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Case Study

Generalized Likelihood Uncertainty Estimation and
Markov Chain Monte Carlo Simulation to
Prioritize TMDL Pollutant Allocations

Anurag Mishra'; Ebrahim Ahmadisharaf, A.M.ASCE?; Brian L. Benham?; Mary Leigh Wolfe*;
Scotland C. Leman®; Daniel L. Gallagher, M.ASCE?®; Kenneth H. Reckhow’; and Eric P. Smith®

Abstract: This study presents a probabilistic framework that considers both the water quality improvement capability and reliability of
alternative total maximum daily load (TMDL) pollutant allocations. Generalized likelihood uncertainty estimation and Markov chain Monte
Carlo techniques were used to assess the relative uncertainty and reliability of two alternative TMDL pollutant allocations that were developed
to address a fecal coliform (FC) bacteria impairment in a rural watershed in western Virginia. The allocation alternatives, developed using the
Hydrological Simulation Program—FORTRAN, specified differing levels of FC bacteria reduction from different sources. While both
allocations met the applicable water-quality criteria, the approved TMDL allocation called for less reduction in the FC source that produced
the greatest uncertainty (cattle directly depositing feces in the stream), suggesting that it would be less reliable than the alternative, which
called for a greater reduction from that same source. The approach presented in this paper illustrates a method to incorporate uncertainty
assessment into TMDL development, thereby enabling stakeholders to engage in more informed decision making. DOI: 10.1061/(ASCE)
HE.1943-5584.0001720. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, http://
creativecommons.org/licenses/by/4.0/.
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Introduction

A total maximum daily load (TMDL) specifies the amount of a
particular pollutant that a water body can receive and still meet
water quality standards. Section 303(d) of the Clean Water Act (US
Congress 1972) requires that TMDLs be developed for impaired
water bodies. Development of a TMDL often includes the ap-
plication of computational, watershed-scale water quality models.
According to the TMDL Analysis and Modeling Task Committee
(2017), commonly used models include the Soil and Water Assess-
ment Tool (SWAT) (Neitsch et al. 2011) and the Hydrological
Simulation Program—FORTRAN (HSPF) (Bicknell et al. 2005).
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Uncertainty in water quality modeling may arise from several
sources, including the spatiotemporal resolution of input and forc-
ing data (e.g., meteorologic, hydrologic, geologic, geomorpho-
logic, and pedologic), model structure and parameters, observed
water quality and hydrologic data, as well as the choice of calibra-
tion and validation assessment and approach (Beck 1987; Harmel
et al. 2006; Harmel and Smith 2007; Nguyen and Willems 2016;
Shirmohammadi et al. 2006; van Straten 1998; Willems 2008).
Without a rigorous assessment of uncertainty, analysts cannot re-
liably assess the probability of achieving, or the risk of exceeding, a
given water quality criterion. A margin of safety (MOS) is included
in TMDLs to account for uncertainty and to mitigate the risk of not
achieving the applicable water quality criterion. The inclusion of a
MOS is often done arbitrarily by making conservative assumptions
or adding a fraction of the TMDL (TMDL Analysis and Modeling
Task Committee 2017; Dilks and Freedman 2004; Reckhow 2003;
Shirmohammadi et al. 2006) rather than explicitly estimating the
uncertainty. The NRC (2001) encouraged the USEPA to establish
a more rigorous, less subjective approach to assess TMDL develop-
ment uncertainty (Ames and Lall 2008; Hantush and Chaudhary
2014). Failure to do so could result in wasting limited resources and
not achieving water quality goals. Although researchers, such as
Rode et al. (2010), have suggested that novel techniques are avail-
able to rigorously evaluate uncertainty in water-quality modeling
efforts, the application of such techniques is rare.

The HSPF is frequently used to develop TMDLs (Singh and
Woolhiser 2002). Although widely used, there have been limited
documented attempts to assess the uncertainty associated with us-
ing a complex, computationally intensive, watershed-scale model
like HSPE. Paul et al. (2004) and Wu et al. (2006) used first-
order error analysis (FOEA) to analyze the uncertainty associated
with a HSPF application that simulated in-stream water quality
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constituents. Wu et al. (2006) and Mitsova-Boneva and Wang
(2007) applied Monte Carlo simulation, while Jia and Culver
(2008) applied generalized likelihood uncertainty estimation
(GLUE) (Beven and Binley 1992). Chin (2009) used a stochastic
analysis of model residuals for uncertainty analysis of HSPF.
Despite these limited efforts, application of Bayesian techniques
such as GLUE and Markov chain Monte Carlo (MCMC) (Kass
et al. 1998) for uncertainty analysis of watershed-scale water-
quality modeling is rare. Bayesian inference, along with MCMC,
provides a robust framework for quantifying the uncertainty within
complex mathematical models parameterized with observations,
either stochastically or deterministically. An important feature of
Bayesian methods that makes them particularly advantageous in
water-quality modeling applications is their independence from
the degree of nonlinearity of a given model (Camacho et al. 2015).
Examples of applications of Bayesian techniques to other water
quality models (e.g., SWAT) are described by Shirmohammadi et al.
(2006), Zheng and Keller (2007), Gardner et al. (2011), Abbaspour
(2015), Zheng and Han (2016), and Camacho et al. (2018).

Uncertainty analysis provides stakeholders with additional
information to compare the risk and reward of alternative TMDL
pollutant allocations (Jia and Culver 2008). However, in practice,
clearly communicating the risks to promote informed decision
making can be challenging (Stow et al. 2007). Ocampo-Duque et al.
(2013) and Xie and Huang (2014) pointed out the need for devel-
oping efficient methods to communicate the nature and implica-
tions of water-quality modeling uncertainty to decision makers and
stakeholders.

The primary objective of this research is to present a probabi-
listic framework that considers both the water quality improvement
capability and reliability of alternative TMDL pollutant allocations.
A further objective is to demonstrate the application of two uncer-
tainty analysis techniques, GLUE and MCMC, to a riverine fecal
coliform (FC) TMDL developed previously (Benham et al. 2004).
These two Bayesian techniques use observed data to refine input
parameter prior to probability density functions (PDFs), thereby
improving watershed model simulation capability. To illustrate
the importance of incorporating uncertainty assessment into TMDL
allocation analysis, the results of this research are compared with a
TMDL developed using a deterministic analysis (Benham et al.
2004). The presented framework provides a well-informed routine
to prioritize TMDL allocation.

