

Improved Prediction of Glass Fiber Orientation in Basic Injection
Molding Geometries

By
Kevin J. Meyer

Dissertation submitted to the faculty of
Virginia Polytechnic Institute and State University

In partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
In

Chemical Engineering

Donald G. Baird, Chairman

Luke E. Achenie

Stephen M. Martin

Peter Wapperom

September 2nd, 2013

Blacksburg, VA

Keywords: Injection Molding, Composites, Glass Fiber, Numerical Modeling

Improved Prediction of Glass Fiber Orientation in Basic Injection
Molding Geometries

Kevin J. Meyer

Abstract
 This work is concerned with the prediction of short (SGF) and long glass fiber (LGF)
orientation in a center-gated disk and end-gated plaque injection molding test geometry using a
simulation method that has not been attempted previously. Previous work has used assumptions
to simplify the fiber orientation geometry (assuming a thin cavity) or flow field (neglecting
fountain flow and entry regions). LGF orientation is predicted in a center-gated disk injection
molding geometry including the advancing front and simulating the sprue and gate region (SGM
method) so that no assumption about fiber orientation at the mold entrance has to be made. Using
a semi-flexible fiber model and orientation parameters obtained through rheology, increased
agreement was found between predicted and experimentally obtained values of orientation using
the SGM method and a semi-flexible fiber model than was found using a Hele-Shaw
approximation. The SGM method was applied to the end-gated plaque to predict SGF orientation
both along and away from the centerline using an objective (reduced strain closure model) and
non-objective (strain reduction factor model) orientation model. The predicted values of the
strain reduction factor model showed reasonable agreement with experimentally obtained values
of orientation throughout the three-dimensional cavity when using orientation parameters fit to
experimental orientation data. Furthermore it was found that the objective model predicted
results very similar to the non-objective model suggesting that objectivity may not play a role in
predicting orientation in more complex geometries such as an end-gated plaque. Finally, the
SGM method was applied to the end-gated plaque geometry to predict LGF orientation using a
rigid and semi-flexible fiber model. It was found that the SGM method and the semi-flexible
fiber model provides orientation predictions that are similar to experimentally obtained values of
orientation.

iii

Original Contributions
• Improved Long Glass Fiber Orientation Predictions by Combining a Semi-Flexible Fiber

with Gate Effects and the Advancing Front

• Utilized a Simulation Technique to Predict Short and Long Glass Fiber Orientation at a
Number of Points in Complex Molding Geometries (along and away from centerline of
mold)

• Developed a Method for Determining Orientation Parameters for Use in Simulating Short
and Long Glass Fiber Orientation in an End-Gated Plaque

iv

Acknowledgements
The author wishes to express his thanks and gratitude to Dr. Donald G. Baird for his

guidance and support that resulted in the completion of this work. Additionally, the author would
like to thank his committee members Dr. Luke Achenie, Dr. Stephen Martin and Dr. Peter
Wapperom for their comments and suggestions during the evolution of this work.

The author would also like to acknowledge the following people:

• Ms. Amy Poli for her support and belief in me and for her unending patience. Without her
support this work would not have been completed.

• Mrs. Laura Brown and Ms. Sandra Meyer for their support and love through this difficult
project and helping mold me into the man that I am today.

• Mr. Edward Richards and Mrs. Marlene Richards for helping me with life’s problems, big
and small, and making sense of the world.

• Ms. Julie Love for her support and friendship through this arduous process.

• Ms. Kimberly Agnello for helping me edit this document and providing me with constructive
criticism.

• To the close friends that provided support during this project (in no particular order): Ashley
Gordon, Adam Larkin, Kevin Norfleet, Andy Ford, Hillary Paulson, Tim Vadala, Caitlin
Cossaboom, Lucas Vu, Colin Spellmeyer, Matt Sobieski, Ryan Cardillo, Andrew Lane and
Shawn Hamm.

• The past and current members of the Polymer Processing Lab at Virginia Tech (in no
particular order): Mike Heinzer, Kevin Ortman, Syed Mazahir, Chen Chen, Gregorio Vélez-
García, Chris McGrady, Kevin Harrington, Mark Cieslinski, Chen Qian and Hongyu Chen.

• The staff of the chemical engineering department at Virginia Tech whose help was
irreplaceable: Mrs. Diane Cannaday, Mrs. Tina Russell, Mrs. Nora Bentley, Mrs. Jane Price,
Mr. Riley Chan and Mr. Mike Vaught.

v

Format of Dissertation
This dissertation is written in journal format. Chapters 3, 4 and 5 are self-contained

papers that are to be submitted for journal publication. Each paper separately described the
experiments, results and conclusions relative to each chapter. With the exception of Chapter 2
the figures and tables are presented after the reference section of each chapter.

vi

Table of Contents
1	
 Introduction ... 2	

1.1	
 Solution of Equations for Fiber Orientation ... 2	

1.2	
 Solution of Fiber Orientation in a Center-Gated Disk .. 3	

1.3	
 Solution of Fiber Orientation in End-Gated Plaque ... 4	

1.4	
 Research Objectives ... 5	

1.5	
 References .. 5	

2	
 Review of Literature ... 7	

2.1	
 Glass Fiber Composites .. 8	

2.2	
 Determination of Experimental Fiber Orientation ... 11	

2.3	
 Modeling Equations for Stress Tensors in Fiber Suspensions ... 16	

2.4	
 Modeling Equations for Fiber Orientation ... 21	

2.5	
 Numerical Predictions of Fiber Orientation ... 34	

2.6	
 References .. 42	

3	
 Initial Conditions for Simulation of Glass Fiber Orientation in
the Filling of Center-Gated Disks .. 53	

3.1	
 Abstract ... 54	

3.2	
 Introduction .. 54	

3.3	
 Governing Equations .. 56	

3.4	
 Experimental ... 60	

3.5	
 Problem Formulation .. 61	

3.6	
 Results .. 63	

3.7	
 Conclusions .. 65	

3.8	
 Acknowledgments .. 66	

3.9	
 References .. 66	

3.10	
 Figures .. 70	

4	
 Prediction of Short Glass Fiber Orientation in the Filling of an
End-Gated Plaque ... 82	

4.1	
 Abstract ... 83	

4.2	
 Introduction .. 83	

4.3	
 Governing Equations .. 85	

4.4	
 Solution Method ... 88	

4.5	
 Experimental Data .. 89	

4.6	
 Results .. 90	

4.7	
 Conclusions .. 93	

4.8	
 Acknowledgments .. 93	

4.9	
 References .. 94	

4.10	
 Figures .. 97	

vii

5	
 Prediction of Orientation of Long Semi-Flexible Glass Fiber
Orientation during the Injection Molding of an End-Gated
Plaque ... 107	

5.1	
 Abstract ... 107	

5.2	
 Introduction .. 107	

5.3	
 Governing Equations .. 109	

5.4	
 Numerical Method .. 113	

5.5	
 Experimental Conditions .. 114	

5.6	
 Results .. 115	

5.7	
 Conclusions .. 119	

5.8	
 Acknowledgements .. 119	

5.9	
 References .. 120	

5.10	
 Figures .. 123	

6	
 Conclusions .. 134
6.1 References……………………………………………………………………………..136

7	
 Recommendations ... 138
A	
 Appendix: Simulation Software Overview 142	

A.1	
 Introduction ... 142	

A.2	
 Finite Element Analysis for Injection Molding Simulations ... 142	

A.3	
 Finite Difference Calculations for Orientation Predictions ... 146	

A.4	
 Complete List of Files ... 154	

A.5	
 References ... 155	

B	
 Appendix: Comments on Numerical Routine 159	

B.1	
 Dimensional Analysis for Complex Geometry Simulations .. 159	

B.2	
 Improvements to the FEM Solution Method ... 161	

B.3	
 Improvements to the FDM Solution Method ... 163	

B.4	
 References .. 164	

C	
 Appendix: Rheological Data ... 166	

C.1	
 Neat SABIC Polypropylene Data .. 166	

C.2	
 SABIC Polypropylene w/ 30 % (wt.) Long Glass Fiber .. 172	

C.3	
 Neat RTP Polypropylene Data ... 173	

D	
 Appendix: Fiber Orientation Data ... 177	

D.1	
 Center-Gated Disk LGF Orientation Data – 0.7mm Bin Width 177	

D.2	
 End-Gated Plaque Mold LGF Orientation Data – 0.7 mm Bin Width 179	

E	
 MATLAB Fiber Orientation Software Package 185	

E.1	
 Fiber Orientation Interface Scripts ... 185	

E.2	
 Core Routines ... 200	

viii

E.3	
 Ancillary Routines ... 219	

ix

List of Figures

Figure 1.1: Geometry of a center-gated disk. (a) Qualitative representation of work performed up
to this point for long-glass fiber systems (Red Square – Hele-Shaw Region,
Assumptions are made at gate about fiber region, fountain flow not included). (b)
Qualitative representation of simulation domain for simulating long glass fibers in
this work (Blue Square – Simulation includes fountain flow and entry effects, Red
Square – Simulation includes sprue). .. 3	

Figure 1.2: Geometry of an end-gated plaque. (a) Solution of fiber orientation through a
rectangular cavity using Hele-Shaw assumption (may be combined with fountain flow
model) requiring specification of orientation at mold entry. (b) Solution of fiber
orientation using the three-dimensional end-gated plaque geometry without
assumptions at mold entry. .. 4	

Figure 2.1: Concentration regimes as a function of volume fraction, f , and aspect ratio, ra .
Estimations are done using Dinh and Armstrong theory for aligned fibers [5]. 9	

Figure 2.2: Three-dimensional visualization of the puck including the polishing marker looking
from the side (left) and bottom (right). .. 12	

Figure 2.3: Image showing final stage of sample preparation once sample has been etched using
oxygen plasma under 10 x magnification. ... 14	

Figure 2.4: Determination of experimental fiber orientation using: (a) in-plane view where M is
the length of the major axis, m is the length of the minor axis, and j is the in-plane
angle, (b) out-of-plane view where p is the vector projected down the major axis of
the fiber and q is the out-of-plane angle. ... 15	

Figure 2.5: Rigid-rod representation of fiber. The fiber is represented by the vector p , and is
characterized by the azimuthal and zenith angles and j q , respectfully. 22	

Figure 2.6: Polar and azimuthal angles describing orientation kinetics of an ellipsoidal particle in
simple shear flow given by the analytical solution to Jeffery’s equation, Eq. (2.35) to
Eq. (2.38). Solution is given for a particle with 5ra = and initial conditions
φ0 = 175°,θ0 = 45° . .. 24	

Figure 2.7: Semi-flexible representation of fiber. The fiber is represented by the vectorsp andq ,
an end-to-end vector r , an internal resistivity to bending k , and the azimuthal and
zenith angles and j q , respectfully. ... 29	

Figure 2.8: Diagram of a typical injection molding machine. Two main regions are described
involving the injection and clamping sections of the machine. Figure used under the
Creative Commons Attribution 3.0 License. ... 34	

Figure 2.9: Diagram of typical geometries used in fiber orientation simulation in (a) center-gated
disk and (b) end-gated plaque. ... 35	

Figure 2.10: Qualitative depiction of Carreau-Yasuda model showing the ability to capture the
Newtonian and non-Newtonian behavior of shear-thinning fluids. Log-log plot of

x

viscosity vs. shear rate where 0h and h• are the zero-shear viscosity and infinite
shear viscosity, respectively. ... 36	

Figure 2.11: Qualitative representation of Hele-Shaw geometry where the gradient in one
direction (z-direction) clearly dominates terms on the momentum equation. 37	

Figure 2.12: Comparison of Hele-Shaw approximation and the “fountain flow” effect in a center-
gated disk at 40% of the fill domain for 30 wt. percent short glass fibers. When taking
into account the fountain flow of mold cavity filling, theoretical predictions show
much lower orientation predictions at the wall, which is commonly observed [70]. .. 38	

Figure 2.13: Qualitative figure of fountain flow effect. Adapted from Baird and Collias [124].
The fluid element reaches a stagnation point where the fluid is stretched and moved
towards the outside wall. ... 38	

Figure 2.14: Qualitative representation of fluid filling a mold cavity with distinguishing features:
Entry region where the fluid entering the mold is very near the gate, the Hele-Shaw
region where lubrication approximation may be enforced, and the fountain flow
region. .. 39	

Figure 2.15: Comparison of different fiber orientation values in the gate region (0% fill) of the
center-gated disk. (■) is random assumption through the thickness, (●) are the
results of simulating short glass fiber orientation from the sprue to the gate [104], and
(▲) are the experimental orientation values obtained for short glass fibers [83]. The
data is for 30 wt. % short glass fiber in polypropylene matrix. 41	

Figure 3.1: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as well as
the azimuthal and zenith angles, φ and θ respectively. ... 70	

Figure 3.2: Vector definition of flexible fiber. The fiber is characterized by the vectors, p and r ,
as well as the azimuthal and zenith angles, φ and θ respectively. The two vector are of

equal length, lb , and there is an internal resistivity to bending, k . The end-to-end
vector, r ,is also defined to determine a fiber’s “average” direction. 71	

Figure 3.3: Comparison of numerical (o) and analytical (☐) solution for radially diverging flow
using the Hele-Shaw approximation at 40% of the mold fill. Maximum difference is
0.27%. .. 72	

Figure 3.4: Comparison of numerical (dashed) and analytical (solid) solution of transient
viscosity using the semi-flexible fiber model in simple shear flow using a sliding
plate rheometer (T = 180°C,α = 0.13,C

I
= 0.04,k = 218s−1

 ,φ = 0.1447,l
b

= 1.9mm c1
= 49,c

2
= 25000). .. 73	

Figure 3.5: Qualitative figure to examine initial conditions entering the mold cavity. The lightly
shaded area represents the currently evolving (CE) data while the combination of the
lightly shaded and darkly shaded areas constitutes the fully evolved (FE) data. Areas
of interested for the CE data include 60% of sprue (CE60), 80% of the sprue (CE80),

xi

and the 0% fill of the mold (CE0). Areas of interest for the FE data include 0% mold
fill (FE0) 10% mold fill (FE10), 40% mold fill (FE40), and 80% mold fill (FE80). .. 74	

Figure 3.6: Comparing the rigid fiber (solid) model and semi-flexible (dashed) model to
experimental LGF data for A11 (◊) and A22 (○) obtained from center-gated sprue
when the fluid has just turned to enter the mold cavity. Comparison of models for (a)
CE60 data and (b) CE80 data region of interest. ... 75	

Figure 3.7: Comparison of rigid fiber (solid) and semi-flexible (dashed) model predictions versus
the experimentally obtained CE0 (a) A11 or R11, (b) A22 or R22 and (c) A33 or R33. ... 76	

Figure 3.8: Results from simulating the center-gated disk filling operation taken FE10 of the
mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid
fiber model and (b) R11 orientation component results using the semi-flexible fiber
semi-flexible model. Experimental IC’s (dotted), random IC’s (dashed), planar
random IC’s (dash-dot), and simulated IC’s (solid) compared to experimental data
(◊). ... 77	

Figure 3.9: Results from simulating the center-gated disk filling operation taken at FE40 of the
mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid
fiber model and (b) R11 orientation component results using the semi-flexible fiber
semi-flexible model. Experimental IC’s (dotted), random IC’s (dashed), planar
random IC’s (dash-dot), and simulated IC’s (solid) compared to experimental data
(◊). ... 78	

Figure 3.10: Results from simulating the center-gated disk filling operation taken at FE80 of the
mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid
fiber model and (b) R11 orientation component results using the semi-flexible fiber
semi-flexible model. Experimental IC’s (dotted), random IC’s (dashed), planar
random IC’s (dash-dot), and simulated IC’s (solid) compared to experimental data
(◊). ... 79	

Figure 3.11: Results from simulating the center-gated disk filling operation taken at (a) FE10 of
the mold fill, (b) FE40 of the mold fill, and (c) FE80 of the mold fill. Simulations are
carried out using S-G-M method for long glass fibers. Predictions are made with the
rigid fiber model (solid) and flexible fiber model (dash-dot) for

A

11
R

11() (○),

A

22
R

22() (□), and

A

33
R

33()(∇) orientation components. .. 80	

Figure 4.1: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as well as
the azimuthal and zenith angles, φ and θ respectfully. .. 97	

Figure 4.2: End-gated plaque geometry with highlighted regions of interest (1) 0% fill, 0%
width, (4) 10% fill, 0% width, (7) 40% fill, 0% width, (10) 90% fill, 0% width, (2)
0% fill, 50% width, (5) 10% fill, 50% width, (8) 40% fill, 50% width, (11) 90% fill,
50% width, (3) 0% fill, 90% width, (6) 10% fill, 90% width, (9) 40% fill, 90% width,
(12) 90% fill, 90% width. .. 98	

Figure 4.3: Model predictions of the SRF model using orientation parameters obtained from
fitting stress growth at the startup of shear flow. Predictions are compared to

xii

experimentally determined fiber orientation (A11 - O, A22 - Δ, A33 - ☐) at 0% of the
mold width (centerline) at (a) 0% mold fill (position (4) in Figure 4.2), (b) 10% mold
fill (position (7) in Figure 4.2), (c) 40% mold fill (position (10) in Figure 4.2) and (d)
90% mold fill (position (13) in Figure 4.2). 2H = 1.55 mm. 99	

Figure 4.4: Model predictions of SRF (solid) and RSC (dashed) models compared to
experimentally determined fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 0% of the
mold width (centerline) at (a) 0% mold fill along the centerline (position (4) in Figure
4.2), (b) 10% mold fill along the centerline (position (7) in Figure 4.2), (c) 0% mold
fill at 50% width (position (5) in Figure 4.2) and (d) 40% mold fill at 50% width
(position (11) in Figure 4.2). 2H = 1.55 mm. .. 100	

Figure 4.5: Model predictions of SRF (solid) model compared to experimentally determined
fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 0% of the mold width (centerline) at (a)
0% mold fill (position (4) in Figure 4.2), (b) 10% mold fill (position (7) in Figure
4.2), (c) 40% mold fill (position (10) in Figure 4.2) and (d) 90% mold fill (position
(13) in Figure 4.2). 2H = 1.55 mm. ... 101	

Figure 4.6: Model predictions of SRF (solid) model compared to experimentally determined
fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 50% of the mold width (centerline) at (a)
0% mold fill (position (5) in Figure 4.2), (b) 10% mold fill (position (8) in Figure
4.2), (c) 40% mold fill (position (11) in Figure 4.2) and (d) 90% mold fill (position
(14) in Figure 4.2). 2H = 1.55 mm. ... 102	

Figure 4.7: Model predictions of SRF (solid) model compared to experimentally determined
fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 50% of the mold width (centerline) at (a)
0% mold fill (position (6) in Figure 4.2), (b) 10% mold fill (position (9) in Figure
4.2), (c) 40% mold fill (position (12) in Figure 4.2) and (d) 90% mold fill (position
(15) in Figure 4.2). 2H = 1.55 mm. ... 103	

Figure 5.1: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as well as
the azimuthal and zenith angles, φ andθ respectively. ... 123	

Figure 5.2: Vector definition of flexible fiber. The fiber is characterized by the vectors, p and q ,
as well as the azimuthal and zenith angles, φ andθ respectively. The two vector are
of equal length, lb , and there is an internal resistivity to bending, k . The end-to-end
vector, r , is also defined to determine a fiber’s “average” direction. 124	

Figure 5.3: End-gated plaque geometry with highlighted regions of interest (1) 0% fill, 0%
width, (4) 10% fill, 0% width, (7) 40% fill, 0% width, (10) 90% fill, 0% width, (2)
0% fill, 50% width, (5) 10% fill, 50% width, (8) 40% fill, 50% width, (11) 90% fill,
50% width, (3) 0% fill, 90% width, (6) 10% fill, 90% width, (9) 40% fill, 90% width,
(12) 90% fill, 90% width. .. 125	

Figure 5.4: Orientation predictions using the (a) rheologically determined parameters (rigid =
dashed κ R = 0.23 and CI

R = 0.005 , semi-flexible = solid, κ SF = 0.13 and
CI
SF = 0.053) and (b) experimentally fit parameters (rigid = dashed κ = 0.0087 and

CI = 0.2278 , semi-flexible = solid, κ = 0.0039 and CI = 0.4843). Predictions are

xiii

compared to experimentally determined fiber orientation (A11 - o, A33 - ☐) at 0% of
the mold width and 0% mold fill (position (4) in Figure 5.3). 126	

Figure 5.5: Model predictions of rigid (dashed) and semi-flexible (rigid) models compared to
experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 0% of the
mold fill at (a) 0% mold width (position (4) in), (b) 50% mold width (position (5) in
Figure 5.3) and (c) 90% mold width (position (6) in Figure 5.3). 127	

Figure 5.6: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to
experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 10% of the
mold fill at (a) 0% mold width (position (7) in Figure 5.3), (b) 50% mold width
(position (8) in Figure 5.3) and (c) 90% mold width (position (9) in Figure 5.3). 128	

Figure 5.7: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to
experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 40% of the
mold fill at (a) 0% mold width (position (10) in Figure 5.3), (b) 50% mold width
(position (11) in Figure 5.3) and (c) 90% mold width (position (12) in Figure 5.3). 129	

Figure 5.8: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to
experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 90% of the
mold fill at (a) 0% mold width (position (13) in Figure 5.3), (b) 50% mold width
(position (14) in Figure 5.3) and (c) 90% mold width (position (15) in Figure 5.3). 130	

Figure 7.1: Qualitative representation of simply supported beam with a point force acting on the
center. .. 138	

Figure 7.2: Qualitative representation of simply supported beam with a distributed force acting
on the length of the beam. ... 139	

Figure 7.3: Predicted R11 orientation component in simple shear flow for increasing values of the
flexibility parameter, 139	

Figure A.1: Computational Time and FEM Nodes vs. Number of Refinements for center-gated
disk. Revision 1: tetrahedral meshing only, automated meshing from ANSYS
meshing utility. Revision 2: Quad/Tet meshing combination, manual meshing.
Revision 3: hexagonal dominant meshing, automated meshing. Revision 4:
Hexagonal meshing only, manual meshing. .. 144	

Figure A.2: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as well
as the azimuthal and zenith angles, φ and θ respectively. ... 146	

Figure A.3: Vector definition of flexible fiber. The fiber is characterized by the vectors, p and q ,
as well as the azimuthal and zenith angles, φ and θ respectively. The two vector are of

equal length, lb , and there is an internal resistivity to bending, k . The end-to-end
vector, r , is also defined to determine a fiber’s “average” direction. 149	

Figure A.4: Example of post-processing fiber orientation data to visualize cross-section of
center-gated disk. Contours represent value of A11 orientation component. 153	

Figure A.5: NLLSQ fitting of experimental orientation data (left) and transient viscosity (right)
for various fiber orientation equations. ... 154	

xiv

Figure B.1: Computational Time and FEM Nodes vs. Number of Refinements for center-gated
disk. Revision 1: tetrahedral meshing only, automated meshing From ANSYS
meshing utility. Revision 2: Quad/Tet meshing combination, manual meshing.
Revision 3: hexagonal dominant meshing, automated meshing. Revision 4:
Hexagonal meshing only, manual meshing. .. 161	

Figure B.2: Finite Element Meshes over a Generic Domain. (Left) Mesh exhibiting no bias.
(Right) Mesh exhibiting bias in one horizontal direction (from left to right) and two
biases in the vertical direction (near the walls). .. 162	

Figure B.3: FEM meshes for CGD sprue (left) and CGD sprue/mold interface (right). 162	

Figure B.4: Axisymmetric center-gated mold FEM mesh. (Left) The mold filling simulation

begins from the left edge of the mold and progresses through to the right edge.
(Right) Close-up of the mold cavity thickness noting the bias shown towards the
walls of the mold. .. 162	

Figure B.5: Results for (Up-Left) x-velocity (Up-Right) y-velocity (Bottom) z-velocity
components during mesh benchmarking. The number of cross-sectional elements is
varied from 7 to 41. ... 163	

Figure B.6: Reduction of Computation Time with Successive Code Improvements. Version 2
introduced vectorization into the MATLAB routines. Version 3 was the conversion of
some core routines into the C programming language. ... 164	

Figure C.1: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in
25mm cone-and-plate fixture obtained from RMS-800 at 180°C. 166	

Figure C.2: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in
25mm cone-and-plate fixture obtained from RMS-800 at 190°C. 167	

Figure C.3: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in
25mm cone-and-plate fixture obtained from RMS-800 at 200°C. 168	

Figure C.4: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in
25mm cone-and-plate fixture obtained from RMS-800 at 220°C. 169	

Figure C.5: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in
25mm cone-and-plate fixture obtained from RMS-800. ... 170	

Figure C.6: Capillary data for SABIC Verton® polypropylene Matrix from Göttfert Capillary
Rheometer. ... 171	

Figure C.7: Transient viscosity data for SABIC Verton® polypropylene/ 30 wt. % LGF
obtained from sliding plate rheometer at 180° C ... 172	

Figure C.8: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in 25mm
cone-and-plate fixture obtained from RMS-800 at 180°C. 173	

Figure C.9: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in 25mm
cone-and-plate fixture obtained from RMS-800 at 200°C. 174	

Figure C.10: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in 25mm
cone-and-plate fixture obtained from RMS-800 at 220°C. 175	

xv

Figure D.1: Experimentally determined orientation values at 0% fill of the center-gated disk for
SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 177	

Figure D.2: Experimentally determined orientation values at 10% fill of the center-gated disk for
SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 177	

Figure D.3: Experimentally determined orientation values at 40% fill of the center-gated disk for
SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 178	

Figure D.4: Experimentally determined orientation values at 40% fill of the center-gated disk for
SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 178	

Figure D.5: Experimentally determined orientation values at 0% fill and 0% of width in the end-
gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 179	

Figure D.6: Experimentally determined orientation values at 10% fill and 0% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.179	

Figure D.7: Experimentally determined orientation values at 40% fill and 0% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.180	

Figure D.8: Experimentally determined fiber orientation values at 90% fill and 0% of width in
the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.
 ... 180	

Figure D.9: Experimentally determined orientation values at 0% fill and 50% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.181	

Figure D.10: Experimentally determined orientation values at 10% fill and 50% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.181	

Figure D.11: Experimentally determined orientation values at 40% fill and 50% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.182	

Figure D.12: Experimentally determined orientation values at 90% fill and 50% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.182	

Figure D.13: Experimentally determined orientation values at 0% fill and 90% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.183	

Figure D.14: Experimentally determined orientation values at 10% fill and 90% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.183	

Figure D.15: Experimentally determined orientation values at 40% fill and 90% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.184	

Figure D.16: Experimentally determined orientation values at 90% fill and 90% of width in the
end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.184	

xvi

List of Tables
Table 2.1: Detailed procedure for the grinding portion of the experimental sample preparation

adapted from [21]. ... 13	

Table 2.2: Detailed procedure for the polishing portion of the experimental sample preparation
adapted from [21]. ... 14	

Table 3.1: Parameters for the filling of polypropylene matrix filling the center-gated mold. 81	

Table 4.1: Material properties for non-isothermal finite element simulation. 104	

Table 4.2: Fiber orientation simulation parameters. .. 105	

Table 5.1: Material properties for non-isothermal finite element simulation obtained from

rheological testing in torsional rheometer (RMS-800, Rheometrics Inc.) and
extensional rheometer (Rheograph 2001, Göttfert Inc.). ... 131	

Table 5.2: Fiber orientation simulation parameters. .. 132	

1

Chapter 1

Introduction

2

1 Introduction
A polymer composite typically consists of a resin and some type of fiber additive. Glass

fibers are often a popular choice as an additive and have been readily used since the 1950’s [1].
A glass fiber additive acts as a reinforcing phase and can provide increases in stiffness and
strength of a material [2, 3]. Long glass fibers L >1 mm()are of particular interest because of the
advantageous properties they provide over short glass fibers L <1 mm() in injection molded
parts.

It has been shown and observed that the orientation of fibers within a sample play a
crucial role in the properties of that part [4]. To predict and optimize the properties of the final
product, it is highly desirable to be able to accurately model how the fibers orient during the
filling of a mold to produce a part. It is for this reason that the study of fiber orientation during
processing has been an area of significant research efforts [5].

The injection molding of glass fiber composite systems is a very complex problem
usually involving a number of simultaneously occurring phenomena. First, many molds of
industrial interest are geometrically complicated and will involve a number of gates and
complicated flow regions [6]. Second, the molten composite is almost always a different
temperature than the mold which it is being injected into, and the viscosity of the fluid is
temperature dependent so that the momentum and energy equations are coupled. Additionally,
the fibers within a molten composite also orient in the fluid as a result of the velocity gradients
and temperature gradients that arise from being injected into the mold [7]. Complicating the
problem further, the fluid filling a mold is a moving boundary problem so the domain of the
solution must be continually updated during the solution process. Ultimately, the system to be
modeled must be simplified in a number of ways so that the problem becomes tangible to solve
in a realistic time frame.
1.1 Solution of Equations for Fiber Orientation

The prediction of long glass fiber orientation in any geometry is a complicated task
involving the solution of a number of non-linear equations. The solution to any flow problem
begins with the equations of continuity and the equation of motion. A common assumption is
that the polymer fluid filling the cavity is in the laminar flow regime which produces continuity
and motion equations in the form of Eq. (2.1) and Eq. (2.2):
 0 = ∇⋅v (2.1)

 0 = −∇P +∇⋅τ (2.2)

In Eq. (2.1) and Eq. (2.2) v is the velocity vector, P is the isotropic pressure and τ is the
extra stress tensor. Additionally, many simulations involving the flow of a polymeric fluid into a
cavity include temperature effects so that the heat equation must also be solved. The heat
equation is seen in Eq. (2.3) for an incompressible fluid including the effects for viscous
dissipation.

3

ρCP

DT
Dt

= k∇2T +τ : γ (2.3)

In Eq. (2.3) ρ is the density, CP is the heat capacity, DT Dt is the material derivative of the

temperature, k is the thermal conductivity, τ is the extra stress tensor and γ is the rate of strain
tensor.

The solution of fiber orientation may occur simultaneously with the flow and heat
equations (“coupled”) or can be solved as a second step in a two-step solution process
(“decoupled”). In general, the equations to predict fiber orientation can be a function of a number
of factors given by Eq. (2.4):

DA
Dt

= f A,A4 ,D,W ,k,lb() (2.4)

In Eq. (2.4) A is the 2nd moment of the orientation distribution (2nd order orientation
tensor), A4 is the 4th moment of the orientation distribution function (4th order orientation

tensor), D is the rate of deformation tensor,W is the vorticity tensor, k is a fiber’s resistivity to
bending and l is the length of a fiber. While coupling the flow equations with the orientation
equations sometimes yields better results, the complications that arise in the solution of such
coupled systems generally outweigh the benefits [4, 8, 9].

1.2 Solution of Fiber Orientation in a Center-Gated Disk

One of the most studied geometries in the prediction of glass fiber orientation is the
center-gated disk mold shown in Figure 1.1. The axisymmetric nature of the problem allows the
flow calculations to be performed in 1.5 or 2.5 dimensions (Hele-Shaw assumption uses 1.5
dimensions, entire domain uses 2.5 dimensions).

Figure 1.1: Geometry of a center-gated disk. (a) Qualitative representation of work
performed up to this point for long-glass fiber systems (Red Square – Hele-Shaw Region,
Assumptions are made at gate about fiber region, fountain flow not included). (b) Qualitative

4

representation of simulation domain for simulating long glass fibers in this work (Blue Square –
Simulation includes fountain flow and entry effects, Red Square – Simulation includes sprue).

Within the center-gated disk, simulations are commonly carried out in the “Hele-Shaw” region.
This assumes a mainly shear dominating flow field and neglects a frontal flow region, referred to
as “fountain flow”, and also neglects the entry effects to the mold, referred to as the “gate
region”. Hele-Shaw flow, represented by Figure 1.1 (a), has been used to simulate flows of fiber-
filled systems and is currently utilized in many numerical simulation packages but has been
shown to produce less accurate orientation predictions at the walls, near the front, and near the
gate of the mold [10, 11]. As the review of literature will show, the modeling of long glass fibers
in a center-gated disk has received relatively little attention. One attempt by Nguyen et al. [12]
applied a short fiber model to a long fiber system and assumed Hele-Shaw flow. Ortman et al.
[13] used the Hele-Shaw assumption in order to simulate the orientation kinetics of LGF’s during
filling using a semi-flexible fiber model. Instead this work seeks to investigate the accuracy
gained in fiber orientation predictions when no assumptions about fiber orientation into the mold
cavity are made and the mold is simulated from the sprue/mold interface shown by Figure 1.1
(b).

1.3 Solution of Fiber Orientation in End-Gated Plaque

A more industrially applicable geometry of interest is the end-gated flow domain given
by the mold in Figure 1.2. Commonly in the end-gated system, the sprue, runner and gate are
neglected and only flow in the mold cavity is simulated [14-17]. The previous work has
employed the Hele-Shaw assumption to simplify the three-dimensional geometry into a
rectangular cavity, as seen in Figure 1.2 (a).

Figure 1.2: Geometry of an end-gated plaque. (a) Solution of fiber orientation through a

rectangular cavity using Hele-Shaw assumption (may be combined with fountain flow model)
requiring specification of orientation at mold entry. (b) Solution of fiber orientation using the
three-dimensional end-gated plaque geometry without assumptions at mold entry.

5

The modeling of LGF orientation while being injected into a fully three-dimensional
mold, such as an end-gated plaque shown above in Figure 1.2 (b), has seen only one effort by
Nguyen et al. [12]. In this study a short fiber orientation model was applied to a long glass fiber
systems and a Hele-Shaw assumption was made. Unfortunately comparisons between predicted
and experimental fiber orientation values were carried out at the center-line of the mold in this
study. Hele-Shaw flow makes assumptions about the flow field near the front and near the gate
which effect the orientation of fibers. Instead both regions should be included when predicting
fiber orientation in the end-gated mold. Furthermore, the entry to the mold cavity is a complex
three-dimensional flow field and the effects should be studied to assess effects on fiber
orientation in the mold. Understanding the evolution of long glass fiber orientation in fully three-
dimensional test geometries is necessary as it is the foundation for predicting fiber orientation in
more industrially relevant molding geometries.

1.4 Research Objectives
The primary goal of this research is to access the increase in accuracy of modeling long

glass fiber orientation by modeling the entire injection domain as a single entity in two injection
molding test geometries. Three objectives have been proposed to accomplish this goal:

1. Quantify the improvement gained in predicting long glass fiber orientation in a center-
gated disk by simulating the sprue, gate and mold (SGM method) as a single domain
using established orientation equations and rheologically determined orientation
parameters and comparing results to experimentally obtained fiber orientation data.

2. Assess the accuracy of the SGM method to predict short glass fiber orientation in an end-
gated plaque mold by comparing predicted fiber orientation values (obtained from an
objective and non-objective rigid fiber model) to experimentally measured fiber
orientation both along and away from the centerline.

3. Assess the accuracy of the SGM method to predict long glass fiber orientation in an end-
gated plaque mold by comparing predicted fiber orientation values (obtained from both a
rigid and semi-flexible fiber model) to experimentally determined fiber orientation both
along and away from the centerline.

1.5 References
[1] C. C. Lee, F. Folgar, and C. L. Tucker, "Simulation of Compression Molding for Fiber-

Reinforced Thermosetting Polymers," Journal of Engineering for Industry-Transactions
of the Asme, vol. 106, pp. 114-125, 1984.

[2] B. T. Åström, Manufacturing of polymer composites, 1st ed. London: Chapman & Hall,
1997.

[3] S. G. Advani, Process modeling in composites manufacturing. New York: Marcel
Dekker, 2003.

[4] B. E. VerWeyst, C. L. Tucker, P. H. Foss, and J. F. O'Gara, "Fiber orientation in 3-D
injection molded features - Prediction and experiment," International Polymer
Processing, vol. 14, pp. 409-420, Dec 1999.

6

[5] S. G. Advani and E. M. Sozer, Process modeling in composites manufacturing. New
York: Marcel Dekker, 2003.

[6] A. Whelan, Injection moulding machines. London: Elsevier Applied Science, 1984.
[7] A. Larsen, "Injection molding of short fiber reinforced thermoplastics in a center-gated

mold," Polymer Composites, vol. 21, pp. 51-64, Feb 2000.
[8] B. E. VerWeyst and C. L. Tucker, "Fiber suspensions in complex geometries:

Flow/orientation coupling," Canadian Journal of Chemical Engineering, vol. 80, pp.
1093-1106, Dec 2002.

[9] G. M. Velez-Garcia, S. M. Mazahir, P. Wapperom, and D. G. Baird, "Simulation of
Injection Molding Using a Model with Delayed Fiber Orientation," International
Polymer Processing, vol. 26, pp. 331-339, Jul 2011.

[10] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .2.
Experimental Results," Polymer Composites, vol. 13, pp. 332-341, Aug 1992.

[11] E. K. Henry, S.;Kennedy P., "Fiber orientation and the mechanical properties of SFRP
parts.," presented at the SPE Tech. Papers, 1994.

[12] B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, et
al., "Fiber length and orientation in long-fiber injection-molded thermoplastics - Part I:
Modeling of microstructure and elastic properties," Journal of Composite Materials, vol.
42, pp. 1003-1029, May 2008.

[13] K. Ortman, D. Baird, P. Wapperom, and A. Aning, "Prediction of fiber orientation in the
injection molding of long fiber suspensions," Polymer Composites, vol. 33, pp. 1360-
1367, 2012.

[14] G. G. Lipscomb, M. M. Denn, D. U. Hur, and D. V. Boger, "The Flow of Fiber
Suspensions in Complex Geometries," Journal of Non-Newtonian Fluid Mechanics, vol.
26, pp. 297-325, Jan 1988.

[15] C. L. Tucker, "Flow Regimes for Fiber Suspensions in Narrow Gaps," Journal of Non-
Newtonian Fluid Mechanics, vol. 39, pp. 239-268, May 1991.

[16] M. Altan, S. Subbiah, S. I. Guceri, and R. B. Pipes, "Numerical Prediction of Three-
Dimensional Fiber Orientation in Hele-Shaw Flows," Polymer Engineering and Science,
vol. 30, pp. 848-859, 1990.

[17] K. H. Han and Y. T. Im, "Numerical simulation of three-dimensional fiber orientation in
injection molding including fountain flow effect," Polymer Composites, vol. 23, pp. 222-
238, Apr 2002.

7

Chapter 2

Literature Review

Preface
This chapter provides a review of the literature relevant to this research. This portion of

the document is divided into five major subsections: general classifications of glass fiber
composites, determination of experimental fiber orientation in glass fiber composites, modeling
equations for the stress tensor used with glass fiber suspensions, modeling equations for the
prediction of orientation of glass fibers in suspension and a summary of the prediction of glass
fiber orientation in different geometries. The figures and tables are given in the text as needed.

8

2 Review of Literature
In the following section, a review of literature concerning glass fiber composites is

presented. The following text is a review of pertinent information on glass fiber reinforced
composites which allow the reader to be fluent enough in the subject matter to understand the
concepts presented throughout this thesis. First, classification of fiber systems based on
concentration and fiber length is reviewed in § 2.1. Next, in § 2.2 determination of experimental
fiber orientation in glass filled thermoplastics is reviewed. Rheologically obtained parameters fit
to stress models are used in rigid and semi-flexible fiber orientation simulations. Therefore,
modeling of the stress tensor in rigid and semi-flexible fiber suspensions is reviewed in § 2.3.
Next, modeling fiber orientation for rigid and semi-flexible fibers in a flow field is discussed in
§2.4. Finally, predicting both rigid and semi-flexible fiber orientation during processing is
reviewed in § 2.5.
2.1 Glass Fiber Composites

Additives have long been used in polymers as a way to change the properties of a matrix.
Fiber additives are used to increase rigidity and enhance mechanical properties. One such
example of this is the use of glass fibers in the design of a bus seat reported by Bartus et al. [1].
The findings showed a 43% weight reduction and 18% cost reduction while maintaining the
same standards of previous, non-composite alternates. Parts made from glass-fiber reinforced
plastics have also been reported to have a high strength to weight ratio along with high stiffness
and creep endurance [2]. Glass fibers have the ability to be added to a wide range of polymers
while generally increasing properties [3].

Classifying a fiber-filled system usually by either length or concentration often dictates
the assumptions to be made and equations to be solved. First, the classification of fiber-filled
systems by concentration is addressed in §2.1.1. Next, the use of fiber length when classifying
fiber filled systems is reviewed in § 2.1.2.

2.1.1 Classification by Fiber Concentration
When classifying the concentration of fibers within a system, one common method

employed is given by Doi and Edwards [4] and is based on concentrated polymer solutions
adapted for fiber suspensions. This method is based on fiber concentration and is defined by the
relation given in Eq. (2.1):

 φ = πnL3

4ar
4 (2.1)

Eq. (2.1) is taken to be over a given suspension of fibers where φ is the fiber volume fraction, n
is the number of fibers per unit volume and L and ar are the fiber’s length and aspect ratio,
respectfully. From the definition, Doi and Edwards [4] described three regions of concentration.
These regions are termed by the authors as dilute (§ 2.1.1.1), semi-dilute (§ 2.1.1.2), and
concentrated (§ 2.1.1.3) regions. Figure 2.1 shows the relationship between fiber aspect ratio,ar ,
fiber volume fraction, φ , and the regions that combinations of the two can yield.

9

Figure 2.1: Concentration regimes as a function of volume fraction, f , and aspect ratio, ra .
Estimations are done using Dinh and Armstrong theory for aligned fibers [5].

2.1.1.1 Dilute Region of Fiber Concentration

A fiber suspension is defined as dilute when the presence of a single fiber is completely
unaffected by any other fibers in the system. This regime exists, theoretically, when the average
distance between adjacent fibers is larger than L , the length of a given fiber in the system.
Additionally, the number of fibers per unit volume is also restricted to a value ofn <1 L3 . The
volume fraction is now also confined to a value of φ <1 ar

2 . A fiber in the dilute system is never
able to “observe” another fiber within a system. Specifically, a fiber is unaffected by any other
fibers around it either by direct fiber-fiber interaction or hydrodynamic interactions.

2.1.1.2 Semi-Dilute Region of Fiber Concentration

In the semi-dilute region free rotation of a fiber is restricted by the presence of other
fibers but fiber collision is still rare. Quantitatively, fiber-fiber interaction can occur when the
number of rods per unit volume is over n >1 L3 . The upper limit for a system of completely
random rods in a unit volume to be semi-dilute is given by Eq. (2.2) and the upper limit of a
system of completely aligned rods is given by Eq. (2.3).

Random System → n 1

dL2 (2.2)

Aligned System → n 1

d 2L
 (2.3)

The fiber volume fraction is also restricted to a value of ar
−2 <φ  ar

−1 .

10

2.1.1.3 Concentrated Region of Fiber Concentration

The concentrated regime encompasses all those systems which are above the limit of the
semi-dilute region described in § 2.1.1.2. The quantitative description of this is described as
either n ≥1 d 2L or φ ≥ ar

−1 for the number of fibers per unit volume and fiber volume fraction,
respectfully. In this region both hydrodynamic interactions and fiber-fiber interactions are highly
prevalent with fiber collisions occurring frequently. In concentrated systems it is also possible to
observe behavior similar to liquid-crystalline polymer systems whereby clustering occurs to form
a nematic phase of locally preferential alignment [4]. Concentrated systems are inherently
complex and relatively little is understood about these systems in comparison to dilute and semi-
concentrated regimes.
2.1.2 Classification by Length

The second of the two classifications methods for fiber suspensions is by length of the
fibers within the suspension. Generally, systems are classified by either being “short” glass fiber
systems (SGF’s) or “long” glass fiber systems (LGF’s). Short glass fibers have been studied
extensively by a number of authors [6-9]. The term “short” is generally used with systems when
the fiber length distribution has an average length less than 1mm. Conversely, the term “long” is
used when L >1 mm with the distinction based primarily on mechanical properties of the fiber
[10]. A LGF system may exhibit the ability to bend, quantified by Switzer and Klingenberg [11,
12] as the effective flexibility of a fiber and given in Eq. (2.4):

f eff = 64ηm

γ ar
4

EYπ
 (2.4)

In the equation above, ηm is the matrix viscosity, γ is the shear rate, ar is the aspect ratio, and
EY is the Young’s modulus of the individual fiber. From the expression in Eq. (2.4), the
flexibility of a fiber can be seen to increase with increasing aspect ratio for a given Young’s
modulus.

Experimentally, fiber suspensions do not have one fixed length but a number of different
fiber lengths within a system known as a fiber length distribution (FLD). After the FLD has been
measured, the average fiber length is commonly calculated by taking the first and second
moments of the fiber length distribution to form the number average length Ln() and weight
average length Lw() shown in Eq. (2.6) and Eq. (2.5), respectfully:

 Ln =
niLi

2∑
niLi∑

 (2.5)

Lw =

niLi∑
ni∑

 (2.6)

11

2.2 Determination of Experimental Fiber Orientation

Quantifying experimental fiber orientation is of upmost importance so that theoretical
models can be developed with reliable experimental fiber orientation data. Fiber orientation can
vary across the length, width, and thickness of a sample so accurately determining experimental
fiber orientation is usually difficult and a number of techniques have been investigated including
microradiography [13], scanning acoustic microscopy [14], scanning electron microscopy [15],
nuclear magnetic resonance imaging [16], x-ray tomographic imaging [17], and reflection
microscopy [18]. While many of the above methods show promise, they are limited by the ability
to quantify large sample areas or have too poor resolution or contrast. The most promising
method is optical microscopy whereby two-dimensional images are taken of the sample and
projections are made into the plane to yield a quasi-3-dimensional volume by which to calculate
orientation [19, 20]. The sample preparation for optical microscopy is labor intensive, but
necessary, to obtain samples of high quality. Once high quality samples are obtained, image
acquisition and processing are performed to assist in the elliptical footprint recognition. Once the
processing has been completed the method of ellipses (MoE) is used to calculated experimental
fiber orientation of the samples in question. Each step of the process will be addressed in
separate sections. First, § 2.2.1 covers the composite material sample preparation. Next, § 2.2.2
discusses the image acquisition and stitching procedure. Finally, § 2.2.3 discusses the calculation
of fiber orientation based on the method of ellipses.
2.2.1 Sample Preparation for Optical Microscopy

Fiber containing composites must be prepared before optical microscopy can be
performed. Sample preparation directly affects the quality of micrographs obtained in the
imaging step so care must be maintained throughout the process. The sample preparation steps
include cutting, marking, mounting, grinding, polishing, etching, and sputtering. The procedure
presented has been tested on a number of glass containing composites including 30 weight
percent short fiber polybutlyene terephthalate (SF-PBT, Valox 420, SABIC), 30 weight percent
short glass fiber polypropylene (SF-PP, RTP-105, RTP Company), and 30 weight percent long
glass fiber polypropylene (LF-PP, LNP Verton MV006S, SABIC).

