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ABSTRACT

Aerobiological sampling using unmanned aerial vehicles (UAVs) is an exciting research

field blending various scientific and engineering disciplines. The biological data collected

using UAVs helps to better understand the atmospheric transport of microorganisms.

Autopilot-equipped UAVs can accurately sample along pre-defined flight plans and pre-

cisely regulated altitudes. They can provide even greater utility when they are networked

together in coordinated sampling missions: such measurements can yield further infor-

mation about the aerial transport process.

In this work flight vehicle path planning, control and coordination strategies are con-

sidered for unmanned autonomous aerial vehicles. A time-optimal path planning algo-

rithm, that is simple enough to be solved in real time, is derived based on geometric

concepts. The method yields closed-form solution for an important subset of candidate

extremal paths; the rest of the paths are found using a simple numerical root-finding al-

gorithm. A multi-UAV coordination framework is applied to a specific control-volume

sampling problem that supports aerobiological data-collection efforts conducted in the

lower atmosphere.

The work is part of a larger effort that focuses on the validation of atmospheric disper-

sion models developed to predict the spread of plant diseases in the lower atmosphere.

The developed concepts and methods are demonstrated by field experiments focusing on

the spread of the plant pathogen Phytophthora infestans.
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Chapter 1

Introduction

Unmanned vehicles have enjoyed increasing attention from researchers in the past decades.

The second half of the 20th century witnessed marvellous technological and scientific

achievements, culminating in the development of space technologies. This new era, of-

ten referred to as the Space Age, induced the need to develop robotic vehicles that are

able to execute missions essential to the advancement of science. Sending spacecraft to

unexplored distances required vast commitment and resources, not to mention the un-

paralleled infrastructure and logistics necessary for the success of such missions. Due to

our physiological needs and the additional safety measures required to send humans to

uninhabited and hostile environments, it was desired to develop vehicles that are able to

explore on their own, and serve as proxies from remote places, such as the far distances of

our Solar System or the depths of the oceans [9]. Although unmanned vehicles — vehicles

that have no humans onboard — have been frequently employed over the past decades

for missions where human involvement would be too dangerous or too expensive, the

challenge to furnish them with onboard autonomy — the ability to sense, decide and re-

act on their own — proved to be a challenging problem, inspiring much of exciting, state

of the art research.

1
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The advancements in computer systems, especially miniaturization and the increase

in computational power, and the emergence of new technologies, such as novel sensors,

wireless communication networks, accurate navigation systems and health-monitoring

systems to name a few, enabled autonomous vehicles with increased mission capabilities.

In recent years, unmanned vehicles have played an increasing role in scientific research.

Highly efficient underwater gliders — winged underwater robots that use buoyancy as a

passive propulsion source — have collected physical oceanographic measurements over

unprecedented spatial and temporal scales [52, 82]. Other autonomous underwater vehi-

cles (AUVs) have been used to measure the heat exchange between ice and seawater [16],

and to monitor the distribution of Antarctic krill under the sea ice [1]. Improvements in

automatic control systems allowed truly autonomous missions on spacecraft like NASA

DS1, and increased the quantity of scientific data returned from the Mars Exploration

Rovers Opportunity and Spirit [9]. Unmanned aerial vehicles (UAVs) have made suc-

cessful flights in Antarctica, carrying miniaturized turbulence probes that measure the

detailed structure of wind and temperature along the flight path [75]. The measurements

can be used to estimate the heat exchange between the lower atmosphere and sea ice.

UAVs have demonstrated their effectiveness in aerobiological research to monitor the

movement of plant pathogens in the lower atmosphere [17, 62, 6]. Using autonomous

vehicles as individual agents offers some advantages in addressing tasks that can be cat-

egorized by the “three D’s”: dirty, dull, or dangerous. Applications include, but are not

limited to, mining [8], search and rescue [48], surveillance and reconnaissance [3] and for-

est fire monitoring [66]. Unmanned vehicles have the potential to provide even greater

utility when networked to accomplish tasks more quickly and efficiently. Accordingly,

the problem of coordinating multiple autonomous vehicles to address scientific and other

missions has enjoyed increased attention from researchers [52, 60, 69].

This work focuses on path planning and control strategies for autonomous unmanned
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flight vehicles. The methods and concepts primarily consider environmental data collec-

tion applications, with special emphasis on field experiments aimed to monitor the spread

of plant pathogens in the lower atmosphere.

1.1 Motivation

In this work path planning and control strategies are discussed that are to be used in

aerobiological sampling field experiments. Aerobiology is a branch of science that stud-

ies the processes and factors that influence the motion of aerobiota in the atmosphere.

Aerobiota may include plant and animal pathogens, insects, seeds and pollen, or other

living organisms that use the air to change habitat [29]. The atmosphere of the Earth is

primarily composed of the mixture of two gases, nitrogen (≈ 78%) and oxygen (≈ 21%),

commonly known as air. Other than gases, air also contains small particles, like dust, and

it may also host microscopical living organisms. Although many of these aerial living

organisms have a significant impact on humans, little is known about the processes and

mechanisms that affect their motion. One may face numerous fascinating questions when

dealing with aerial life forms: In addition to questions regarding their role, and interac-

tion with other living organisms, for example, one is concerned with the aerial transport

mechanisms that transfer them from one location to another.

Aerobiological research aims to improve our understanding of these aerial organisms

to ensure human health and to help sustain and safely manage terrestrial ecosystems,

including important food resources. Airborne bacteria, fungi, viruses and pollen are re-

sponsible for many human respiratory diseases and allergies. These diseases include

Pulmonary tuberculosis, Diphtheria, or Influenza, for example.

An indirect impact on humans of these living aerial organisms is the devastating effect

of plant diseases.
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Globally, wheat accounts for an average of between one-third and one-half of each

person’s daily calories, making wheat a primary food source for most people — on a per

capita basis, wheat consumption averaged around 68 kg [150 lbs] worldwide in 2008 [74].

Puccinia graminis, a fungus that causes wheat stem rust, one of the most devastating dis-

eases of wheat, poses a major threat to the world’s primary food supply [65]. This fungus

has co-evolved with wheat; a small change in either organism’s genetic information can

make the wheat resistant or susceptible to the disease. In this genetic race it is only a

matter of time when the currently resistant wheat varieties become susceptible to a new,

evolved strain of the fungus. In agriculture, plant breeders constantly work on devel-

oping new, and more resistant plant varieties, and until recently, wheat stem rust was

thought to be defeated. However, in 1999, a new strain of the fungus was discovered in

Uganda that can defeat the resistance of most varieties of wheat. The new strain, referred

to as Ug99, is feared to reach other parts of the world by aerial transport or deliberate

introduction [25].

Another example of a deadly plant disease is potato blight. Phytophthora infestans is a

“fungus-like” organism (oomycete) that is a pathogen of potato and tomato, and responsi-

ble for a disease known as late-blight: this organism is the specific focus of the field exper-

iments discussed in Chapter 5. P. infestans causes lesions on the plant leaves (Figure 1.1),

around which new spore-bearing structures called sporangia are formed. The sporangia

are released into the air usually during the early morning hours, where they get picked

up by turbulent airflow over the plant canopy. Some of these sporangia may be trans-

ported to higher altitudes into the planetary boundary layer of the atmosphere to begin

their journey to a new location, where they might infect healthy plants, creating a risk for

wide-spread epidemics. Potato late blight disease was introduced to Europe in the middle

of the 19th century and had grave impact on potato production, ravaging crops through-

out the continent. Although many countries were affected, the consequences were espe-
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Figure 1.1 Late blight of potato, caused by the fungus-like organism Phytoph-
thora infestans, in a source field at Virginia Tech’s Kentland Farm. Sporangia
form in a cloudy halo around necrotic lesions and are released in turbulent winds
for transport in the atmosphere. Photo credit: David G. Schmale III.
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cially severe in Ireland, where about one-third of the population was entirely dependent

on potato. The resulting wide-spread starvation entered history as the infamous “Irish

Potato Famine,” a period between 1845 and 1852, during which an estimated one million

people died and many more were forced to emigrate from the country [79]. P. infestans is

still a major concern today, as many of the common potato varieties are susceptible to the

disease. A risk management system is needed that would help growers make informed

decisions about fungicide use, or sanitation.

In order to accurately assess the risk of an infection at some location spreading to other

areas, mathematical models of varying complexity may be employed to predict the trajec-

tories of the sporangia, given ambient wind and other environmental conditions [6,7]. It is

understood that long-distance aerial transport plays an important role in the evolution of

plant disease epidemics [4]. The transport process can be important when studying how

the disease may be introduced in a new region on a continental, inter-continental scale, or

when studying periodic re-introduction of a fungus in a region where it normally cannot

over-season. Long-distance aerial transport models are required to predict the motion of

fungal pathogens in the air, in order to support a prediction system that would help make

plant-health-management decisions, such as the application of appropriate fungicides.

The transport process can be grouped into five major components [4]: (1) production

of sporangia, often denoted as Q (number of sporangia/m2/s); (2) escape efficiency (the

percentage of sporangia that are able to leave the plant canopy); (3) turbulent transport

and diffusion in the atmosphere; (4) sporangia survival; (5) and deposition onto suscep-

tible host tissues. Once escaped into the air above the canopy, the initial movement of

sporangia downwind from the source may be described as a Gaussian plume; such mod-

els are popular because of their analytical elegance and their ability to capture the basic

convection and diffusion principles [64, 22]. However, these models fail to incorporate

other complex physical and biological features affecting the dispersal process, such as
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Figure 1.2 Illustration showing the spread of microscopical fungal sporangia
from an infected crop field. The sporangia may be picked up by turbulent airflow
over the plant canopy, and may be carried long distances away from the source
by ambient winds. Unmanned aerial vehicles using spore sampling devices can
assess spore concentrations at various altitudes above ground level.

modeling turbulent airflow and deposition of small particles on the potato canopy [35].

Lagrangian stochastic (LS) simulation models may be used, since they are capable of pro-

ducing quantitatively accurate estimates of Q for sporangia [7].

To assess the accuracy of atmospheric dispersion models, the theoretical findings need

to be validated by experiments. Field experiments focusing on the spread of the plant

pathogen P. infestans are conducted at Virginia Tech’s Kentland Farm to support the val-

idation effort. The project’s immediate goals are to: (1) collect aerobiological samples

of fungal sporangia concentrations at various altitudes and geographical locations above

infected potato fields; (2) assess the validity of atmospheric dispersion models used to

predict and forecast the movement and dispersal of P. infestans. UAVs equipped with

microbe-sampling devices are used to measure average concentrations at tens to hun-

dreds of feet above ground level. Remote controlled (RC) UAVs have been used in the

past to track the movement of pollen [6], insects [63], seeds [62], and pathogens [7] above
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crop fields. Recent work highlighted the additional advantages that autopilot-equipped

UAVs can provide in aerobiological sampling field experiments [17,18] in terms of the ac-

curacy in the sample volume and sampling pattern (altitude and geographical location).

The concepts and methods developed in this work were primarily motivated by the

need to improve the precision and accuracy of aerobiological sampling missions con-

ducted with UAVs in the lower atmosphere. During this endeavor, an immediate goal

was to apply existing technologies and platforms for aerobiological sampling field ex-

periments to support ongoing validation efforts focusing on the spread of Phytophthora

infestans. At the same time it was desired to develop new concepts and methodologies

that would: (1) improve the information content from the data that could be gathered

during a sampling interval; (2) introduce new ways of sampling that would yield further

information about the aerial transport process than was previously possible. In (1), one

may want to gather data with two (or more) autonomous UAVs simultaneously at differ-

ent altitudes in such a way that, by exchanging position information, the vehicles follow

the same ground path at the same time. Such measurements give additional information

about the vertical spore concentration gradient, and allow the comparison of concentra-

tions between flights, as the UAVs enter, sample, and exit the spore plume at the same

time. The control volume sampling problem, where one may want to assess the rate of out-

flow through the boundaries of a control volume is an example of (2). Emerging from the

desire to improve the information gain from the sampling missions, several interesting

fundamental research problems were formulated, such as time-optimal path planning in

the presence of steady uniform winds, and multi-UAV coordination along the resulting

time-optimal curves in an external, uniform flow-field.
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1.2 Contributions of Dissertation

The contributions of the dissertation — in order of appearance — are as follows

• Development of a time-optimal path planning algorithm for flight vehicles in the

presence of a steady, uniform flow-field. Previous research demonstrated that the

time-optimal paths have to be composed of straight lines and maximum rate turns.

The contribution to the time-optimal path planning field presented in this disser-

tation is a simple analytical solution for a subset of the candidate extremal paths:

those for which an initial maximum rate turn is followed by a straight path fol-

lowed, by a second maximum rate turn in the same direction as the first one. The

rest of the candidate extremals are found using an efficient numerical root-finding

routine. Additionally, further light is shed on the properties of extremals by show-

ing that, for some candidate extremal trajectories, no corresponding Dubins path

exists in the air-relative frame. The path planning algorithm is extended to the case

where the turn acceleration is also bounded in addition to the turn rate.

• The concept of control volume sampling using two autonomous UAVs is applied to

a specific aerobiological sampling problem, where the UAVs modulate their sam-

pling activity such that one UAV samples only upwind from the source, while the

other UAV samples only downwind from the source. Previous results on particle

coordination on convex curves are applied to this problem, with the modification

that the UAVs do not share the same flight path. Synchronization is made possible

by the fact that the flight paths used in the control volume sampling problem —

referred to as “D-curves” — are symmetric.

• The time-optimal path planning procedure and particle synchronization algorithm

have been implemented on the on-board computer of UAVs for real-time execution.

The methods have been tested in high fidelity hardware-in-the-loop simulations.
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• In addition to the theoretical work, significant emphasis was placed on the data

collection task to support ongoing field experiments during July and August, 2008

and August, 2009. UAV flights were conducted in July and August, 2008, where the

UAVs collected Phytophthora infestans sporangia at 25 m to 45 m above ground level.

Some of the plates in the experimental flights contained viable Phytophthora infestans

sporangia: sporangia able to cause disease on greenhouse-grown potato leaves.

• The time-optimal path planning algorithm is applied to an integrated perimeter

patrol problem, where the UAVs synchronize their motion around a convex curve,

and take time-optimal shortcut paths to prosecute intrusion alerts along the patrol

perimeter.

• Stability analysis for an underactuated autonomous underwater vehicle (AUV) that

is controlled using a nonlinear cross-track control algorithm. Previous results on

directional stabilization of underactuated AUVs are extended to allow convergence

to a straight line in inertial space. The stability of the closed-loop system is assessed

using Lyapunov’s Indirect Method, and the robustness of the controller is demon-

strated by exhaustive Monte Carlo simulations. The performance of the nonlinear

controller is compared to a simple line-of-sight guidance controller, and its superi-

ority in terms of a broader performance envelope is shown.

1.3 Dissertation Outline

This dissertation is divided into the following chapters: In Chapter 2 some fundamen-

tal concepts of optimal control and differential geometry are reviewed. In Chapter 3 a

time-optimal path planning algorithm is described that yields minimum-time trajecto-

ries between initial and final points with prescribed headings in the presence of steady,
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uniform winds. The methods may be applied for any vehicle path planning problem

where the kinematic vehicle model and the assumption of a constant, uniform, external

flow-field is reasonable. The applications include but are not limited to flight vehicles

in a steady wind, surface vessels in riverine environments and underwater vehicles in

ocean currents. The multi-vehicle coordination problem for UAVs is addressed in Chap-

ter 4. Recently developed theory for particle coordination, based on a series of papers

including [60] [51] is extended to allow for coordination on time-optimal curves in wind.

In this work, the particle coordination method is applied to the control-volume sampling

application (Chapter 4), where two UAVs modulate their sampling activity to ensure

consistent and efficient assessment of outflow of particles across the boundaries of the

control-volume. In Chapter 5, coordinated aerobiological sampling field experiments are

discussed. The UAV coordination method is directly applicable to other practical prob-

lems as well. Chapter 6 presents the coordinated perimeter patrol problem, where a group

of UAVs are tasked with the problem of patrolling a certain convex perimeter by minimiz-

ing coverage gaps, and at the same time prosecuting intrusion alerts. Chapter 7 is focused

on directional stabilization and cross-track control of an underactuated autonomous un-

derwater vehicle (AUV). Although the dissertation is primarily focused on aerobiological

sampling using UAVs, the developed methods may be easily applied for oceanographic

sampling applications using unmanned underwater vehicles. Although the properties

and conditions of the medium that underwater and aerial vehicles operate in are very

different, the physical laws that govern their motion are the same. The path-planning

and particle synchronization results discussed in later chapters may be immediately ap-

plied for AUVs performing data collection missions in ocean currents.



Chapter 2

Mathematical Preliminaries

2.1 Pontryagin’s Minimum Principle

The purpose of this section is to introduce Pontryagin’s Minimum Principle: a power-

ful tool that will be used in Chapter 3 to derive necessary conditions for time-optimal

paths. The ideas presented here are well established within the classical optimal control

literature [33, 14, 55, 36].

The origins of calculus of variations go back to the 17th century. The brachistochrone

problem was first studied by Galileo Galilei who was interested in finding the shape of the

curve, along which a bead would slide down in minimum time. The name brachistochrone

itself comes from the Greek brachistos for “shortest” and chronos for “time.” The problem

was formulated mathematically by Johann Bernoulli in 1696, and it was solved in 1697

by Johann Bernoulli, Jakob Bernoulli, Sir Isaac Newton and others. The brachistochrone

problem was the first optimal control problem that was formulated with mathematical

rigor and eventually solved using the calculus of variations.

Classical calculus of variations gives necessary conditions for a solution to be optimal

with respect to some measure — the performance index. A chief drawback of the method

12
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is that in most cases it only provides necessary conditions and gives no insight into how

the optimal solutions may be found.

In optimal control one is interested in obtaining the optimal control signal that shapes

the evolution of the states of a dynamical system, such that some performance index is

minimized. For linear systems, and considering quadratic cost functionals, a closed-form

solution can be obtained. For nonlinear systems, however, no general solution exists. The

methods of the calculus of variations can be employed with the hope to obtain necessary

conditions for optimality, however, the variational approach to the optimal control prob-

lem only provides necessary conditions inside an open set. In the classical treatment —

presented, for example, in [33] — one has to make rather restrictive smoothness assump-

tions on the functions that are considered. Moreover, the control u∗ is assumed to be

unbounded, even though for minimum time control problems the control is often “bang-

bang,” i.e. it takes on values on the control boundary. The theory developed by Pon-

tryagin and his students [55] addresses the problem where the control is only assumed

to be piecewise continuous, and it can take on values on a compact set, i.e. including

the boundaries. An alternative geometric approach to obtain the minimum principle is

presented in [36].

Consider the system

ẋ = f(x(t),u(t)),

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the vector of control signals, and f(·) :

R
n × R

m 7→ R
n is smooth. We call the control admissible if

u(·) : [t0, tf ] 7→ Ω ⊂ R
m

takes values in a closed and compact set. We consider the admissible controls to be ar-

bitrary piecewise continuous functions, i.e. u = u(t) which are continuous for all t, with

the exception of only a finite number of isolated times, t, at which u(t) may have discon-
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tinuities of the first kind.1 Assume that the initial condition x(t0) ∈ R
n is given and the

final condition x(tf ) ∈ R
n is specified. Consider the performance index in the form

J(u) =

∫ tf

t0

f0(x,u)dt.

Define the augmented adjoint vector as

λ̃(t) = [λ0, λ1(t), ..., λn(t)]
T

and the augmented right-hand side function

f̃(x,u) = [f0(x,u), f1(x,u), ..., fn(x,u)]T ,

where fi(x,u), i = 1, . . . , n, is the ith component of f(x,u). Define the variational Hamilto-

nian as

H(λ̃(t),x(t),u(t)) ≡< λ̃, f̃(x,u) >=
n∑

i=0

λifi(x,u).

Theorem 2.1.1. Pontryagin’s Minimum Principle [55]. If x∗(t), u∗(t) defined on [t0, tf ] is an

optimal state-control pair, then there exists a real number λ0 and an absolutely continuous vector

valued function λ(t) : [t0, tf ] 7→ R
n, such that

•

λ0 ≥ 0, λ̃(t) 6= 0.

•

λ̇(t) = −∂H
∂x

|
x
∗,u∗

•

H(λ̃(t),x∗(t),u∗(t)) = inf
u∈Ω

{H(λ̃(t),x(t),u)}

1A function f(x) has a discontinuity of the first kind at the isolated point x0, if f(x) is discontinuous at

x0, but both lim
x→x

+

0

f(x) and lim
x→x

−

0

f(x) exist, and take finite values. Also called a jump.
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• At the terminal time tf the relation

inf
u∈Ω

{H(λ̃(tf ),x(tf ),u)} , M(λ̃(tf ),x(tf )) = 0 (2.1)

is satisfied.

Furthermore, it turns out that the value of the Hamiltonian along the optimal trajectory is con-

stant, so condition (2.1) may be verified at any time t ∈ [t0, tf ], and not just at tf . �

2.2 Differential Geometry of Curves

In this section an overview of elementary differential geometry is presented that will be

used in later chapters. The development primarily follows [73]. The basic concepts are

discussed for the general three-dimensional Euclidean space, and then more emphasis

is placed on the discussion of planar curves. Curves in the plane correspond to trajec-

tories that an autopilot-controlled UAV would follow at a fixed altitude. We will see in

Chapter 3 that time-optimal paths in the presence of winds may be composed of trochoidal

segments and straight lines.

In R
3, the three-dimensional Euclidean space, a vector is a set of three numbers x =

(x1, x2, x3)
T . The vectors i = (1, 0, 0)T , j = (0, 1, 0)T and k = (0, 0, 1)T form an orthonormal

basis of R
3.

Definition 2.2.1. If a = (a1, a2, a3)
T ∈ R

3 and b = (b1, b2, b3)
T ∈ R

3, then their scalar product

a · b and vector product a × b are

a · b = a1b1 + a2b2 + a3b3, a × b = det









i j k

a1 a2 a3

b1 b2 b3









.
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Definition 2.2.2. If a map φ : M → N is continuous and bijective, and if its inverse map

ψ = φ−1 : N → M is also continuous, then φ is a homeomorphism and M and N are said to

be homeomorphic. A differentiable map φ : M → N is a diffeomorphism if there is a differentiable

map ψ : N →M such that φ ◦ ψ = I (where I is the identity map) and ψ ◦ φ = I.

A connected set γ in R
3 is a regular k-fold continuously differentiable curve if there is a

homeomorphism φ : G → γ, where G is either a line segment [a, b] ∈ R, or a circle of

radius 1, where φ ∈ Ck, and Ck is the space of k times differentiable functions of a real

variable. If k = 1, the curve is called smooth. Essentially, a curve is a set of points in R
3

that can be smoothly mapped onto a straight line segment (open curve), or onto a circle

(closed curve). Fixing a Cartesian coordinate system (O, x, y, z), a curve is completely

determined by the functions x(t), y(t), z(t), where t ∈ [a, b] ⊂ R. For a curve to be regular,

it is required that the derivatives x′(t), y′(t), z′(t) never vanish simultaneously at any t.

In other words, the curve never slows to a stop or backtracks itself. The expressions x(t),

y(t), z(t) are called a parametrization of the curve, and t is called the path parameter, or

just parameter.

Definition 2.2.3. A continuous curve γ is called piecewise smooth if it is smooth, except for

perhaps a finite number of isolated points Pi, i = 1, .., k.

Example 2.2.4. Helix

A helix in R
3 can be parameterized by a single parameter t as follows

γ(t) : I →
(

r cos(ωt) r sin(ωt) t

)T

Example 2.2.5. Cycloid Curve
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Figure 2.1 A helix, parameterized by a single parameter.

A cycloid is the locus of a point on the rim of a circle of radius r rolling along a straight

line. The parametric equation for the cycloid is

x = r(t− sin t)

y = r(1 − cos t).

Example 2.2.6. Hypocycloid

The trajectory of a point P on a circle of radius r rolling without sliding in the plane

around the inside of a larger radius R is called a hypocycloid. The parametrization of

such a curve is

x(t) = r(m+ 1) cos(mt) − rm cos(mt+ t)

y(t) = r(m+ 1) sin(mt) − rm sin(mt+ t),

where m = r/R is the modulus. By convention m < 0 for a hypocycloid. In case of an

epicycloid, where the circle of radius r is rolling on the outside of the circle of radius R,

m > 0 (see Figure 2.2).
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(b) Epicycloid (m = 1/5).

