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Abstract: Clustering data into similar characteristic groups is a commonly-used strategy in model
development. However, the impact of data grouping strategies on modeling stem taper has
not been well quantified. The objective of this study was to compare the prediction accuracy of
different data grouping strategies. Specifically, a population-level model was compared to the
models fitted with grouped data based on taxonomic rank, tree form and size. A total of 3678
trees were used in the analyses, which included six common species in upland hardwood for-
ests of the southeastern U.S. Results showed that overall predictions are more accurate when
building stem taper models at the species, species group or division level rather than at the
population level. The prediction accuracy was not considerably improved between species-spe-
cific functions and models fitted with species-related groups for the four hardwood species exam-
ined. Grouping data by taxonomic rank provided more reliable predictions than height-to-di-
ameter ratio (H-D ratio) or diameter at breast height (DBH). The form/size-related grouping
methods (i.e., data grouped by H-D ratio or DBH) generally did not improve the prediction
precision compared to a population-level model. In this study, the effect of sample size in model
fitting showed a minimal impact on prediction accuracy. The methodology presented in this
study provides a modeling strategy for mixed-species data, which will be of practical im-
portance when data grouping is needed for developing stem taper models.

Keywords: taxonomic hierarchy; tree form; tree size; within-group variation; shortleaf pine
(Pinus echinata Mill.); Virginia pine (Pinus virginiana Mill.); yellow poplar (Liriodendron tulipifera L.);
Hickory spp. (Carya spp.); white oak (Quercus alba L.); southern red oak (Quercus falcata Michx.)

1. Introduction

Tree-stem taper, defined as the change in tree diameter with increasing tree height
from ground level to total tree height, is a quantitative description of stem profile [1].
For a given population, stem taper functions are typically built by species, also
known as species-specific models, e.g., [2-4]. Since every species in a plant commu-
nity may respond differently to environmental and management changes and condi-
tions, developing stem taper models at the species level has been generally assumed to
better capture variable tree forms compared to a single population or community-level
model (i.e., a single taper model for the entire population) [5,6]. However, building
species-specific models usually requires relatively large samples due to complex model
forms and large numbers of parameters [7]. When the target population includes a
variety of species (e.g., mixed-hardwood forests), especially if many of them are rec-
orded infrequently or are sparse in the population, fitting stem taper models by species
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can be difficult under time and cost constraints. Rather than grouping data at the species
level, an alternative approach is to re-aggregate individuals into a smaller number of
groups based on similar tree characteristics (e.g., taxonomic rank, tree form, size). This
approach is cost-efficient when quantifying stem profile with limited data for diverse
species, e.g., [8].

In model evaluation, prediction accuracy is an important criterion and is com-
monly assessed using an independent validation dataset. It was found that paramet-
ric stem taper models produced reliable predictions for loblolly pine when the size dis-
tribution of the predicted populations deviated from the observations used in model
development (i.e., high robustness) [9]. Although the data grouping approach has been
implemented in forest and natural resources practice, to our knowledge, the accuracy
of stem taper models fit by different data grouping approaches and calibration sample
sizes has not been extensively investigated. Stem taper modeling has primarily fo-
cused on single stemmed, excurrent crown form trees (e.g., coniferous species), e.g.,
[10-13]. Predicting stem taper for decurrent trees (e.g., deciduous hardwoods) is gener-
ally more challenging than excurrent trees due to a more complicated geometric shape
of the main stem [1,8]. Although stem taper equations for upland hardwoods in the
southeastern US were built in the past, e.g., [4], the predictability of models under var-
ious data grouping strategies has not been extensively examined.