2.2.1.1 Sample Cutting

Sample cutting is usually a balance between the speed at which a cut can be made and the
resulting friction that can occur. Aggressive cutting can fracture the surface of the sample in
question and may even cause irregularities in the fibers being analyzed. In order for fibers to be
recognized with MoE clear elliptical footprints must be generated. Therefore, the sample is cut
using a low-speed diamond wheel saw (South Bay Technology, Inc.) using cutting oil (Precision
Surfaces International, Inc.) to reduce the friction imposed on the sample.
2.2.1.2 Sample Marking

In the polishing steps that will be outlined, a very flat surface is required to make
accurate predictions about fiber orientation. For this reason the samples are marked once they are
cut so the preparer knows how much material to polish off of the mounted sample.
Tridimensional sample markers made of a polymeric material are used to identify areas of

12

interest on the sample. The markers are made of red-colored polyethylene terephthalate and
bonded with cyanoacrylate adhesive (Krazy Glue®).

2.2.1.3 Sample Mounting

Once the sample has been cut and marked, it is mounted in a thermoplastic epoxy in the
shape of a puck roughly 30 mm in diameter. This is done by placing the samples of interest in 20
ml of acrylic powder (thermoplastic powder, Precision Surfaces International, Inc.), heating to a
temperature of 458 K and steadily applying 1 kPa of pressure in a specialized molding apparatus.
After heating the sample for 15 minutes, the heating element is removed while still under
pressure. The sample is removed only when the thermoplastic powder has solidified around the
samples. To keep the samples upright during the puck molding, soft clips (spring clips, Precision
Surfaces International, Inc.) are used around the samples in question.

Figure 2.2: Three-dimensional visualization of the puck including the polishing marker

looking from the side (left) and bottom (right).

2.2.1.4 Sample Grinding

After the sample has been mounted the first of a two-step procedure for obtaining a
smooth surface of which to image can be carried out. Sample grinding is the use of sand paper to
gradually wear down the bottom of the puck until the marker on the sample is reached. During
the grinding procedure it is important to keep the surface of the sample wet to avoid fiber
breakage. Rotation of the sample is also recommended to evenly wear down the sample instead
of causing local height fluctuations. A summary of the general procedure for grinding the resins
containing the samples of fiber filled thermoplastic is given in Table 2.1. The first “stage” uses a
welt-belt grinder (BG-32 dual belt grinder; LECO) and removes material quickly but must be
done with care so as to not damage the sample in question. The wet-belt grinder is used twice
with both 120-grit and 180-grit, done in succession, to remove material the desired amount of
material. The second stage of grinding is done by hand and uses a wet hand grinder (Handimet®
2 Roll Grinder; Buehler Co.) and uses the times and conditions outlined in Table 2.2. The use of
the two stages outlined in this section should be enough to display the plane of interest of the
sample in the resin puck.

13

Table 2.1: Detailed procedure for the grinding portion of the experimental sample

preparation adapted from [21].

The method of ellipses (discussed in § 2.2.3) is highly dependent on the sampling surface being
completely flat. To quantify the surface height of the sample, and to make sure that the plane of
interest is flat, measurements of the surface height are taken throughout the grinding process at
four 90 degree increments around the puck (0°, 90°, 180°, 270°). These heights are monitored
during the entire process of grinding and polishing. Careful rotation and height monitoring yield
surface height fluctuations of less than 0.010 mm [21].

2.2.1.5 Sample Polishing

The polishing of samples is the other of the important two step processes for obtaining
smooth sample surfaces to image. An automated grinder (MiniMet® 1000 grinder/polisher;
Buehler Co.) is used to carry out the operation and is crucial for providing the necessary control
needed for obtaining polished sample surfaces of the utmost quality. Holes are drilled in the top
center of the puck so that they can be mounted on the apparatus. Synthetic nap cloth (Final finish
cloth; Precision Surfaces International, Inc.) are used to hold alumina particles of various sizes
(Precision Surfaces International, Inc.) in an aqueous suspension. The details of the polishing
procedure are summarized in Table 2.2.

Stage

CAMI Grit
Designation

(Average sizes of the
abrasive material in

µm)

Time (min)
Interval for Rotation

(s)
Objective

30

10

2

30

30

30

10

Removal of material
to eliminate surface

grooves

Removal of material
until plane of

interest is reached

I
(Wet Belt
Grinder)

II
(Wet Hand
Grinder)

240 (53)

320 (36)

400 (23)

600 (16) 2

2

2

120 (115)

180 (82)

1-2 (Until Marker
is seen, blurry
under surface)

1-2 (Until Marker
is seen, clear

surface)

14

Table 2.2: Detailed procedure for the polishing portion of the experimental sample

preparation adapted from [21].

The quality of the sample surface is related to not only the height fluctuations of the
sample but also the quality of ellipses seen on the sample surface. The method of ellipses
(discussed in §2.2.3) needs elliptical footprints of fiber cross-sections in order to make
quantitative arguments on the orientation of fibers within a sample.

2.2.1.6 Plasma Etching

In image processing, and especially in automated image recognition, the color contrast
between the object of interest and the background is extremely important [22]. For some polymer
matrices containing glass fibers, polishing alone does not provide a large enough contrast.
Plasma etching is one of the few experimental techniques that can be used to increase the
contrast between object and background. Oxygen plasma is generated under vacuum to roughen
the polished surface of the sample, burning away the matrix and leaving the fibers.

Figure 2.3: Image showing final stage of sample preparation once sample has been etched

using oxygen plasma under 10 x magnification.

The polished surface becomes darker during this processes leading to a larger color gradient
between matrix and fiber. Junkar et al. [23] have shown that etching times vary according to
matrix and is related to the crystallinity of the particular polymer.

Alumina
Particle Size

(µm)

Speed
(RPM)

Vertical
Force (N)

Time (min)

5 40-50 22.2 40

1 40-50 22.2 40

0.3 40-50 22.2 30

0.05 40-50 22.2 30

15

2.2.2 Image Acquisition

With a large color gradient between the fibers and surrounding matrix, it is now possible
to acquire images of samples and generate experimental orientation data. Clarke and Eberhardt
[24] argue that 20x magnification of the sample provides adequate resolution. An optical –
reflection microscope (Axiovert 40 MAT; Carl Zeiss LLC) is used to acquire images. The use of
a motorized stage is also employed so that multiple images can be acquired and “stitched”
together to form a single large image.
2.2.3 Image Processing and Experimental Fiber Orientation Calculation

Experimental fiber orientation is determined using the “Method of Ellipses” which is a
quasi-three-dimensional method for calculating the orientation of a fiber within a sample. The
fiber orientation can be calculated with the knowledge of two angles, θ and φ , shown in Figure
2.4.

Figure 2.4: Determination of experimental fiber orientation using: (a) in-plane view where

M is the length of the major axis, m is the length of the minor axis, and j is the in-plane angle,
(b) out-of-plane view where p is the vector projected down the major axis of the fiber and q is the
out-of-plane angle.

Error! Reference source not found. (a) shows the in-plane ellipse that is commonly encountered
in the experimentally obtained images, similar to that shown in Error! Reference source not
found.. The in-plane angle is calculated using simple trigonometry. Error! Reference source not
found. (b) shows the out of plane angle, or the “projection” of the fiber into and out of the plane.
The out-of-plane angle is then calculated with Eq. (2.7):
 θ = cos−1 b a() (2.7)

2.2.4 Summary of Experimental Fiber Orientation

The use of the experimental technique above makes assumptions about both the length
and flexibility of the glass fibers in the system under study. The method of ellipses was
developed for rigid SGF systems so that the original choice of a 0.7 mm bin-width would be
appropriate for a system whose average fiber length is around 0.3 mm (a bin width roughly twice
the size of the fiber being investigated). In a LGF system, it is possible to have average fiber

16

lengths around 3.5 mm or greater and single fibers reaching lengths of 10 mm . The bending of
these longer fibers is also commonly seen during image processing. With longer fibers it is easy
to see that the traditional bin width of 0.7 mm and the assumption that they are rigid is
inappropriate.

At the time of this work two bin widths of 0.7 mm and 5.5 mm were adopted to account
for the longer fibers in the system. The two bind widths are being studied to determine the effect
that each have of experimental fiber orientation. At the time of this work, no work has been
performed to quantify the orientation of a fiber which is bent.
2.3 Modeling Equations for Stress Tensors in Fiber Suspensions

In the prediction of glass fiber orientation, parameters arise which are fitted using
equations of stress for fiber suspensions. In the following section, the development of stress
tensor for rigid and semi-flexible fiber systems is presented. First, the development of a stress
tensor for rigid fiber filled systems is discussed in § 2.3.1. Then, the development of a stress
tensor for flexible fiber systems is covered in § 2.3.2.
2.3.1 Stress Tensor Modeling in Rigid Fiber Suspensions

As described in § 2.1.1, fiber suspensions can be classified by concentration. For the
development of a stress tensor two distinctions are made using the definitions from § 2.1.1:
dilute/semi-concentrated and concentrated. The stresses inherent to a glass fiber composite differ
greatly based on a number of factors including fiber volume fraction, fiber length and fiber
orientation to name a few.
2.3.1.1 Model for the Stress Tensor in Rigid Dilute Suspensions

Modeling the stress tensor and viscosity changes that occur with additives to solutions
have been studied since the work by Einstein [25] where the relative viscosity,ηr , of a dilute
dispersion of small spheres was modeled as Eq. (2.8) and based on the volume fraction of the
particles, φ :

 ηr = 1+ 2.5φ (2.8)

Further analysis by Mooney [26] was performed where Eq. (2.9) was developed for more
concentrated systems where particle “crowding” was taken into account (represented by k) and
is the first known relation where interactions are included with the viscosity relation.

 ηr = exp
2.5φ
1− kφ

⎧
⎨
⎩

⎫
⎬
⎭

 (2.9)

Hand [27], Giesekus [28, 29] and Batchelor [30] presented a method using averaged
values over a collection of suspended particles using orientation tensors. The most general form
of the stress equation is given by Eq. (2.10) which gives a full account of interparticle interaction
where a ,b , c , and f are geometric shape factors based on the specific system in question [31]:

σ = −PI + 2ηmD + 2ηmφ aA4 :D + b D ⋅A + A ⋅D() + cD + fdRA⎡

⎣
⎤
⎦ (2.10)

17

In Eq. (2.10)σ is the total stress tensor, P is the isotropic stress, I is the unit tensor, ηm is the

matrix viscosity, D is the rate of deformation tensor, φ is the volume fraction of fibers in the

system, A4 is the 4th moment of the orientation distribution function, A is the 2nd moment of
orientation distribution function. dr is a term which tries to account for Brownian motion within
the system, however, for LGF systems the fibers are considered to be non-Brownian (see § B.1)
so this term may be discarded. Similarly, for long aspect ratio fibers, b and c are small in
comparison to other terms so these are also neglected. The final equation is thus reduced to a
form for fiber suspensions shown in Eq. (2.11) where N attempts to represent the associated
anisotropic stresses associated with the system [31]:

σ = −PI + 2ηmD + 2ηmφ NA4 :D + D() (2.11)

Batchelor [30] proposed a similar equation to account for particle-fluid and particle-particle
interactions, shown in Eq. (2.12):

σ = −PI + 2ηm D + NA4 :D − 1

3 NAI :D() (2.12)

 Estimations have been proposed for the value of N for a dilute suspension of particles,
most notably by Batchelor [32] where n is the number of fibers per unit volume, L is the length
of the fiber, d is the fiber diameter, and ε = 1 ln 2L d() .

 N = πnL3

6 ln 2L d()
1+ 0.64ε
1−1.5ε

+1.659ε 2⎛
⎝⎜

⎞
⎠⎟ (2.13)

Corrections to dilute theory for two body interactions were proposed by Shaqfeh and Fredrickson
[33] and are shown for aligned suspensions and isotropic suspensions in Eq. (2.14) and Eq.
(2.15), respectfully:

 N = Ndilute + 8.583×10−3 π nL3()2
ln 2L d()3

 (2.14)

 N = Ndilute + 9.250 ×10−3 π nL3()2
ln 2L d()3

 (2.15)

For semi-dilute systems (see § 2.1.1 (b)), Dinh and Armstrong [5] provided a different relation
for N seen in Eq. (2.16):

 N = πnL3

6 ln 2h d() (2.16)

18

Where h is defined for specific systems as either random or aligned in Eq. (2.17) and Eq. (2.18),
respectively:

 h = 1
nL2

 (2.17)

 h = 1
nL()1 2

 (2.18)

An expression for h has also be presented for use in systems that are a combination of the two
above [31]. While many of these relations have seen some success in modeling dilute and semi-
dilute systems, all break down when attempting to predict concentrated fiber suspensions.
2.3.1.2 Model for the Stress Tensor in Rigid Non-Dilute Suspensions

Stresses in non-dilute suspensions are generally treated as linear combinations of the
matrix and particle contributions. Early work was performed by Ericksen [34], Batchelor [32],
Goddard [35] and Lipscomb [36] in modeling the stress tensor in a concentrated suspension.
Lipscomb [36] presented a theory which included the fiber volume fraction, φ , in the stress
equation, seen in Eq. (2.19):

σ = −PI + 2ηm D + c1φD + NA4 :D() (2.19)

The value of N is present to account for the effect fiber orientation has on the stress
enhancement of the system while the value of c1 attempts to quantify the stress enhancement of
the amount of fiber in the system. Eberle et al. [37] have chosen to use N as a fitting parameter
and the value of c1 is often fit as well [10]. Varying degrees of success have been reported by
Ortman et al. [38] using this technique depending on the initial fiber orientation of the system.

Ait-kadi and Grmela [39] and Azaiez [40] developed viscoelastic models to predict
stresses in fiber suspensions. The composite stress is given in Eq. (2.20) with the Giesekus model
for the polymer behavior following in Eq. (2.21):

τ c =ηmκ γ +ηm κ +

η γ()
ηm

⎡

⎣
⎢

⎤

⎦
⎥φ c1 γ + c2 γ :A4

⎡
⎣

⎤
⎦ +τ p (2.20)

λτ p 1() +στ p −

αλ
ηm

τ p ⋅τ p() + m 1−σ()
2

A ⋅τ p +τ p ⋅A() = −ηm γ (2.21)

Other modeling techniques have been suggested for predicting stresses in fiber suspensions [39].
The use of viscoelastic or other complicated models to calculate a composite stress tensor may
increase accuracy but also complicate the solution of a problem by presenting yet another set of
coupled differential equations to solve decreasing the stability of the solution.

19

2.3.2 Stress Tensor Modeling in Flexible Fiber Suspensions

The flexibility of a fiber was introduced in § 2.1.2 as a way of quantifying fiber bending
in a flow field. Forgacs and Mason [41] investigated the role of flexibility in fiber rotations and
also found a “critical bending stress” for a single fiber in dilute solution. This relation is given in
Eq. (2.22) where Eb is the bending modulus Eb = 2EY() andar is the aspect ratio.

γηm()crit ≅

Eb ln2ar −1.75()
2ar

4 (2.22)

This relation shows that axial forces caused by shear flow can bend fibers of high aspect ratio or
low modulus. Goto et al. [42] carried out a number of studies using glass fibers in both a
Newtonian and non-Newtonian medium. It was shown that in both cases, fiber flexibility greatly
increased both the viscous and elastic properties of the fluid.
2.3.2.1 Model for the Stress Tensor in Dilute Flexible Fiber Suspensions

The calculation of a stress tensor for a dilute suspension containing flexible or semi-
flexible fibers has been studied mainly by direct simulation [12, 43-48]. These simulations
require detailed information about the physical interactions on a micro or meso scale in the
system and are often very computationally intensive. Because of the laborious computational
technique, the number of fibers must often be limited, thus reducing accuracy for a large system
of fibers and yielding different theories about the effect that fiber flexibility has on a suspension.
Joung et al. [38] directly simulated the physics of fibers interacting in a Newtonian fluid, using a
method where the flexible fibers were modeled as chains of beads joined by connectors, and
showed that the suspension viscosity increased with increased fiber flexibility. Switzer and
Klingenberg [42] carried out simulations modeling the fibers as linked cylinders with ball-and-
socket joints and showed that suspension viscosity decreased with increasing fiber flexibility.
Rajabian et al. [49] instead used an entropy based approach to predict the stress tensor but no
experimental data has been published corroborating the results.

The contradiction of results led to a thorough investigation by Keshtar et al. [3] where a
number of fibers of different flexibilities were investigated in steady and transient shear flows in
both dilute and semi-dilute concentration. Increasing the flexibility of the fiber enhanced the
shear-thinning behavior of the suspension. In start-up flow, large transient over shoots were
reported with the magnitude of overshoot increasing with flexibility, which is also consistent
with the results reported for rigid fiber suspensions [50]. The prediction of the stress tensor in the
fiber suspensions investigated by Keshtar et al. [3, 50] was performed using the general equation
for non-equilibrium reversible-irreversible coupling (GENERIC) which was first proposed by
Grmela and Öttinger [51] and Öttinger and Grmela [52]. Here, the modeling utilizes the
orientation tensors for fiber orientation (see § 2.4.1) along with a normalized end-to-end vector
of the fiber which can be seen in Figure 2.7. The GENERIC model is based on the entropy
within a system. The GENERIC model is advantageous only in that it is always consistent with
the hydrodynamic and thermodynamic effects. The major disadvantage is the lack of connection
between the fiber dynamics and the empirical parameters in to calculate them. Specifically, free
energy and dissipation parameters directly determine the fiber dynamics of the system and are

20

not measurable functions of the system in question. These inconsistencies lead to consistent
overshoots in the prediction of the transient stresses [53].

2.3.2.2 Model for the Stress Tensor in Concentrated Flexible Fiber Suspensions

Very little work has been reported in predicting the stress tensor in concentrated flexible
fiber suspensions. Ortman et al. [54] has reported some success modeling concentrated semi-
fiber suspensions using a combination of the theory presented by Strautins and Latz [55] for
flexible dilute systems and the theory presented by Dinh and Armstrong [5] for semi-dilute fiber
suspensions. The stress tensor is presented in Eq. (2.23)where a 3rd term has been added to Eq.
(2.19) to account for fiber flexibility. In Eq. (2.23), c3 is an empirical fitting parameter, k a
flexibility parameter for the fiber material, r is the end-to-end vector (see §), lb is half of the

average fiber length, and R is the normalized 2nd moment of the end-to-end tensor or

R = A − B() 1-tr B()() :

σ flex = −PI + 2ηm D + f1φD + f2A4 :D() + c3ηmk

3φar
2
tr r()
2lb

2 A − R() (2.23)

Ortman et al. [54] provided a quantitative argument for the parameters given in Eq. (2.24) and
Eq. (2.25)for f1 and f2 , respectfully:

f1 =

c
γ min γ ≤ γ min

c
γ

γ > γ min

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (2.24)

 f2 = c2IAIIAIIIA (2.25)

where invariants of the orientation tensor, A , are given in Eqs. (2.26) to (2.28):

 IA = tr A() (2.26)

 IIA =
1
2
tr A()2 − tr AA()⎡
⎣⎢

⎤
⎦⎥

 (2.27)

 IIIA = det A() (2.28)

Using the stress model presented in Eq. (2.23) and choosing to make the parameters f1 and f2 a
function of shear rate and fiber orientation has been shown to be quantitatively accurate [56]. To
date the method presented by Ortman et al. [57]provides the highest amount of accuracy with
relatively little computation time.

21

2.3.3 Summary of Stress Tensor Modeling

The methods presented in the preceding section outline techniques for modeling the stress
tensor of a suspension. It can be seen from the presented literature that the modeling of dilute
solutions is difficult and relatively little is understood from the perspective of first principles.
This misunderstanding is magnified when trying to describe increased fiber loading and fiber-
fiber collision because even the most advanced modeling efforts still have empirical parameters
that must be fit.

Further complicating the matter, long glass fibers have been shown to exhibit flexing in
simple shear flow experiments. Ortman et al. [38] showed that modeling the stress tensor of a
long glass fiber suspension was possible through the fitting of the concentrated rigid stress
model, Eq. (2.19)but still relied on empirical fitting transient stress curves. At the time of this
review, no other theory for predicting the stress tensor of long glass fiber systems has been
presented which accounts for the additional bending that may occur.
2.4 Modeling Equations for Fiber Orientation

The probability that a fiber will be oriented between the angles θ1,φ1() and
θ1 + dθ ,φ1 + dφ() , is given by Eq. (2.29):

 P θ1 ≤θ ≤θ1 + dθ ,φ1 ≤φ ≤φ1 + dφ() =ψ θ1,φ1()sinθ1 dθ dφ (2.29)

Some authors have used the probability distribution function to describe the orientation in fiber
systems [58], but it has been observed that the addition of too many fibers to the system of
interest can make the calculations cumbersome [59]. The use of orientation tensors, given by
Advani and Tucker [1], will instead be used and is widely accepted to be an accurate
representation of fiber orientation within a sample.

The following section is divided up into two main sections for examining rigid fiber
orientation models and semi-flexible fiber orientation models. The rigid fiber orientation models
are examined in § 2.4.1 for both the dilute and concentrated case. The semi-flexible fiber models
for orientation are reviewed in § 2.4.2.

2.4.1 Rigid Fiber Orientation

Defining a rigid fiber’s particular orientation is done by representing that fiber as a vector
running through the longitudinal axis seen in Figure 2.5.

22

Figure 2.5: Rigid-rod representation of fiber. The fiber is represented by the vector p , and is

characterized by the azimuthal and zenith angles and j q , respectfully.

A compact method for quantifying fiber orientation is through the use of orientation tensors. This
method was explored by Erickson [34, 60, 61] for liquid crystalline polymers and later by
Advani and Tucker [62] for representing rigid fiber orientation. Advani and Tucker [62]
described the second and fourth moments of the orientation distribution function by Eq. (2.30)
and Eq. (2.31), respectively:

 A = ppψ p,t()dp∫∫ (2.30)

 A4 = ppppψ p,t()dp∫∫ (2.31)

An issue arises with the calculation of Eq. (2.31) as there is no exact way to calculate the
fourth moment of the orientation distribution function. Instead the fourth moment must be
represented as a combination of second moments of the orientation distribution function. The
estimations are generally referred to as closure approximations and are the subject of a number
of researcher’s efforts [31]. The choice of closure models is a significant part of the numerical
simulation scheme and will be the subject of discussion later (§ 2.4.4).

2.4.1.1 Jeffery’s Equation (Dilute Rigid Fiber Suspensions)

The motion of a single ellipsoidal particle, proposed by Jeffery [63], can be represented
by Eq. (2.32) where p is the directional vector of a single rigid ellipsoid, v is the velocity vector,

W is the vorticity

W = 1

2
∇v − ∇v()T⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟ , D is the rate of deformation

D = 1

2
∇v + ∇v()T⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟ ,

and ξ is the shape factor ξ = ar
2 −1 ar

2 +1 .

 ∂p
∂t

+ v ⋅∇p =W ⋅ p + ξ D ⋅ p − p p ⋅D ⋅ p()⎡
⎣

⎤
⎦ (2.32)

Jeffery predicted that the particles, in laminar flow, would undergo periodic rotations in a
spherical elliptical orbit experimentally confirmed by Trevelyan and Mason [64]. In simple shear

23

flow v1 = γ y, v2 = v3 = 0() , the differential equations are exact and are written in Eq. (2.33) and
Eq. (2.34) .

∂φ
∂t

=
γ

ar
2 +1

ar
2 cos2φ + sin2φ() (2.33)

 ∂θ
∂t

= ξ sin2θ sin2φ (2.34)

The solution is easily solved for and is shown in Eq. (2.35) through Eq.(2.38).

tanφ = ar

γ t
ar + ar

−1 + k
⎛
⎝⎜

⎞
⎠⎟

 (2.35)

 tan k = 1
ar tanφ0

⎛
⎝⎜

⎞
⎠⎟

 (2.36)

 tanθ = Car
ar
2 sin2φ + cos2φ

 (2.37)

 C = tanθ0
ar
2 sin2 k + cos2 k

 (2.38)

Where k andC are obtained from the initial conditions of the spheroid, φ0 andθ0 . The solution to
the above equations is periodic and is described by Eq. (2.39) with Figure 2.6 showing the
periodic rotations for a specific case of ar = 5 and initial conditionsφ0 = 175°,θ0 = 45° . In Eq.
(2.39) T is the period of rotation, γ is the magnitude of the shear rate and ar is the aspect ratio of
the particle.

T = 2π

γ
ar +

1
ar

⎛
⎝⎜

⎞
⎠⎟

 (2.39)

24

Figure 2.6: Polar and azimuthal angles describing orientation kinetics of an ellipsoidal

particle in simple shear flow given by the analytical solution to Jeffery’s equation, Eq. (2.35) to
Eq. (2.38). Solution is given for a particle with 5ra = and initial conditions φ0 = 175°,θ0 = 45° .

Further analyses of Jeffery’s orbits for different cases have been performed by Barbosa
and Bibbo [65]. Mason and Manley [66] addressed the quantitative periodic rotation of rigid rods
with distribution functions to measure orientation of rods within a desired coordinate plane.
Furthermore, Mason and Manley documented drift from one Jeffery’s orbit to another showing
that orientation kinetics are significantly more complicated than Jeffery first estimated.
Collisions between two particles were further studied by Manley and Mason [67]. Ferguson [68]
addressed the issue of rotating rigid particles in a second-order Rivlen-Erickson fluid and
confirmed that the particles slowly drift through a number of different orbits over time.

A continuum form of Jeffery’s equation for a single spheroid can be obtained by applying
Eq. (2.30) and Eq. (2.31) to the model in Eq. (2.32). The left-hand side of Eq. (2.40) is the

material derivative and will be written as the more compacted form, DA
Dt

= ∂A
∂t

+ v ⋅∇A ,

throughout this chapter.

DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4() (2.40)

In the equation above, A is the second moment of the orientation tensor, A4 is the fourth moment

of the orientation tensor, W is the vorticity tensor W = 1
2

∇v − ∇v()T⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟ ,D is the rate or

deformation tensor D = 1
2

∇v + ∇v()T⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

and ξ is a shape factor. For glass fiber systems the

25

shape factor is usually given a value of unity, ξ →1 . Objectivity has been attained thus far for

Eq. (2.40) as the equation is in a form containing the co-deformational derivative of A .

2.4.1.2 Concentrated Rigid Fiber Suspensions

The addition of an isotropic rotary diffusion term to Eq. (2.40) was suggested by Folgar
and Tucker [69] to more accurately describe the orientation kinetics exhibited by concentrated
fiber systems and is shown in Eq. (2.41) where γ is the magnitude of the shear rate, CI is a

phenomenological constant and I is the identity tensor:

DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4() + 2 γCI I − 3A() (2.41)

Folgar and Tucker [69] theorized that in concentrated suspensions fiber-fiber interactions could
be captured by the additional term. The model was shown to agree well with experimental data
from a center-gated disk for short glass fiber systems by Bay and Tucker [70] at 10% of the
cavity fill but over-predicted wall orientation at 40% at 90% of the mold fill.

The fiber interaction coefficient, CI , has been continuously studied to improve fiber
orientation predictions. Based on a number of experiments Bay [71] suggested Eq. (2.42) to
empirically model the fiber interaction where φ is the fiber volume fraction and ar is the aspect
ratio:

 CI = 0.0184exp −0.7148φar{ } (2.42)

Ranganathan and Advani [72] proposed that the fiber interaction coefficient inversely
proportional to the average distance between fibers. Phan-Thien et al. [73] proposed a fiber
interaction coefficient in the form of Eq. (2.43) where M and N were obtained empirically
through simple shear experiments as 0.03 and 0.224, respectively:

 CI = M 1.0 − exp −Nφar{ }⎡⎣ ⎤⎦ (2.43)

 Stress growth experiments in the startup of simple shear suggested that the orientation
kinetics in concentrated fiber systems evolved slower than Eq. (2.41) predicted. A slip parameter
was suggested to delay the predicted fiber orientation to better agree with experimental
orientation data [7, 74], seen in Eq. (2.44):

DA
Dt

=α W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4() + 2 γCI I − 3A()⎡
⎣

⎤
⎦ (2.44)

The “slip” parameter, α , has a value between 0 and 1 and slows the fiber orientation predictions
to better match experimental conditions. The addition of this coefficient does result in a loss of
material objectivity [75] but is still useful in predicting experiment fiber orientation.

26

To model the slow orientation kinetics of glass fiber filled systems and still maintain
objectivity Wang et al. [76] proposed the “Reduced Strain Closure” (RSC) whereby the slip
parameter was moved into the double dot product of Eq. (2.44) producing Eq. (2.45). It is
important to note that a closure approximation is still required for the fourth-order moment
orientation tensor, A4 , in Eq. (2.45):

DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ() L4 −M4 :A4() :D⎡
⎣

⎤
⎦{ }

+2κ γCI I − 3A()
 (2.45)

In Eq. (2.45) κ is a scaling factor between 0 and 1, A4 is the fourth-order moment orientation

tensor, and L4 and M4 are the corresponding fourth-order moment eigenvalue and eigenvector
tensors defined in Eq. (2.46) and Eq. (2.47), respectfully:

L4 = λieieieiei

i=1

3

∑ (2.46)

M4 = eieieiei

i=1

3

∑ (2.47)

The RSC model has not been tested in systems containing long glass fibers so the accuracy of
such a model cannot be made. The reference frame for predicting fiber orientation during
injection molding does not change (there is no rotation or translation of the coordinate frame) so
while Eq. (2.45) does maintain objectivity it is ultimately unnecessary from an industrial
modeling standpoint.

The isotropic rotary diffusion term, first introduced in Eq. (2.41), is a simplification for
materials that exhibit isotropy, or uniformity in all directions. In commercial application of glass
fibers, systems are rarely isotropic. The anisotropic nature of these materials was first accounted
for by Koch [77] where the diffusion constant, CI , was instead represented by a tensor quantity,
C . With the addition of this tensor, the fiber orientation equations could be defined as a
combination of hydrodynamic and diffusive contributions, shown in Eq. (2.48). The
hydrodynamic contribution is unchanged from the original derivation from Jeffery’s equation
and takes the form of Eq. (2.40) .

 DA
Dt

= Ah + Ad (2.48)

Koch [77] defined a fiber mobility tensor as Eq. (2.49) where n is the number of fibers
per unit volume and A is the sixth moment orientation tensor shown in Eq. (2.50).

C = nL3

γ 2 ln ar()2
β1 D :A4 :D() I + β2D :A6 : D⎡
⎣

⎤
⎦ (2.49)

27

A6 = ppppppψ p,t()dp∫∫ (2.50)

The sixth moment tensor introduces the need for a different closure approximation in terms of
the second moment tensor, however, a closure a simple as Eq. (2.74) is not viable. Sixth-order
closures are briefly discussed in § 2.4.4.

Koch’s development of the fiber mobility tensor gave a diffusion contribution for Eq.
(2.48) as Eq. (2.51), but the theory was based on a semi-dilute suspension and gives values above
and below unity when predicting fiber orientation in concentrated suspensions as well as
predicting non-symmetric second moment orientation tensors:

Ad = γ 2C − 2 tr C()A − 5 C ⋅A + A ⋅C() +10A4 :C⎡

⎣
⎤
⎦ (2.51)

Fan et al. [78] and Phan-Thien et al. [73] corrected the problems stated above by proposing Eq.
(2.52) but using their model yields Ad ≠ 0 for an isotropic system which violates the
conservation of diffusive flux:

Ad = γ 2C − 2 tr C()A − 3 C ⋅A + A ⋅C() + 6A4 :C⎡

⎣
⎤
⎦ (2.52)

Realizing the drawback of the theory presented in Eq. (2.52), Phelps and Tucker [79] formulated
a relation for anisotropic diffusion in the form of Eq.(2.51) but they redefined the fiber mobility
tensor as a function of the rate of deformation, D , the second moment of fiber orientation, A ,
and constants b1 − b5 being empirically fit parameters seen in Eq. (2.53):

C = b1I + b2A + b3A

2 + b4
γ
D + b5
γ 2 D

2 (2.53)

Phelps and Tucker [79] also combined the work of Wang et al. [76] to form an anisotropic form
of the reduced strain closure model shown in Eq. (2.54):

DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ() L4 −M4 :A4() :D⎡
⎣

⎤
⎦{ }

+ γ 2 C − 1−κ()M4 :C⎡⎣ ⎤⎦ − 2κ tr C()A − 5 C ⋅A + A ⋅C(){
+10 A + 1−κ() L4 −M4 :A4()⎡

⎣
⎤
⎦ :C}

 (2.54)

If the material is isotropic the fiber mobility tensor shown in Eq. (2.53) reduces down to the
constant, CI , and Eq. (2.41) is recovered. Parameter selection for the fiber mobility tensors
proposed in Eq. (2.49) and Eq. (2.53) is very important and interested readers are directed to
Koch [77] and Phelps and Tucker [79]. All of the modeling efforts including the anisotropic
nature of the materials has not been applied to long glass fiber systems as of yet so comments on
the accuracy of such modeling efforts cannot be made. Again, Eq. (2.54) maintains objectivity

28

but since the coordinate frame is not moving from an industrial modeling standpoint it is again
unnecessary.

2.4.2 Flexible Fiber Orientation Models

Models for flexible fiber orientation may be necessary in the processing of composites
with longer fibers. Forgacs and Mason [41, 80] were the first to quantitatively address fiber
bending as an issue in studying flexible fiber dynamics. Hinch [81] addressed the issue of a
single deformable thread in a viscous media as shown in Eq. (2.55) and Eq. (2.56) assuming
laminar flow conditions:

∂x
∂t

= ∇v ⋅x + ∂T
∂s

∂x
∂s

+ 1
2
T ∂2x
∂s2

 (2.55)

 ∂2T
∂s2

− 1
2

∂2x
∂s2

⎛
⎝⎜

⎞
⎠⎟

2

T = − ∂x
∂t

⋅D ⋅ ∂x
∂t

 (2.56)

In Eq. (2.55) and Eq. (2.56), s is the arc length of the fiber, x is a function of both s and t and
represents a three-dimensional position vector of each point along the fiber, the tensor T is also
and function of s and t and v is the velocity field of the fluid. In Hinch’s theory a force balance
on the hydrodynamic effects of the matrix is used to describe the motion of a single flexible
thread in a dilute solution. The model consists of two coupled partial differential equations to
describe the motion of the thread for configuration and tension, respectively. The solution of
Eqs. (2.55) and (2.56) is not useful because it is only valid in dilute solutions.

Goddard and Huang [82] improved on this basic model for dilute suspensions by
including fiber mobility in Eq. (2.55) and Eq. (2.56). This inclusion allowed for the model to
take into account hydrodynamic effects of nearby fibers. The resulting equations are shown in
Eq. (2.57) and Eq. (2.58) where KT is the transverse mobility tensor and KL and KN are the
lateral and normal components of the mobility tensor, respectively:

∂x
∂t

− KL
∂T
∂s

∂x
∂s

= TKT ⋅
∂2x
∂s2

+ v x,t() (2.57)

 ∂
∂s

KL
∂T
∂s

⎛
⎝⎜

⎞
⎠⎟ −

∂2x
∂s2

⎛
⎝⎜

⎞
⎠⎟
⋅ ∂2x

∂s2
⎛
⎝⎜

⎞
⎠⎟
KNT = − ∂x

∂s
⋅
∂v x,t()

∂s
 (2.58)

In researching this theory, few authors have utilized Eqs. (2.57) and (2.58) mainly because they
fail to capture some of the dynamics, and they are cumbersome to solve.

Strautins and Latz [55] developed a continuum based model for semi flexible fiber
systems through the use of moment orientation tensors. For fibers that can be considered semi-
flexible, two vectors (labeled p and q) are defined along the half-length of a deflected fiber seen
in Figure 2.7 that are attached by a freely rotating joint with an internal resistivity to bending, k .
If the fiber is strait, the internal spring is not loaded and there is no straitening force on the fiber.

29

If the fiber is in a deformed state (by a flow field acting upon it), the spring acts against the
deformation to try and return the fiber to a strait state.

Figure 2.7: Semi-flexible representation of fiber. The fiber is represented by the vectorsp and
q , an end-to-end vector r , an internal resistivity to bending k , and the azimuthal and zenith
angles and j q , respectfully.

Efficient modeling of the evolution of orientation in a complex flow field for semi-
flexible fibers required the development of kinematic equations based on orientation tensors. In
order to simplify the system so that it could be solved with relative ease, a number of
assumptions were made. The first assumption was that the fibers are only semi-flexible and the
bending occurs only at the center of the fiber so that p = −q . Also, it was assumed that at any
time, the first and second moments of the orientation vectors p and q were equal. Three moment
tensors arose in this analysis for the semi-flexible system, shown in Eqs., (2.59), and (2.61):

 A = ppψ p,q,t()∫∫ dpdq (2.59)

 B = pqψ p,q,t()∫∫ dpdq (2.60)

 C = pψ p,q,t()∫∫ dpdq (2.61)

The A orientation tensor in Eq. (2.59) represents the second moment of the orientation
distribution function and is similar to the moment tensor for rigid fiber theory. In the theory for
semi-flexible fibers a B tensor can also be defined which is a mixed second moment of the
orientation distribution function given by Eq. (2.60). Finally, the first moment of the orientation
distribution is given by the C tensor in Eq. (2.61) and is not zero for a semi-flexible fiber (unlike
the rigid fiber model where the odd numbered moments are always zero). In the limit where the
semi-flexible fiber is in a straitened state (there are no internal forces trying to straighten the
fiber) then the mixed second moment (Eq.(2.60)) and the first moment (Eq.(2.61)) go to zero and

30

only the second moment of the orientation distribution function is non-zero, recovering a rigid
fiber model.

Similarly, the end-to-end tensor, r , can also be integrated over orientation space to form
an end-to-end moment tensor seen in Eq. (2.62) which represents the average orientation of a
slightly bent fiber:

 r = lb
2 p − q() p − q()ψ p,q,t()dpdq∫∫ (2.62)

Strautins and Latz [55] defined equations to describe the orientation kinetics of non-
Brownian semi-flexible fibers in dilute solution given in Eqs. (2.63) to (2.66) where lb is the
length of the fiber, k is a resistivity to bending, and m is a vector quantity that takes into account
fiber bending due to the flow field.

DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4()...
+ lb

2
Cm +mC − 2 m ⋅C()A⎡⎣ ⎤⎦ + 2k B − A tr B()()

 (2.63)

DB
Dt

=W ⋅B − B ⋅W + ξ D ⋅B + B ⋅D − 2D :A()B()...
 + lb

2
Cm +mC − 2 m ⋅C()B⎡⎣ ⎤⎦ + 2k A − B tr B()()

 (2.64)

 DC
Dt

= ∇v T ⋅C − A :∇v T()C + lb
2

m −C m ⋅C()⎡⎣ ⎤⎦ − kC 1− tr B()⎡
⎣

⎤
⎦ (2.65)

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑ (2.66)

While the semi-flexible fiber system described above yield good results for dilute and semi-
dilute systems, Strautins and Latz [55] were originally concerned with modeling only the
bending that occurs in long fiber systems and disregarded any fiber-fiber interaction.

In concentrated suspensions fiber interaction is omnipresent and must be accounted for.
Ortman et al. [38] adapted Eqs. (2.63) to (2.66) for concentrated systems by incorporating the
slip parameter, α , and the isotropic rotary diffusion term given in Eqs. (2.67) to (2.70):

DA
Dt

=α W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4()...⎡
⎣

+ lb
2
Cm +mC − 2 m ⋅C()A⎡⎣ ⎤⎦ + 2k B − A tr B()()− 6CI γ A − 1

3 I()⎤
⎦⎥

 (2.67)

31

DB
Dt

=α W ⋅B − B ⋅W + ξ D ⋅B + B ⋅D − 2D :A()B()...⎡
⎣⎢

 + lb
2
Cm +mC − 2 m ⋅C()B⎡⎣ ⎤⎦ + 2k A − B tr B()()− 4CI γ B

⎤
⎦⎥

 (2.68)

DC
Dt

=α ∇v T ⋅C − A :∇v T()C + lb
2

m −C m ⋅C()⎡
⎣

⎤
⎦ − kC 1− tr B()⎡

⎣
⎤
⎦ − 2CI γC

⎡
⎣⎢

⎤
⎦⎥

 (2.69)

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑ (2.70)

Reasonable comparisons have been made with experimental data using the modified semi-
flexible fiber equations in concentrated suspensions in both simple shear flows [56] and center-
gated disks using the Hele-Shaw approximation [83].
2.4.3 Model Objectivity

Oldroyd first suggested that any constitutive equation (for fluids, fibers, etc.) should have
three properties: (1) be independent of the frame of reference, (2) be independent of the position
in space, the translational motion, and the rotational motion of the fluid element, and (3) be
independent of the stress and strain in the neighboring fluid elements [84, 85]. From these
requirements, a “convected” coordinate system is utilized whereby the coordinate system
translates, rotates, and deforms with the fluid element [53]. Detailed examples of convected
coordinates can be found in any introductory text to continuum mechanics [86-89].

In the modeling equations presented (§ 2.4.1 and § 2.4.2) only some equations maintain
objectivity. Both the original model of Jeffery model (Eq.(2.40)) and the Folgar-Tucker model
(Eq. (2.41)) maintain objectivity. This is because the co-rotational (Jaumann) derivative can still
be formed by moving the terms containing vorticity to the left-hand side of the equation. This
can be seen generally in Eq. (2.71) .

DΛ
Dt

= DΛ
Dt

+ W ⋅Λ − Λ ⋅W{ } (2.71)

Once the Folgar-Tucker model is multiplied by the slip parameter, α, Eq. (2.71) can no longer be
formed by moving the vorticity terms to the left hand side. Similarly, when the Bead-Rod model
is multiplied by the retardation factor, it too is no longer considered objective. The newer models
presented in Eq. (2.45) and Eq. (2.54) does maintain objectivity by moving the retardation factor
out of the hydrodynamic contributions.

The lack of objectivity may not cause a loss of accuracy in the numerical predictions of
fiber orientation in industrial processes because the coordinate frame does not translate or rotate
while the molding operation occurs. The models presented in Eq. (2.44) and Eqs. (2.67) to (2.70)
are still valid to simulate fiber orientation but they violate basic continuum mechanics principles.

32

2.4.4 Closure Approximations

The choice of closure approximation for the fourth moment of the orientation tensor, A4 ,
is not trivial and has been the subject of significant research [31]. The fourth moment of the
orientation tensor is given by Eq. (2.31) which can be expanded to the matrix form seen in Eq.
(2.72):

A4 = Aijlk =

a1111 a1122 a1133 a1123 a1113 a1112
a1122 a2222 a2233 a2223 a2213 a2212
a1133 a2233 a3333 a3323 a3313 a3312
a1123 a2223 a3323 a2323 a2313 a2313
a1113 a2213 a3313 a2313 a1313 a1312
a1112 a2212 a3312 a2312 a1312 a1212

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (2.72)

Due to symmetries in the matrix in Eq. (2.72) only 15 independent components remain. The
linear closure by Hand [90] was the first use of a closure approximation to approximate the
higher order moments an is shown in Eq. (2.73).

Aijkl ≈ − 1

35
δ ijδ kl +δ ikδ jl +δ ilδ jk()...

 + 1
7
Aijδ kl + Aikδ jl + Ailδ jk + Aklδ ij + Ajlδ ik + Ajkδ il()

 (2.73)

One of the most popular closure approximations to date was first proposed by Doi [91] in 1981
and is known as the quadratic closure approximation shown in Eq. (2.74):

 Aijkl ≈ AijAkl (2.74)

The quadratic closure approximation is exact for highly aligned systems or for systems
undergoing pure extensional flow but is used widely because of the simple nature and
computational efficiency. A combination of the linear and quadratic closures, called the hybrid
closure approximation, was first reported by Advani and Tucker [62]. The hybrid closure has
been used to some extent in processing calculations for part warpage [92] and even 3-
dimensional short fiber orientation predictions for center-gated molds [93]. Even though these
closures offer simplicity, they do not obey the required of characteristic of symmetry
Aijkl ≠ Aikjl ∀ i, j,k,l() shown in Eq. (2.72).

Verleye and Dupret [94] introduced an objective closure approximation that maintained
the condition of symmetry known as the “natural” closure approximation. The closure
approximation is of the form shown in Eq. (2.75) and Eq. (2.76) and is the basis for many of the
currently accepted forms of orthotropic closure approximations:

33

Aijkl = β1S δ ijδ kl() + β2S δ ijAkl() + β3S AijAkl() + β4S δ ijAkmAml()

+β5S AijAkmAml() + β6S AimAmjAknAnl()
 (2.75)

where S is the operator given in Eq. (2.76):

 S Tijkl() = 1
24

Tijkl +Tjikl +Tjkil + 24 terms() (2.76)

Cintra and Tucker [95] published a comprehensive work on orthotropic smooth closures and the
necessary conditions for a closure to be symmetric while maintaining objectivity (§ 2.4.3). Other
researchers [96, 97] explored the idea of eigenvalue based closures which assumes that the
principle directions of the second-order moment orientation tensor define the planes of the
fourth-order moment orientation tensor.