Figure 2.2 Hypocycloid and epicycloid curves.

Example 2.2.7. Trochoid

A trochoid is the locus of a point P at a distance R from the center of a circle of radius

r rolling on a fixed line (see Figure 2.3). A trochoid has parametric equations

x(t) = rt−R sin(t)

y(t) = r −R cos(t).

An airplane flying at a constant altitude with a constant turning rate in the presence of

constant, uniform wind describes a trajectory that corresponds to a trochoid curve in the

plane. In the special case when r = R, the trochoid curve is the same as a cycloid curve,

corresponding to a situation when the airplane airspeed is equal to the wind speed.

Example 2.2.8. Clothoid

A clothoid is a curve that has a linearly changing curvature profile. The formula for the

Cartesian coordinates along a clothoid is given by the Fresnel integrals [2]

x(t) =

∫ t

0

sin(τ 2)dτ

y(t) =

∫ t

0

cos(τ 2)dτ.
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Figure 2.3 Trochoidal path is generated by a point P a distance R from the center
of a circle of radius r, as the circle is rolling along a straight line.

Clothoid curves are also known as Euler spirals or Cornu spirals (see Figure 2.4). A path

corresponding to a clothoid curve is generated when a vehicle changes its course of travel

such that its angular acceleration is a constant non-zero value. Clothoid curves are im-

portant because they form smooth transition segments between straight segments and

circular arcs, for example. A vehicle that cannot change its turn rate instantaneously may

transition from a straight line to a steady turn by following a clothoid arc until the desired

curvature is reached.

Let a smooth curve γ be given by its parametric equations r(t) = x(t)i + y(t)j + z(t)k.

The velocity vector of the curve is then r′(t) = x′(t)i + y′(t)j + z′(t)k. The speed of the

curve at a point t0 is defined as |r′(t0)|.

Definition 2.2.9. The tangent line of a curve γ at a point P = r(t0) is the line drawn through

point P in the direction of the velocity vector r′(t0).

The tangent line to a point P = r(t0) is the limit of secants to the curve γ that pass

through P and an arbitrary point P1 = r(t1), as t1 → t0. Denote by τ (t0) the unit vector
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Figure 2.4 A clothoid curve, also known as Euler spiral.

that is parallel to r′(t0), that is τ (t0) = r
′(t0)

|r′(t0)|
. A line through P that is orthogonal to

the tangent line is called a normal line. At a point P = r(t0), where an osculating plane is

unique, one may select among all normal directions a unique principal normal vector, n(t0),

which is: (1)orthogonal to the tangent vector r′(t0); (2) parallel to the osculating plane;

(3) n(t0) forms an acute angle with r′′(t0); (4) n(t0) has unit length. The normal vector can

be expressed by the formula

n = − r′ · r′′
|r′||r′ × r′′|r

′ +
|r′|

|r′ × r′′|r
′′.

The vector defined by β = τ × n is called the binormal vector, and the vectors τ , n and β

form an orthonormal basis for R
3.

The length of a smooth curve can be written as

l(γ) =

∫ tf

t0

|r′(t)|dt.

The arc length of a smooth, regular curve between points P0 = r(t0) and P = r(t) is

s(t) =

∫ t

t0

|r′(t)|dt,
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thus the function s(t) is differentiable, and by the assumption of regularity s(t) = |r′(t)| >

0. By the inverse function theorem there exists an inverse, t(s), such that

dt

ds
=

1

|r′(t(s))| .

Using the inverse function t(s) one may obtain an alternative arc length parametrization of

the curve γ:

γ : r(s) = r(t(s)).

The arc length parametrization of curves has the property that the speed along the curve

is unity |r′(s)| = 1, and the formulas for the tangent vector, the principal normal vector

and the binormal vector are particularly simple:

τ (s) = r′(s), n(s) =
r′′(s)

|r′′(s)| , β(s) =
r′(s) × r′′(s)

|r′′(s)| .

A closed connected region D ⊂ R
2 in the plane is called convex if for any two points

A,B ∈ D, the connecting line segment lies also in D: AB ⊂ D. The boundary of a convex

region is called a convex curve. An alternative definition of a convex curve is: a curve γ is
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convex if each of its points has a support line. A line through a point P ∈ γ is a support

line, if γ lies entirely in one of the half planes defined by the line. If a tangent line exists,

it is also a support line for a convex curve.

Given two points on a smooth curve P0, P1 ∈ γ, denote by ∆s the arc length P0P1 and

by ∆θ the angle between the tangent vectors τ (t0) and τ (t1). Then the curvature of the

curve at point P0 is defined as

κ(t0) = lim
P1→P0

∆θ

∆s
= lim

∆s→0

∆θ

∆s
.

Let γ ∈ C2 be a regular curve. Then at each of its points the curvature exists. If r(t) is a

regular parametrization of γ, then the curvature is

κ(t) =
r′ × r′′

|r′|3 .

The curvature of a straight line is κ = 0, and the curvature of a circle is κ = 1
R

, where R is

the radius of the circle. There is no plane curve of constant curvature other than the circle

and the straight line. Intuitively, the curvature of a curve is the measure of its deviation

from a straight line.

Theorem 2.2.10. [73, Theorem 1.6.3] Let κ(s) be an arbitrary continuous function on a line

segment [a, b]. Then there is a unique (up to a rigid motion) curve γ, for which κ(s) is the curvature

function and s is the arc length parameter. �

Plane curves are uniquely determined by their curvature, and the equation κ = κ(s)

is called the natural equation of the curve. The curvature of a plane curve γ : (x, y)T =

(x(t), y(t))T can be written as

κ =
x′y′′ − y′x′′

(x′2 + y′2)3/2
.



Chapter 3

Minimum-Time Path Planning in Steady

Uniform Winds

In this chapter a framework is described for minimum-time path planning in the horizon-

tal plane. We consider a kinematic model for an unmanned aerial vehicle (UAV) flying at

constant altitude and constant air-relative speed in a steady, uniform flow-field. In this

setting we seek the feasible path that brings the UAV from a given initial point and head-

ing to a given final point and heading in the least amount of time. We assume that the

control signal, the turn rate of the vehicle, can only take values in a bounded set to ensure

that the resulting path is feasible for real vehicle guidance applications.

Table 3.1 summarizes several minimum-time path-planning problem types in the ab-

sence or presence of ambient winds, and with different control bounds. The complexity

of the problem increases from the top left to the bottom right. The simplest situation

is when there are no bounds on the turn rate, that is, the desired heading/course can

be immediately achieved. In the absence of flow this corresponds to a straight line be-

tween initial and final points. If there is an external flow-field, the problem is referred

to as Zermelo’s problem. (One can relax the uniform flow-field assumption in this case.)

23
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Turn Constraint No Wind Uniform Wind

None Straight line Zermelo’s problem a

Only Turn Rate Dubins path “Convected” Dubins

path

Rate and Continuous-Curvature Continuous-Curvature,

Acceleration Dubins “Convected” Dubins

aZermelo’s problem also addresses the case where the external flow is not

uniform.

Table 3.1 Path-planning problem types for planar kinematic vehicle models.

If there are bounds on the maximum achievable turn rate, the problem is equivalent to

finding the minimum arc-length path of bounded curvature connecting two points in the

plane with prescribed initial and final slope. The problem was formulated and studied by

Dubins who showed, using geometrical considerations, that a minimum length path con-

tains only maximum-curvature circular arcs and straight segments, and moreover that

it contains at most three such segments [20]. The problem has been re-formulated and

solved using optimal control theory and Pontryagin’s minimum principle in [11]; addi-

tional necessary conditions for optimality were provided in [15].

More recently the above methods have been adopted for time-optimal path planning

for UAVs traveling in steady uniform winds [42, 41]. In these papers minimum-time tra-

jectories are designed in the air relative frame FA, an inertial frame that moves in the

direction of the ambient wind with the same speed. The desired final point in inertial

space corresponds to a point in FA, a “virtual target,” that moves with the same speed as

the wind and in the opposite direction. The challenge is to find the point along the vir-

tual target’s path at which a Dubins path intercepts the target. The algorithm iteratively

solves the Dubins problem in FA until the interception error converges to zero. It was
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later established that there exists a unique solution for almost every collection of initial

and final states (see Theorem 3 in [43]).

An alternative approach is to exploit the geometry of the candidate extremal paths

and obtain closed-form solutions. The discussion of the algorithm is the main contribu-

tion in this chapter. The key observation is that a UAV flying in a constant ambient wind

with a constant maximum turn rate generates a trochoidal path [57], for which closed-

form expressions exist. Since extremal trajectories may only contain straight paths and

trochoidal segments, one may seek the solution in terms of switching points for which

a concatenation of such segments yields a feasible path [71]. Independently of this re-

search, the importance of trochoidal trajectories for minimum-time path planning was

recognized in [10]; however, only numerical solutions were presented there.

We provide a detailed description of the minimum-time path planning problem in the

plane using trochoidal paths and straight segments. In Section 3.1 we set up the prob-

lem and introduce the “trochoidal” frame in which the x-axis is aligned with the direc-

tion of the ambient air’s motion. The trochoidal coordinates expressed in this frame are

an essential part of the development. In Section 3.2 the general character of extremal

paths is discussed. We summarize previous results on minimum-time path planning

using Pontryagin’s minimum principle and provide an additional necessary condition

for optimality. Generalizing Dubins’ results, we consider only three-segment extremals,

which can be grouped into two major categories as shown in Figure 3.1. Borrowing ter-

minology from [67] the “bang-singular-bang” (or “BSB”) extremals are those candidate

time-optimal paths for which an initial turn is followed by a straight segment followed

by a second turn. The solutions for these paths are presented in Section 3.3. When the

initial and final turns have the same sense, these paths can be computed on closed form.

The results shed light on the character of the BSB paths, in general, and suggest an effi-

cient numerical root-finding routine to obtain the remaining candidate BSB trajectories.
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Maximum three segment extremals

BSB extremals BBB extremals

LSL, RSR extremals
Analytical solution

RSL, LSR extremals
1D transcendental equation
Newton-Raphson method

RLR, LRL extremals
2D transcendental equation
2D Newton-Raphson 
method

Smooth paths connecting initial and final states

Figure 3.1 Venn diagram showing the types of extremals considered in this work.
The abbreviations should be interpreted as follows: As in [67], “B” stands for
“bang,” or maximum rate turn, “S” stands for “straight” (also stands for “singu-
lar”), “L” stands for “left,” and “R” stands for “right.” For example, LSL is an
initial left turn followed by a straight path, then followed by a second left turn.

The “bang-bang-bang” (or “BBB”) extremals comprise a turn followed by a second turn

in the opposite sense, which is followed by a third turn in the same direction as the first.

The solution for these extremals is briefly summarized in Section 3.4 and is described in

more detail in Appendix A. The path planning algorithm is demonstrated in Section 3.5,

where results are presented for Monte Carlo simulations over a range of randomly se-

lected parameters.

The methods can be generalized to the case, where, in addition to the turn rate lim-

its, the dynamics is also constrained by bounds on the maximum turn acceleration. The

approach is described in Section 3.6.
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3.1 Problem Formulation

Consider the dynamic system described by the equations

ẋN(t) = Va cosψ(t) + Vx

ẏE(t) = Va sinψ(t) + Vy (3.1)

ψ̇(t) = u(t),

where the components Vx and Vy of the ambient wind are assumed to be constant. The

coordinates xN(t) and yE(t) describe the vehicle’s position in an inertial frame, while ψ(t)

describes its heading measured clockwise from the xN -axis. Va is the air speed and u(t) is

the turn rate, which we take as a control input.

Suppose the initial and desired terminal conditions are

xN(0) = xN0
, yE(0) = yE0

, ψ(0) = ψ0, (3.2)

xN(T ) = xNf
, yE(T ) = yEf

, ψ(T ) = ψf . (3.3)

The objective is to find an extremal control u∗(t) such that the UAV, starting from its initial

state, arrives at the desired final state in minimum time. That is, the objective is to find

u∗(t) such that the cost function

J =

∫ T

0

dt = T

is minimized subject to the kinematic equations (3.1) and the symmetric control limits

−ū ≤ u(t) ≤ ū.

Finding minimum-length paths of bounded curvature was studied by Dubins [20] and

was more recently adopted as a means of generating minimum-time paths for constant-

speed mobile robots with bounded turn rates, leading to the phrase “Dubins’ car.” (See

[11], for example.) One attempt to extend Dubins’ results to UAVs in winds is described
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in [42, 41], where the problem is transformed to a moving reference frame in which the

final position becomes a “virtual moving target” whose speed is equal and opposite to

the wind. Path planning is then reduced to a numerical root-finding problem involving

iterative solution of the Dubins problem.

This work presents an alternative approach that uses a simple geometric argument to

characterize extremal paths. The result relies on the observation that circular (constant

turn rate) UAV paths in the air-relative frame correspond to trochoidal paths in the in-

ertial frame [57]. Following [57], we define a trochoidal frame determined by the wind

direction, as shown in Figure 3.2.
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Figure 3.2 Trochoidal path and trochoidal frame.

If χw denotes the wind direction (by convention, the direction from which the wind

approaches), then ψw = χw±π is the direction of the ambient air’s motion. The trochoidal

frame, FT , is then defined such that its x-axis is oriented downwind, the z-axis is into the

image, and the y-axis completes the right-handed reference frame. Notice that the tro-

choidal frame is fixed relative to the ground, while the air relative frame FA is convected
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downwind. Then the trochoidal coordinates can be found from the inertial coordinates

by





xt(t)

yt(t)




 =






cosψw sinψw

− sinψw cosψw











xN(t)

yE(t)




 .

The kinematic equations expressed in the trochoidal frame are

ẋt(t) = Va cos(ψ(t) − ψw) + Vw (3.4)

ẏt(t) = Va sin(ψ(t) − ψw) (3.5)

ψ̇(t) = u(t) (3.6)

where Vw =
√
V 2
x + V 2

y . We assume that Vw < Va, to ensure that feasible solutions exist.

In the case of a turn at constant maximum rate ω = |ψ̇max| = ū, the equations can be

re-written as

ẋt(t) = Va cos(δωt+ φt) + Vw (3.7)

ẏt(t) = Va sin(δωt+ φt), (3.8)

where φt = ψ(0) − ψw and δ ∈ {−1, 1} describes the direction of the turn. The position of

a point on the trochoidal path can then be written as

xt(t) =
Va
δω

sin(δωt+ φt) + Vwt+ xt0 (3.9)

yt(t) = −Va
δω

cos(δωt+ φt) + yt0 . (3.10)

The trochoidal path defined here is essential in developing the path planning algorithm

described in later sections.

3.2 Properties of Extremal Paths

In this section necessary conditions are derived for time-optimality. Following [11], we

begin with equations (3.1) and initial conditions (3.2). Assume that the coordinates are
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already expressed in the trochoidal frame such that Vy = 0 and Vx = Vw.

Let λ = [λ1, λ2, λ3]
T denote the vector of adjoint variables (the co-states). The Hamil-

tonian for the time-optimal control problem is

H = λ0 + λ1(Va cosψ(t) + Vw) + λ2Va sinψ(t) + λ3u,

where u ∈ U and U = [−ū, ū] is the set of admissible controls. The co-state equations are

λ̇1 = 0

λ̇2 = 0

λ̇3 = λ1Va sinψ(t) − λ2Va cosψ(t)

which implies that λ1 and λ2 are constant. The minimum principle — Theorem 2.1.1 —

states that along an extremal trajectory the following conditions need to be satisfied

•

H(x∗(t),λ∗(t), u∗(t)) = inf
u(t)∈U

{H(x∗(t),λ∗(t), u(t))}

•

H(x∗,λ∗, u∗(t)) ≡ 0 and λ0 ≥ 0.

Introducing the change of variables

λ1 = λ̄ cosψc

λ2 = λ̄ cosψc,

where λ̄ =
√

λ2
1 + λ2

2, we can write the Hamiltonian in the form

H = λ0 + Vaλ̄ cos(ψ − ψc) + λ1Vw + λ3u. (3.11)

The third co-state equation takes the form

λ̇3 = Vaλ̄ sin(ψ − ψc). (3.12)

Following [11], the following two cases are possible:



3.2 Properties of Extremal Paths 31

• ∂H
∂u

= λ3 = 0. Then λ̇3 = 0. In this case first consider when λ̄ 6= 0. Then by

equation (3.12) we have that ψ(t) = ψc = const or ψ(t) = ψc +π = const, i.e. the path

is a line segment in the direction defined by the characteristic direction ψc. Now

consider the case when λ̄ ≡ 0. Then λ1 = λ2 = λ3 = 0, hence the Hamiltonian

in equation (3.11) is H = λ0 ≥ 0. However, by the minimum principle we also

have that H = 0, which implies that λ0 = 0. Theorem 2.1.1 states that λ0 and λ(t)

cannot be all zero at the same time, so this situation is not possible by the minimum

principle.

• ∂H
∂u

= λ3 6= 0. In this case the control signal has to be u = −sign(λ3)ū to minimize

the Hamiltonian. This corresponds to a maximum rate turn to the left or right, a

“maximum effort” or “bang-bang” control.

Thus, the time-optimal path consists of turns at maximum rate and straight segments.

Extremal trajectories (or extremals) therefore comprise trochoidal and straight segments.

In the absence of winds (Vw = 0), these trajectories simplify to circular segments and

straight lines, and they are often referred to as Dubins paths. As proved in [20], in that

case there are six possibilities to connect initial and final oriented points with minimum

arc-length paths. (For constant speed motion “minimum-time” is equivalent to “mini-

mum arc-length.”) Let L denote a segment corresponding to a maximum rate turn to

the left and let R denote a segment corresponding to a maximum rate turn to the right.

Finally, let S denote a straight segment (which is a singular arc of an extremal path). Gen-

erally, the six possible extremal paths are LSL, RSR, LSR, RSL, RLR and LRL. Finding

these candidate paths is a simple geometric exercise: one only needs to find tangents to

oriented circles of minimum turn radius. The LRL and RLR paths only exist if the dis-

tance between the initial and final points, d, satisfies d ≤ 4R0, where R0 is the maximum

rate turning radius. The paths LSR and RSL fail to exist when d < 2R0. In case of equality,



3.2 Properties of Extremal Paths 32

d = 2R0, the intermediate straight segment vanishes [42].

Generalizing Dubins’ results to the case where winds are present, we seek trajectories

that can be constructed by joining three segments according to BSB or BBB (where B can

be either L or R). In Section 3.3 a method is presented to compute BSB trajectories. The

LSL and RSR trajectories can be found in closed form; the LSR and RSL trajectories can

be found using a simple root-finding method. In Section 3.4 a method to find the BBB

trajectories is discussed. The true minimum-time solution is found by comparing the

transit times for all candidates. The numerical root-finding algorithm described in this

chapter differs from earlier numerical methods: the framework presented in this work

yields closed-form expressions in the form of one or two transcendental equations that

have to be solved for one or two unknown parameters, respectively. The known form

of the transcendental equations and the insight gained through the development of the

closed-form expressions allow one to formulate a numerical analysis problem that can be

solved efficiently for these unknown parameters.

The number of possible solutions can be confined to a small finite set by introducing a

new necessary condition for optimality. Towards that end we express equations (3.4)-(3.6)

using the inertial “ground speed” and “course angle” instead of the air relative speed and

heading angle:

ẋN(t) = Vg(ψ) cos (χ(ψ)) (3.13)

ẏE(t) = Vg(ψ) sin (χ(ψ)) (3.14)

ψ̇(t) = u(t), (3.15)

where the ground speed Vg(ψ) and the course angle χ(ψ) depend on the heading angle ψ

as follows

Vg(ψ) =
√

V 2
a + V 2

w + 2VaVw cos(ψ) (3.16)

χ(ψ) = tan−1

(
Va sinψ

Va cosψ + Vw

)

. (3.17)
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Figure 3.3 Relationship between air speed, wind speed and groundspeed.

Here the 4-quadrant inverse tangent function is used. The relationship between course

angle and heading angle is illustrated in Figure 3.3.

Lemma 3.2.1. Consider the kinematic equations (3.13)-(3.15). The heading angle ψ(t) ∈ [0, 2π)

and course angle χ (ψ(t)) ∈ [0, 2π) are in one-to-one correspondence if and only if Va > Vw.

Proof: If Va ≤ Vw, then the mapping from ψ(t) ∈ [0, 2π) to χ (ψ(t)) is not one-to-one.

Referring to the left side of Figure 3.3, the course angle χ (ψ(t)) will only take values for

which the ground relative velocity vector Vg(ψ(t)) has a non-negative ‘x’ component. It

follows that χ (ψ(t)) ∈ [−π
2
, π

2
] for ψ(t) ∈ [0, 2π).

If Va > Vw, then from equation (3.17) we can conclude that the denominator of the

argument of the arctan function takes values in [−Va + Vw, Va + Vw]. The numerator takes

values in [−Va, Va]. Moreover, χ (ψ(t)) takes a unique value in [0, 2π) for each ψ(t) ∈

[0, 2π), as can be seen in the right side of Figure 3.3. �

Lemma 3.2.2. Consider an extremal that contains a trochoidal segment, described by equations (3.9)-

(3.10). Assume that the trochoidal segment begins at point P0 at path parameter value t0 and ends

at point P3 corresponding to path parameter value t3. A necessary condition for optimality is that

∆t = (t3 − t0) < 2t2π, where t2π = 2π
ω

= 2π
|ψ̇max|

is the time required for the air relative velocity
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Figure 3.4 The time the UAV spends on an extremal trochoidal segment has to be
less than 2t2π.

vector to describe a full revolution.

Proof: To prove by contradiction, assume that there exists a solution for which ∆t ≥

2t2π, corresponding to an optimal trajectory. In that case the trochoidal path contains at

least two ”full loops.” By Lemma 3.2.1, there exists a point P1 and corresponding path

parameter value t1, t0 ≤ t1 ≤ t0 + t2π, such that the course angle along the path is aligned

with the ambient wind’s motion at point P1. Define the point P2 to correspond to path

parameter value t2, where t2 = t1+t2π. The inertial velocities at points P1 and P2 align with

the wind vector and with the line segment connecting the two points by equations (3.7)-

(3.10), therefore the trochoidal segment between points P1 and P2 can be replaced by a

straight path in the direction of the ambient wind’s motion (see Figure 3.4). The distance

from point P1 to P2 along the trochoidal segment is D = Vwt2π = Vw

Va
2πR0 where R0 = Va

ω

is the (constant) minimum turn radius in the air relative frame. The time it takes to travel
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on the straight line instead of the trochoid is ts = D
Vw+Va

, since the tangent line connecting

points P1 and P2 has to be aligned with the wind vector. Thus ts = Vw

Va+Vw
t2π < t2π,

consequently the trochoidal segment can be replaced by the shorter straight segment.

Since a trajectory can only be optimal, if all sub-trajectories are optimal as well, it follows

that the original trochoidal path cannot be optimal, thus ∆t < 2t2π is a necessary condition

for optimality. �

3.3 Computing BSB Trajectories

Given the initial and final conditions (3.2) and (3.3), we define two trochoids (xt1(t), yt1(t))
T

and (xt2(t), yt2(t))
T as in (3.9) and (3.10), such that the first trochoid satisfies the initial

conditions (3.2) at t = 0, and the second trochoid satisfies the final conditions (3.3) at

t = t2π = 2π
ω

, the time required for the air-relative velocity vector to describe a full circle

at the maximum turn rate.

Remark 3.3.1. There is a slight abuse of notation here, in using the same path parameter t for

both curves.

Let δi denote the sense of the turn for i ∈ {1, 2}. We seek the four feasible paths of

shortest length corresponding to each of the four possible turn sequences: δ1 ∈ {−1, 1}

and δ2 ∈ {−1, 1}.

xt1(t) =
Va
δ1ω

sin(δ1ωt+ φt1) + Vwt+ xt10 (3.18)

yt1(t) =
−Va
δ1ω

cos(δ1ωt+ φt1) + yt10 (3.19)

xt2(t) =
Va
δ2ω

sin(δ2ωt+ φt2) + Vwt+ xt20 (3.20)

yt2(t) =
−Va
δ2ω

cos(δ2ωt+ φt2) + yt20 (3.21)
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Let us denote the point at which the extremal path leaves the first trochoidal segment as

point PA, and the point where it reaches the second trochoidal segment as point PB ; see

Figure 3.5. Define tA and tB , relative to the two trochoidal segments, such that






xA

yA




 =






xt1(tA)

yt1(tA)




 and






xB

yB




 =






xt2(tB)

yt2(tB)




 .