Methodology

Generalized Likelihood Uncertainty Estimation

The basic premise of GLUE is that there is not a single optimal
set of parameters for any given model (i.e., equifinality), so multi-
ple sets of parameters can be used to satisfactorily represent a
watershed response (Beven and Binley 1992). In GLUE, Monte
Carlo simulation is used by generating multiple sets of model
parameters from parameter-specific PDFs that are determined a pri-
ori. In the majority of previous GLUE applications, a priori or prior
parameter-specific PDFs were uniform. When using GLUE, the
model is run using a set of parameters or a parameter vector 6
sampled from prior parameter-specific PDFs. A likelihood weight
is calculated for each parameter vector. Likelihoods can be com-
puted using any goodness-of-fit metric that compares observed data
and model-simulated response variables (Stow et al. 2007). For this
application, likelihoods were a function of the variance of the re-
siduals [Eq. (1)]. Hydrologic calibration compared daily flow vol-
ume to assess model performance, while water quality calibration
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compared log-transformed simulated daily average and observed
instantaneous FC concentrations. In-stream FC concentration can
generally vary by orders of magnitude and, therefore, log transfor-
mation reduced the influence of extreme FC concentrations on
estimated uncertainty

L= (o0)™

o :% <i [Yi_Qi]2> (1)

i=1

where L, is the likelihood; 02 = variance of the residuals or mean
square error; n = number of data points; Y; = observed data; Q; =
simulated data; and N is the shaping parameter chosen by the user.
Eq. (1) has been used frequently with other GLUE applications,
such as Beven and Binley (1992). As the value of N increases,
the magnitude of difference between the likelihood values of
parameter sets with similar variance increases. Different values
of N can lead to different confidence intervals (Ratto et al. 2001).
This application used an N of 2 because the resulting model outputs
bracket the observations (Mishra 2011).

All the parameter vectors that yield acceptable likelihood val-
ues, as determined subjectively by the analyst, are considered to
be behavioral and are retained. Parameter vectors that produce
unacceptable simulations are deemed nonbehavioral and are re-
jected. Previous applications of GLUE have reported a wide variety
of parameter vector rejection criteria. For example, Beven and
Binley (1992) considered parameter vectors with very low likelihood
values to be nonbehavioral. In this study, the likelihood threshold
used to differentiate behavioral and nonbehavioral parameter vectors
was the inflection point on a cumulative distribution function (CDF)
plot of likelihoods. The likelihood values of the retained parameter
vectors are normalized to unity. The normalized likelihood values
can be treated as a probabilistic weighting function for the simulated
variables and can be used to assess the uncertainty associated with
the simulations. The parameter-specific plots of the normalized
behavioral likelihoods versus parameter values, also called dotty
plots, defined the cumulative probability and posterior parameter dis-
tribution (Beven and Binley 1992). The normalized likelihoods for
different parameter values are multiplied to the prior probability to
calculate the posterior distribution of the model input parameters. As
demonstrated in this application, the posterior distribution of param-
eters can be used to propagate uncertainty in the model outputs.
The posterior PDFs provide a description of parameter uncertainty
informed by the observed data, thereby leading to a better estimation
of model output uncertainty.

Markov Chain Monte Carlo

MCMC is a broad class of algorithms which are used for sampling
from complex distributions. To quantify the uncertainty in these
parameter estimates, this study sampled from the Bayesian pos-
terior [7(0|Y)] distribution of the form

L(Y|0)m(6)

™) = T (vio)r(6)a0 @)

where L(Y|0) is the likelihood function that expresses the depend-
ence between observed data and unknown parameters 6; and 7(6)
denotes the prior distribution. Similar to GLUE, the MCMC like-
lihood is based on the squared deviation between the observed
data (Y;) and the simulation model (Q;). Because the unknown,
estimable parameters (f) control the physical specifications of
the simulations, Q; = Q(Y;]6) is used in Eq. (3) for clarity. Under
this notation, likelihood can be expressed as
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Eq. (3) assumes that the residuals between observed and simulated
values are normally distributed. The resulting posterior distribution
has this same form, up to proportionality, because () o 1. Given
the probability models sampling from the posterior requires an
iterative algorithm, the Metropolis—Hastings algorithm (Hastings
1970), one of the most general MCMC variants, samples from
7(6Y) by initializing ) and iterating over (i = 1, ..., k):

1. Propose a new candidate 6: 0"~ g(6|0l~"l) = Normal

(9[1‘71]’ §2 )

2. Compute acceptance probability: o = min (1, ulGadlg M)

981651 gl y]
) with probability: «
6¢=1)  with probability: 1 — c.

The variable « is the acceptance probability for transitioning
from our previous iteration to our proposed state and can take
on any value between 0 and 1. Given that the proposal density func-
tion g(f|6~")) can be used to generate samples using 7(6|Y),
this algorithm can be used to produce a sequence of random

3. Update sample: 0) = {

samples (9[1], o2 ...,9["]). Eventually, after a sufficient number
of iterations (denoted B for the burn-in period), these samples
@B+ giB+2 - gl]y will be distributed according to the station-

ary target (0|Y). Note that in this application, 6 is a correlated,
multidimensional parameter vector. Due to the correlations of
parameters within the vector 6, attempting to update every element
of this vector for each iteration of the Metropolis—Hastings
algorithm requires a large number of iterations for convergence.
Therefore, in order to improve efficiency, this study applied the
Metropolis within Gibbs (Gelfand and Smith 1990; Geman and
Geman 1984) algorithm, which sequentially updates only single
elements within 6 at each iteration. Hence, for each scalar quantity,
parameter update, the proposal density function (g[- | -]) is Gaus-
sian, centered at the previous sample with the tunable scaling factor
s, a Gaussian random walk. Choosing too large or too small of s
will result in poor convergence. This study used the Gelman—Rubin
statistic (Gelman et al. 2014) to tune and assess Markov chain con-
vergence. The statistic is based on generating multiple Markov
chains and calculating the mixture of chain variance, within chain
variance and Gelman—Rubin statistic. The Gelman—Rubin statistic
is the ratio of the mixture of chain variance and within chain
variance multiplied by a correction factor. The Markov chain is
considered to be converged when these variances stabilize and
the Gelman—Rubin statistic approaches unity. The Gelman—Rubin
statistic is useful in determining the convergence of a MCMC al-
gorithm by monitoring the variances, both between and within m
independent Markov chains. Letting B and W denote between and
within chain variances for m independent Markov chains, each of
length k, these variances are computed as

m k
L SR

where elements G_j, 6, and 0; ; represent the mean of jth chain, the
total mean, and the ith sample draw from chain j, respectively. The
convergence is determined by analyzing the number of iterations
until the following ratio, R, approaches unity
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To implement the MCMC approach using the HSPF model, a
Visual Basic software utility was developed to populate the HSPF,
fixed-format, user control input (UCI) file with a new parameter
vector for each simulation; the utility also analyzed the model out-
put prior to the next iteration in the Markov chain. The utility also
checked whether each new sampled parameter value was within
the bounds of the prior PDF. If not, another parameter value was
selected before going through the acceptance or rejection process.
Each parameter vector and the simulation results were stored in a
SQL Server database.