Invariant based fitting closures are of particular interest because the definition of the
constants β1,β2,... in Eq. (2.75) are functions of the invariants of the orientation tensor, A [98,
99]. The invariant based orthotropic fitted (IBOF) closure that is widely used was introduced by
Chung and Kwon [100] and shows accurate predictions of fiber orientation over a wide range of
flow conditions and fiber interaction coefficients. For the invariants, the frame of reference is
taken as the principle frame of the second-order moment orientation tensor so that all terms
vanish except for the diagonal components, Aii . From this frame of reference, all non-diagonal
terms go to zero in both the second- and fourth-order moment tensors so that the closure remains
orthotropic. An extensive discussion of the validity of the IBOF closure can be found in Jack and
Smith [101]. Sixth-order closure approximations have recently been studied by Jack and Smith
[102, 103] because of sixth-order moments that have arisen in certain equations.

The use of the IBOF closure has been shown to work well in more complex flow fields
and is thus the closure approximation of choice for the simulations in this work involving the 4th
movement of the orientation distribution function [100, 104].

2.4.5 Effect of Brownian Motion

Brownian motion refers to the random movement of particles suspended in a fluid. The
movement of the particle is a result of liquid molecules randomly impacting the particle in the
fluid. For systems in which Brownian motion is a substantial effect the particle of interest must
be small enough to be effected by these random motions. Brownian motion can be translational
(where the position of the particle, molecule, etc. is changed) or rotational (where the unit normal
of the surface direction is changed). The effect of Brownian motion on the suspensions is directly
correlated to the magnitude of the Péclet number, given in Eq. (2.77) where Dr is the rotary
diffusivity of the particle and γ is the magnitude of the rate of strain [105].

Pe =

γ
Dr

 (2.77)

34

When Pe ≤1 , Brownian motion must be taken into account but when Pe1 Brownian motion
is negligible. For a population of fibers with a length greater than 10µmBrownian motion can be
neglected [37]. Hence, for the fibers under consideration here Brownian motion is neglected.

2.4.6 Summary of Fiber Orientation Equations

Predicting the orientation of fibers in suspension has been the subject of a significant
amount of research starting with Jeffery’s [63] equation for prolate spheroids in 1922. From that
work a number of studies were launched on understanding how rigid bodies (spheroids, rods,
etc.) in dilute media orient in different flow fields. As the need for concentrated suspensions in
industrial applications grew, so did the attempts at modeling them with the development of the
Folgar-Tucker model and the like. At the present time, a number of models exist to predict both
rigid and semi-flexible concentrated fiber systems. The drawback of these models is that many of
the terms which have been added to account for the higher concentration of fibers have been
done so to decrease the discrepancy between predicted values and experimental values of
orientation. As a consequence, there are phenomenological constants that must be fitted to the
experimental data so that the predictions of fiber orientation are based on experimental data at
some junction in simulation.

2.5 Numerical Predictions of Fiber Orientation

Injection molding is a frequently used method of forming thermoplastic parts reinforced
with glass fibers [106]. The ease at which the process can be automated makes injection molding
an attractive choice when high volume production is desired such as in the manufacture of
automotive parts.

Figure 2.8: Diagram of a typical injection molding machine. Two main regions are described

involving the injection and clamping sections of the machine. Figure used under the Creative
Commons Attribution 3.0 License.

The injection portion of the machine, shown in Figure 2.8, is an extruder whereby the raw
pellets are fed through a hopper into a heated barrel with a rotating screw. Heat is also generated
by the viscous shearing of the pellets against the barrel. The pellets are melted in the barrel and
the screw acts as a piston, pushing the liquid resin into the mold. The molten polymer is then
allowed to cool in the mold cavity and the part is ejected.

35

Figure 2.9: Diagram of typical geometries used in fiber orientation simulation in (a) center-
gated disk and (b) end-gated plaque.

For the purpose of this work, the numerical simulations and modeling will be confined to
the fluid flowing into the mold cavity which is where the fiber orientation predictions are
generated. Two simple molding geometries used in a number of simulations are the center-gated
disk and end-gated plaque, shown in (a) and (b) of Figure 2.9, respectfully. In the center-gated
disk, the fluid enters at the top of the sprue, travels down the sprue, and enters the mold cavity. A
number of authors have taken advantage of the axisymmetry of the flow field in the cavity to
simplify their simulations [76, 83, 107]. In the end-gated mold, fluid again travels down the
sprue, through the runner, and then into the gate and mold areas. The end-gated system has not
been studied as much as the center-gated system because of the fully three-dimensional nature of
the end-gated mold (compared to the 2.5 dimensional center-gated disk).

The amount of work that has been done in the area of flow fields without the addition of
fillers in complex geometries is vast and a comprehensive review of literature has been the
subject of entire texts [106]. However, it is important to point out specific advancements that
have been made in the area of computational fluid dynamics when dealing with fiber
suspensions. First, the effect of a non-Newtonian suspending matrix is discussed in § 2.5.1. Next,
a description of simulating systems by either a Hele-Shaw method or full simulation method is
presented in § 2.5.2. A review of fiber orientation simulations involving center-gated and end-
gated systems is given in § 2.5.3 and § 2.5.4, respectively.
2.5.1 Effect of a non-Newtonian Suspending Liquid

In many publications, to simplify the suspension being studied, a Newtonian fluid is
employed to understand fiber dynamics [6, 57, 108-110]. This is a good first approximation for
many fluids but a more realistic model would take into account non-Newtonian behavior.
Commonly a Generalized Newtonian Fluid model (GNF) is used to represent the suspending
medium presented in Eq. (2.78) where τ is the extra stress tensor, η γ() means that the viscosity

is a function of the shear rate and γ is the rate of strain tensor.

 τ =η γ() γ (2.78)

(a) (b)

36

A number of empiricisms for η γ() in GNF models have been successfully used in describing
neat matrices including, but not limited to, the Power-Law model, Carreau model, and for a
number of temperature dependent situations, the Cross model [111].

In certain systems, such as in center-gated disks and end-gated plaques, shear-rates can
span two orders of magnitude. A number of models can be used to represent this behavior but
one model of particular interest is the Carreau-Yassuda model, shown in Eq. (2.79), which has
the ability to capture the viscosity at high and low shear rates. In Eq. (2.79) η0 is the zero shear
viscosity, λ governs the onset of shear thinning and n is a parameter governing the degree of
shear-thinning of the matrix.

ηm γ() =η0 1+ λ γ()a⎡⎣ ⎤⎦

n−1
a (2.79)

A qualitative viscosity curve of what the Carreau-Yasuda model predicts is shown in Figure 2.10
showing the ability to capture both Newtonian and non-Newtonian effects.

Figure 2.10: Qualitative depiction of Carreau-Yasuda model showing the ability to capture

the Newtonian and non-Newtonian behavior of shear-thinning fluids. Log-log plot of viscosity
vs. shear rate where 0h and h• are the zero-shear viscosity and infinite shear viscosity,
respectively.
2.5.2 Hele-Shaw Flow vs. Full Simulation Effects

Simulating fiber orientation in molding geometries typically requires a number of
assumptions to be made about the system in question. One significant assumption about the flow
field in the mold cavity is the implementation of Hele-Shaw flow which disregards a number of
important features about the flow field [83, 112, 113]. Only few simulations have recognized the
importance of including such flow features in fiber orientation simulations in subsequent
publications [114, 115].

37

2.5.2.1 Hele-Shaw Formulation

Many early simulations of fiber orientation employed the Hele-Shaw flow approximation
which uses lubrication theory in conjunction with laminar flow assumption to yield analytical
solutions to complex flow problems [111, 116].

Figure 2.11: Qualitative representation of Hele-Shaw geometry where the gradient in one

direction (z-direction) clearly dominates terms on the momentum equation.

From the lubrication approximation it is appropriate to solve the problem in the limit of
the cavity thickness approaching zero, orH → 0 . Also, the no-slip boundary v = 0()condition is
imposed at the walls. The Hele-Shaw formation is given for injection molding by Hieber and
Shen [117] and is the current method of choice for most simulation packages [118, 119]. The
pressure equations is given as Eq. (2.80):

 ∂
∂x

S ∂P
∂x

⎛
⎝⎜

⎞
⎠⎟ +

∂
∂y

S ∂P
∂y

⎛
⎝⎜

⎞
⎠⎟
= 0 where S = z2

η
dz

0

b

∫ (2.80)

The velocities can then be rewritten in terms of the pressure gradient to form the two relations
shown in Eq. (2.81) where vx is the velocity in the x-direction, vy is the velocity in the y-
direction, z is the normalized thickness and η is the viscosity:

 vx = − ∂P
∂x

z
η
dz

z

b

∫ , vy = − ∂P
∂y

z
η
dz

z

b

∫ (2.81)

Heiber and Shen [117] detailed an approach where in plane calculations were performed using a
finite-element scheme and the out of plane calculations were performed via a finite difference
method.

Hele-Shaw flow, while convenient and computationally efficient, assumes a velocity
profile and initial fiber orientation at the inlet to the mold and disregards the “fountain flow”
effect which occurs at the polymer-air boundary in the mold filling process. The two methods are
compared in Figure 2.12 showing markedly different predictions for fiber orientation near the
wall for 30 wt. % short glass fiber at 40% fill of a center-gated disk [70]. The lack of accurate
modeling at the polymer-air interface led to a modified version of Hele-Shaw approximation
introduced by Bay and Tucker [107] and Han and Im [114] for use in concentrated fiber
suspensions. The modified Hele-Shaw method more accurately predicts the data reported by Bay
and Tucker [70] by using an approximation technique for accounting for fountain flow and is an
improvement on simulating fiber orientation in molding operations. To date, a number of
simulation types use some form of Hele-Shaw flow to model fluid behind the moving front,

38

including an Eulerian (Fixed) mesh with a control volume approach [117, 120, 121], remeshing
the frontal flow portion of the domain [122], or sometimes remeshing the domain entirely [123].

Figure 2.12: Comparison of Hele-Shaw approximation and the “fountain flow” effect in a

center-gated disk at 40% of the fill domain for 30 wt. percent short glass fibers. When taking into
account the fountain flow of mold cavity filling, theoretical predictions show much lower
orientation predictions at the wall, which is commonly observed [70].
2.5.2.2 Fountain Flow

Figure 2.13: Qualitative figure of fountain flow effect. Adapted from Baird and Collias [124].

The fluid element reaches a stagnation point where the fluid is stretched and moved towards the
outside wall.

Fountain flow, as it pertains to polymeric fluid filling a cavity, was introduced in the
literature by Rose [125] and described the flow front near an advancing interface where one fluid
is replacing another fluid in a two-phase problem. Fountain flow can be described by the fluid
element in Figure 2.13 where a fluid element is moved towards the front of the flow and is
subsequently stretched and moved towards the wall. A number of authors have studied fountain
flow of a neat matrix including Tadmor [126], Gogos and Huang [127], Coyle et al. [128], and
Mavridis et al. [129]. For as much work that has been done, modeling the filling of a cavity with
a neat matrix is still a very complex problem.

39

Givler et al. [130] simulated fiber orientation for dilute suspensions including the
fountain flow effect between two parallel plates utilizing FEM simulations. Alexandrou and
Ahmed [131] studied the effects of fountain flow of a dilute suspension between parallel plates
in an unsteady flow field. Vélez-García et al. [83] observed that the addition of the fountain flow
at the flow front improved the agreement between predictions of fiber orientation and
experimental data.

2.5.3 Fiber Orientation Simulations in a Center-Gated Disk

Figure 2.14: Qualitative representation of fluid filling a mold cavity with distinguishing

features: Entry region where the fluid entering the mold is very near the gate, the Hele-Shaw
region where lubrication approximation may be enforced, and the fountain flow region.

The flow fields within a center-gated disk make the geometry particularly useful in
studying fiber orientation in mold filling. The three flow regions shown in Figure 2.14 were
identified by Bay and Tucker [107] during the filling of a center-gated disk with a concentrated
rigid fiber suspension: the gate region, the lubrication region, and the fountain flow region. Each
of these regions contains some combination of shearing and extensional deformations. In the gate
region, extension in the rθ-plane governs the fiber orientation. In the lubrication region (Hele-
Shaw region), small gap heights cause a domination of shearing deformation to occur and highly
dictate fiber orientation. The flow front is a complicated region which was covered previously
(See § 2.5.2).
2.5.3.1 Short Fiber Orientation Simulation for Hele-Shaw Flow in a Center-Gated Disk

Bay and Tucker [107] assumed that the majority of the mold cavity can be considered
within the lubrication region (described in § 2.5.2.1) and thus simplifies the equations to solve
for rigid fiber orientation. For the simulation of isothermal center-gated systems, the equations of
motion are reduced significantly when the Hele-Shaw approach with a Newtonian fluid is taken.
The velocity and pressure fields can be solved for directly yielding the analytical solution shown
in Eq. (2.82) and Eq. (2.83) where cylindrical coordinates have been imposed:

 vr =
1
r
3Q
8πH

1− z2

H 2

⎛
⎝⎜

⎞
⎠⎟

 (2.82)

 vz =
vr
r

 (2.83)

40

From this solution fiber orientation can be solved for by decoupling the orientation and stress
equations as done in Bay and Tucker [107] who showed good qualitative agreement with
experimental data far from the gate and melt front [70, 132]. Chiang et al. [120, 133] used the
Hele-Shaw flow approximation in conjunction with a finite element method (FEM) and finite
difference method (FDM) to solve for the pressure and temperature fields.

Using only the Hele-Shaw region in the simulation of rigid fiber orientation does involve
making broad assumptions about systems that may not generally apply. The Hele-Shaw
assumption neglects the details of the flow field at the melt front (usually assumes a flat profile
through the thickness) or abrupt changes in cavity thickness. Additionally, the Hele-Shaw
approximation requires an assumed initial fiber orientation entering the mold cavity. A popular
assumption for fiber orientation at the inlet of the mold is random A = 1

3 I() [107, 114].

2.5.3.2 Short Fiber Orientation Simulation Incorporating Entry and Fountain Flow Effect in a
Center-Gated Disk

The limitations of the Hele-Shaw approximation led to Dupret and Vandershuren [134]
and Bay and Tucker [107] to attempt to predict the velocity, temperature, and orientation fields
in the fountain flow region using the method of Coyle et al. [128]. The full solution of flow and
orientation equations in a steady-state radially diverging flow is given by Ranganathan and
Advani [135] where the effect of particle number was studied. Ko and Young [124] investigated
the fiber orientation in the thickness plane during injection molding while tracking the flow front
advancement. Vincent et al. [136] used a decoupled approach and moving mesh technique to
solve for short fiber orientation in a center-gated disk. VerWeyst and Tucker [137] studied the
effect of entry flow for short glass fibers using a fully three-dimensional finite element
technique. Velez-Garcia et al. [83] used a decoupled approach to make short glass fiber
orientation predictions and found good agreement with experimental data. Ultimately, the choice
of fiber orientation model and assumptions about the gate region play a far greater role in final
orientation predictions so that the decoupled approach is a valid first approximation for
calculating fiber orientation in the center-gated disk. Chung and Kwon [104] performed work
studying the coupling effect in the advancing front and found that coupling effect was crucial
especially in regions with high extension and only in the Hele-Shaw region did the coupling
effect play a small role.

The short fiber orientation profiles in Figure 2.15 show the three different input values
for use at the entrance to the mold cavity. The bottom region of the gate cross section shows
fibers that are less aligned with the flow direction. This is due to the stagnation and change of
direction that the fluid undergoes when the sprue is taken into account. Chung and Kwon [104]
suggested that the short glass fiber orientation entering the mold cavity is asymmetric and plays a
role in dictating fiber orientation in the mold cavity. This has been confirmed experimentally by
Velez-Garcia et al. [83], and it was shown that the choice of initial fiber orientation values persist
well into the Hele-Shaw region. Park and Kwon [138] simulated the orientation of short glass
fiber for a non-isothermal system in a center-gated disk and noted that the temperature of the
fluid does have an impact on the fiber orientation distribution in the mold cavity.

41

Figure 2.15: Comparison of different fiber orientation values in the gate region (0% fill) of

the center-gated disk. (■) is random assumption through the thickness, (●) are the results of
simulating short glass fiber orientation from the sprue to the gate [104], and (▲) are the
experimental orientation values obtained for short glass fibers [83]. The data is for 30 wt. %
short glass fiber in polypropylene matrix.

2.5.3.3 Long Fiber Orientation Simulations in a Center-Gated Disk

Up to this point, very little work has been done in modeling the orientation of long glass
fiber composites in center-gated disks. Nguyen et al. [139] applied a short fiber model to a long
glass fiber system injected into a center gated disk and saw good agreement between predictions
and experimental orientation but the average fiber length of those systems was only around 1.55
mm. Ortman et al. [140] compared the ability of strain reduction Folgar-Tucker model (Eq.
(2.44)) and the strain reduction Bead-Rod model (Eqs. (2.67) - (2.70)) to predict long glass fiber
orientation (with an average length of 3.1 mm) in center-gated disks using Hele-Shaw flow
assumption and experimentally obtained initial conditions at the gate and found good agreement
with experimental data up to 40% of the mold fill.
2.5.4 Fiber Orientation Simulations in End-Gated Systems

The amount of literature for the calculation of fiber orientation in a three-dimensional
channel is limited. Altan et al. [141] assumed a planar random inlet condition to a rectangular
channel and computed the short fiber orientation using a coupled approach involving both the 4th
and 6th order tensors of orientation. A number of other works have considered three-dimensional
channel flow [107, 108, 141-143], sudden contractions [36, 144, 145], sudden expansions [143,
144, 146, 147], corner flows [148], and branching flows [149] for short glass fiber systems. At
the time of this review, only one paper deals with the injection of long glass fibers into an end-
gated geometry. Nguyen et al. [139] simulated the orientation of long glass fibers flowing into an
end-gated mold using the RSC model (developed for short glass fiber systems) and found some
agreement between experimental observations and predicted results along the center-line of the
mold but did not compare results at other widths. The average fiber length reported by Nguyen et

42

al. [139] was ≈ 1.55 mm but a large population of fibers were significantly shorter, increasing the
chance of a short glass fiber model accurately predicting fiber orientation.

2.5.5 Summary of Numerical Predictions of Fiber Orientation

From what has been presented in this section, it can be seen broad assumptions are often
made when predicting the orientation of glass fibers in injection molding geometries. One major
assumption, still widely used, is the Hele-Shaw assumption which neglects entry effects into the
mold and also neglects the advancing front. Some simulations for short glass fiber have used an
advancing front algorithm in conjunction with a Hele-Shaw flow assumption. While these hybrid
numerical approaches predicted values closer to observed experimental short glass fiber
orientation, an assumption still had to be made about fiber orientation at the inlet to the mold
cavity. Recently, a method to simulate short glass fiber orientation was developed whereby the
sprue and mold were simulated as a single domain which yielded good agreement with
experimental fiber orientation values.

At the time of publishing this review, only one two works had reported on simulating
long glass fibers in a center-gated disk. Both of the simulations utilized the Hele-Shaw method
and did not account for either the advancing front or the entry effects into the mold. Ortman et al.
[150] did account for the ability of a fiber to bend during the injection process with a semi-
flexible fiber model which at least qualitatively represents long glass fibers systems more
accurately. While Ortman et al. heavily simplified simulation was a good first step in predicting
the orientation of semi-flexible fibers, it is necessary to extend a method where fewer
assumptions are made to more accurately simulate the orientation kinetics of these complex
systems.

Only one reference has reported on predicting semi-flexible fiber orientation in a fully
three-dimensional system such as an end-gated plaque but used a short fiber model to predict a
system composed most of short fibers. Predicting the orientation of long fibers in an end-gated
plaque is the first step in understanding how semi-flexible fibers orient in three-dimensional flow
fields. With this knowledge the solution method can be extended to geometrically complex parts.
2.6 References

[1] S. D. Bartus, U. K. Vaidya, and C. A. Ulven, "Design and development of a long fiber
thermoplastic bus seat," Journal of Thermoplastic Composite Materials, vol. 19, pp. 131-
154, Mar 2006.

[2] S. Toll and J. A. E. Manson, "Elastic Compression of a Fiber Network," Journal of
Applied Mechanics-Transactions of the Asme, vol. 62, pp. 223-226, Mar 1995.

[3] M. Keshtkar, M. C. Heuzey, and P. J. Carreau, "Rheological behavior of fiber-filled
model suspensions: Effect of fiber flexibility," Journal of Rheology, vol. 53, pp. 631-650,
May-Jun 2009.

[4] M. Doi and S. F. Edwards, The theory of polymer dynamics. Oxford: Clarendon Press,
1986.

[5] S. M. Dinh and R. C. Armstrong, "A Rheological Equation of State for Semiconcentrated
Fiber Suspensions," Journal of Rheology, vol. 28, pp. 207-227, 1984.

43

[6] D. G. Baird, A. P. R. Eberle, G. M. Velez-Garcia, and P. Wapperom, "Fiber orientation
kinetics of a concentrated short glass fiber suspension in startup of simple shear flow,"
Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp. 110-119, Feb 2010.

[7] D. G. Baird, A. P. R. Eberle, P. Wapperom, and G. M. Velez-Garcia, "Using transient
shear rheology to determine material parameters in fiber suspension theory," Journal of
Rheology, vol. 53, pp. 685-705, May-Jun 2009.

[8] D. G. Baird, A. P. R. Eberle, P. Wapperom, and G. M. Velez-Garcia, "Obtaining reliable
transient rheological data on concentrated short fiber suspensions using a rotational
rheometer," Journal of Rheology, vol. 53, pp. 1049-1068, Sep-Oct 2009.

[9] I. Taha and Y. F. Abdin, "Modeling of strength and stiffness of short randomly oriented
glass fiber-polypropylene composites," Journal of Composite Materials, vol. 45, pp.
1805-1821, Aug 2011.

[10] P. J. Carreau, J. Thomasset, B. Sanschagrin, and G. Ausias, "Rheological properties of
long glass fiber filled polypropylene," Journal of Non-Newtonian Fluid Mechanics, vol.
125, pp. 25-34, Jan 10 2005.

[11] L. H. Switzer and D. J. Klingenberg, "Flocculation in simulations of sheared fiber
suspensions," International Journal of Multiphase Flow, vol. 30, pp. 67-87, Jan 2004.

[12] D. J. Klingenberg and L. H. Switzer, "Rheology of sheared flexible fiber suspensions via
fiber-level simulations," Journal of Rheology, vol. 47, pp. 759-778, May-Jun 2003.

[13] M. W. Darlington and P. L. Mcginley, "Fiber Orientation Distribution in Short Fiber
Reinforced-Plastics," Journal of Materials Science, vol. 10, pp. 906-910, 1975.

[14] F. Lisy, A. Hiltner, E. Baer, J. L. Katz, and A. Meunier, "Application of Scanning
Acoustic Microscopy to Polymeric Materials," Journal of Applied Polymer Science, vol.
52, pp. 329-352, Apr 11 1994.

[15] K. M. Thomas, D.E., "Study of glass-fibre-reinforced thermoplastic mouldings," Plastics
and Rubber Processing and Applications, pp. 99-108, 1976.

[16] A. Mavrich, F. Fondeur, H. Ishida, J. L. Koenig, and H. D. Wagner, "The Study of Fiber-
Matrix Interactions Via Ft-Ir Microscopy and Nmr Imaging," Journal of Adhesion, vol.
46, pp. 91-102, 1994.

[17] A. Kriete, "Undesirable phenomena in 3D image ctometry," Visualization Biology, pp.
214-218, 1992.

[18] P. J. Hine, N. Davidson, R. A. Duckett, and I. M. Ward, "Measuring the Fiber Orientation
and Modeling the Elastic Properties of Injection-Molded Long-Glass-Fiber-Reinforced
Nylon," Composites Science and Technology, vol. 53, pp. 125-131, 1995.

[19] A. R. Clarke, G. Archenhold, and N. C. Davidson, "A Novel Technique for Determining
the 3d Spatial-Distribution of Glass-Fibers in Polymer Composites," Composites Science
and Technology, vol. 55, pp. 75-91, 1995.

[20] A. Clarke, N. Davidson, and G. Archenhold, "Measurements of Fiber Direction in
Reinforced Polymer Composites," Journal of Microscopy-Oxford, vol. 171, pp. 69-79,
Jul 1993.

44

[21] G. M. Velez-Garcia, P. Wapperom, V. Kunc, D. G. Baird, and A. Zink-Sharp, "Sample
preparation and image aquisition using optical-reflective microscopy in the measurement
of fiber orientation in thermoplastic composites," 2012.

[22] P. J. Hine and R. A. Duckett, "Fiber orientation structures and mechanical properties of
injection molded short glass fiber reinforced ribbed plates," Polymer Composites, vol. 25,
pp. 237-254, Jun 2004.

[23] I. Junkar, U. Cvelbar, A. Vesel, N. Hauptman, and M. Mozetic, "The Role of
Crystallinity on Polymer Interaction with Oxygen Plasma," Plasma Processes and
Polymers, vol. 6, pp. 667-675, Oct 14 2009.

[24] A. R. Clarke and C. N. Eberhardt. (2002). Microscopy techniques for materials science.
Available: http://www.knovel.com/knovel2/Toc.jsp?BookID=846

[25] A. Einstein, "Eine neue Bestimmung der Molekuldimensionen," Annalen der Physik, vol.
19, pp. 289-306, 1906.

[26] M. Mooney, "The Viscosity of a Concentrated Suspension of Spherical Particles,"
Journal of Colloid Science, vol. 6, pp. 162-170, 1950.

[27] G. L. Hand, "A theory of dilute suspensions," Archive for Rational Mechanics and
Analysis, vol. 7, pp. 81-86, 1961.

[28] H. Giesekus, "Strömungen mit konstantem Geschwindigkeitsgradienten und die
Bewegung von darin suspendierten Teilchen.Teil I: Räumliche Strömungen," Rheologica
Acta, vol. 2, pp. 101-112, 1962.

[29] H. Giesekus, "Strömungen mit konstantem Geschwindigkeitsgradienten und die
Bewegung von darin suspendierten Teilchen.Teil II: Ebene Strömungen und eine
experimentelle Anordnung zu ihrer Realisierung," Rheologica Acta, vol. 2, pp. 112-122,
1962.

[30] G. K. Batchelor, "The stress system in a suspension of force-free particles," Journal of
Fluid Mechanics, vol. 41, pp. 545-570, 1970.

[31] D. H. Chung and T. H. Kwon, "Fiber orientation in the processing of polymer
composites," Korea-Australia Rheology Journal, vol. 14, pp. 175-188, Dec 2002.

[32] G. K. Batchelor, "The stress generated in a non-dilute suspension of elongated particles
by pure straining motion," Journal of Fluid Mechanics, vol. 46, pp. 813-829, 1971.

[33] E. S. G. Shaqfeh and G. H. Fredrickson, "The Hydrodynamic Stress in a Suspension of
Rods," Physics of Fluids a-Fluid Dynamics, vol. 2, pp. 7-24, Jan 1990.

[34] J. L. Ericksen, "Transversely Isotropic Fluids," Kolloid-Zeitschrift, vol. 173, 1960.
[35] J. D. Goddard, "Tensile behavior of power-law fluids containing oriented slender fibers.,"

Journal of Rheology, vol. 22, pp. 615-622, 1978.
[36] G. G. Lipscomb, M. M. Denn, D. U. Hur, and D. V. Boger, "The Flow of Fiber

Suspensions in Complex Geometries," Journal of Non-Newtonian Fluid Mechanics, vol.
26, pp. 297-325, Jan 1988.

45

[37] A. P. R. Eberle, D. G. Baird, P. Wapperom, and G. M. Velez-Garcia, "Obtaining reliable
transient rheological data on concentrated short fiber suspensions using a rotational
rheometer," Journal of Rheology, vol. 53, pp. 1049-1068, Sep-Oct 2009.

[38] K. C. Ortman, N. Agarwal, A. P. R. Eberle, D. G. Baird, P. Wapperom, and A. J.
Giacomin, "Transient shear flow behavior of concentrated long glass fiber suspensions in
a sliding plate rheometer," Journal of Non-Newtonian Fluid Mechanics, vol. 166, pp.
884-895, Sep 1 2011.

[39] A. Aitkadi and M. Grmela, "Modeling the Rheological Behavior of Fiber Suspensions in
Viscoelastic Media," Journal of Non-Newtonian Fluid Mechanics, vol. 53, pp. 65-81, Jul
1994.

[40] J. Azaiez, "Constitutive equations for fiber suspensions in viscoelastic media," Journal of
Non-Newtonian Fluid Mechanics, vol. 66, pp. 35-54, Sep 1996.

[41] O. L. Forgacs, Mason S.G., "Particle Motions in Sheared Suspensions IX. Spin and
Deformation of Threadlike Particles," Journal of Colloid Science, vol. 14, pp. 457-472,
1959.

[42] S. Goto, H. Nagazono, and H. Kato, "The Flow Behavior of Fiber Suspensions in
Newtonian Fluids and Polymer-Solutions .1. Mechanical-Properties," Rheologica Acta,
vol. 25, pp. 119-129, Mar-Apr 1986.

[43] S. Yamamoto and T. Matsuoka, "A Method for Dynamic Simulation of Rigid and
Flexible Fibers in a Flow Field," Journal of Chemical Physics, vol. 98, pp. 644-650, Jan 1
1993.

[44] S. Yamamoto and T. Matsuoka, "Dynamic simulation of microstructure and rheology of
fiber suspensions," Polymer Engineering and Science, vol. 36, pp. 2396-2403, Oct 1996.

[45] R. F. Ross and D. J. Klingenberg, "Dynamic simulation of flexible fibers composed of
linked rigid bodies," Journal of Chemical Physics, vol. 106, pp. 2949-2960, Feb 15 1997.

[46] C. F. Schmid, L. H. Switzer, and D. J. Klingenberg, "Simulations of fiber flocculation:
Effects of fiber properties and interfiber friction," Journal of Rheology, vol. 44, pp. 781-
809, Jul-Aug 2000.

[47] C. G. Joung, N. Phan-Thien, and X. J. Fan, "Direct simulation of flexible fibers," Journal
of Non-Newtonian Fluid Mechanics, vol. 99, pp. 1-36, Apr 15 2001.

[48] G. Wang, W. Yu, and C. X. Zhou, "Optimization of the rod chain model to simulate the
motions of a long flexible fiber in simple shear flows," European Journal of Mechanics
B-Fluids, vol. 25, pp. 337-347, May-Jun 2006.

[49] M. Rajabian, C. Dubois, and M. Grmela, "Suspensions of semiflexible fibers in
polymeric fluids: Rheology and thermodynamics," Rheologica Acta, vol. 44, pp. 521-
535, Jul 2005.

[50] M. Keshtkar, M. C. Heuzey, P. J. Carreau, M. Rajabian, and C. Dubois, "Rheological
properties and microstructural evolution of semi-flexible fiber suspensions under shear
flow," Journal of Rheology, vol. 54, pp. 197-222, Mar-Apr 2010.

46

[51] M. Grmela and H. C. Ottinger, "Dynamics and thermodynamics of complex fluids. I.
Development of a general formalism," Physical Review E, vol. 56, pp. 6620-6632, Dec
1997.

[52] H. C. Ottinger and M. Grmela, "Dynamics and thermodynamics of complex fluids. II.
Illustrations of a general formalism," Physical Review E, vol. 56, pp. 6633-6655, Dec
1997.

[53] H. Hencky, "Ueber langsaeme stationare striimung in plastischen massen.," Zeitschrift
Fur Angewandte Mathematik Und Mechanik, vol. 5, 1925.

[54] K. C. Ortman, "Assessing an Orientation Model and Stress Tensor for Semi-Flexible
Glass Fibers in Polypropylene Using a Sliding Plate Rheometer: for the Use of
Simulating Processes," Ph.D., Virginia Polytechnic and State University, 2011.

[55] U. Strautins and A. Latz, "Flow-driven orientation dynamics of semiflexible fiber
systems," Rheologica Acta, vol. 46, pp. 1057-1064, Oct 2007.

[56] K. C. Ortman, P. Wapperom, A. Whittington, and D. G. Baird, "Using startup of steady
shear flow in a sliding plate rheometer to determine material parameters for the purpose
of predicting long fiber orientation," Journal of Rheology, vol. 56, pp. 955-981, 2012.

[57] J. Azaiez and R. Guenette, "Numerical modelling of the flow of fibre suspensions
through a planar contraction," Canadian Journal of Chemical Engineering, vol. 80, pp.
1115-1125, Dec 2002.

[58] R. L. Schiek and E. S. G. Shaqfeh, "A Nonlocal Theory for Stress in Bound, Brownian
Suspensions of Slender, Rigid Fibers," Journal of Fluid Mechanics, vol. 296, pp. 271-
324, Aug 10 1995.

[59] D. A. Jack and D. E. Smith, "Assessing the use of tensor closure methods with
orientation distribution reconstruction functions," Journal of Composite Materials, vol.
38, pp. 1851-1871, 2004.

[60] J. L. Ericksen, "Anisotropic Fluids," Archive for Rational Mechanics and Analysis, vol.
4, 1960.

[61] J. L. Ericksen, "Theory of Anisotropic Fluids," Transactions of the Society of Rheology,
vol. 4, 1960.

[62] S. G. Advani and C. L. Tucker, "The Use of Tensors to Describe and Predict Fiber
Orientation in Short Fiber Composites," Journal of Rheology, vol. 31, pp. 751-784, Nov
1987.

[63] G. B. Jeffery, "The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,"
Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,
vol. 100, pp. 161-179, 1922.

[64] B. J. Trevelyan, Mason, S.G., "Particle motions in sheared suspensions. I. Rotations,"
Journal of Colloid Science, vol. 6, pp. 354-367, 1951.

[65] S. E. Barbosa and M. G. Bibbo, "Fiber motion and rheology of suspensions with uniform
fiber orientation," Journal of Polymer Science Part B-Polymer Physics, vol. 38, pp. 1788-
1799, Jul 1 2000.

47

[66] S. G. Mason, "Particle Motions in Sheared Suspensions: Orientation and Interactions of
Rigid Rods," Proceedings of the Royal Society a-Mathematical Physical and Engineering
Sciences, vol. 238, 1956.

[67] S. G. M. R. St J Manley, "Particle motions in sheared suspensions II. Collisions of
uniform spheres," Journal of Colloid Science, vol. 7, pp. 354-369, 1952.

[68] C. C. Ferguson, "Rotations of elongate rigid particles in slow non-Newtonian flows,"
Tectonophysics, vol. 60, pp. 247-262, 1979.

[69] F. Folgar and C. L. Tucker, "Orientation Behavior of Rigid Fibers in Concentrated
Suspensions," Journal of Rheology, vol. 26, pp. 604-604, 1982.

[70] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .2.
Experimental Results," Polymer Composites, vol. 13, pp. 332-341, Aug 1992.

[71] R. S. Bay, "Fiber orientation in injection molded composites: a comparison of theory and
experiment," Ph.D. , University of Illinois, Urbana-Champaign, 1991.

[72] S. Ranganathan and S. G. Advani, "Fiber-Fiber Interactions in Homogeneous Flows of
Nondilute Suspensions," Journal of Rheology, vol. 35, pp. 1499-1522, Nov 1991.

[73] N. Phan-Thien, X. J. Fan, R. I. Tanner, and R. Zheng, "Folgar-Tucker constant for a fibre
suspension in a Newtonian fluid," Journal of Non-Newtonian Fluid Mechanics, vol. 103,
pp. 251-260, Mar 25 2002.

[74] M. Sepehr, G. Ausias, and P. J. Carreau, "Rheological properties of short fiber filled
polypropylene in transient shear flow," Journal of Non-Newtonian Fluid Mechanics, vol.
123, pp. 19-32, Oct 15 2004.

[75] R. I. Tanner, Engineering Rheology: Oxford University Press, 2000.

[76] C. L. Tucker, J. Wang, and J. F. O'Gara, "An objective model for slow orientation
kinetics in concentrated fiber suspensions: Theory and rheological evidence," Journal of
Rheology, vol. 52, pp. 1179-1200, Sep-Oct 2008.

[77] D. L. Koch, "A Model for Orientational Diffusion in Fiber Suspensions," Physics of
Fluids, vol. 7, pp. 2086-2088, Aug 1995.

[78] X. J. Fan, N. Phan-Thien, and R. Zheng, "A direct simulation of fibre suspensions,"
Journal of Non-Newtonian Fluid Mechanics, vol. 74, pp. 113-135, Jan 1998.

[79] C. L. Tucker and J. H. Phelps, "An anisotropic rotary diffusion model for fiber
orientation in short- and long-fiber thermoplastics," Journal of Non-Newtonian Fluid
Mechanics, vol. 156, pp. 165-176, Feb 2009.

[80] O. L. Forgacs, Mason S.G., "Particle Motions in Sheared Suspensions X. Orbits of
Flexible Threadlike Particles," Journal of Colloid and Science, vol. 14, pp. 473-491,
1959.

[81] E. J. Hinch, "The distortion of a flexible inextensible thread in a shearing flow," Journal
of Fluid Mechanics, vol. 74, pp. 317-333, 1975.

[82] J. D. Goddard and Y. H. Huang, "On the Motion of Flexible Threads in a Stokes Shear
Field," Journal of Non-Newtonian Fluid Mechanics, vol. 13, pp. 47-62, 1983.

48

[83] G. M. Velez-Garcia, S. M. Mazahir, P. Wapperom, and D. G. Baird, "Simulation of
Injection Molding Using a Model with Delayed Fiber Orientation," International
Polymer Processing, vol. 26, pp. 331-339, Jul 2011.

[84] R. B. Bird, Dynamics of polymeric liquids. New York: Wiley, 1977.

[85] J. G. Oldroyd, "An Approach to Non-Newtonian Fluid-Mechanics," Journal of Non-
Newtonian Fluid Mechanics, vol. 14, pp. 9-46, 1984.

[86] W. Prager, Introduction to Mechanics of Continua. Boston, MA: Ginn, 1961.
[87] L. E. Malvern, Introduction to the Mechanics of a Continuous Medium. Englewood

Cliffs, NJ: Prentice-Hall, 1969.
[88] A. S. Lodge, Elastic Liquids. New York, NY: Academic Press, 1964.

[89] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids. - 1 : Fluid
mechanics, 2.ed. ed. New York,N.Y.: Wiley, 1987.

[90] G. L. Hand, "A theory of anisotropic fluids," Journal of Fluid Mechanics, vol. 13, pp. 33-
46, 1961.

[91] M. Doi, "Molecular-Dynamics and Rheological Properties of Concentrated-Solutions of
Rodlike Polymers in Isotropic and Liquid-Crystalline Phases," Journal of Polymer
Science Part B-Polymer Physics, vol. 19, pp. 229-243, 1981.

[92] R. Haag, "Optimization of the warpage of fiber reinforced thermoplastics by influencing
fiber orientation," Proceedings of the 61st ANTEC conference and exhibition, vol. 49, pp.
661-664, 2003.

[93] W.-H. Yang, Hsu, D.C., Yang, V., "Computer simulation of 3D short fiber orientation in
injection molding," Proceedings of the 61st ANTEC conference and exhibition, vol. 49.

[94] V. Verleye, Dupret, F., "Prediction of the fiber orientation in complex injection molded
parts," Proceedings of the ASME 1993 Winter Anuual Meeting, vol. 175, pp. 139-163,
1993.

[95] J. S. Cintra and C. L. Tucker, "Orthotropic Closure Approximations for Flow-Induced
Fiber Orientation," Journal of Rheology, vol. 39, pp. 1095-1122, Nov-Dec 1995.

[96] B. E. VerWeyst, C. L. Tucker, P. H. Foss, and J. F. O'Gara, "Fiber orientation in 3-D
injection molded features - Prediction and experiment," International Polymer
Processing, vol. 14, pp. 409-420, Dec 1999.

[97] D. H. Chung and T. H. Kwon, "Improved model of orthotropic closure approximation for
flow induced fiber orientation," Polymer Composites, vol. 22, pp. 636-649, Oct 2001.

[98] F. Dupret, Verleye, V., "Modeling the flow of fiber suspensions in narrow gaps,"
Advances in the flow and rheology of non-Newtonian fluids, Part B, pp. 1347-1398, 1999.

[99] C. A. Petty, Parks, S.M., Shiwei, M.S., "Flow-induced alignment of fibers," Proceedings
of the ICCM-12 conference, 1999.

[100] D. H. Chung and T. H. Kwon, "Invariant-based optimal fitting closure approximation for
the numerical prediction of flow-induced fiber orientation," Journal of Rheology, vol. 46,
pp. 169-194, Jan-Feb 2002.

49

[101] D. A. Jack and D. E. Smith, "The effect of fibre orientation closure approximations on
mechanical property predictions," Composites Part a-Applied Science and
Manufacturing, vol. 38, pp. 975-982, 2007.

[102] D. A. Jack and D. E. Smith, "Sixth-order fitted closures for short-fiber reinforced
polymer composites," Journal of Thermoplastic Composite Materials, vol. 19, pp. 217-
246, Mar 2006.

[103] D. A. Jack and D. E. Smith, "An invariant based fitted closure of the sixth-order
orientation tensor for modeling short-fiber suspensions," Journal of Rheology, vol. 49,
pp. 1091-1115, Sep-Oct 2005.

[104] D. H. Chung and T. H. Kwon, "Numerical studies of fiber suspensions in an
axisymmetric radial diverging flow: the effects of modeling and numerical assumptions,"
Journal of Non-Newtonian Fluid Mechanics, vol. 107, pp. 67-96, Dec 6 2002.

[105] M. P. Petrich, D. L. Koch, and C. Cohen, "An experimental determination of the stress-
microstructure relationship in semi-concentrated fiber suspensions," Journal of Non-
Newtonian Fluid Mechanics, vol. 95, pp. 101-133, Dec 25 2000.

[106] S. G. Advani and E. M. Sozer, Process modeling in composites manufacturing. New
York: Marcel Dekker, 2003.

[107] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .1. Theory
and Numerical-Methods," Polymer Composites, vol. 13, pp. 317-331, Aug 1992.

[108] K. Chiba, K. Yasuda, and K. Nakamura, "Numerical solution of fiber suspension flow
through a parallel plate channel by coupling flow field with fiber orientation
distribution," Journal of Non-Newtonian Fluid Mechanics, vol. 99, pp. 145-157, Jul
2001.

[109] M. Yamanoi, J. Maia, and T. S. Kwak, "Analysis of rheological properties of fibre
suspensions in a Newtonian fluid by direct fibre simulation. Part 2: Flexible fibre
suspensions," Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp. 1064-1071, Oct
2010.

[110] M. Yamanoi and J. M. Maia, "Analysis of rheological properties of fibre suspensions in a
Newtonian fluid by direct fibre simulation. Part1: Rigid fibre suspensions," Journal of
Non-Newtonian Fluid Mechanics, vol. 165, pp. 1055-1063, Oct 2010.

[111] D. G. Baird and D. I. Collias, Polymer processing: principles and design: Wiley, 1998.
[112] G. K. Batchelor, An introduction to fluid dynamics. Cambridge,: U.P., 1967.

[113] M. Altan, S. Subbiah, S. I. Guceri, and R. B. Pipes, "Numerical Prediction of Three-
Dimensional Fiber Orientation in Hele-Shaw Flows," Polymer Engineering and Science,
vol. 30, pp. 848-859, 1990.

[114] K. H. Han and Y. T. Im, "Numerical simulation of three-dimensional fiber orientation in
injection molding including fountain flow effect," Polymer Composites, vol. 23, pp. 222-
238, Apr 2002.

50

[115] K. K. Kabanemi, J. F. Hetu, and A. GarciaRejon, "Numerical simulation of the flow and
fiber orientation in reinforced thermoplastic injection molded products," International
Polymer Processing, vol. 12, pp. 182-191, Jul 1997.

[116] J. A. Dantzig and C. L. Tucker, Modeling in Materials Processing: Cambridge University
Press, 2001.

[117] C. A. Hieber and S. F. Shen, "A Finite-Element-Finite-Difference Simulation of the
Injection-Molding Filling Process," Journal of Non-Newtonian Fluid Mechanics, vol. 7,
pp. 1-32, 1980.

[118] E. K. Henry, S.;Kennedy P., "Fiber orientation and the mechanical properties of SFRP
parts.," presented at the SPE Tech. Papers, 1994.

[119] C. S. C. Randall, H.H., "Applications of fiber orientation analysis in injection molding of
fiber-filled composites," presented at the SPE Tech. Papers, 1994.

[120] H. H. Chiang, C. A. Hieber, and K. K. Wang, "A Unified Simulation of the Filling and
Postfilling Stages in Injection-Molding .1. Formulation," Polymer Engineering and
Science, vol. 31, pp. 116-124, Jan 1991.

[121] P. Filz, "Simulation of the Injection-Molding Process for Crosslinking Materials -
Current Situation and Future Possibilities," Kunststoffe-German Plastics, vol. 79, pp.
1057-1061, Oct 1989.

[122] A. D. Couinot, L.; Hansen, O.; Dupret, F., "A finite element method for simulating
injection molding of thermoplastics," in Numiform. vol. 89, J. F. Thompson, Ed., ed
Rotterdam, 1989.

[123] S. Subbiah, D. L. Trafford, and S. I. Guceri, "Non-Isothermal Flow of Polymers into
Two-Dimensional, Thin Cavity Molds - a Numerical Grid Generation Approach,"
International Journal of Heat and Mass Transfer, vol. 32, pp. 415-434, Mar 1989.

