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I. INTRODUCTION 

In performing reactor physics calculations on the level of sophisti-

cation of transport theory or diffusion theory, the primary quantity of 

interest is the neutron density. Depending on the problem and accuracy 

desired, one can obtain this variable as a function of space, angular di-

rection, energy, and time. The linearized Boltzmann equation is essen-

tially the starting point for all calculations of this type and represents 

an analytical formulation of conservation of points in phase space. Al-

though the formalism is elegant, exact solutions are seldom obtained, and 

·computer oriented numerical methods are used in solving the complex inte-

gro-differential equation. 1 Tavel and Zucker suggested that instead of 

burdening the computer with the task of solving the transport equation 

directly, perhaps a simpler and more efficient method would be to use the 

computer memory as a library to store and keep track of neutrons moving 

through phase space. In this way the neutron density at any position, 

direction, and energy could be observed by displaying the computer memory 

at any time. In order to keep this inventory, Tavel and Zucker1 intro-

duced a two-dimensional (space, direction) discretized phase space consid-

ering only the one-speed approximation. 2 Cordaro expanded the coordinate 

system by using a three-dimensional discretized grid; the third dimension 

was energy. However, he considered electron transport where the majority 

of the collisio11s were not catastrophic in energy or direction, thus al-

lowing a finely divid.ed energy dimension to account for space and energy 

changes. In the multigroup neutron transport formulation, the three di-

mensional (space, direction, energy) grid is similar to Cordaro and Tavel's 
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system in the first two coordinates, but the energy dimension is arbi-

trarily discretized. Each energy plane represents a different velocity 

group. Transfer between these energy planes represents up or down scat-

tering and is dependent upon the cross sections and degree of anisotropy 

used. 

Only one space dimension is considered in this analysis. However, 

two or three space coordinates could be constructed. Also other geomet-

ries could be introduced. The Phase Space Time Evolution (PSTE) method 

is essentially geometry independent. A complex geometry only adds to 

the progrannning difficulty. 

One of the most significant aspects of this method is the inclusion 

of time as a variable. By keeping track of neutrons traveling through a 

scattering medium with their equations of motlon given by Newton's Laws, 

the effective time evolution of the neutron population can be displayed 

at any given time step. It will be shown that the time increment depends 

on the energy region involved in a particular problem. Two examples: 

1) if fast neutrons are being considered, the time interval would lie 

within the range needed to observe the time evolution of the neutron den-

sity in a nuclear explosive; 2) if thermal neutrons are of interest, 

the time evolution of a reactor approaching criticality could be consid-

ered with some allowances made for slowing down. 1 



II. BASIC THEORY 

Only one spatial dimension will be considered in this analysis. It 

is possible to extend this method to two or three spatial dimension prob-

lems, however the programming complexity is increased. Also since most 

transport problems of interest involve medium discontinuities, a three 

region configuration is used. For simplicity, slab geometry is considered 

and, hence the total physical problem takes the form of a slab of finite 

dimensions sandwiched between two regions which can either be considered 

finite or infinite. 

The spatial dimension labeled X in Figure 1 is divided into a mesh 

whose increment (~X) is in general a function of.material and energy. 

This will be described later. The X dimension is measured in terms of 

mean free paths primarily because the motion of neutrons through a medium 

is relative to the mean distance between interactions. The vertical axis 

is µ, the angular variable of neutron density. Since the geometry is one 

dimensional, this axis represents the direction of neutron motion such 

that 
µ = cos e -1 ~ µ ~ 1 (1) 

where v 
e cos- 1 x (lb) = v 

v : x component of velocity x 

V: magnitude of velocity. 

AzLmthal symmetry is assumed so that all neutrons on a cone of half an-

gle 8 are considered the same by the method. Depending upon the accuracy 

of the calculation, the vertical axis can be divided into as many ·equal 

increments ~µ as required. 
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Consider a given 'box' in Figure 1 outlined by a certain ~µ and ~X. 

For the computer memory, each increment of µ corresponds to a given J 

value and similarly each X increment to an I value. Every box is there-

fore located by four pairs of coordinates. (See Figure 1). However if 

one pair is known the others may be calculated. For convenience, the up-

per right coordinate set is used to identify the position of the box. In 

Figure 1, this would be the set (I,J). In Figure 2, corresponding to 

each energy, there is a phase space grid to describe neutron motion at 

that energy. 

The density in the box or phase space element corresponding to coor-

dinates (I,J) in some energy plane Ek is N(I,J,Ek,t). Time is an implicit 

parameter as will be shown later in this section. The density is assumed 

constant throughout the box. 