Therefore, the objectives of this study were (1) to compare the prediction accuracy
among different data grouping strategies, and (2) to examine the effect of sample size
on the prediction accuracy of stem taper with different data grouping strategies. To
achieve the first objective, stem taper models fit at the population level (i.e., one taper
model for the entire dataset) were compared with those grouped based on taxonomic
rank, tree form and size. Specifically, trees were grouped by species (species-specific),
species group, division (phylum) group (i.e., softwoods vs. hardwoods), height-DBH
ratios (H-D ratios) or DBH, respectively. For the second objective, trees were split ran-
domly between a fitting and validation set at 10/90, 20/80, 30/70, 40/60, 50/50, 60/40, 70/30,
80/20 and 90/10 splits. For example, with a 20/80 split, 20% of the trees were randomly
selected as fitting data, and the remaining 80% were used for validation. Six common
species in the upland hardwood forests in the southeastern US were selected, including
shortleaf pine (Pinus echinata), Virginia pine (Pinus virginiana), yellow poplar (Lirioden-
dron tulipifera), Hickory spp. (Carya spp.), white oak (Quercus alba) and southern red oak
(Quercus falcata). These species are economically and ecologically important in the region
[14]. The results of this study will provide insights on selecting appropriate data
grouping strategies when developing tree-taper models with inadequate per-species
data.

2. Materials and Methodology
2.1. Data

The stem taper data used in this study were collected from the LegacyTree da-
tabase (http://www .legacytreedata.org, last accessed on 18 October 2021). The Lega-
cyTree database is a large compilation of North American trees sampled in the past
century [15]. Felled trees with measured diameter outside bark (d, cm), diameter at
breast height (DBH, cm) and total tree height (Ht, m) were used in analysis. The aver-
age taper trends and distributions of height to DBH ratios (H-D ratios) are shown in
Figure 1. The sample trees were collected from 13 states in the southeastern US, includ-
ing Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North
Carolina, Oklahoma, South Carolina, Tennessee, Texas and Virginia. After trees with
DBH <7.6 cm (3 in) and total tree height <4.6 m (15 ft) were excluded [16], a total number
of 3678 trees were obtained. To reduce the sources of uncertainty in data collection, only
a single dataset collected by Clark et al. [4] was used in this work. A summary of tree
characteristics for each species is given in Table 1.
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Figure 1. The average taper trends of relative diameter (d/DBH) to relative height (h/Ht)
and distributions of height-DBH ratios (H-D ratios) among sixspecies. (a) Taper trends, (b) distri-
butions of H:D ratios.

Table 1. Summary statistics of tree characteristics for the six species evaluated. Nire is the total num-
ber of sample trees, and Nobstree is number of observations (taper points) per tree. DBH is diameter
at breast height in cm, and Ht is total tree height in m. For Nobsitree, DBH and Ht, the average is given
followed by standard deviation in parentheses.

Species Niee  Nobsee DBH (cm)  Ht (m)
shortleaf pine (Pinus echinata Mill.) 1347 24 (4) 35.2(10.5) 21.8(3.8)
Virginia pine (Pinus virginiana Mill.) 345 22 (3) 292 (7.5) 20.6(3.4)
white oak (Quercus alba L.) 717 25(4) 36.9(10.0) 23.7(3.5)
southern red oak (Quercus falcata Michx.) 292 24(33) 37.1(8.6) 224(29)
yellow poplar (Liriodendron tulipifera L.) 399 28 (4) 40.0(11.7) 28.5(4.8)
Hickory spp. (Carya spp.) 578 25(4) 35.4(10.2) 24.0(3.9)

2.2. Taper Model

Models proposed by Kozak [12] and Max and Burkhart [11] were applied to predict
stem tapers. Due to their flexibility, both models have been widely used to describe

the tree profiles for a variety of species in different regions [10].

2.2.1. Variable-Exponent Model

The nine-parameter variable-exponent model proposed by Kozak [12] can be writ-

ten as:
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and aco—as are model coefficients. In some cases, this model form can produce negative
value of Z when K =0 (h = Ht), leading to an undefined value of d. Thus, when h = Ht, the
restriction of d = 0 was imposed to Equation (1).