[124] J. Ko and J. R. Youn, "Prediction of Fiber Orientation in the Thickness Plane during
Flow Molding of Short-Fiber Composites," Polymer Composites, vol. 16, pp. 114-124,
Apr 1995.

[125] W. Rose, "Fluid-Fluid Interfaces in Steady Motion," Nature, vol. 191, p. 242, 1961.

[126] Z. Tadmor, "Molecular Orientation in Injection Molding," Journal of Applied Polymer
Science, vol. 18, 1974.

[127] C. G. Gogos, C. F. Huang, and L. R. Schmidt, "The Process of Cavity Filling Including
the Fountain Flow in Injection-Molding," Polymer Engineering and Science, vol. 26, pp.
1457-1466, Nov 1986.

[128] D. J. Coyle, J. W. Blake, and C. W. Macosko, "The Kinematics of Fountain Flow in
Mold-Filling," Aiche Journal, vol. 33, pp. 1168-1177, Jul 1987.

[129] H. Mavridis, A. N. Hrymak, and J. Vlachopoulos, "The Effect of Fountain Flow on
Molecular-Orientation in Injection-Molding," Journal of Rheology, vol. 32, pp. 639-663,
Aug 1988.

[130] R. C. Givler, M. J. Crochet, and R. B. Pipes, "Numerical Prediction of Fiber Orientation
in Dilute Suspensions," Journal of Composite Materials, vol. 17, pp. 330-343, 1983.

51

[131] A. N. Alexandrou and A. Ahmed, "Unsteady-Flow of Dilute Fiber Suspensions Using a
Generalized Eulerian-Lagrangian Approach," Polymer Composites, vol. 15, pp. 418-426,
Dec 1994.

[132] J. Wang, C. A. Silva, J. C. Viana, F. W. J. van Hattum, A. M. Cunha, and C. L. Tucker,
"Prediction of fiber orientation in a rotating compressing and expanding mold," Polymer
Engineering and Science, vol. 48, pp. 1405-1413, Jul 2008.

[133] H. H. Chiang, C. A. Hieber, and K. K. Wang, "A Unified Simulation of the Filling and
Postfilling Stages in Injection-Molding .2. Experimental-Verification," Polymer
Engineering and Science, vol. 31, pp. 125-139, Jan 1991.

[134] F. Dupret and L. Vanderschuren, "Calculation of the temperature field in injection
molding," Aiche Journal, vol. 34, pp. 1959-1972, 1988.

[135] S. Ranganathan and S. G. Advani, "A simultaneous solution for flow and fiber orientation
in axisymmetric diverging radial flow," Journal of Non-Newtonian Fluid Mechanics, vol.
47, pp. 107-136, 1993.

[136] M. Vincent, E. Devilers, and J. F. Agassant, "Fibre orientation calculation in injection
moulding of reinforced thermoplastics," Journal of Non-Newtonian Fluid Mechanics,
vol. 73, pp. 317-326, Dec 1997.

[137] B. E. VerWeyst and C. L. Tucker, "Fiber suspensions in complex geometries:
Flow/orientation coupling," Canadian Journal of Chemical Engineering, vol. 80, pp.
1093-1106, Dec 2002.

[138] J. M. Park and T. H. Kwon, "Nonisothermal Transient Filling Simulation of Fiber
Suspended Viscoelastic Liquid in a Center-Gated Disk," Polymer Composites, vol. 32,
pp. 427-437, Mar 2011.

[139] B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, et
al., "Fiber length and orientation in long-fiber injection-molded thermoplastics - Part I:
Modeling of microstructure and elastic properties," Journal of Composite Materials, vol.
42, pp. 1003-1029, May 2008.

[140] K. C. Ortman, "Assessing an Orientation Model and Stress Tensor for Semi-Flexible
Glass Fibers in Polypropylene Using a Sliding Plate Rheometer: for the Use of
Simulating Processes," Ph.D., Chemical Engineering, Virginia Tech, Blacksburg, VA.,
2011.

[141] M. C. Altan, S. I. Guceri, and R. B. Pipes, "Anisotropic Channel Flow of Fiber
Suspensions," Journal of Non-Newtonian Fluid Mechanics, vol. 42, pp. 65-83, Mar 1992.

[142] S. T. Chung and T. H. Kwon, "Numerical-Simulation of Fiber Orientation in Injection-
Molding of Short-Fiber-Reinforced Thermoplastics," Polymer Engineering and Science,
vol. 35, pp. 604-618, Apr 1995.

[143] S. Henmi and N. Mori, "Effects of abrupt expansion geometries on flow-induced fiber
orientation and concentration distributions in slit channel flows of fiber suspensions,"
Polymer Composites, vol. 26, pp. 660-670, 2005.

[144] A. Baloch and M. F. Webster, "A Computer-Simulation of Complex Flows of Fiber
Suspensions," Computers & Fluids, vol. 24, pp. 135-151, Feb 1995.

52

[145] S. Zhang and J. A. Olson, "Computing orientation distribution and rheology of turbulent
fiber suspensions flowing through a contraction," Engineering Computations, vol. 24, pp.
52-76, 2007.

[146] K. Chiba and K. Nakamura, "Numerical solution of fiber suspension flow through a
complex channel," Journal of Non-Newtonian Fluid Mechanics, vol. 78, pp. 167-185,
Aug 1998.

[147] J.-z. Lin, "Fiber Orientation Distributions in Slit Channel Flows with Abrupt Expansion
for Fiber Suspensions," Journal of hydrodynamics. Series B, vol. 20, pp. 696-705, 2008.

[148] R. A. Keiller and E. J. Hinch, "Corner flow of a suspension of rigid rods," Journal of
Non-Newtonian Fluid Mechanics, vol. 40, pp. 323-335, 1991.

[149] J. Lin, S. Zhang, and W. Zhang, "Numerical research on the fiber suspensions in a
turbulent T-shaped branching channel flow," Chinese Journal of Chemical Engineering,
vol. 15, pp. 30-38, 2007.

[150] K. Ortman, D. Baird, P. Wapperom, and A. Aning, "Prediction of fiber orientation in the
injection molding of long fiber suspensions," Polymer Composites, vol. 33, pp. 1360-
1367, 2012.

53

Chapter 3

Initial Conditions for Simulating Glass Fiber Orientation in the
Filling of Center-Gated Disks

Preface
This chapter describes the simulation of long, semi-flexible fibers in a center-gated disk

using both a conventional rigid fiber orientation model and a semi-flexible fiber model which
takes into account fiber flexing when calculating orientation. This chapter is organized as a
manuscript for publication in Composites Part A: Applied Science and Manufacturing.

54

3 Initial Conditions for Simulation of Glass Fiber Orientation in
the Filling of Center-Gated Disks

Kevin J. Meyer1, John T. Hofmann2, and Donald G. Baird1∗

1. Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061
2. Macromolecule and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061

* Corresponding Author: Tel. +1 540 231 5998 ; Fax +1 540 231 2732.
Email Address: dbaird@vt.edu (D.G. Baird)
Present Address:
Department of Chemical Engineering
133 Randolph Hall
Virginia Tech
Blacksburg, VA 24061

3.1 Abstract

This work is concerned with the effect that initial conditions play in simulating long (> 1
mm) glass fiber (LGF) orientation in the filling of a center-gated disk (CGD). For the CGD, most
orientation simulations begin at the gate and make assumptions about the initial fiber orientation
entering the mold. This paper reports on a method for simulating LGF orientation in a CGD by
simulating the sprue, gate, and mold (S-G-M) as a single domain. The velocity field solution is
determined using a finite element method including the advancing front. To predict LGF
orientation, rigid and flexible fiber models are employed using parameters obtained from
rheology. It is observed that predicting LGF orientation in systems with either model is highly
sensitive to the choice of initial conditions. Furthermore, the flexible fiber model is observed to
be more successful at predicting LGF orientation based on agreement with experimental results.

3.2 Introduction
The flexibility of a glass fiber is used to describe the fiber’s tendency to bend in the

presence of flow. Switzer and Klingenberg [1] quantified the effective flexibility of a fiber in a
viscous medium by proposing the dimensionless group Feff , defined below:

Feff = 64ηm γ ar

4

EYπ
 (3.1)

In Eq. (3.1), ηm is the matrix viscosity, γ is the shear rate, ar is the aspect ratio (ar = L d where
L is the length and d is the diameter of the fiber), and EY is the Young’s modulus. The fiber
flexibility is observed to increase with increasing aspect ratio for a given material (fixed Young’s
modulus,EY , and matrix viscosity, ηm). In the literature [2] long glass fibers are defined as any

55

fiber over the length of 1 mm Feff > 51()while short glass fibers are considered under 1 mm and

rigid Feff < 51() . The authors recognize that a number of factors goes into the calculation of the
effective fiber flexibility parameter and have chosen to hold all but the fiber length constant for
the study presented here.
 Modeling glass fiber orientation during injection molding has typically been done by
some variant of the Folgar-Tucker (rigid fiber) model which is a modified form of Jeffery’s
equation for prolate spheroids in a viscous medium [3, 4]. Folgar and Tucker added an additional
term, called the isotropic rotary diffusion term, which accounts for the fiber-fiber interaction in a
concentrated fiber system. The FT model has shown good agreement in some cases with short
glass fiber orientation values obtained from injection molding experiments and is thus a popular
choice for commercial software packages [5, 6].

Stress growth experiments in the startup of simple shear suggest that the orientation
kinetics in concentrated fiber systems (φ > ar

−1 , where φ is the fiber volume faction and ar is the
aspect ratio) may more slowly evolve than the FT model predicts [7-9]. A slip parameter was
suggested to delay the predicted fiber orientation to better agree with experimental orientation
data, but this approach results in a non-objective model [10]. The slip parameter is an addition to
further retard the orientation predictions resulting from additional fiber-fiber interaction not
accounted for by the rotary diffusion term. An alternative to the non-objective model is the
reduced strain closure (RSC) proposed by Wang et al. [11], whereby the slip parameter was
moved into the closure approximation generating an eigenvalue problem and maintaining model
objectivity. Even though the FT model with the slip parameter is non-objective, it has shown to
be useful in describing fiber orientation kinetics in simple flow fields as well as center-gated
disks [3, 5, 8, 12, 13].

 In glass fiber suspensions, where fibers can be considered flexible, further modification
of the theory for fiber orientation may be necessary because of the flexing and deflection that can
be observed in these systems. The Bead-Rod (semi-flexible) model for dilute suspensions was
introduced by Strautins and Latz [14] as a method to quantify fiber bending during processing.
The model was extended to concentrated systems by Ortman et al. [15] with the addition of the
slip parameter from Eberle et al. [10] and the isotropic rotary diffusion term from the FT model.
The BR model has been shown to agree well with experimental orientation data for simple shear
fields [15].

 The simulations to calculate fiber orientation utilizing either the rigid fiber model or
semi-flexible fiber model are highly dependent upon the choice of values for the model
parameters. The parameters for simulation have typically been obtained by empirical
relationships or from injection molding experiments [11, 16]. A rheological method to determine
these parameters has been presented for both SGF and LGF systems in simple, well controlled
flow fields [9, 15]. Eberle et al. [9] showed that the startup of simple shear flow using a “donut”
shaped sample in a rotational rheometer can be used to obtain the empirical parameters for
calculating fiber orientation in SGF systems. Similarly, Ortman et al. [15, 17] showed that the
empirical parameters can be estimated for LGF systems by startup of simple shear using a sliding
plate rheometer for both the FT and BR fiber orientation models.

56

Simulations of short glass fiber (SGF) orientation in center-gated disks have typically
begun near the gate, after the fluid turns to enter the mold. At this position, initial conditions are
imposed as either assumed values (i.e. completely random, random in the plane, parallel to the
flow field, etc.) or experimentally measured values that are obtained from the gate (0% line) after
the mold has been filled. The assumption utilized in this technique is commonly referred to the
Hele-Shaw approximation and is utilized by many commercial software packages to compute
fiber orientation. Bay and Tucker [18] assumed a random orientation at the gate and showed
reasonable results using the Hele-Shaw approximation. Vélez-García et al. [10] reported that, on
average, the fiber orientation entering the mold is planar random but the orientation did vary
across the thickness. Vélez-García et al. [12] also observed that the choice of initial conditions
for fiber orientation at the mold entrance persisted to approximately 50% of the mold. Chung and
Kwon [19] noted the contribution of the sprue region of the center-gated disk to the predictions
of fiber orientation in the mold. It was reported that all of the components of orientation for short
glass fibers were influenced by where the solution of orientation was started (inlet of gate vs.
inlet of sprue).

Little work has been performed in the prediction of orientation values for long glass
fibers in center-gated disks. Ortman et al. [20] used experimentally determined values at the inlet
to the mold. Orientation predictions were carried out with a rigid fiber model and a semi-flexible
fiber model and both models showed predictions in reasonable agreement with experimental data
up to 50% of the mold fill.

 The goal of this work is to evaluate how the choice of initial conditions affects the
prediction of long glass fiber orientation in a center-gated disk. Common assumptions about fiber
orientation at the gate are compared to a method of simulating the sprue, gate, and mold (S-G-M)
as a single domain [19]. The S-G-M method starts from the beginning of the sprue with an
initially random fiber orientation and allows the flow field, including the advancing front, to
completely dictate fiber orientation. The solution for velocity fields and fiber orientation are
decoupled so that a two-step process to calculate orientation is invoked. The velocity field is
solved using a non-isothermal volume of fluid method (VOF) in the ANSYS® Polyflow software
package. Fiber orientation is calculated using MATLAB routines developed in our laboratory
utilizing the finite difference method. The quality of each initial condition choice is evaluated
against experimental orientation data obtained from a center-gated disk. Furthermore, a rigid and
a flexible fiber model are used in predicting LGF orientation with conclusions drawn as to the
accuracy of each model.

3.3 Governing Equations

In the following section, the pertinent equations for the solution of fiber orientation are
presented. First the equations of motion and energy are presented for the solution of the neat
polymer matrix. Next, the rigid fiber model is described for concentrated fiber systems utilizing a
slip parameter. Finally, the semi-flexible fiber model is presented as an alternative to model
concentrated a fiber system that attempts to account for flexibility sometimes seen in long glass
fiber systems.

3.3.1 Equations of Motion
The fluid is assumed to be incompressible so that the mass and momentum equations take

on the familiar form of Eq. (3.2) and Eq. (3.3), respectively.

57

 0 = ∇⋅v (3.2)

 0 = −∇P +∇⋅τ (3.3)

In Eq. (3.2) and Eq. (3.3), v is the velocity, P is the pressure, and τ is the extra stress tensor due
to the deforming polymeric fluid. The flow was assumed laminar after calculation of the
Reynolds number showed that Re ≈10−3 throughout the cavity. The Carreau model was used to
account for the shear thinning behavior of the neat matrix and is given below in Eq. (3.4) where
η0 zero shear viscosity, λ is a parameter which governs the onset of shear thinning, and n is a
parameter governing the degree of shear thinning of the matrix.

ηm γ() =η0 1+ λ γ()2⎡⎣ ⎤⎦

n−1
2 (3.4)

Finally, the fluid is assumed to be homogenous within the domain. In fiber suspensions,
especially containing long fibers, the polymer fluid filling the cavity has voids, etc. By
simulating only the matrix viscosity the assumption of a homogenous flow field is more accurate
and thus adopted here.
3.3.2 Thermal Effects

Minimizing thermal gradients in the molding operation was achieved through the use of
fast mold fill times. To corroborate the reduction of thermal effects in the experimental injection
moldings, the molding simulations were initially performed under non-isothermal conditions to
account for the thermal gradients observed in injection molding. The result of the non-isothermal
simulations in the mold showed only a 6K temperature drop from the center of the disk to the
wall ≈1 mm()of the mold and only a 10K temperature drop very near the wall ≈ 0.1 mm() .
Additionally, the temperature drop observed from the center of the sprue to the wall
≈ 0.75 mm()was less than2K . This small temperature gradient in the mold allowed for the

isothermal assumption in all subsequent simulations. Hence, the viscosity was assumed
independent of temperature in the melt.
3.3.3 Equations of Rigid Fiber Orientation

Quantifying rigid fiber orientation in a concentrated suspension is accomplished through
the use of orientation tensors given by Advani and Tucker [21]. The orientation distribution
function, ψ , describes the probability of a single fiber’s orientation within θ ,φ() and
θ + dθ ,φ + dφ() . The 2nd and 4th moments of the orientation tensor can be obtained by evaluating

the integrals shown in Eq. (3.5) and Eq. (3.6), respectfully:

 A = pp ψ p,t()dp∫∫ (3.5)

 A4 = pppp ψ p,t()dp∫∫ (3.6)

The 4th order tensor in Eq. (3.6) requires the use of a closure approximation that reduces the 4th
order tensor to a combination of 2nd order tensors. Advani and Tucker recognized the closure
problem [21] and proposed closure approximations [22] reduce the fourth-order tensor and a
number of closure approximations are available which are examined in Chung and Kwon [23].

58

For this work the invariant-based optimal fitting (IBOF) closure is used to estimate the 4th order
orientation tensor given by Chung and Kwon [24] which is based on polynomial expansions of
the 2nd and 3rd invariants of the 2nd order orientation tensor, A .

 Modeling glass fiber orientation in concentrated suspensions has been successful through
the use of the rigid fiber model [3, 5, 18] which is a modification of Jeffery’s equation for prolate
spheroids in a viscous medium [4]. To more accurately reflect the slower orientation kinetics
seen in experimental data of concentrated glass fiber suspensions, Sepehr et al. [8] and Huynh
[25] proposed adding a phenomenological slip parameter, α , to the original rigid fiber model.
The modified model is shown in Eq. (3.7) where W is the vorticity tensor W = 1

2 ∇v()T −∇v⎡⎣ ⎤⎦() ,

D is the rate of deformation tensor D = 1
2 ∇v()T +∇v⎡⎣ ⎤⎦() , γ is the magnitude of the shear rate

γ = 1

2 D :D() , ξ is the shape factorξ = ar
2 +1 ar

2 −1 , I is the identity tensor and ∇v = ∂vj ∂xi :

DA
Dt

=α W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D() + 2CI γ I − 3A()⎡
⎣

⎤
⎦ (3.7)

The shape factor,ξ , for glass fiber systems is usually given a value of unity since ar is generally
large for glass fibers ≈10 −100() . The third term on the right hand side of Eq. (3.7) is the
isotropic rotary diffusion term, which accounts for the fiber-fiber interaction inherent to the
concentrated suspension and is loosely based on the term for isotropic diffusivity associated with
Brownian rods [26]. The CI term is an empirical parameter, which accounts for some of the of
fiber-fiber interaction in a concentrated suspension. The slip coefficient, α , is another empirical
parameter with a value between 0 and 1 which tries to account for the slower fiber orientation
kinetics seen in concentrated glass fiber systems. The model given by Eq. (3.7) has been chosen
to simulate fiber orientation because it is seen to qualitatively agree with experimental data in
both simple shear flow and center-gated disks [9, 12, 15].

3.3.4 Equations of Flexible Fiber Orientation
As fibers increase in length, the orientation model representing those fibers may need to

be able to account for the bending and deflection that is sometimes encountered. The semi-
flexible model was first proposed by Strautins and Latz [14] as a method to predict flexible fiber
orientation in a dilute suspension using the compact tensor notation described above [21]. The
flexible fiber was represented as two vectors, p andq , connected by a ball and socket joint with
an internal resistivity to bending shown in Figure 3.2. The semi-flexible system uses the similar
tensor notation as the rigid fiber model but, because of the two-rod system, three moments occur
and are defined by Eqs. (3.8) - (3.10):

 A = pp ψ p,q,t()dpdq∫∫ (3.8)

 B = pq ψ p,q,t()dpdq∫∫ (3.9)

 C = p ψ p,q,t()∫∫ dpdq (3.10)

59

The three moments of the semi-flexible system give rise to a set of three orientation
equations, which have been extended by Ortman et al. [17] to concentrated solutions by adding
the isotropic rotary diffusion term from Folgar and Tucker in Eqs. (3.11) - (3.14):

DA
Dt

=α W ⋅A − A ⋅W() + ξ D ⋅A + A ⋅D − 2D :A4()⎡
⎣ + ...

 lb
2
Cm +mC − 2 m ⋅C()A⎡⎣ ⎤⎦+ 2k B − A tr B()⎡

⎣
⎤
⎦ − 6CI γ A − 1

3 I()⎤⎦⎥
 (3.11)

DB
Dt

=α W ⋅B − B ⋅W() + ξ D ⋅B + B ⋅D − 2 D :A()B() +⎡
⎣⎢ ...

 lb
2
Cm +mC − 2 m ⋅C()A⎡⎣ ⎤⎦+2k A − B tr B()⎡

⎣
⎤
⎦ − 4CI γ B⎤⎦⎥

 (3.12)

DC
Dt

=α ∇v T ⋅C − A :∇v T()C + lb
2

m −C m ⋅C()⎡⎣ ⎤⎦ − kC 1− tr B()⎡
⎣

⎤
⎦ − 2CI γC

⎡
⎣⎢

⎤
⎦⎥

 (3.13)

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑ (3.14)

The internal resistivity to bending, k , is a coefficient that attempts to account for the physical
bending that may occur in the system of fibers. As the value of k increases, the semi-flexible
model behaves more like the rigid fiber model and in the limit of k→∞ the semi-flexible model
parallels the rigid fiber model. Conversely, as the value of k decreases the fiber becomes much
more flexible. In the equations presented above, the flexibility of the fiber is initiated in the
hydrodynamic contributions given by Eq. (3.14) and is due to the bending that may occur do to
gradients in the flow field.

From these expressions an end-to-end vector is defined which establishes the “average”
orientation of a slightly bent fiber. This vector is also formulated as a tensor by integrating the
orientation distribution function with the result being Eq.(3.15):

 r = lb
2 p − q() p − q()ψ p,q,t()dpdq∫∫ (3.15)

If the tensor in Eq. (3.15) is normalized, then the R tensor is produced R = rr tr r()() and is

related to the A and B tensors through the relation shown in Eq.(3.16):

 R = A − B
1− tr B() (3.16)

In the limit when no fiber flexing occurs, the B tensor becomes small and the A tensor is
recovered and behaves like rigid fiber theory.

60

3.3.5 Use of Three-Dimensional Orientation Tensors
The center-gated disk geometry chosen for these studies was based on the industrial

application of long glass fibers in a radially diverging flow field. Taking into account the average
fiber length of the system and the gaps with which these fibers must flow through, it is easy to
see that certain fiber orientations are precluded from ever occurring. Three dimensional
orientation tensors are used in this work because the technique of simulating the sprue, gate and
mold region requires it. For example, a long glass fiber, upon entering the sprue, will most likely
have a large value for the global “2” orientation component and be limited from ever fully being
oriented in the global “1” or “3” directions because the radius of the sprue is two small. Once
this same fiber turned to enter the mold, the global “2” component would never be fully reach
again because of the thickness of the mold and the length of the fiber. If either of these two cases
were calculated separately than a two-dimensional orientation tensor or possibly some other
representation could be used. In this work, the entire domain is simulated in a continuous manner
thus requiring a global three-dimensional orientation tensor.

3.4 Experimental
3.4.1 Injection Molding Conditions

Injection molded center-gated discs were created for experimental evaluation of the
orientation tensor using 30 wt% long glass fiber (13 mm) reinforced polypropylene provided by
SABIC Innovative Plastics. The temperatures of the feed, compression, and metering zones
within the injection molding machine (Arburg Allrounder, Model 221-55-250) were set to 190,
210, and 210 °C, respectively, while the mold temperature was held constant at 79 °C. The
center-gated discs have a radius of 89.3 mm and thickness of 1.98 mm. The sprue was 65 mm in
length with an initial radius of 1.45 mm and a radius at the gate of 1.75 mm. The disks were
molded with a fill time of 2.00 seconds and a backpressure of approximately 20 MPa. To ensure
that the machine was operating in an equilibrium state, the first ten discs molded were discarded
before selecting samples for analysis. Additionally, each disc was left in the mold for a period of
20 minutes prior to removal in an effort to reduce warping.

Stress relaxation tests were performed on the suspension in simple shear to observe the
effect of fibers relaxing during the period of time that the sample is left in the mold to reduce
warping. It was found that any relaxation of the sample occurs within seconds of the molding
operation. Furthermore, upon investigation of experimental data, there are still are large
population of fibers bent suggesting that the fibers do not relax during the holding time in the
mold.
3.4.2 Determination of Fiber Length Distribution

The Fiber Length Distribution (FLD) is determined in order to ascertain the average fiber
length and to ensure that the injection molded discs contained a truly long glass fiber population.
Methods described by Nguyen et al. [27] were used to measure the FLD of a population of
approximately 2,000 fibers. In brief, this method involves selecting a large portion of an
injection-molded part and burning off the polymer matrix in a high temperature furnace, leaving
a mat of glass fibers behind. A small amount of epoxy resin is applied to the fiber mat and
allowed to cure, and all excess fibers not encapsulated by the epoxy are carefully removed and
discarded. The remaining sampling region is returned to the furnace in order to burn off the
epoxy resin. Finally, the remaining glass fibers are separated and measured by image analysis to
construct the FLD. By using this method, the post-processing number average fiber length and

61

diameter is determined to be 3.90 mm (± 0.01mm) and 14.5 µm, respectively. The resulting FLD
is asymmetric, exhibits a long tail in the long fiber length regime, and appears to be represented
by a Weibull function, as previously reported in the literature [27, 28]. As such, it can be
concluded that the majority of fibers in the disc possess lengths greater than 1 mm and that the
population consists primarily of long semi-flexible fibers.
3.4.3 Orientation Measurements

Representative short shot discs stopped at 90% of the mold fill were chosen for analysis
at 0, 10, 40, and 90% of mold fill. The selected samples were prepared by polishing and plasma
etching, using the method described in detail by Vélez-García et al. [29]. After preparation, each
inspection line was imaged at 20X magnification using an optical microscope with a motorized
stage and image stitching software (Nikon Eclipse LV100, NIS-Elements Basic Research
Software, version 3.10). The resulting images had a width of 700 µm and height equal to the
thickness of the disc, and included a minimum of 350 fibers per inspection line. The
unambiguous components of the orientation tensor were subsequently determined using the
traditional Method of Ellipses (MoE) [30, 31].

Prior to discussing the actual orientation data, however, it is worth discussing the validity
of the traditional MoE for application to long fiber systems. While the traditional MoE is based
upon a rigid-rod assumption, the increased flexibility possible with long fibers presents inherent
difficulties in evaluation of orientation. However, the large theta-theta component of the rate of
deformation tensor, γ θθ , seen in the selected geometry combined with the axisymmetric nature of
the center-gated disc results in a population of fibers aligned predominantly in the transverse-to-
flow direction (i.e. in the theta direction). These results, detailed by Hofmann et al. [31], suggest
that no modifications to the method are necessary for the selected geometry and fiber length. It
is worth noting, however, that such a fortuitous result is not expected to translate to more
complicated parts where the axisymmetric benefit is lost and a 3-dimensional flow dominates.

3.4.4 Determination of Flexibility Parameter

The flexibility parameter for each fiber, ki , was estimated through Eq. (3.17) based on
basic mechanical analysis of a simply supported beam.

 ki =
EY
64ηm

⎛
⎝⎜

⎞
⎠⎟
d3

lb3
 (3.17)

The value for each fiber was then average to determine an average flexibility parameter based on
Eq. (3.18).

 k =
niki

i
∑

ni
i
∑ (3.18)

3.5 Problem Formulation

3.5.1 Solution Process
The domain was divided into two separate meshes and merged before solving for the

velocity fields. The sprue was meshed using 10 × 31 and the mold was meshed using 31× 200

62

both utilizing linear rectangular elements. Steep gradients at the wall are captured by using
unequal grid spacing and no further increase in numerical accuracy is seen by increasing the
domain discretization either through the thickness or length of the mold.

Tucker [32] first introduced a simplification for fiber suspensions flowing in narrow gaps
where the extra stress depends on the velocity gradients but not the fiber orientation. This fiber
simulation technique is known as the decoupled approach and has been verified by a number of
authors [12, 16, 18, 33-35] and is the solution approach adopted for the simulations in this work.
Further justification for using the decoupled approach is the lack of a valid stress tensor for
concentration fiber suspensions. Forms of the stress tensor has been developed and confirmed for
dilute [36] While a form of the stress tensor has been developed for dilute and semi-concentrated
suspensions and semi-dilute [37] suspensions but no such form exists for concentrated fiber
systems that is successful in all flow fields [19]. The velocity fields during the injection molding
process are calculated using the ANSYS Polyflow FEM non-Newtonian solver with a time
dependent volume of fluid (VOF) method. The parameters for simulating the polymer matrix
filling the center-gated mold are shown in Table 3.1.

Upon completion of the FEM simulations, the spacial coordinates and velocity data are
imported into MATLAB® (2011b, ver. 7.13.0.564, The Mathworks, Inc., Natick, MA) routines
where fiber orientation is calculated. Because the equations of motion and the equations of
orientation have been decoupled, the set of hyperbolic PDE’s is reduced to a set of highly non-
linear ODE’s which can be solved using the ‘ode15s’ function in the MATLAB software
package. The routines employ a combination of backward and central finite difference methods
to approximate the convective term in the material derivative and the mixed partial derivative in
Eq. (3.14).

The two phenomenological constants for simulation of fiber orientation have been
determined using a sliding plate rheometer and the technique described in Ortman et al. [17]. The
parameters are calculated for 30 wt. % LGF in a polypropylene matrix and are α = 0.25 and
CI = 0.005 for the rigid fiber model and α = 0.13 and CI = 0.025 for the semi-flexible model.
Additionally, lb is one half of the average measured fiber length and k = 218 s-1 for the semi-
flexible fiber suspension of 30 wt. % LGF in a polypropylene matrix.
3.5.2 Boundary Conditions

For the solution of the velocity fields it is necessary to impose some boundary conditions
on the simulated domain. The no-slip condition is applied at the walls v = 0, x ± −h() . For the
air/polymer interface in the mold, the VOF method in ANSYS Polyflow only requires the
specification of the normal and tangential forces which are defined to be zero fn = ft = 0() . The

inlet volumetric flow was prescribed as 500mm
3

s and the flow is assumed to be fully
developed. The neat matrix simulation was suspended when the cavity was 99% full. It was also
assumed that the mold thickness does not play a role in dictating fiber orientation based on the
work of Nguyen et al. [38].

3.5.3 Initialization of Orientation Solution
The solution of fiber orientation presented in this work is initialized three different ways.

The first type of initialization makes an assumption about fiber orientation at the entrance to the

63

mold cavity. Two initial configurations that have been applied to the mold entrance with success
for glass fiber systems are random [19] and random in the plane [10, 18] shown below by the
tensors in Eq. (3.19), respectively:

 A0 =

1
3 0 0
0 1

3 0
0 0 1

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

; A0 =

1
2 0 0
0 0 0
0 0 1

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (3.19)

The second initialization approach uses experimental orientation data obtained at the gate. Chung
and Kwon [19] , Vélez-García et al. [12], used SGF experimental orientation data obtained from
the gate and Ortman et al. [39] used LGF experimental orientation values after the mold had
been filled as initial conditions to the mold entrance and observed reasonable agreement with
experimental data. The last initialization approach, first proposed by Chung and Kwon [19] for
SGF systems, will be started at the entrance to the sprue and allow the fiber orientation to evolve
down the sprue, turn through the gate, and fill the center-gated disk mold. The sprue simulation
is initialized with a random orientation at the sprue/die interface, as described in Eq. (3.19).

3.5.4 Testing of Numerical Solution
The numerical method to calculate the velocity gradients was tested by comparing the

numerically predicted velocities calculated with Polyflow to the analytical solution for a
Newtonian fluid in radially diverging flow. Figure 3(a) shows the results of this simulation
plotting the radial velocity of the fluid at 40% of the mold fill. The maximum discrepancy
between the analytical solution and the numerical solution is less than 0.25%.

The numerical prediction of fiber orientation was also verified by using simple shear flow
as a test case. The transient viscosity of the glass fiber suspensions was calculated by using a
sliding plate rheometer [17]. The transient viscosity can be solved for easily in simple shear and
is plotted along with the experimentally obtained data in Figure 3. The transient viscosity was
also calculated using the Polyflow and MATLAB numerical routines with the resulting
predictions also plotted in Figure 3(b). It can be seen that the numerical method is very close to
that of the analytical solution and well inside the error inherent to these long glass fiber systems
[40].

3.6 Results

In the following section, results from the simulations will be discussed. First LGF
orientation results from the sprue using the S-G-M method are presented to show that the choice
of initial conditions at the sprue entry have been washed out by 80% of the fill of the sprue.
Then, results from different assumptions about solution initialization are compared. Finally,
results from simulating LGF orientation using the S-G-M method for both a rigid and semi-
flexible fiber model are shown.
3.6.1 Simulation of Fiber Orientation in the Sprue of a Center-Gated Disk

The long glass fiber-filled fluid was allowed to fill the sprue to the point where the fluid
turned to enter the mold and then the injection was stopped. The qualitative representation of this
investigation is shown in Figure 3.5 where a number of regions of interest have been highlighted.
Two regions in the sprue were targeted in order to assess the accuracy of the models before the

64

suspension entered the mold cavity. At position CE60, the CE data is compared against predicted
values of the A11 and A22 (or R11and R22 for the semi-flexible model), as is shown in Figure 3.6
(a). Qualitatively both fiber orientation models capture the trends in the sprue with high A22 (R22
) values at the wall (high shear) and low A22 (R22) values in the center. Quantitatively the
flexible fiber model predicts fiber orientation more accurately than the rigid fiber model. At
postion CE80 shown in Figure 3.6(b), both models perform equally well correctly capturing the
A11andA22 (or R11and R22) fiber orientation kinetics. Both models qualitatively predict the CE
orientation data at 80% of the sprue. It is important to point out that a number of different fiber
orientations were assumed at the sprue inlet but all of them provided solutions at positions CE60
and CE80 that were within 5% of one another. From this it can be said that the choice of these
initial conditions do not play a role in the mold fiber orientation predictions as the assumptions at
the sprue a washed out before they reach the mold cavity.
 Often assumptions are made about the orientation of long glass fibers entering the mold
cavity to simplify the solution, but these assumed values are incorrect based on what has been
seen experimentally. The two sets of experimental data in Figure 3.6 show that the CE A11
orientation data and the FE A11 orientation data are markedly different at the gate, by as much as
40% at the walls. If the predicted fiber orientation values are compared to the CE and FE data,
both the rigid and flexible model follow the wide orientation distribution exhibited by the
experimental data well. The CE experimental orientation data is clearly assymetric and that trend
is also captured by both orientation models. Using the S-G-M method the rigid fiber model
predicts orientation slightly better at the lower wall and the flexible fiber model predicts slightly
better at the upper wall. Again using the S-G-M method both of the models are better at
predicting the A33 (R33 for flexible model) component than the A11 (R11 for flexible model)
component and qualitatively capture the assymetry observed at the gate region. Furthermore,
using the S-G-M method and comparing the results to experimental orientation data confirm that
the choice of either random or planar random initial conditions are observed to be unsatisfactory
for simulating LGF filling operations since the trends in Figure 3.6 show decisively that the
initial conditions are a function of the mold cavity thickness.

3.6.2 Simulation of Long Glass Fiber Orientation in the Mold of a Center-Gated Disk
The prediction of LGF orientation was also carried out using the two models of interest

with four sets of initial conditions. The results of the LGF simulations at the FE10 sampling
point for both the FT model and BR model are shown in Figure 3.8 (a) and (b), respectfully. The
choice of random initial conditions using the FT model shows a traditional shell and core
structure in the cross section, which does not qualitatively agree with the experimental LGF data.
The other three initial conditions are observed to more qualitatively agree the experimental data,
with the exception of the orientation predictions at the wall. Conversely the BR model, shown in
Figure 3.8 (b), does a more encouraging job at predicting LGF orientation in the CGD. The
experimental initial conditions as well as the S-G-M method prove to be more successful at
capturing the asymmetric nature of the system and quantitatively agree well with the
experimental FE data for LGF through the mold including near the walls.

At the FE40 sampling point, the FT model does a poor qualitative job of capturing the
kinetics of the experimental FE data, shown in (a). While the choice of initial condition for fiber
orientation does affect the predicted values at FE40, none of the choice shown qualitative

65

agreement with experimentally obtained LGF data. The BR model results, presented in Figure
3.9 (b), show much more encouraging trends overall, with the choice of initial conditions for
fiber orientation playing a role in the predicted values at FE40. The random and planar random
choices both qualitatively capture the orientation seen in the center of the mold, but fail to
predict both the wall orientation and the asymmetric behavior observed in the experimental
results. The experimental and S-G-M methods are observed to be more accurate than the
assumed initial conditions, in predicting the asymmetric behavior of the LGF both in the center
of the cavity and near the walls.

The results from the LGF orientation simulation for the FE80 position are shown in
Figure 3.10 (a) and (b) for the FT model and BR model, respectively. Again, the FT model does
a poor job using any of the four sets of initial conditions. The FT model is observed to
qualitatively predict orientation of LGF near the center of the mold but does a very poor job near
the walls. The BR model again does a more encouraging job in predicting LGF orientation. The
two assumed initial conditions, random and planar random, are seen to agree qualitatively with
the experimental data, but again do not capture the asymmetric nature of the experimentally
obtained values at the FE80 position. The experimental initial conditions are the least
encouraging, predicting larger fluctuations through the thickness than what is observed
experimentally. The S-G-M method performs well predicting the LGF orientation through the
thickness with the exception of the walls.
3.6.3 Comparison of Long Glass Fiber Orientation Predictions Using the S-G-M Method

To evaluate the success of either the FT model or BR model at predicting LGF
orientation in a CGD, direct comparisons were made using the S-G-M method shown in Figure
3.11 (a), (b), and (c) for the FE10, FE40, and FE80 positions, respectfully. At the FE10 position
both of the models qualitatively predict the LGF orientation through the thickness except near
the walls. The FT model is seen to quantitatively over-predict fiber orientation through the entire
cavity and under predict fiber orientation by as much as 500% for the A33 component near the
walls of the CGD. The BR model shows predictions for LGF orientation that much more closely
agree with experimental data near the wall. At the FE40 position the FT model performs poorly,
over predicting LGF orientation near the walls and in the center of the mold using the S-G-M
method. The BR model performs markedly better capturing both the orientation of LGF near the
walls as well as through the cavity with only slight discrepancies near the top of the mold. At the
FE80 position, the FT model qualitatively captures only the center third of the mold cavity,
significantly over predicting LGF orientation near the walls using the S-G-M method. The BR
model orientation predictions more closely resemble the experimental LGF orientation data but
under predict orientation in regions close to the mold walls.
3.7 Conclusions

The choice of initial conditions and how to initialize the solution process to calculate
glass fiber orientation was proposed to be an influential part in the predictions generated by
current modeling techniques. The study was carried out for long glass fiber systems starting the
fiber orientation simulations at both the mold entrance and the sprue entrance and using either
random, planar random, or experimental initial orientation conditions at those positions. The
choice of initial conditions at the sprue entrance was observed to completely wash out by 80% of
the sprue length so that the initial conditions into the mold cavity were governed completely by
the flow field. The gate position (0% mold fill) was examined to investigate the accuracy of the

66

experimental values used to simulate the fiber orientation predictions in the mold. It was shown
that the orientation of glass fibers at the gate position as they enter the mold cavity and the
orientation of glass fibers after the cavity has been filled are different, most notably at the walls.
This provided evidence that the simulations should be carried out from the beginning of the
sprue and let the fiber orientation evolve according to the flow field.

Long glass fiber orientation predictions for both the FT model and BR model were
observed to be influenced by the choice of fiber orientation initial conditions. For the long fiber
orientation simulations the FT model showed poor agreement with experimental data no matter
the choice of initialization method. The BR model predictions showed much more encouraging
results when compared with experimental data, especially when using the S-G-M method. The
FT and BR models were compared at the FE10, FE40, and FE80 positions using the S-G-M
method where it was observed that the BR model more accurately predicts experimentally
observed long glass fiber orientation.

3.8 Acknowledgments

The financial support for this work is truly appreciated and has been provided by the
National Science Foundation, Grant No. CMMI-0853537. We would also like to thank SABIC
for providing the materials used in this work. Additional gratitude is given to the Department of
Mechanical Engineering and Material Science and Engineering Department at Virginia Tech for
the use of facilities. The author would also like to thank Syed Mazahir and Mark Cieslinski for
the fruitful discussions.

3.9 References
[1] L. H. Switzer and D. J. Klingenberg, "Rheology of sheared flexible fiber suspensions via

fiber-level simulations," Journal of Rheology, vol. 47, pp. 759-778, May-Jun 2003.
[2] J. M. Crosby, "Recent Advances in Thermoplastic Composites," Advanced Materials &

Processes, vol. 133, pp. 56-59, Mar 1988.
[3] F. Folgar and C. L. Tucker, "Orientation Behavior of Rigid Fibers in Concentrated

Suspensions," Journal of Rheology, vol. 26, pp. 604-604, 1982.
[4] G. B. Jeffery, "The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,"

Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,
vol. 100, pp. 161-179, 1922.

[5] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .2.
Experimental Results," Polymer Composites, vol. 13, pp. 332-341, Aug 1992.

[6] S. T. Chung and T. H. Kwon, "Coupled analysis of injection molding filling and fiber
orientation, including in-plane velocity gradient effect," Polymer Composites, vol. 17, pp.
859-872, Dec 1996.

[7] M. Sepehr, P. J. Carreau, M. Grmela, G. Ausias, and P. G. Lafleur, "Comparison of
rheological properties of fiber suspensions with model predictions," Journal of Polymer
Engineering, vol. 24, pp. 579-610, Nov-Dec 2004.

67

[8] M. Sepehr, G. Ausias, and P. J. Carreau, "Rheological properties of short fiber filled
polypropylene in transient shear flow," Journal of Non-Newtonian Fluid Mechanics, vol.
123, pp. 19-32, Oct 15 2004.

[9] D. G. Baird, A. P. R. Eberle, P. Wapperom, and G. M. Velez-Garcia, "Using transient
shear rheology to determine material parameters in fiber suspension theory," Journal of
Rheology, vol. 53, pp. 685-705, May-Jun 2009.

[10] D. G. Baird, A. P. R. Eberle, G. M. Velez-Garcia, and P. Wapperom, "Fiber orientation
kinetics of a concentrated short glass fiber suspension in startup of simple shear flow,"
Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp. 110-119, Feb 2010.

[11] C. L. Tucker, J. Wang, and J. F. O'Gara, "An objective model for slow orientation
kinetics in concentrated fiber suspensions: Theory and rheological evidence," Journal of
Rheology, vol. 52, pp. 1179-1200, Sep-Oct 2008.

[12] G. M. Velez-Garcia, S. M. Mazahir, P. Wapperom, and D. G. Baird, "Simulation of
Injection Molding Using a Model with Delayed Fiber Orientation," International
Polymer Processing, vol. 26, pp. 331-339, Jul 2011.

[13] C. A. Hieber and S. F. Shen, "A Finite-Element-Finite-Difference Simulation of the
Injection-Molding Filling Process," Journal of Non-Newtonian Fluid Mechanics, vol. 7,
pp. 1-32, 1980.

[14] U. Strautins and A. Latz, "Flow-driven orientation dynamics of semiflexible fiber
systems," Rheologica Acta, vol. 46, pp. 1057-1064, Oct 2007.

[15] K. C. Ortman, P. Wapperom, A. Whittington, and D. G. Baird, "Using startup of steady
shear flow in a sliding plate rheometer to determine material parameters for the purpose
of predicting long fiber orientation," Journal of Rheology, vol. 56, pp. 955-981, 2012.

[16] C. L. Tucker and J. H. Phelps, "An anisotropic rotary diffusion model for fiber
orientation in short- and long-fiber thermoplastics," Journal of Non-Newtonian Fluid
Mechanics, vol. 156, pp. 165-176, Feb 2009.

[17] K. C. Ortman, N. Agarwal, A. P. R. Eberle, D. G. Baird, P. Wapperom, and A. J.
Giacomin, "Transient shear flow behavior of concentrated long glass fiber suspensions in
a sliding plate rheometer," Journal of Non-Newtonian Fluid Mechanics, vol. 166, pp.
884-895, Sep 1 2011.

[18] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .1. Theory
and Numerical-Methods," Polymer Composites, vol. 13, pp. 317-331, Aug 1992.

[19] D. H. Chung and T. H. Kwon, "Numerical studies of fiber suspensions in an
axisymmetric radial diverging flow: the effects of modeling and numerical assumptions,"
Journal of Non-Newtonian Fluid Mechanics, vol. 107, pp. 67-96, Dec 6 2002.

[20] K. Ortman, D. Baird, P. Wapperom, and A. Aning, "Prediction of fiber orientation in the
injection molding of long fiber suspensions," Polymer Composites, vol. 33, pp. 1360-
1367, 2012.

[21] S. G. Advani and C. L. Tucker, "The Use of Tensors to Describe and Predict Fiber
Orientation in Short Fiber Composites," Journal of Rheology, vol. 31, pp. 751-784, Nov
1987.

68

[22] S. G. Advani and C. L. Tucker, "Closure Approximations for 3-Dimensional Structure
Tensors," Journal of Rheology, vol. 34, pp. 367-386, Apr 1990.

[23] D. H. Chung and T. H. Kwon, "Fiber orientation in the processing of polymer
composites," Korea-Australia Rheology Journal, vol. 14, pp. 175-188, Dec 2002.

[24] D. H. Chung and T. H. Kwon, "Invariant-based optimal fitting closure approximation for
the numerical prediction of flow-induced fiber orientation," Journal of Rheology, vol. 46,
pp. 169-194, Jan-Feb 2002.