Also in Figure 2 the spatial axes are~ , XE, ... ,~. The reason 
1 2 N 

and effect of this fact will be discussed later in this section. It will 

suffice for now to notice that the spatial dimension (which is measured 

in total mean free paths) in general varies with energy. 

To be exact, the distance between the planes should be proportional 

to the energy itself. In this multi-group formulation, however, neutrons 

can only possess discrete energies and therefore the distance between the 

planes has no meaning as far as the computations are concerned. A con-

tinuous energy dimension has been considered, 2 but for electron transport 

with the assumptions of only down scattering and no catastrophic colli-

sions, i.e., collisions which do not result in large energy or angle 

changes. While this is a good assumption for electron transport, ·neutron 

motion is of a different nature; large energy and angle changes occur 
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frequently. The multi-group formulation allows both up and down scatter-

ing, has no restrictions on the energy loss involved in collisions within 

the framework of the energy planes, and permits large angle changes in 

collisions. 

A logical question to ask at this point is since neutron motion is 

being described directly without solving the transport equation, what is 

the physical significance of a box in phase space and how does it relate 

to neutron transport? This question must be answered in two parts. First, 

the physical meaning of a 'box' in phase space will be explained. 

Consider a one dimensional medium with a source located somewhere in 

its interior. The density of neutrons in the direction 6µ about µ within 

the spatial interval X and X + 6X would coincide with the neutron density 

of a part·icular liox in every energy plane. Furthermore, if the neutrons 

in this medium were assumed to possess a finite number of discrete ener-

gies, say E1 , E2 , E3, ..• , EN' then a 'box' in some energy plane Ek would 

represent the neutron density on some interval X and X + 6X in some di-

rection 6µ about µ, and at some energy Ek. This is for a given time. 

However, neutrons are moving through space and experiencing interactions 

which, in general, alter their directionµ and energy E .. This leads to 
l. 

the second part of the question: How does a phase space box element be-

have in neutron transport? The general equation in the PSTE method which 

describes uncollided particle motion at a given energy Ek is 

X(Ek'~ + 6t) (2) 

where 

X(Ek,t + 6t): position in energy plane Ek at time t + 6t 



- 6 -

X(~,t): position at time tin plane Ek 

V(J,Ek): velocity corresponding to Ek in direction J. 

As a phase space element moves along the X axis according to Eqn. (2), it 

deforms into the shape of a parallelogram. To redefine the density of 

the grid elements with that of the sheared box, the fraction of the total 

area of the parallelogram which overlaps each grid element is the amount 

of the initial density that is evenly distributed in that element. In 

other words, if the box is halfway between two elements, then the density 

of each element would be redefined with half of the density of the sheared 

box. (See Figure 3). 

Next, the neutrons which experience interactions in traveling through 

a time increment 6t will be considered. 

The probability that a neutron traveling with velocity V(Ek) will 

experience an interaction in a time 6t is 

where 

(3) 

r(Ek): energy dependent total cross section 

V(Ek): velocity (cm/sec) corresponding to energy Ek 

6t: time (sec). 

The collision density is essentially a continuous function, and in 

the PSTE method interactions are only observed after a finite time step. 

Therefore in order to approximate nature only 10% of the particles in a 

phase space element are ~rbitrarily permitted to experience an interaction 

in time 6t. This makes multiple scattering at most a 1% correcti9n. 
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In the multigroup formulation one tenth of the neutrons in the ener-

gy group corresponding to the highest velocity in total mean free paths 

per second is allowed to interact. Hence from Equation (3): 

~t = 
-tn(0.9) 
(EV) ' max 

(4) 

This insures that the time interval will be small enough so that 

transport in all other groups will obey this restriction. 

Referring to Eqn. (4), in general, the total cross section L is a 

function of energy in the medium under consideration. The velocity V in 

centimeters per second is only dependent upon the energy. Since a three 

region configuration is used presently in the code the maximum implied in 

Eqn. (4) refers to the product of the largest total cross section found 

in the pr.oblem and the highest velocity. The program is so designed as 

to search for the maximum automatically without any special instructions 

from the user. 

To better approximate nature, the ~t in Eqn. (4) is itself subdivided 

into five increments. At the end of each of these increments the moving 

phase space element pauses and the fraction which has interacted during 

that time is calculated. Of this fraction, the portion that experiences 

scattering events is redistributed in angle. This corresponds to forming 

identical replicas of the sheared box above and below it in the µ direc-

tion. 