2.2.2. Segmented Polynomial Regression Model

Max and Burkhart [11] proposed using the squared ratio d2/DBH? as the depend-
ent variable, but Yang and Burkhart [9] found that the model with the first order
ratio d/DBH provided more accurate predictions. To be comparable with the Kozak
[12] model, the model with the first order ratio was used in this study, which is

d/DBH = ag(x—1) + a;(x> —1) + a,(b; —x)?I; + az(b, —x)?I, 4)

where x is h/Ht, ac—as are model coefficients,
I, = 1,ifb, >x
= 0,ifb; <x
and
I, = 1,ifb, > x
0,ifb, <x
In Max and Burkhart [11] model, coefficients b1 and bz are used to join three segments
of tree stems to form a single model, which were estimated as 0.69 and 0.11, respec-
tively, using all tree-stem taper data in this study. The fixed estimates of b: and bz were

applied to all cases listed in Section 2.3.

2.3. Model Fitting and Evaluation

The step-by-step procedure of tree selection for model fitting and validation is given
as:

1. A random sample of 100 trees was selected from the original dataset for a given
species.

2. (a) Population-level case (fitting a single stem taper model for all data):

For a given species, 100 sample trees selected in step 1 were randomly split
into fitting and validation datasets based on step 3. Then, the randomly-
split trees were merged into a fitting and validation dataset, respectively. In
this case, fitting and validation datasets included all species, and each spe-
cies contributed equal number of trees.

(b) Data grouping cases (fitting stem taper with grouped data):
Trees drawn from step 1 were grouped based on taxonomic rank, tree form
and size, which were detailed in Sections 2.3.1 and 2.3.2.

3.  Fitting and validation data were created with 10/90, 20/80, 30/70, 40/60, 50/50, 60/40,
70/30, 80/20 and 90/10 splits. Trees used in fitting and validation were randomly se-
lected. Model parameters were estimated with the Levenberg-Marquardt (LM) non-
linear least squares algorithm that is implemented in the nlsLM function in R [17].
The LM algorithm is a compromise between the gradient-descent and Gauss—
Newton approaches, which leads to more stable parameter estimates [18]. The
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initial values for parameter estimation were obtained from Yang and Burkhart [9].
The model evaluation statistics are given in Section 2.3.3.
4. Steps 1-3 were repeated 500 times.

To provide comparable results, the total number of sampling trees summed from
all groups was 600 (i.e., 600 = 100 trees/species x 6 species), which was consistent for
all cases (i.e., population level and data grouping cases). When a tree was selected, all
stem taper measurements within the tree were included, so that the correlation struc-
ture of repeated measurements was retained (i.e., cluster sampling).

2.3.1. Grouping Data Based on Taxonomic Rank

Three ranks in the taxonomic hierarchy: species-specific, species group and divi-
sions,were used in data grouping. The methods were defined as:

1. Trees grouped by species (fitting stem taper at species level):

All trees selected in step 1 were used in model fitting and evaluation where fitting
and validation datasets included only a single species. For a given species, 100
sample trees selected in step 1 were randomly split into fitting and validation da-
tasets based on step 3.

2. Trees grouped by species group:
Six species were divided into three species groups: pine (shortleaf pine and Virginia
pine), oak (white oak and southern red oak) andother hardwoods (yellow poplar
and Hickory spp.). Species in the pine or oak groups belong to the same genus.
Although yellow popular and Hickory spp. were in different genera, the classifying
strategy is commonly implemented in practice when species data are not available
[4]. For a given group, the fitting/validation datasets were composed of equal pro-
portion of sample trees from each species. For example, under the 90/10 split, each
species in a group contributed 90 trees for fitting and 10 trees for validation.

3. Trees grouped by division group (gymnosperm vs. angiosperm):

Six species were divided into softwood and hardwood groups. The softwood
group included short-leaf pine and Virginia pine, whereas the other group con-
tained white oak, southern red oak, yellow poplar and Hickory spp. For a given
group, the fitting/validation datasets were composed of equal proportion of sam-
ple trees from each species. Each species in a group has 100 trees randomly se-
lected for fitting and validation.

Notably, data splitting was species-independent. When species were mixed, the fit-
ting/validation data included the same number of trees from each species. For example,
when species A and B are mixed, each species provides 100 trees. Given the 90/10 split, 90
trees were selected for fitting from the 100 trees of each species and the validation data
included the remaining 10 trees (i.e., 10 = 100 — 90) from species A and B, respectively.