[25] H. M. Huynh, "Improved Fiber Orientation Predictions for Injection-Molded
Composites," M.S., Mechanical Engineering, University of Illinois at Urbana-
Champaign, 2000.

[26] M. Doi and S. F. Edwards, The theory of polymer dynamics. Oxford: Clarendon Press,
1986.

[27] B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, et
al., "Fiber Length and Orientation in Long-Fiber Injection-Molded Thermoplastics – Part
I: Modeling of Microstructure and Elastic Properties," Journal of Composite Materials,
vol. 42, pp. 1003-27, 2008.

[28] W.-K. Chin, H.-T. Liu, and Y.-D. Lee, "Effects of Fiber Length and Orientation
Distribution on the Elastic Modulus of Short Fiber Reinforced Thermoplastics," Polymer
Composites, vol. 9, pp. 27-35, February 1988 1988.

[29] G. M. Vélez-García, P. Wapperom, V. Kunc, D. G. Baird, and A. Zink-Sharp, "Sample
preparation and image acquisition using optical-reflective microscopy in the
measurement of fiber orientation in thermoplastic composites," J Microscopy-Oxford.,
Accepted (2012).

[30] G. M. Vélez-García, P. Wapperom, D. G. Baird, A. O. Aning, and V. Kunc,
"Unambiguous orientation in short fiber composites over small sampling area in a center-
gated disk," Composites Part A: Applied Science and Manufacturing, vol. 43, pp. 104-
113, 2012.

[31] J. T. Hofmann, G. M. Velez-Garcia, D. G. Baird, and A. R. Whittington, "Application
and Evaluation of the Method of Ellipses for Measuring the Orientation of Long, Semi-
Flexible Fibers," J Composites, Part A (Submitted), 2012.

[32] C. L. Tucker, "Flow Regimes for Fiber Suspensions in Narrow Gaps," Journal of Non-
Newtonian Fluid Mechanics, vol. 39, pp. 239-268, May 1991.

[33] J. Wang, C. A. Silva, J. C. Viana, F. W. J. van Hattum, A. M. Cunha, and C. L. Tucker,
"Prediction of fiber orientation in a rotating compressing and expanding mold," Polymer
Engineering and Science, vol. 48, pp. 1405-1413, Jul 2008.

[34] B. E. VerWeyst, C. L. Tucker, and P. H. Foss, "The optimized quasi-planar
approximation for predicting fiber orientation in injection-molded composites,"
International Polymer Processing, vol. 12, pp. 238-248, Sep 1997.

[35] B. E. VerWeyst and C. L. Tucker, "Fiber suspensions in complex geometries:
Flow/orientation coupling," Canadian Journal of Chemical Engineering, vol. 80, pp.
1093-1106, Dec 2002.

69

[36] G. G. Lipscomb, M. M. Denn, D. U. Hur, and D. V. Boger, "The Flow of Fiber
Suspensions in Complex Geometries," Journal of Non-Newtonian Fluid Mechanics, vol.
26, pp. 297-325, Jan 1988.

[37] S. M. Dinh and R. C. Armstrong, "A Rheological Equation of State for Semiconcentrated
Fiber Suspensions," Journal of Rheology, vol. 28, pp. 207-227, 1984.

[38] B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, et
al., "Fiber length and orientation in long-fiber injection-molded thermoplastics - Part I:
Modeling of microstructure and elastic properties," Journal of Composite Materials, vol.
42, pp. 1003-1029, May 2008.

[39] D. G. B. K. C. Ortman, P. Wapperom, A. Aning, "Prediction of Fiber Orientation in the
Injection Molding of Long Fiber Suspensions," Journal of Composite Materials,
Accepted.

[40] J. T. Hofmann, G. M. Velez-Garcia, D. G. Baird, and A. Whittington, "Application and
evaluation of the method of ellipses for measuring the orientation of long, semi-flexible
fibers," Polymer Composites, vol. 34, pp. 390-398, 2013.

70

3.10 Figures

Figure 3.1: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as

well as the azimuthal and zenith angles, φ and θ respectively.

71

Figure 3.2: Vector definition of flexible fiber. The fiber is characterized by the vectors, p and

r , as well as the azimuthal and zenith angles, φ and θ respectively. The two vector are of equal

length, lb , and there is an internal resistivity to bending, k . The end-to-end vector, r ,is also
defined to determine a fiber’s “average” direction.

72

Figure 3.3: Comparison of numerical (o) and analytical (☐) solution for radially diverging

flow using the Hele-Shaw approximation at 40% of the mold fill. Maximum difference is 0.27%.

73

Figure 3.4: Comparison of numerical (dashed) and analytical (solid) solution of transient

viscosity using the semi-flexible fiber model in simple shear flow using a sliding plate rheometer
(T = 180°C,α = 0.13,C

I
= 0.04,k = 218s−1 ,φ = 0.1447,l

b
= 1.9mm c1

= 49,c
2

= 25000).

74

Figure 3.5: Qualitative figure to examine initial conditions entering the mold cavity. The

lightly shaded area represents the currently evolving (CE) data while the combination of the
lightly shaded and darkly shaded areas constitutes the fully evolved (FE) data. Areas of
interested for the CE data include 60% of sprue (CE60), 80% of the sprue (CE80), and the 0%
fill of the mold (CE0). Areas of interest for the FE data include 0% mold fill (FE0) 10% mold fill
(FE10), 40% mold fill (FE40), and 80% mold fill (FE80).

75

Figure 3.6: Comparing the rigid fiber (solid) model and semi-flexible (dashed) model to

experimental LGF data for A11 (◊) and A22 (○) obtained from center-gated sprue when the fluid
has just turned to enter the mold cavity. Comparison of models for (a) CE60 data and (b) CE80
data region of interest.

76

Figure 3.7: Comparison of rigid fiber (solid) and semi-flexible (dashed) model predictions

versus the experimentally obtained CE0 (a) A11 or R11, (b) A22 or R22 and (c) A33 or R33.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 11
 (R

11
) O

rie
nt

at
io

n
C

om
po

ne
nt

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 22
 (R

22
) O

rie
nt

at
io

n
C

om
po

ne
nt

(b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 33
 (R

33
) O

rie
nt

at
io

n
C

om
po

ne
nt

(c)

77

Figure 3.8: Results from simulating the center-gated disk filling operation taken FE10 of the

mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid fiber model
and (b) R11 orientation component results using the semi-flexible fiber semi-flexible model.
Experimental IC’s (dotted), random IC’s (dashed), planar random IC’s (dash-dot), and simulated
IC’s (solid) compared to experimental data (◊).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 11
 O

rie
nt

at
io

n
Co

m
po

ne
nt

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

R 11
 O

rie
nt

at
io

n
Co

m
po

ne
nt

(b)

78

Figure 3.9: Results from simulating the center-gated disk filling operation taken at FE40 of

the mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid fiber
model and (b) R11 orientation component results using the semi-flexible fiber semi-flexible
model. Experimental IC’s (dotted), random IC’s (dashed), planar random IC’s (dash-dot), and
simulated IC’s (solid) compared to experimental data (◊).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 11
 O

rie
nt

at
io

n
Co

m
po

ne
nt

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

R 11
 O

rie
nt

at
io

n
Co

m
po

ne
nt

(b)

79

Figure 3.10: Results from simulating the center-gated disk filling operation taken at FE80 of

the mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid fiber
model and (b) R11 orientation component results using the semi-flexible fiber semi-flexible
model. Experimental IC’s (dotted), random IC’s (dashed), planar random IC’s (dash-dot), and
simulated IC’s (solid) compared to experimental data (◊).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 11
 O

rie
nt

at
io

n
Co

m
po

ne
nt

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

R 11
 O

rie
nt

at
io

n
Co

m
po

ne
nt

(b)

80

Figure 3.11: Results from simulating the center-gated disk filling operation taken at (a) FE10

of the mold fill, (b) FE40 of the mold fill, and (c) FE80 of the mold fill. Simulations are carried
out using S-G-M method for long glass fibers. Predictions are made with the rigid fiber model
(solid) and flexible fiber model (dash-dot) for

A

11
R

11() (○),

A

22
R

22() (□), and

A

33
R

33()(∇)

orientation components.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 11
 O

rie
nt

at
io

n
C

om
po

ne
nt

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 11
 O

rie
nt

at
io

n
C

om
po

ne
nt

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/H

A 11
 O

rie
nt

at
io

n
Co

m
po

ne
nt

(c)

81

η0 (Pa·s) 582.14

λ (s-1) 0.2531

n 0.7597

Table 3.1: Parameters for the filling of polypropylene matrix filling the center-gated mold.

82

Chapter 4

Prediction of Short Glass Fiber Orientation in the Filling of an End-
Gated Plaque

Preface
This chapter describes the prediction of short glass fiber orientation in the filling of a

three-dimensional end-gated plaque using two rigid fiber models and comparing to
experimentally determined values of orientation. This chapter is organized as a manuscript for
publication in Composites Part A: Applied Science and Manufacturing.

83

4 Prediction of Short Glass Fiber Orientation in the Filling of an
End-Gated Plaque

Kevin J. Meyer1, John T. Hofmann2, and Donald G. Baird1∗

1. Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061
2. Macromolecule and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061

* Corresponding Author: Tel. +1 540 231 5998 ; Fax +1 540 231 2732.
Email Address: dbaird@vt.edu (D.G. Baird)
Present Address:
Department of Chemical Engineering
133 Randolph Hall
Virginia Tech
Blacksburg, VA 24061

4.1 Abstract

This work is concerned with predicting short L ≤1mm()glass fiber (SGF) orientation
generated during the filling of an end-gated plaque (EGP). Previous EGP simulations have
provided results only within the mold cavity and only along the centerline of the mold and made
assumptions about fiber orientation at the mold entry. This paper reports on a method to simulate
the flow in the sprue, gate and mold region (SGM) to obtain fiber orientation predictions within
the end-gated plaque using orientation parameters fit to experimental data. Predicted values of
orientation are compared to experimental data both along and away from the centerline. It is
observed that orientation can be accurately predicted in a three dimensional mold cavity using
the strain reduction factor model. Furthermore, initial conditions at the entrance to mold cavity
appear to be a function of mold width as well as mold thickness.
4.2 Introduction

Short glass fiber composite suspensions are typically processed by injection or compression
molding to form a part with a complex layered microstructure [1]. Local variations of fiber
orientation are often seen in even the simplest molding geometries and have led to a variation of
the properties of the final part [2]. As a result, a large amount of effort has focused on predicting
the final orientation of fibers in an injection or compression molded part to optimize the
processing conditions and part performance.

Modeling the orientation of concentrated short glass fiber (SGF) systems during mold filling
has typically been accomplished through some variant of Jeffery’s model [3]. Jeffery described
the motion of a single prolate spheroid in a Newtonian fluid in creeping flow. Folgar and Tucker
[4] modified Jeffery’s model by adding a term based on isotropic rotary diffusivity that was
proportional to the velocity gradient to account for fiber-fiber interaction in a concentrated fiber
system and weighted by an empirical value, CI . The fiber interaction coefficient, CI , has been
estimated by fitting experimental data [5], through empirical relationships [6, 7] and by fitting

84

transient stress growth at the startup of steady shear [8, 9]. The Folgar-Tucker (FT) model has
shown good qualitative agreement with experimental data and is thus a popular choice for
simulating short glass fiber orientation [5, 10].

Stress growth experiments in the startup of simple shear have shown that the orientation of
fibers in concentrated suspension evolves more slowly than predicted by the Folgar-Tucker
model [11, 12]. To more accurately reflect the observed transient fiber orientation a “slip”
parameter was suggested by Sepehr et al. [13, 14] and Eberle et al. [11] to slow the evolution of
orientation. The strain reduction factor (SRF) model proved more accurate in comparison to
experimental data but the addition of the slip parameter rendered the SRF model non-objective
[15]. Wang et al. [16] developed the reduced strain closure (RSC) model as an objective form of
the SRF model where the closure approximation is modified eliminating the objectivity problem
while including the slower orientation kinetics observed in experimental values of orientation.
Even though the SRF model is non-objective it has been shown to be useful in describing the
evolution of orientation in simple flows and in more general flows [14, 17, 18]. Furthermore,
Wang et al. [19] showed that the SRF model qualitatively predicted fiber orientation in a rotating
compressing and expanding center-gated disk. Phelps and Tucker [20] have developed a form of
the RSC model (ARD-RSC) which accounts for the anisotropy in fiber interactions but requires
additional fitting efforts in determining six model coefficients.

The prediction of short fiber orientation in complex test geometries for injection molding has
been the subject of significant work. A number of authors have investigated the prediction of
SGF orientation in a center-gated disk geometry and have found reasonable agreement with
experimentally obtained values of fiber orientation under different conditions [5, 10, 21-24]. The
prediction of SGF orientation in an end-gated plaque geometry has seen considerably less
attention. Altan et al. [25] assumed a planar random inlet condition to a rectangular channel and
computed the short fiber orientation using a coupled approach involving both the 4th and 6th order
tensors of orientation but did not compare his results to experimental orientation values. Bay and
Tucker [5], Han and Im [26] and Nguyen et al. [27] simulated the orientation of glass fibers in an
end-gated strip and found reasonable agreement with experimental orientation values but only
made comparisons along the centerline of the mold. Gupta and Wang [28] performed a more
detailed analysis of an end-gated plaque using a polyester matrix and SGF’s and saw reasonable
qualitative agreement between predicted values of orientation and experimentally obtained
values but no quantitative statement could be made due to course sampling techniques. Thus,
there is a need for a more comprehensive and quantitative study of predicting the orientation of
SGF’s in an end-gated plaque geometry.

Predicting fiber orientation in complex geometries has been shown to be affected by the
choice of initial conditions. Previous authors have observed that assumed symmetric initial
conditions for fiber orientation produce symmetric orientation predictions [5, 23, 24]. In contrast,
experimentally obtained values for fiber orientation are generally observed to be asymmetric
through the mold thickness and thus require asymmetric initial conditions [24]. One method of
obtaining asymmetric initial conditions of orientation involves the use of experimental
orientation values obtained from the gate mold interface. Velez-Garcia et al. [23] used
experimental data as initial conditions for the simulation of fiber orientation to the mold in a
center-gated disk and found an increased agreement with experimental orientation values when
compared to an assumed orientation. The drawback to this method is that it requires
experimental knowledge of the system that is being predicted (to predict the orientation of fibers

85

in a system experimental data must first be obtained and analyzed from that system). To address
this concern, Chung and Kwon [24] suggested simulating the entire mold of a center-gated disk
(sprue and mold) as a single domain and saw a similar increase in agreement between predicted
values of orientation and experimental data for a SGF system as Velez-Garcia [23] but did not
require experimental orientation values. Meyer et al. [21] built on the work of Chung and Kwon
[24] and developed the sprue-gate-mold (SGM) method for the prediction of orientation of long
glass fiber suspensions in the center-gated disk and observed an increase in agreement between
model predictions and experimental data again without the need for experimental orientation
values at the gate/mold interface.

The purpose of this work is to predict short glass fiber orientation in an end-gated plaque
including gate effects, the advancing front and temperature effects and compare the results with
experimentally obtained values of short glass fiber orientation both along and away from the
centerline of the mold drawing conclusions as to the accuracy of the predictions. Furthermore, it
will be determined if objectivity plays a role in predicting SGF orientation throughout the end-
gated plaque by solving both the SRF and RSC models throughout the geometry. The fiber
orientation predictions are performed using the decoupled approach for the stress and orientation
tensors [22, 29, 30]. A volume of fluid finite element method is used in the ANSYS Polyflow
environment to calculate the velocity gradients of a non-isothermal generalized Newtonian fluid
filling an end-gated plaque geometry incorporating both the gate region and advancing front. The
solutions of the SRF and RSC fiber orientation models are calculated through a combination of
MATLAB and C routines in the MATLAB environment. Fiber orientation predictions are carried
out using orientation parameters (κ andCI) obtained through fitting transient stress data from
shear flow experiments and through fitting experimental data obtained from injection molding
experiments.

4.3 Governing Equations
4.3.1 Flow and Heat Equations

The flow was assumed laminar Re ≈10−3() and incompressible resulting in the equations
of continuity and motion as given in Eq. (4.1) and Eq. (4.2), respectfully:
 0 = ∇⋅v (4.1)

 0 = −∇P +∇⋅τ (4.2)

In Eqs. (4.1) and (4.2), v is the velocity vector, P is the isotropic pressure and τ is the extra
stress tensor.

Temperature was also taken into account in the simulations using Eq. (4.3) where ρ is
the density, CP is the specific heat capacity per unit mass, DT Dt is the material derivative

∂T ∂t + v ⋅∇T() , k is the thermal conductivity, γ is the rate of strain tensor and τ is the extra
stress tensor:

ρCP

DT
Dt

= k∇T +τ : γ (4.3)

86

The viscosity of the matrix was also dependent on the temperature of the system and is included
through the use of an Arrhenius law relation shown in Eq. (4.4) where α = Ea R and Tα is a
reference temperature:

 η T() = exp α 1
T
− 1
Tα

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ (4.4)

For the duration of the work presented here the fluid is assumed to have constant thermal
conductivity and heat capacity. The parameters for Eq. (4.3) and Eq. (4.4) are given in Table 4.1.
4.3.2 Extra Stress Tensor Representation

The decoupled approach for the solution of the stress and orientation tensors was used
based on previous work by Chung and Kwon [24], Eberle et al. [8], Ortman et al. [9] and
Mazahir et al. [22] which suggests there is no consistent representation of the stress tensors
which includes both fiber loading and fiber-fiber interaction for concentrated suspensions. From
the perspective of the fibers, the major drag experienced is from the polymer melt. The effect of
fibers was included by incorporating the fiber loading and fiber-fiber interaction contributions
into the simulations through the values of κ and CI so that only the neat matrix properties are
used to predict the velocity fields. A generalized Newtonian fluid was chosen as the constitutive
relation, given in Eq. (4.5), to represent the matrix rheology used in this study where η γ() is an

empirical relation for the viscosity and γ = 1
2 ∇v +∇v T⎡⎣ ⎤⎦where ∇v = ∂vj ∂xi :

 τ =η γ() γ (4.5)

The Cross model was used to account for the shear-thinning nature of neat matrix and is given by
Eq. (4.6) where η0 is the zero shear viscosity, λ is the parameter which governs the onset of
shear thinning and n is a parameter which governs the degree of shear thinning within the
matrix:

η γ() = η0

1+ λ γ()1−n
 (4.6)

The parameters for the Cross model can be found in Table 4.1 and were obtained through testing
in a rotational rheometer (RMS-800, Rheometrics, Inc.).
4.3.3 Fiber Orientation Equations

A convenient way of representing the orientation of fibers within an injection-molded
part is through the use of a 2nd order orientation tensor (shown in Eq. (4.7)) given by Advani and
Tucker [31] where A is the orientation tensor, p is a vector running through the longitudinal
axis of the individual fiber (shown in Figure 4.1) and ψ p,t() is the probability distribution
function:

 A = ppψ p,t()dp∫∫ (4.7)

87

In the equations of orientation, a 4th order tensor also arises due to the drag of the fluid on the
fiber and is given in Eq. (4.8):

 A4 = ppppψ p,t()dp∫∫ (4.8)

The 4th order orientation tensor in Eq. (4.8) requires the use of a closure approximation and a
summary of many popular closure approximations is given by Chung and Kwon [32]. [32].
Recent work in the area of closure approximations has yielded the Fast Exact closure and Neural
Network-based closures [33, 34]. For the purpose of this work, the invariant-based optimal fitted
closure (IBOF) is used which is based on the 2nd and 3rd invariants of the 2nd order orientation
tensor, A [35, 36]. Furthermore, the IBOF closure has been shown to produce solutions very
close to direct calculation of the probability distribution function and is very computationally
efficient in comparison to other orthotropic closures [36].

The strain reduction factor (SRF) model is given in Eq. (4.9) where A is the second
moment of the orientation distribution function,

A is the material derivative of A

A = ∂A ∂t + v ⋅∇A() , A4 is the fourth moment of the orientation distribution function, W is the

vorticity tensor W = 1
2 ∇v −∇v T⎡⎣ ⎤⎦() , D is the rate of deformation tensor D = 1

2 ∇v +∇v T⎡⎣ ⎤⎦() ,

I is the unit tensor, ξ is a shape factor (usually given a value of unity for fiber systems), γ is

the magnitude of the rate of deformation tensor

γ = 1

2 D :D⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠ and κ and CI are

phenomenological constants based on the suspension properties [4, 13]:

A =κ W ⋅A − A ⋅W() + ξ D ⋅A + A ⋅D − 2A4 :D() + 2 γCI I − 3A()⎡

⎣
⎤
⎦ (4.9)

The orientation equation in Eq. (4.9) has seen wide use since it’s introduction by Sepehr et al.
[14] and because the vorticity tensor, W , is multiplied by the strain reduction factor, κ , the
equation in not objective [15, 21, 23] .

The reduced strain closure (RSC) model was introduced as the objective form of Eq. (4.9)
and is given in Eq. (4.10) where the reduction factor, κ , has been moved into the closure
approximation so that it only effects the objective tensors [16]:

A =W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ() L4 −M 4 :A4()⎡
⎣

⎤
⎦ :D{ }

 + 2κCI γ I − 3A()
 (4.10)

The use of the RSC model requires two 4th order tensors, L4 and M 4 , which are based on the

eigenvalues λi() and eigenvectors ei() of the 2nd order orientation tensor, A , shown in Eq.
(4.11) and Eq. (4.12):

88

 L4 = λieieieiei
i=1

3

∑ (4.11)

 M 4 = eieieiei
i=1

3

∑ (4.12)

Obtaining the value of the strain reduction factor, κ , and the fiber interaction coefficient,
CI , for both the SRF and RSC models will be discussed in the results section of this paper.

4.4 Solution Method
4.4.1 Finite Element Simulations

The filling of the cavity was simulated using the ANSYS Polyflow finite element (FEM)
software package. The entrance to the gate region was meshed using 31 (thickness) x 30 (length)
x 20 (width) elements. The gate region was meshed using 31 (thickness) x 30 (length) x 50
(width) hexagonal elements. The mold was meshed using 31 (thickness) x 300 (length) x 50
(width) hexagonal elements. A lower number of elements caused convergence issues in the fiber
orientation calculations while a higher number of elements in any of the three meshed areas saw
no increase in accuracy gained. Using unequal grid spacing captured the large gradients
encountered near boundaries.

The volume of fluid (VOF) method was used inside the ANSYS Polyflow environment to
simulate the transient mold filling process [37]. The VOF method solves the transport equation
for the volume fraction of fluid at each node where φ is the volume fraction of the liquid phase
and v is the velocity vector at that node given by Eq. (4.13):

 ∂φ
∂t

+ v ⋅∇φ = 0 (4.13)

The solution of this equation allows for the fluid front to be tracked as it moves through the
empty cavity thereby incorporating the “fountain flow” effect in the simulations. The influence
of this complex moving front has been shown to impact fiber orientation predictions in
axisymmetric radially diverging flow [5, 10, 24].

The solution of the non-isothermal system required the use of an evolution scheme inside
the ANSYS Polyflow environment to control the viscous dissipation and convection term
associated with Eq. (4.3). The viscous dissipation term and convection term were scaled based
on the time step so that at small time steps these terms had little effect on the final solution. The
terms influence was slowly increased until 20% of the mold fill simulation was completed where
they were no longer scaled and provided a stable solution.
4.4.2 Finite Difference Simulations

The fiber orientation equations were solved using 2nd order accurate finite differences
(FDM) in MATLAB (The Mathworks Inc., ver. 7.4) and C on a stationary mesh. The equations
used to predict fiber orientation are originally hyperbolic partial differential equations because of
the velocity vector in the convective term. But, because the stress tensor and orientation tensor
are decoupled in this study, the velocity vector is known so that the convective term can be
explicitly written. This reduces the set of partial differential equations to non-linear ordinary

89

differential equations. The ordinary differential equations are solved using a variable step size
backwards differences implementation of the Kopfenstein-Shampine family of numerical
differentiation formulas [38]. Fiber orientation predictions in the fountain flow region are
calculated through the use of backward differentiation methods.

4.4.3 Boundary Conditions
The non-isothermal FEM simulations of the end-gated plaque (shown in Figure 4.2)

requires specified boundary conditions for both the flow and heat equations. The inlet boundary,
given by Ωinlet , required an inlet fluid temperature Tin = 463K() and volumetric flow rate

Vin = 3225 mm3

s() and are based on experimental conditions. The symmetry condition

fs = 0,vn = 0() is specified by Ωsym . At the walls of the mold both the no slip condition v = 0()
and the mold wall temperature Twall = 363K() were specified. Because the VOF method here
does not calculate the movement of air out of the mold, the only other constraint was to set both
the normal and tangential forces to zero at the moving fluid boundary fn = ft = 0() . The FDM
simulation required only one boundary condition for fiber orientation to be specified at the inlet
of the gate A = 1

3 I() and did not affect orientation predictions. Fiber orientation on all other

boundaries Ωoutlet ,Ωwall ,Ωsym() is based on the velocity fields at those locations.

4.5 Experimental Data
4.5.1 Injection Molding Conditions

End-gated plaques (EGP) were formed for the experimental evaluation of fiber
orientation using 30 weight percent short glass fiber in a polypropylene matrix (RTP 105, The
RTP Company, Inc.). The temperatures of the feed, compression and metering zones within the
injection molding machine (Arburg Allrounder, Model 221-55-250) were set to 190°C, 190°C
and 190°C, respectively, while the mold temperature was held at 90°C. The sprue length for the
mold was 65mm with an initial radius of 1.45mm and a final radius at the gate of 1.75mm. The
gate region of the plaque has dimensions of 80.68mm (width) by 6.25mm (height) by 6.33mm
(length) and the mold region of the plaque has dimensions of 75.05mm (width) by 1.55mm
(height) by 77.65mm (length). The plaques were molded using a fill time of 2.00 seconds with a
backpressure of 20 MPa.

4.5.2 Fiber Length Distribution

The fiber length distribution (FLD) was determined to verify that the average lengths l()
of the fibers in the end-gated plaque are indeed in the short fiber regime that is typically defined
to be l <1mm . Methods described by Nguyen et al. [27] were used to determine the fiber length
distribution of approximately 2000 fibers. The method involves taking a representative sample of
the injection-molded sample and burning off the polymer matrix leaving only the glass fibers
behind. A small amount of epoxy resin was applied to the glass fiber matrix to secure a
population of fibers and any fibers not secured to the epoxy were removed. The remaining
fiber/epoxy system was returned to the furnace to remove all the epoxy. Finally, the remaining
fibers were analyzed through optical techniques to determine the FLD. This method produced a
number average length and diameter of 0.923± 0.03mm and 13.9µm , respectively.

90

4.5.3 Fiber Orientation Measurements
Samples of the injected molded composite were chosen within the end-gated mold

geometry at a 0%, 10%, 40% and 90% of the length of the mold at the centerline, 50% width of
the mold and 90% width of the mold (sampled locations are indicated by gray shading in Figure
4.2). The selected samples were prepared using the method prescribed by Velez-Garcia et al.
[39]. Optical microscopy was used to analyze samples at each inspection line using 20X
magnification and motorized stage with image stitching software (Nikon Eclipse LV100, NIS-
Elements Basic Research software, v. 3.10). The resulting images had a width of 700 µm and
height equal to the thickness of the disk. The unambiguous components of the orientation tensor
were determined through the method of ellipses using a traditional size bin width of 0.8 mm [40,
41].
4.6 Results

4.6.1 Obtaining Fiber Orientation Parameters
The prediction of short fiber orientation uses parameters (the slip parameter κ and the fiber

interaction coefficient CI) that strongly dictate the final orientation structure through the mold
cavity thickness. Initially, the orientation parameters κ and CI were obtained through the fitting
of transient stress growth data at the startup of simple shear flow as described by Eberle et al.
[11] and Ortman et al. [9]. The calculated values of the two fiber orientation parameters were
determined through the fitting of experimental stress and fiber orientation data at the startup of
simple shear deformation at γ = 1 s-1 with resulting values of κ = 0.3436 and CI = 0.0309 . These
parameters were used to predict the fiber orientation in the end-gated plaque filling process with
the resultant predictions shown by the solid lines in Figure 4.3. The fiber orientation predictions
shown in Figure 4.3 appear to produce very distinct shell-core-shell regions that is not reflected
in the experimental data suggesting that the value of the slip parameter, κ , may be too high.
Furthermore, at no point within the mold filling comparisons along the centerline do the
predicted values of orientation agree with the experimentally determined values. The value of the
fiber interaction coefficient, CI , appears to accurately predict fiber orientation near the walls of
the mold suggesting that this value may be correct.

Due to the poor agreement between the orientation predictions using the parameters
obtained from simple shear flow, experimental data at the 0% fill position in the mold along the
centerline was fitted (position (1) in Figure 4.2). The fitting was performed by simulating the
filling of the end-gated sprue, gate and mold and comparing the predicted values of orientation to
the observed experimental values of orientation at the position of interest (position (4) in Figure
4.2) and adjusting the orientation parameters accordingly. The fitting procedure used an error
reducing (error between the experimental and predicted values of the R11 and R33 orientation
components) non-linear least squares (NLLSQ) analysis to fit both the SRF and RSC model
predictions to the components of experimental orientation at this fill position. The values of the
orientation parameters obtained from this position were then used for all other predictions in the
end-gated geometry both along and away from the centerline. The results of the fitting procedure
yielded values of κ = 0.0297 and CI = 0.0481 for the non-objective SRF model and values of
κ = 0.0910 and CI = 0.0658 for the objective RSC model.

91

4.6.2 Comparison of Objective and Non-Objective Fiber Orientation Models
In order to assess the role objectivity plays in the prediction of short glass fiber

orientation in the end-gated plaque the SRF model predictions, given by Eq. (4.9), and the RSC
model predictions, given by Eq. (4.10), were compared at four locations. Figure 4.4 (a) (position
(1) in Figure 4.2) shows the results of the SRF and RSC model predictions compared to
experimental data at the 0% fill position along the centerline of the end-gated plaque. It is
observed that both models predict similar values of orientation through the mold cavity thickness
and also both accurately predict experimental values of SGF orientation at this position. The
RSC and SRF models are compared at 10% fill along the centerline (position (7) in Figure 4.2)
and it is observed that the predictions for both models are very similar and within or very close to
the error associated with the experimentally obtained values. The third position of interest is 0%
fill at 50% of the width of the end-gated mold cavity (position (2) in Figure 4.2) where the SRF
and RSC models produce similar numerical predictions for SGF orientation through the mold
cavity thickness with neither model performing significantly better or worse when compared to
experimentally obtained orientation data. Finally, the SRF and RSC models are compared at 40%
fill and 50% width of the end-gated mold cavity (position (8) in Figure 4.2). At this position well
away from the centerline it is again observed that the SRF and RSC models predict very similar
values of orientation through the mold cavity and it cannot be concluded that either is more
accurate at predicting experimental fiber orientation within the error associated with the
measurements. Additionally, the RSC model and SRF model were compared at a number of
other locations and similar results were observed suggesting that objectivity may not play a large
role in the prediction of SGF orientation in the end-gated plaque.

4.6.3 Fiber Orientation Predictions at 0% Mold Width
The SRF model was used to predict fiber orientation along the centerline of the mold

cavity of the end-gated plaque. The SRF model is compared to experimental data at 0% of the
mold fill along the centerline in

Figure 4.5 (a) (position (1) in Figure 4.2). At this position good agreement is observed
between the model predictions and experimentally observed data accurately predicting a shell-
core-shell region commonly associated with SGF composites in thin cavities.

Figure 4.5 (b) (position (4) in Figure 4.2) shows the results of the SRF model at 10% of
the mold fill along the centerline of the end-gated plaque. At this position, the SRF model is
observed to agree well with experimentally obtained SGF orientation values again accurately
predicting the shell-core-shell region. The SRF model is compared to experimental SGF
orientation values at 40% of the mold fill along the centerline of the mold in

Figure 4.5 (c) (position (7) in Figure 4.2). The SRF model performs encouragingly for all
three of the shown orientation tensor components. The A33 component prediction is slightly more
accurate than the A11 component, but both are either within the experimental error or close to the
values including experimental error with the exception of the center of the mold. At the center of
the mold the over prediction of the A22 component leads to an under prediction of both the A11
and A33 components. Finally, the SRF model is compared to experimental orientation data at
90% of the mold fill along the centerline of the mold data in

Figure 4.5 (d) (position (10) in Figure 4.2). Here the experimentally obtained orientation
data show a wider orientation distribution than at 40% of the mold fill. This wider distribution is

92

captured using the SRF model as the agreement with experimental data is encouraging. The
exception is near the center of the mold where both the A11 and A33 components of orientation
are slightly under predicted because of an over predicted A22 component of orientation. This over
prediction can partially be attributed to the non-uniform velocity gradients experienced across
the length of the glass fiber.
4.6.4 Fiber Orientation Predictions at 50% Mold Width

Comparisons between observed experimental fiber orientation and predicted values of
orientation using the SRF model were made at 50% of the mold width. Figure 4.6 (a) shows the
predicted values of fiber orientation using the SRF model and the experimentally observed
orientation values at 0% mold fill and 50% width of the mold (position (2) in Figure 4.2). The
SRF model is observed to perform well in predicting experimental fiber orientation at this
position in the mold cavity for all three shown orientation components. Furthermore, both the
predicted values and experimentally obtained values are much different than those observed at
the centerline of the mold cavity. Model predictions are compared to experimental data at 10% of
the mold fill at 50% percent of the mold within Figure 4.6 (b) (position (5) in Figure 4.2).
Qualitatively, the shell-core-shell region observed in experimental data along the centerline of
the mold is lost at this position leading to a much broader and flatter orientation distribution
profile through the cavity thickness. The SRF model is observed to quantitatively capture this
phenomenon for all three shown orientation tensor components and generally agrees with
experimental orientation data except very near the walls. At the walls, A22 is over predicted
leading to over predicted values of A11 component and an under predicted A33 component at the
top of the mold cavity. The SRF model predictions were compared to experimentally obtained
fiber orientation data at 40% of the mold fill and 50% mold width in Figure 4.6 (c) (position (8)
in Figure 4.2). Here the SRF models predict a very broad fiber orientation distribution through
the mold cavity thickness and is observed to agree well with experimental data for all three
shown orientation components. Very near the bottom mold wall the A11 orientation is over
predicted causing the A33 component to be under predicted. Finally, the SRF model was
compared to experimentally obtained fiber orientation values at 90% of the mold fill at 50% of
the width given in Figure 4.6 (d) (position (11) in Figure 4.2). At this position of the mold a
shell-core-shell region again emerges in the experimental orientation data and is captured by the
orientation predictions of the SRF model. Near the top mold wall the accuracy of the SRF model
is poorer quantitatively over predicting the A11 component and under predicting the A33
component.
4.6.5 Fiber Orientation Predictions at 90% Mold Width

Orientation predictions were compared to experimentally obtained SGF orientation data
at 90% of the mold width. The results in Figure 4.7 (a) show the SRF model predictions
compared to experimental data at 0% mold fill and 90% mold width (position (3) in Figure 4.2).
Qualitatively the SRF model captured the orientation distribution through the thickness of the
cavity well but quantitatively under predicts the A11 component and over predicts the A33
component through the entire mold thickness except near the bottom wall. The results in Figure
4.7 (b) show experimental orientation data compared to predicted values of orientation using the
SRF model at 10% mold fill and 90% mold width (position (6) in Figure 4.2). At position (9) the
SRF model predicted SGF orientation values similar to those obtained experimentally through
the mold thickness with the exception of the top mold wall where the predictions are slightly off.

93

Figure 4.7 (c) shows the results of the SRF model predictions to experimentally observed
orientation values at 40% mold fill and 90% mold width (position (9) in Figure 4.2).
Qualitatively the SRF model predicts the correct wide distribution of orientation but
quantitatively the model performs poorly when compared to experimental orientation values.
Finally, Figure 4.7 (d) shows the comparison of predicted orientation values using the SRF
model and the values obtained from experimentation at 90% mold fill and 90% mold width
(position (12) in Figure 4.2). Again the SRF model qualitatively predicts the correct wide
distribution through the mold cavity thickness. Quantitatively the predicted A11 orientation
component agrees well with experimental data in the top half of the mold while the predicted A33
orientation component agrees well with experimental data in the bottom half of the mold.

4.7 Conclusions
Comparisons of the model predictions and experimentally obtained values of SGF orientation

were made for the non-isothermal filling of an end-gated plaque using the decoupled approach
for the stress and orientation tensors incorporating the gate region and the advancing front. Fiber
orientation parameters obtained through fitting transient stress overshoots in shear flow (for both
the SRF and RSC models) over predicted the degree of orientation through the mold cavity
thickness yielding values of orientation that suggested a stronger shell-core-shell region than was
observed experimentally. This implies that the study of suspensions in simple shear alone to
obtain orientation parameters may not accurately capture all phenomena associated with this
system and other rheological studies may be needed (extensional flow, etc.). Due to the poor
orientation predictions from the parameters fit in simple shear flow, fiber orientation parameters
were obtained through the fitting of experimental data at one position in the mold (0% fill,
centerline) using a non-linear least squares analysis. Using the orientation parameters determined
through fitting experimental data (at 0% of the mold fill along the centerline) proved to be
successful at predicting experimentally obtained values of orientation for glass
fiber/polypropylene system presented here. Along the centerline, where most work has been
done previously, the SRF model quantitatively predicts the experimental values of orientation at
all of the locations of interest. At two positions along the centerline the A22 component of
orientation was over predicted when compared to experimental data. It should be pointed out that
anisotropic models can partially correct this issue but it comes at a much higher computational
cost.

 When sampling regions away from the centerline the SRF model does an encouraging job at
predicting fiber orientation in all of the locations of interest verifying that the model can predict
fiber orientation away from the centerline of a three-dimensional molding geometry.
Additionally, at the gate/mold interface away from the centerline of the mold, fiber orientation is
observed to be a function of the width and thickness of the mold cavity suggesting that general
assumptions about initial conditions (fibers enter the mold cavity planar random, etc.) cannot be
made here when predicting SGF orientation. Finally, the non-objective SRF model and the
objective RSC model appear to exhibit similar trends at the locations sampled in the end-gated
plaque suggesting that objectivity may not play a significant role in the prediction of fiber
orientation in a more complex test geometry such as the end-gated plaque.
4.8 Acknowledgments

The financial support for this work from the National Science Foundation Grant No.
CMMI-0853537 is gratefully appreciated and acknowledged. The authors also wish to thank the

94

RTP Company Inc. for supplying the neat matrix resin (RTP 100) and the 30 wt. % SGF fiber
material (RTP 105). The authors also acknowledge Syed Mazahir and Mark Cieslinski for the
fruitful discussions.
4.9 References

[1] S. G. Advani and E. M. Sozer, Process modeling in composites manufacturing, 2nd ed.
Boca Raton, FL: CRC Press, 2011.

[2] M. W. Darlington and A. C. Smith, "Some features of the injection molding of short fiber
reinforced thermoplastics in center sprue-gated cavities," Polymer Composites, vol. 8, pp.
16-21, 1987.

[3] G. B. Jeffery, "The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,"
Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,
vol. 100, pp. 161-179, 1922.

[4] F. Folgar and C. L. Tucker, "Orientation Behavior of Rigid Fibers in Concentrated
Suspensions," Journal of Rheology, vol. 26, pp. 604-604, 1982.

[5] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .2.
Experimental Results," Polymer Composites, vol. 13, pp. 332-341, Aug 1992.

[6] R. S. Bay, "Fiber orientation in injection molded composites: a comparison of theory and
experiment," Ph.D. , University of Illinois, Urbana-Champaign, 1991.

[7] N. Phan-Thien, X. J. Fan, R. I. Tanner, and R. Zheng, "Folgar-Tucker constant for a fibre
suspension in a Newtonian fluid," Journal of Non-Newtonian Fluid Mechanics, vol. 103,
pp. 251-260, Mar 25 2002.

[8] D. G. Baird, A. P. R. Eberle, P. Wapperom, and G. M. Velez-Garcia, "Using transient
shear rheology to determine material parameters in fiber suspension theory," Journal of
Rheology, vol. 53, pp. 685-705, May-Jun 2009.

[9] K. Ortman, D. Baird, P. Wapperom, and A. Whittington, "Using startup of steady shear
flow in a sliding plate rheometer to determine material parameters for the purpose of
predicting long fiber orientation," Journal of Rheology, vol. 56, pp. 955-981, Jul 2012.

[10] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .1. Theory
and Numerical-Methods," Polymer Composites, vol. 13, pp. 317-331, Aug 1992.

[11] D. G. Baird, A. P. R. Eberle, G. M. Velez-Garcia, and P. Wapperom, "Fiber orientation
kinetics of a concentrated short glass fiber suspension in startup of simple shear flow,"
Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp. 110-119, Feb 2010.

[12] M. Sepehr, P. J. Carreau, M. Moan, and G. Ausias, "Rheological properties of short fiber
model suspensions," Journal of Rheology, vol. 48, pp. 1023-1048, Sep-Oct 2004.

[13] M. Sepehr, G. Ausias, and P. J. Carreau, "Rheological properties of short fiber filled
polypropylene in transient shear flow," Journal of Non-Newtonian Fluid Mechanics, vol.
123, pp. 19-32, Oct 15 2004.

[14] M. Sepehr, P. J. Carreau, M. Grmela, G. Ausias, and P. G. Lafleur, "Comparison of
rheological properties of fiber suspensions with model predictions," Journal of Polymer
Engineering, vol. 24, pp. 579-610, Nov-Dec 2004.

95

[15] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids. - 1 : Fluid
mechanics, 2.ed. ed. New York,N.Y.: Wiley, 1987.

[16] C. L. Tucker, J. Wang, and J. F. O'Gara, "An objective model for slow orientation
kinetics in concentrated fiber suspensions: Theory and rheological evidence," Journal of
Rheology, vol. 52, pp. 1179-1200, Sep-Oct 2008.

[17] A. P. R. Eberle, D. G. Baird, P. Wapperom, and G. M. Velez-Garcia, "Obtaining reliable
transient rheological data on concentrated short fiber suspensions using a rotational
rheometer," Journal of Rheology, vol. 53, pp. 1049-1068, Sep-Oct 2009.

[18] H. M. Huynh, "Improved Fiber Orientation Predictions for Injection-Molded
Composites," M.S., Mechanical Engineering, University of Illinois at Urbana-
Champaign, 1999.

[19] J. Wang, C. A. Silva, J. C. Viana, F. W. J. van Hattum, A. M. Cunha, and C. L. Tucker,
"Prediction of fiber orientation in a rotating compressing and expanding mold," Polymer
Engineering and Science, vol. 48, pp. 1405-1413, Jul 2008.

[20] C. L. Tucker and J. H. Phelps, "An anisotropic rotary diffusion model for fiber
orientation in short- and long-fiber thermoplastics," Journal of Non-Newtonian Fluid
Mechanics, vol. 156, pp. 165-176, Feb 2009.

[21] K. J. Meyer, J. T. Hofmann, and D. G. Baird, "Initial conditions for simulating glass fiber
orientation in the filling of center-gated disks," Composites Part A: Applied Science and
Manufacturing, vol. 49, pp. 192-202, 6// 2013.

[22] S. M. Mazahir, G. M. Vélez-García, P. Wapperom, and D. Baird, "Evolution of fibre
orientation in radial direction in a center-gated disk: Experiments and simulation,"
Composites Part A: Applied Science and Manufacturing, vol. 51, pp. 108-117, 8// 2013.

[23] G. M. Velez-Garcia, S. M. Mazahir, P. Wapperom, and D. G. Baird, "Simulation of
Injection Molding Using a Model with Delayed Fiber Orientation," International
Polymer Processing, vol. 26, pp. 331-339, Jul 2011.

[24] D. H. Chung and T. H. Kwon, "Numerical studies of fiber suspensions in an
axisymmetric radial diverging flow: the effects of modeling and numerical assumptions,"
Journal of Non-Newtonian Fluid Mechanics, vol. 107, pp. 67-96, Dec 6 2002.

[25] M. Altan, S. Subbiah, S. I. Guceri, and R. B. Pipes, "Numerical Prediction of Three-
Dimensional Fiber Orientation in Hele-Shaw Flows," Polymer Engineering and Science,
vol. 30, pp. 848-859, 1990.

[26] K. H. Han and Y. T. Im, "Numerical simulation of three-dimensional fiber orientation in
injection molding including fountain flow effect," Polymer Composites, vol. 23, pp. 222-
238, Apr 2002.

[27] B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, et
al., "Fiber length and orientation in long-fiber injection-molded thermoplastics - Part I:
Modeling of microstructure and elastic properties," Journal of Composite Materials, vol.
42, pp. 1003-1029, May 2008.

96

[28] M. Gupta and K. K. Wang, "Fiber Orientation and Mechanical-Properties of Short-Fiber-
Reinforced Injection-Molded Composites - Simulated and Experimental Results,"
Polymer Composites, vol. 14, pp. 367-382, Oct 1993.

[29] B. E. VerWeyst and C. L. Tucker, "Fiber suspensions in complex geometries:
Flow/orientation coupling," Canadian Journal of Chemical Engineering, vol. 80, pp.
1093-1106, Dec 2002.

[30] B. E. VerWeyst, C. L. Tucker, P. H. Foss, and J. F. O'Gara, "Fiber orientation in 3-D
injection molded features - Prediction and experiment," International Polymer
Processing, vol. 14, pp. 409-420, Dec 1999.

[31] S. G. Advani and C. L. Tucker, "The Use of Tensors to Describe and Predict Fiber
Orientation in Short Fiber Composites," Journal of Rheology, vol. 31, pp. 751-784, Nov
1987.

[32] D. H. Chung and T. H. Kwon, "Fiber orientation in the processing of polymer
composites," Korea-Australia Rheology Journal, vol. 14, pp. 175-188, Dec 2002.