In general, a known fraction will scatter into every direction and 

into every energy, hence in each energy plane, replicas of the original 

box are ·formed and the actual fraction transferred is determined by the 
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group transfer cross probabilities. Once the neutrons transfer to another 

group, they travel for the remainder of the time step with the velocity 

corresponding to their new energy. The apportionment and redistribution 

is the same as with the unscattered neutron case discussed earlier. (See 

Figure 3). 

Another important grid parameter to be discussed is the spatial mesh 

interval. This quantity is related to the major source of error of the 

PSTE method. In the apportioning process, the density portion of the 

sheared box that lies in each phase space element is evenly redistributed 

among those elements. By so doing some neutrons are effectively speeded 

up and some slowed down from their actual motion. To be exact, only the 

portion of the phase space element that the sheared box occupies should 

be redefined by this apportioning process. 1 Tavel and Zucker suggested 

a method that would eliminate this error and make the apportioning exact. 

However, it is an additional complexity and will be only mentioned here. 

Nevertheless it should be considered in later studies of the PSTE method. 

In order to best approximate neutron transport in a digitized phase 

space, a considerable amount of care must be taken in determining the 

mesh spacing. The mesh interval must be chosen to yield the maximum ac-

curacy with the minimum requirement of computer storage. The particular 

increment of interest is that of the lowest energy group EN. It will be 

shown later that a simple relationship exists between the mesh spacing of 

each group in a given medium. Since neutron transport is in terms of the 

distance traveled in ~ time step, it follows that the mesh spacing should 

be some fraction of that distance. The mesh interval of the lowest energy 
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group ~~ can be represented as 

(5) 

where a is some constant yet to be determined, ~t is the time step from 

Eqn. (4) and V(EN) is the velocity in terms of total mean free paths of 

the lowest energy group in a given medium. 

To illustrate the trend of thought used in determining the a in Eqn. 

(5), consider Figure 4. In part a, the mesh interval ~X was made small a 

relative to the distance traveled in the time step. The apportioning 

process here would yield little error since the sheared box is slanted so 

much that no large change in position takes place upon redistribution. 

However another factor comes into play here, namely computer storage. 

Since in the multigroup formulation, neutrons can assume different velo-

cities, boxes in the largest energy plane, E1 will travel much further 

than boxes in the smallest energy EN. Hence a fine grid would signifi-

cantly increase storage requirements. In part b of Figure 4 the second 

alternative is shown. This example shows a large mesh interval. The 

apportioning error is much larger here since the fraction lying in the 

second element must be redistributed over a large region. This size 

would require less computer storage, but the associated error would be 

unsatisfactory. In part c, the sheared box traveled such a distance rel-

ative to the mesh spacing as to be divided evenly between two grid ele-

ments. Here the apportioning error is minimized. Each half of the box 

is redistributed ess~ntially over the same amount of space. The configu-

ration yields a = 1/3. This value produces the best combination of 

required computer storage and minimum apportionment error. 



- 10 -

The mesh interval of each energy plane can now be easily derived. 

Each energy plane contains the same number of mesh points and for simpli-

city it is required that each mesh interval represent the same distance 

in centimeters along the X axis. If this were not the case, a different 

number of mesh points would be required at each energy to yield the ac-

tual space dimension of the given medium. With the mesh interval of the 

lowest energy group ~~ now known, and the total mean free path Ak (cm) 

l= Ek1 ] at each energy Ek, ~~can be found by observing: 

(6) 

Solving for ~~ in Eqn. (6) yields 

O~ =OJ), [~:]• k = 1,2,3, •.. ,N. (7) 

[ ~Nk] The quantity A represents the relative flight distan~e between in-

teractions at an energy different from EN. If the total cross section 

was constant with respect to energy, then from Eqn. (7), obviously the 

mesh interval in each group would be the same. However, in general this 

is not the case, and the code was designed to utilize Eqn. (7) and other 

mesh dependent factors to allow for energy dependent cross sections. 