2.3.2. Grouping Data Based on Tree Form and Size

In this scenario, the sample trees of the six species selected in step 1 were merged
into a dataset (a total of 600 trees, 600 =100 x 6), and then regrouped into k number of
equal-sized groups by H-D ratios or DBH. A taper function was applied to each of
k groups, where k is equal to 6, 3 and 2 (i.e., 6, 3 and 2 groups). Specifically,

1.  Six HD ratio or DBH groups: Trees were divided into six groups based on H-
D ratios or DBH. Each group included 100 trees (i.e., 100 trees/group = 600 trees/6
groups).

2. Three H-D ratio or DBH groups: Trees were divided into the smallest, middle
and largest one-thirds based on H-D ratios or DBH to generate three H-D ratio
or DBH groups. Each group included 200 trees (i.e., 200 trees/group = 600 trees/3

groups).
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3. Two H-D ratio or DBH groups: Trees were divided into the smallest and largest
50% based on H-D ratios or DBH to generate two H-D ratio or DBH groups. Each
group included 300 trees (i.e., 300 trees/group = 600 trees/2 groups).

2.3.3. Statistics for Model Evaluation

To evaluate the accuracy of stem diameter prediction, the percent mean bias (MB)
and percent root mean square error (RMSE) for a given repetition were calculated as

X eq/d

MB =
N

* 100% 5)
L
p

* 100% (6)

 [Z(ea/d)’
RMSE = T

where N is the total number of observations in a sample, and the residuals for stem taper
points (eq, cm) were calculated as

eqg=d—d 7)

where d and d are the observed and predicted diameters in cm, respectively. For a given
group, the estimates and 95% confidence intervals of MB and RMSE were computed by
the median, 2.5% and 97.5% quantiles of 500 repetitions. Then, the overall estimates and
95% confidence intervals of MB and RMSE were calculated by averaging all groups for
a given case.

3. Results
3.1. Comparison of Prediction Accuracy among Different Data Grouping Strategies
3.1.1. Grouping Data Based on Taxonomic Rank

Overall, species-specific models provided more accurate predictions of stem taper
than those fit at population level (see percent MB and RMSE in Figures 2 and 3).
When data were grouped by taxonomic rank, the three methods yielded similar
mean bias regardless of fitting/validation data or model form. Generally, the overall
prediction of stem taper was more precise when the data were divided by the lower rank
of taxonomic hierarchy (i.e., species level) than the higher tank, but the improvements
were minimal. As shown in Figures 2 and 3, the models fitted by species provided
smaller RMSE than the models fitted by the other species-related groups (i.e., data
grouped by species group or division). However, the differences were only about 2%
for fitting, and less than 2% in validation for both the Kozak (2004) and Max and
Burkhart (1976) models.

We further examined model validation by species. As Table 2 shows, all six species
showed improvements in prediction accuracy when changing from a population-level
model to the models fitted by species-related groups except for Virginia pine with the Max
and Burkhart [11] model. With the Kozak [12] model, the largest reduction in MB and
RMSE between species-specific and population-level models was found for shortleaf pine,
ranging from approximately 15% for MB and 10% for RMSE, followed by oaks and hick-
ory. Similar results were found using the Max and Burkhart [11] model with larger RMSE
improvements being realized for the oak and hickory species. The differences in accuracy
between the population-level and species-grouping models for yellow poplar were rela-
tively small compared to other species using the Kozak [12] model. Notably, for Virginia
pine, the model fitted with species group or division group yielded lower precision than
the species-level model, which may be because it was grouped with shortleaf pine. Fur-
thermore, when building models at the species level, excurrent trees (shortleaf pine, Vir-
ginia pine and yellow poplar) showed a lower RMSE than decurrent trees (white oak,
southern red oak and hickory) (Table 2), which implied that excurrent trees had a lower
variation in stem profile among individuals. Notably, grouping data by three different
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taxonomic ranks for the four hardwood species did not show noticeable differences in
prediction accuracy (see MB and RMSE in Table 2). Precision was not greatly decreased
using a species-specific model compared with higher-level groupings for both model
forms. In other words, building stem taper models with species-specific (a lower rank in
taxonomic hierarchy) did not greatly improve the prediction accuracy. For example,
a similar range of RMSE was produced (15.7-17.7% and 16.3-17.3%, respectively, in Table
2) when fitting white oak alone or white oak in the oak group with the Kozak [12]

model.
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Table 2. Summary of percent mean bias (MB) and percent root mean square error (RMSE) for vali-
dation among six species by Kozak (2004) and Max and Burkhart (1976) models. Fitting/validation

datasets were split as 10/90, 50/50 and 90/10 (%), respectively.