[33] S. Montgomery-Smith, D. Jack, and D. E. Smith, "The Fast Exact Closure for Jeffery's
equation with diffusion," Journal of Non-Newtonian Fluid Mechanics, vol. 166, pp. 343-
353, Apr 2011.

[34] D. A. Jack, B. Schache, and D. E. Smith, "Neural Network-Based Closure for Modeling
Short-Fiber Suspensions," Polymer Composites, vol. 31, pp. 1125-1141, Jul 2010.

[35] D. H. Chung and T. H. Kwon, "Improved model of orthotropic closure approximation for
flow induced fiber orientation," Polymer Composites, vol. 22, pp. 636-649, Oct 2001.

[36] D. H. Chung and T. H. Kwon, "Invariant-based optimal fitting closure approximation for
the numerical prediction of flow-induced fiber orientation," Journal of Rheology, vol. 46,
pp. 169-194, Jan-Feb 2002.

[37] C. W. Hirt and B. D. Nichols, "Volume of Fluid (Vof) Method for the Dynamics of Free
Boundaries," Journal of Computational Physics, vol. 39, pp. 201-225, 1981.

[38] L. F. R. Shampine, M.W., "The MATLAB ODE Suite," ed. 24 Prime Park Way, Natick,
MA 01760: The Mathworks, Inc.

[39] G. M. Velez-Garcia, P. Wapperom, V. Kunc, D. G. Baird, and A. Zink-Sharp, "Sample
preparation and image acquisition using optical-reflective microscopy in the
measurement of fiber orientation in thermoplastic composites," Journal of Microscopy,
vol. 248, pp. 23-33, Oct 2012.

[40] G. M. Velez-Garcia, P. Wapperom, D. G. Baird, A. O. Aning, and V. Kunc,
"Unambiguous orientation in short fiber composites over small sampling area in a center-
gated disk," Composites Part a-Applied Science and Manufacturing, vol. 43, pp. 104-
113, Jan 2012.

[41] J. T. Hofmann, G. M. Velez-Garcia, D. G. Baird, and A. R. Whittington, "Application
and evaluation of the method of ellipses for measuring the orientation of long, semi-
flexible fibers," Polymer Composites, vol. 34, pp. 390-398, Mar 2013.

97

4.10 Figures

Figure 4.1: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as

well as the azimuthal and zenith angles, φ and θ respectfully.

98

Figure 4.2: End-gated plaque geometry with highlighted regions of interest (1) 0% fill, 0%

width, (4) 10% fill, 0% width, (7) 40% fill, 0% width, (10) 90% fill, 0% width, (2) 0% fill, 50%
width, (5) 10% fill, 50% width, (8) 40% fill, 50% width, (11) 90% fill, 50% width, (3) 0% fill,
90% width, (6) 10% fill, 90% width, (9) 40% fill, 90% width, (12) 90% fill, 90% width.

 x1

 x2

 x3

 Ωoutlet

 Ωinlet

Ωsymmetry

 (1)

50%W

90%W

0%W

0%L
10%L 40%L 90%L

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

99

Figure 4.3: Model predictions of the SRF model using orientation parameters obtained from

fitting stress growth at the startup of shear flow. Predictions are compared to experimentally
determined fiber orientation (A11 - O, A22 - Δ, A33 - ☐) at 0% of the mold width (centerline) at (a)
0% mold fill (position (4) in Figure 4.2), (b) 10% mold fill (position (7) in Figure 4.2), (c) 40%
mold fill (position (10) in Figure 4.2) and (d) 90% mold fill (position (13) in Figure 4.2). 2H =
1.55 mm.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt
(a)

A22

A33
A11

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(b)

A33

A22

A11

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(c)

A11A33

A22

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(d)

A11A33

A22

x/H

x/H

x/H

x/H

100

Figure 4.4: Model predictions of SRF (solid) and RSC (dashed) models compared to

experimentally determined fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 0% of the mold width
(centerline) at (a) 0% mold fill along the centerline (position (4) in Figure 4.2), (b) 10% mold fill
along the centerline (position (7) in Figure 4.2), (c) 0% mold fill at 50% width (position (5) in
Figure 4.2) and (d) 40% mold fill at 50% width (position (11) in Figure 4.2). 2H = 1.55 mm.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(a)

A22

A33

A11

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(b)

A33

A11 A22

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

A11

A33
A22

(c)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

A11

A33
A22

(d)

x/H

x/H

x/H

x/H

101

Figure 4.5: Model predictions of SRF (solid) model compared to experimentally determined

fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 0% of the mold width (centerline) at (a) 0% mold
fill (position (4) in Figure 4.2), (b) 10% mold fill (position (7) in Figure 4.2), (c) 40% mold fill
(position (10) in Figure 4.2) and (d) 90% mold fill (position (13) in Figure 4.2). 2H = 1.55 mm.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(a)

A22

A33

A11

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(b)

A33

A11 A22

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

C
om

po
ne

nt

(c)

A22A11

A33

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(d)

A33

A11A22

x/H

x/H

x/H

x/H

102

Figure 4.6: Model predictions of SRF (solid) model compared to experimentally determined

fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 50% of the mold width (centerline) at (a) 0% mold
fill (position (5) in Figure 4.2), (b) 10% mold fill (position (8) in Figure 4.2), (c) 40% mold fill
(position (11) in Figure 4.2) and (d) 90% mold fill (position (14) in Figure 4.2). 2H = 1.55 mm.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(a)

A11

A33
A22

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(b)

A11

A33

A22

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

A11

A33
A22

(c)

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

C
om

po
ne

nt

(d)

A11

A22A33

x/H

x/H

x/H

x/H

103

Figure 4.7: Model predictions of SRF (solid) model compared to experimentally determined

fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 50% of the mold width (centerline) at (a) 0% mold
fill (position (6) in Figure 4.2), (b) 10% mold fill (position (9) in Figure 4.2), (c) 40% mold fill
(position (12) in Figure 4.2) and (d) 90% mold fill (position (15) in Figure 4.2). 2H = 1.55 mm.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(a)

A11

A33

A22

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(b)

A11

A33
A22

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(c)

A11

A22

A33

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Thickness, x/2H

O
rie

nt
at

io
n

Co
m

po
ne

nt

(d)

A11

A22A33

x/H

x/H

x/H

x/H

104

Parameter Value

ρ kg m3() 1100

η Pa ⋅s() 4814

λ s-1() 0.2777

n 0.9090

CP J kg ⋅K() 2800

k W m ⋅K() 0.234

α K() 4220

Tα K() 427.23

TWall K() 363

TInlet K() 463

Table 4.1: Material properties for non-isothermal finite element simulation.

105

Parameter SRF RSC

κ 0.0297 0.0910

CI 0.0481 0.0658

Table 4.2: Fiber orientation simulation parameters.

106

Chapter 5

Prediction of Orientation of Long Semi-Flexible Glass Fiber
Orientation during the Injection Molding of an End-Gated Plaque

Preface
This chapter describes the prediction of long glass fiber orientation in the filling of a

three-dimensional end-gated plaque using a rigid and semi-flexible fiber orientation model and
comparing to experimentally determined values of orientation. This chapter is organized as a
manuscript for publication in Composites Part A: Applied Science and Manufacturing.

107

5 Prediction of Orientation of Long Semi-Flexible Glass Fiber
Orientation during the Injection Molding of an End-Gated
Plaque

Kevin J. Meyer1, John T. Hofmann2, Donald G. Baird1∗ and Vlastimil Kunc3

1. Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061
2. Macromolecule and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061
3. Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, TN 37831

* Corresponding Author: Tel. +1 540 231 5998; Fax +1 540 231 2732.
Email Address: dbaird@vt.edu (D.G. Baird)
Present Address:
Department of Chemical Engineering
133 Randolph Hall
Virginia Tech
Blacksburg, VA 24061

5.1 Abstract

This work is concerned with predicting the orientation of long L >1 mm() glass fibers
(LGF) during injection molding in an end-gated plaque (EGP), which represents a basic 3-
dimensional geometry. Previous EGP simulations have provided orientation predictions results
only within the mold cavity along the centerline of the mold. This paper reports on a method to
simulate the entire domain of the EGP to obtain fiber orientation predictions without making
assumptions about fiber orientation entering the mold and comparing results to experimental data
both along and away from the centerline. Furthermore, rigid and semi-flexible fiber orientation
models are employed to predict LGF orientation. Model parameters are obtained through both a
rheological and experimental fitting procedure. The semi-flexible fiber model is observed to be
in better quantitative agreement than the rigid fiber model at predicting observed experimental
fiber orientation at a number of positions in the EGP.

5.2 Introduction
A “long glass fiber” is defined here for the duration of this work as a fiber that exhibits

the ability to deform during processing. This bending can effect a fiber’s ability to orient in a
given flow field and alter the material’s microstructure and thus altering the bulk material
properties. The dimensionless parameter suggested by Swtizer and Klingenberg [1] is adopted in
this work to quantify the potential for bending and is given by Eq. (5.1):

F eff = 64ηm γ ar

4

EYπ
 (5.1)

In Eq. (5.1) ηm is the matrix viscosity, γ is the magnitude of the second invariant of the rate of
deformation, ar is the aspect ratio of the particle and EY is the Young’s modulus. In literature a

108

glass fiber is typically considered long when it’s length is above 1 mm [2]. Calculating an
effective fiber flexibility using this convention and the properties of an e-glass fiber suggests that
a rigid glass fiber exists when F eff < 51 and a flexible glass fiber exists when F eff > 51 .
Therefore, when the effective fiber flexibility parameter exceeds a value of 51, flexibility may
play a role in dictating a material’s microstructure.

Predicting the orientation of a concentrated rigid glass fiber suspension typically starts
with a modified form of Jeffery’s equation for the motion of an ellipsoidal particle in a viscous
medium [3]. Folgar and Tucker [4] modified Jeffery’s equation by adding a term based on
isotropic diffusivity that was proportional to the velocity gradient to account for fiber-fiber
interaction in a concentrated fiber system. The isotropic rotary diffusion term does depend on a
fiber interaction coefficient, CI , that has been studied through both theoretical and experimental
means [5, 6]. The Folgar-Tucker (FT) model has shown good qualitative agreement in the Hele-
Shaw region with experimental data and is thus a popular choice simulating short glass fiber
orientation [6, 7].

Stress growth experiments in the startup of simple shear flow have shown that the
orientation of rigid fibers in concentrated suspension evolves more slowly than predicted by the
Folgar-Tucker model [8, 9]. To more accurately reflect the observed transient fiber orientation a
“slip” parameter, κ , was suggested by Sepehr et al. [10, 11] and Eberle et al. [8]. The strain
reduction factor (SRF) model more closely agreed with experimental data but is not objective
[12]. Wang et al. [13] developed the reduced strain closure (RSC) model as an objective form of
the SRF model where the closure approximation is modified eliminating the objectivity problem
while including the slower orientation kinetics observed in experimental values of orientation.
Phelps and Tucker [14] have developed a form of the RSC model (ARD-RSC) which accounts
for the anisotropy in fiber interactions but requires additional fitting efforts in determining six
model coefficients. Even though the SRF model is non-objective and assumes isotropy, it has
been shown to be useful in describing the evolution of orientation in simple flows and in more
general flows [14-16]. Furthermore, Mazahir et al. [17] showed that for Hele-Shaw flows and
Meyer et al. [18] showed for flows including the gate region and advancing front that the SRF
and RSC model provide similar predictions for short glass fibers in the center-gated disk and
end-gated plaque.

During the processing of concentrated long glass fiber (LGF) suspensions further
modification to the orientation equations may be necessary. Strautins and Latz [19] proposed a
two rod continuum based approach for modeling deformable fibers assuming that suspension
was dilute (φ <1 ar

2). This two-rod model incorporated the effect that fiber length and fiber
flexibility play in predicting LGF orientation. Ortman et al. [15] adapted the dilute theory to a
concentrated suspension by adding the isotropic rotary diffusion term from the Folgar-Tucker
model and saw good agreement with predicted fiber orientation in simple shear flow [4]. Ortman
et al. [16] observed an increased agreement between predicted LGF orientation values and
experimentally observed LGF orientation values up to 40% of the mold fill but used
experimental orientation values as initial conditions to the orientation predictions. Meyer et al.
[20] used a semi-flexible fiber model and incorporated the gate region and advancing front and
observed that this semi-flexible fiber model was more successful at predicting experimental LGF
orientation in a CGD geometry at a number of positions.

109

The prediction fiber orientation in commercially relevant complex test geometries has
been the subject of little work for LGF systems. Meyer et al. [20] investigated LGF orientation in
a CGD and saw an increased agreement with experimental orientation data when using an
orientation model that included terms taking into account a fiber’s ability to mildly deform and
including the gate region and advancing front. Nguyen et al. [21] simulated long glass fiber
orientation with a rigid fiber model in an EGP and also found reasonable agreement with
experimental orientation data but only made comparisons along the centerline of the mold.
Furthermore, the work of Nguyen et al. [21] in the EGP geometry had an average fiber length of
LW ≈1.83mm with a strong majority of the population of fibers being under 1 mm in length
which may have contributed to a rigid fiber model developed for short fiber systems accurately
predicting long fiber orientation. Therefore, there is a void in current literature for a
comprehensive analysis of the ability of current predictive models to predict fiber orientation
both along and away from the centerline of the EGP geometry.

The purpose of this work is to predict long semi-flexible fiber orientation
LW ≈ 3.90mm() in a commercially relevant end-gated plaque geometry using both a rigid and

semi-flexible fiber orientation model and compare the predicted results with experimentally
obtained values of fiber orientation both along and away from the centerline and drawing
conclusions as to the accuracy of the predictions. The gate and mold of the EGP are simulated as
one continuous domain so that no assumptions about fiber orientation or inlet velocity profile
have to be made at the mold entrance which has been shown to affect predicted orientation
values [20]. The solution for velocity fields and fiber orientation are decoupled so that a two-step
process to calculate orientation is invoked [20, 22]. The finite element method in the ANSYS
Polyflow© environment is used for the non-isothermal velocity field solution including the
advancing front. The solution of the rigid and semi-flexible fiber orientation equations uses finite
difference methods written in MATLAB and C. Fiber orientation predictions are carried out
using orientation parameters κ and CI() obtained through fitting transient shear stress over
shoots from the startup of shear flow experiments and through fitting experimental orientation
data from injection molding experiments. . Rigid and semi-flexible fiber orientation model
predictions are compared to experimental data obtained through the method of ellipses given by
Vélez-García [23] at a number of positions in the EGP mold to access the predictive ability of
the modeling techniques.

5.3 Governing Equations
5.3.1 Equations of Motion and Energy

The flow inside the cavity is assumed incompressible and laminar (calculations of
Reynolds numbers in the cavity produced values of Re ≤10−3). From these assumptions the
continuity equations and the equation of motion are written as Eq. (5.2) and Eq. (5.3) where v is
the velocity vector, P is the isotropic pressure and τ is the extra stress tensor:

 ∇⋅ v = 0 (5.2)

 −∇P +∇⋅τ = 0 (5.3)

Eq. (5.3) requires the choice of an extra stress tensor representation and is discussed in a
following section.

110

The energy equation is solved to include temperature effects in the form given in Eq.
(5.4) where ρ is the fluid density, CP is the specific heat capacity, β is the thermal
conductivity, τ is the extra stress tensor,

γ is the rate of deformation tensor and D Dt is the

material derivative D Dt = ∂ ∂t + v ⋅∇() :

ρCP

DT
Dt

= β ∇2T + τ : γ (5.4)

The viscosity of the fluid was assumed to be temperature dependent through the use of an
Arrhenius-type relationship given in Eq. (5.5) where η γ() is the shear dependent viscosity, α is
the ratio of activation energy to Boltzmann’s constant α = Ea k() and Tα is a reference
temperature:

η γ ,T() =η γ()exp α 1

T
− 1
Tα

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ (5.5)

The values for the temperature dependence of the system can be found in Table 5.1.
5.3.2 Stress Tensor Representation

During the fitting of constants for long glass fiber systems, the Dinh-Armstrong stress
tensor model, multiple solutions were obtained suggesting that the stress tensor may not
accurately capture all of the phenomena occurring in the concentrated fiber system [24]. This
suggests that the rheology of the concentrated suspension is more complex than current models
can predict and thus a decoupled approach for the stress and orientation tensors is used in this
work. From the perspective of the fibers, the major drag experienced is from the polymer melt.
The effect of fibers in the suspension was included by incorporating the fiber loading and fiber-
fiber interaction contributions into the simulations through the values of κ and CI so that only
the neat matrix properties are used to predict the velocity fields.

τ =η γ() γ (5.6)

A Generalized Newtonian Fluid was chosen as the constitutive relation to represent the
matrix used in this study given by the relation in Eq. (5.6) where τ is the extra stress tensor,

 η γ() is an empirical relation for describing the viscosity as a function of shear rate and

γ is the

rate of strain tensor. The stress tensor is taken as positive for tensile stresses following the
mechanics sign convention.

η γ() =η0 1+ λ γ()a⎡⎣ ⎤⎦

n−1
a (5.7)

The Carreau-Yasuda model was used to account for the shear-thinning nature of neat matrix
where η0 is the zero shear viscosity, λ is the parameter which governs the onset of shear
thinning, n is a parameter which governs the degree of shear thinning within the matrix and a is
a parameter that describes the transition region between the zero-shear region and the power-law

111

region and is given by Eq. (4.6). The values used in the Carreau-Yasuda model are given in
Table 5.1 and were estimated using a rotation rheometer (RMS-800, Rheometrics, Inc.).

5.3.3 Rigid Fiber Orientation Equation
The orientation tensor of Advani and Tucker [25] is a compact way of representing fiber

orientation and is defined by Eq. (5.8) where A is the second-order orientation tensor, p is a

vector drawn through the longitudinal axis of the fiber (shown in Figure 5.1) and ψ p,t() is the
probability distribution function and t is time:

 A = ppψ p,t()dp∫∫ (5.8)

Within in the equations of orientation a fourth order tensor also arises shown in Eq. (5.9):

 A4 = ppppψ p,t()dp∫∫ (5.9)

The fourth-order tensor requires the use of a closure approximation, for which there are a number
of choices summarized in Chung and Kwon [26]. For the duration of this work the invariant-
based optimal fitting (IBOF) closure is used because has been shown by Chung and Kwon to
produce results very similar to directly calculating the orientation distribution function and is
more computationally efficient [27].

In order to efficiently predict fiber orientation in molding geometries, Jeffery’s equation has
been used with the addition of an interaction term to account for fiber-fiber interaction known as
the modified Folgar-Tucker model [3, 4]. Sepehr et al. [10] proposed a modified form of the
Folgar-Tucker model shown in Eq. (5.10) where

A is the material derivative ∂A ∂t + v ⋅∇A() of

the 2nd order orientation tensor A , W is the vorticity W = 1
2 ∇vT −∇v⎡⎣ ⎤⎦() , D is the rate of

deformation D = 1
2 ∇vT +∇v⎡⎣ ⎤⎦() , A4 is the 4th order orientation tensor, γ is the magnitude of

the rate of deformation tensor

γ = 2 D :D()() , and I is the identity tensor and ∇v = ∂vj ∂xi :

A =κ W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D() + 2CI γ I − 3A()⎡⎣ ⎤⎦ (5.10)

The variables κ and CI are empirical parameters used to represent fiber-fiber interaction and
fiber loading and are commonly fit to experimental data [28]. The value of CI will dictate how
highly fibers align in the flow direction (lower value of CI will yield higher flow aligned fibers)
while the value of κ accounts for the overall slower orientation evolution seen in concentrated
fiber systems and has a value of between zero and unity.

5.3.4 Semi-Flexible Fiber Orientation Equations
Strautins and Latz [19] developed orientation equations for a dilute semi-flexible fiber

suspension using orientation tensors shown in Eq. (5.11) to Eq. (5.13) where p and q represent

the two vectors of the bent fiber (shown in Figure 5.2) and ψ p,q,t() is the probability
distribution function for an individual rod:

112

A = ppψ p,q,t()dpdq∫∫ (5.11)

 B = pqψ p,q,t()dpdq∫∫ (5.12)

 C = pψ p,q,t()dpdq∫∫ (5.13)

A final tensor of interest is the end-to-end orientation tensor,R , that represents the average
orientation of a slightly deformed fiber and is given by Eq. (5.14):

 R =
A − B()
1− tr B() (5.14)

Ortman et al. [15] adapted the orientation equations given by Strautins and Latz [19] to
concentrated suspensions by including the isotropic rotary diffusion term and slip parameter
from previous work [6, 10]. The adaptation utilizes the orientation tensors in Eqs. (5.11) - (5.13)
and is given by Eqs. (5.15) - (5.18) where lb is the length of one rod of the two rod system:

A =κ W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D()− 6CI γ A − 1
3 I()⎡⎣ + ...

 lb
2
Cm +mC − 2 m ⋅C()A⎡⎣ ⎤⎦ + 2k B − Atr B()()⎤

⎦⎥
 (5.15)

B =κ W ⋅B − B ⋅W + ξ D ⋅B + B ⋅D − 2 D :A()B()⎡
⎣ − 4CI γ B +

 lb
2
Cm +mC − 2 m ⋅C()A⎡⎣ ⎤⎦ + 2k A − B tr B()⎡⎣ ⎤⎦

⎤
⎦⎥

 (5.16)

C =κ ∇vT ⋅C − A :∇vT()C + lb

2
m −C m ⋅C()⎡⎣ ⎤⎦ − kC 1− tr B()⎡⎣ ⎤⎦ − 2CI γC

⎡
⎣⎢

⎤
⎦⎥

 (5.17)

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑ (5.18)

The vector m accounts for the bending of a fiber due to the flow field surrounding that fiber if
the second derivative of the velocity gradient is present.

In the semi-flexible fiber model, the fiber flexibility parameter can modify the evolution
of fiber orientation when a flow field is applied. The fiber flexibility parameter, k , is a
coefficient that attempts to account for the physical bending that may occur in the system of
fibers. For this work the fiber flexibility parameter is calculated through a relation derived from a
beam simply supported on both ends with a point force applied at the center. The value of k is
calculated at each node on the mesh through the use of Eq. (5.19):

113

 k = EY
64ηmar

3 (5.19)

In Eq. (5.19) k is the fiber flexibility at a particular mesh node, EY is the Young’s modulus of
the fiber, ηm is the viscosity of the matrix at a particular mesh node (given by Eq. (5.7)) and ar
is the aspect ratio of the fiber. As the value of k increases, the semi-flexible model behaves more
like the rigid fiber model and in the limit of k→∞ the semi-flexible model parallels the rigid
fiber model. Conversely, as the value of k decreases the fiber becomes much more flexible and
in the limit of k→ 0 the fiber is completely flexible. In the equations presented above, the
flexibility of the fiber is initiated in the hydrodynamic contributions given by Eq. (5.18) and is
due to the bending that may occur due to gradients in the flow field.

The semi-flexible fiber model also includes a length term that may further modify the
evolution of orientation when a flow field is applied. The length of one half of the semi-flexible
rod, lb , is used in all three of the equations for the semi-flexible fiber model (Eqs. (5.15) -(5.17))
and incorporates the length of the fiber system into the orientation equations which has not been
done in previous modeling rigid modeling techniques.
5.4 Numerical Method
5.4.1 Fiber Orientation Prediction Method

The filling of the cavity was simulated using the ANSYS finite element (FEM) software
package. The entrance to the gate region was meshed using 31 (thickness) x 30 (length) x 20
(width) elements. The gate region was meshed using 31 (thickness) x 31 (length) x 50 (width)
hexagonal elements. The mold was meshed using 31 (thickness) x 300 (length) x 50 (width)
hexagonal elements. Increasing the number of elements did not change the results on the scale of
the plots.

The time-stepping scheme chosen to solve for the transient mold filling is the volume of
fluid method inside the ANSYS Polyflow environment that solves a transport equation to capture
the air-polymer interface with an internally managed variable time step. The flow and transport
equations are solved in a decoupled fashion at each time step. The solution of the transport
equation uses streamline upwinding and interpolates between elements with a linear sub-element
interpolation method. The solution of the non-isothermal system required the use of an evolution
scheme at each time step inside the ANSYS Polyflow environment to control the viscous
dissipation and convection term associated with Eq. (5.4).

The fiber orientation equations were solved using 1st order accurate finite differences
(FDM) in MATLAB (The Mathworks Inc., ver. 7.4) and C. By discretizing in space the
convected part of the derivative, the equations of orientation may be rewritten as a function of
time only. This reduces the set of partial differential equations to a system of non-linear ordinary
differential equations. The ordinary differential equations are solved using a variable step size
backwards differences implementation of the Kopfenstein-Shampine family [29].

5.4.2 Boundary Conditions
The non-isothermal FEM simulations of the EGP (shown in Figure 5.3) require specified

boundary conditions for both the flow and heat equations. The inlet boundary requires an inlet

114

fluid temperature Tin = 463K() and volumetric flow rate Qin = 3225 mm3

s() and the velocity field
is assumed to be fully developed. The symmetry condition is specified on the boundary Ωsym in
Figure 5.3. At the walls of the mold, specified by Ωwall in Figure 5.3, both the mold wall
temperature and the no slip condition Twall = 363K, v = 0() were specified. Furthermore, a zero

traction vector is defined at the fluid front i.e. n iσ i n = 0 and

σ i n − n iσ i n()n = 0 . These

free boundary conditions are prescribed where the fluid fraction is zero. The temperature
equation at the fluid front is solved using a prescribed temperature of 300K.The FDM simulation
required initial values for the orientation tensor to be specified at the inlet to the sprue. The
orientation of the fibers entering the inlet boundary, , was prescribed as completely random

 but this choice did not influence orientation predictions in the mold.

5.5 Experimental Conditions
5.5.1 Geometry and Processing Methods

End-gated plaques (EGP) were formed for the experimental evaluation of fiber
orientation using 30 weight percent LGF in a polypropylene matrix (LNP Verton MV006S)
provided by Sabic Innovation Plastics. The EGP has a sprue length of 65mm with an initial
radius of 1.45mm and a final radius at the gate of 1.75mm. The gate region of the plaque has
dimensions of 80.68mm (width) by 6.25mm (height) by 6.33mm (length) and the mold region of
the plaque has dimensions of 75.05mm (width) by 1.55mm (height) by 77.65mm (length).

An injection molding machine was utilized to mold a series of EGP’s. The temperatures
of the feed, compression and metering zones within the injection molding machine (Arburg
Allrounder, Model 221-55-250) were set to 190 °C, 210 °C, and 210 °C, respectively, while the
mold temperature was held constant at 79 °C. The plaques were molded using a fill time of 2
seconds (fast fill times were chosen to minimize non-isothermal effects) with a backpressure of
approximately 20 MPa. Additionally, the end-gated mold was filled using a 90% short shot in
order to mitigate any potential packing effects, and the resulting plaques had an average final
length of 68.65 ± 1.87 mm. Furthermore, all plaques were left to cool in the closed mold for a
period of twenty minutes prior to removal in order to reduce warping.
5.5.2 Fiber Length Distribution Determination

The fiber length distribution (FLD) was determined to verify that the average lengths of
the fibers in the EGP were indeed in the long fiber regime that is typically defined as .
Methods described by Nguyen et al. [30] were used to determine the fiber length distribution of
approximately 2000 fibers. The method involves taking a representative sample of the
suspension of the injection-molded sample and burning off the polymer matrix in a high
temperature furnace leaving only the glass fiber mat behind. A small amount of epoxy resin was
applied to the glass fiber matrix to secure a population of fibers and any fibers not secured to the
epoxy were carefully removed. The remaining fiber/epoxy sample was returned to the furnace to
remove the epoxy and leave only the glass fibers. Finally, the remaining fibers are analyzed
through optical techniques in order to determine the experimental FLD. The post-processing
number average fiber length was 3.90mm ± 0.11mm and the average fiber diameter was

Ωinlet

A = 1
3 I()

l >1mm

115

determined to be . This wider distribution of LGF is important because of the relevance
to fiber length distributions found in larger commercially relevant injection molded parts [31].
5.5.3 Fiber Orientation Measurements

A set of five representative plaques were selected and prepared for analysis at multiple
locations according to procedure described in detail by Velez-Garcia et al. [32]. The chosen
inspection points to obtain experimental values of orientation were 0%, 10%, 40%, and 90% of
length of the mold, and along the centerline, 50% of the half-width of the mold, and 90% of the
half-width of the mold. After sample preparation via polishing, an optical microscope with a
motorized stage and image-stitching software (Nikon Eclipse LV100, NIS-Elemets Basic
Research software, v.3.10) was subsequently utilized to image each inspection point at 20X
magnification.

The experimental components of the orientation tensor were subsequently computed
using in-house written MATLAB image analysis routines. This was done using a modified
version of the Method of Ellipses, a topic which will be discussed in detail in an upcoming
publication [33]. In brief, this method consists of application of the traditional Method of
Ellipses (MOE) within the end-gated geometry [34]. However, the traditional MOE must be
modified to utilize the application of the modified image analysis width determined by Hofmann
et al. [35]. This is necessary in the regions of highly shear-aligned fibers near the mold side
walls, where too narrow of an image analysis region results in an increase in partial ellipses and
associated error. This modified method allows for the accurate determination of the
unambiguous components of the orientation tensor at all inspection points within the EGP [36].
5.6 Results

5.6.1 Orientation Tensors
The results section presents three different types of data: predicted orientation values

using the rigid fiber model, predicted orientation values using the semi-flexible fiber model and
measured values of experimental orientation. The rigid fiber model produces component values
of the orientation tensor described by Eq. (5.8) so that when a component is discussed pertaining
the rigid fiber model it will be represented by Aii or Aij . The solution of the semi-flexible fiber
model produces two orientation tensors, A and B that represent the tensors given in Eq. (5.11)
and Eq. (5.12). The results presented in this work utilize a combination of the two orientation
tensors given by R which is that “average” end-to-end orientation of a slightly deformed fiber.
The results of the semi-flexible fiber orientation model are given through the components of R .
Finally, the measured values of experimental fiber orientation are measured using the method
described in the previous section. The method of ellipses generates the rigid model orientation
tensor, A . But, recent results published by Hofmann et al. describe a technique of verifying
experimental long glass fiber orientation through a “top-down” method and concluded that over
the length of the fiber in systems such as the end-gated plaque, A ≈ R . Therefore, the
experimentally measured orientation data will be referred to by the components of R .

14.2µm

116

5.6.2 Temperature Effects
The system under study in this work was clearly non-isothermal and, as such, an effort to

incorporate those effects was made. Non-isothermal conditions present issues such as a large
thermal gradient near the walls. To minimize the effect of the large thermal gradients near the
walls a fast fill time was chosen. The fluid filling simulation showed a steep temperature gradient
near the walls but, after calculating both the isothermal and non-isothermal orientation
predictions, only an 8% - 10% difference was observed between the two no further than 0.12 mm
from the wall.

Another issue that can arise from taking into account the temperature effects in the system is
the formation of a skin layer near the wall. This is due to the fluid coming into contact with the
mold ΔT ≈ 70K() and cooling quickly. For the purpose of the study presented here, and because
of the fast fill times chosen in this study, the skin formation was neglected.
5.6.3 Determination of Fiber Orientation Parameters

The fiber interaction coefficient, CI , and the slip parameter, κ , were determined through the
use of a sliding plate rheometer and the analysis of transient stress overshoots in the startup of
simple shear as prescribed by Ortman et al. [15] and confirmed for orientation predictions in a
CGD by Ortman et al. [16] and Meyer et al. [20]. A randomly oriented A ≈ 1

3 I() long glass fiber

sample was sheared at γ = 1 s-1 for 120 seconds. The resulting transient stresses were modeling
using a modified Dinh-Armstrong stress tensor form. The values for the slip parameter and fiber
interaction coefficient calculated through this method are given in Table 5.2. Using these
parameters, fiber orientation was predicted in the end-gated plaque with the results from a single
position (centerline at 0% mold fill, position (1) in Figure 5.3) shown for different orientation
components in Figure 5.4 (a). The results shown in Figure 5.4 (a) clearly suggest that the
characterization technique using only simple shear flow may not completely describe the
rheological and orientation evolution of a concentrated fiber system and rheological testing in
different flows (i.e. extensional flow) may be required to fully understand the suspension.

The fiber interaction coefficient, CI , and the slip parameter, κ , were then determined
through the fitting of experimental data at the 0% fill position along the centerline of the end-
gated plaque (position (1) in Figure 5.3). These parameters were fit using a non-linear least
squares analysis with the resulting values given in Table 5.2. The results of the predicted fit are
shown in Figure 5.4 (b).
5.6.4 LGF Orientation Predictions at 0% of the Mold Fill

Using the conditions obtained from simulating LGF orientation in the gate region,
predictions about LGF orientation in the mold cavity could be made. Figure 5.5 shows the results
of predicting fiber orientation at 0% of the mold fill along two widths (50% of the width and
90% of the width) of the mold cavity. Figure 5.5 (b) shows the comparison of experimental LGF
orientation data with model predictions at 50% of the mold width (sampling position (2) in
Figure 5.3). The rigid and semi-flexible fiber models both qualitatively behave in a similar
manner predicting a flatter orientation profile through the thickness of the mold cavity forgoing
the traditional “shell-core-shell” profile. The rigid fiber model is observed to qualitatively agree
with the experimental fiber orientation data but over predicts the R33 component of the
orientation tensor and under predicts the R11 component of the orientation through the majority

117

of the mold cavity. The semi-flexible fiber model is also observed to agree qualitatively with
experimental data and more accurately describes the observed quantitative experimental fiber
orientation values.

The results in Figure 5.5 (c) shows the comparison of experimentally observed fiber
orientation values with model predictions at 90% of the mold width (sampling position (3) in
Figure 5.3). Both models are observed to qualitatively agree with the shape of the fiber
orientation distribution through the mold cavity. Quantitatively, both models perform equally as
well at predicting the observed fiber orientation with the exception of the top of the mold cavity,
where the semi-flexible fiber model is slightly more accurate.
5.6.5 LGF Orientation Predictions at 10% of the Mold Fill

Comparisons of predictions and experimental data were made at 10% of the mold fill at
three widths of the mold in Figure 5.6. First, Figure 5.6 (a) shows predicted LGF orientation
values using a rigid and semi-flexible fiber model compared to experimentally observed fiber
orientation values at 0% of the mold width (sampling position (4) in Figure 5.3). Both models
again predict the classic SCS region commonly associated with fiber orientation predictions in
thin cavities. The semi-flexible fiber model predictions are observed to more closely agree with
experimental orientation values because of the flatter profile across the mold cavity thickness.

The comparison of predicted LGF orientation values and experimentally obtained data at
50% of the mold width are given in Figure 5.6(b) (sampling position (5) in Figure 5.6). The rigid
and semi-flexible fiber models both predict flat orientation profiles through the mold cavity that
is observed to be in agreement with experimental LGF orientation values. The rigid fiber model
quantitatively under predicts the R11 component of the orientation tensor and over predicts the
R33 component of the orientation tensor. The semi-flexible fiber model is observed to more
accurately predict the R33 component of the experimental fiber orientation tensor but performs
almost as poorly as the rigid fiber model at predicting the R11 component of the experimental
orientation. Furthermore, the rigid fiber model continues to predict a shallow SCS-type profile
through the thickness of the cavity while the semi-flexible fiber model does not.

The comparison of experimental data with predicted orientation values of LGF was also
performed at 90% of the mold width given in Figure 5.6 (c) (sampling position (6) in Figure 5.3).
The rigid fiber model still slightly predicts a SCS region through the cross-section of the mold
but in this case it is observed to be both qualitatively and quantitatively inaccurate. The rigid
fiber model under predicts the R11 component of fiber orientation and over predicts the R33
component of fiber orientation when compared to experimental LGF orientation data.
Conversely, the semi-flexible fiber model performs encouragingly more accurately reflecting the
qualitatively trends observed in the mold cavity. Specifically, the semi-flexible fiber model is
observed to accurately predict the experimental LGF orientation values for both the R11 and R33
components of orientation with the exception of predictions near the bottom wall for the R11
component and top wall for the R33 component. The semi-flexible fiber model also more
accurately predicts the R22 component of fiber orientation when compared to experimental LGF
orientation in the center of the mold but performs poorly near the walls.

5.6.6 LGF Orientation Predictions at 40% of the Mold Fill
Comparisons of predicted and observed LGF orientation values continued at 40% of the

mold fill given by the plots given in Figure 5.7. Figure 5.7 (a) shows the rigid fiber and semi-

118

flexible fiber model predictions compared to observed experimental LGF orientation values
(sampling position (7) in Figure 5.3). Both model predictions again show SCS regions through
the mold cavity thickness. The rigid fiber model over predicts the R11 component of orientation
near the walls of the cavity and under predicts the R11 component of orientation in the center of
the cavity when compared to observed experimental values of LGF orientation. The rigid fiber
model also under predicts the A33 component of orientation and over predicts the R22 component
of orientation through the entire thickness when compared to experimental LGF orientation data.

The rigid and semi-flexible fiber model were compared against experimentally observed
LGF orientation at 50% of the mold width given by Figure 5.7 (b) (sampling position (8) in
Figure 5.3). The rigid fiber model predicts a shallow SCS orientation profile through the
thickness that is qualitatively incorrect when compared to observed experimental LGF
orientation values. The semi-flexible fiber performs marginally better by qualitatively predicting
a flatter orientation profile through the thickness but quantitatively does not predict orientation
values similar to the observed experimental values with the exception of the R33 orientation
component in the top half of the mold.

At 90% of the mold width comparisons of model predictions against observed
experimental orientation values were again performed with the results shown in Figure 5.7 (c)
(sampling position (9) in Figure 5.3). The rigid fiber model predicts a SCS profile through the
thickness of the mold cavity that is qualitatively in disagreement with experimental LGF
orientation values in this system. The semi-flexible model performs encouragingly both
predicting the qualitative trends through the mold cavity as well as agreeing quantitatively with
observed orientation for this LGF system. The exception is around “-0.4” normalized mold
thickness where the R22 component of orientation is over predicted and the R11 component of
orientation is under predicted.

5.6.7 LGF Orientation Predictions at 90% of the Mold Fill
In order to verify the predictions of fiber orientation near the advancing front,

experimental LGF orientation values were compared to model predictions at 90% of the mold fill
at three widths shown in Figure 5.8. The results in Figure 5.8 (a) show the comparisons of model
predictions with observed LGF orientation at 0% of the mold width (sampling position (10) in
Figure 5.3). Both the rigid and semi-flexible fiber models perform qualitatively and
quantitatively well at this position when compared to experimental data with the exception of the
bottom mold wall. Furthermore, both models over predict the experimental R22 component of
orientation through the mold cavity.

At 50% of the width similar comparisons of predicted and experimentally observed LGF
orientation were carried out and given in Figure 5.8 (b) (sampling position (11) in Figure 5.3).
Here the rigid fiber model qualitatively captured the wide orientation distribution through the
mold cavity and is observed to correctly predict the experimental R33 component of orientation
through the mold cavity thickness. Conversely, the rigid fiber under predicts the experimental
R11 component of orientation and over predicts the R22 component of orientation through the
mold thickness. The semi-flexible fiber model is observed to qualitatively capture the flat
orientation profile through the thickness of the cavity. Furthermore, the semi-flexible fiber model
quantitatively describes the observed experimental orientation for the R11 and R33 orientation
components but fails to accurately capture the R22 orientation component.

119

Finally, experimentally observed LGF orientation data and model predictions were
compared at 90% of the mold width given by Figure 5.8 (c) (sampling position (12) in Figure
5.3). The rigid fiber model again predicts a SCS profile through the mold cavity thickness that at
this sampling position which is in disagreement with experimental LGF orientation values. The
semi-flexible fiber model more accurately captures the qualitative trends seen in the
experimental data and additionally agrees quantitatively with experimentally observed values of
the R11 and R33 orientation components through the entire mold cavity with the except of near the
top wall of the mold. The rigid and semi-flexible fiber models are observed to over predict the
R22 orientation component albeit the semi-flexible fiber model is closer to experimentally
observed values of LGF orientation.

5.7 Conclusions
Long glass fiber orientation predictions were compared to experimentally measured

values of orientation in a non-isothermal end-gated plaque at a number of positions in the gate
and mold cavity. The orientation predictions were made using a decoupled approach for the
stress and orientation tensors and included the gate region and the advancing front. The fiber
orientation parameters were first obtained through an independent rheological technique where
transient stress overshoots from the startup of simple shear were fitted to a stress model
incorporating fiber contribution. The long glass fiber orientation predictions were in poor
agreement when compared to experimental orientation data suggesting that a more thorough
rheological investigation (i.e. behavior in extensional flow fields) may be necessary to
characterize the concentrated suspension. Parameters in the rigid and semi-flexible fiber models
were then estimated through fitting experimental orientation data at a single position in the mold
(along the centerline at the 0% fill position) using a non-linear least squares analysis and then
used to predict fiber orientation at all other locations in the mold. Along the centerline of the
mold cavity both the rigid and semi-flexible fiber model qualitatively predicted the trends that
were seen in the experimentally obtained fiber orientation data but the semi-flexible fiber model
predictions more closely agreed with the experimental values of orientation. Away from the
centerline of the mold the semi-flexible fiber model performs encouragingly more accurately
predicting experimental fiber orientation at every position investigated with the exception of one
position where the rigid and semi-flexible fiber models provided similar accuracy. Along the
width of the 0% fill line the model predictions and experimental data suggest that the fiber
orientation across the gate/mold interface appears to be a function of mold width so that previous
simulations assuming a single orientation across the gate/mold interface could provide less
accurate orientation predictions in the mold cavity. Furthermore, the semi-flexible fiber model
predicted values of orientation that were in greater agreement with experimental values of
orientation. This increase in agreement can be attributed to the semi-flexible fiber model
including terms for fiber length in the system and the incorporation of long glass fiber flexibility.
5.8 Acknowledgements

The financial support for this work is from Oak Ridge National Laboratories through the
Department of Energy Grant No. 4000122683 and the National Science Foundation Grant No.
CMMI-0853537 and is gratefully appreciated and acknowledged. The authors also wish to thank
the SABIC Plastics Inc. for supplying the neat matrix resin (VERTON® Series) and the 30 wt. %
long glass fiber materials. The authors also acknowledge Syed Mazahir and Mark Cieslinski for
the fruitful discussions.

120

5.9 References
[1] D. J. Klingenberg and L. H. Switzer, "Rheology of sheared flexible fiber suspensions via

fiber-level simulations," Journal of Rheology, vol. 47, pp. 759-778, May-Jun 2003.
[2] J. M. Crosby, "Recent Advances in Thermoplastic Composites," Advanced Materials &

Processes, vol. 133, pp. 56-59, Mar 1988.
[3] G. B. Jeffery, "The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,"

Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,
vol. 100, pp. 161-179, 1922.

[4] F. Folgar and C. L. Tucker, "Orientation Behavior of Rigid Fibers in Concentrated
Suspensions," Journal of Rheology, vol. 26, pp. 604-604, 1982.

[5] S. Ranganathan and S. G. Advani, "Fiber-Fiber Interactions in Homogeneous Flows of
Nondilute Suspensions," Journal of Rheology, vol. 35, pp. 1499-1522, Nov 1991.

[6] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .1. Theory
and Numerical-Methods," Polymer Composites, vol. 13, pp. 317-331, Aug 1992.

[7] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .2.
Experimental Results," Polymer Composites, vol. 13, pp. 332-341, Aug 1992.

[8] D. G. Baird, A. P. R. Eberle, G. M. Velez-Garcia, and P. Wapperom, "Fiber orientation
kinetics of a concentrated short glass fiber suspension in startup of simple shear flow,"
Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp. 110-119, Feb 2010.

[9] M. Sepehr, P. J. Carreau, M. Moan, and G. Ausias, "Rheological properties of short fiber
model suspensions," Journal of Rheology, vol. 48, pp. 1023-1048, Sep-Oct 2004.

[10] M. Sepehr, G. Ausias, and P. J. Carreau, "Rheological properties of short fiber filled
polypropylene in transient shear flow," Journal of Non-Newtonian Fluid Mechanics, vol.
123, pp. 19-32, Oct 15 2004.

[11] M. Sepehr, P. J. Carreau, M. Grmela, G. Ausias, and P. G. Lafleur, "Comparison of
rheological properties of fiber suspensions with model predictions," Journal of Polymer
Engineering, vol. 24, pp. 579-610, Nov-Dec 2004.

[12] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids. - 1 : Fluid
mechanics, 2.ed. ed. New York,N.Y.: Wiley, 1987.

[13] C. L. Tucker, J. Wang, and J. F. O'Gara, "An objective model for slow orientation
kinetics in concentrated fiber suspensions: Theory and rheological evidence," Journal of
Rheology, vol. 52, pp. 1179-1200, Sep-Oct 2008.

[14] C. L. Tucker and J. H. Phelps, "An anisotropic rotary diffusion model for fiber
orientation in short- and long-fiber thermoplastics," Journal of Non-Newtonian Fluid
Mechanics, vol. 156, pp. 165-176, Feb 2009.

[15] K. Ortman, D. Baird, P. Wapperom, and A. Whittington, "Using startup of steady shear
flow in a sliding plate rheometer to determine material parameters for the purpose of
predicting long fiber orientation," Journal of Rheology, vol. 56, pp. 955-981, Jul 2012.

121

[16] K. Ortman, D. Baird, P. Wapperom, and A. Aning, "Prediction of fiber orientation in the
injection molding of long fiber suspensions," Polymer Composites, vol. 33, pp. 1360-
1367, 2012.

[17] S. M. Mazahir, G. M. Vélez-García, P. Wapperom, and D. Baird, "Evolution of fibre
orientation in radial direction in a center-gated disk: Experiments and simulation,"
Composites Part A: Applied Science and Manufacturing, vol. 51, pp. 108-117, 8// 2013.