Now that the spatial mesh has been defined, the distance traveled at 

energy Ek relative to ~ must be studied. Consider the energy ratio, 

(E 1 /~) = 108 . This value is not unusual in neutron slowing down prob-

lems. Since the corresponding velocity ratio varies as the square root 
v l . ·4 . of the energy, V- = 10 . This implies that neutrons in the fastest 
N 

group will travel 10,000 times further than neutrons in the slowest group. 
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In terms of mesh points, recall in the slowest group the mesh interval 

was determined such that the box would travel 3 elements in the time step 

6t. To describe for the present mono-directional neutron transport in 

the fastest group, 3 x 104 mesh elements would be needed. The amount of 

storage necessary for a multigroup study with such a large number of mesh 

elements could be obtained, but the execution time required would be ex-

tremely large and for the most part impractical. At this point a trade-

off was made. In a search for a physically suitable energy ratio and 

number of energy 3 groups, Edlund and Zweifel suggested that 4 groups and 
v1 

= 8 would be versatile enough to study thermal energy distributions 
VN 
as well as to analyze the fission region of the fast reactor energy spec-

trum. The code as of this writing is dimensioned to this capacity. 

Another important grid parameter is the energy flight envelope. This 

quantity represents the maximum number of phase space elements a given 

box could span in traveling a distance V(Ek)6t. To study this parameter, 

consider first the trivial case, V = 0. In this situation, the box does 

not move, but it still occupies a mesh interval in the grid, hence the 

envelope is one. For a more realistic example, let V = 1 cm/sec and as-

sume this is the slowest speed. It has been shown that the box will trav-

el a maximum distance of three elements in the direction which corresponds 

to µ = 1. The box could also travel three elements in the µ = -1 direc-

tion, hence the envelope for the energy group is seven. If in another 

group relative to the preceding example, V = 2 cm/sec, then the box would 

travel twice as far as in the previous case, therefore counting the ele-

ment where the box originated, the envelope is thirteen. Table 1 sumrna-

rizes these facts and presents sample envelopes for typical speeds. 



III. INTERFACE PARAMETERS 

In dealing with problems where abrupt material changes occur, diffu-

sion theory at best can yield a first approximation. Transport theory is 

the primary tool for obtaining accurate results in problems of this type. 

For this reason most problems in transport theory involve more than one 

region. In the PSTE method, Tavel and Zucker1 initially considered a 

three region problem in slab geometry. The multigroup formulation util-

izes the same geometry and configuration. However, interface complica-

tions do arise. 

Figure 5 displays the configuration and the variables used in the 

computer code to recognize certain positions in the one space-dimensional 

mesh. The two variables IAB and IBC determine the number of phase space 

elements between the three regions. A stipulation imposed on the width 

of medium B requires it be at least as wide as the largest flight envel-

ope. This prevents any boxes from freely passing entirely through medium 

2 without experiencing any interactions. It would be a relatively simple 

extension however to release this restriction if desired. 

The other variables IBAB, IBBA, etc. indicate the boundaries of the 

buffer regions. All elements in these regions are treated by special 

parts of the code. 

Complications arise at the interface because, in general, there is a 

space and velocity discontinuity at these points. The problem exists be-

cause the mesh interval and the velocity vari.es with the total mean free 

path of the region. In general the material properties and hence the to-

tal mean free path varies with the medium as well as with energy. Conse-
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quently the mesh interval and the velocity at each energy in every medium 

is different. 

To illustrate the complexity of the interface problem, Figure 6 

shows a typical situation. For simplicity only two directions, µ = ±1 

and one energy will be considered. 

Fortunately the vertical grid µ is constant with energy and material 

so it presents no problem. Consider the box denoted by the coordinates 

(I,J,E). Assume this box has the directionµ= -1 and travels toward the 

medium interface. There are four possibilities for future positions of 

the box. 

The easiest case is for the box not to reach the interface so that 

apportionme~t is performed as previously explained. Any box in the buffer 

region will eventually traverse the interface: Recall that the time step 

!J.t is subdivided into smaller intervals. Presently the subdivision is 
!J.t -s· Neutrons are only allowed to experience interactions once per time 

A Af h f 0 bd" . . f . !J.t f . f h . i step ut. ter t e irst su ivision o time -S' a raction o t e in -

tial particles have experienced some interactions. These particles then 

t 1 th . . d . 1 4/). t . h . . d rave e remaining istance, name y ~wit out inci ent. This proce-

dure allows for apportionment after relatively little box movement and as 

a result, this case is a common occurrence. 

In Figure 6b the second possibility is shown. The box labeled 

(I,J,E) has traveled completely into the other medium. Due to the inter-

face discontinuities, the final position of the box must be computed in a 

special way. Let y be the fraction of the total range traveled in medium 

2 and a equal the fraction traversed in medium 1. 
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y + s = 1 (8) 

If v 1 ~t, V26t denote the total range of the box in medium 1 and 2 respect-

ively, y can be represented as 

y = (9) 

where IK - XII is the distance from the box coordinate XI to the inter-

face mesh position X. Similarly for the fraction of the range traversed 

in medium 1 

s = (10) 

where XI' is the final position of the box in medium 1. Substitution of 

Eqn. (10) into (8) yields: 

This case is handled with relatively little difficulty. The computer 

must simply recognize that the box has completely entered a different 

medium and then calculate the final position by (11). 