Mean Bias (%) RMSE (%)

Model Species Grouping 10/90 50/50 90/10 10/90 50/50 90/10

Kozak (2004) Shozzl}fizz Zzlﬁiif )m”s Species-specific 1.3 -08 -0.8 143 127 118

Species group 3.2 2.8 2.9 13.4 125 118

Division group 3.0 2.9 2.8 13.4 125 117

Population level 150 151 150 235 234 233

Virginia pine (Pinus g0 o pecific  -1.0 06 -09 143 131 127
virginiana Mill.)

Species group -4.9 -5.2 -5.1 17.6 17.3 17.0

Division group -5.3 -5.2 -5.0 17.8 17.5 16.7

Population level 5.7 5.6 59 15.8 153 151

yellow poplar (Lirio- ¢ (oo checific 09 10 09 152 139 132

dendron tulipifera L.)

Species group 1.6 1.6 1.6 15.5 147 139

Division group 2.1 2.1 2.3 16.1 15.6 14.9

Population level -29 31 =27 157 153  14.0

white ZZI; i%uercus Species-specific 1.6 1.7 1.8 177 163 157

Species group 1.5 1.9 2.0 17.3 16.6 163

Division group 1.9 1.9 1.9 16.8 16.2 15.8

Population level -65 -65 -63 197 191 185
southern red oak

(Quercus falcata Species-specific 1.5 1.7 1.6 182 170 167

Michx.)

Species group 1.3 1.3 1.4 17.0 16.7  16.6

Division group 1.2 1.0 1.0 16.7 16.4 15.8

Population level -8.7 -8.5 -8.5 214 21.1 20.6

H”korys;};f’)‘ (Carya g e cies-specific 10 09 10 192 175 172

Species group 0.3 0.0 0.2 17.2 167 16.2

Division group 1.0 0.9 1.0 17.5 172 16.6

Population level -73 -73 72 210 207 202

Max aa‘;;;rkhart s hozzij; f;“l‘veﬁif )m”s Species-specific 29 27 25 156 152 143

Species group 0.7 0.8 1.0 13.9 137 131

Division group 0.8 0.7 1.2 14.0 13.6 12.7

Population level 134 13.3 13.3 20.1 19.9 19.6

Virginia pine (Puus g0 joc specific 3.6 -35 36 181 182 177
virginiana Mill.)

Species group =77 =77 71 21.8 21.7 210

Division group -7.6 =77 =72 21.9 21.7 20.7

Population level 5.7 5.6 5.7 15.2 15.1 14.8

Zeeg;’:;’np;fﬁs;e(z?’)' Species-specific ~ -21 21 -19 160 159 149

Species group -0.4 -0.6 -0.4 14.9 147 137

Division group 0.4 0.5 0.7 14.6 14.4 13.5

Population level -74 =75 76 199 198 192
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white oak (Quercus

alba L) Species-specific -0.9 -1.0 -0.9 15.4 14.9 14.3
Species group -0.2 -0.3 -0.1 15.1 147  14.0
Division group -7 -15 -14 158 153 146
Population level -93 93 -89 236 236 225
southern red oak

(Quercus falcata Species-specific -09 -11 -1.0 154 150 146

Michx.)
Species group -1.7 -1.7 -1.8 15.4 15.2 14.5
Division group -3.2 -3.2 -3.1 16.4 16.3 15.6

Population level -111 -11.2 -111 255 256 251
Hickory spp. (Carya

spp.) Species-specific -1.1 -1.2 -1.0 16.5 162 157
Species group -2.8 -3.0 -3.0 177 177 171