We pick the phase angles φt1 and φt2 such that the first trochoid has the desired initial

heading ψ0 at t = 0 and the second trochoid has the desired final heading ψf at t = t2π:

φt1 = ψ0 − ψw, φt2 = ψf − ψw − δ2ωt2π.

Similarly, we can pick the constants

xt10 = x0 − Va/(δ1ω) sin(φt1) (3.22)

yt10 = y0 + Va/(δ1ω) cos(φt1) (3.23)

xt20 = xf − Va/(δ2ω) sin(δ2ωt2π + φt2) − Vwt2π (3.24)

yt20 = yf + Va/(δ2ω) cos(δ2ωt2π + φt2), (3.25)

such that the first trochoid satisfies the initial conditions [xt1 , yt1 ]
T
∣
∣
t=0

= [x0, y0]
T , and the

second trochoid satisfies the final condition [xt2 , yt2 ]
T
∣
∣
t=t2π

= [xf , yf ]
T .

Remark 3.3.2. Here, we assume that the initial and final conditions given in equations (3.2)-(3.3)

have been re-expressed in the trochoidal frame and denoted as [x0, y0]
T and [xf , yf ]

T .

With the parameter definitions above and referring to Lemma 3.2.2, we seek the path

parameters tA,∈ [0, 2t2π) and tB ∈ (−t2π, t2π]. The necessary conditions can be summa-

rized as follows:

• The velocities at point A and point B must be equal:

(ẋt1(tA), ẏt1(tA))T = (ẋt2(tB), ẏt2(tB))T . (3.26)
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Figure 3.5 The dashed lines show candidate extremal paths from initial state to
final state. The solid lines are the trochoidal segments at the initial and final states
plotted for t ∈ [0, t2π].

• The line segment joining the points PA and PB must be tangent with the velocity

vectors at both points:

tan(α) =
yt2(tB) − yt1(tA)

xt2(tB) − xt1(tA)
(3.27)

=
ẏt2(tB)

ẋt2(tB)
=
ẏt1(tA)

ẋt1(tA)
. (3.28)

• The path parameters must satisfy

tA ∈ [0, 2t2π), tB ∈ (−t2π, t2π]. (3.29)

Remark 3.3.3. For the case in which there is no wind (Vw = 0), one only needs to consider

tA, tB ∈ [0, t2π], since t2π is the time it takes for the UAV to arrive back to its starting point. As

shown in 3.3.3, this is not the case if winds are present.
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Condition (3.26) is equivalent to the condition

δ1ωtA + φt1 = δ2ωtB + φt2 + 2kπ, k ∈ Z,

where Z is the set of real integers, and we can express tB as a function of tA:

tB =
δ1
δ2
tA +

φt1 − φt2 + 2kπ

δ2ω
, k ∈ Z. (3.30)

Substituting equation (3.65) into equation (3.27) we get

tan(α) =
(yt20 − yt10) + δ2−δ1

δ1δ2ω
Va cos (δ1ωtA + φt1)

δ1−δ2
δ1δ2ω

Va sin (δ1ωtA + φt1) + (xt20 − xt10) + Vw

((
δ1
δ2
− 1
)

tA +
φt1

−φt2
+2kπ

δ2ω

) . (3.31)

Because of condition (3.28), the tangent slope can also be expressed as

tan(α) =
Va sin(δ1ωtA + φt1)

Va cos(δ1ωtA + φt1) + Vw
.

Rearranging and using the identity sin2 α + cos2 α = 1, one gets the following implicit

equation for tA:

E cos(δ1ωtA + φt1) + F sin(δ1ωtA + φt1) = G, (3.32)

where

E = Va

(

Vw
δ1 − δ2
δ1δ2ω

− (yt20 − yt10)

)

(3.33)

F = Va

(

(xt20 − xt10) + Vw

(

tA

(
δ1
δ2

− 1

)

+
φt1 − φt2 + 2kπ

δ2ω

))

(3.34)

G = Vw(yt20 − yt10) +
V 2
a (δ2 − δ1)

δ1δ2ω
. (3.35)

Equation (3.32) has one unknown: tA. Having found tA, one may calculate tB using (3.65).

Since (3.32) is transcendental, tA must be found numerically, in general. However, the

problem is significantly simplified if one assumes that

sign(δ1) = sign(δ2),

that is, that the two trochoids have the same sense.
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3.3.1 Closed-form Solution for LSL and RSR Trajectories

In the case that sign(δ1) = sign(δ2), the expression for tB in (3.65) becomes

tB = tA +
φt1 − φt2 + 2kπ

δ2ω
, k ∈ Z. (3.36)

Then equation (3.31) can be written as

tan(α) =
− Va

δ2ω
sin(δ2ωtB + φt2) + yt20 −

(

− Va

δ1ω
sin(δ1ωtA + φt1) + yt10

)

Va

δ2ω
sin(δ2ωtB + φt2) + yt20 + VwtB −

(
Va

δ1ω
sin(δ1ωtA + φt1) + yt10 + VwtA

)

=
yt20 − yt10

xt20 − xt10 + Vw
φt1

−φt2
+2kπ

δ2ω

,

where k ∈ Z. Using equation (3.26), one obtains the following simplified form of equa-

tion (3.32):

Va tan(α) cos(δ1ωtA + φt1) − Va sin(δ1ωtA + φt1) = −Vw tan(α). (3.37)

To solve equation (3.37) for tA, note that it can also be written in the form

− Va
cosα

sin(β − α) = −Vw tan(α)

where β = δ1ωtA+φt1 , and where we used the identity sin(β−α) = sin β cosα−cos β sinα.

Solving the equation above for β gives

β = sin−1

(
Vw
Va

sin(α)

)

+ α.

Substituting back into the previous definition for β, with ω = 2π
t2π

, gives

tA =
t2π
δ12π

[

sin−1

(
Vw
Va

sin(α)

)

+ α− φt1 + 2mπ

]

, m ∈ Z. (3.38)

Using equation (3.36) one may also find tB:

tB = tA +
φt1 − φt2 + 2kπ

δ2ω
, k ∈ Z. (3.39)
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Figure 3.6 Candidate extremals for Vw = 0. The figure illustrates how tA is ob-
tained by scaling t2π with α

2π
∈ [0, 1]. In the above case α = π

2
. When turning

“left,” δ1 = −1, so tA = −1
4
t2π ≡ 3

4
t2π.

Example 3.3.4. To better understand the result above, consider a simple case in which there is no

wind (Vw = 0). Consider the following initial and final conditions

xN0
= 0, yE0

= 0, ψ0 = 0,

xNf
= 0, yEf

= 200, ψf = π.

Take k = m = 0 so that tA = t2π
[0+α+0]

2π
. (The meaning of the integers k and m will be discussed

presently.) The parameter α is the slope of the tangent line connecting the two trochoids, and is

measured from the same axis as the heading angle. In this example the value of α is π/2 for both

the LSL and RSR extremals, as shown in Figure 3.6. One interpretation of equation (3.38) is that

tA is obtained by scaling t2π with α
2π

∈ [0, 1]. In Figure 3.6, the RSR solution is then a “quarter

turn” to the right, tA = 1
4
t2π, followed by a straight segment, followed by another quarter turn to

the right. (Note that tB = 3
4
t2π; recall that we measure the path parameter for the second trochoidal

segment backward from this segment’s end time at t2π.)
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Figure 3.7 The effect of m ∈ Z is a parallel shift with respect to the feasible so-
lution. The effect of k ∈ Z is a variety of different tangent lines connecting the
initial and final trochoids.

Selecting “m” and “k”.

Solutions for different values m ∈ Z correspond to parallel shifts of the path correspond-

ing to m = 0; see Figure 3.7(a). By equation (3.38), however, it is easy to see that there

are only two values of m, for which tA ∈ [0, 2t2π). It is convenient to take tA from equa-

tion (3.38) modulo t2π to obtain one of the solutions, call it tA1
; the other solution is then

tA2
= tA1

+ t2π. Consequently, we only consider m = 0.

The value of k affects the tangent angle α:

α = tan−1

(

yt20 − yt10

xt20 − xt10 + Vw
φt1

−φt2
+2kπ

δ2ω

)

, k ∈ Z.

This results in different solutions that connect the initial trochoid with a “different loop”

of the final trochoid; see Figure 3.7(b). Assuming that φt1 − φt2 is taken modulo 2π, it

follows immediately from equation (3.36) that k can only take values in a finite set to

ensure that tB ∈ (−t2π, t2π]. For example, if tA1
∈ [0, t2π), and δ2 = 1, this set is k ∈

{−2,−1, 0, 1}.
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To obtain the most conservative bound on k, first consider δ2 = 1. In an imaginary

worst case, when tA = 2t2π and φt1 − φt2 = 2π, any k < −3 results in tB ≤ −t2π, so

one only needs to consider k ≥ −3. On the other hand, when tA = 0 and φt1 − φt2 = 0,

any k > 1 yields tB > t2π, hence k has to take values in the set k ∈ {−3,−2,−1, 0, 1}.

Similarly, when δ2 = −1, k has to take values in k ∈ {−2,−1, 0, 1, 2}. The number of

solutions that one needs to consider depends on tA, δ2 and φt1 − φt2 . In practice, it would

be unnecessary to check the solutions for every value k ∈ {−3, . . . , 2}. For the sake of

generality, however, and because the solutions are trivial to compute, we consider all six

possibilities in the following proposition.

Proposition 3.3.5. Define the path γ(t), t ∈ [0, T ], such that

γ(t) =






xt1(t)

yt1(t)




 t ∈ [0, tA]

γ(t) =






xt1(tA) + ẋt1(tA)(t− tA)

yt1(tA) + ẏt1(tA)(t− tA)




 t ∈ [tA, tβ]

γ(t) =






xt2(t− tβ + tB)

yt2(t− tβ + tB)




 t ∈ [tβ, T ],

where

tβ = tA +

√

(xt2(tB) − xt1(tA))2 + (yt2(tB) − yt1(tA))2

√

ẋt2(tB)2 + ẏt2(tB)2

T = tβ + (t2π − tB),

and

α = tan−1

(

yt20 − yt10

xt20 − xt10 + Vw
φt1

−φt2
+2kπ

δ2ω

)

,

tA =
t2π
δ12π

[

sin−1

(
Vw
Va

sin(α)

)

+ α− φt1

]

,

tB = tA +
φt1 − φt2 + 2kπ

δ2ω
, k ∈ {−3,−2,−1, 0, 1, 2}.
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The path γ(t) satisfies the necessary conditions for time-optimality. �

Remark 3.3.6. The final path that is selected by the algorithm satisfies the necessary conditions for

optimality; however, one may not conclude optimality, in general, as there are additional extremal

paths to consider – those for which the two trochoidal segments have the opposite sense (LSR

and RSL) and, possibly, the BBB solutions. In the following, numerical root-finding methods are

presented to find these other extremals.

3.3.2 Numerical Solution for LSR and RSL Trajectories

In the previous section a method was presented to find a subset of all possible candidate

extremals (two out of six) in closed form. Returning to equation (3.32), define the function

f(tA) = E cos(δ1ωtA + φt1) + F sin(δ1ωtA + φt1) −G. (3.40)

The objective is to find the values of tA for which f(tA) = 0. The function f(tA)
VaVw

is plotted

in Figure 3.8 for the following boundary conditions and parameters:

xN0
= 0m, yE0

= −200m, ψ0 = 0,

xNf
= 0m, yEf

= 200m, ψf = π

Va = 20m/s, Vw = 5m/s, ψw = 0.

To find the roots of the equation f(tA) = 0, one may use any root-finding technique,

such as the bisection algorithm, or the Newton-Raphson method; here we consider the

latter. Define the mapping

g(tA) = tA − f(tA)

f ′(tA)
,

where

f ′(tA) =
df(tA)

dtA
= −Eδ1ω sin(δ1ωtA+φt1)+Fδ1ω cos(δ1ωtA+φt1)+VaVw

(
δ1
δ2

− 1

)

sin(δ1ωtA+φt1).

(3.41)
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Figure 3.8 The function f(tA)
VaVw

for tA ∈ [−2t2π, 2t2π]. There are several roots for
tA ∈ [0, t2π].

If the initial guess t̂A1
is close enough to the true solution tA, then the map defined by

t̂Ai+1
= g(t̂Ai

), i = 1, 2, ...

is a contraction map. Then, by the Banach fixed-point theorem, the series converges

to tA [47]. As illustrated in Figure 3.8 as an example, there are several possible roots

that one needs to consider. Some of these solutions are infeasible: those for which the

straight segment would join and leave the trochoidal paths in the opposite sense. Al-

though the Newton-Raphson method converges to the root only if the initial condition

is close enough to the true solution, simulations suggest that the algorithm converges

within three to six iterations, on average. Both functions in equations (3.40) and (3.41)

are simple, smooth functions and are easy to compute; it is a simple matter to define a

sufficiently dense grid of initial conditions on the interval tA ∈ [0, 2t2π]. Once a value for

tA is obtained, the corresponding value of tB may be found using equation (3.65). If the
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obtained solution satisfies all the conditions (3.26)-(3.29), then the corresponding path is

a candidate minimum-time trajectory. Results of Monte Carlo simulations are presented

in Section 3.5.

Similarly as in the previous section, the number of possible solutions can be limited

to a finite set to ensure that tB ∈ (−t2π, t2π]. Since δ1/δ2 = −1, we have that (δ1/δ2)tA ∈

(−2t2π, 0]. Assuming that φt1 − φt2 is taken modulo 2π, it follows from equation (3.65)

that k ∈ {−1, 0, 1, 2, 3}. The distinct solutions may be entered into a table, along with

the LSL and RSR paths obtained using the closed-form expression discussed in 3.3.1. In

cases where BBB solutions don’t exist, the true minimum-time solution is selected from

these candidates. Although the approach described above employs a numerical root-

finding algorithm, the simple closed-form expressions and the small number of required

iterations make the run-time predictable and quick; see Section 3.5. The algorithm is quite

suitable for implementation as a real-time UAV path planning method.

This simple numerical routine yields those candidate extremals for which the tro-

choids have opposite sense, i.e. sign(δ1) 6= sign(δ2). In Figure 3.10 candidate minimum-

time BSB solutions are shown for randomly selected initial and final conditions.

3.3.3 Existence of “Unconventional” Extremals

Consider the case in which there is no wind or, equivalently, the problem of finding short-

est paths of bounded curvature in the plane [20, 11, 15]. In the absence of wind, the tro-

choidal segments become circular. In this case, a UAV turning at maximum rate would

arrive back to its original position in exactly time t2π, so it is unnecessary to consider

solutions for which tA, tB /∈ [0, t2π]. Moreover, the following lemma is proved in [15].

Lemma 3.3.7. [15] Denote the angle of intermediate arcs on the circular segments by u and v. A

path RuSRv, or LuSLv, can not be optimal if u+ v > 2π.



3.3 Computing BSB Trajectories 46

The equivalent of this lemma in the case where winds are present would state that for

an optimal path tA+(t2π− tB) ≤ t2π. In other words, the total time spent on both trochoidal

segments must be no greater than t2π for optimality.

Every extremal in the inertial frame has a corresponding air frame equivalent, which is

the UAV path an observer moving with the wind would see. In the air relative frame, the

extremals are composed of circular segments and straight lines. For the purpose of this

section, we call extremals “conventional” if there exists a corresponding minimum-time

“Dubins path” in the air relative frame FA. By “Dubins path” we mean any minimum

arc-length path as described in [20]. It turns out, however, that if Vw 6= 0, then extremals

in the inertial frame may not be Dubins paths in the air relative frame. This is illustrated

by the following example.

Consider the initial and final conditions and parameters

xN0
= 101.3m, yE0

= 297.1m, ψ0 = 2.48,

xNf
= −581.47m, yEf

= 411.29m, ψf = 6.12

Va = 20m/s, Vw = 10m/s, ψw = 4.04 ω = 0.2832.

In Figure 3.9 we can see the resulting LSL and RSR trajectories. For the LSL path

(solid line), there is no solution that would satisfy both tA ∈ [0, t2π] and tB ∈ [0, t2π]. This

is due to the fact that the instantaneous center of the maximum turn rate circle in the air

relative frame moves distance d = Vwt2π in the direction of the wind in time t2π. Thus we

have established the following:

Proposition 3.3.8. There exist initial and final conditions (x0, y0, ψ0), (xf , yf , ψf ), and param-

eter values Va, Vw, ψw, ω, for which some of the candidate extremals fail to satisfy that both

tA ∈ [0, t2π] and tB ∈ [0, t2π].�

An immediate consequence of Proposition 3.3.8 is that if one were to look for minimum-

time paths in the inertial frame by looking for their corresponding minimum-time equiv-
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Figure 3.9 Illustration showing that, for some initial conditions, some of the ex-
tremals fail to satisfy tB ∈ [0, t2π]. In this example tB < 0 for the LSL trajectory.
The figure shows both the inertial path and the air relative path. The circles indi-
cate the position of a “virtual target” [41], traveling upwind with the same speed
as the wind speed, that the aircraft would intercept by flying a minimum-time
path in the air relative frame.

alent in the air relative frame, some of the possible extremals would not be found. Refer-

ring to Figure 3.9, the RSR path would be easily found, but the LSL path would be missed,

as its air frame equivalent is not a Dubins trajectory.

3.4 Computing BBB Trajectories

Similarly to the previous section, we define three trochoids as

xt1(t) =
Va
δ1ω

sin(δ1ωt+ φt1) + Vwt+ xt10 , t ∈ [0, tA] (3.42)

yt1(t) =
−Va
δ1ω

cos(δ1ωt+ φt1) + yt10 (3.43)

xt2(t) =
Va
δ2ω

sin(δ2ωt+ φt2) + Vwt+ xt20 , t ∈ [tA, tB] (3.44)

yt2(t) =
−Va
δ2ω

cos(δ2ωt+ φt2) + yt20 (3.45)
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xt3(t) =
Va
δ3ω

sin(δ3ωt+ φt3) + Vwt+ xt30 , t ∈ [tB, T ] (3.46)

yt3(t) =
−Va
δ3ω

cos(δ3ωt+ φt3) + yt30 , (3.47)

where δi ∈ {−1, 1}, with δ1 = δ3 = −δ2.

Remark 3.4.1. Notice that here the path parameter value is common for all three segments (c.f.

Remark 3.3.1).

The objective is to find the path parameter values tA, tB, T , and the integration con-

stants xti0 , yti0 , φti , such that [xt1 , yt1 , ψt1 ]
T
∣
∣
t=0

= [x0, y0, ψ0]
T , and [xt3 , yt3 , ψt3 ]

T
∣
∣
t=T

=

[xf , yf , ψf ]
T , where ψti = δiωt+ φti .

The problem can be simplified to obtain two transcendental equations for two un-

knowns tA and T . The system of equations can be solved using a numerical root-finding

technique to obtain tA and T . Figure 3.11 shows an example where the minimum-time

solution is a LRL trajectory. The details of the calculation are presented in Appendix A.

3.5 Results

The methods described in the preceding sections were tested in Monte Carlo simulations.

The aircraft air speed was chosen Va = 20 m/s, the wind speed was Vw = 5 m/s, and the

maximum turn rate was ω = 0.2832 rad/s, which corresponds to a maximum bank angle

φMAX = 30◦ for an aircraft in a coordinated turn. The boundary conditions were randomly

selected from uniform distributions over the ranges shown in Table 3.2.

The path planning algorithm was executed for N = 10, 000 randomly selected ini-

tial and final points. The average run-time on a 2.66 GHz CPU was TAVGRUN
= 308 ms

with standard deviation σRUN = 18 ms. The distribution of path types is shown in Ta-

ble 3.3. In the case when only the BSB trajectories are calculated, the run-time is reduced

to TAVGRUN
= 3.2 ms. The grid size for solving (3.40) was Ni = 10 for these simulations
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xN0
yE0

ψ0 ψf ψw R θ

[−500, 500] m [−500, 500] m [0, 2π] [0, 2π] [0, 2π] [−500, 500] m [0, 2π]

Table 3.2 The initial conditions were selected randomly in the ranges shown in
the table. The final point was selected R distance away from the initial point in
the direction defined by θ.

LSL RSR LSR RSL RLR LRL

26% 25% 19.6% 19.9% 4.9% 4.6%

Table 3.3 Distribution of minimum-time path types based on Monte Carlo simu-
lations.

(3.3.2). For the 2D Newton-Raphson method this results to Ni2D
= 10 × 10 = 100 initial

points for the root-finding algorithm, explaining the increased run-time. It is well known

that the BBB Dubins paths in the absence of winds only exist if the distance between initial

and final points satisfies d ≤ 4R0, where R0 is the maximum rate turning radius. Thus, if

it is known that the initial and final points are sufficiently far from each other, one only

needs to consider the BSB paths.

As referenced earlier, Figure 3.10 shows the results for the BSB solutions only, for

randomly selected initial and final conditions. In the figures the initial conditions and

parameters were selected the same way as in the Monte Carlo simulations. The dashed

lines show the candidate extremals for the LSL, RSL, LSR and RSR trajectories, and the

solid line shows the minimum-time path selected among these candidate extremals.

Figure 3.11 shows the results for all possible three-segment extremals. In the example

the initial conditions were selected as x0 = 0 m, y0 = −200 m, ψ0 = 0, xf = 0 m, yf =

−180 m ψf = π, and the parameters used for the path planning algorithm were ω =

0.2832 rad/s, Vw = 5 m/s, Va = 20 m/s. Each figure 3.11(a)- 3.11(f) shows all candidate
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extremals in dashed line. The difference between the figures is that the each has only a

set of extremals highlighted in solid line, corresponding to the RSR, RSL, LSR, LSL, LRL

and RLR trajectories, respectively. In this case the minimum-time trajectory is the one

highlighted with solid line in Figure 3.12, which is a slight initial turn to the left, followed

by a turn to the right, then followed by another turn to the left.
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Figure 3.10 Candidate BSB extremal paths for randomly selected initial and final
states.
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Figure 3.11 Candidate time-optimal paths found by the path planning algorithm
for initial conditions x0 = 0 m, y0 = −200 m, ψ0 = 0, xf = 0 m, yf = −180 m
ψf = π, ω = 0.2832 rad/s, Vw = 5 m/s, Va = 20 m/s. The time-optimal path is LRL
trajectory with tA = 0.6869 s, tB = 17.4451 s and T = 22.4228 s.



3.5 Results 53

300 200 100

150

100

50

0

50

100

Start Endx N

y
E

Figure 3.12 Candidate time-optimal paths found by the path planning algorithm
for initial conditions x0 = 0 m, y0 = −200 m, ψ0 = 0, xf = 0 m, yf = −180 m
ψf = π, ω = 0.2832 rad/s, Vw = 5 m/s, Va = 20 m/s. The time-optimal path is LRL
trajectory with tA = 0.6869 s, tB = 17.4451 s and T = 22.4228 s.



3.6 Path Planning with Turn Rate and Acceleration Bounds 54

3.6 Path Planning with Turn Rate and Acceleration Bounds

In the previous sections a method was described to find minimum-time paths in the

plane with bounds on the maximum turn rate and in the presence of uniform winds.

The path-planning method yields trajectories that are composed of either straight lines or

trochoidal segments. The transition points where these trajectories are smoothly joined

together, however, correspond to points where the path curvature is discontinuous. At

these points the vehicles need to change the rate of turn instantaneously, which is only

possible for wheeled mobile robots that can stop, re-orient their wheels, and continue the

turn in the new orientation. If the transition from zero turn rate to maximum turn rate

takes place quickly compared to the duration of the complete turn, then the transition

can be neglected. In that case the assumption that the desired turn rate can be instantly

achieved is reasonable. However, if that is not the case, one needs to take into account

the additional turn rate dynamics explicitly from the modeling phase. We are looking for

feasible trajectories that have continuous curvature profile and bring the vehicle from its

initial state to its final state in minimum time.

To allow ground robots to continue turning without stopping, continuous-curvature

path planning was studied in [12]. It was shown that the extremal paths contain clothoid

curves, i.e. curves that have linearly changing curvature profile, and straight segments.