Figure 6c displays the third case. Here the box has sheared across 

the boundary. Since the final positions are calculated in finite time 

steps, the shear is continuous across the boundary and the width of the 

box is the same as the mesh interval in the originating medium. The ac-

tual shape of the box in medium 1 would be something like the dotted lines 

displayed in the figure. It is impossible in the practical sense to cal-

culate the position of the box with the discontinuity of slope present. 

The sheared box outlined by solid lines in Figure 6c is calculated by 

using the mesh interval of the originating medium and the velocity of the 

receiving medium. The apportionment procedure is performed, and the area 
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fractions are then used to redefine the density of the phase space ele-

ments the box occupied. The author admits this is an inaccuracy. The 

two parts of the parallelogram divided by the material boundary should 

travel at the velocity corresponding to their respective regions. The 

entire distance traversed should not be governed by the velocity of the 

incident medium. Nevertheless the author feels it is a satisfactory ap-

proximation in considering the computer factors as well as the physical 

inaccuracy itself. 

The fourth and final case is a combination of the last two situa-

tions discussed. The box initially located at (I,J,E) first completely 

traverses the interface, and the box position is calculated by Eqn. (11). 

Then in the remainder of the time step ~t, it starts back toward medium 

2 and occupies elements on both sides of the interface. The apportion-

ment is performed by the procedure previously discussed, however, now the 

velocity in medium 2 is used in determining its final position. The box 

is incident on the region from which it initially originated. 

More combinations could be formed from the four situations explained 

above. Due to the double discontinuity which in general exists at all 

interfaces in the multigroup formulation of the PSTE method, the buffer 

subroutines which perform the above calculations are the most complex 

parts of the code. In the development of the method more time was spent 

on interface problems than any other facet of the program. 



IV. ANISOTROPY 

When the PSTE method was first constituted, only isotropic scatter-

ing was included. Later Cordaro, 2 for applications in electron trans-

port, considered anisotropic scattering by formulating a probability dis-

tribution which was a function of the incident and outgoing directions. 

A brief discussion of Cordaro's derivation as applied to neutron trans-

port will be given here. 

Figure 7 displays the geometry involved in a general scattering 
-+ event. The unit vector n. represents the incident direction of the neu-

l. 
-+ tron and relative to n a unit vector in the X direction subtends a polar x 

. -+ angle e .. The direction of the scattered neutron n subtends an angle e 
l. s s 

+ -+ -+ relative to the plane determined by n. and n .. The polar angle n makes 
. l. x x 

-+ with n is denoted e . The azimuthal angle e , corresponds to the refer-
s s x 

-+ ence of the plane formed by n 
x 

+ and n s to the Y axis. 
+ 

Similarly e. is the 
l. 

-+ angle between the plane determined by n x and n. and the Y axis. 
l. 

Finally 

e is azimuthal reference angle of the plane formed by s 
+ -+ plane determined by n and n x s 

-+ 
n ' x 

+ n. to the 
l. 

In this general three space dimensional configuration, the object is 

to obtain a probability distribution which is solely a function of the 
-+ -+ + projections of n and n. on n . Since only unit vectors are involved, s l. x 

the following projections are defined: 
+ + (12a) µx n . n = cos e s x x 
-+ + (12b) µi = n. . n cos e. 

l. x l. 

+ + (12c) µs = n. . n = cos e . 
l. s s 
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This is a logical goal since all angles are measured from the X direction 

in the one space dimension considered in this discussion. 

The angular dependent scattering cross section L(µ ) is assumed to s 

be expanded to Legendre Polynomials: 

Lo co 

L(µ ) Lop(µs) = I 2i+l 
CiP i (µs) s 27T 11, 0 2 = 

where 
LO: amplitude (cm- 1 ) 

Pi(µs): Legendre polynomial of index i. 