Division group -2.1 -2.1 -2.0 16.8 16.7 158

Population level -97 99 96 245 248 238

3.1.2. Grouping Data Based on Tree Form and Size

When H-D ratio or DBH was used in data grouping, the overall absolute
mean bias was similar to the species-related grouping models. Based on 95% confidence
intervals shown in Figure 4, the [12] model yielded fewer biased predictions than the [11]
model. For RMSE, the average differences increased to 4-5% (Figures 2 and 3). In some
cases, using the form/size-grouping methods produced less precise predictions than the
population-level model (See Figure 2d). Unlike using taxonomic rank in data grouping,
the results showed that increasing the number of H-D ratio or DBH groups in
model fitting did not appreciably improve the prediction accuracy. As Figures 2 and 3
illustrate, MB and RMSE were similar among the different number of H-D ra-
tio/DBH groups. Although H-D ratio has been shown to be related to crown/tree
form, and tree taper usually varies by tree DBH, e.g., [8,9,19,20], we found that the
uncertainty of prediction was not considerably reduced when grouping data based
on H-D ratio or DBH.

95% confidence interval of MB for 50/50 split validation data 95% confidence interval of MB for 50/50 split validation data
Kozak (2004) Max and Burkhart (1976)

Al (population level) — » o :4 Al (population level) — > o 4|
| |

Two DBH groups - > o : < Two DBH groups - > o :4
| |

Three DBH groups — > o : <« Three DBH groups — > o : <

| |
| |
Six DBH groups — > o <« Six DBH groups — > o <
| I
| |

Two H:D ratio groups — > ol < Two H:D ratio groups — > o <
| |
| |

Three H:D ratio groups —| > [ : < Three H:D ratio groups —| > <) : <«

| |
Six H:D ratio groups — > o : < Six H:D ratio groups — > o « :
| |
' |
Division group — > o « Division group — > o «
' |
| |

Species group — » 10 « Species group — > ) <
| |
1 1

Species-specific — > : I} < Species-specific — > o : «
T T T T T T T T T T
-10 5 0 5 10 10 5 0 5 10
MB (%) MB (%)
(@) (b)

Figure 4. The estimate (circle dot) and 95% confidence interval boundaries (black triangles) of per-
cent mean bias (MB) among data grouping strategies by Kozak (2004) and Max and Burkhart
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(1976) models. Fitting/validation datasets were split as 50/50 (%). (a) Kozak (2004), (b) Max and
Burkhart (1976).

3.2. Effect of Sample Size on Prediction Accuracy

Generally, the effect of sample size used for model fitting was small except
for the form/size-grouping methods with the Kozak (2004) model. Taper models were
robust across all fitting/validation ratios evaluated. Larger sample sizes minimally
affected MB for both the fitting and validation data regardless of grouping strategies
(Figures 2 and 3). Larger fitting sample sizes resulted in slightly larger RMSE values;
however, the validation RMSE values noticeably improved with larger fitting sample
sizes, especially when changing from 10% to 20% of the total data with the Kozak
[12] model used (Figures 2 and 3). The largest improvement in fit statistics for RMSE
occurred with the six H-D ratio grouping strategy with an approximate 3% improve-
ment from the smallest fitting size to the largest.

4. Discussion

In forestry, grouping data by species to build species-specific taper models has
long been assumed as the most accurate and precise strategy among other data clus-
tering methods. Grouping data by other criterion (e.g., higher taxonomic rank) was
viewed as a compromise when sufficient species-level observations were lacking. This
resulted in most of the past efforts being confined to developing statistical methods for
species-level models with a limited sample size. However, our results showed that group-
ing data by species did not greatly improve the prediction accuracy of stem taper com-
pared to clustering data by species group or division. Grouping data by the higher rank
of taxonomic hierarchy may still provide a certain level of accuracy in prediction. Notably,
in this study, Virginia pine was grouped with shortleaf pine because they are the only two
coniferous pine species. However, both species could have variable size and stem shape,
which results in poor prediction accuracy when both species were grouped (see Figure 1
and Table 1). We found that species-specific models could be less precise than those fit to
higher levels of grouping for a given species as an individual species may contain consid-
erable variation in stem taper depending on growing conditions.