Later it was shown that these extremal paths may be composed, in general, of an infi-

nite number of such pieces [34]. In [59], a simple path planning method is presented that

exploits the geometrical symmetry of the optimal paths. The solutions can be found an-

alytically, and they may be composed of clothoids, circular arcs, and straight segments,

generalizing Dubins trajectories to the case where turn acceleration bounds are present.

Because of the anticipated complexity of finding all extremal solutions, the search for op-

timal trajectories is confined to a finite set. The proposed paths are referred to as Simple



3.6 Path Planning with Turn Rate and Acceleration Bounds 55

Continuous-Curvature (SCC) paths. The algorithm essentially finds the points where the

clothoids, circular arcs, and straight paths may be smoothly joined together, forming a

feasible, continuous-curvature path. The difficulty of working with clothoid curves, for

which no explicit analytical expression exists, is relaxed by the observation that the re-

sulting paths are symmetric with respect to a characteristic line. Finding the points where

clothoid curves, circles, and straight lines may be smoothly stitched together has been

extensively studied in the past in the context of highway engineering [44, 45] and com-

puter graphics [46]. Clothoid curves have the property that the curvature changes linearly

along the path, and so does the lateral acceleration experienced by a car or train traveling

along such a curve. In highway engineering, such curves are often referred to as transition

spirals [26].

3.6.1 Vehicle Model

Similarly as in (3.1), we use a simple particle model for the UAV, described by the equa-

tions

ẋ(t) = Va cosψ(t) + Vw (3.48)

ẏ(t) = Va sinψ(t) (3.49)

ψ̇(t) = αφ(t) (3.50)

φ̇(t) = u(t) (3.51)

Here [x(t), y(t)]T denote the inertial coordinates of the aircraft, ψ(t) is the heading an-

gle measured from the x-axis, Va is the constant airspeed, and Vw is the constant wind

speed, which can be assumed to be aligned with the inertial x-axis without loss of gener-

ality.

The model described by equations (3.48)-(3.51) was selected to capture the fact that

the turn rate of the vehicle cannot change instantaneously. In steady turning flight, the
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heading rate of change can be expressed as a function of bank angle φ(t), as

ψ̇(t) =
g

Va
tanφ(t)

In typical aircraft operations, where the bank angle is small (φ(t) < 30◦), we can approxi-

mate the above relationship with the simple expression ψ̇(t) ≈ (g/Va)φ(t) = αφ(t). Hence

in equations (3.48)-(3.51) one can identify φ(t) with the aircraft bank angle. The rate of the

bank angle is the control input. The aircraft lateral dynamics are primarily affected by the

ailerons, which are differentially operated control surfaces on the wings. A small deflec-

tion of the ailerons results in a torque about the aircraft longitudinal axis, and ultimately

in an angular acceleration about the same axis. In addition to the limitations imposed by

the aircraft dynamics and actuator limits, the rate of the bank angle is also constrained

by structural limits on the maximum allowable loads on the wings. The control signal is

thus constrained to a compact set u ∈ [−ū, ū].

Considering bang-bang and singular solutions only, we constrain the control signal to

the set u ∈ {−ū, 0, ū}. There are two cases to consider. The total time it takes to complete

a turn will be denoted as t̄ in both cases.

Case 1: The maximum bank angle is reached. In this case the turn rate is saturated, and

the aircraft will continue its maximum constant rate turn for a certain time. After that, the

bank angle is decreased until the aircraft reaches straight and level flight again. The turn

is initiated by a maximum bank angle rate turn

φ(t) = ūt

The maximum bank angle is reached at time t1 = φ̄/ū > 0. The bank angle for the entire

turn can be written as

φ(t) =







ūt, t ∈ [0, t1]

ūt1, t ∈ [t1, t̄− t1]

−ū(t− t̄), t ∈ [t̄− t1, t̄]

(3.52)
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Figure 3.13 Bank angle and heading angle for two different cases of turns. In Case
1 the maximum bank angle is reached, while in Case 2 the maximum bank angle
φ̄ is not reached.

The heading angle is then

ψ(t) =







αū t
2

2
+ ψ0, t ∈ [0, t1]

αūt1t+ ψ0 + C1, t ∈ [t1, t̄− t1]

αū(tt̄− t2

2
) + ψ0 + C2, t ∈ [t̄− t1, t̄]

(3.53)

The constants can be easily found from continuity conditions at t = t1 and t = t̄− t1:

C1 = −αūt
2
1

2

C2 = −αū
2

(
2t21 + t̄2 − 2t̄t1

)
.

At the end of the turn, t = t̄, the heading angle is given by the following expression

ψ(t̄) = −αūt21 + ψ0 + αūt1t̄. (3.54)

Case 2: The maximum bank angle is not reached. That is, the aircraft will initiate a maxi-

mum bank rate turn, and before the maximum bank angle is reached, it will start to come
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back to straight and level flight again. The bank angle for the entire turn can be written

as

φ(t) =







ūt, t ∈ [0, t̄/2]

−ū(t− t̄), t ∈ [t̄/2, t̄]
(3.55)

The heading angle is then

ψ(t) =







αū t
2

2
+ ψ0, t ∈ [0, t̄/2]

αū(tt̄− t2

2
) + ψ0 + C, t ∈ [t̄/2, t̄]

(3.56)

The constant C can be easily found from the continuity condition at t = t̄/2:

C = −αū t̄
2

4

The different cases are illustrated in Figure 3.13, where the time histories for bank

angle and heading angle are shown for a Case 1 and a Case 2 turn.

3.6.2 Path Planning

Similarly as before, we seek the solutions in terms of switching points, where the initial

and final turns may be smoothly connected with a straight path. The point where the

vehicle leaves the initial turn on the straight segment will be denoted as PA, and the point

where it starts the final turn will be denoted PB . The path parameters at these points will

be denoted as tA and tB . Consider two paths in the plane, corresponding to the initial and

final turns, and defined by the equations

x1(t) =

∫ t

0

Va cosψ1(τ) + Vwdτ (3.57)

y1(t) =

∫ t

0

Va sinψ1(τ)dτ (3.58)

x2(t) =

∫ t

0

Va cosψ2(τ) + Vwdτ (3.59)

y2(t) =

∫ t

0

Va sinψ2(τ)dτ (3.60)
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Remark 3.6.1. As before, we use the same symbol, t, as the path parameter for both curves (c.f.

Remark 3.3.1).

The paths have to satisfy the following conditions:

[x1(0), y1(0)]T = [x0, y0]
T

[x2(0), y2(0)]T = [xf , yf ]
T

Note that in this setting the second turn starts at path parameter t = 0, and the param-

eter value tB < 0 corresponds to a configuration reached by integration in reverse time.

With no bounds on the turn-acceleration, equations (3.57)-(3.60) could be integrated to ob-

tain analytical expressions for the paths corresponding to trochoid curves [70] [71]. The

chief complication in the path planning problem presented in this work is that there are

no closed-form solutions to the above integrals with the turn rate signals given in Sec-

tion 3.6.1. In the air-relative frame the transition curves between straight segments and

maximum turn rate segments are clothoid curves (also known as Cornu spirals or Euler

spirals). When Vw = 0, equations (3.57)-(3.60) are special forms of the Fresnal-integrals [2],

for which no analytical expressions exist. The points [x1(tA), y1(tA)]T and [x2(tB), y2(tB)]T

have to be found by numerical integration.

Since the path connecting points PA and PB is a straight line, the heading angles have

to satisfy the continuity equation:

ψ1(tA) = ψ2(tB) + 2kπ, k ∈ Z, (3.61)

where Z is the set of real integers.

In what follows, we consider four different types of trajectories. Type 1 trajectories are

those for which both the initial and final turns are Case 1 turns, i.e. the maximum bank

angle is reached. Type 2 trajectories are those for which both the initial and final turns are

Case 2 turns, i.e. the maximum bank angle is not reached. Type 3 (Type 4) trajectories are
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those for which the first (second) turn is Case 1, and the second (first) turn is Case 2. We

will present the analysis results only for Type 1 and Type 2 paths; the other two types can

be computed in a similar fashion.

In both cases the objective is to find the straight path that connects points PA and PB .

At these two points the following additional continuity equations must be satisfied:

• The velocities at point PA and point PB must be equal:

(ẋ1(tA), ẏ1(tA))T = (ẋ2(tB), ẏ2(tB))T . (3.62)

• The line segment joining the points PA and PB must be tangent with the velocity

vectors at both points:

tan(α) =
y2(tB) − y1(tA)

x2(tB) − x1(tA)
(3.63)

tan(α) =
ẏ2(tB)

ẋ2(tB)
=
ẏ1(tA)

ẋ1(tA)
. (3.64)

Type 1 Extremals

In this case both the initial and final turns are Case 1 turns. Substituting t̄ = tA into

equation (3.54), we get the expression

ψ1(tA) = −αδ1ūt21 + ψ10
+ αδ1ūt1tA,

where we have introduced the variable δ1 ∈ {−1, 1} to denote the direction of the turn

(left or right, respectively). Similarly,

ψ2(tB) = αδ2ūt
2
1 + ψ20

+ αδ2ūt1tB.

Notice that the sign of the terms has changed because of integration in reverse time, and

because of the assumption t1 > 0 and tB < 0. From the continuity equation (3.61) we get

the expression

tB = tA
δ1
δ2

+
ψ10

− ψ20

αδ2ūt1
− t1

δ1 + δ2
δ2

+
2kπ

αδ2ūt1
. (3.65)
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Using equations (3.62)-(3.64) one may obtain the following equation

ẏ1(tA)(x2(tB) − x1(tA)) = ẋ1(tA)(y2(tB) − y1(tA)).

Substituting equation (3.65) into the above expression, one obtains a single equation for

tA. This equation has to be solved numerically. In this work we used the bisection algo-

rithm to obtain the root tA. Once tA is known, tB may be found using equation (3.65).

Type 2 Extremals

Substituting t = tA into equation (3.56), we get the expression

ψ1(tA) = αδ1ū
t2A
4

+ ψ10
.

Similarly,

ψ2(tB) = αδ2ū
t2B
4

+ ψ20
.

From the continuity equation (3.61) we get the expression

tB = −
√
∣
∣
∣
∣

4(ψ10
− ψ20

+ 2kπ)

αδ2ū
+
δ1
δ2
t2A

∣
∣
∣
∣
. (3.66)

3.6.3 Results

The path planning method has been implemented for Type 1 and Type 2 trajectories.

Table 3.4 summarizes the parameter values used in the simulations.

Figure 3.14(a) shows the results of the path planning algorithm for a Type 1 trajectory.

The candidate time-optimal path is composed of a right turn followed by a straight path,

then followed by a left turn. Both the initial and final turns are composed of three distinct

segments: (1) a maximum acceleration turn until the maximum bank angle is reached; (2)

followed by a maximum bank angle segment; (3) followed by a maximum acceleration

turn bringing the aircraft back to straight and level flight. Figure 3.14(b) shows the time

histories of the bank angle and the heading angle during the complete maneuver.
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Parameter Value

Va 20 m/s

Vw 5 m/s

ū 0.3 rad/s

α 0.4905 1/s

φ̄ 30◦

Table 3.4 Parameters used in simulations.

Similarly, Figure 3.15(a) shows an example where the candidate time-optimal path is

a Type 2 trajectory. The turns are composed of segments where the maximum bank angle

is not reached (see Figure 3.15(b)). Figure 3.16 shows all four candidate extremals. In this

particular example all four extremals are Type 1 trajectories.
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(b) Time histories of φ(t) and ψ(t).

Figure 3.14 A Type 1 maneuver. In this case both the initial and final turns are
saturated, i.e. the maximum bank angle is reached.
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(b) Time histories of φ(t) and ψ(t).

Figure 3.15 A Type 2 maneuver. Both the initial and final turns are completed
without reaching the maximum bank angle.
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Figure 3.16 Figure showing all four extremal paths. The candidate minimum-
time trajectory is a Type 1 right turn followed by a straight line followed by a
Type 1 left turn.



Chapter 4

Control-Volume Sampling

In this section a specific environmental sampling framework is presented that can be

used to estimate the rate of release of some atmospheric constituent (particles, sporan-

gia, volatile organic compounds, etc.) inside a certain region. In aerobiological sampling

experiments, for example, it is very important to know the source strength, Q (number

of sporangia/m2/s), of the pathogen. (Also see Section 1.1.) The measurements collected

using sporangia sampler devices may be biased by the presence of the “background dis-

ease:” sporangia of the same pathogen that were generated at remote locations indepen-

dently from the field experiments. Such sporangia can be transferred to the location of

the experimental fields by atmospheric transport. To obtain an accurate estimate of the

source strength,Q, a control-volume sampling technique is presented that can be performed

by UAVs equipped with onboard sporangia sampling devices. The discussion focuses on

aerobiological sampling, but the methods may also be used to assess the strength of other

aerial or underwater constituent sources.

Consider the problem of quantifying the rate of release, Q, within a closed region; that

is the control-volume. The control-volume equation for the rate of change of an extensive

65
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(a) Illustration of a control-volume in a flow. (b) Particle flow in an aerobiological sampling problem.

Figure 4.1 In the control-volume sampling problem one is interested in assessing
the net rate of outflow across the boundaries of the volume. By continuity, this
equivalently yields the rate of release inside the volume.

(scalar or vector) quantity Q in a fixed volume of interest is [78]

dQ

dt
=

∫∫

CS

dQ

dm
ρ V · dA +

∂

∂t

∫∫∫

CV

dQ

dm
ρ dV

where dQ
dm

represents the intensive value of the quantity (i.e., the quantity per unit mass)

at a point in the control-volume and V represents volume. On the left, the total time-rate-

of-change is determined by physical principles. The first term on the right accounts for

the flow of the quantity across the control surface (the control-volume boundary) and the

second term accounts for the rate of change of the property within the control-volume

(see Figure 4.1(a)). If Q represents mass, for example, the left-hand side is zero and the

equation implies that the rate of increase of mass within the control-volume equals the

net rate of inflow.

Suppose Q represents the number of particles (e.g., plant pathogen sporangia) in the

control-volume. Suppose also that, on the spatial scale of interest, the fluid density re-

mains constant so that dm = ρdV . We may then write a particle continuity equation

∫∫

CS

dQ

dV
V · dA +

∂

∂t

∫∫∫

CV

dQ

dV
dV = 0.
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The first term on the left represents the net flux of particles out of the control-volume

and the second represents the rate at which particles are released within the volume (see

Figure 4.1(b)).

If one could measure the net outflow across the boundaries of the control-volume,

that would, in turn, yield the net rate of release within the control-volume. In the frame-

work described in this section, the outflow across the boundaries of the control-volume

is measured using two UAVs equipped with sporangia-collection devices. The samplers

may be opened in flight so that they are exposed to the incoming airflow to allow the

pathogen sporangia to be caught. Based on the sample time and the measured airspeed,

one may assess the average sporangial concentration. Imagine the closed flight path to be

separated into two equal length portions (e.g. two halves of a circle) with an imaginary

dividing line: one that lies downwind from the source and one that lies upwind from

the source. (See Figure 4.2.) The difference in the average concentration measurements

along these two arcs characterizes the net outflow across the boundaries, or equivalently

the net rate of sporangia release. If the UAVs can be equipped with multiple sampling

devices that can be opened and closed in flight, then the control-volume sampling may

be performed by one vehicle that opens one set of samplers on the downwind sampling

arc and another set of samplers on the upwind arc. However, if only one sampling de-

vice can be fitted onboard the UAVs, then two vehicles are necessary. The vehicles in that

case modulate their sampling activity such that one of the vehicles samples upwind of

the source and the other vehicle samples downwind of the source.

When the vehicles are not sampling, they re-initialize to begin the next sampling leg.

Since the vehicles are not sampling during this period, they should re-initialize as quickly

as possible to save time and fuel, increasing the total volume of air that is sampled. The

idea is illustrated in Figure 4.2, where the semi-circular sampling arcs and connecting re-

initialization paths are shown for both vehicles. The path planning algorithm of Chapter 3
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Figure 4.2 Two UAVs flying in the control-volume sampling mission. UAV1
(UAV2) samples only during the upwind (downwind) path segment. The end-
points of the sampling arc are connected with a time-optimal path discussed in
Chapter 3.

yields the minimum-time trajectories for optimal re-initialization (see also [71, 69]). We

refer to the closed, convex curve that results as a D-curve due to its shape.

We note that the re-initialization interval assumes maximum control effort (maximum

turn-rate), which constrains one’s ability to enforce convergence to the path. In practice,

the re-initialization path is generated with an artificial turn-rate limit that is strictly less

than the true maximum turn-rate. This ensures that the UAV is able to track the desired

path even in the presence of disturbances.

In order to ensure consistent sampling, the vehicles need to coordinate their motion

such that they are properly phased along the sampling orbits. In Section 4.1 we formulate
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the coordinated control problem and present a literature review on vehicle coordination.

In Section 7.1, the particle motion model and convex curves are described. In Section 4.3,

we consider coordination of particle formations along closed, convex curves in the pres-

ence of a steady, uniform wind. In the motion-coordination framework, the closed curves

must be strictly convex. Since time-optimal paths may contain straight segments, an algo-

rithm is devised in Section 4.4 that approximates a linear segment of an otherwise strictly

convex path with a circular arc to arbitrary precision. The parametrization of the D-curves

is presented in Section 4.5. In Section 4.6, we describe the solution and simulation re-

sults of the control-volume sampling problem. Although the methods were developed

for UAVs that are to be used for aerobiological sampling applications, the framework is

applicable to other vehicle-coordination tasks where the constant-speed particle model

is applicable. Such an application example is the coordinated perimeter patrol problem,

where a group of UAVs is tasked with patrolling a base perimeter: a topic discussed in

Chapter 6.

The coordination method employed for this problem was based on previous research

results on particle synchronization [60]. More recently, the particle synchronization method

was extended to allow synchronization on general convex curves [51] and synchroniza-

tion in winds [53]. The methods presented in this work are outcomes of a collaborative

research and have been published in [69], [54] and [68]. The contribution to the field was

the application of particle coordination theory to specific problems, such as UAV coor-

dination on D-Curves, and the development of the approximation method discussed in

Section 4.4.
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4.1 Coordinated Control in Aerobiological Sampling

We consider the problem of motion coordination in the presence of steady, uniform winds.

Planar control laws are presented that drive the vehicles to orbits around strictly convex

curves such that the vehicles are equally spaced in time. The curves contain near time-

optimal segments, corresponding to the minimum-time re-initialization paths. The meth-

ods directly extend from previous research results on particle coordination. The papers

most relevant to this work include [60], in which Lyapunov-based control laws are pro-

vided to drive a collective of vehicles to a symmetric distribution along a circular orbit.

The results are extended to allow coordination on convex curves [51], and coordination in

the presence of winds [53] [50]. Although we focus on the case of all-to-all communication

here, the entire framework extends directly to UAV networks in which communication is

time-varying and/or directed [61].

We use a simple particle model to describe the motion of UAVs as unit speed (relative

to the air) vehicles in the plane. The framework serves as an intermediate level between

the lower-level vehicle control and the higher-level mission planning layer. We assume

that the control signal is the turn rate-of-change, which, in case of a fixed-wing aircraft,

can be controlled by regulating the vehicle bank angle. We assume that the lower level

controller — the autopilot — can execute the desired turn-rate commands. Similar vehicle

models have been frequently used to design kinematic control laws to track targets with

aerial vehicles; see [56] [58] [24] for example.

Here we consider the temporal coordination of multiple identical flight vehicles (e.g.,

UAVs) along convex curves in a steady, uniform current or wind. We focus on coordi-

nation along D-curves, but the methods can be used for arbitrary convex curves in the

plane.
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4.2 Modeling

4.2.1 Particle Motion in an External Flow

We use a particle model to describe the motion of UAVs in ambient winds, similarly as

in [60] [30]. To ensure forward progress of each particle in inertial space, we assume that

the ambient flow speed is strictly less than the air speed of the vehicles, i.e., Vw < Va,

where Vw is the external flow speed and Va is the air speed. Identifying the complex plane

with the plane of motion, C ∼ R
2, we express the position of each particle by the vector

rk = xk + iyk, and the flow-relative velocity of each particle by eiψk , where ψk ∈ S1 is the

orientation of the flow-relative velocity. Without loss of generality, we assume that the

ambient flow is aligned with the real axis so that the equations of motion are

ṙk = Vae
iψk + Vw

ψ̇k = uk.
(4.1)

Here uk is the turn-rate control signal for the kth particle and Vw ∈ R. It is convenient to

express the equations in terms of the inertial speed and course angle, as opposed to the

air-relative speed and heading angle. Following [53] we define the course angle as

χk = arctan

(
Va sinψk

Va cosψk + Vw

)

.

Using this definition one can obtain expressions for the inertial speed and course rate of

change as follows [53]

Vgk
= Vw cosχk +

√

V 2
a − V 2

w sin2 χk

χ̇k =
V 2
a + Vw(Vgk

cosχk − Vw)

V 2
gk

ψ̇k , νk.

Then equation (4.1) can be written as

ṙk = Vgk
eiχk

χ̇k = νk.
(4.2)
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Equation (4.2) will be the model used in the following sections. Notice that, after the

change of coordinates, the inertial speed of the particles is heading-dependent, and the

new control signal is the course rate-of-change as opposed to the heading rate-of-change.

In practice, the control uk is calculated from νk. Note the mapping νk 7→ uk is invertible

under the assumption Vw < Va, which implies Vgk
> 0 [53].

4.2.2 Curve Model

Circle If νk = ω0Vgk
, ω0 6= 0, particle k orbits a circle with radius |ω0|−1 and fixed center

ck = rk + ω−1
0 ieiχk , (4.3)

since, along solutions of (4.2),

ċk = (Vgk
− ω−1

0 νk)e
iχk ≡ 0. (4.4)

Convex loop If νk = κkVgk
, where κk = κ(χk) 6= 0 is the curvature of a strictly convex

loop C, then particle k orbits C and the center ck of C is fixed.1 Let ρk = ρ(φ(χk)) = rk−ck,

where ρ : φ 7→ ρ(φ) and φ : χk 7→ φ(χk) are smooth maps. If the inertial velocity of particle

k is tangent to C, then [51]

eiχk =

∣
∣
∣
∣

dρ

dφ

∣
∣
∣
∣

−1
dρ

dφ
, (4.5)

and

κ(χk) =
dχk
dσ

, (4.6)

where

σ(φ) =

∫ φ

0

∣
∣
∣
∣

dρ

dφ̄
(φ̄)

∣
∣
∣
∣
dφ̄ (4.7)

1The center of the convex curve can be, in general, any fixed point inside the region enclosed by the curve

that stays fixed with respect to the curve. For common geometrical shapes, such as circles and ellipses,

analytical expression exists between the curve center and a point on the curve. (Also see [51].)
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is arc length. Using (4.5)–(4.7), we find

κ−1
k =

dσ

dχk
=
dσ

dφ

dφ

dχk
=

∣
∣
∣
∣

dρ

dφ

∣
∣
∣
∣

dφ

dχk
(4.8)

and

dρ

dχk
=
dρ

dφ

dφ

dχk
= eiχkκ−1

k . (4.9)

Therefore, along solutions of (4.2) with νk = κkVgk
, we have

ċk = ṙk −
dρ

dχk
χ̇k = (Vgk

− κ−1
k νk)e

iχk ≡ 0, (4.10)

that is, the center of the convex loop is fixed in the plane.

4.3 Particle Motion Coordination

4.3.1 Decoupled Curve Control

Lemma 4.3.1. [51] [69] For the model (4.2) with control input

νk = κkVgk
,

particle k travels along the curve C with the curve center fixed in inertial space.

The proof follows immediately from (4.10). (Also see [51].)

4.3.2 Translation Invariant Control

We derive decentralized control laws that drive particle k around a strictly convex loop C

with an arbitrary center c0 fixed in inertial space. Define the potential function

S(r,χ) =
1

2
〈c, Pc〉 ,

where P is [60]

P = diag {1} − 1

N
11T , 1 = [1, . . . , 1]T ∈ R

N
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and c is the vector of curve centers ck. Note that S(r,χ) ≥ 0 and S(r,χ) = 0 if and only if

c = c01, which implies that all the curve centers coincide. The time derivative of S(r,χ)

along the solutions of (4.2) is

Ṡ(r,χ) =
N∑

j=1

〈ċj, Pjc〉 =
N∑

j=1

〈
eiχj , Pjc

〉
(Vgj

− κ−1
j νj), (4.11)

where Pj denotes the jth row of P .