Probabilistic Comparison of Alternative TMDL
Allocations

A probabilistic approach was used to compare a suite of feasible
TMDL allocations. Selected uncertain watershed model parameters
were characterized with PDFs (instead of deterministic values) and
the uncertainty was propagated to the estimated model outputs and
the TMDL using Monte Carlo simulation. An ensemble of simu-
lated daily average in-stream FC concentration time series was used
to determine quantiles to estimate the confidence intervals. A time
series was generated for a lower and upper quantile to estimate the
corresponding confidence interval. Two quantile sets were chosen
(2.5%-97.5% and 10%—90%) to estimate the corresponding con-
fidence interval (i.e., 95% and 80%). The water quality criterion,
instantaneous violation rate (IVR) or exceedance rate for each
quantile time series, was calculated by dividing the number of vio-
lations (days when the criterion was exceeded) by the number of
days in the simulation period. The confidence interval (difference
between the lower and upper quantiles) can also be considered to
be a measure of reliability of or confidence in achieving the water
quality criterion. In the proposed framework, an optimal TMDL
allocation is one that (1) minimizes water quality criterion viola-
tions (lowest IVR); and (2) demonstrates the greatest reliability
(narrowest confidence interval). The latter criterion means that
the TMDL allocation performs better in a variety of plausible mod-
eling scenarios (i.e., multiple parameter sets). Typically, in TMDL
development, no formal calculation is performed to quantify uncer-
tainty. Instead, a fraction of the total point and nonpoint sources is
included as the MOS. In the uncertainty analysis framework pre-
sented here, selected parameters in HSPF are characterized with
PDFs (instead of deterministic values) and the uncertainty associ-
ated with those parameters is propagated to model outputs (e.g., FC
concentration) and the TMDL. The probabilistic analysis frame-
work presented here avoids arbitrarily assigning a MOS, by pro-
viding a systematic approach to include uncertainty in TMDL
development. Comparing alternative TMDL allocations probabilis-
tically allows stakeholders to make more informed decisions be-
tween alternative TMDL allocations by clearly understanding the
tradeoff between the specified pollutant load reductions, which
directly influences implementation costs and the risk of violating
the water quality criterion.

Case Study

The case study examined here used a bacteria TMDL developed
for Mossy Creek (Benham et al. 2004), located in Rockingham
and Augusta counties, in Virginia (Fig. 1). The watershed is
4,076 ha and is characterized as a rolling valley with the Blue Ridge
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Fig. 1. Mossy Creek watershed. LDR = low-density residential; and HDR = high-density residential.

mountains to the east and the Appalachian mountains to the west.
The predominant land uses are pasture (57.6%), forest (25.2%), and
cropland (13.6%). The primary sources of FC are cattle lingering
and defecating in the stream (direct deposit) and runoff from pas-
tures where grazing animals defecate.

Watershed Model Implementation

Benham et al. (2004) developed the Mossy Creek bacterial TMDL
using HSPFE. The HSPF model is a comprehensive, lumped param-
eter model that continuously simulates the movement of water,
sediment, and other water quality constituents on pervious and
impervious surfaces, in soil profiles, and within streams and well-
mixed reservoirs using three main modules PERLND, IMPLND,
and RCHRES (Bicknell et al. 2005). The PERLND module repre-
sents pervious land, the IMPLND module represents impervious sur-
faces in which no infiltration occurs, and the RCHRES module
represents the stream reaches and reservoirs in a watershed. When
using HSPF to develop bacterial TMDLs, bacteria are typically si-
mulated as a planktonic constituent. When modeling indicator bac-
terial with HSPF, the user typically specifies different build-up and
wash-off relationships for the PERLND and IMPLND land uses. The
daily FC loading rate to the land surface is specified by the user for
each PERLND and IMPLND segment as a constant load (ACQOP)
or a monthly variable load (MON-ACCUM). The concentration of
FC in groundwater and interflow is specified for HSPF as a constant
or monthly amount. Bacteria die-off on the land surface is repre-
sented indirectly by providing an asymptotic limit of bacteria build-
up (SQOLIM-PERLND). The user specifies the asymptotic bacterial
build-up limit for each PERLND and IMPLND land use. This limit
is typically calculated using a first-order die-off rate. This asymptotic
limit can vary dynamically by PERLND and IMPLND. Release of
bacteria in overland runoff or FC wash-off potential is controlled by
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the WSQOP parameter that specifies the amount of runoff needed to
wash off 90% of FC built up on the land surface. In-stream die-off is
simulated using a temperature-dependent first-order relationship
(Chick’s law).

For this study, Mossy Creek was delineated into eight subwa-
tersheds using the digital elevation model with spatial resolution of
30 m from the USGS (2002). The watershed was monitored
monthly near the watershed outlet by the Virginia Department
of Environmental Quality (VADEQ) between July 1992 and March
2003 for FC concentration and other water quality constituents. The
Department of Biological Systems Engineering at Virginia Tech
monitored Mossy Creek semi-monthly between February 1998
and December 2001 near the VADEQ station for selected water
quality constituents, including in-stream FC concentration. Daily
flow data were also collected from May 1998 to December 2002
at the same site. Hydrologic calibration and validation, and water
quality calibration was conducted using data from both monitoring
sites. The other data sets required to simulate in-stream FC using
HSPF include rainfall, land use, FC loading rates by cattle and
wildlife, inflows from springs, solar radiation, and temperature.
Model and data development are described in Benham et al. (2004).