[18] K. J. Meyer, J. T. Hofmann, and D. G. Baird, "Prediction of Short Glass Fiber
Orientation in the Filling of an End-Gated Plaque," Composites Part a-Applied Science
and Manufacturing, 2013.

[19] U. Strautins and A. Latz, "Flow-driven orientation dynamics of semiflexible fiber
systems," Rheologica Acta, vol. 46, pp. 1057-1064, Oct 2007.

[20] K. J. Meyer, J. T. Hofmann, and D. G. Baird, "Initial conditions for simulating glass fiber
orientation in the filling of center-gated disks," Composites Part A: Applied Science and
Manufacturing, vol. 49, pp. 192-202, 6// 2013.

[21] B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, et
al., "Fiber length and orientation in long-fiber injection-molded thermoplastics - Part I:
Modeling of microstructure and elastic properties," Journal of Composite Materials, vol.
42, pp. 1003-1029, May 2008.

[22] B. E. VerWeyst and C. L. Tucker, "Fiber suspensions in complex geometries:
Flow/orientation coupling," Canadian Journal of Chemical Engineering, vol. 80, pp.
1093-1106, Dec 2002.

[23] G. M. Velez-Garcia, P. Wapperom, V. Kunc, D. G. Baird, and A. Zink-Sharp, "Sample
preparation and image acquisition using optical-reflective microscopy in the
measurement of fiber orientation in thermoplastic composites," Journal of Microscopy,
vol. 248, pp. 23-33, Oct 2012.

[24] S. M. Dinh and R. C. Armstrong, "A Rheological Equation of State for Semiconcentrated
Fiber Suspensions," Journal of Rheology, vol. 28, pp. 207-227, 1984.

[25] S. G. Advani and C. L. Tucker, "The Use of Tensors to Describe and Predict Fiber
Orientation in Short Fiber Composites," Journal of Rheology, vol. 31, pp. 751-784, Nov
1987.

[26] D. H. Chung and T. H. Kwon, "Fiber orientation in the processing of polymer
composites," Korea-Australia Rheology Journal, vol. 14, pp. 175-188, Dec 2002.

[27] D. H. Chung and T. H. Kwon, "Invariant-based optimal fitting closure approximation for
the numerical prediction of flow-induced fiber orientation," Journal of Rheology, vol. 46,
pp. 169-194, Jan-Feb 2002.

[28] G. M. Velez-Garcia, S. M. Mazahir, P. Wapperom, and D. G. Baird, "Simulation of
Injection Molding Using a Model with Delayed Fiber Orientation," International
Polymer Processing, vol. 26, pp. 331-339, Jul 2011.

[29] L. F. R. Shampine, M.W., "The MATLAB ODE Suite," ed. 24 Prime Park Way, Natick,
MA 01760: The Mathworks, Inc.

122

[30] B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, et
al., "Fiber Length and Orientation in Long-Fiber Injection-Molded Thermoplastics – Part
I: Modeling of Microstructure and Elastic Properties," Journal of Composite Materials,
vol. 42, pp. 1003-27, 2008.

[31] S. G. Advani and E. M. Sozer, Process modeling in composites manufacturing, 2nd ed.
Boca Raton, FL: CRC Press, 2011.

[32] G. Velez-Garcia, P. Wapperom, V. Kunc, D. Baird, and A. Zink-Sharp, "Sample
preparation and image acquisition using optical-reflective microscopy in the
measurement of fiber orientation in thermoplastic composites," Journal of Microscopy,
vol. 248, pp. 23-33, 2012.

[33] J. T. Hofmann, K. J. Meyer, and D. G. Baird, 2013 (In Preparation).
[34] P. J. Hine, N. Davidson, R. A. Duckett, and I. M. Ward, "Measuring the Fiber Orientation

and Modelling the Elastic Properties of Injection-moulded Long-glass-fiber-reinforced
Nylon," Composites Science and Technology, vol. 53, pp. 125-131, 15 December 1994
1994.

[35] J. T. Hofmann, G. M. Vélez-Garcia, D. G. Baird, and A. R. Whittington, "Application
and evaluation of the method of ellipses for measuring the orientation of long, semi-
flexible fibers," POLYMER COMPOSITES, 2013.

[36] G. M. Vélez-García, P. Wapperom, D. G. Baird, A. O. Aning, and V. Kunc,
"Unambiguous orientation in short fiber composites over small sampling area in a center-
gated disk," Composites Part A: Applied Science and Manufacturing, vol. 43, pp. 104-
113, 2012.

123

5.10 Figures

Figure 5.1: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as

well as the azimuthal and zenith angles, φ andθ respectively.

124

Figure 5.2: Vector definition of flexible fiber. The fiber is characterized by the vectors, p and

q , as well as the azimuthal and zenith angles, φ andθ respectively. The two vector are of equal
length, lb , and there is an internal resistivity to bending, k . The end-to-end vector, r , is also
defined to determine a fiber’s “average” direction.

125

Figure 5.3: End-gated plaque geometry with highlighted regions of interest (1) 0% fill, 0%

width, (4) 10% fill, 0% width, (7) 40% fill, 0% width, (10) 90% fill, 0% width, (2) 0% fill, 50%
width, (5) 10% fill, 50% width, (8) 40% fill, 50% width, (11) 90% fill, 50% width, (3) 0% fill,
90% width, (6) 10% fill, 90% width, (9) 40% fill, 90% width, (12) 90% fill, 90% width.

 x1

 x2

 x3

 Ωoutlet

 Ωinlet

Ωsymmetry

 (1)

50%W

90%W

0%W

0%L
10%L 40%L 90%L

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

126

Figure 5.4: Orientation predictions using the (a) rheologically determined parameters (rigid =

dashed κ R = 0.23 and CI
R = 0.005 , semi-flexible = solid, κ SF = 0.13 and CI

SF = 0.053) and (b)
experimentally fit parameters (rigid = dashed κ = 0.0087 and CI = 0.2278 , semi-flexible =
solid, κ = 0.0039 and CI = 0.4843). Predictions are compared to experimentally determined
fiber orientation (A11 - o, A33 - ☐) at 0% of the mold width and 0% mold fill (position (4) in
Figure 5.3).

x/H

x/H

127

Figure 5.5: Model predictions of rigid (dashed) and semi-flexible (rigid) models compared to

experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 0% of the mold fill at (a)
0% mold width (position (4) in), (b) 50% mold width (position (5) in Figure 5.3) and (c) 90%
mold width (position (6) in Figure 5.3).

x/H x/H

128

Figure 5.6: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to

experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 10% of the mold fill at
(a) 0% mold width (position (7) in Figure 5.3), (b) 50% mold width (position (8) in Figure 5.3)
and (c) 90% mold width (position (9) in Figure 5.3).

x/H

x/H

x/H

129

Figure 5.7: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to

experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 40% of the mold fill at
(a) 0% mold width (position (10) in Figure 5.3), (b) 50% mold width (position (11) in Figure 5.3)
and (c) 90% mold width (position (12) in Figure 5.3).

x/H

x/H

x/H

130

Figure 5.8: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to

experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 90% of the mold fill at
(a) 0% mold width (position (13) in Figure 5.3), (b) 50% mold width (position (14) in Figure 5.3)
and (c) 90% mold width (position (15) in Figure 5.3).

x/H

x/H

x/H

131

Parameter Value

ρ kg m3() 1100

η0 Pa ⋅s() 227.0

λ s-1() 0.0065

n 0.2759

a 0.8263

CP J kg ⋅K() 2620

k W m ⋅K() 0.3100

α K() 4937

Tα K() 452.7

Table 5.1: Material properties for non-isothermal finite element simulation obtained from
rheological testing in torsional rheometer (RMS-800, Rheometrics Inc.) and extensional
rheometer (Rheograph 2001, Göttfert Inc.).

132

Rheological Technique Fit

Parameter Rigid Model Flexible Model

κ 0.2500 0.1300

CI 0.0050 0.0530

Experimental Data Fit

Parameter Rigid Model Flexible Model

κ 0.0087 0.0039

CI 0.2278 0.4843

Table 5.2: Fiber orientation simulation parameters.

133

Chapter 6

Conclusions

Preface
This section addressed the success or failure of the proposed research objectives and

general conclusions linked to those objectives.

134

6 Conclusions
The following conclusions are made based on the research objectives described in

Chapter 1 along with an additional conclusions that were found as a result of working on the
objectives presented in Chapter 1:
1. Utilizing the sprue, gate and mold simulation method along with a using a semi-flexible fiber

model showed an improved agreement between predicted and experimentally obtained values
of long glass fiber orientation in a center-gated disk than of using the semi-flexible model in
Hele-Shaw flow.

The SGM method was used to simulate the sprue, gate and mold region of a
center-gated injection molding test geometry including the fountain flow effect to assess
if a semi-flexible fiber model was more accurate at predicting experimental long glass
fiber orientation values than previous work utilizing the semi-flexible fiber model in
Hele-Shaw flow. The semi-flexible fiber model was observed to more accurately predict
long glass fiber orientation than the rigid fiber model when compared to experimentally
measured orientation data at a number of positions in the center-gated disk. Furthermore,
it was shown that the SGM method of simulation produced entry conditions of fiber
orientation to the mold that were very similar to the asymmetric experimental orientation
values obtained suggesting that assuming a “random” or “planar random” orientation
initial condition at the gate/mold interface may not be sufficient for accurate fiber
orientation predictions. Rheologically determined orientation parameters were used in the
center-gated disk long fiber orientation predictions.

2. The extension of the sprue, gate and mold method to a three dimensional end-gated plaque

geometry showed that the strain reduction factor model can predict short glass fiber
orientation values that are in agreement with experimentally determined values of
orientation. Furthermore, it was observed that objectivity did not play a role in the prediction
of short glass fiber orientation at the positions investigated in the mold cavity.

The sprue, gate and mold of a three-dimensional end-gated plaque was
incorporated into a single domain to predict short glass fiber orientation using the strain
reduction factor model (SRF) and the reduced strain closure model (RSC) [1, 2]. A
number of outcomes from this work are relevant to the proposed research objective. First,
the RSC and SRF models provide similar results at all of the locations investigated in the
end-gated plaque mold cavity suggesting that objectivity may not play a role in more
complicated molding geometries. Second, the SRF model does a reasonably good job at
predicting fiber orientation in the end-gated plaque mold at a number of the positions
investigated when compared to experimentally measured values of short glass fiber
orientation. Finally, the assumption of a fiber orientation as initial conditions at the
gate/mold interface (i.e. “random” or “planar random”) is most likely incorrect. This is
clearly discerned by looking at both the predicted and experimentally measured
orientation values that suggest an inlet condition dependence of mold thickness as well as
mold width.

On the first attempt at prediction short glass fiber orientation, orientation
parameters obtained from fitting transient stress overshoots were used but over-predicted
the evolution rate of orientation in the system. As a secondary approach, the orientation

135

parameters were fit to a single position in the end-gated mold cavity and then used to
predict orientation at all other locations of interest.

3. The sprue, gate and mold method was applied to predict long glass fiber orientation in the

end-gated plaque and showed that the semi-flexible fiber model can accurately predict
experimentally determined values of fiber orientation both along and away from the
centerline of the geometry.

The sprue, gate and mold method was again used to make predictions both along
and away from the centerline of the end-gated plaque mold region. It was observed that
the semi-flexible fiber model, using the sprue, gate and mold method, produced
orientation predictions that more closely agreed with experimentally measured values of
long glass fiber orientation at a majority of the points investigated in the mold cavity
suggesting that the work here has significantly improved currently predictive techniques
for longer fiber systems. But, at a few locations predictions of long glass fiber orientation
did not agree well with measured values of long glass fiber orientation suggesting that
further study of concentrated long fiber suspensions is necessary.

On the first attempt at predicting long glass fiber orientation, orientation
parameters obtained from fitting transient shear stress overshoots generated in the sliding
plate rheometer were used but over-predicted the evolution rate of orientation in the
system. As a secondary approach, the orientation parameters were fit to a single position
in the end-gated mold cavity and then used to predict orientation at all other locations of
interest.

4. The technique of using a sliding plate rheometer and a simple shear field to determine

orientation parameters failed to produce accurate orientation predictions in the end-gated
plaque.

During the course of working on the proposed research objectives for the end-
gated plaque geometry an issue arose with the ability to obtain orientation parameters
from sliding plate tests using simple shear given by Ortman et al. [3]. For the center-
gated disk geometry, orientation parameters used in the prediction of glass fiber
orientation were obtained through fitting transient stress growth overshoots of the
concentrated suspension in simple shear flow. Reasonable agreement was found between
the predicted values of glass fiber orientation and observed experimental orientation
values. But, in the end-gated plaque, the same technique for determining the orientation
parameters yielded poor short and long glass fiber predictions at all of the positions
investigated. This led to the adoption of a non-linear least squares fitting technique for
the three diagonal orientation components at one position in the end-gated mold. The
parameters fitted to experimental orientation data were an order of magnitude different
(smaller for the slip parameter, larger for the interaction coefficient) than the parameters
obtained by fitting the stress tensor to the transient stress growth in simple shear
suggesting that testing of concentrated suspensions in other simple flows (i.e. extensional
flow) may be required to characterized these complex suspensions through rheology
alone.

136

6.1 References
[1] M. Sepehr, G. Ausias, and P. J. Carreau, "Rheological properties of short fiber filled

polypropylene in transient shear flow," Journal of Non-Newtonian Fluid Mechanics, vol.
123, pp. 19-32, Oct 15 2004.

[2] J. Wang, J. F. O'Gara, and C. L. Tucker, "An objective model for slow orientation
kinetics in concentrated fiber suspensions: Theory and rheological evidence," Journal of
Rheology, vol. 52, pp. 1179-1200, Sep-Oct 2008.

[3] K. Ortman, D. Baird, P. Wapperom, and A. Whittington, "Using startup of steady shear
flow in a sliding plate rheometer to determine material parameters for the purpose of
predicting long fiber orientation," Journal of Rheology, vol. 56, pp. 955-981, Jul 2012.

137

Chapter 7

Recommendations

Preface
This section details some suggested improvements that can be made using this project as

a basis.

138

7 Recommendations
The following recommendations are based on overall conclusions drawn from the

accomplishment of the research objectives as well as overall concerns with the work.

1. Rewrite the fiber orientation software in the format of an ANSYS “user defined function.”

All of the numerical predictions of short and long glass fiber orientation presented
in this work relied on the use of a combination of the finite element method as well as the
finite difference method. This approach provided numerical orientation predictions that
were in agreement with experimentally determined orientation values in the center-gated
disk and end-gated plaque geometry. One major drawback to the approach used in this
work is that the finite difference method is difficult to extend to more complex geometric
shapes including curves and multiple contractions and expansions as well as multiple
gates.

The finite element modeler used for the prediction of the fluid entering the mold
cavity, ANSYS Polyflow, is able to solve a “user defined function” or C code which has
been written for an explicit set of equations. It would be of great value to rewrite the fiber
orientation equations in a form that ANSYS Polyflow is able to solve simultaneously
with the flow and heat equations.

2. Determine a more accurate way to represent a single fiber’s flexibility.

Previous efforts used a simply supported beam with a point load in the center
(shown in Figure 7.1) to estimate the fiber flexibility parameter, k .

Figure 7.1: Qualitative representation of simply supported beam with a point force

acting on the center.
To calculate the fiber flexibility, Eq. (7.1) was proposed:

 ki =
EY
64ηm

⎛
⎝⎜

⎞
⎠⎟
d 3

lb
3 (7.1)

In Eq. (7.1) ki is a flexibility for a particular fiber length, EY is the Young’s modulus,
ηm is the matrix viscosity, d is the diameter of the individual fiber and lbi is the half-
length of a particular fiber length in the distribution. The fiber flexibility parameter is
then averaged using either a weight- or number-averaged technique.

139

Figure 7.2: Qualitative representation of simply supported beam with a distributed

force acting on the length of the beam.

One improvement to this predictive technique would be to apply a distributed load
over the length of the fiber which would more accurately reflect the fiber-fluid interaction
in the suspension. This could be done by again applying basic mechanics techniques but
instead derive the relation for a distributed load over the fiber.

3. Determine the sensitivity of the semi-flexible fiber model with respect to the fiber length.

Currently the fiber flexibility parameter, k , is estimated in the orientation
predictions (Eq. (7.1)) but the effect that these parameters play in dictating orientation
evolution is still not well understood.

Figure 7.3: Predicted R11 orientation component in simple shear flow for increasing

values of the flexibility parameter, .
The results in Figure 7.3 show the effect of the flexibility parameter on the prediction of
the R11 component of orientation when in the startup of simple shear. It is observed that
reducing the value of the flexibility parameter (thereby increasing the flexibility of the
fiber) can slow the evolution of orientation as well as affect the steady-state value of
orientation. Experimental studies using different fibers with different values of the
flexibility parameters would be useful in confirming the effect seen in Figure 7.3.

The value of the length parameter, lb , can also play a role in dictating the
evolution of orientation within a fiber suspension in two ways: the length parameter

k

140

directly weights one term in the semi-flexible fiber orientation equations and it is also
used in the estimation of the fiber flexibility parameter, k . Currently the length term has
been determined for one glass fiber system (the SABIC glass fiber/polypropylene
material investigated in Chapter 3 and Chapter 5 of this work) so much could be learned
from simulating materials with different fiber lengths. Furthermore, the length parameter
is treated as a constant value in the predictions presented throughout this work but in
reality the fiber length of a system is represented by a distribution. Incorporating this
distribution into the orientation predictions or possibly even a time-dependent fiber
breakage model could further increase the accuracy of the orientation simulations.

4. Determine a more robust method for determining the orientation parameters.

The work presented here attempts to provide a foundation for the prediction of
short and long glass fiber orientation in complex test geometries using orientation
equation parameters obtained from transient stress growth experiments performed in a
sliding plate rheometer. The prediction of long glass fiber orientation for a center-gated
disk geometry used orientation parameters obtained from the simple shear flow tests and
found good agreement with experimental data using a semi-flexible fiber model. This
suggested that the orientation parameters for a particular suspension could be estimated
through stress growth experiments in simple shear alone. The same orientation
parameters for the composite materials were used in the prediction of long glass fiber
orientation in the end gated plaque with significantly less accurate results and instead a
fitting method was adopted to obtain agreement with predicted and experimental results.
This discrepancy may suggest that simple shear may not be sufficient to determine the
orientation parameters for predictions and testing in other simple flow fields (i.e.
extensional flow) may be necessary. Furthermore, a more accurate stress tensor model
may be necessary to describe these very complex concentrated fiber suspensions.

141

Appendix: Simulation Software Overview

142

A Appendix: Simulation Software Overview
Fiber Orientation Simulation Software Overview

Kevin J. Meyer1

Polymer Processing Laboratory
Department of Chemical Engineering, Virginia Tech

A.1 Introduction
The purpose of this document is to provide an end-user with enough basic knowledge

about the fiber orientation prediction method so that he/she is proficient in using the software
and numerical method without too much background. Furthermore, it may be necessary to edit
functions from time to time and some of the latter material will go into detail on the numerical
methods so that this may also be possible for an advanced user.

During the development of this numerical package, a few assumptions were made at the
outset. To use the code as it was originally designed the same assumptions must be made about
the systems that are being simulated (carbon fiber, liquid crystalline polymer, etc.). The
assumptions are as follows:

• The fiber orientation equations are based on rigid rod theory of polymers and as such, are
treated as either rigid or semi-rigid rods during the simulations. If the system under study
cannot be assumed rigid or close to rigid the equations for fiber orientation may not
produce viable results [1].

• The method employed for simulation of the rigid or semi-rigid rods is a continuum
method so that “orientation tensors” can be used. If a molecular simulation or some other
non-continuum based simulation would better suit the system under study this method
may not produce viable results [2].

• Finally, the use of the two step method given here (finite element to calculate velocity
profiles and finite difference to calculate orientation profiles) is only accurate if the stress
and orientation equations may be decoupled [3, 4]. A coupled analysis is possible through
the use of a user-defined function within Polyflow but, at the date of this publication, has
not been completed.

A.2 Finite Element Analysis for Injection Molding Simulations
The following section will outline the details for using finite element analysis (FEM) for

solving the injection molding problems currently encountered in the polymer processing
laboratory. This section is not meant to demonstrate the full power of the FEM inside the
Polyflow environment but is instead a guide for those only concerned with injection molding
simulations.

1 Kevin J. Meyer (kjmeyer@vt.edu)
Department of Chemical Engineering
156 Randolph Hall
Virginia Tech, Blacksburg, VA 24061
Phone: +1 941 916 0725.

143

A.2.1 Steady-State Simulation
The first run of any type of simulation should be a steady-state form of the more

complicated problem. The steady-state form will likely yield insight to any major problems that
can occur during the more complex simulation which may include high Reynolds numbers, high
Péclet numbers, high Brinkman numbers, a combination of all three or other numerical
instabilities.

 Isothermal Laminar Flow Problem A.2.1.1
The first step in the solution of the mold-filling problem is the isothermal steady-state

solution. The flow is assumed laminar and incompressible so that the continuity equation and the
Cauchy momentum equation can be written as (A.1) and (A.2) where v is the velocity vector
and σ is the total stress tensor2:

 ∇⋅v = 0 (A.1)

 ∇⋅σ = 0 (A.2)

The total stress tensor requires the specification of an extra stress tensor for the fluid. In the fiber
orientation simulations the decoupled approach was taken and the fiber loading fraction was
taken into account through the phenomenological parameters in the fiber orientation equations
[3, 5-7]. Therefore, the fluid was treated as a generalized Newtonian fluid given by (A.3)3 where

 η γ() is any relation for the viscosity as a function of shear rate and γ is the rate of strain tensor:

 τ =η γ() γ (A.3)

At this point any empiricism can be chosen to represent the viscosity of the fluid but generally
speaking the Carreau-Yasuda model fits many shear-thinning materials and converges quickly4
where η0 is the zero shear viscosity, η∞ is the infinite shear viscosity, λ governs the onset of
shear thinning andn and a govern the degree of shear thinning.

η γ()−η∞

η0 −η∞

= 1+ λ γ()a⎡
⎣

⎤
⎦

n−1
a (A.4)

The simplified solution will help determine how accurate or inaccurate the mesh is and
where problems may arise during the solution. Often this simulation will be run a number of
times moving back and forth between this and mesh generation to determine the optimal mesh
characteristics. An example of this is shown below comparing the mesh revision number versus
computational time.

2 ANSYS Polyflow allows for a number of interpolation methods in steady state but the researcher is strongly
encouraged to use only linear interpolations for velocity and pressure as linear interpolation is the highest allowed
order in the transient simulations.
3 ANSYS Polyflow has the ability to handle a number of stress tensor representations including generalized
Newtonian fluids, differential viscoelastic models and simplified integral viscoelastic models. Convergence and
numerical stability is directly related to the complexity of the model.
4 ANSYS Polyflow has a wide variety of GNF models including Power Law, Bird-Carreau, Carreau-Yasuda, Cross,
Bingham, Herschel-Bulkley, etc.

144

Figure A.1: Computational Time and FEM Nodes vs. Number of Refinements for center-

gated disk. Revision 1: tetrahedral meshing only, automated meshing from ANSYS meshing
utility. Revision 2: Quad/Tet meshing combination, manual meshing. Revision 3: hexagonal
dominant meshing, automated meshing. Revision 4: Hexagonal meshing only, manual meshing.

 Non-Isothermal Laminar Flow Problem A.2.1.2

The next step in the solution of the mold filling problem is to solve the same problem as
presented in § A.2.1.1 with the addition of temperature. The heat equation including the viscous
dissipation term is given in (A.5) where ρ is the density of the fluid, CP is the heat capacity of

the fluid, k is the thermal conductivity of the fluid, τ is the extra stress tensor and γ is the rate
of strain tensor:

ρCP

DT
Dt

= k∇2T +τ : γ (A.5)

The FEM simulations should also take into account the viscosity’s dependence on temperature.
The Polyflow environment takes this viscosity enhancement into account through (A.6):

 η γ ,T() =η γ ⋅H T()()H T() (A.6)

Where H T() is an Arrhenius-type relationship given by (A.7)5,6:

 H T() = exp α
T −T0

− α
Tα −T0

⎡

⎣
⎢

⎤

⎦
⎥ (A.7)

5 ANSYS Polyflow has different ways of representing temperature dependence of viscosity including Arrhenius,
WLF and Fulcher methods.
6 It is often necessary to use Picard iterations on the viscosity and increase the number of iterations for convergence.

145

A.2.2 Volume of Fluid Approach for Transient Filling Simulation
Once the steady-state problem has been solved, the next step is to solve the time

dependent flow problem. This involves the use of a time-marching iterative method where the
fluid is tracked on the domain as it fills the mold cavity. The following section is an outline of
how the time-dependent simulation is solved.

 The Volume of Fluid Method A.2.2.1

The volume of fluid (VOF) method was used inside the ANSYS Polyflow environment to
simulate the transient mold filling process [8]. The VOF method solves the transport equation,
given by (A.8), for the volume fraction of fluid at each node where φ is the volume fraction of
the liquid phase and v is the velocity vector at that node.

 ∂φ
∂t

+ v ⋅∇φ = 0 (A.8)

The solution of this equation allows for the fluid front to be tracked as it moves through the
empty cavity thereby incorporating the “fountain flow” effect in the simulations. The influence
of this complex moving front has been shown to impact fiber orientation predictions [4, 9, 10] in
axisymmetric radially diverging flow.

An advantage that the Polyflow solver has over many other VOF solvers is that Polyflow
does not solve the “two-fluid” problem commonly associated with the VOF method (liquid
entering the mold and air exiting the mold simultaneously). The calculations presented here only
calculate the velocity of the fluid in the mold at any node where the volume fraction, φ , is
greater than zero thereby decreasing the computational time necessary to solve the mold-filling
problem.
Assumptions Involved with Using the Volume of Fluid Method:

• Linear interpolation across elements.
• Streamline upwinding to solve transport equation.
• Transport equation is decoupled from motion equations and solved at each time step.
• Transport equation uses sub-element interpolation.
• Time step is automatically chosen based on internal calculations performed by Polyflow.

 Evolution Parameters for Non-Isothermal Solution Stability A.2.2.2

During the solution of the non-isothermal time-dependent flow simulation high Brinkman
numbers (viscous heating/conduction) can be encountered and are dealt with using an evolution
scheme on certain material parameters.

 VIN =
ti ≤ 1

2 tfill VIN ti
ti > 1

2 tfill VIN

⎧
⎨
⎪

⎩⎪
 (A.9)

 CP =
ti ≤ 1

2 tfill CP ti
ti > 1

2 tfill CP

⎧
⎨
⎪

⎩⎪
 (A.10)

146

 k =
ti ≤ 1

2 tfill k
ti

ti > 1
2 tfill k

⎧
⎨
⎪

⎩⎪
 (A.11)

F τ : γ() = ti ≤ tfill Fti
ti > tfill F

⎧
⎨
⎪

⎩⎪
 (A.12)

A.3 Finite Difference Calculations for Orientation Predictions
The bulk of my thesis has used the computations that will be presented in this section. As

such, great detail will be given whenever possible to help the read understand not only the
author’s method of solution for a specific problem but also the numerics involved with the
problem.
A.3.1 Probability Distribution Function and Orientation Tensors

All of the models in the software package accompanying this text used the concept of an
orientation tensor described by Advani and Tucker [2]. An orientation tensor is a compact way of
representing a rigid rod’s orientation instead of using either orientation parameters, which
involve some assumption about the orientation state [11, 12], or the orientation distribution
function, which can become computationally inefficient.

The orientation state of a given rod at a point in space can be described by the probability
distribution function (PDF) ψ θ1,φ1() . This function is defined so that the probability of finding a
fiber between the angles of θ1,φ1() and θ1 + dθ ,φ1 + dφ() is unity.

 P(θ1 ≤θ ≤θ1 + dθ ,φ1 ≤φ ≤φ1 + dφ) =ψ θ1,φ1()sinθ dθ dφ (A.13)

Figure A.2: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as

well as the azimuthal and zenith angles, φ and θ respectively.

We may instead describe an equivalent orientation of a rod as a unit vector, p , (shown in Figure
A.2) and may write the PDF in terms of that vector, ψ p() . The components of the vector of the

147

rod, p , are given by (A.14)-(A.16) and are interrelated since the length of the vector is fixed
pi pj = 1() :

 p1 = sinθ cosφ (A.14)

 p2 = sinφ sinθ (A.15)

 p3 = cosθ (A.16)

The PDF,ψ θ ,φ() , must satisfy certain conditions so a continuum form must also satisfy these
same conditions. First a fiber at any angle θ ,φ() must be indistinguishable from a fiber oriented
at an angle π −θ ,φ +π() so that ψ is periodic or ψ p() =ψ − p() . Second, the PDF must be
normalized given by (A.17):

ψ θ ,φ()sinθ
φ=0

2π

∫
θ=0

π

∫ dθ dφ = ψ p()dp = 1∫ (A.17)

The third condition describes the conservation of the PDF with time when the fibers are
changing orientation. If we assume the fibers move with the bulk motion of the fluid then the
PDF is a convected quantity and may be written as (A.18):

Dψ
Dt

= −∇ θψ()− 1
sinθ

∇ φψ() = −∇⋅ ψ p() (A.18)

While the PDF gives a complete and unambiguous description of orientation, it can be
cumbersome to calculate for large groups of fibers.

Taking the dyadic product of the single fiber orientation vector, p , multiplying by the
PDF and integrating of all possible orientation directions generates a set of orientation tensors.
Since the PDF is periodic and even, the odd ordered integrals are zero. The second and forth
order tensors are:

A = pi pjψ p()dp∫ (A.19)

A4 = pi pj pk plψ p()dp∫ (A.20)

Using the method above higher order orientation tensors are possible and can be encountered in
certain stress models for fiber suspensions and orientation models [13, 14]. Further information
about the orientation tensors can be found in Advani and Tucker [2].
A.3.2 Fiber Orientation Models

The finite difference MATLAB package contains a number of fiber orientation models
than can be found in literature. This section outlines the models available and the differences
involved with each model.

148

 Folgar-Tucker Model A.3.2.1
The Folgar-Tucker model is the earliest form of a model derived by Folgar and Tucker

[15] using the orientation tensors described in § A.3.1. In (A.21),
A is the material derivative

∂A ∂t + v ⋅∇A() , A is the 2nd order orientation tensor, A4 is the 4th order orientation tensor, W

is the vorticity, D is the rate of deformation and I is the identity tensor.

A =W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D() + 2 γCI I − 3A() (A.21)

The variable ξ is a shape factor with the value given in (A.22):

 ξ = ar
2 +1
ar
2 −1

 (A.22)

The variable CI is a phenomenological constant that accounts for fiber-fiber interaction in the
concentrated suspension and is typically determined by fitting experimental fiber orientation or
through transient stress fitting [6, 10]. Common values of the parameter can range from 0.003 –
0.016 [16]. Efforts have been made to fit the value through other means but the judgment of the
experimenter must be used here [10, 17, 18].

 Modified Folgar-Tucker Model A.3.2.2

Stress growth experiments in the startup of simple shear have shown that the orientation
of rigid fibers in concentrated suspension evolves more slowly than predicted by the Folgar-
Tucker model [5, 19]. To more accurately reflect the observed transient fiber orientation a “slip”
parameter was suggested by Sepehr et al. [20, 21]. The strain reduction factor (SRF) model
proved more accurate in comparison to experimental data but is not objective.

A =κ W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D() + 2 γCI I − 3A()⎡

⎣
⎤
⎦ (A.23)

The equations seen in (A.22) and (A.23) are identical with the exception of adding the “strain
reduction parameter”, κ , to (A.23). This value is usually fit using experimental orientation data
or through transient stress fitting.

 Reduced Strain Closure Model A.3.2.3
In an effort to make (A.23) into an objective form, Wang et al. [22] proposed the

“reduced strain closure” model whereby the strain reduction factor was rearranged so that it
acted only on the objective tensors of the equation. The resulting model is (A.24):

A =W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ() L4 −M4 :A4()⎡
⎣

⎤
⎦ :D{ }...

 + 2κ γCI I − 3A()
 (A.24)

The new terms in (A.24)

L4 ,M4() are the eigenvalues, λi , and eigenvectors, ei , of the 2nd order

orientation tensor.

149

L4 = λi

i=1

3

∑ eieieiei (A.25)

M4 = eieieiei

i=1

3

∑ (A.26)

 Anisotropic Rotary Diffusion Reduced Strain Closure Model A.3.2.4

The previous models utilized CI to account for fiber-fiber interaction in concentrated
fiber suspensions. This term assumes that the material is isotropic but this assumption is rarely
valid in glass fiber systems. Phelps and Tucker developed a model where by the fiber interaction
coefficient is a 2nd order tensor to more accurately reflect the anisotropic nature of fiber
composite materials. The ARD-RSC model is given in (A.27):

A =W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ() L4 −M4 :A4()⎡
⎣

⎤
⎦ :D{ }...

 + γ 2 C − 1−κ()M4 :C⎡
⎣

⎤
⎦ − 2κ trC()A − 5 C ⋅A + A ⋅C(){ ...

 +10 A4 + 1−κ() L4 −M4 :A4()⎡
⎣

⎤
⎦ :C}

 (A.27)

Where the fiber interaction tensor,C , is given in (A.28):

C = b1I + b2A + b3A

2 + b4
γ
D + b5
γ 2 D

2 (A.28)

The values of b1 − b5 are fit through similar methods as CI .

 Semi-Flexible Fiber Model (Concentrated Bead-Rod Model) A.3.2.5

Figure A.3: Vector definition of flexible fiber. The fiber is characterized by the vectors, p
and q , as well as the azimuthal and zenith angles, φ and θ respectively. The two vector are of

150

equal length, lb , and there is an internal resistivity to bending, k . The end-to-end vector, r , is
also defined to determine a fiber’s “average” direction.

The method of orientation tensors presented by Advani and Tucker [2] was adapted by
Strautins and Latz [23] shown in (A.29) to (A.31) where p and q represent the two vectors of
the bent fiber (shown in) and ψ p,q,t() is the probability distribution function for an individual
fiber.

A = ppψ p,q,t()dpdq∫ (A.29)

B = pqψ p,q,t()dpdq∫ (A.30)

C = ppψ p,q,t()dpdq∫ (A.31)

Ortman et al. [24] adapted the orientation equations given by Strautins and Latz [23] to
concentrated suspensions by including the isotropic rotary diffusion term and slip parameter
from previous work [9, 20]. The adaptation utilizes the orientation tensors in (A.29) - (A.31) and
is given by (A.32) - (A.35) where lb is the length of one rod of the two rod system.

A =κ W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D()− 6CI γ A − 1
3 I()⎡

⎣ ...

 + lb
2
Cm +mC − 2 m ⋅C()A⎡⎣ ⎤⎦ + 2k B − Atr B()()⎤⎦⎥

 (A.32)

B =κ W ⋅B − B ⋅W + ξ D ⋅B + B ⋅D − 2 D :A()B()⎡
⎣⎢ − 4CI γ B...

 + lb
2
Cm +mC − 2 m ⋅C()A⎡⎣ ⎤⎦ + 2k A − B tr B()⎡

⎣
⎤
⎦
⎤
⎦⎥

 (A.33)

C =κ ∇v T ⋅C − A :∇v T()C + lb
2

m −C m ⋅C()⎡⎣ ⎤⎦ − kC 1− tr B()⎡
⎣

⎤
⎦ − 2CI γC

⎡
⎣⎢

⎤
⎦⎥

 (A.34)

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑ (A.35)

The internal resistivity to bending, k , is a coefficient that attempts to account for the physical
bending that may occur in the system of fibers. As the value of k increases, the semi-flexible
model behaves more like the rigid fiber model and in the limit of k→∞ the semi-flexible model
parallels the rigid fiber model. Conversely, as the value of k decreases the fiber becomes much
more flexible and in the limit of k→ 0 the fiber is completely flexible. In the equations
presented above, the flexibility of the fiber is initiated in the hydrodynamic contributions given
by (A.35) and is due to the bending that may occur because of gradients in the flow field.

151

A.3.3 Numerical Method
Within this section, a number of the numerical techniques used in the finite difference

calculations will be discussed.
 Choice of Integration Routine A.3.3.1

The integration technique utilized for the simulations is the ‘ode45’ or ‘ode15s’ built-in
routine in the MATLAB environment. The ode45 routine is the Range-Kutta 4,5 technique that
can be found in any number of numerical mathematics books. The ‘ode15s’ routine is used when
‘ode45’ runs slow or has poor convergence and has a number of advantages over the Range-
Kutta method including:

• Allows for specification of both relative and absolute tolerance.
• Allows for vectorization of ODE system.
• Automatic time step adjustment during integration.
• Calculation of Jacobian matrix when necessary.
• Calculation of mass matrix.
• Allows specification of NDF or BDF type differentiation.
• Allows for specification of max order differentiation for numerically unstable problems.
• Solves differential equations of the form: M t, y()y ' = f t, y()

 Fiber Orientation Prediction Boundary Conditions and Derivatives A.3.3.2

Two derivatives were estimated though the use of finite differences. In all of the
following examples the super scripts and subscripts may be changed to calculate different
derivatives as long as the pattern is followed. It is important to note that the grid spacing for the
finite difference calculations was equal through out with a size of 0.045 mm x 0.045 mm x 0.045
mm.

Discretization of m vector was carried out through the use of central, forward and
backward difference methods. In the hexagonal mesh, i is the index of a particular x coordinate
(flow direction), j is the index of a particular y coordinate (vertical direction) and k is the
index of a particular z coordinate (transverse to flow direction). Furthermore, v is any
component of the velocity vector, Δx is the distance between nodes in the primary flow direction
and Δy is the distance between nodes in the vertical direction.

Interior Nodes – Central Difference

∂2 v
∂x∂y

xi , y j , zk() = vi+1, j+1,k − vi−1, j+1,k − vi+1, j−1,k + vi−1, j−1,k

4 ΔxΔy()

∂2 v
∂x2 xi , y j , zk() = vi+1, j ,k − 2vi, j ,k + vi−1, j ,k

Δx()2

Boundary Nodes – Forward or Backward Difference

∂2 v
∂x∂y

xi , y j , zk() = vi, j ,k − vi−1, j ,k − vi, j−1,k + vi−1, j−1,k

ΔxΔy

152

∂2 v
∂x∂y

xi , y j , zk() = vi+1, j+1,k − vi, j+1,k − vi+1, j ,k + vi, j ,k

ΔxΔy

∂2 v
∂x2 xi , y j , zk() = vi, j ,k − 2vi−1, j ,k + vi−2, j ,k

Δx()2

∂2 v
∂x2 xi , y j , zk() = vi+2, j ,k − 2vi+1, j ,k + vi, j ,k

Δx()2

Discretization of the v ⋅∇A is carried out through the use of backward and forward

(shown in order below) difference methods with examples for the A12 component of orientation
and the v component of velocity. In the hexagonal mesh, i is the index of a particular x
coordinate (flow direction), j is the index of a particular y coordinate (vertical direction) and k
is the index of a particular z coordinate (transverse to flow direction). Furthermore, v is any
component of the velocity vector and Δx is the distance between nodes transverse to the primary
flow direction.

v
∂A12

∂x
xi ,x j ,xk() = v

A12
i−2, j ,k − 4A12

i−1, j ,k + 3A12
i, j ,k

2Δx

⎛

⎝⎜
⎞

⎠⎟

v
∂A12

∂x
xi ,x j ,xk() = v

A12
i, j ,k − 4A12

i+1, j ,k + 3A12
i+2, j ,k

2Δx

⎛

⎝⎜
⎞

⎠⎟

Boundary Conditions

• Boundary condition at the wall is no slip. The temperature of the wall is is prescribed as

 TWALL = 363K

• Boundary condition at free surface is given in terms of σ = −PI + τ where σ is the total

stress tensor, P is the isotropic pressure, I is the unit tensor and τ is the extra stress

tensor:
o Use a zero traction vector at the front, i.e n iσ i n = 0 and

σ i n − n iσ i n()n = 0 .

o Applied where the fluid fraction is zero.

o The temperature equation at the front is solved with a prescribed temperature of
300 K.

• The volumetric flow rate was given at the inlet to the domain and a fully developed
velocity profile was assumed. Furthermore, an initial temperature was provided at the
inlet to the domain.

153

The initial temperature is given as: TIN
= 463K

The volumetic flow rate at the inlet is given by:

Q

IN
=

Total Volume of Mold
Desired Fill Time of Mold

A.3.4 Fiber Orientation Simulation Output

When the selected fiber orientation prediction script is run the data is output at each time
step to a specified directory. A person simulating should be comfortable with multi-dimensional
(4-5 dimensional) arrays inside the MATLAB environment. To date no explicit script has been
written to help in visualizing results from the simulations since different studies will require
different comparisons. An example of visualizing orientation data is given in Figure A.4.

Figure A.4: Example of post-processing fiber orientation data to visualize cross-section of

center-gated disk. Contours represent value of A11 orientation component.
A.3.5 Automated Transient Stress Fitting

The method used to fit transient stress overshoots in simple shear flow has the complexity
of producing multiple solutions. To combat this, an unbiased way of fitting was attempted
through the use on non-linear least squares fitted (NLLSQ) analysis using the ‘lsqnonlin’
function within the MATLAB environment. There are two stress models that can be used during
the fitting of the transient stress over shoots provided by Dinh and Armstrong [25] and Ortman et
al. [24] shown in (A.36) and respectively (A.37).

 τ = 2ηm D + c1φD + c2φD :A4() (A.36)

 τ = 2ηm D + f1φD + f2A4 :D() + c3ηmk
3φar
2
tr r()
2lb

2 A − R() (A.37)

Where,

 R =
rr
tr r() =

A − B
1− tr B() (A.38)

The results of such a fitting procedure are shown below in Figure A.5.

Normalized Radius, r/R

N
or

m
al

iz
ed

 H
ei

gh
t,

x/
2H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

154

Figure A.5: NLLSQ fitting of experimental orientation data (left) and transient viscosity

(right) for various fiber orientation equations.

A.3.6 Batch Processing
The solution of the fiber orientation equations, especially when simulating the full end-

gated plaque, can take upwards of 24-48 hours. This is a long time to keep the MATLAB
interface window in a “busy” state. To run the simulation scripts and keep the MATLAB
interface open to other work use the batch scheduling ability of MATLAB to run the simulations
on other cores. The batch processing ability can be accessed by entering the following:

sched = findResource(‘scheduler’,’type’,’local’);
job = batch(sched,’D:\...\myscript.m’);

A.4 Complete List of Files
A.4.1 Interface Scripts

• cgd_ft.m (Center-gated disk simulation, FT model)
• cgd_br.m (Center-gated disk simulation, BR model)
• cgd_rsc.m (Center-gated disk simulation, RSC model)
• cgd_ard.m (Center-gated disk simulation, ARD-RSC model)
• egp_ft.m (End-gated plaque simulation, FT model)
• egp_br.m (End-gated plaque simulation, BR model)
• egp_rsc.m (End-gated plaque simulation, RSC model)
• egp_ard.m (End-gated plaque simulation, ARD-RSC model)

A.4.2 Automated Fitting Scripts

• stress_orient_fit.m (NLLSQ Fitting of Sliding Plate Data, Rigid Models)
• stress_orient_fit_br.m (NLLSQ Fitting of Sliding Plate Data, Semi-flexible Models)
• param_fit.m (NLLSQ Fitting of Experimental Orientation Data, Rigid Models)
• param_fit_br.m (NLLSQ Fitting of Experimental Orientation Data, Semi-flexible

Models)

A.4.3 Model Files

• FT_quad.m (Modified FT Model, Quadratic Closure)
• FT_IBOF.m (Modified FT Model, IBOF Closure)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Strain Units

O
rie

nt
at

io
n

C
om

po
ne

nt

Rigid Strain Reduction Factor
Semi−Flexible Strain Reduction Factor
Reduced Strain Closure
Anisotropic Reduced Strain Closure

A11

A33

A22

0 20 40 60 80 100 120
1000

2000

3000

4000

5000

6000

7000

Strain Units

Tr
an

si
en

t V
is

co
si

ty
, d

+ (P
a*

s)

Semi−Flexible Strain Reduction Factor
Rigid Strain Reduction Factor
Reduced Strain Closure
Anisotropic Reduced Strain Closure

155

• FT_quadc.m (Modified FT Model, Quadratic Closure, w/ Convection)
• FT_IBOFc.m (Modified FT Model, IBOF Closure, w/ Convection)
• BR_quad.m (Modified BR Model, Quadratic Closure)
• BR_IBOF.m (Modified BR Model, IBOF Closure)
• BR_quadc.m (Modified BR Model, Quadratic Closure, w/ Convection)
• BR_IBOFc.m (Modified BR Model, IBOF Closure, w/ Convection)
• RSC_quad.m (RSC Model, Quadratic Closure)
• RSC_IBOF.m (RSC Model, IBOF Closure)
• RSC_quadc.m (RSC Model, Quadratic Closure, w/ Convection)
• RSC_IBOFc.m (RSC Model, IBOF Closure, w/ Convection)
• ARD_RSC_quad.m (ARD-RSC Model, Quadratic Closure)
• ARD_RSC_IBOF.m (ARD-RSC Model, IBOF Closure)
• ARD_RSC_quadc.m (ARD-RSC Model, Quadratic Closure, w/ Convection)
• ARD_RSC_IBOFc.m (ARD-RSC Model, IBOF Closure, w/ Convection)

A.4.4 Ancillary Files

• convective_v.m (calculation of convection for given Aij ,Bij , vectorized)
• mvector.m (calculation of m for Bead-Rod Model)
• Explicit_IBOF_v.m (IBOF Closure Approximation A4 :D , vectorized)

• Explicit_Quad_v.m (Quadratic Closure Approximation A4 :D , vectorized)

• LddC.m

L4 :C()

• LddD.m

L4 :D()

• MddC.m

M4 :C()

• MddAddC.m

M4 :A4 :C, Quadratic Closure Approximation()

• MddAddC_IBOF.m

M4 :A4 :C, IBOF Closure Approximation()

• MddAddD.m

M4 :A4 :D, Quadratic Closure Approximation()

• MddAddD_IBOF.m

M4 :A4 :D, IBOF Closure Approximation()

• timestepconverter.m (HTML to Text Conversion)

A.5 References
[1] R. B. Bird, "Citation Classic - Dynamics of Polymeric Liquids, Vol 1, Fluid-Mechanics,

Vol 2, Kinetic-Theory," Current Contents/Engineering Technology & Applied Sciences,
pp. 18-18, Aug 22 1988.