Lemma 4.3.2. [51] [69] The trajectories of the system (4.2) with the control

νk = κk(Vgk
+K0

〈
eiχk , Pkc

〉
) (4.12)

converge to a state where all particles orbit around the strictly convex curve C with a common

center.

Proof: The function S(r,χ) is positive definite in the reduced space of relative curve

centers, and its rate can be computed using (4.11) and control (4.12)

Ṡ(r,χ) = −K0

N∑

j=1

〈
eiχj , Pjc

〉2
.

Ṡ(r,χ) = 0 if and only if
〈
eiχk , Pkc

〉
≡ 0 k = 1, . . . , N

By LaSalle’s invariance principle, all trajectories converge to a set Λ where 〈eiχk , Pkc〉 = 0.

In this set χ̇k = κ−1
k Vgk

and ċk = 0, therefore all solutions in Λ must satisfy Pc = 0. Since

the nullspace of P is the space spanned by 1, c = c01, in order to satisfy the invariance

principle, which is equivalent to the condition that the centers coincide. Application of

Lemma 4.3.1 completes the proof. �

4.3.3 Time-splay Coordination

In this section we extend the control law to enforce convergence to the critical set of a

phase potential, such that the particles are equally separated in time. It is infeasible to
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maintain a constant spatial separation between constant-speed particles moving in an

external flow. The temporal separation is a more appropriate means for spatiotemporal

regulation [53]. Integrating the closed-loop phase dynamics

χ̇k = κkVgk
(4.13)

yields

t =

∫ χk

0

dχ

κ(χ)s(χ)
. (4.14)

The time-phase is [53]

Ψk = Ψ(χk) =
2π

T

∫ χk

0

dχ

κ(χ)s(χ)
, (4.15)

where T > 0 is the period of a single orbit,

T =

∫ 2π

0

dχ

κ(χ)s(χ)
. (4.16)

Along solutions of (4.2) we have

Ψ̇k =
2π

T
(κkVgk

)−1νk. (4.17)

Consider the composite potential

V (r,χ) = S(r,χ) +
T

2π
U(Ψ), (4.18)

where S(r,χ) = (1/2)〈c, Pc〉 and U(Ψ) is a rotationally symmetric phase potential. Rota-

tional symmetry of U implies
∑N

j=1
∂U
∂Ψj

= 0. Along solutions of (4.2) we have

V̇ =
N∑

j=1

〈eiχj , Pjc〉(Vgj
− κ−1

j νj) +
T

2π

∂U

∂Ψj

Ψ̇j

=
N∑

j=1

(

Vgj
〈eiχj , Pjc〉 −

∂U

∂Ψj

)

(1 − (κjVgj
)−1νj). (4.19)

Choosing the control law

νk = κkVgk

(

1 +K

(

Vgk
〈eiχk , Pkc〉 −

∂U

∂Ψk

))

, K > 0, (4.20)
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enforces convergence of all particles to C with a phase arrangement in the critical set of

U .

Theorem 4.3.3. [60] [53] Consider the particle dynamics (4.2) with a smooth rotationally sym-

metric phase potential U(Ψ). The control law (4.20) enforces convergence of solutions to the set

where all particles travel around the same convex curve, and the curve centers stay fixed in inertial

space. The phase arrangement is in the critical set of U(Ψ).

Proof: See [60, Theorem 3].

We coordinate the time-phase on C by choosing U(Ψ) to be an (M,N)-pattern po-

tential [60]. An (M,N)-pattern is a symmetric arrangement of phases consisting of M

clusters uniformly spaced around the curve. In each cluster there are N/M particles. As

an example (M,N) = (2, 4) drives four particles into two clusters of two that are uni-

formly separated along the curve. The (N,N)-pattern is the so-called splay pattern, in

which the time-phases are uniformly separated; we call this the time-splay formation.

4.4 Strictly Convex Approximation of Linear Path Segments

In Chapter 3, a method was presented to find minimum time planar trajectories in a

steady, uniform wind between initial and final states. The minimum-time trajectories can

be used in a variety of important applications, such as finding the optimal re-initialization

paths for UAVs in environmental sampling missions, as discussed presently. In these ap-

plications the minimum-time paths constitute a segment of the closed curve that is to be

tracked. Since the UAV coordination algorithm described in Section 4.3 only considers

strictly convex curves, i.e., curves with nonzero curvature, it is desired to approximate

the straight (zero curvature) segments with curved segments. Here we establish that for

closed convex curves such an approximation is always possible.
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Consider a smooth convex curve parameterized by the parameter t that contains a seg-

ment where the curvature is zero. Consistently with notation in Chapter 3, let us denote

the path parameter where the straight segment begins by tA and the path parameter value

where it ends by tβ . Let us denote the spatial points corresponding to the these values by

η(tA) and η(tβ). The corresponding normal vectors are iη̇(tA) and iη̇(tβ) (see Figure 4.3).

Remark 4.4.1. The normals here are defined to point towards the inside of the convex curve. In

case of clockwise orbits, this corresponds to a positive rotation about the z-axis. If the orbits are

counter-clockwise, the corresponding normals are −iη̇(tA) and −iη̇(tβ).

Then the lines defined by the normal vectors at these points are parallel:

η(tA) +RAiη̇(tA) ‖ η(tβ) +RBiη̇(tβ), (4.21)

for RA, RB ∈ R. Moreover, as shown in the following lemma, for any specified R0 ∈ R

large enough, there exist small parameters tεA and tεβ such that the lines normal to η(tA−tεA)

and η(tβ + tεβ) intersect at a single point

c = η(tA − tεA) +R0iη̇(tA − tεA) = η(tβ + tεβ) +R0iη̇(tB + tεB). (4.22)

Lemma 4.4.2. [69] Consider a smooth, closed, convex curve η(t) ∈ C2, t ∈ [t0, tf ] , η(t0) =

η(tf ), tf = t0 + T that has a zero curvature segment, where

κ(t) = 0, t ∈ (tA, tβ),

for t0 < tA < tβ < tf , and nonzero curvature segments, where

κ(t) 6= 0, t ∈ {[t0, tA], [tβ, tf ]} ,

and the curvature along the curved segments has the same sign. There exists a circle of radius

R0 that is tangent to curve η(t) at points η(tA − tεA) and at η(tβ + tεβ), for some values of tεA ∈

(0, tA − t0], t
ε
β ∈ (0, tf − tB]. The radius R0 can be chosen arbitrarily large.
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c

x

y

Figure 4.3 Approximating the zero curvature segment with a circular arc.

Proof: At the points η(tA) and η(tβ) the normals are parallel by (4.21). Pick small tεA > 0

(leave tεβ = 0) such that the normals intersect at point c, and ||c−η(tβ)|| < ||c−η(tA− tεA)||.

Such a choice is always possible by continuity of η(t) and iη̇(t). Now pick tεβ(t
ε
A) such that

RB(tεβ) = ||c− η(tβ + tεβ)|| ≡ ||c− η(tA − tεA)|| = RA(tεβ) = R0.

Then the points η(tA − tεA), η(tβ + tεβ) and c form an isosceles triangle with c at the corner

of equilateral edges.

To show that such a tεβ = tεβ(t
ε
A) exists, assume that it doesn’t. Define the continuous

function f(tεβ) = RA(tεβ) − RB(tεβ). Since ||c − η(tβ)|| < ||c − η(tA − tεA)||, it follows that

f(0) > 0. By convexity of η(t) there exists a value tεβmax where points c(tεBmax) and η(tA−tεA)

coincide, thus f(tεβmax) = −RB(tεβmax) < 0. By continuity of f(·) there has to be a tεβ ∈

[0, tεβmax] value where f(tεβ) = 0. �

In practice, one specifies a large value of the radius R0 and executes a numerical

root-finding algorithm to determine tεA and the corresponding value tεβ (roots of equa-

tion (4.22)).
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Figure 4.4 Straight portions of closed convex curves can be approximated by cir-
cular arcs to arbitrary precision. The figure on the left shows a curve that was gen-
erated by the path planning algorithm of Chapter 3. The straight segment is then
approximated by circular arcs of radii R0 = 700m, R0 = 1000m and R0 = 2000m,
as shown in the figure on the right. The approximation method is discussed in
Section 4.4.

4.5 Parametrization of D-Curves

Let η(t) ∈ C ∼ R
2 represent a C2 curve parameterized by the path parameter t. A C2

curve in the plane can be uniquely described by specifying its curvature at any instant

along the curve. (Also see Theorem 2.2.10.) The parametrization of the D-curves can be

written as

κ(t) =







V 2
a +Vw(Vg(t) cosχ(t)−Vw)

Vg(t)3
ū t ∈ [0, tA]

0 t ∈ [tA, tβ]

V 2
a +Vw(Vg(t) cosχ(t)−Vw)

Vg(t)3
ū t ∈ [tβ, tC ]

1
R

t ∈ [tC , T ],

(4.23)

where ū is the turn-rate limit used by the path generation algorithm to determine the

time-optimal trajectory, and the inertial speed s(t) and course angle χ(t) implicitly de-

pend on the path parameter (time, in this case). In the above definition, the first and third
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entries correspond to the maximum turn-rate segments, the second entry corresponds to

the straight segment, and the last entry corresponds to a circular segment with radius R.

(Note that turn-rate here refers to the vehicle heading rate, which is constrained by struc-

tural limits, etc., as opposed to course rate, which depends on the ambient flow.) The first

three entries correspond to the time-optimal reset path, and the last entry corresponds to

the sampling interval, where the radius of curvature is held constant for the duration of

a semi-circle. Notice that the time-optimal reset path has a zero curvature segment. To

make the setting amenable to the coordination algorithm described in Section 4.3, we will

approximate the zero curvature segment with a circular arc of radius R0 � R. In the limit

as R0 → ∞ we obtain the straight segment. Having done so, the definition of the D-curve

becomes

κ(t) =







V 2
a +Vw(Vg(t) cosχ(t)−Vw)

Vg(t)3
ū t ∈ [0, tA − tεA]

1
R0

t ∈ [tA − tεA, tβ + tεβ]

V 2
a +Vw(Vg(t) cosχ(t)−Vw)

Vg(t)3
ū t ∈ [tβ + tεβ, tC ]

1
R

t ∈ [tC , T ].

(4.24)

4.6 Simulation Results

In the previous section we described the control-volume sampling problem performed

by two autonomous vehicles. In the discussed setting the vehicles are sampling at the

same altitude and ideally begin their sampling turn simultaneously. To ensure this we

employ the coordination technique described in Section 4.3 to properly phase the vehicles.

Notice that in the setting of Section 4.3, the vehicles share the same closed curve, and

in the control-volume sampling problem the curves are different. However, due to the

symmetry in the problem, the time it takes for the vehicles to complete a full period is the

same for the upwind sampler as for the downwind sampler; i.e., T in equation (4.16) is

the same for both vehicles. This will ensure rotational symmetry in the time-phase (4.14).
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Figure 4.5 Simulation results of the time-splay coordination algorithm for
control-volume sampling. Wind speed is Vw = 0.

Initializing t = 0 in equation (4.14) for both vehicles at the instant they start their sampling

interval ensures that the synchronized (M,N) = (1, 2) pattern corresponds to a setting

where both vehicles start and finish their sampling turn at the same time.

Remark 4.6.1. Notice that in this case the (M,N) = (1, 2) pattern corresponds to the splay state,

because the UAVs do not share the same path. Coordination is possible because the time it takes to

complete the orbit is the same for both curves.

The coordination algorithm has been simulated and the results can be seen in Fig-

ures 4.5–4.7. The figures show three different wind speed cases: Vw = 0 m/s, Vw = 5 m/s

and Vw = 15 m/s. In all three cases the UAV air speed was chosen as Va = 20 m/s. Af-

ter convergence the two UAVs are equally separated temporally, and this separation is

conserved during the entire loop.

The results demonstrate that the algorithm is immediately applicable for implementa-
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Figure 4.6 Simulation results of the time-splay coordination algorithm for
control-volume sampling. Wind speed is Vw = 5 m/s from the South.

tion. The desired radius for the sampling mission has been chosen asR = 200 m. The path

has been designed with a maximum steady turn rate ū = 0.2832 rad/s that corresponds to

a bank angle limit of φmax = 30◦ on the aircraft bank angle. Note that this restriction does

not seem to impact the coordinated control results, which do not presently address turn

rate limits.

The above simulations demonstrate the effectiveness of the planar coordination algo-

rithm; however, the control-volume sampling problem is inherently 3-dimensional. If one

were to execute the control-volume sampling in purely planar configuration, one might

miss the sporangia plume even on a downwind sampling arc, depending on the shape

of the plume. In an actual sampling mission it may be beneficial to perform the control-

volume sampling repetitively at multiple altitudes: this way one can perform a “vertical
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Figure 4.7 Simulation results of the time-splay coordination algorithm for
control-volume sampling. Wind speed is Vw = 15 m/s from the South.

scan” of the plume. During the time-optimal re-initialization intervals the UAVs don’t

sample the air, hence this interval can also be used to change the altitude of the vehicles.

Since the time it takes to complete the re-initialization path is the same for both vehicles,

the same vertical rate command nominally takes the vehicles to the same desired altitude.

Figure 4.8 shows simulation results for the 3-dimensional control-volume sampling.

4.7 Hardware-in-the-Loop Simulation

The proposed method has been implemented for real-time execution and tested in hardware-

in-the-loop (HIL) simulations. The motion of the two UAVs was simulated on two sep-

arate PCs that provided simulated sensor and telemetry information to the autopilots.
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Figure 4.8 Coordinated flight of two UAVs in a 3-dimensional control-volume
sampling mission. The UAVs perform a vertical scan of the sporangia plume to
estimate the rate of sporangia generation inside the volume.

The autopilots received the simulated telemetry data and ensured stable wings-level or

equilibrium turning flight. The telemetry information from the autopilot was also shared

with two onboard UAV PC-104 computers over serial RS-232 link. The PC-104 computers

were equipped with wireless mesh networking cards to share relative position and phase

information that was necessary for the coordination algorithm. Based on these data the

PC-104 computers calculated the desired turn-rate commands according to the coordi-

nated control law described by equation (4.20). The turn rate commands were then sent

to the autopilots for execution.

The air speed used in HIL simulations was Va = 20 m/s. The wind speed was Vw =

5 m/s. The minimum-time paths were designed with the assumption that the maximum

bank angle is φmax = 25◦. The radius of the circular sampling path was chosen as R =

500 m. Figure 4.9 shows the simulation results of the control-volume sampling over the

course of a 45-minute sampling mission. Although the UAVs track the desired path and
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Figure 4.9 Hardware-in-the-loop simulation results for the control-volume sam-
pling problem. The figure shows simulation results over the course of a 45 minute
sampling. The bold line shows the last orbit.

coordinate their motion, we can see that the tracking of the desired path is not perfect. The

points connecting the different segments around the path correspond to discontinuities

in the path curvature. At such points the vehicles would need to change their turn rate

instantaneously, which is not possible for fixed-wing aircraft. At these points a slight

overshoot can be observed, which is then compensated by feedback. One way to relax

the problem is to devise the time-optimal paths of desired to track, assuming a slightly

smaller maximum turn-rate bound than the actual true maximum. This leaves room for

the controller to compensate by feedback; however, the resulting minimum-time paths

become sub-optimal compared to the true solution.
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4.8 Summary of the Control-Volume Sampling Method

This chapter described a method to coordinate particle motion on general convex curves

in the presence of constant ambient winds. The coordination algorithm controls an arbi-

trary number of particles to a synchronized state where all particles orbit the same convex

loop such that the temporal separation between them is equal and constant. The closed

convex curves can be composed of any number of arbitrary segments, and, in particu-

lar, they may contain near time-optimal paths where the straight portion is approximated

with a circular arc to arbitrary precision.

In the control-volume sampling problem, two UAVs sample the air around the bound-

aries of a fixed volume to estimate the net rate of outflow of particles across the bound-

aries. The measurements can be used to estimate the rate of release of particles inside

the control-volume. Such measurements are important in aerobiological research to dis-

tinguish the generation rate of pathogenic sporangia within a certain field from the back-

ground presence of the disease. In such a scenario the UAVs can synchronize their motion

to perform consistent sampling during the entire mission and hence ensure that the sam-

ples are not independent.

Although the main motivation of the present work was to enable UAVs with advanced

sensing capability in aerobiological research, the methods are more general and may be

used for other applications as well. The methods are applicable, for example, to a team of

UAVs tasked with coordinated perimeter surveillance. That topic is discussed in Chap-

ter 6.



Chapter 5

Aerobiological Sampling Field

Experiments

The concepts and methods described in this work were greatly motivated by the need

to improve the precision and accuracy of aerobiological data-collection experiments con-

ducted in the lower atmosphere, involving both theoretical and practical challenges. Small

unmanned aerial vehicles have been successfully used in the past to collect aerobiota at

several tens to hundreds of feet above ground level (see for example [63, 62, 6, 5] and

the references therein). Traditionally, these aerial data- collection experiments were per-

formed by remotely piloted vehicles, for which the precision of the sampling flight in

terms of the sampling altitude, airspeed, and flight pattern was entirely dependent on

the skill and experience of the pilot. More recently, the advancements in unmanned aerial

system technologies made it possible to equip small UAVs with autopilots, onboard com-

puters and communication devices, enabling fully autonomous data collection capabil-

ity [17].

The sampling experiments described in this chapter were part of a larger multi-investigator

project that focused on the validation of atmospheric dispersion models used to predict

87
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the motion of P. infestans sporangia in the lower atmosphere. The field experiments were

performed in two consecutive years, 2008 and 2009, and similar experiments are sched-

uled for 2010. During the experiments, a large amount of biological and meteorological

data was collected and entered into a database for later analysis. The experimental meth-

ods described in this chapter were part of this large effort. The main motivation was to

introduce novel methods that could provide additional information content gained from

a sampling flight.

In Section 5.3 we present the results of coordinated control experiments that were

performed in 2008. Coordinating the flight of the UAVs ensures that the samples are

consistent between the flights, so that measurements can be compared with each other. In

Section 5.4 we introduce a method for long-distance aerobiological sampling that employs

a buoyancy-controlled weather balloon to simulate the motion of the sporangia plume

as it is convected with ambient winds. Experimental data that was collected in 2009 is

presented.

5.1 Field Experiments

A potato field covering approximately 1.5 acres of NY118 potatoes was established to pro-

vide a sufficiently large, continuous plant-canopy to serve as the source of inoculum for

the experiments. The field was inoculated with a domestic strain of P. infestans two weeks

prior to the experiments to allow the disease to spread across the potato field. One way

the disease may spread from infected plants to healthy plants is by aerial transport. The

disease (potato late blight) results in the formation of necrotic lesions on potato leaves,

surrounded by sporangia, as shown in Figure 1.1. The sporangia are released into the

atmosphere in the early morning hours and may be picked up by turbulent airflow over

the plant canopy and reach higher altitudes within the planetary boundary layer.
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One goal of the project is to predict the long-distance transport of P. infestans in the

atmosphere. Lagrangian-stochastic (LS) simulation models have been successfully ap-

plied to model the movement of sporangia within meters of infected potato fields [7].

The accuracy of the collected data is crucial in these validation efforts. The sporangia-

concentration estimate, C (number of sporangia/m3), at different altitudes above the

plant canopy is assessed in a two-step process. Since the area source strength, Q (number

of sporangia/m2/s), is crucial in any plume modeling effort, this has to be estimated first.

This step is done by estimating the total number of sporangia in the field at the begin-

ning of the day (standing crop of sporangia) and distributing it according to the diurnal

sporangial release pattern. Sporangia collecting “rotorod-towers” are employed to collect

concentration data at heights 0.5 m, 1 m, and 3 m above the ground. These concentration

measurements can be used to reconcile with the estimated data to obtain a more accu-

rate estimate of Q. The estimate of Q is then used in the simulation models to find the

calculated concentration estimates at different altitudes.

To measure the concentration and viability of sporangia at several tens to hundreds of

meters above ground, UAVs were used that were fitted with sporangia-sampling devices

mounted under the wings. UAVs are able to sample large volumes of air in a relatively

short amount of time [39]. Although millions of sporangia may be released into the air

across a large infected potato field, they may be sparsely distributed at increased distances

and altitudes from the source. Hence, sampling a large volume of air during a sampling

experiment is necessary. The sampling devices onboard the UAVs collect a cumulative

sample across an entire flight that can be later analyzed in the laboratory. As the sample is

essentially the accumulation of sporangia that is collected during a certain time-interval,

it is crucial to have consistent samples during the experiment.

As part of the field trials, three coordinated control experiments were performed at

Virginia Tech’s Kentland Farm in Blacksburg, Virginia August 14-15, 2008. UAV flights
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were coordinated during peak sporangia release (approximately 8 am to 1 pm daily) from

the inoculated potato field. The coordinated sampling was performed by two modified

Sig Rascal 110 model airplanes as described in Section 5.2. The UAVs coordinated their

flight activity to simultaneously collect sporangia of P. infestans in the lower atmosphere

using the orbit controller discussed in Section 5.3.1.

Coordinating the flight of the UAVs ensures that the samples are consistent between

the two flights, so that measurements can be compared with each other. If the flights are

not coordinated, then the measurements are independent (e.g., the sampling conditions

of the UAVs may change from orbit to orbit).

As a result of a transition to new airframes, the 2009 experiment focusing on long-

distance sampling was performed with a new UAV platform, as discussed in 5.2.

5.2 UAV Platforms

The UAVs used in the 2008 coordinated sampling experiments were two modified Sig

Rascal 110 model airplanes. The Sig Rascal is a high-wing, box-fuselage model aircraft

with a wing span of 110 inches. The airframe weighs approximately 14 lbs empty and

can carry an additional 10 lbs of payload. The payload bay of the airplanes was modified

to host an onboard computer and the flight-critical electronics including the autopilot.

These airframes were originally used as the autonomous aerial vehicle platforms in the

Nonlinear Systems Lab (NSL) because they were easily accessible (COTS: commercial-

off-the-shelf), easy to assemble, and the largest almost-ready-to-fly airplanes.

During the coordinated sampling flight experiments, it was found that the Sig Rascal

airframes became dangerously overweight and obsolete. A replacement for the Sig Ras-

cal UAVs became necessary to serve as the workhorse of the NSL’s autonomous aerial

research operations, including aerobiological data collection. The Small Platform for Au-
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(a) (b) (c)

Figure 5.1 Spore sampling devices used onboard UAVs in aerobiological sam-
pling. Figure 5.1(c) shows two UAVs in a synchronized aerobiological sampling
experiment on August 14, 2008.

tonomous Aerial Research Operations (SPAARO) UAV was designed and built in the NSL

by Murtha et. al. [49] with this goal.

The SPAARO UAV’s maximum gross take-off weight is 55 lbs that includes the pay-

load and all the flight-critical electronics. The wingspan of the UAV is b = 12 ft and it has

an aspect ratio of AR = 9. The propulsion source is a 5.7 hp two-stroke gasoline engine

that spins a Zinger 22 × 10 propeller in a pusher configuration.

Payload The payload bay of the airplanes can host a variety of sensors and electronic

components, including the autopilot. The task of the autopilot is to manage single vehicle

control by sending control signals to the control surface servos. Communication with

the ground station can be established through a 900 MHz radio link. The addressing of

each autopilot in the network is implemented using flow control of data streams in which

the ground station polls each avionics unit in a round-robin fashion. The multi-homed
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communication implemented in the avionics allows the autopilot to receive packets from

two sources: the 900 MHz radio link and an RS-232 serial connection. This allows the

autopilot to accept commands for each of its control loops from an onboard computer

that manages higher-level coordination tasks and multi-vehicle communication.

The UAV payload further consists of an onboard PC-104+ computer equipped with

a 2.4 GHz wireless mesh network card for communication between the UAVs and the

ground unit. The computer was a PC-104+ computer EmETX-i701 with an Intel Pentium

4, 1.4 GHz processor with 2 MB L2 cache, and 1 GB DDR SD-RAM. The computer had a

PCMCIA extender board, which was used to host the wireless mesh network card. The

computer serves as a communication gateway between the autopilot and higher-level

mission planning algorithms, such as an algorithm commanding simple GPS waypoints

for example. The wireless mesh network enables quick reconfiguration of the network if a

communication link is temporarily lost. It also features the possibility of communication

between any two network nodes, even if direct link can not be established. Each UAV has

the ability to broadcast its position information on the network using Joint Architecture

for Unmanned Systems (JAUS) interoperable packets through User Datagram Protocol

(UDP). Based on the position information of other UAVs, each UAV can calculate the

necessary commands for coordinating its motion in a decentralized way. The commands

are then sent to the autopilot for execution.

