are much larger than the repeating 

patterns in them setting K to some small number (<20) will often not cause any 

loss of data. For very large input, setting R to a nonzero value may allow the entire 

data structure to stay in real memory. 

FILTER FILES 

The filter files are composed of 128 integers separated by whitespace. These 

integers correspond to the first 128 characters of the ASCII set. Any character for 

which the integer is 1 (nonzero) is considered valid. Any character for which the 

integer is 0 is considered invalid. 

USEFUL RELATED COMMANDS 

Commands: more(1), uniq(1), sort(1), grep(1)/egrep(1)/fgrep(1). 
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