Uncertain Parameters

Using HSPF to simulate FC bacteria requires information about
several hydrologic and water quality parameters. GLUE and
MCMC procedures require the modeler to define Bayesian prior
PDFs of these model parameters. Many previous studies, such as
Beven and Freer (2001) and Makowski et al. (2002), assigned a
uniform PDF to most input parameters to avoid bias. For this in-
vestigation, assigned model parameter prior PDFs were based on
the literature (Al-Abed and Whiteley 2002; Lawson 2003; USEPA
2001), expert opinion, and GIS data available for the Mossy
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Table 1. PDFs of the hydrologic parameters that were applied to all land uses

Parameter Parameter description Parameter PDF
LZSN (mm) Lower zone nominal soil moisture storage Uniform (76.2, 203.2)*
AGWRCP Groundwater recession rate Uniform (0.92, 0.99)*
DEEPFR Fraction of infiltration into deeper aquifers Uniform (0.0, 0.2)*
BASETP Evapotranspiration by riparian vegetation as active groundwater enters streambed Uniform (0.0, 0.05)*
AGWETP Fraction of model segment that is subject to direct evaporation from groundwater storage Uniform (0.0, 0.05)*
IRC Interflow recession coefficient Triangular (0.5, 0.7, 0.8)°
INTFW Coefficient that determines the amount of water that enters the ground from surface detention Uniform (1.0, 3.0)*

and becomes interflow

“Numbers in parentheses show lower and upper limit of the uniform PDF, respectively. PDF limits based on values reported by USEPA (2000).

®Unless otherwise indicated parameters are dimensionless.

“Numbers in parentheses show lower limit, mode, and upper limit of the triangular PDF, respectively. PDF limits based on values reported by USEPA (2000).

Table 2. PDFs of the uncertain hydrologic parameters that vary according to the land use and time of year, for the month of January

Parameter Land use Parameter PDF
INFILT (mm h™') index to mean infiltration rate Forest Triangular (1.3, 2.5, 25.4)*
Cropland Triangular (0.8, 4.3, 6.1)*
Pasture Triangular (1.0, 2.3, 22.9)*
LDR Triangular (0.8, 4.3, 6.6)*
HDR Triangular (0.3, 0.3, 2.5)*
Farmstead Triangular (0.8, 3.8, 5.8)*

UZSN (mm) nominal upper zone soil moisture storage

CEPSC (mm) interception storage capacity

LZETP® index to lower zone evapotranspiration

Loafing lot? Uniform (3.8, 5.8)°

Forest Uniform (5.1, 7.6)°
Cropland Uniform (1.5, 2.5)°
Pasture Uniform (1.5, 2.5)¢
Others? Uniform (1.5, 2.5)°
Forest Uniform (1.3, 1.9)°
Cropland Uniform (1.3, 1.9)¢
Pasture Uniform (1.3, 1.9)°
Others? Uniform (1.3, 1.9)°
Forest Uniform (0.1, 0.2)°
Cropland Uniform (0.1, 0.2)°
Pasture Uniform (0.1, 0.2)°
Others? Uniform (0.1, 0.2)°

Note: LDR = low-density residential; and HDR = high-density residential.

“Numbers in parentheses show lower limit, mode and upper limit of the triangular PDF, respectively. PDF limits and mode developed from histograms of

gridded GIS soil and land use data.
An area where livestock linger as part of the farming operation.

“Numbers in parentheses show lower and upper limit of the uniform PDF, respectively. PDF developed from histograms of gridded GIS soil and land use data.

4Other land uses include farmstead, LDR, HDR and loafing lot.
“Dimensionless.

Creek watershed. The uncertain hydrologic parameters were cat-
egorized into three groups on the basis of how each parameter po-
tentially varied with land use and time. Table 1 lists the parameters
that were not considered to be a function of land use or time. A
uniform distribution was the most obvious choice for most param-
eters, because these are commonly used calibrated parameters,
with no specific guidance, except the typical and possible limits
in BASINS Technical Note 6 (USEPA 2000). The lower and upper
limits of the uniform PDFs correspond to the typical minimum and
maximum limits for these parameters from USEPA (2000). The in-
terflow recession coefficient (IRC) was assigned a triangular PDF
with lower limit, mode, and upper limit of 0.5, 0.7 (recommended
value to start the model calibration process), and 0.8, respectively.

The second group was those parameters that were varied with
land use and/or time (Table 2). The INFILT parameter is a function
of land use only. An analysis of the histograms from gridded GIS
soil and land use data suggested that a triangular PDF was appro-
priate for all the land uses except the loafing lot (an area where
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livestock linger as part of the farming operation) land use (Table 2).
For those parameters that vary with time, i.e., including nominal
upper zone soil moisture storage (UZSN), interception storage
capacity (CEPSC), and index to lower zone evapotranspiration
(LZETP), parameter PDF values (minimum and maximum) for
the month of January were derived from USEPA (2000). The PDFs
for the other months of the year were calculated by multiplying the
January PDF by a monthly adjustment factor (Table S1) based on
the TMDL (Benham et al. 2004).

Simulation of in-stream FC concentrations with HSPF requires
the estimation of multiple water quality parameters including land-
based constituent loading parameters (ACQOP and SQOLIM), the
rate of surface runoff that results in a 90% wash-off in one hour
(WSQOP), the first-order die-off rate for FC bacteria in the
waterbody (FSTDEC), and the FSTDEC temperature correction
coefficient (THFST). The FC loading rates depend on several
factors, including species-specific feces production rates and fecal
densities, die-off rates, animal density, and the fraction of time
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Table 3. Prior PDFs of the water quality parameters used to simulate in-stream FC bacteria concentrations

Parameter

Land use

Parameter PDF

ACQOP-PERLND (cfu day~!) Accumulation of FC on
pervious land

SQOLIM adjustment factor® multiplied by ACCUM values
to obtain SQOLIM-PERLND

SQOLIM-PERLND maximum accumulation of FC on
pervious land

WSQOP-PERLND rate of surface runoff that will remove
90% of stored bacteria from pervious land surface
FSTDEC (day™!) first order die-off rate

Pasture Log-triangular (1 x 10°, 1 x 1010, 1 x 10')*
Loafing lot®
Cropland (for January)

Log-triangular (1.1 x 10", 1.1 x 10'2, 1.1 x 10"3)*
Log-triangular (2 x 10°, 2 x 107, 2 x 108)*

All Uniform (2.5, 11.5)¢

All ACQOP-PERLND (for each land use)
multiplied by SQOLIM adjustment Factor

All Uniform (0.5, 2.4)¢

All Triangular (0.12, 1.1, 2.52)°

“Numbers in parentheses show the logarithm of lower limit, mode and higher limit of the log-triangular PDF.