The UAVs carry special spore sampling devices that can be opened and closed while

in flight, as shown in Figure 5.2. When the samplers are opened, the surfaces of the

sample devices are exposed to the ambient airflow allowing spores to be deposited on

them. In the experiments described in this paper, the surface of the samplers was covered

with polycarbonate filter paper coated with 50% glycerol and placed in the center of 1.5%

water agar plates. Figure 5.2(b) shows the samplers in closed and open position.

In the coordinated control experiments the speed commands were sent to the autopi-
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(a) SPAARO UAV. (b) Spore samplers mounted of the side of

the fuselage of a SPAARO UAV.

Figure 5.2 A SPAARO (Small Platform for Autonomous Aerial Research Opera-
tions) UAV developed by Murtha et. al. was used in the experiments [49].

lot through a serial RS-232 link to achieve tracking and coordination, and the altitude

loop command was constant. The UAVs’ flight pattern was circular and centered on the

experimental fields.

In the long-distance sampling experiments the speed command was constant and did

not change during the course of the entire mission. The center of the circular flight path

was always the current position of the weather balloon to ensure that the UAVs stay inside

the spore plume. The GPS coordinates of the balloon were obtained from the onboard

data logger of the weather balloon in real time; the coordinates were then reported to

the autopilots as circular waypoint commands. The altitude command of the UAV was

always the current altitude of the balloon, unless the balloon left a certain domain of

pre-defined safety bounds.

5.3 Coordinated Control Experiments Using Two UAVs

This section describes the coordinated control experiments using two autonomous Sig

Rascal UAVs. For our experiments, coordinated flight patterns were selected to assess the
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Figure 5.3 UAVs traveling along a circular flight pattern. The desired phase sep-
aration θ∗ is achieved by controlling the speed of the vehicles.

vertical (two UAVs operating at different altitudes) and horizontal (two UAVs operating

at the same altitude but with different orbits) distribution of P. infestans sporangia near

the infected potato field. The UAVs shared relative position information through a wire-

less mesh network and coordinated their motion using an orbit controller described in

Section 5.3.1.

5.3.1 Coordinated Control via Speed Modulation

In this section we describe a simple coordination algorithm that uses speed commands

to control the angular separation between two identical UAVs. The algorithm is referred

to as coordination via speed modulation because the synchronized state is achieved by

applying small differential changes in the speed commands of each UAV to allow for

phase synchronization. In this approach we assume that the tracking problem is handled

by the autopilot and both UAVs are on the desired orbit.
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Consider the kinematic model of two UAVs

ẋNk
(t) = vk(t) cosψk(t)

ẏEk
(t) = vk(t) sinψk(t), k = 1, 2 (5.1)

ψ̇k(t) = ν(t)

where xN(t) and yE(t) are the inertial North and East coordinates with respect to some

fixed reference frame, ψ(t) is the heading of the vehicles, and vk(t) is the airspeed. We

assume that the autopilot manages the tracking of a circle of radius R and ensures that

the vehicle stays on the path even in the presence of external disturbances (such as wind

gusts, etc.) Assume that the inertial origin is located in the center of the circle of interest

to track. Let us denote the “phase angle” of the vehicles by

θk(t) = arctan

(
yEk

(t)

xNk
(t)

)

, k = 1, 2, (5.2)

and use a simple particle kinematic model for motion around a circle of radius R (as

tracked by the autopilot):

θ̇k(t) = ωk(t) =
vk(t)

R
.

Define

δθ(t) = θ2(t) − θ1(t) − θ∗, δθ(t) ∈ [−π, π] (5.3)

as the phase error, where θ∗ ∈ [0, π] is the desired phase advantage of UAV2 to UAV1. We

assume that

vk(t) = Va + uk(t), k = 1, 2, (5.4)

where Va is the desired average airspeed and uk is a control signal. Select the control

signal as

uk(t) = K(−1)k sin (δθ(t)) k = 1, 2, (5.5)

where K > 0. Then the phase error dynamics takes the form

δ̇θ(t) = −2K

R
sin(δθ(t)). (5.6)
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Proposition 5.3.1. The origin of the system (5.6), corresponding to the desired phase arrange-

ment, is almost globally asymptotically stable.

Proof: Choose the Lyapunov function candidate

V (t) =
1

2
δθ(t)2 > 0, ∀δθ(t) 6= 0.

The rate of V

V̇ (t) = −2K

R
δθ(t) sin (δθ(t)) ≤ 0, ∀δθ(t) ∈ [−π, π]

is negative semi-definite and it is equal to zero if and only if δθ ∈ {0,−π, π}. Using

Lyapunov’s second method we can conclude that the equilibrium point at the origin,

which corresponds to the desired phase separation, is stable [31, Theorem 4.1]. To con-

clude asymptotic stability we resort to LaSalle’s invariance principle. Since V (t) > 0 and

V̇ (t) < 0, level sets of V (t) define compact, positively invariant sets. Denote such a set

Ω. Then trajectories that start inside Ω will converge to the largest invariant set M con-

tained inside the set E =
{

δθ(t) : V̇ (t) = 0
}

[31]. As we have shown above, this set is

M = {0,−π, π}, thus trajectories converge to one of the two equilibrium points (identi-

fying −π with π, we only have two equilibrium points) for the system. To show that the

equilibrium point δθ(t) = π is unstable, we resort to local stability analysis. The systems

corresponding to the two equilibrium points are

δθ(t) = −2K

R
δθ(t), δθ|equ = 0,

δθ(t) =
2K

R
δθ(t), δθ|equ = π.

Clearly, the system corresponding to the “out of phase” equilibrium point is unstable.

Since the analysis holds in the entire configuration space, excluding the isolated unstable

equilibrium point, convergence to the equilibrium point at the origin is almost globally

asymptotically stable. �

Independently of this research, a similar orbit controller is presented in [24].
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In order to eliminate errors due to slight differences in the calibration of the Pitot tube

readings, an integral channel can be added as follows: Define

ek(t) = (−1)k sin (δθ(t)) k = 1, 2.

Define a “proportional-integral (PI)” control signal for the kth vehicle:

uk(t) = Kpek(t) +Ki

∫ t

0

ek(t)dt, k = 1, 2. (5.7)

The time-scale for achieving the desired speed is governed by the autopilot and the

system parameters and is on the order of seconds. The time-scale for synchronization

is orders of magnitude slower. This time-scale separation allows one to treat the UAV

dynamics and the synchronization dynamics independently, and assume that the desired

velocity can be instantaneously achieved. Proper choice of gains (see also Section 5.3.3)

ensures that the synchronization algorithm does not degrade the autopilot’s inherent sta-

bility.

5.3.2 Processing of Aerobiological Samples from UAVs

Sampling plates were covered and placed in a cooler for transport to the laboratory im-

mediately following the coordinated flights. The filter paper was cut into four pieces in a

bio-safety cabinet, and the exposed surface was placed in direct contact with disinfested

potato leaflets collected from the greenhouse. Two hundred microliters of sterile deion-

ized water was added to the filter paper to encourage zoospore formation and resulting

infection. Cultures were incubated for 3-5 days in the laboratory at ambient room tem-

perature and examined with a microscope to observe symptoms of late blight and signs

of P. infestans.
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(a) (b)

Figure 5.4 Viability test (able to cause disease on greenhouse-grown potatoes) of
Phytophthora infestans sporangia. The filter paper is immediately removed from
the samplers after the sampling flight and transported to the laboratory.

5.3.3 Experimental Results

Three coordinated control experiments were performed on August 14-15, 2008. The first

experiment was conducted on August 14, 2008, 9:30 am EST. The second and third ex-

periments were conducted at 9:30 a.m. and 11:30 a.m. EST on August 15, 2008. Each of

the experiments involved two autonomous UAVs that coordinated their flight by sharing

their position information through the wireless mesh network. In the first two experi-

ments, two UAVs were vertically stacked at two different altitudes (25 m and 45 m AGL)

with identical sampling orbits (radii of 150 m). In the third experiment, two UAVs shared

the same altitude (35 m AGL) with different sampling orbits (radii of 130 m and 160 m).

In all experiments the UAVs used the speed control algorithm described by equa-

tions (5.4) and (5.7) to coordinate their motion along the flight path. The gains for the

speed control algorithm (5.7) were chosen as Kp = 4 and Ki = Kp

80
. The proportional gain

was chosen to increase the velocity of the vehicle by 2 m/s if the vehicle’s phase lag is 30◦.

The integrator was implemented with anti-windup that limits the minimum airspeed at
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Flight Date and Time AGL Alt. Radius Avg. airspeed Sample time

LT5 08/14/08, 9:30 am 43 m 150 m 22.17 m/s 17 min

LT6 08/14/08, 9:30 am 24.7 m 150 m 20.9 m/s 17 min

LT8 08/15/08, 9:30 am 24.9 m 150 m 20.8 m/s 19 min

LT9 08/15/08, 9:30 am 45 m 150 m 22 m/s 19 min

LT10 08/15/08, 11:30 am 40 m 160 m 26 m/s 16 min

LT11 08/15/08, 11:30 am 34.5 m 130 m 19 m/s 16 min

Table 5.1 Summary of the flight experiments conducted during August 14-15,
2008. Viable spores of P. infestans were collected during flights LT5 and LT6.

18 m/s and the maximum airspeed at 25 m/s. For the third experiment, where the UAVs

were following concentric orbits, a different desired average airspeed, Va in (5.7), was

chosen for each UAV. This guaranteed that in nominal flight the UAVs flew with the same

angular rate. The desired angular separation in equation (5.3) was chosen θ∗ = 0. This

corresponds to the UAVs flying with the same phase θ1(t) = θ2(t).

Experiment 1: August 14, 2008, 9:30 a.m. EST

A 3D telemetry plot from the first flight can be seen in Figure 5.5(a). The autopilot holds

the altitude at the desired value with high precision. For the UAV with DGPS autopilot,

the standard deviation for altitude was 0.58 m; for the UAV with regular autopilot, the

standard deviation was 1.33 m. In Figure 5.5(b) we can see the time history of the phase

error δθ(t). After the algorithm starts, the phase error converges to zero.

Experiment 2: August 15, 2008, 9:30 a.m. EST

A 3D telemetry plot from the second flight can be seen in Figure 5.6(a). In Figure 5.6(b) we

can see the time history of the phase error δθ(t). Similarly to the first flight experiment, the
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(b) Phase error.

Figure 5.5 3D position data and phase error for two UAVs in a phase synchro-
nized coordinated control experiment on August 14, 2008, 9:30 a.m. EST. UAV1
(bottom) flying at 25 m AGL; UAV2 (top) flying at 45 m.

UAVs hold the desired altitude with high precision and converge to a phase synchronized

state.

Experiment 3: August 15, 2008, 11:30 a.m. EST

In the third flight the UAVs were flying at the same altitude 35 m AGL. One of them was

flying on a R = 130 m radius circular flight path, while the other one was flying on a

160 m radius. The telemetry plot and phase error history from the experiment can be seen

in Figure 5.7(a) and Figure 5.7(b), respectively.

5.3.4 Collection of Viable Sporangia of P. infestans

Viable (able to cause disease on greenhouse-grown potatoes) sporangia of P. infestans were

recovered from two of the coordinated flights, LT5 and LT6 (Figure 5.4(b)). We did not

recover viable sporangia of P. infestans from the other sampling missions, but ongoing

DNA-based methodologies are currently being optimized in the Schmale laboratory to
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(b) Phase error.

Figure 5.6 3D position data and phase error for two UAVs in a phase synchro-
nized coordinated control experiment on August 15, 2008, 9:30 a.m. EST. UAV1
(bottom) flying at 25 m AGL; UAV2 (top) flying at 45 m.

detect and quantify sporangia of P. infestans from these aerobiological samples.

5.4 Long-distance Sampling Using a Buoyancy-Controlled

Weather Balloon

In the framework described in this section, the purpose is to assess concentrations of P.

infestans sporangia at long distances (0.5 to 1 km) from their source (also see [72]). Due

to the sparse distribution of sporangia at increased distances from the source, it is im-

portant to increase the likelihood of detection by sampling at locations where sporangia

are most likely to be found. To monitor the spread of P. infestans sporangia, we used

a buoyancy-controlled weather balloon to simulate the movement of sporangia in the

lower atmosphere (see Figure 5.8). Due to its inertia the balloon is much less prone to

capture small turbulent fluctuations in the wind speed and direction that otherwise affect

the trace of spores as individual particles, but it is likely to follow the same path that the
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Figure 5.7 Position data and phase error for two UAVs in a phase-synchronized
coordinated control experiment on August 15, 2008, 11:30 a.m. EST. Both UAVs
fly at the same altitude with radii 130 m and 160 m, respectively.

sporangia plume as a continuous medium follows. Thus, the geographical location of the

balloon is expected to indicate a region of the atmosphere containing a high concentration

of sporangia where the UAVs are more likely to capture the pathogen with their onboard

sampling devices than at other locations.

The tracking of the balloon with UAVs can be implemented by commanding the UAVs

to follow a circular flight pattern centered on the current position of the balloon. Assum-

ing that the ambient wind-speed is less than the UAV airspeed ensures that following the

balloon in this way is feasible. In case of a steady uniform ambient wind, the correspond-

ing UAV trajectories are trochoidal paths [57] (c.f. Figures 2.3 and 3.2). A trochoid is a path

that a point P at a distance R from the center of a circle of radius r < R would describe,

as the circle is rolling along a straight line. In the setting where the trochoid curves are

generated by UAVs flying in winds, the radius r is determined by the wind speed, Vw,

and radius R is determined by the air relative speed of the UAVs, Va.



5.4 Long-distance Sampling Using a Buoyancy-Controlled Weather Balloon 103

Weather 

Balloon

Payload

Ballast 

tank

900 MHz

Antenna

(a) Balloon in the lab. (b) Balloon at Kentland Farm.

Figure 5.8 Photograph of the buoyancy-controlled weather balloon used in aero-
biological sampling experiments.

5.4.1 Buoyancy-Controlled Balloon

The purpose of using the weather balloon is to simulate the trace of plant pathogen spo-

rangia in real time as they are being released from the field. The weather balloon is con-

vected in the direction of the wind’s motion with the same speed as the ambient airflow.

The geographical location of the balloon is expected to indicate a region of the at-

mosphere containing sporangia of P. infestans, where the UAVs are more likely to collect

the pathogen spores with their onboard sampling devices than at other locations. To accu-

rately simulate the sporangia trajectories, it is desirable to release the balloon from ground

level at the field; the wind profile changes significantly with height above the ground. It
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(a) (b)

Figure 5.9 SPAARO UAV and the buoyancy-controlled weather balloon.

is also desirable that the balloon doesn’t ascend too rapidly, since then the balloon would

be subject to higher ambient winds much sooner than the majority of spores in the plume

would. Ideally, a neutrally buoyant balloon would simulate individual particle trajecto-

ries the best. To ensure that the balloon does not run aground, however, a small, steady

climb rate is desired.

The weather balloon is a 300 g sounding balloon that can carry a payload of up to 630 g

and has a nominal inflation diameter of 1.6 m. The balloon can be filled with Helium in

order to provide the required lift force that carries the payload into the air (Figure 5.8).

The balloon payload consists of a data logger unit, communication devices and a con-

trol unit to adjust the buoyancy of the balloon, as shown in Figure 5.10. The telemetry

information primarily consists of GPS coordinates, GPS altitude, barometric altitude and

temperature. The telemetry is transmitted over a 900 MHz ISM radio band to a ground

processing unit, where the telemetry data can be logged and visualized on a PC. It is also

possible to relay the position of the balloon to the UAVs. By providing the UAVs with the

current GPS coordinate of the balloon, steady orbit around the balloon can be achieved.

The payload of the balloon further consists of a 72 MHz radio receiver through which

command signals can be received from a ground transmitter. The primary purpose of
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Figure 5.10 Schematic drawing of the balloon payload. The payload mainly con-
sists of the data logger unit, communication devices and buoyancy-control de-
vices.

this channel is to allow remote control of the buoyancy of the balloon. At the bottom of

the payload package, a small water container can be filled with a maximum of 200 ml of

liquid to provide ballast. Opening the valve allows water to pass through at a rate of 1 ml

per second. If the valve is opened, the balloon payload loses weight, and consequently

the balloon will ascend. The neck of the weather balloon is closed with a cylindrical

rubber plug that has a 1/2 inch diameter hole drilled through the middle. In nominal

operation the hole is sealed with a rubber sheet treated with silicon grease to ensure the

Helium does not escape through tiny cuts and scrapes on the rubber surfaces. The rubber

sheet can be lifted by a push-rod that is attached to a servo motor. The larger distance the

pushrod travels, the more Helium can escape. By operating the ballast container valve

and the Helium pressure valve, the balloon net buoyancy can be controlled. For neutral

buoyancy it is required that the buoyant force equals the total weight of the balloon, that

is
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0 = Fb −We −WHe,

where Fb is the weight of the displaced air, WHe is the weight of the Helium gas, and We

is the weight of the equipment that includes the weight of the balloon itself. Ignoring

secondary effects like temperature difference and vertical wind components, the volume

of the balloon can be calculated as

V =
We

g(ρair − ρHe)
.

Since the balloon will be operated close to the ground, the air density can be taken as

ρair = 1.28 kg/m3. Assuming that the density of the Helium gas inside the balloon is

close to the density at atmospheric pressure, ρHe ≈ 0.1786 kg/m3. Taking the mass of the

equipment as me = 0.8 kg and assuming spherical balloon shape, the balloon radius is

r ≈ 0.56 m. Although the above calculation is only approximate, it allows us to estimate

the feasibility of the concept and also the expected balloon size.

5.4.2 Hardware-in-the-Loop Simulation

The concept has been simulated using hardware-in-the-loop (HIL) simulations. The mo-

tion of two UAVs, including full 6-DOF dynamics, was simulated on two separate PCs.

The balloon trajectory was simulated on a third computer and the telemetry information

from the balloon was shared with the UAVs over a wireless mesh network. Based on

the current position of the balloon, the UAVs updated their orbit center to ensure that

they remain in the simulated “plume.” The results of the simulation can be seen in Fig-

ures 5.11–5.12. In the simulation the airspeed of the UAVs was 20m/s and the wind speed

was 2m/s from the West. In that case the direction of the ambient air’s motion is ψw = π/2

measured from the North. To simulate variations in the ambient wind conditions, the
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Figure 5.11 Hardware-in-the-loop simulation of the flight of two UAVs tracking
a weather balloon. The UAVs’ circular flight path is centered on the current po-
sition of the balloon; the corresponding UAV trajectories are trochoid curves. 2-D
plot of the experiments.

wind direction was modified to ψw = π/2 + 0.5 sin(ω0t) + ε, where ω0 = 0.1rad/s and ε is

a zero mean uniform random variable ε ∈ [−0.5, 0.5].

5.4.3 Flight Experiments and Results

The flight test was performed on August 6, 2009 at Virginia Tech’s Kentland Farm. In

the morning hours when the flight test took place, there was a continuous cloud cover,

with a temperature around 75 F. The SPAARO UAV take-off time was at 9:58 a.m., EST,

by which time the weather balloon was already situated at the potato field, ready to be

released. The UAV was immediately sent into orbit around the balloon, while the bal-

loon’s GPS coordinates were shared over the wireless network. The balloon was released

at 10:02 a.m. EST, at which time the bottom set of samplers of the SPAARO were opened,

and the sampling experiment began. The winds were fairly high Vw ≈ 7 m/s, so the

flight was very short: approximately two and a half minutes. At that point the mission
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Figure 5.12 Hardware-in-the-loop simulation of the flight of two UAVs tracking
a weather balloon. The UAVs’ circular flight path is centered on the current po-
sition of the balloon; the corresponding UAV trajectories are trochoid curves. 3-D
plot of the experiments.

was aborted. The planar and 3D telemetry plots of this short sampling flight can be seen

in Figures 5.13–5.14. The quantification of P. infestans sporangia from the sample plates

found that no sporangia were collected during the flight. This can be explained by the

relatively short duration of the sampling flight.

The experiments have been repeated on October 8, 2009 to collect additional telemetry

data. The telemetry plots from the experiments can be seen in Figures 5.15–5.16.
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Figure 5.13 Flight test results from August 6, 2009. The UAV tracked the weather
balloon after the balloon was released from the potato field. 2-D plot of the ex-
periments.
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Figure 5.14 Flight test results from August 6, 2009. The UAV tracked the weather
balloon after the balloon was released from the potato field. 3-D plot of the ex-
periments.
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Figure 5.15 Flight test results from October 8, 2009. 2-D plot of the experiments.
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Figure 5.16 Flight test results from October 8, 2009. 3-D plot of the experiments.



Chapter 6

Coordinated Perimeter-Patrol with

Minimum-Time Alert Response

This chapter describes a perimeter surveillance algorithm that was developed for UAVs

that are tasked with the defense of a military establishment. In previous chapters we

introduced a minimum-time path planning procedure (Chapter 3) and a particle coordi-

nation algorithm (Chapter 4) that can be used to control vehicle formations to perform

aerobiological sampling experiments. The generality of the proposed methods allows

them to be used for other applications where the kinematic vehicle model and the as-

sumption of a constant flow-field are reasonable. Here we consider a team of UAVs that

can carry downward-looking sensors, cameras for example, to monitor the perimeter of a

certain military establishment or base. The role of the UAVs is to detect intrusions along

a certain perimeter that bounds the base and to report these intrusions to the appropriate

authorities. Nominally the UAVs synchronize their motion along a convex path, the base

perimeter, to minimize coverage gaps in space and time. If an intrusion is detected along

the patrol perimeter, the next UAV in line prosecutes the alert by following a minimum-

time path to the intrusion point. The work described in this chapter has been published
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in [54] [68].

6.1 The Perimeter Patrol Problem

Consider a convex perimeter circumscribing a base that must be defended by a collection

of N UAVs [54]. We seek an optimal method for patrolling the perimeter and responding

to intruder alerts along the perimeter, as summarized by the following two objectives:

• In nominal conditions, the UAVs coordinate their motion along the perimeter such

that the visitation rate at any given point along the curve is constant.

• If an intruder is detected, one UAV responds in minimum time, while the remaining

N − 1 UAVs continue to patrol the original perimeter.

When a threat is detected, there is a trade-off between these two objectives. In one

limiting case, the UAVs don’t take any action other than reporting the threat and continu-

ing their original, coordinated flight plan. In this case, only the perimeter-patrol objective

is achieved. Alternatively, one of the UAVs (e.g., the one that detected the threat) might

divert from the perimeter and loiter above the threat. In this case, the number of vehicles

covering the perimeter decreases to N − 1 and gaps in the perimeter coverage increase.

We propose an approach to perimeter surveillance that simultaneously achieves the

two goals. Consider the event in which a threat is detected by one of the UAVs (UAV1) at

point rf ; see Figure 6.1. The alert is reported to the rest of the group, and UAV1 continues

its flight path without diverting to investigate further. The next UAV in sequence (UAV2)

designs a minimum-time flight path from its current location to rf , and diverts from its

original path to reach the threat as quickly as possible.1

1Here we assume that the threat is static, or slowly moving, relative to the intercept time for UAV2. In

an interesting variation, one might incorporate an estimate by UAV1 of the threat’s trajectory and modify

the interception path accordingly.
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Figure 6.1 Conceptual sketch of the time-optimal alert response scenario.

To ensure that the diversion of UAV2 does not disrupt the remaining formation (and

its perimeter surveillance task), the remaining N − 1 UAVs assume that UAV2 is contin-

uing to maintain synchrony, using a virtual-particle representation in the coordination

algorithm. Once the threat is detected again (or the endpoint of the time-optimal trajec-

tory is reached, whichever occurs first), UAV2 returns to the original flight plan. If UAV2

confirms the threat, the next UAV in sequence (UAV3) is tasked to arrive at the intrusion

point in minimum time, and this cycle repeats. A flow-diagram of this can be seen in

Figure 6.2.