The coefficients Ci are given by 

1 27T 

Ct= f f p(µs)Pi(µs)d¢sdµs. 
-1 0 

(13) 

(14) 

By using the "Addition Theorem" for spherical harmonics and inte-

grating over the.azimuthal reference angles ~~and ~i' Cordaro obtains 

P (µ Iµ.): the normalized probability that <;n incident neutron with direc-x 1 

tion µ. will depart from the scattering event with some direction µ . 
1 x 

co 

0 

2i+l 
-2- (15) 

Eqn. (15) would be sufficient in its present form if the angular direction 

is continuous. A more useful form would be p(~µ I~µ.), i.e., the proba-x 1 

bility that an incident neutron in some range of angles µc ~ µi ~ µd will 

scatter into another range, say µb ~ µx ~ µa. The properly normalized 

distribution4 is 

(16) 
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Cordaro considered only the integration over µ for electron transport. x 

Tavel extended this by performing a second integration overµ .• These 
1 

results are both stated in Eqn. 

To perform this integration the following three point recussion re-

lation was utilized. 

1 
p JI,(µ) = 2!1,+l 

Equation (16) becomes 

[ dP Jl,+l 
dµ (µ) -

dPJ/,-l 
dµ for JI, > 0. (17) 

p(6µ1. l6µx) = ~(µa - µb) + "d ~ "c I (ct ) {(<P (µ ) - P (µ )) J/,=l 2 2!1,+l J/,+l a Jl,+l b 

(18) 

- (PJ/,-l(µa) - PJ/,-l(µb))) ((PJ/,+l(µd) - PJ/,+l(µc) - (PJ/,-l(µd) - PJ/,-l(µc)))}· 

This expression can be simplified, for example consider anisotropy. Then 

p(µ ) has the form s 

The two coefficients which are nonzero are 

Eqn. (18) reduces to 

p (6µ .16µ ) 
1 x 

c0 = 1 

c1 = 1/3. 

(P2(µa) - P2(µb))(P2(µd) - P2(µc)) 

µd - µc 

(19) 

(20a) 

(20b) 

(21) 

Both (µa - µb) and (µd - µc) are equal to the particular increment taken 

for the µ axis. 

The p(6µ.l6µ) serves as a weighting function along with the appor-
1 x 

tioning factor. Together they redistribute the scattered neutrons in 

space and direction. 
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If the anisotropic cross section for each medium is known as a func-

tion of energy and angle, the usefulness of this analysis becomes appar-

ent. The probability distribution can be formulated for each group by 

expanding the cross section in terms of Legendre polynomials. Then by 

substitution of the Legendre coefficients Ci into Eqn. (18), anisotropy 

to any order can be obtained to fit any particular problem. This is one 

of the advantages of the PSTE method. Effectively no more time is re-

quired to run the code with anisotropic scattering than with isotropic 

scattering. Furthermore any degree of anisotropy can be used without any 

noticeable effect on execution time. The accuracy of the scattering func-

tion depends mainly on knowledge of the cross section itself rather than 

on the method used in the analysis. 



V. "DIGITIZED" GREEN'S FUNCTION 

The digitized Green's function concept originated in the initial 
1 development of the PSTE method by Tavel and Zucker. In the multigroup 

formulation the dimension of energy is the primary addition to the digi-

tized Green's function the previous authors used. 

The time evolution of the neutron distribution could be generated by 

the procedure described in the interface discussion. This straightfor-

ward method would determine the final position of the box, perform the 

apportionment calculation, and redefine the density of the phase space 

elements the box occupied. By repeated iterations of this process the 

time evolution of the initial distribution could.be generated. However, 

this procedure needs only to be utilized when an interface is present in 

the envelope of the box. If the envelope of a box does not overlap the 

interface, then for all general purposes the neutrons in this element of 

phase space can be considered to exist in an infinite medium. The 

straightforward procedure need only be applied once to boxes in this re-

gion. The time evolved density of each phase space element which the box 

will have influenced in traveling through the mesh is calculated by use 

of the Green's function matrix. This function G(I +I', J + J', E + E ) n m 

yields the density at time t + 6t in the phase element (I', J' E ) due ' m 
to unit density at time t in the phase space element (I, J, E ). The 

n 

subscripts on the energy E represent the discrete energy planes. Also 
lit the 6t is the subdiviqed time step, namely ---s~ For an arbitrary density 

(t) at time t p (I, J, E ), the Green's function matrix will generate the n 

time evolved density, at some point I', J' in energy plane E by the fol-
m 
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lowing equation 

(t+~t)(I' J' p , , E ) m l 
n,J,I 
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p(t)(I, J, E )G(I +I', J + J', E 
n n + E ). (18) m 

In general the group constants will change with energy and as a re-

sult a different Green's function for each energy must be calculated. 