An area where livestock linger as part of the farming operation.
“Unless otherwise indicated parameters are dimensionless.
dNumbers in parentheses show limits of the uniform PDF.

“Numbers in parentheses show lower limit, mode, and upper limit of the triangular PDF, respectively.

livestock are confined (Zeckoski et al. 2005). As cited in TMDL
reports and in the literature (ASAE 2003; Geldreich 1978;
Yagow 2001), the FC production rates, typically reported in colony
forming units per day (cfu day~'), for dairy cattle, beef cattle, and
poultry can vary by several orders of magnitude. According to the
Mossy Creek bacteria TMDL report, dairy cattle, beef cattle, and
poultry are responsible for more than 94% of FC production in the
watershed (Benham et al. 2004). Therefore, this study hypothesized
that the uncertainty in production rates of dairy cattle, beef cattle,
and poultry (present on the cropland and pasture) were likely to
have the greatest impact on FC quantification uncertainty. To ac-
count for this uncertainty, the loading rates for pervious land areas
were assigned a log-triangular PDF. The mode of the ACQOP PDF
was determined from values generated using the Bacteria Source
Load Calculator (BSLC), a software tool used in FC source char-
acterization for TMDL development (Zeckoski et al. 2005), and the
lower and upper limits of the ACQOP PDF were determined by
multiplying the PDF mode by 0.1 and 10, respectively (Table 3).

Because the application of manure to cropland varies by month,
the FC accumulation rate (MON-ACCUM) was varied monthly. To
account for the temporal distribution of ACQOP, the FC cropland
loading PDF for January was multiplied by an adjustment factor for
each month (Table S1), with the factor developed using the trend of
FC accumulation values generated by the BSLC for each month.
Deterministic values for ACQOP calculated using the BSLC were
used for the other land uses [forest; low-density residential (LDR);
high-density residential (HDR); farmstead; and impervious areas].

The SQOLIM parameter is typically calculated by multiplying
ACQOP by an adjustment factor of nine, based on the assumption
that the die-off coefficient for FC bacteria on pervious land surface
is 0.051 day~' (Zeckoski et al. 2005). Crane and Moore (1986) re-
viewed several studies and reported a bacteria die-off rate ranging
from 0.04 to 0.20 day~', which translates to the SQOLIM adjust-
ment factor of 2.5-11.5. The SQOLIM adjustment factor was as-
signed a uniform PDF between 2.5 and 11.5 and was used to
calculate the SQOLIM values for each land use (Table 3).

There is no guidance available on estimating WSQOP,
FSTDEC, and THFST when simulating FC bacteria with HSPF.
The values of these parameters are generally adapted from previous
studies and further calibrated. A review of values used in previous
FC TMDLs shows a range of 0.5-2.4 for WSQOP (Lawson 2003).
Based on these reported values, a uniform PDF bounded by these
two values was used for WSQOP for all land uses. In a review
by Bowie et al. (1985), FSTDEC values ranging from 0.12 to
2.52 day~' were reported for various streams. The average of
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the reported values was 1.1 day~'. A similar value of FSTDEC
has been used in TMDLs developed in Virginia, so a triangular
PDF was assigned to FSTDEC with a mode of 1.1 and limits of
0.12 and 2.52 day~!. In this study, it was assumed that any uncer-
tainty in THFST would be masked by the uncertainty in FSTDEC.
Hence, a deterministic value of 1.07 was used for THFST (Lawson
2003).

Fecal coliform bacteria directly deposited in a waterbody is
input as an hourly time series to HSPF; this study used the BSLC-
generated time series for the Mossy Creek TMDL. Because the FC
discharge from the sole point source was negligible and the FC pro-
duction by wildlife and straight pipes (unlawful sewers emptying
directly into the stream) was estimated to be less than 1% and 2%,
respectively, of the total FC direct deposit, the uncertainty in direct
deposit FC is primarily due to cattle. To be consistent with the other
PDFs of bacteria loads, the cattle direct deposit PDF was assigned
a log-triangular distribution. To define this distribution, the cattle
direct deposit time series was multiplied by a factor from a
log-triangular PDF with a mode of 1 and limits of 0.1 and 10
(Table 3).

Watershed Model Calibration and Validation

The Mossy Creek model was calibrated and validated using the
GLUE and MCMC techniques independently. For the GLUE ap-
plication, this is a two-stage process in which the hydrologic cal-
ibration and validation is performed first, followed by water quality
calibration and validation. Hydrologic calibration used the period
from September 1998 to December 1999. The posterior parameter
PDFs obtained using GLUE were used to validate the hydrologic
model for the period from January 2000 to September 2002.
Posterior PDFs of water quality parameters were estimated using
GLUE for the period from October 1998 to December 2001. How-
ever, insufficient observed data prevented water quality validation
(Benham et al. 2004).

For the MCMC application, each sampled parameter set is a
function of the previous set, making separate hydrologic and water
quality calibrations impractical. The Mossy Creek model for the
MCMC application was calibrated using four years of concurrent
hydrologic and water quality data (September 1998 to September
2002). In each iteration, two likelihood functions were calculated:
one for hydrologic response based on the daily flow volume at the
watershed outlet and one for water quality that compared observed
instantaneous in-stream and simulated daily average FC concentra-
tions. A log transformation was performed on the observed and
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Table 4. TMDL pollutant allocations for FC bacteria

Required source-specific FC load reductions (%)

Single sample Cattle Wildlife Straight All residential
TMDL allocation  violation rate (%)  direct deposit ~ Cropland  Pasture  Loafing lot*  direct deposit pipes” pervious land segments
Existing 48.0 0 0 0 0 0 0 0
S1 41.0 0 50 50 100 0 100 50
S2 0.1 94 95 97 100 0 100 95
S3 0.1 94 95 95 100 30 100 95
S4 0.1 99 95 95 100 99 100 95
S5 0 99 90 98 100 30 100 95
S6 0 94 95 98 100 0 100 95

#An area where livestock linger as part of the farming operation.
®Unlawful sewers emptying directly into the stream.

simulated flow volume and in-stream FC bacteria before deriving
the likelihood function to normalize the scale of residuals.