Space-time analysis of the base-defense algorithm illustrates how the gaps in perime-

ter coverage are minimized. Figure 6.3(a) illustrates the spatiotemporal coverage of a

convex perimeter achieved by a single UAV in wind. The UAV trajectory is blue; its sen-

sor swath is gray. Since the perimeter is a closed loop, we identify the left and right edges

of the space-time plot. Figure 6.3(b) illustrates the spatiotemporal coverage of a convex

perimeter achieved by three coordinated UAVs in wind. The coverage gaps are mini-

mized by a time-splay formation. Figure 6.3(c) illustrates the minimum-time response of



6.2 Simulation Results 114

Detection alert

Design minimum
time path to the
point of intrusion

Start sending "virtual" 
coordinates for peers

Intruder
found?

Notify peers of 
new intruder 
location

Final point
reached?

YesNo

No

Return to patrol

Yes

Figure 6.2 Flow diagram of the time-optimal alert response scenario.

a three-UAV patrol to a single intruder alert. The minimum-time shortcut appears as a

hop rightward and upward on the space-time projection. Subsequent to prosecuting the

alert, the UAVs return to a time-splay formation.

6.2 Simulation Results

The proposed framework has been tested in simulations. We selected the patrol perimeter

to bound an existing establishment, Wright-Patterson Air Force Base (WPAFB). The base

perimeter was defined by the convex hull of a finite set of waypoints that were selected
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Figure 6.3 Space-time analysis of coordinated perimeter coverage with time-
optimal alert response.

at landmarks around WPAFB. The base perimeter was then patrolled by N = 4 UAVs.

6.2.1 Ellipsoidal Base Perimeter

For this case the wind speed was chosen to be Vw = 5 m/s from the South; the air-

speed of the UAVs was Va = 20 m/s. The initial condition for the UAVs was chosen

such that all UAVs were heading North along a straight line (yEk
= 0, k = 1, ..., N )

when the simulation began. After all UAVs converged to the (M,N) = (6, 6) time-

splay formation, an intrusion alert was simulated outside of the perimeter (at location

[xN , yE]T = [230 m,−200 m]T ), see Figure 6.4(a). After the intrusion was detected, the next

UAV in line left the original patrol perimeter to fly to the intrusion point in minimum time

(which for the present simulation was T = 16.9 s), as illustrated in Figure 6.4(b). While

the UAV was following the minimum-time path to the intrusion location, the virtual co-
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ordinates were shared with the rest of the group to make sure the investigation does not

brake the formation. After the prosecutor UAV reached the intruder location, it started

the synchronization algorithm again (equation (4.20)) to converge back to the formation

(Figure 6.4(c)).

If the prosecutor UAV detected the intrusion again, it would report it to the rest of the

group, and the next UAV in line could then begin to follow the minimum time path to

the new intrusion location. If the intruder is not detected again (which was the case in

the present simulation), the UAVs follow the synchronized perimeter patrol as they did

before the detection event.

6.2.2 Wright-Patterson Air Force Base

The wind speed was chosen to be Vw = 10 m/s from the South; the airspeed of the

UAVs was Va = 20 m/s. Seven points were selected arbitrarily around the “perimeter”

of WPAFB. The points were selected at main road intersections, so that the nominal UAV

paths follow main roads around the base. Each point can be associated with a correspond-

ing heading angle: the direction of a straight line leading to the next point. Time-optimal

trajectories between the corner-points with the defined initial and final headings were de-

signed using the algorithm described in Chapter 3. The resulting closed path is a convex

curve in the plane with maximum rate turns at the curve corners.

The resulting straight segments were then approximated with a circle of radius R0 =

50 km to ensure that the resulting closed curve is strictly convex. Figure 6.5(a) shows a

satellite map of WPAFB with the seven selected GPS coordinates around the base, and

Figure 6.5(b) shows the resulting closed, strictly convex curve in the plane.

In this case the base perimeter was patrolled by N = 4 vehicles. Similarly to the

previous case, an intrusion alert was simulated after all UAVs had converged to the de-

sired time-phase arrangement, (M,N) = (4, 4). The location of the intrusion point was
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Figure 6.4 Simulation of coordinated perimeter coverage with time-optimal alert
response around a general ellipsoidal curve.

at [xN , yE]T = [1300 m,−1250 m]T ), see Figure 6.6(a). After the intrusion was detected,

the next UAV in line left the original patrol perimeter to fly to the intrusion point in mini-

mum time (which for the present simulation was T ≈ 129 s), as illustrated in Figure 6.6(b).

While the UAV was following the minimum-time path to the intrusion location, the vir-

tual coordinates were shared with the rest of the group to make sure the investigation

does not disrupt the formation. After the prosecutor UAV reached the intruder location,

it started the coordination algorithm again (equation (4.20)) to converge back to the for-

mation (Figure 6.6(c)).
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(a) Satellite map of WPAFB.
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(b) Strictly convex curve around WPAFB.

Figure 6.5 Seven points were selected around WPAFB to define a closed convex
curve. The curve then serves as the perimeter to be patrolled by a team of UAVs.
The straight segments are approximated by arcs of circles of radius R0 = 50 km.
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(a) Time-splay coordination. (b) Minimum-time alert response.

(c) Returning to patrol.

Figure 6.6 Simulation of coordinated perimeter coverage with time-optimal alert
response around WPAFB.



Chapter 7

Cross-track Control of an Autonomous

Underwater Vehicle

Autonomous underwater vehicles (AUVs) are unmanned robots that are used for a vari-

ety of applications, including oceanographic measurements, underwater pipeline moni-

toring, surveillance and reconnaissance, and underwater mine detection to name a few.

Temperature and salinity measurements collected using underwater gliders help better

understand large scale motions that take place in the ocean [52]. AUVs can also be em-

ployed to detect and localize pollutant sources [22]. Although the properties and con-

ditions of the medium in which underwater and aerial vehicles operate are very differ-

ent, the physical laws that govern their motion are the same. Both can be categorized as

flight vehicles, as the forces and moments acting on them stem primarily from — other

than gravity — the fluid that surrounds them. For atmospheric flight vehicles, the air-

craft has to generate enough lift using its wings to counter the effect of gravity; buoyant

forces don’t play a role. AUVs, on the other hand, due to the much larger density of

the surrounding medium, experience significant buoyant force. In some applications it

is desired to keep the buoyant force as close to the weight as possible to achieve neutral
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buoyancy. [77].

In this chapter a neutrally buoyant, underactuated AUV is considered that is equipped

with a propeller that provides thrust, and fins that control pitch and yaw moment. By

assumption the vehicle is not actuated in the roll direction. The system is underactuated,

since there are only three control channels for the six degrees of freedom. Although there

is no control channel in the roll direction, we assume that the vehicle is designed such that

the center of gravity is below the center of buoyancy. Such a design provides inherent

system stability in the roll direction. Previous results on directional stabilization [80] are

extended to ensure convergence to a straight line in inertial space [81]: the results of this

chapter have been published in [81]. The stability of the closed-loop system is proved

using Lyapunov’s indirect method. The main contribution to the work described in [81]

— and also presented here — was the stability analysis presented in Proposition 7.3.3,

and the numerical analysis presented in Section 7.4.

7.1 Underwater Vehicle Equations of Motion

The AUV is modeled as a neutrally buoyant, rigid spheroid of mass m. The vehicle is

equipped with a single propulsor, aligned with the axis of symmetry, and with moment

actuators that provide independent control in pitch and yaw. (In Section 7.3, we will

assume that the vehicle can also produce a roll control moment.)

Let the principal axes of the spheroid define a body-fixed reference frame represented

by unit vectors b1, b2, and b3 where b1 is aligned with the axial symmetry axis. Assuming

uniform fluid density, the origin of the body frame is the vehicle’s center of buoyancy

(CB), i.e., the center of mass of the displaced fluid. Let the unit vectors i1, i2, and i3

denote another reference frame, which is fixed in inertial space such that i3 is aligned

with the force due to gravity. The location of the body frame with respect to the inertial
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frame is given by the inertial vector x. The orientation is given by the 3×3 proper rotation

matrix R, which transforms free vectors from the body frame to the inertial frame.

Let v = [u, v, w]T represent the translational velocity and let ω = [p, q, r]T repre-

sent the rotational velocity of the AUV with respect to inertial space, where v and ω are

expressed in the body frame. The kinematic equations are

Ṙ = Rω̂ (7.1)

ẋ = Rv (7.2)

where the character ·̂ denotes the 3 × 3 skew-symmetric matrix satisfying âb = a × b for

vectors a and b.

Let h represent the angular momentum of the body/fluid system about the CB and

let p represent the linear momentum. Let M 11 represent the sum of the rigid body inertia

and added inertia matrices. Let the diagonal matrix M 22 = diag(m1,m2,m3) represent

the sum of the added mass matrix for the spheroid and mI , where I is the 3 × 3 identity

matrix. Assuming that the spheroid is prolate, m1 < m2 = m3. Finally, let the center of

mass (CM) be given by the body vector rcm and define M 12 = mr̂cm. Then





h

p




 =






M 11 M 12

MT
12 M 22











ω

v




 . (7.3)

The dynamic equations are

ḣ = h × ω+p × v+rcm ×mg
(
RT i3

)
+τ v+τ c (7.4)

ṗ = p × ω+fv+f c (7.5)

Note that, while there is no net gravitational force because the vehicle is neutrally buoy-

ant, a gravitational moment appears on the right side of equation (7.4). This “restor-

ing moment” tends to keep the body’s CM below the CB. The terms τ v and fv in equa-

tions (7.4) and (7.5) represent the viscous moment and force, respectively, while τ c and f c
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represent the control moment and force. Because the vehicle’s single thruster is aligned

with the axis of symmetry, one may write f c = Fc b1, where Fc represents the (scalar)

thrust.

The viscous moment and force are assumed to depend only on translational and angu-

lar velocity: τ v(v,ω) and fv(v,ω). Thus, the viscous model assumes quasi-steady flow,

as is standard for air and marine vehicle dynamic models. Even under the quasi-steady

flow assumption, these terms are quite difficult to express analytically unless there are

additional simplifying assumptions (such as small angles of attack and sideslip). Rather

than restrict the model’s validity by assuming explicit functional forms for τ v and fv, one

may consider some general modeling assumptions.

Assumption 7.1.1.

τ v(v,ω) · ω < 0 when ω 6= 0

τ v(v,ω) = 0 when (ω,v) = (0, ub1) ∀ u ∈ R

Assumption 7.1.1 states that the viscous moment opposes angular rate, in general,

and that it vanishes for pure translation along the longitudinal axis. Assumption 7.1.1 de-

fines a very general class of viscous moments, which includes, as a special case, standard

models for angular rate damping.

Somewhat more structure is required for the viscous force model. By definition, drag

opposes vehicle velocity, and lift acts orthogonally to the velocity vector. Considering

axial symmetry, one may assume that the lift force acts in the plane that is determined by

the velocity vector and the vehicle’s longitudinal axis. This assumption fails to capture

out-of-plane forces due to asymmetric fluid flow; however, it is consistent with standard

modeling assumptions. The dependence of fv on ω is also neglected, although this as-

sumption can be relaxed to allow affine dependence on ω.
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Figure 7.1 Hydrodynamic angles for an axisymmetric body.

To express fv(v), define two “hydrodynamic angles.” First, let

µ =

{

arctan
(
v
w

)
v 6= 0 and/or w 6= 0

0 v = w = 0
(7.6)

where the 4-quadrant arctangent is used and −π is identified with π. Rotating the body

frame through the angle µ about the b1 axis defines an intermediate reference frame in

which the velocity vector has components only in the intermediate frame’s “1-3” plane.

The 3-axis component of velocity in this intermediate frame is non-negative. Let

α = arctan

(√
v2 + w2

u

)

(7.7)

where, once again, the 4-quadrant arctangent is used. Note that α ∈ [0, π]. Rotating

through the angle α about the intermediate 2-axis defines a new reference frame in which

the 1-axis is aligned with the velocity vector, as shown in Figure 7.1. In the terminology

of [23], we call this the “current” frame. Let ei represent the ith basis vector for R
3; for

example, e1 = [1, 0, 0]T . The proper rotation matrix

RBC(µ, α) = e−µ
ce1e−α

ce2

=









cosα 0 − sinα

sinµ sinα cosµ sinµ cosα

cosµ sinα − sinµ cosµ cosα









,

transforms free vectors from the current frame to the body frame. The hydrodynamic
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angles α and µ are not the standard angle of attack and sideslip angle; however, the given

definitions are more convenient for this work.

It is common practice to express lift and drag in terms of non-dimensional force coeffi-

cients CL(α) and CD(α). (The parametric dependence of CL and CD on Reynolds number

is neglected here.) To non-dimensionalize the viscous force, define F0(v) as the product

of dynamic pressure and a reference area S:

F0(v) =
1

2
ρ‖v‖2S,

where ρ is the fluid density, which is assumed to be constant.

Assumption 7.1.2.

fv(v) = −F0(v)RBC(µ, α)









CD(α)

0

CL(α)









.

where

• CD(α) is a smooth, even, positive function, and

• CL(α) is a smooth, odd function which is positive (negative) when eiα lies in the first (sec-

ond) quadrant of the complex plane.

For a prolate spheroid, the assumption that CD(α) is even and positive is an empirical

fact, and the properties assumed for CL(α) are consistent with intuition.

Remark 7.1.3. Assumption 7.1.2 is satisfied, for example, by

CD(α) = CD0
+

1

2
CD1

(1 − cos(2α))

CL(α) =
1

2
CLα

sin(2α).
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The positive constants CLα
, CD0

, and CD1
can be approximated using semi-empirical methods, as

in [27] and [28]. Truncating cubic and higher order terms in the Taylor series expansions of these

two expressions gives the standard “small angle” model for the drag and lift coefficient.

The viscous force model we use is quasi-steady, i.e., the force coefficients do not de-

pend on the flow history. In reality, a spheroid moving at a large angle of attack is subject

to complicated, unsteady forces that are not captured by simple models; see [76], for ex-

ample. Such effects are typically ignored in control design with the expectation that well-

designed model-based feedback will provide suitable system performance even when the

model is imperfect.

Remark 7.1.4. Note that α is discontinuous when v = 0 and µ is discontinuous when α = 0.

These discontinuities are an artifact of the parametrization; the viscous force fv is smooth in the

velocity v.

7.2 Directional Stabilization

In [38], Leonard introduced a potential energy shaping method for reduced dimensional

(noncanonical) Hamiltonian control systems and applied the approach to the problem of

stabilizing a fully actuated, bottom-heavy underwater vehicle. Although viscous effects

were neglected in that analysis, a similar approach may be applied to an underactuated

vehicle that is subject to viscous forces and moments. One first recognizes that the dynam-

ics are invariant under translations of the inertial reference frame and rotations about the

direction of gravity. One may then reduce the kinematic and dynamic equations to the
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following form:

ḣ = h × ω + p × v + rcm ×mgζ + τ v + τ c (7.8)

ṗ = p × ω + fv + f c (7.9)

ζ̇ = ζ × ω. (7.10)

In these equations,

ζ = RT i3

is the “tilt vector,” that is, the unit vector in the direction of gravity, expressed in the

body-fixed reference frame. The formal procedure by which the 12-dimensional dynam-

ics are reduced to the system given above is discussed in [37] and [38]. In those papers,

it is shown that, neglecting the control and viscous effects, the dynamic equations are

Hamiltonian:

d

dt









h

p

ζ









=









ĥ p̂ ζ̂

p̂ 0 0

ζ̂ 0 0









∇H

where

H(h,p, ζ) =
1

2






h

p






T 




M 11 M 12

MT
12 M 22


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

−1




h

p




−mgrcm · ζ.

The gravitational torque rcm ×mgζ in equation (7.8) derives, in this reduced Hamilto-

nian setting, from the scalar potential function −mgrcm · ζ appearing in H(h,p, ζ). This

potential function “breaks rotational symmetry” in the pitch and roll directions. The es-

sential idea presented in [38] is to construct an artificial potential energy function in or-

der to obtain a control moment τ c, which intentionally breaks the remaining rotational

symmetry in a way that conserves a new, control-modified energy function. Using the

modified energy and other conserved quantities, one then constructs a control Lyapunov

function, which provides conditions for closed-loop stability of steady translation in a

desired inertial direction.
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The objective, in this section, is to stabilize the steady motion

Re = Rd, ωe = 0, ve = vd = ud b1 (7.11)

where Rd is the rotation matrix representing a desired, constant attitude and ud > 0

is a desired, constant speed. Because of axial symmetry, one may assume without loss

of generality that the CM rests in the body’s longitudinal plane; that is, the body-fixed

reference frame is oriented such that rcm·b2 = 0. To ensure that the body’s weight does not

induce a roll moment in equilibrium flight, one must also choose Rd such that ζd · b2 = 0.

Finally, one requires that the sign of r3 = rcm · b3 match the sign of ζd3
= ζd · b3; for

convenience, it is assumed that both values are positive. This last requirement ensures

that the CM (or rather its projection onto an inertially vertical line through the CB) is

below the CB in nominal flight.

Choosing a desired value for ζ is equivalent to choosing the desired tilt (pitch and

roll) angle for the vehicle. The vector ζ is invariant under changes in heading. To stabi-

lize motion along a particular heading, it is necessary to break the remaining rotational

symmetry by introducing an additional direction vector. Following [38], let ξ = Rdb1

represent the desired inertial direction of travel. (Assume that ξ 6 ‖ i3, so that the nominal

motion includes some horizontal component of translation.) Next, define

λ = RTξ.

Since ξ 6 ‖ i3, it follows that λ 6 ‖ ζ and the proper rotation matrix R can be unambigu-

ously reconstructed using λ and ζ. Accordingly, one may replace the matrix differential

equation (7.1) with the following rotational kinematic equations

ζ̇ = ζ × ω (7.12)

λ̇ = λ × ω. (7.13)
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Note that equations (7.12) and (7.13) imply that the following quantities are conserved:

C1 =
1

2
ζ · ζ, C2 = ζ · λ, and C3 =

1

2
λ · λ.

The fact that C1 and C3 are constant reflects the fact that ζ and λ are unit vectors by

definition. The constant C2 measures the degree to which the desired direction of travel

corresponds to motion in the vertical direction. If C2 = 0, for example, the desired motion

is purely horizontal. Since we have assumed that λ 6 ‖ ζ, it follows that |C2| < 1.

In terms of these variables, the steady motion (7.11) is

ζe = ζd, λe = λd = b1,

he = M 12vd, pe = M 22vd. (7.14)

The feedback control law given in the following proposition is based on results presented

in [32] and [38]. Also see [80].

Proposition 7.2.1. [80] Consider the feedback control law

Fc = F0(v) (cosαCD(α) − sinαCL(α)) − ku(u− ud) (7.15)

and

τ c = mgζ × rcm − mgr3
ζd3

ζ × ζd + λ × (M 22 − m̃I) vd‖vd‖ − p × vd − kωI23ω (7.16)

where I23 = I − e1e
T
1 . The control law asymptotically stabilizes the equilibrium (7.14) if ku > 0,

m̃ > m1, and kω ≥ 0 and provided

mgr3
ζd3

6= (m1 − m̃)u2
d. (7.17)

Remark 7.2.2. The terms in (7.16) involving ζ and λ derive from the scalar potential energy

function

mgrcm · ζ − mgr3
ζd3

ζd · ζ + ‖vd‖ [(M 22 − m̃I) vd] · λ.
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The first term above cancels the true gravitational potential in the total system energy, and the

remaining terms define a new, artificial potential energy that helps to stabilize the desired steady

motion. The coefficient of ζd ·ζ in this artificial potential function has been chosen to eliminate the

roll component from the control moment. Roll control is unnecessary here, since the roll-stabilizing

effect of gravity is preserved in the closed-loop system. Note that the last three terms in (7.16) are

orthogonal to b1. Considering the first pair of terms, recall that rcm · b2 = 0 and ζd · b2 = 0. The

observation that τ c · b1 = 0 then follows from direct computation.

Proof of Proposition 7.2.1: The proof makes use of the energy-Casimir stability analy-

sis method for reduced Hamiltonian systems; see [40] for a description of the method

and [37] for an application to underwater vehicles. Although the system considered here

is not Hamiltonian, due to the viscous terms, the energy-Casimir technique can still be

used to construct a candidate Lyapunov function. To begin, recognize that any smooth

function Φ(C1, C2, C3) is conserved because the arguments are constant. One may define

a candidate Lyapunov function HΦ by summing a control-modified system energy with

the smooth function Φ(C1, C2, C3):

HΦ =
1

2






h − he

p − pe






T




M 11 M 12

MT
12 M 22






−1




h − he

p − pe






− mgr3
ζd3

ζd · ζ +‖vd‖ [(M 22 − m̃I) vd] · λ+Φ(C1, C2, C3). (7.18)

Showing stability requires showing that the desired equilibrium (7.14) is a strict minimum

of HΦ and that ḢΦ ≤ 0. The former requirement imposes conditions on the equilibrium

value of the first and second variations of HΦ. These conditions are satisfied by choosing

m̃ > m1 and by choosing

Φ(C1, C2, C3) =

(
mgr3
ζd3

)

C1 + (m̃−m1)u
2
dC3.

Under the conditions given in the proposition, the equilibrium (7.14) is a strict mini-
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mum of HΦ. Next, one computes

ḢΦ = −kωωTI23ω + ω · τ v + (v − vd) · (f c + fv) .

The first two terms are non-positive. The third term is

(v − vd) · (f c + fv) = − (v sinµ+ w cosµ) (sinαCD(α) + cosαCL(α))F0(v)

+ (u− ud) (Fc − F0(v) (cosαCD(α) − sinαCL(α))) . (7.19)

Consider the first term in (7.19). By the definition (7.6) of µ,

v sinµ+ w cosµ =
√
v2 + w2 ≥ 0.

Also, given the assumptions on the form of CD and CL and the fact that α ∈ [0, π],

sinαCD(α) + cosαCL(α) ≥ 0

and strictly positive for α ∈ (0, π). Therefore, the first term in (7.19) is non-positive.

Defining Fc according to (7.15), one finds that

ḢΦ = −kωωTI23ω + ω · τ v − ku (u− ud)
2

−
√
v2 + w2 (sinαCD(α) + cosαCL(α))F0(v)

≤ 0.

Having shown that the equilibrium (7.14) is stable, using HΦ as a Lyapunov function,

it remains to show that the equilibrium is asymptotically stable. Because the equilibrium

is a strict minimum of HΦ, level sets of HΦ in a neighborhood of the equilibrium define

compact, positively invariant sets. Define such a set Ω. According to Lasalle’s invariance

principle [31], trajectories which begin in Ω converge to the largest invariant set M con-

tained in the set E =
{

(h,p, ζ,λ) ⊂ Ω | ḢΦ = 0
}

. It is easy to see that ḢΦ = 0 if and only

if

v = vd and ω = 0.
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To determine the possible values of ζ and λ within M , one must examine the dynamic

equations within the set E. From equation (7.4), one finds that

0 = −mgr3
ζd3

ζ × ζd + ‖vd‖(m1 − m̃)λ × vd (7.20)

Further analysis shows that, provided (7.17) holds, the only values of ζ and λ which

satisfy (7.20) are those shown in Table 7.1, where

σ =
mgr3 − (m1 − m̃)u2

dζd3

mgr3 + (m1 − m̃)u2
dζd3

.

Table 7.1 Values of ζ and λ which satisfy equation (7.20).

ζ λ

ζd λd

−ζd −λd

± 1√
1−(1−σ2)C2

2









σC2

0
√

1 − C2
2









C2ζ +
√

1 − C2
2 (ζ × e2)

Each pair (ζ,λ) in Table 7.1 corresponds to an isolated equilibrium. Since the desired

equilibrium is a strict minimum of HΦ, one may choose Ω small enough to exclude these

other equilibria. It follows from LaSalle’s invariance principle that the desired equilib-

rium is asymptotically stable. �

Remark 7.2.3. To better understand the other isolated equilibria, consider the special case where

the desired equilibrium is steady translation in the horizontal plane (C2 = 0). In this case, the
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four isolated equilibria represent (i) steady motion in the desired direction with the CM below the

CB, (ii) steady motion in the desired direction with the CM above the CB, (iii) steady motion

opposite the desired direction with the CM below the CB, and (iv) steady motion opposite the

desired direction with the CM above the CB. Spectral analysis shows that all save the first of these

are unstable equilibria.