Clustering data into a small number of similar, simplified groups has been examined
and implemented in forestry and ecology. However, many of the past studies were pri-
marily focused on grouping data from ecological perspectives (e.g., aggregating data into
functional groups) in species-abundant forest ecosystems (e.g., tropical rain forests), e.g.,
[19,21,22]. The results showed that using only H-D ratio or DBH as a grouping criterion
was not adequate to accurately classify data so that the individuals within groups have
more similar taper than those between groups (i.e., the variation within groups is smaller
than that between groups.). Using multiple criteria (e.g., a combination of species and tree
size) in data grouping may improve the overall prediction accuracy, but adding additional
criteria usually requires a larger sample size in model development. Thus, in this study,
the data were classified by only a single criterion at a time, so that the results can be better
implemented in forestry practice.

When handling mixed-species data, the primary goal usually lies in finding a
proper modeling strategy for minimizing the uncertainty for all species, not just for
a single species. Grouping data by species group or division was found to not cause
a large reduction in precision and accuracy in prediction. In other words, the influence
of grouping by upper levels of taxonomic rank was minimal and dependent on the
population of interest. Various statistical methods have been widely studied for mod-
eling stem taper in the forestry literature [10]; however, to our knowledge, the impact
of grouping strategies on predicting stem taper has not been extensively examined. The
findings of this work can be used to provide insights in building stem taper models for
multi-species datasets. In addition to the six species examined, the methodology can be
applied to other types of forests when data clustering is needed.
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Other than aggregating data, an alternative approach for dealing with multi-species
data is to construct a population-level, mixed-effect model, and localize the equation
with the upper stem diameter of the target trees, e.g., [23]. However, measuring upper
stem diameters requires additional time and effort in the field, which may not be a
feasible option in many cases. Lam et al. [24] proposed adding the taxonomic hierarchy
of genus and species as random effects in developing species-specific, height-diameter
relationship models for tropical forests in Malaysia. However, the trajectories of stem
profile are usually more complicated than H-D relationships. In addition to taxo-
nomic rank, it is worth investigating adding measuring procedure, location or envi-
ronmental/climatic factors as a random effect in a mixed model. Comparing the ac-
curacy of stem taper predicted by the grouped data and the mixed-effect models is
suggested for future studies. Strategies for selecting proper initial values and random
effect parameters need to be further investigated. The Kozak [12] and Max and
Burkhart [11] taper models used in this work are not necessarily optimal for each spe-
cies but are used due to their flexibility. Choosing a proper base model and initial
values in parameter estimation is critical in model development and should be con-
sidered on a case-by-case basis when developing local taper models.

Lastly, in regression analysis, fitting (training) data commonly contain more obser-
vations than validation data. In this work, we examined using validation datasets
that were considerably larger than the fitting data. This is of interest because in prac-
tice, fitting datasets are much smaller than the populations of interest. Models that
successfully validate when fit with relatively small samples provide additional evidence
of robustness and confidence in their ability to successfully function in practice. These
results indicate that the parametric models evaluated are robust against small sample
sizes, which can be applied when sufficient numbers of destructively sampled data are
not available due to logistical or ecological limitations.

5. Conclusions

In summary, the overall prediction is more accurate when building stem taper
model at the species (group) or division level than at the population level. The
prediction accuracy was not considerably improved between species-specific functions
and models with species-related groups for the four hardwood species examined.
Grouping data by the taxonomic rank provided better prediction accuracy than by
height-to-diameter ratio (H-D ratio) or diameter at breast height (DBH). The
form/size-related grouping methods (i.e., data grouped by H-D ratio or DBH) generally
did not improve the prediction precision compared to a population-level model. In this
study, the effect of sample size in model fitting showed a minimal impact on prediction
accuracy. However, the goal was not to elucidate what a sufficient sample size or
proper model form is for a particular species. This will be situation specific and de-
pend on the target species, tree sizes available for sampling, the taper model form
used and the desired model precision. The methodology presented in this study pro-
vides a modeling strategy for a mixed-species population, which will be of practical
importance when data grouping is needed for developing stem taper models.
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