TMDL Pollutant Allocations

The Mossy Creek TMDL (Benham et al. 2004) lists six pollutant
load allocations, with only two meeting the FC water quality cri-
terion of zero violations (S5 and S6, Table 4). These allocations
were run on a 3.5-year period that includes a range of representative
hydrological events in Mossy Creek. The S5 and S6 allocations
both require 100% reduction in the FC loading from the loafing
lot and straight pipes, 98% reduction from pasture, and 95% from
residential pervious land segments. The differences between the
two allocations are the reductions in cattle direct deposit (99% ver-
sus 94%), loading from cropland (90% versus 95%), and wildlife
direct deposit (30% versus 0%).

Benham et al. (2004) recommended the S6 allocation because it
calls for a lesser reduction in wildlife direct deposit than the S5
allocation. The TMDL allocations that focus on the reduction of
sources from human activities are generally favored. No effort
was made in the Mossy Creek TMDL study to consider uncertainty
when prioritizing allocation alternatives. The comparison of the S5
and S6 allocations presented in Table 4 considered only selected
sources of uncertainty. Uncertainty in wildlife direct deposit was
not considered owing to the limited production of FC bacteria
by wildlife (<1% of total FC load).

Results

Generalized Likelihood Uncertainty Estimation

Using GLUE, the posterior parameter-specific distributions were
derived and were used to model Mossy Creek watershed. The prior
and posterior CDFs of two hydrologic parameters, lower zone
nominal soil moisture storage for pasture (LZSN-pasture) and frac-
tion of infiltration into deep aquifers (DEEPFR) are presented in
Fig. 2. Fig. 2(a) shows that the acceptable likelihoods for the
LZSN-pasture occur at the lower end of the distribution, which re-
sults in the posterior distribution diverging from the prior. Fig. 2(b)
illustrates that the acceptable likelihoods of DEEPFR occur for the
entire range of the parameter, which results in a posterior distribu-
tion similar to the uniform prior distribution. The difference in prior
and posterior distributions for the two parameters implies that the
observed data provided greater information about LZSN-pasture
than DEEPFR. The model output is more sensitive to LZSN-
pasture than DEEPFR. A similar analysis was performed for all
the uncertain hydrologic parameters in this study (Tables 1 and 2).
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The posterior distributions of the hydrologic parameters were
used to conduct Monte Carlo simulations for the validation period
(January 2000 to September 2002). The daily flow volume result-
ing from each model parameterization was used to calculate the
statistics typically used to assess HSPF calibration sufficiency
(Lumb et al. 1994). The 2.5% and 97.5% quantiles for these
measures were used to validate the posterior PDFs (Table 5).
These dimensionless measures test the model performance in terms
of mass balance, high- and low-flow distribution and seasonal vari-
ability. All the hydrologic calibration objectives, except 50% lowest
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Fig. 2. Posterior cumulative distributions for two hydrologic para-
meters: (a) lower zone nominal soil moisture storage for pasture;
and (b) fraction of infiltration into deep aquifers obtained using GLUE.
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Table 5. Quantiles of the expert statistics for the validation period (January 2000 to September 2002) using posterior and prior PDFs

Quantiles using prior PDFs Quantiles using posterior PDFs

Criterion
Expert statistic (Lumb et al. 1994) (%) 2.5% 97.5% 2.5% 97.5%
Total volume error +10 —13.1% 13.8% —10.3% 8.2%
50% lowest flows error +10 —8.8% 23.8% —4.7% 16.8%
10% highest flows error +15 —16.5% 19.0% —16.9% 1.0%
Storm peaks error +20 —15.4% 32.0% —16.1% 1.7%
Seasonal volume error +30 0.9% 16.3% 0.2% 11.1%
Summer storm volume error +50 —19.1% 15.3% —15.7% 7.0%

flows and 10% highest flows, were met 95% of the time when using
the posterior distributions. A comparison of the expert statistics
produced by prior and posterior PDFs indicate that including expert
statistics in addition to the residuals between observed and simu-
lated daily flow volume in the likelihood evaluation can improve
model calibration. The posterior distributions obtained from GLUE
were used for uncertainty analysis.

The model performance in terms of bacteria simulation was
also evaluated using various goodness-of-fit measures, including
absolute error of the geometric mean, average, and median of
the simulated FC concentrations. Kim et al. (2007) suggested
that the absolute error between observed and simulated values for
these measures should be less than 100% for bacteria calibration.
Here, the absolute errors were 3.1%, 5.9%, and 10.8%, respec-
tively. The IVR (i.e., FC concentration >400 cfu/100 mL) of
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Fig. 3. Posterior cumulative distributions for two water quality para-
meters: (a) in-stream first-order die-off rate for FC bacteria; and (b) rate
of FC accumulation on pasture obtained using GLUE.
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the observed data is 60.0%, while the simulations exhibit a rate
of 50.6%. Since the difference is smaller than 10.0%, this criterion
is also satisfactorily met (Kim et al. 2007). In addition, 91.1%
of the observed data fall between the minimum and maximum
simulated hourly values on the day the observation was made. The
observed FC concentration ranged over many orders of magnitude
(20-160, 000 cfu/100 mL), which could be due to various reasons
such as the highly varying presence of livestock in the creek. The
observed bacteria data are also subject to uncertainty (Hantush and
Chaudhary 2014). Based on this assessment, we concluded that the
model is sufficiently calibrated for bacteria modeling.

Following the hydrologic calibration and validation as well as
water quality calibration, GLUE was used to determine the pos-
terior distributions of water quality parameters. The likelihood
function for each water quality parameter was calculated using
log-transformed observed FC bacteria in-stream concentrations
and simulated daily average FC bacteria concentration for the days
for which observed data were available.

Fig. 3 shows the prior CDF and the GLUE-generated posterior
CDFs for two water quality parameters: FSTDEC and ACQOP-
pasture. The posterior CDFs differ from their prior distributions,
implying the influence of observed data on the prior distributions.
However, the difference is not as large as that for the hydrologic
parameters, which is likely because water quality data were not
measured as frequently as streamflow data. The posterior CDF
of all water quality parameters were developed similarly.