7.3 Cross-Track Control

Having obtained a feedback control law that asymptotically stabilizes motion in a given

(non-vertical) direction, it is natural to seek an extension that will asymptotically stabilize

motion along a desired path. To do so, one must vary the desired orientation Rd in a way

that yields convergence to path. We consider only paths which are straight lines, and

we employ a standard guidance scheme: line-of-sight feedback. Applications involving

line-of-sight guidance for six-degree-of-freedom underactuated underwater vehicles are

discussed in [21], [19], and [13], for example.

Since we are considering only linear paths, we assume without further loss of gener-

ality that the desired path coincides with the i1 axis. Let µ1 be the vector from the body

frame origin to a point which is some “look-ahead distance” kxL further along the desired

path:

µ1 = (kxL)i1 − I23x.

The length L is a characteristic length, such as the vehicle length, and kx is a dimension-

less control parameter. The vector µ1 provides coordinates for the lateral translational

kinematics:

µ̇1 = −I23Rv. (7.21)

(Note that the along-track position is ignored.)
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kx L

Figure 7.2 Line of sight guidance.

The desired orientation Rd is defined by an orthonormal triad d1, d2, and d3, which

can be constructed from µ1. To this end, define the orthogonal triad µ1, µ2, and µ3, where

µ2 = i3 × µ1 and µ3 = µ1 × µ2.

Now let di = µi/‖µi‖ for i ∈ {1, 2, 3}. The desired attitude is

Rd(x) = [d1, d2, d3] . (7.22)

The desired attitude is constructed such that the desired roll angle is zero to take advan-

tage of the natural “metacentric” roll stability that arises from having the CM below the

CB.

It is convenient to re-express the cross-track kinematics (7.21) in the body reference

frame, so we define

m1 = RTµ1
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and compute

ṁ1 = RT µ̇1 + Ṙ
T
µ1

= −RTI23Rv + (Rω)T µ1

= m1 × ω − Bv (7.23)

where

B = RTI23R.

Note that λ = m1/‖m1‖, so m1 encodes information about the attitude error, as deter-

mined by the cross-track error.

Now recall from Section 7.2 that, as long as λ 6 ‖ ζ, one may unambiguously recon-

struct R from λ and ζ. Note in the definition of µ1, that m1 6 ‖ ζ provided kx 6= 0. The

information contained in ζ and m1, however, is not enough to reconstruct R, which is

necessary to compute B in equation (7.23). To have a closed set of dynamic equations, we

incorporate an additional unit vector: Υ = RT i2. With this definition,

R = [Υ × ζ, Υ, ζ]T .

The complete cross-track control system dynamics are

ḣ = h × ω + p × v + rcm ×mgζ + τ v + τ c (7.24)

ṗ = p × ω + fv + f c (7.25)

ṁ1 = m1 × ω − Bv (7.26)

Υ̇ = Υ × ω (7.27)

ζ̇ = ζ × ω (7.28)

The cross-track error may be obtained from the system state as follows:

m1 · Υ = −y, m1 · ζ = −z.
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Intuitively, cross-track control may be accomplished by using the directional stabiliza-

tion algorithm of Section 7.2, but with the desired attitude updated continuously accord-

ing to the cross-track error. We therefore define the moment control law

τ c = mgζ × rcm −mgβζ × ζd + m1 × (M 22 − m̃I) vd

(‖vd‖
L

)

− p × vd (7.29)

and define Fc as in (7.15). The moment control law (7.29) compares closely with (7.16);

however, it is no longer true that τ c ·b1 = 0 in general. We must therefore assume that the

vehicle has roll control authority.

Proposition 7.3.1. [81] The dynamic equations (7.24) through (7.28), with the control mo-

ment (7.29), take the form

d

dt
















h

p

m1

Υ

ζ
















=
















ĥ p̂ m̂1 Υ̂ ζ̂

p̂ 0 0 0 0

m̂1 0 0 0 0

Υ̂ 0 0 0 0

ζ̂ 0 0 0 0
















∇Hc +
















τ v

fv + f c

−Bv

0

0
















(7.30)

where

Hc =
1

2






h − he

p − pe






T 




M 11 M 12

MT
12 M 22






−1




h − he

p − pe




−mgβζd·ζ+

‖vd‖
L

[(M 22 − m̃I) vd]·m1.

Proof: The proof reduces to determining ∇Hc and verifying that the equations match.

It is obvious that

∂Hc

∂h
= ω and

∂Hc

∂p
= v − vd,

so it remains to compute

∂Hc

∂m1

,
∂Hc

∂Υ
, and

∂Hc

∂ζ
.
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The chief complication is that ζd depends on Rd, which now varies with ζ and m1:

ζd =









ζd1

0

ζd3









=










ζ ·
(

m1

‖m1‖

)

0
√

1 −
(

ζ ·
(

m1

‖m1‖

))2










. (7.31)

In Section 7.2, C2 = ζ · λ was conserved so ζd remained constant. Here, however, ζd

necessarily varies with the cross-track error. Referring to equation (7.31), note that

ζd =









sin θd

0

cos θd









where θd = sin−1 (ζ · (m1/‖m1‖)). Thus, at every instant, the desired roll angle is zero,

and the desired pitch angle θd is determined by the tilt attitude ζ and the line of sight

vector m1.

It can easily be checked that

∂

∂ζ
(ζd · ζ) = ζd −

1

ζd3

(e2 · (ζ × ζd))

︸ ︷︷ ︸

κ

(
m1

‖m1‖

)

.

Also,

∂

∂m1

(ζd · ζ) =
1

‖m1‖

[

−κζ +

(
ζ3
ζd3

− (ζd · ζ)

)
m1

‖m1‖

]

.
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Noting that
















ĥ p̂ m̂1 Υ̂ ζ̂

p̂ 0 0 0 0

m̂1 0 0 0 0

Υ̂ 0 0 0 0

ζ̂ 0 0 0 0































ω

v − vd

− mgβ
‖m1‖

[

−κζ +
(
ζ3
ζd3

− (ζd · ζ)
)

m1

‖m1‖

]

+ ‖vd‖
L

(M 22 − m̃I) vd

0

−mgβ
(

ζd − κ m1

‖m1‖

)
















=
















ĥ p̂ m̂1 Υ̂ ζ̂

p̂ 0 0 0 0

m̂1 0 0 0 0

Υ̂ 0 0 0 0

ζ̂ 0 0 0 0































ω

v − vd

‖vd‖
L

(M 22 − m̃I) vd

0

−mgβζd
















and comparing equation (7.30) with equations (7.24) through (7.28) completes the proof.

�

Remark 7.3.2. The dynamics (7.30) conserve the following quantities

C̃1 =
1

2
ζ · ζ, C̃2 = Υ1 · ζ, C̃3 =

1

2
Υ · Υ, and C̃4 = m1 · (Υ × ζ).

A promising approach to assessing stability would be to construct a candidate Lya-

punov function Hc + Φ̃(C̃1, C̃2, C̃3, C̃4) and to apply the energy-Casimir method, as in

Section 7.2. Unfortunately, the term −Bv that appears as an exogenous force in equa-

tion (7.30) makes the rate of change of this candidate function indefinite. Because the

energy-Casimir method fails to prove asymptotic stability, we resort to spectral analysis,

which provides conditions for local asymptotic stability.

To linearize the dynamic equations, one must assume a specific model for the viscous

forces and moments. We generalize the viscous force model of Assumption 7.1.2 by in-
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corporating a linear damping term, as suggested in [23]:

fv(v) = −F0(v)RBC(µ, α)









CD(α)

0

CL(α)









− dvI23v

where dv > 0. Linear damping can easily be incorporated into the analysis of Section 7.2

and it simplifies spectral stability analysis of the cross-track control algorithm by elimi-

nating two characteristic zeros. Because we are only considering a local model, we may

choose standard expressions for CL and CD:

CL(α) = CLα
α, CD(α) = CD0

+ CD1
α2,

where CLα
, CD0

, and CD1
are positive constants. For simplicity, the viscous moment is

modeled as linear damping:

τ v(ω) = −dωω,

where dω > 0. In general, the angular rate damping moment for an underwater vehicle

will scale differently about each axis, will be coupled among the three axes, and will

depend on v through the dynamic pressure. While the analysis could accommodate such

effects, they would have little qualitative impact on the results.

We assume that the component matrices in the generalized mass matrix (7.3) take the

following form:

M 11 = diag(J1, J2, J2) and M 22 = diag(m1,m2,m2)

where J2 > J1 > 0 and m2 > m1 > 0. To simplify the analysis, we assume that rcm = 0

and therefore that M 12 = MT
21 = 0. Note that the control moment (7.29) cancels the

gravitational moment due to rcm, in any case.

The equilibrium motion for the cross-track control system is

ωe = 0, ve = udb1, m1e
= kxLb1, Υe = b2, ζe = b3 (7.32)
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where ud > 0. Linearizing the equations about the equilibrium point, we obtain a 15 × 15

state matrix whose rank is eleven. The rank deficiency corresponds to the four conserva-

tion laws described in Remark 7.3.2. Eliminating the rows and columns that correspond

to the four-dimensional null space leaves a full rank 11 × 11 matrix.

Proposition 7.3.3. [81] If m̃, kx, β, and dω are sufficiently large positive, then the equilib-

rium (7.32) is locally asymptotically stable.

Proof: The proof follows from Lyapunov’s indirect method [31]. Details of the spec-

tral analysis, including specific conditions on the control parameters, are given in Ap-

pendix B.

Proposition 7.3.3 gives sufficient conditions for local asymptotic stability. As discussed

in the next section, however, exhaustive simulation suggests that almost every initial state

gives rise to a closed-loop trajectory that converges to the desired steady motion.

7.4 Simulations

The closed-loop system, under the modeling assumptions described at the end of the pre-

vious section, was exhaustively simulated over a large range of initial states to investigate

convergence properties, and a large range of parameter values to investigate robustness

to parametric uncertainty. The simulation model assumes a spheroid with a 6:1 fineness

ratio and a nominal speed ud = 1 m/s. Other parameters used in the simulations are

given in Table 7.2. All values are in SI units.

Initial states and parameter values were randomly selected for 20, 000 numerical sim-

ulations of the closed-loop equations. The values were selected from uniform distribu-

tions over the ranges shown in Table 7.3. (For unit vectors, the components were selected

randomly and the vector was then normalized.) Convergence to the desired path was as-
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Length, L 0.6 m 3.14 Lift curve slope, CLα
0.15

Frontal area, S 0.008 m1 3.28 Coefficient, CD0
0.18

Bottom-heaviness, rcm · b3 0.01 m2 6.02 Coefficient, CD1
0.0056

Control parameter, m̃ 6.57 J1 0.0031 Damping coefficient, dω 0.1

Speed control parameter, ku 1 J2 0.0581 Look-ahead factor, kx 3

Table 7.2 Vehicle and control parameter values.

sessed using a small error tolerance for each eighty-second simulation. Every simulation

resulted in a trajectory that converged to the desired path.

y0 ±15 ω0 · ei ±0.1 ∆CLα
25%

z0 ±15 u0 ud ± 0.5 ∆CD0
25%

Υ0 · ei ±1 v0 ±0.5

ζ0 · ei ±1 w0 ±0.5

Table 7.3 State and parameter ranges for simulations.

To compare the performance of the nonlinear controller with a more conventional

method, a linear controller was also developed and implemented. The control law is

defined as follows:

Fc = −k̆u(u− ud) and τ c =









k̆p(φd − φ)

k̆q(θd − θ)

k̆r(ψd − ψ)









− dωω,

where the subscript “d” denotes desired values. The desired roll angle is set to zero,

and the desired pitch and yaw angles are selected according to the following line of sight
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guidance rule

θd = arctan

( −y
kxL

)

ψd = arctan

(
z

kxL

)

.

The controller gains were tuned, by trial and error, to obtain good performance at a nom-

inal speed ud = 0.8 m/s, resulting in the following values:

k̆u = 1, k̆p = 0.5, k̆q = 0.5, k̆r = 1.

For comparison, simulations were performed with the following initial conditions:

x0 =









0

15

0









,









φ0

θ0

ψ0









=









45◦

45◦

90◦









, ω = 0, v = vd.

Figure 7.3 illustrates the results for two different (off-nominal) desired speeds: ud =

0.8 m/s (solid line) and ud = 1.3 m/s (dotted line). The vehicle’s orientation is indicated

by an orthogonal triad. For the nominal case, the controller is clearly able to stabilize the

system from this relatively large initial perturbation. At the higher speed, however, the

response is quite oscillatory. The simulation illustrates the importance of careful control-

parameter tuning for the linear controller and the sensitivity of controller performance to

parameter values (in this case, the nominal speed). Figure 7.4 illustrates the performance

of the nonlinear controller in response to the same initial state and parameter values. As

one should expect, convergence is much less sensitive to the commanded speed.

7.5 Summary of the Cross-Track Control Algorithm

In this chapter we discussed the method of potential energy shaping used to develop a

feedback control law, which asymptotically stabilizes longitudinal-axis translation of a
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Figure 7.3 Simulation of the linear controller with ud = 0.8 (solid) and ud = 1.3
(dotted).

streamlined underwater vehicle in any desired, non-vertical direction. The result applies

to vehicle models that have thrust, pitch, and yaw moment inputs. Because the stability

analysis uses very general assumptions about the viscous force and moment, the resulting

control law is robust to uncertainty in these terms.

Energy-based control, such as the potential shaping technique employed here, pro-

vides a constructive method for proving Lyapunov stability. The analysis provides con-

ditions on the various control parameters for nonlinear stability. Here, the control Lya-

punov function was constructed using the energy-Casimir method. The stability analysis

proves local asymptotic stability and strongly suggests almost global asymptotic stability

of the desired steady motion — a conjecture supported by numerical simulations.

The problem of directional control is a simplification of the more practical problem

of path following. Intuitively, having asymptotically stabilized a vehicle’s motion in a
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Figure 7.4 Simulation of the nonlinear controller with ud = 0.8 (solid) and ud = 1.3
(dotted).

desired inertial direction, one may choose the desired direction based on the cross-track

error from a desired path. Line following is a common guidance problem for AUVs, and

one that provides a natural, intermediate step between waypoint navigation and general,

curvilinear path-following. Although energy-Casimir analysis failed to prove stability of

the proposed cross-track control algorithm, spectral analysis did provide sufficient con-

ditions for local asymptotic stability; simulations suggest that stability is almost globally

asymptotic. Moreover, a thorough simulation-based investigation indicates excellent con-

troller performance and robustness to parametric uncertainty.
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Appendix A

Computing BBB Trajectories: Details of

Calculation

Given three trochoidal segments

xt1(t) =
Va
δ1ω

sin(δ1ωt+ φt1) + Vwt+ xt10 , t ∈ [0, tA] (A.1)

yt1(t) =
−Va
δ1ω

cos(δ1ωt+ φt1) + yt10 (A.2)

xt2(t) =
Va
δ2ω

sin(δ2ωt+ φt2) + Vwt+ xt20 , t ∈ [tA, tB] (A.3)

yt2(t) =
−Va
δ2ω

cos(δ2ωt+ φt2) + yt20 (A.4)

xt3(t) =
Va
δ3ω

sin(δ3ωt+ φt3) + Vwt+ xt30 , t ∈ [tB, T ] (A.5)

yt3(t) =
−Va
δ3ω

cos(δ3ωt+ φt3) + yt30 , (A.6)

where δi ∈ {−1, 1}, with δ1 = δ3 = −δ2, we seek to find the path parameter values tA, tB,

T , and the integration constants xti0 , yti0 , φti , such that [xt1 , yt1 , ψt1 ]
T
∣
∣
t=0

= [xN0
, yE0

, ψ0]
T ,

and [xt3 , yt3 , ψt3 ]
T
∣
∣
t=T

= [xNf
, yEf

, ψf ]
T , where ψti = δiωt+ φti . From the initial conditions

we can determine xt10 , yt10 and φt1 as
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xt10 = xN0
− Va/(δ1ω) sin(φt1) (A.7)

yt10 = yE0
+ Va/(δ1ω) cos(φt1) (A.8)

φt1 = ψ0 (A.9)

From the final condition we have

xt30 = xNf
− Va/(δ3ω) sin(ψf ) − VwT (A.10)

yt30 = yEf
+ Va/(δ3ω) cos(ψf ) (A.11)

φt3 = ψf − δ3ωT (A.12)

We are left with six unknowns: xt20 , yt20 , φt2 , tA, tB and T . One may write a total of six

continuity equations at points tA and tB (two for position, one for heading at each point)

as follows

xt1(tA) = xt2(tA), xt2(tB) = xt3(tB) (A.13)

yt1(tA) = yt2(tA), yt2(tB) = yt3(tB) (A.14)

ψt1(tA) = ψt2(tA), ψt2(tB) = ψt3(tB) (A.15)

From equation (A.15) and noting that δ1 = −δ2, one may write

φt2 = 2δ1ωtA + φt1 , tB =
ψf + δ2ωT − φt2

2δ2ω
= tA +

T

2
+
ψf − ψ0

2δ2ω
. (A.16)

From equations (A.13)-(A.14) we can write four additional continuity equations.






xt20

yt20




 =






xt30 − 2 Va

δ2ω
sin(δ2ωtB + φt2)

yt30 + 2 Va

δ2ω
cos(δ2ωtB + φt2)




 (A.17)






xt10

yt10




 =






xt20 + 2 Va

δ2ω
sin(δ2ωtA + φt2)

yt20 − 2 Va

δ2ω
cos(δ2ωtA + φt2)




 (A.18)
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Substituting xt30 and yt30 from equations (A.10)-(A.11) into (A.17), and then xt20 and yt20

from equation (A.17) into (A.18), and using expressions (A.16), we obtain two transcen-

dental equations for tA and T

f(tA, T ) =





2Va

δ1ω
sin(δ1ωtA + φt1) + xt10 − xt30 + 2Va

δ2ω
sin(δ2ω

T
2

+
ψf

2
+ δ1ωtA +

φt1

2
)

−2Va

δ1ω
cos(δ1ωtA + φt1) + yt10 − yt30 − 2Va

δ2ω
cos(δ2ω

T
2

+
ψf

2
+ δ1ωtA +

φt1

2
)




 ≡ 0,

where xt30(T ) and yt30(T ) depend on T as in equations (A.10)-(A.11). The roots of the

equations can be found using a second order Newton-Raphson method. Define the map-

ping

g(tA, T ) =






tA

T




− J−1(tA, T )f(tA, T ),

where

J(tA, T ) =






∂f1
∂tA

(tA, T ) ∂f1
∂T

(tA, T )

∂f2
∂tA

(tA, T ) ∂f2
∂T

(tA, T )






is the Jacobian matrix. If the initial guess (tA0
, T0)

T is close enough to the true solutions,

then the mapping defined by





tAi+1

Ti+1




 = g(tAi

, Ti)

converges to the root. In case the Jacobian matrix becomes singular, the root-finding al-

gorithm may be started with a different initial condition.



Appendix B

Spectral Stability Analysis of the

Closed-loop AUV Control System

Computing the characteristic polynomial for the 11-dimensional system, we end up with

a characteristic polynomial that can be factored into two fourth order, one second order

and one first order polynomials. The latter two are

s+
ku
m1

= 0

and

J1s
2 + dωs+mgβ = 0.

The former polynomial corresponds to an eigenmode associated with longitudinal speed.

The latter corresponds to an eigenmode associated with rolling motion. Note that roll

stability requires

dω > 0 and β > 0.

The remaining two polynomials are denoted P1(s) and P2(s).

Routh-Hurwitz Analysis of P1(s).
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Consider the polynomial

P1(s) = a4s
4 + a3s

3 + a2s
2 + a1s+ a0

where the coefficients ai are

a4 = J2Lm2

a3 = L(dvJ2 + dωm2)

a2 = L(dvdω + u2
d(m

2
1 + kxLm2(m̃−m1)))

a1 = u2
d(m̃−m1)(kxLdv + ud(m2 −m1))

a0 = u3
ddv(m̃−m1).

In order for the polynomial to have roots with negative real parts, each coefficient ai must

be positive, and so must each element in the left-most column of the Routh array:

a4 a2 a0

a3 a1

b1 a0

c1

a0

where

b1 =
a3a2 − a4a1

a3

and c1 =
b1a1 − b2a3

b1
.

The coefficients ai are all positive under existing assumptions and conditions, provided

m̃−m1 > 0.

The term b1 is

b1 =
Cb1m̃+ Cb0
dvJ2 + dωm2



159

where

Cb1 = kxL(dω2
+ kω2

)(m2ud)
2 − J2m2u

3
d(m2 −m1)

Cb0 = d2
v(dω2

+ kω2
)J2L+m1m2u

2
d (J2(m2 −m1)ud − (dω2

+ kω2
)L(kxm2 −m1)) .

The term Cb1 is positive provided

kω2
+ dω2

>
J2ud(m2 −m1)

kxLm2

.

The term Cb0 is positive provided

kω2
+ dω2

>
J2ud(m2 −m1)

L(kxm2 −m1)
.

Note that different role of the look-ahead control parameter kx in the latter expression. If

the characteristic length L is the vehicle length, one would typically pick the look-ahead

parameter greater than unity, in practice.

Examining the c1 coefficient:

c1 =
(m̃−m1)u

2
d(Cc1m̃+ Cc0)

b1(dvJ2 + dωm2)

where

Cc1 = m2u
2
d (dωkxLm2 + J2(m1 −m2)ud) (dvkxL+ (m2 −m1)ud)

Cc0 = d3
vJ2L(dωkxL− J2ud)

−m1(m2 −m1)m2u
3
d (dωL(kxm2 −m1) − J2(m2 −m1)ud)

+d2
vL
(
d2
ωkxLm2 − dωJ2(m1 +m2)ud + J2kxLm

2
1u

2
d

)

−dvLm1ud

(
d2
ωm2 + dωkxLm2(kxm2 −m1)ud − J2(m2 −m1)(m1 + kxm2)u

2
d

)

The term Cc1 is positive according to previous conditions, so c1 is positive provided

m̃ > −Cc0
Cc1

.
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If the conditions stated above hold, then each root of has strictly negative real part.

Routh-Hurwitz Analysis of P2(s). We make a slight abuse of notation by defining

P2(s) = a4s
4 + a3s

3 + a2s
2 + a1s+ a0

with coefficients

a4 = J2kxLm2

a3 = kxL(dvJ2 + dωm2)

a2 = kxL(dv(dω2
+ kω2

) + u2
d(m

2
1 + kxLm2(m̃−m1)) +m2mgβ)

a1 = (kxLu
2
d(m̃−m1) +mgβ)(kxLdv + ud(m2 −m1))

a0 = dvud(k(m̃−m1)u
2
d +mgβ).

Again, in order for the polynomial to have roots with negative real parts, each coefficient

ai must be positive and so must each element in the left-most column of the Routh array.

The coefficients ai are all positive under existing assumptions and conditions.

The term b1 is

b1 =
Cb1β + Cb0
dvJ2 + dωm2

where

Cb1 = mgkxLm
2
2dω −mgJ2udm2(m2 −m1)

Cb0 = kxd
2
vJ2Ldω

+m2kxu
2
d(Ldω(m

2
1 − kxLm1m2 + kxLm2m̃) − J2(m2 −m1)(m̃−m1)ud)

+kxdvL(d2
ωm2 + J2m

2
1u

2
d)

The term Cb1 > 0 under existing assumptions and conditions. If also

dω >
J2ud(m2 −m1)(m̃−m1)

L(m2
1 + kxm2(m̃−m1))

,

then Cb0 > 0 so that b1 will be positive.
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The parameter c1 is

c1 =
(kx(m̃−m1)u

2
d +mgβ)(Cc1β + Cc0)

b1(dvJ2 + dωm2)

where

Cc1 = mgm2(dωkxLm2 + J2(m1 −m2)ud)(dvkxL+ (m2 −m1)ud)

Cc0 = −dvkxLud(dvJ2 + dωm2)
2 + (dvkxL+ (m2 −m1)ud)

[
J2m2(dvkxL+ (m2 −m1)ud)(kx(m1 − m̃)u2

d) + kxL(dvJ2 + dω2
m2)

(dvdω + (m2
1 + kxm2(m̃−m1))u

2
d)
]

The term Cc1 is positive under existing conditions. Choosing

β > −Cc0
Cc1

ensures that c1 is positive and therefore that every root of P2(s) has strictly negative real

part. The stated conditions are admittedly complicated, but in the physically realistic

examples we have considered these conditions are satisfied by the following, simpler

conditions:

m̃ > m1, kx > 0, β > 0, and dω >
J2ud(m2 −m1)

L(kxm2 −m1)
.