Also the distance the box travels varies with the vertical axis µ, hence 

a Green's function for each discrete angular direction is necessary. Ac-

tually only half of the angular directions need to be considered due to 

the imposed symmetry about the X axis. In other words, neutrons with 

direction µ = -1 are treated by the same Green's function as neutrons 

with µ = 1. The procedure used to describe neutron transport in ~he buf-

fer region needs only to be applied once in the calculation of the Green's 

function. The as.set of this method comes from the fact that the time 

evolved neutron density for all elements that can be considered in the 

infinite medium region is calculated by simple matrix operations. To 

find the time evolution of the initial neutron distribution, each nonzero 

density in every phase space element need only to be multiplied by the 

Green's function. 

The advantages of the Green's function approach is three-fold. First, 

all of the physics associated with the problem to be solved is embedded 

in the Green's function. Anisotropic scattering, fission, absorption, 

time dependent cross sections, etc. are incorporated into the matrix 

function. The basic theory of neutron transport by the PSTE method allows 

a wide variety of pro~ess options and all of them can be neatly fonnulated 

into a simple matrix. 
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The second and third advantages are related. 

tion time and storage requirements are of practical 

also be considered essential factors. A four group 

Since computer execu-

importance, they must 
v1 

analysis with V-- = 8 
N 

occupies approximately 125 K fast core storage, and total execution time 

is on the o~der of three minutes.t The core storage could be reduced 

significantly if tape and/or disk units were used as storage areas. 

The previous statistics are relative to the IBM 360 Model 65 compu-

ter located at Virginia Polytechnic Institute and State University in 

Blacksburg, Virginia. Of course other computers will alter the above 

figures. 

t A detailed breakdown of the storage requirements will be given ·later. 



VI. INTERACTION PROCESSES 

In the one speed version of the PSTE method Tavel and Zucker1 consid-

er the three processes: isotropic elastic scattering, absorption and 

fission. For isotropic scattering, the fraction that scatters into every 

angular direction at each time step is determined by the input macroscopic 

scattering cross section of the medium L • The fraction absorbed is de-s 

terrnined by the input absorption cross section L • The fission process a 

is described as an absorption of a neutron followed by an isotropic emis-

sion of on the average v neutrons. The process is treated in a similar 

matter as elastic scattering, but instead of scattering, a certain number 

of particles are removed and v times that number.are replaced isotropi-

cally. 

The multigroup formulation adds the option to vary the cross sections 

with energy. If the scattering cross section is known as a function of 

energy and angle, it can be utilized as simply as isotropic scattering 

in the one speed case. The fission process is still considered an iso-

tropic process although the fission cross sections are now energy depen-

dent. 

One inherent advantage of the PSTE method which has yet to be util-

ized is the inclusion of time dependent cross sections in the computer 

code. This important asset is a simple extension of the method. After 

each time iteration the cross section has only to be redefined to whatever 

value of interest. The Green's functions would then contain time as an 

explicit parameter. It will be shown the time step is small enough to 

consider high transient neutron transport problems, and it is mainly in 

this area where the PSTE method can be used to its peak efficiency. 
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VII. SOLVED PROBLEM 

A simple problem which exhibits the usefulness of the multigroup 

formulation of the PSTE method is the time evolution of an initial neu-

tron distribution in an infinite medium. 

Two energy groups are considered with the velocity magnitudes being 

8 cm/sec in the fast group and 1 cm/sec in the slow group. The purely 

absorbing medium is divided into three parts by two parallel lines. A 

spatially constant isotropic source is placed in the center region. Fig-

ures 9 and 10 display the logarithm of the scalar flux of the fast and 

slow groups respectively for two time steps. Figures 11, 12 and 13 dis-

play the logarithm of the angular flux in the fast group in the direc-

tions indicated. The time increment is 0.0146 sec. This is the time 

required for 10% of the neutrons in the fastest group to experience an 

interaction . 

- 24 -



VIII. PROGRAM STATISTICS 

Execution time and core storage are also important factors in per-

forming transport theory calculations. The multigroup formulation of 

the PSTE method requires a large computer storage capacity. Tape or disk 

units would fulfill this need, but fortunately the computing facilities 

at Virginia Polytechnic Institute and State University allow sufficient 

memory that external storage devices are only used as scratch files. 