The posterior distributions obtained via GLUE were used to
conduct Monte Carlo simulation for the two Mossy Creek TMDL
allocations S5 and S6 (Table 4). The simulations were conducted
for a period of approximately 3.5 years (1,218 days). The daily
average simulated FC concentration time series from each Monte
Carlo simulation was used to determine the 2.5%, 10%, 90%, and
97.5% quantiles (80% and 95% confidence intervals) for the two
valid allocations S5 and S6 (Fig. 4). Scenario S6 exhibited greater
uncertainty than S5 (i.e., larger difference between the lower and
upper quantiles). The S6 scenario reduced cattle direct deposit less
than the S5 scenario, but allowed more FC loading from cropland,
illustrating that cattle direct deposit was a greater source of uncer-
tainty than cropland FC loading in the Mossy Creek simulation,
given that both sources had similar input uncertainty (section
“Uncertain Parameters”).

The ensemble average IVR (1.2% versus 1.3%) is comparable
for the two TMDL allocations S5 and S6, suggesting that both
allocations have a similar chance of improving water quality
(Table 6). While the 80% confidence interval for S5 and S6 are
similar, the 95% confidence interval for scenario S6 is wider than
for S5. As a result, the probabilistic analysis based on the GLUE
application suggests that S5 should be the preferred Mossy Creek
TMDL allocation because S5 provides similar water quality im-
provement with greater reliability when compared with S6. This
is not in agreement with the deterministic analysis by Benham et al.
(2004). The inconsistency between deterministic and probabilistic
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Table 6. IVR of water quality criterion by the ensemble average time series
and the confidence intervals for the two TMDL allocations using GLUE

Ensemble 80% confidence 95% confidence
TMDL average interval of interval of
allocation IVR (%) IVR (%) IVR (%)
S5 1.2 0.2, 1.6)* (0.0, 2.5)°
S6 1.3 0.4, 1.8)* 0.1, 3.1)°

#10% and 90% quantile of the IVR over the simulation period.
®2.5% and 97.5% quantile of the IVR over the simulation period.

frameworks when prioritizing TMDL allocations has also been
documented in previous research (Borsuk et al. 2002; Langseth
and Brown 2011). However, the focus of decision making in the
probabilistic application is on water quality improvement and reli-
ability; technical feasibility and cost of implementation was not
considered as a decision criterion. With respect to the two alterna-
tive allocation scenarios, S5 will likely be costlier than S6 and
less feasible to implement. More expensive because S5 requires
a greater reduction in cattle direct deposits (i.e., more streambank
livestock exclusion fencing to achieve the required reduction),
while S6 requires a larger cropland bacteria load reduction that
can be achieved in a variety of less costly ways, and less feasible
because S5 requires a greater reduction from cattle direct deposits
than S6 in addition to reductions in wildlife bacteria loading. The
implementation of either of these scenarios will be challenging
given the large load reductions that are needed to achieve the appli-
cable water quality criteria.

Markov Chain Monte Carlo

Markov chain Monte Carlo was used to generate posterior distri-
butions of hydrologic and water quality parameters for the Mossy
Creek TMDL model to estimate the uncertainty associated with
in-stream FC concentrations. After burn-in (~70,000 iterations),
30,000 MCMC iterations were used to infer both hydrologic and
water quality parameters. The distribution of hydrologic parameters
exhibits less variation within the parameter space compared with
the water quality parameters. The observed data had a greater effect
on the hydrologic parameters LZSN-cropland and DEEPFR than
the water quality parameters ACCUM-pasture and FSTDEC be-
cause the observed data for flow were available for the entire sim-
ulation period (1,218 days), whereas observed FC concentration
data were available for only 90 days of the period.

When using the Gelman—Rubin statistic for assessing conver-
gence, at least three independent Markov chains are required. To
obtain these Markov chains, three independently initiated Markov
chains were executed in parallel. Markov chain convergence is de-
termined when the Gelman—Rubin statistic is approximately unity
and estimates of the variance stabilize. This analysis was performed
for all hydrologic and water quality parameters. All parameters
converged around 70,000 iterations or earlier. Posterior distribu-
tions for the LZSN-cropland, DEEPFR, ACCUM-pasture, and
FSTDEC parameters are shown in Fig. 5.

The posterior CDFs (solid lines in Fig. 5) differed from the prior
CDFs (dashed lines in Fig. 5) showing the effect of observed data
on the parameters. In general, the posterior CDFs of the hydrologic
parameters differed more from the prior CDFs than did those of the
water quality parameters. As expected, the GLUE analysis yielded
similar results, but there are inconsistencies between the two tech-
niques. The posterior CDFs for all hydrologic and water quality
parameters were derived similarly. Using the posterior CDFs,
Monte Carlo simulations were performed to yield average daily
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in-stream FC bacteria concentrations. As with the GLUE analysis,
model output was used to generate 2.5%, 10%, 90%, and 97.5%
quantiles (80% and 95% confidence intervals) for the Mossy Creek
TMDL allocations S5 and S6 (Fig. 6).

The IVR for different quantiles for the S5 and S6 TMDL
allocations (0.9% versus 1.1%) are similar suggesting that both
allocations have a similar chance of improving water quality
(Table 7). However, both the 80% and 95% confidence intervals for
scenario S6 are wider than the respective bands for S5. As was the
case with the GLUE analysis, this analysis suggests that S5 should
be the preferred Mossy Creek TMDL allocation alternative since it
provides similar water quality improvement with greater reliability
when compared with S6. Similar to what was found in GLUE
application, the optimal alternative is not in agreement with the
deterministic analysis by Benham et al. (2004).

Discussion

In this study, the reliability (i.e., the risk of not meeting an appli-
cable water quality criterion) of two TMDL pollutant allocation
alternatives (S5 and S6) was assessed. Based on the analysis
presented in this paper, the allocation recommended in the
USEPA-approved TMDL (alternative S6) had a wider confidence
interval than the allocation selected by the probabilistic frame-
work (alternative S5) and thus, less reliability or higher risk.
This suggests that while both allocations produced zero water
quality criterion violations, the scenario that exerted more control
(i.e., a greater reduction) on the source that contributed the most
uncertainty (cattle direct deposition) is preferred. The cost of im-
plementing the two allocation alternatives was not considered.
The comparative valuation of reliability and cost should be con-
sidered by both water quality managers and analysts. A high-cost
scenario with greater reliability might be preferable when an
ecosystem is fragile (i.e., the risk of a water quality violation
has potentially greater consequences). However, a less expensive,
less reliable pollutant allocation scenario might be preferred in a
situation when the ecosystem is more resilient or watershed
management funding is limited. An explicit assessment of the un-
certainty associated with watershed modeling and TMDL devel-
opment enables stakeholders to engage in more informed decision
making.