The code is divided into three parts. Part 1 compiles all input in-

formation and computes the Green's function as well as all spatial para-

meters. The core storage and execution time is negligible compared to 

the main section (Part two) of the program. Pa~t 2 accepts the data cal-

culated in Part 1 via direct access disk files and performs the major 

calculation. Figure 8 shows the logic used in this step. MAIN receives 

the information from Part 1 and is used as a control unit for the remain-

der of the code. MEDA, MEDB and MEDC are subroutines which utilize the 

Green's functions for the calculation of the neutron density. BUFAB, 

BUFBA, BUFBC and BUFCB compute the position of boxes experiencing a me-

dium boundary in traversing a distance V~t. BUFFER and APORT are used by 

the interface routines to perform this function. SMLOG is a semi-log 

plot routine and HILOW is used by SMLOG to calculate the maximum and min-

imum as well as the first and last nonzero points of each data set. Part 

3 is a separat~ program of negligible size and execution time which plots 

and lists the angular flux for any time increment in any discrete angular 

direction from Part 2. The angular flux for each time step is written in 

an on line permanent disk file. Part 3 simply reads this file and plots 
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the data for any time increment and angular direction specified. 

Table 3 shows a breakdown of the storage required for each component 

in Part 2. The dimension in the MAIN component distinguishes between the 

main source program and the storage required for all variables stored in 

common. 
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CONCLUSIONS 

The multigroup formulation of the PSTE method is an effective task 

for solving high transient neutron transport problems. In general, when 

a medium is exposed to a transient flux, the energy dependent material 

properties change in time. The PSTE method offers the capabilities to 

change material parameters as rapidly as the transient flux itself and 

thus yield a better approximation to nature. Inherent in this method is 

the simplicity of the theory. The method can be applied to a variety of 

problems with little changes in the present multigroup formulation. 

A standard technique for solving the linearized transport equation 

is the Monte Carlo Method. Here the flight path.and interactions of 

thousands of individual neutrons must be studied. Besides being time 

consuming, it is restricted by the statistical limitations inherent in 

the method. The purpose of such a large number of ev. 1ts is to find the 

net or average behavior of the transient phenomenon. The PSTE method 

considers only the destiny of average neutrons and thus no statistical 

limitations exist. For electron transport, Cordaro compared the PSTE and 

2 Monte Carlo methods and found excellent agreement. Also the execution 

time for the PSTE code was on the order of minutes while the Monte Carlo 

calculation took roughly an hour. 

An area of future study for the PSTE method yet to be explored is 

the field of neutron spectroscopy. The neutron interactions with the un-

known due to an incident flux can be measured accurately. However, to 

obtain the absorption spectrum of the sample, the incident energy spectra 

must be obtained. This is a difficult task and has not been accurately 
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done. The PSTE method can determine the energy distribution at some time 

and distance away from a known source. Thus the energy dependent angular 

and scalar flux incident on the sample can be calculated. 
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FIG.11 
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* TABLE I 

ENERGY FLIGHT ENVELOPES 

yelocity (cm/sec) 

8 

4 

2 

1 

Envelope 

49 

25 

13 

7 

The values of the velocities in the table are irrelevant; only tl1e rela-
tive magnitude is important here. 
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TABLE 2 

Storag~ Requirements for Primary Components 

Component Storage (Bytes) Percent of Total 

MAIN Common 181,046 66.700 
Main Source 23,414 8.630 

MEDA 1,472 0.542 

MEDB 1,688 0.621 

MEDC 1,552 0.572 

BUFAB .5,058 1.860 

BUFBA S,104 1.880 

BUFBC 4,874 1.800 

BUFCB 4,924 1. 810 

BUFFER 1,302 0.480 

APO RT ~,602 1.700 

SMLOG 12,930 4.760 

HI LOW 1,044 0.385 

Disk Files __l_?_i_ 4 3 2 8.260 

TOTAL 271,442 100. 000~~ 
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THE PHASE SPACE TIHE EVOLUTION METHOD 

APPLIED TO MULTIGROUP NEU',PRON TRANSPORT 

by 

Richard Bradley Jones 

(ABSTRACT) 

The Phase Space Time Evolution (PSTE) method was initially developed 

for one speed neutrons. This discussion considers the alterations per-

formed in transforming the one speed case to a more general multigroup 

code. Also the complications which arose in this transformation are dis-

cussed. 

The multigroup formulation of the PSTE method calculates the energy 

dependent scalar and angular neutron density at very small time increments. 

In a reactor even slow neutrons travel at relatively high velocities and 

therefore to keep the distance the particles travel on the order of their 

mean free path, o. small time increment must be used. 

To illustrate the usefulness of the PSTE method, the time evolution 

of the neut~on density of a nuclear device is modeled in slab geometry 

and the energy dependent scalar and angular flux is displayed as a func-

tion of time and space. 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049