Both GLUE and MCMC allow uncertainty analyses of
watershed-scale water quality simulations by estimating posterior
distributions of model parameters using observed data and user-
defined, parameter-specific prior distributions coupled with Monte
Carlo simulation. The likelihood formulation is a key step in the
application of GLUE that provides the analyst flexibility in select-
ing model responses that are important for a given application.
Information used to develop a statistically rigorous likelihood
function is often scarce in watershed water quality modeling.
However, GLUE does not require a statistical likelihood function
and is often criticized for that (Mantovan and Todini 2006;
Stedinger et al. 2008). When using GLUE, the analyst also needs
to define the model parameter acceptance or rejection criteria,
which may affect the posterior parameter distribution. By contrast,
MCMC facilitates statistical sampling even in the most complex
of cases using a Bayesian posterior distribution (or in many
cases, a likelihood function). Compared with GLUE, MCMC
requires more computational resources. For the 4,076 ha Mossy
Creek TMDL case study presented in this paper, the MCMC analy-
sis (run with three chains to ensure model convergence) took
about four times longer to run compared with GLUE (nearly a
week versus 2 days). Implementation of GLUE is also simpler
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Fig. 6. Representative 80% and 95% concentration uncertainty bands
for simulated in-stream FC bacteria for TMDL allocations S5 and S6
using Markov chain Monte Carlo analysis.
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Table 7. IVR of water quality criterion by the ensemble average time series
and the confidence intervals for two TMDL allocations using Markov chain
Monte Carlo analysis

Ensemble 80% confidence 95% confidence
TMDL average interval of interval of
allocation IVR (%) IVR (%) IVR (%)
S5 0.9 0.0, 1.5)* 0.0, 2.8)°
S6 1.1 (0.0, 1.6)* (0.0, 3.5)°

#10% and 90% quantile of the IVR over the simulation period.
®2.5% and 97.5% quantile of the TVR over the simulation period.

and more straightforward than MCMC. Therefore, when consid-
ering computational requirements, GLUE might be viewed as a
more practical technique for uncertainty estimation of HSPF-based
bacteria modeling. However, with the increase in computational
power and reduced run time for HSPF, these advantages of
GLUE over MCMC may blur in the future. Further research on
MCMC statistical sampling methods for HSPF applications are
likely to decrease the computational cost. Additional research is
also required to analyze the effects of using different likelihood
functions and different parameter acceptance or rejection criteria
when using GLUE for HSPF-based water quality applications
(He et al. 2010). A potential method that was recommended
by Hantush and Chaudhary (2014) for TMDL applications is
Bayesian Monte Carlo Maximum Likelihood, which takes the
advantages of both GLUE and MCMC. Despite its recent appli-
cations (Chaudhary and Hantush 2017), there has been no appli-
cation to complex watershed-scale water quality models.

The performance measures and associated criteria reported
by Lumb et al. (1994) were used as HSPF hydrologic calibration
likelihood functions, primarily because these criteria are widely ac-
cepted and applied in HSPF applications. To derive parameter-
specific posterior distributions of selected water quality parameters,
published criteria for bacteria calibration (Kim et al. 2007) were
used. Other model performance measures (e.g., Nash—Sutcliffe ef-
ficiency) and hypothesis testing that are sometimes used to assess
model performance for hydrology and other water quality constitu-
ents could also be used, if criteria for those measures were estab-
lished for bacteria simulation. Future applications applying
uncertainty propagation techniques like GLUE and MCMC should
focus on developing advanced likelihood functions for bacteria
simulation. Water quality calibration procedures using Bayesian
techniques (Camacho et al. 2018) show potential to improve water
quality simulation model performance. However, application of
this computationally intensive procedures in overly parameterized
models such as HSPF will be both complicated and computation-
ally expensive.

This study focused only on the uncertainty resulting from
model parameters. In future research, other sources of uncertainty
(e.g., model structure, the cost of implementing pollution control
measures, and the willingness of stakeholders to implement non-
regulated pollution control measures) should be incorporated into
uncertainty analyses. Additionally, this study was conducted under
the assumption of stationarity; the uncertainty triggered by nonsta-
tionarity, such as changes in climate and land use, that might have a
major impact on water quality (Fonseca et al. 2015; Whitehead
et al. 2009) was not considered. Continued efforts to investigate
the impact of these nonstationarities are vital for water quality—
based watershed management decisions and promotes adaptive
management.
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Summary and Conclusions

This study presented a probabilistic framework to consider both
water quality improvement and reliability during the prioritization
of alternative TMDL pollutant allocation scenarios. Two uncer-
tainty analysis techniques, GLUE and MCMC, were applied to an-
alyze the uncertainty of two alternative TMDL pollutant load
allocations developed to address a bacteria impairment in a rural
watershed in Virginia. Both GLUE and MCMC allow uncertainty
analyses of watershed-scale water quality simulations by estimating
posterior distributions of model parameters using observed data and
user-defined, parameter-specific prior distributions coupled with
Monte Carlo simulation. This case study demonstrated the appli-
cability of both GLUE and MCMC to estimate the uncertainty
in simulated in-stream FC concentrations and resulting water qual-
ity criterion violations, and that the resulting information can be
used to analyze options that reduce bacteria sources to improve
water quality. The application of the probabilistic framework led
to selection of a different pollutant allocation than that selected
through the deterministic analysis by Benham et al. (2004), sug-
gesting that missing uncertainty can misrepresent the TMDL pol-
lutant allocations. The advantages of probabilistic frameworks for
TMDL development were demonstrated. Such frameworks should
be applied to improve the current practice of TMDL. The presented
probabilistic framework provides a systematic approach to include
uncertainty in TMDL development as a more rigorous alternative to
the current practice of arbitrarily assigning a MOS. A probabilistic
framework allows stakeholders to make more informed decisions
when prioritizing alternative TMDL pollutant allocations. Future
research should explore developing tools that examine the trade-
offs between the estimated implementation costs and relative
reliability (i.e., the risk of not meeting an applicable water quality
criterion) of alternative pollutant allocation scenarios.

Supplemental Data

Table S1 is available online in the ASCE Library (www
.ascelibrary.org).
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