[2] S. G. Advani and C. L. Tucker, "The Use of Tensors to Describe and Predict Fiber
Orientation in Short Fiber Composites," Journal of Rheology, vol. 31, pp. 751-784, Nov
1987.

156

[3] B. E. VerWeyst and C. L. Tucker, "Fiber suspensions in complex geometries:
Flow/orientation coupling," Canadian Journal of Chemical Engineering, vol. 80, pp.
1093-1106, Dec 2002.

[4] D. H. Chung and T. H. Kwon, "Numerical studies of fiber suspensions in an
axisymmetric radial diverging flow: the effects of modeling and numerical assumptions,"
Journal of Non-Newtonian Fluid Mechanics, vol. 107, pp. 67-96, Dec 6 2002.

[5] D. G. Baird, A. P. R. Eberle, G. M. Velez-Garcia, and P. Wapperom, "Fiber orientation
kinetics of a concentrated short glass fiber suspension in startup of simple shear flow,"
Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp. 110-119, Feb 2010.

[6] D. G. Baird, A. P. R. Eberle, P. Wapperom, and G. M. Velez-Garcia, "Using transient
shear rheology to determine material parameters in fiber suspension theory," Journal of
Rheology, vol. 53, pp. 685-705, May-Jun 2009.

[7] K. C. Ortman, P. Wapperom, A. Whittington, and D. G. Baird, "Using startup of steady
shear flow in a sliding plate rheometer to determine material parameters for the purpose
of predicting long fiber orientation," Journal of Rheology, vol. 56, pp. 955-981, 2012.

[8] C. W. Hirt and B. D. Nichols, "Volume of Fluid (Vof) Method for the Dynamics of Free
Boundaries," Journal of Computational Physics, vol. 39, pp. 201-225, 1981.

[9] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .1. Theory
and Numerical-Methods," Polymer Composites, vol. 13, pp. 317-331, Aug 1992.

[10] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .2.
Experimental Results," Polymer Composites, vol. 13, pp. 332-341, Aug 1992.

[11] J. L. White and J. E. Spruiell, "Specification of Biaxial Orientation in Amorphous and
Crystalline Polymers," Polymer Engineering and Science, vol. 21, pp. 859-868, 1981.

[12] J. L. White and J. E. Spruiell, "The Specification of Orientation and Its Development in
Polymer Processing," Polymer Engineering and Science, vol. 23, pp. 247-256, 1983.

[13] M. P. Petrich, D. L. Koch, and C. Cohen, "An experimental determination of the stress-
microstructure relationship in semi-concentrated fiber suspensions," Journal of Non-
Newtonian Fluid Mechanics, vol. 95, pp. 101-133, Dec 25 2000.

[14] D. L. Koch, "A Model for Orientational Diffusion in Fiber Suspensions," Physics of
Fluids, vol. 7, pp. 2086-2088, Aug 1995.

[15] F. Folgar and C. L. Tucker, "Orientation Behavior of Rigid Fibers in Concentrated
Suspensions," Journal of Rheology, vol. 26, pp. 604-604, 1982.

[16] R. G. Larson, The structure and rheology of complex fluids. New York: Oxford
University Press, 1999.

[17] C. L. Tucker and J. H. Phelps, "An anisotropic rotary diffusion model for fiber
orientation in short- and long-fiber thermoplastics," Journal of Non-Newtonian Fluid
Mechanics, vol. 156, pp. 165-176, Feb 2009.

[18] B. E. VerWeyst, C. L. Tucker, P. H. Foss, and J. F. O'Gara, "Fiber orientation in 3-D
injection molded features - Prediction and experiment," International Polymer
Processing, vol. 14, pp. 409-420, Dec 1999.

157

[19] M. Sepehr, P. J. Carreau, M. Moan, and G. Ausias, "Rheological properties of short fiber
model suspensions," Journal of Rheology, vol. 48, pp. 1023-1048, Sep-Oct 2004.

[20] M. Sepehr, G. Ausias, and P. J. Carreau, "Rheological properties of short fiber filled
polypropylene in transient shear flow," Journal of Non-Newtonian Fluid Mechanics, vol.
123, pp. 19-32, Oct 15 2004.

[21] M. Sepehr, P. J. Carreau, M. Grmela, G. Ausias, and P. G. Lafleur, "Comparison of
rheological properties of fiber suspensions with model predictions," Journal of Polymer
Engineering, vol. 24, pp. 579-610, Nov-Dec 2004.

[22] J. Wang, J. F. O'Gara, and C. L. Tucker, "An objective model for slow orientation
kinetics in concentrated fiber suspensions: Theory and rheological evidence," Journal of
Rheology, vol. 52, pp. 1179-1200, Sep-Oct 2008.

[23] U. Strautins and A. Latz, "Flow-driven orientation dynamics of semiflexible fiber
systems," Rheologica Acta, vol. 46, pp. 1057-1064, Oct 2007.

[24] K. Ortman, D. Baird, P. Wapperom, and A. Whittington, "Using startup of steady shear
flow in a sliding plate rheometer to determine material parameters for the purpose of
predicting long fiber orientation," Journal of Rheology, vol. 56, pp. 955-981, Jul 2012.

[25] S. M. Dinh and R. C. Armstrong, "A Rheological Equation of State for Semiconcentrated
Fiber Suspensions," Journal of Rheology, vol. 28, pp. 207-227, 1984.

158

Appendix: Dimensional Analysis and Comments on Numerical
Routine

159

B Appendix: Comments on Numerical Routine
B.1 Dimensional Analysis for Complex Geometry Simulations

In simulations involving significant computational resources, dimensional analysis is a
simple way of speeding up computation time by removing certain terms in the general set of
equations that are orders of magnitude smaller than others. In the following section an analysis of
terms for both the heat and motion equations will be performed for general cases of non-
Newtonian flow in complex geometries.

B.1.1 Dimensional Analysis for Equation of Motion
The most general form of the equation of motion is given in Eq. (B.1) where the left-hand

side represents the inertial terms and the right-hand side represents the viscous terms where ρ is
the density, v is the velocity, P is the pressure, and τ is deviatoric stress tensor.

ρ ∂v
∂t

Unsteady
Acceleration

+ ρ v ⋅∇v()

Convective
Acceleration  

Intertial Contribution
  

= −∇P
Pressure Gradient

+ ∇⋅τ
Viscosity

Divergence of Stress
   (B.1)

By assuming constant density and Stokes flow Re <1() , Eq. (B.1) can be rewritten for laminar
flow where the inertial contributions become orders of magnitude smaller than the terms on the
right-hand side and thus Eq. (B.2) is produced.

 0 = −∇P +∇⋅τ (B.2)

While the reduction of terms in the momentum equation is not significant for most modern
workstations or clusters, when the motion equations are coupled with other conservations
equations (i.e. stress, heat, orientation) the Stokes flow case can reduce computation time and
convergence issues.
B.1.2 Dimensional Analysis for Equation of Heat

Dimensional analysis for the heat equation can provide useful insight into which terms of
the equation can be kept and which can be dropped. The most general form of the energy
equation is shown in Eq. (B.3) where Cp is the heat capacity, k is the thermal conductivity, T is

the temperature, τ is deviatoric stress tensor, and γ is the rate-of-deformation tensor or

 γ = ∇v + ∇v()T .

ρCp
DT
Dt

Convection
 

= k∇2T
Conduction
 + τ : γ

Dissipation
 (B.3)

The heat equation can be rewritten in a dimensionless form by making the assumption that the
viscosity of the fluid is dependent on both temperature and shear-rate or η T , γ() . Using
dimensionless variables, described by Winter [1], the dimensionless form of Eq. (B.3) can be
written yielding Eq. (B.4) where the GNF model for viscosity has been used for  and η0 is the

160

reference viscosity, ΔT 0 is the reference temperature difference, V is the reference velocity, and
H and L are the characteristic height and length, respectively. Also the substitutions for the
dimensionless variables are: T * = T −T0() ΔT 0 , t* = tL V , ∇* = H∇ , η* =η η0 , and

 γ
* = γ H V . These two dimensionless groups become important in determining if convection

and viscous dissipation terms should be included in the system being solved.

ρCpVH
k

Graetz Number
 

H
L
DT *

Dt* = ∇*T * + 1
2

V 2η0

kΔT 0

Generation Number


η* γ * : γ *() (B.4)

Thermal convection can usually be neglected if the Graetz number is much less than one,
or Gr <<1 . For many mold filling operations the Hele-Shaw and lubrication approximations are
employed. Here the same reasoning for those approximations will be used, that the length of the
cavity is orders of magnitude larger than the thickness, or L H >>1 . At first it may seem
appropriate to remove the convective term from the equation but mold filling velocities are
usually high to ensure quick fill times. For the polymer systems of interest, the Graetz number is
estimated at the mold entrance to be around 100 so that thermal convection cannot be neglected,
at least not in the mold entry region. This theory is further reinforced by use of the Péclet number
where estimates are on the order of 103 -104 and is defined as the ratio of thermal advection to
diffusion given by Eq. (B.5).

 Pe = LV
k ρCp

 (B.5)

Viscous dissipation is usually a concern when dealing with polymeric systems because of
the non-linear nature of their viscosities. If the problem is defined as a molding operation, where
the temperature of the mold is a known quantity, the reference temperature difference is given as
ΔTprocess = Tfluid −Twall and the generation number is redefined as the Brinkman number, Br , and is
defined by Eq. (B.6). The Brinkman number can also be formed by the product of the Prandtl
number, Pr, and Eckert number, Ec.

 Br = V 2η0

kΔTprocess
 (B.6)

The Brinkman number for molding operations can vary depending on neat matrix and any
additive that may be present. For the fiber filled systems of interest, the Brinkman number is on
the order of 102 -103 and thus cannot be neglected.

 To simplify the system of equations, the ratio of convection to generation may be
compared on a case-by-case basis. The ratio of the generation (Brinkman) to the rate of
convection (Graetz) is around one order of magnitude. This is not sufficiently large enough to
neglect one term or the other so both will be kept when simulations are carried out [2].

161

B.2 Improvements to the FEM Solution Method
B.2.1 Domain Meshing

One of the most dominating characteristics in FEM computations, no matter how
efficiently the code has been written, is how the domain of interest is meshed. As evidence of the
requirement of efficient meshing, Figure B.1 shows the number of nodes and computational time
as a function optimized meshes where an increasing mesh number represents a higher degree of
optimization.

Figure B.1: Computational Time and FEM Nodes vs. Number of Refinements for center-gated disk. Revision 1:
tetrahedral meshing only, automated meshing From ANSYS meshing utility. Revision 2: Quad/Tet meshing
combination, manual meshing. Revision 3: hexagonal dominant meshing, automated meshing. Revision 4:
Hexagonal meshing only, manual meshing.

When the ANSYS meshing utility is allowed to mesh the domain automatically the
resulting mesh is cumbersome and takes hours of computation time for Newtonian and GNF
fluids. The improvements to the generated meshes came through the use of different element
shapes and sizes, as well as manually defining where coarse and fine meshing was required,
depending on the location within the domain. For example, it is more prudent to mesh with bias
towards the domain boundary because of the large gradients that occur near the wall as seen in
Figure B.2.

162

Figure B.2: Finite Element Meshes over a Generic Domain. (Left) Mesh exhibiting no bias.
(Right) Mesh exhibiting bias in one horizontal direction (from left to right) and two biases in the
vertical direction (near the walls).

The two test geometries which have been heavily simulated throughout this work are the
center-gated disk and end-gated plaque. The figures included show the optimized meshes for the
center-gated sprue, end-gated sprue, center-gated mold, and end-gated mold, respectfully.

Figure B.3: FEM meshes for CGD sprue (left) and CGD sprue/mold interface (right).

Figure B.4: Axisymmetric center-gated mold FEM mesh. (Left) The mold filling simulation

begins from the left edge of the mold and progresses through to the right edge. (Right) Close-up
of the mold cavity thickness noting the bias shown towards the walls of the mold.

163

B.2.2 Meshing Analysis

For finite difference and finite element analyses a balance must be struck between the
number of elements and computational accuracy. Generally, a higher number of elements in a
domain yield a higher numerical accuracy and a longer computation time. However, there is an
upper limit where a significant increase in elements yields only minimal increases in
computational accuracy while still greatly increasing computation time. The studies performed in
this section show results where the number of cross-sectional elements in a center-gated disk was
varied until little increase in accuracy was observed. Any further number of elements over 13
through the cross-section of the mold yielded differences in predicted velocity fields of < 0.12 %.

Figure B.5: Results for (Up-Left) x-velocity (Up-Right) y-velocity (Bottom) z-velocity

components during mesh benchmarking. The number of cross-sectional elements is varied from
7 to 41.

One major drawback to the ANSYS Polyflow solver is the limits that the program puts on
interpolation between elements. Using the volume of fluid method in Polyflow limits the
interpolation between elements to a linear basis function only. This is because the solver is
designed to handle the solution of complicated viscoelastic constitutive relations where a linear
interpolation provides stability to the solution. For this reason, a higher number of elements (31
elements through the thickness of both the center-gated disk and end-gated plaque) were often
chosen to try and minimize the effect of linear interpolation between elements.

B.3 Improvements to the FDM Solution Method
The majority of the computations for the work presented here have been performed

through the use of MATLAB® (2011b, ver. 7.13.0.564, The Mathworks, Inc., Natick, MA) core
language and a number of the associated built-in functions. A number of other language exist

164

which provide more efficient computations such as C and FORTRAN, however, MATLAB was
chosen because of the ease of use and the results visualization ability that the language provides.

B.3.1 Major Code Updates

Figure B.6: Reduction of Computation Time with Successive Code Improvements. Version 2

introduced vectorization into the MATLAB routines. Version 3 was the conversion of some core
routines into the C programming language.

The MATLAB code which is being used for the simulations presented in this work has
undergone a number of revisions since the inception in early 2011. Figure B.6 above shows the
improvements in computational time for two models in calculating the fiber orientation in a
generic center-gated disk simulation domain. The first attempt at writing the software was made
with convenience to the programmer in mind, so that all of the code was in matrix format (i.e the
data was stored in m-by-n data arrays). The 2nd revision of code was the transformation of the
matrix format to vectorized format in MATLAB (1-by-m data storage format) which resulted in
the first major reduction of computation time. The 3rd major revision of the code involved
rewriting some subroutines in the C programming language and calling these subroutines in the
MATLAB environment through the “mex” file format. This conversion of subroutines allowed
an order of magnitude reduction in computation time. The 4th major revision of the software will
include a GUI interface so that users unfamiliar with higher level MATLAB/C programming will
still be capable of using the developed software package with only marginal training.

B.4 References
[1] H. H. Winter, "Viscous dissipation term in energy equations," in Calculation and

Measurement Techniques for Momentum, Energy, and Mass Transfer. vol. 7, R. J.
Gordon, Ed., ed: AIChE Modular Instruction, 1987, pp. 27-34.

[2] J. R. A. Pearson, "Polymer Flows Dominated by High Heat-Generation and Low Heat-
Transfer," Polymer Engineering and Science, vol. 18, pp. 222-229, 1978.

165

Appendix: Experimental Rheological Data

166

C Appendix: Rheological Data
C.1 Neat SABIC Polypropylene Data

C.1.1 Dynamic Neat Matrix Data at 180°C

Figure C.1: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in

25mm cone-and-plate fixture obtained from RMS-800 at 180°C.

Frequency (rad/s) G' (Pa) G'' (Pa) Torque (g*cm) η*(Pa*s)
0.10 0.239 37.070 0.619 370.706
0.13 0.295 46.702 0.779 370.973
0.16 0.394 58.788 0.981 370.938
0.20 0.663 73.952 1.234 370.659
0.25 0.908 93.065 1.553 370.527
0.32 1.516 117.163 1.955 370.547
0.40 2.412 147.329 2.459 370.143
0.50 3.689 185.399 3.095 370.012
0.63 5.692 233.129 3.892 369.616
0.79 8.668 292.788 4.889 368.788
1.00 13.454 368.001 6.146 368.247
1.26 20.582 459.793 7.683 365.632
1.58 31.167 575.970 9.629 363.985
2.00 46.524 720.872 12.059 362.086
2.51 69.154 901.088 15.093 359.835
3.16 102.241 1122.870 18.835 356.605
3.98 151.019 1397.300 23.484 353.088
5.01 218.717 1731.070 29.160 348.201
6.31 313.426 2138.860 36.138 342.673
7.94 445.809 2633.770 44.662 336.358
10.00 623.813 3225.300 54.933 328.579
12.59 867.118 3934.620 67.377 320.109
15.85 1188.980 4773.880 82.258 310.486
19.95 1607.900 5757.740 99.908 299.685
25.11 2149.780 6906.730 120.761 288.049
31.61 2840.410 8228.290 145.017 275.343
39.80 3710.720 9735.650 172.873 261.781
50.10 4790.230 11448.900 204.440 247.696
63.08 6107.210 13362.000 238.944 232.913
79.41 7692.980 15472.000 275.137 217.597

100.00 9579.140 17794.500 310.779 202.090

180°C

167

C.1.2 Dynamic Neat Matrix Data at 190°C

Figure C.2: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in

25mm cone-and-plate fixture obtained from RMS-800 at 190°C.

Frequency (rad/s) G' (Pa) G'' (Pa) Torque (g*cm) η*(Pa*s)
0.10 0.131 28.141 0.470 281.409
0.13 0.160 35.364 0.590 280.910
0.16 0.271 44.416 0.741 280.252
0.20 0.328 55.944 0.934 280.391
0.25 0.587 70.286 1.173 279.831
0.32 0.831 88.422 1.476 279.638
0.40 1.379 111.301 1.858 279.612
0.50 2.096 140.019 2.337 279.421
0.63 3.249 176.112 2.940 279.183
0.79 5.004 221.285 3.695 278.675
1.00 7.810 278.152 4.645 278.287
1.26 12.106 349.542 5.839 277.848
1.58 18.426 438.584 7.329 277.003
2.00 28.373 549.834 9.192 275.969
2.51 41.911 688.274 11.519 274.553
3.16 63.783 859.781 14.406 272.674
3.98 94.317 1074.160 18.022 270.900
5.01 139.932 1335.690 22.454 268.011
6.31 204.966 1655.740 27.903 264.472
7.94 293.908 2049.420 34.640 260.700

10.00 417.693 2522.170 42.790 255.652
12.59 566.489 2963.590 50.524 239.722
15.85 805.318 3528.670 60.613 228.422
19.95 1052.980 4007.440 69.406 207.716
25.11 1352.800 4686.810 81.693 194.253
31.61 1728.970 5454.890 95.721 181.005
39.80 2208.600 6477.370 114.187 171.949
50.10 2892.000 7846.720 138.763 166.905
63.08 3708.360 9160.930 162.331 156.682
79.41 4441.970 10032.800 177.260 138.174
100.00 4790.780 10168.300 177.220 112.403

190°C

168

C.1.3 Dynamic Neat Matrix Data at 200°C

Figure C.3: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in

25mm cone-and-plate fixture obtained from RMS-800 at 200°C.

Frequency (rad/s) G' (Pa) G'' (Pa) Torque (g*cm) η*(Pa*s)
0.10 0.011 22.483 0.375 224.829
0.13 0.016 28.339 0.473 225.106
0.16 0.104 35.664 0.595 225.025
0.20 0.235 44.837 0.748 224.723
0.25 0.300 56.354 0.940 224.359
0.32 0.514 70.970 1.184 224.442
0.40 0.773 89.278 1.490 224.276
0.50 1.226 112.297 1.874 224.088
0.63 1.950 141.437 2.361 224.197
0.79 3.162 177.847 2.969 223.949
1.00 4.993 223.521 3.732 223.597
1.26 7.735 281.092 4.694 223.388
1.58 12.214 352.970 5.896 222.867
2.00 18.504 443.017 7.403 222.255
2.51 29.309 555.309 9.291 221.411
3.16 43.156 695.741 11.648 220.468
3.98 64.836 868.589 14.559 218.823
5.01 96.014 1082.110 18.167 216.796
6.31 142.520 1349.260 22.698 215.075
7.94 205.410 1672.720 28.208 212.208

10.00 298.382 2068.490 34.996 208.990
12.59 419.403 2533.900 43.039 204.059
15.85 590.171 3107.060 53.013 199.594
19.95 820.100 3790.230 65.026 194.405
25.11 1124.800 4603.910 79.456 188.725
31.61 1525.250 5558.220 96.527 182.313
39.80 2043.980 6666.000 116.486 175.185
50.10 2705.930 7947.390 139.523 167.558
63.08 3537.620 9407.730 165.376 159.343
79.41 4572.700 11053.900 193.449 150.644
100.00 5838.790 12896.800 222.422 141.569

200°C

169

C.1.4 Dynamic Neat Matrix Data at 220°C

Figure C.4: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in

25mm cone-and-plate fixture obtained from RMS-800 at 220°C.

Frequency (rad/s) G' (Pa) G'' (Pa) Torque (g*cm) η*(Pa*s)
0.10 0.033 15.823 0.264 158.230
0.13 0.048 19.834 0.331 157.543
0.16 0.143 24.880 0.415 156.986
0.20 0.112 31.334 0.523 157.046
0.25 0.170 39.372 0.657 156.749
0.32 0.251 49.502 0.826 156.548
0.40 0.407 62.369 1.041 156.676
0.50 0.650 78.386 1.308 156.414
0.63 0.926 98.695 1.648 156.437
0.79 1.515 124.133 2.073 156.298
1.00 2.497 156.155 2.607 156.189
1.26 3.881 196.397 3.280 156.051
1.58 6.042 246.850 4.123 155.816
2.00 9.407 310.060 5.180 155.488
2.51 14.012 388.805 6.501 154.908
3.16 22.174 488.016 8.166 154.507
3.98 33.632 612.359 10.255 154.075
5.01 51.484 765.727 12.838 153.155
6.31 76.131 955.648 16.045 151.969
7.94 113.909 1192.010 20.054 150.779

10.00 165.951 1481.270 24.978 149.054
12.59 238.069 1815.970 30.716 145.515
15.85 340.707 2242.170 38.060 143.129
19.95 481.542 2755.370 46.971 140.223
25.11 674.577 3374.930 57.807 137.052
31.61 932.588 4108.620 70.727 133.267
39.80 1272.380 4976.180 86.056 129.053
50.10 1717.740 5989.920 103.925 124.367
63.08 2292.800 7163.420 124.343 119.241
79.41 3014.580 8508.280 146.960 113.673
100.00 3924.440 10033.800 170.986 107.740

220°C

170

C.1.5 Dynamic Viscosity Data

Figure C.5: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in

25mm cone-and-plate fixture obtained from RMS-800.

180°C 190°C 200°C 220°C
0.100 371.56 293.03 227.99 153.90
0.126 371.52 292.58 226.27 153.72
0.158 371.12 292.80 225.63 153.46
0.200 371.07 292.75 225.21 153.31
0.251 370.74 292.25 224.76 153.14
0.316 370.71 292.35 224.76 153.03
0.398 369.88 292.18 224.50 154.41
0.501 369.33 292.02 224.34 154.24
0.631 368.95 291.82 224.34 154.11
0.794 368.12 291.38 223.09 153.94
1.000 367.37 292.00 222.99 152.84
1.259 365.80 291.37 222.32 152.74
1.585 363.99 290.39 221.88 152.45
1.995 362.07 289.12 221.27 152.19
2.512 359.64 287.67 220.38 151.73
3.162 356.61 285.57 219.36 151.34
3.980 352.84 283.12 217.98 150.72
5.011 348.05 280.02 216.10 149.93
6.308 342.61 276.25 213.94 148.85
7.942 336.23 272.00 211.35 147.64
9.998 328.53 266.76 208.03 145.97
12.586 320.07 262.07 203.93 142.86
15.845 310.40 255.11 199.49 140.73
19.948 299.58 247.17 194.33 137.91
25.112 287.94 238.53 188.64 134.80
31.614 275.23 229.05 182.20 131.20
39.800 261.71 218.82 175.11 127.06
50.105 247.60 207.98 167.50 122.53
63.077 232.81 196.52 159.27 117.54
79.408 217.50 184.64 150.59 112.09

100.000 202.01 172.29 141.51 106.28

Dynamic Viscosity, η (Pa*s)
Frequency, ω (s-1)

171

C.1.6 Neat Matrix Capillary Data

Figure C.6: Capillary data for SABIC Verton® polypropylene Matrix from Göttfert Capillary

Rheometer.

Shear Rate, γ (s-1) Viscosity, η (Pa*s) Shear Rate, γ (s-1) Viscosity, η (Pa*s)
18.49 343.90 18.10 201.65
36.98 225.45 36.20 143.30
92.44 201.26 90.50 117.33

184.89 154.65 181.01 91.44
369.78 102.30 362.01 63.63
924.44 70.31 905.03 39.96
1848.88 48.83 1810.06 26.73
3697.76 29.21 3620.12 19.13
9244.40 13.87 9050.31 10.46

18488.80 8.21 18100.61 6.29
36977.60 4.76 36201.22 3.78

180°C 220°C

172

C.2 SABIC Polypropylene w/ 30 % (wt.) Long Glass Fiber

Figure C.7: Transient viscosity data for SABIC Verton® polypropylene/ 30 wt. % LGF

obtained from sliding plate rheometer at 180° C

γ = 0.4 s-1 γ = 1.0 s-1 γ = 4.0 s-1 γ = 0.4 s-1 γ = 1.0 s-1 γ = 4.0 s-1

0 0.00 0.00 0.00 70 5293.23 770.16 0.00
2 4370.93 542.47 320.59 72 5281.47 714.39 0.00
4 5325.34 592.90 391.13 74 5263.69 773.64 0.00
6 5839.11 653.81 397.75 76 5236.25 784.35 0.00
8 6517.87 696.19 353.14 78 5229.92 1073.69 0.00

10 7138.55 713.05 293.43 80 5227.81 952.89 0.00
12 7284.88 801.96 262.55 82 5214.09 1040.45 0.00
14 7416.44 819.57 236.34 84 5217.61 1029.53 0.00
16 7489.17 844.13 272.91 86 5229.92 897.04 0.00
18 7524.45 954.63 265.78 88 5229.92 788.99 0.00
20 7534.63 964.52 225.36 90 5215.99 756.78 0.00
22 7527.77 919.72 276.60 92 5207.76 687.21 0.00
24 7514.05 993.22 410.22 94 5200.97 676.83 0.00
26 7433.03 1025.18 524.78 96 5177.46 704.29 0.00
28 7346.26 1041.97 509.18 98 5170.82 683.94 0.00
30 7251.72 1091.90 524.40 100 5185.60 640.63 0.00
32 7131.99 1041.87 523.62 102 5185.60 559.49 0.00
34 6989.76 1022.83 634.46 104 5156.31 416.60 0.00
36 6844.88 1122.28 811.64 106 5141.27 607.01 0.00
38 6706.05 1056.02 912.01 108 5135.47 588.95 0.00
40 6569.05 894.59 1016.10 110 5121.75 500.17 0.00
42 6404.43 1016.89 1075.12 112 5119.11 349.04 0.00
44 6239.81 1114.16 1089.26 114 5114.63 461.52 0.00
46 6107.48 1067.42 1100.68 116 5100.91 557.33 0.00
48 6002.37 894.94 1084.18 118 5096.95 624.83 0.00
50 5921.79 921.02 981.35 120 5096.95 321.24 0.00
52 5846.96 1078.23 885.63
54 5760.91 1017.11 739.55
56 5673.13 933.08 682.65
58 5590.82 938.22 698.13
60 5522.90 861.13 698.79
62 5478.00 738.98 644.56
64 5424.09 812.47 606.40
66 5372.38 805.74 638.11
68 5328.48 792.00 682.16

Time (s)
Transient Viscosity, η+ (Pa*s)

Time (s)
Transient Viscosity, η+ (Pa*s)

173

C.3 Neat RTP Polypropylene Data
C.3.1 Dynamic Neat Matrix Data at 180°C

Figure C.8: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in 25mm

cone-and-plate fixture obtained from RMS-800 at 180°C.

Frequency (rad/s) G' (Pa) G'' (Pa) η*(Pa*s)
0.10 154.67 745.30 7612.81
0.13 203.99 905.40 7373.22
0.16 267.39 1097.36 7127.66
0.20 350.40 1325.31 6871.77
0.25 456.39 1595.05 6606.19
0.32 590.84 1914.36 6336.82
0.40 760.42 2288.29 6058.34
0.50 975.28 2724.05 5774.41
0.63 1241.30 3227.30 5481.60
0.79 1574.39 3810.95 5192.40
1.00 1979.97 4477.93 4897.48
1.26 2475.02 5233.23 4599.64
1.58 3071.99 6089.24 4304.52
1.99 3788.63 7051.29 4013.04
2.51 4641.12 8109.05 3720.78
3.16 5655.24 9295.42 3441.85
3.98 6852.23 10602.49 3172.07
5.01 8221.02 12001.65 2903.58
6.31 9824.26 13545.30 2652.97
7.94 11671.44 15192.99 2412.82

10.00 13762.02 16955.54 2184.62
12.58 16129.87 18841.93 1970.96
15.84 18815.42 20797.32 1770.26
19.94 21804.95 22872.03 1584.43
25.11 25118.42 24992.24 1411.26
31.61 28748.82 27214.89 1252.43
39.79 32751.90 29471.49 1107.25
50.09 37107.38 31765.55 975.09
63.06 41797.39 34074.57 855.11
79.39 46828.77 36358.73 746.75
100.00 52162.53 38547.28 648.60

180°C

174

C.3.2 Dynamic Neat Matrix Data at 200°C

Figure C.9: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in 25mm

cone-and-plate fixture obtained from RMS-800 at 200°C.

Frequency (rad/s) G' (Pa) G'' (Pa) η*(Pa*s)
0.10 75.55 451.21 4575.54
0.13 101.10 551.90 4457.52
0.16 135.24 673.87 4337.36
0.20 179.51 820.23 4208.97
0.25 237.88 995.82 4076.81
0.32 313.04 1205.56 3939.55
0.40 408.92 1453.71 3794.13
0.50 530.73 1746.72 3643.36
0.63 686.79 2089.16 3486.30
0.79 880.90 2490.43 3326.51
1.00 1125.13 2953.74 3161.64
1.26 1425.76 3487.63 2993.71
1.58 1796.17 4101.79 2826.12
1.99 2249.31 4799.89 2657.49
2.51 2789.74 5585.00 2486.15
3.16 3457.12 6474.23 2321.68
3.98 4240.64 7471.60 2158.72
5.01 5174.65 8547.72 1994.36
6.31 6281.85 9745.42 1838.30
7.94 7542.63 11052.77 1685.22

10.00 9018.84 12471.61 1539.69
12.58 10725.71 13985.75 1400.57
15.84 12652.42 15598.18 1267.76
19.94 14846.68 17313.01 1143.54
25.11 17328.53 19116.24 1027.62
31.61 20080.53 20993.31 919.08
39.79 23135.15 22939.81 818.76
50.09 26503.45 24924.20 726.26
63.06 30169.29 26934.89 641.30
79.39 34164.58 28945.09 564.00
100.00 38446.43 30913.48 493.33

200°C

175

C.3.3 Dynamic Neat Matrix Data at 220°C

Figure C.10: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in

25mm cone-and-plate fixture obtained from RMS-800 at 220°C.

Frequency (rad/s) G' (Pa) G'' (Pa) η*(Pa*s)
0.10 91.72 261.40 2770.63
0.13 105.90 316.98 2655.05
0.16 122.75 385.56 2553.44
0.20 143.88 469.05 2459.39
0.25 172.91 569.46 2369.76
0.32 208.49 691.79 2285.30
0.40 254.91 838.72 2202.41
0.50 313.82 1014.15 2118.67
0.63 390.23 1223.64 2036.08
0.79 487.86 1474.25 1955.48
1.00 610.66 1766.21 1869.31
1.26 766.55 2112.55 1785.61
1.58 964.32 2514.95 1699.96
1.99 1210.33 2981.13 1613.04
2.51 1520.93 3518.85 1526.61
3.16 1888.83 4137.28 1438.69
3.98 2345.02 4840.13 1351.42
5.01 2894.66 5626.09 1262.86
6.31 3564.84 6519.79 1178.12
7.94 4361.73 7502.53 1092.94

10.00 5311.42 8589.85 1010.33
12.58 6415.75 9779.23 929.41
15.84 7699.91 11082.70 851.82
19.94 9183.40 12494.40 777.48
25.11 10902.62 14002.76 706.82
31.61 12845.05 15614.37 639.67
39.79 15047.85 17332.39 576.83
50.09 17528.94 19110.99 517.67
63.06 20263.37 20955.37 462.23
79.39 23298.78 22846.00 411.01
100.00 26620.33 24753.03 363.50

220°C

176

Appendix: Experimental Fiber Orientation Data

177

D Appendix: Fiber Orientation Data
D.1 Center-Gated Disk LGF Orientation Data – 0.7mm Bin Width

Figure D.1: Experimentally determined orientation values at 0% fill of the center-gated disk

for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

Figure D.2: Experimentally determined orientation values at 10% fill of the center-gated disk

for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

z/2H A11 A12 A22 A33 A13 A23
0.92 0.56 0.14 0.10 0.34 0.29 0.08
0.77 0.73 0.18 0.09 0.18 0.26 0.06
0.62 0.60 0.15 0.07 0.33 0.32 0.06
0.46 0.40 0.06 0.07 0.53 0.36 0.05
0.31 0.47 0.08 0.05 0.48 0.33 0.06
0.15 0.35 0.05 0.05 0.61 0.35 0.04
0.00 0.27 0.00 0.07 0.67 0.35 0.04
-0.15 0.41 -0.04 0.04 0.55 0.38 -0.04
-0.31 0.44 -0.05 0.03 0.53 0.40 -0.06
-0.46 0.38 -0.02 0.02 0.59 0.38 -0.04
-0.62 0.57 -0.04 0.02 0.41 0.31 -0.02
-0.77 0.41 -0.05 0.04 0.55 0.37 -0.07
-0.92 0.48 0.00 0.03 0.50 0.35 -0.01

0%

z/2H A11 A12 A22 A33 A13 A23
0.92 0.55 0.04 0.02 0.42 0.38 0.04
0.77 0.46 0.02 0.04 0.50 0.36 -0.01
0.62 0.58 0.04 0.04 0.38 0.32 0.03
0.46 0.36 0.01 0.05 0.59 0.33 0.03
0.31 0.24 0.01 0.03 0.72 0.29 0.02
0.15 0.24 -0.01 0.04 0.72 0.35 -0.02
0.00 0.43 -0.01 0.03 0.54 0.37 0.01
-0.15 0.49 -0.04 0.04 0.47 0.34 -0.01
-0.31 0.35 -0.02 0.03 0.62 0.36 -0.01
-0.46 0.39 -0.03 0.04 0.57 0.32 -0.01
-0.62 0.33 -0.03 0.04 0.63 0.33 -0.05
-0.77 0.49 0.01 0.03 0.48 0.36 0.01
-0.92 0.37 0.00 0.04 0.59 0.36 -0.03

10%

178

Figure D.3: Experimentally determined orientation values at 40% fill of the center-gated disk

for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

Figure D.4: Experimentally determined orientation values at 40% fill of the center-gated disk

for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

z/2H A11 A12 A22 A33 A13 A23
0.92 0.49 0.02 0.03 0.48 0.33 0.03
0.77 0.52 0.00 0.05 0.43 0.32 0.02
0.62 0.53 0.01 0.05 0.42 0.33 0.02
0.46 0.43 0.03 0.05 0.52 0.34 0.01
0.31 0.26 0.01 0.05 0.69 0.27 0.01
0.15 0.20 0.01 0.06 0.74 0.30 0.01
0.00 0.31 0.00 0.05 0.64 0.35 -0.02
-0.15 0.36 -0.04 0.04 0.60 0.34 -0.05
-0.31 0.34 -0.03 0.05 0.61 0.30 -0.03
-0.46 0.37 -0.01 0.04 0.59 0.34 -0.05
-0.62 0.42 -0.01 0.04 0.54 0.37 -0.03
-0.77 0.39 -0.02 0.04 0.57 0.37 -0.04
-0.92 0.27 -0.01 0.05 0.69 0.33 -0.03

40%

z/2H A11 A12 A22 A33 A13 A23
0.92 0.46 0.04 0.07 0.47 0.35 0.03
0.77 0.44 0.00 0.08 0.48 0.34 0.02
0.62 0.37 0.03 0.09 0.54 0.35 0.02
0.46 0.32 0.02 0.08 0.60 0.35 0.02
0.31 0.30 0.01 0.07 0.63 0.28 0.00
0.15 0.17 0.01 0.06 0.77 0.31 0.01
0.00 0.16 0.01 0.07 0.78 0.27 0.03
-0.15 0.28 0.00 0.05 0.67 0.36 0.00
-0.31 0.35 -0.01 0.04 0.61 0.36 -0.01
-0.46 0.35 0.01 0.04 0.61 0.37 0.03
-0.62 0.34 0.01 0.04 0.62 0.34 0.00
-0.77 0.32 -0.01 0.03 0.65 0.37 -0.02
-0.92 0.48 0.00 0.04 0.48 0.35 0.01

90%

179

D.2 End-Gated Plaque Mold LGF Orientation Data – 0.7 mm Bin Width

Figure D.5: Experimentally determined orientation values at 0% fill and 0% of width in the

end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

Figure D.6: Experimentally determined orientation values at 10% fill and 0% of width in the

end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

z/2H A11 A12 A22 A33 A13 A23
0.92 0.60 0.09 0.05 0.35 0.07 0.06
0.77 0.38 0.05 0.06 0.56 0.04 0.11
0.62 0.30 0.15 0.17 0.53 0.19 0.12
0.46 0.37 0.12 0.07 0.56 0.13 0.10
0.31 0.41 0.15 0.09 0.50 0.18 0.10
0.15 0.36 0.14 0.10 0.54 0.12 0.12
0.00 0.23 0.11 0.08 0.69 0.10 0.13
-0.15 0.24 0.07 0.07 0.69 0.11 0.10
-0.31 0.18 0.05 0.08 0.75 0.08 0.07
-0.46 0.11 0.02 0.04 0.84 -0.01 0.04
-0.62 0.21 0.00 0.02 0.77 0.02 0.01
-0.77 0.18 -0.02 0.03 0.80 -0.04 0.01
-0.92 0.64 -0.05 0.02 0.34 -0.19 -0.01

0% Length, 0% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.40 0.04 0.06 0.54 0.01 0.04
0.77 0.53 -0.01 0.06 0.41 0.10 0.02
0.62 0.47 0.02 0.05 0.48 0.10 0.03
0.46 0.17 0.00 0.09 0.74 0.04 -0.02
0.31 0.29 0.05 0.09 0.62 0.09 0.08
0.15 0.32 0.04 0.11 0.58 0.06 0.07
0.00 0.44 -0.01 0.08 0.48 0.04 0.02
-0.15 0.21 0.02 0.18 0.61 0.01 0.07
-0.31 0.19 -0.02 0.19 0.62 0.03 -0.03
-0.46 0.18 0.04 0.18 0.64 -0.03 0.10
-0.62 0.37 -0.01 0.17 0.46 -0.03 0.05
-0.77 0.51 0.03 0.11 0.39 0.01 0.06
-0.92 0.53 0.00 0.02 0.44 0.08 0.01

10% Length, 0% Width

180

Figure D.7: Experimentally determined orientation values at 40% fill and 0% of width in the

end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

Figure D.8: Experimentally determined fiber orientation values at 90% fill and 0% of width

in the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

z/2H A11 A12 A22 A33 A13 A23
0.92 0.53 0.00 0.02 0.45 0.05 0.03
0.77 0.43 0.01 0.02 0.55 0.16 0.02
0.62 0.36 0.01 0.04 0.60 0.10 0.06
0.46 0.45 0.03 0.05 0.50 0.10 0.03
0.31 0.35 0.02 0.02 0.62 0.14 0.03
0.15 0.28 0.06 0.04 0.68 0.17 0.08
0.00 0.25 0.04 0.04 0.72 0.12 0.06
-0.15 0.10 -0.01 0.04 0.86 0.08 0.01
-0.31 0.19 0.01 0.04 0.77 0.12 0.04
-0.46 0.40 -0.04 0.04 0.56 -0.01 0.07
-0.62 0.60 0.01 0.04 0.37 0.06 0.03
-0.77 0.52 -0.01 0.06 0.41 0.08 0.02
-0.92 0.53 0.01 0.03 0.44 0.10 0.02

40% Length, 0% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.51 0.07 0.04 0.45 0.05 0.08
0.77 0.69 0.04 0.01 0.30 -0.03 0.02
0.62 0.26 0.03 0.02 0.72 0.07 0.04
0.46 0.20 0.02 0.03 0.76 0.00 0.05
0.31 0.18 0.01 0.03 0.79 0.02 0.03
0.15 0.07 0.01 0.03 0.90 0.04 0.05
0.00 0.18 0.03 0.08 0.74 0.08 0.09
-0.15 0.19 0.10 0.11 0.70 0.04 0.05
-0.31 0.16 0.06 0.08 0.76 0.05 0.09
-0.46 0.18 0.05 0.10 0.72 0.00 0.07
-0.62 0.31 0.01 0.06 0.63 0.00 0.02
-0.77 0.20 -0.02 0.04 0.76 0.00 0.00
-0.92 0.71 -0.03 0.03 0.27 0.02 0.01

90% Length, 0% Width

181

Figure D.9: Experimentally determined orientation values at 0% fill and 50% of width in the

end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

Figure D.10: Experimentally determined orientation values at 10% fill and 50% of width in

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

z/2H A11 A12 A22 A33 A13 A23
0.92 0.54 0.12 0.07 0.39 0.25 0.08
0.77 0.59 0.12 0.05 0.36 -0.02 0.07
0.62 0.54 0.11 0.05 0.41 0.04 0.06
0.46 0.55 0.07 0.04 0.41 0.03 0.06
0.31 0.45 0.12 0.06 0.50 0.15 0.10
0.15 0.57 0.12 0.05 0.38 0.16 0.08
0.00 0.70 0.14 0.05 0.25 0.24 0.07
-0.15 0.64 0.12 0.04 0.32 0.15 0.06
-0.31 0.69 0.12 0.04 0.27 0.19 0.06
-0.46 0.45 0.04 0.03 0.52 0.02 0.05
-0.62 0.38 0.05 0.03 0.59 0.06 0.05
-0.77 0.53 0.00 0.02 0.45 -0.09 0.01
-0.92 0.50 -0.01 0.02 0.48 -0.11 0.01

0% Length, 50% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.53 0.01 0.01 0.46 0.06 0.02
0.77 0.64 -0.01 0.02 0.35 0.01 0.03
0.62 0.66 0.02 0.02 0.32 0.05 0.03
0.46 0.75 0.02 0.01 0.23 0.03 0.02
0.31 0.55 0.03 0.01 0.44 0.06 0.02
0.15 0.59 0.04 0.02 0.39 0.09 0.03
0.00 0.65 0.03 0.02 0.33 0.07 0.03
-0.15 0.66 0.00 0.01 0.32 0.01 0.03
-0.31 0.57 0.01 0.03 0.41 0.02 0.03
-0.46 0.53 -0.02 0.02 0.44 -0.01 0.03
-0.62 0.51 -0.01 0.01 0.48 -0.03 0.02
-0.77 0.57 0.00 0.02 0.41 -0.03 0.03
-0.92 0.57 0.00 0.01 0.42 -0.01 0.03

10% Length, 50% Width

182

Figure D.11: Experimentally determined orientation values at 40% fill and 50% of width in

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

Figure D.12: Experimentally determined orientation values at 90% fill and 50% of width in

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

z/2H A11 A12 A22 A33 A13 A23
0.92 0.41 0.01 0.02 0.56 0.02 0.03
0.77 0.45 0.00 0.02 0.54 -0.01 0.03
0.62 0.71 0.01 0.02 0.27 0.03 0.03
0.46 0.75 0.01 0.02 0.23 0.04 0.03
0.31 0.71 0.02 0.01 0.27 0.02 0.02
0.15 0.57 0.01 0.02 0.41 0.04 0.04
0.00 0.62 0.04 0.03 0.36 0.03 0.04
-0.15 0.63 0.02 0.03 0.34 0.03 0.04
-0.31 0.50 -0.01 0.02 0.48 -0.01 0.04
-0.46 0.58 -0.01 0.01 0.40 -0.02 0.03
-0.62 0.54 -0.01 0.02 0.45 -0.03 0.04
-0.77 0.69 -0.01 0.02 0.29 -0.02 0.03
-0.92 0.71 -0.01 0.02 0.28 -0.03 0.03

40% Length, 50% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.41 0.02 0.03 0.56 0.08 0.04
0.77 0.46 0.01 0.01 0.52 0.01 0.03
0.62 0.49 0.01 0.02 0.49 0.01 0.03
0.46 0.53 0.01 0.03 0.44 0.02 0.03
0.31 0.64 -0.02 0.02 0.35 -0.03 0.03
0.15 0.64 0.01 0.04 0.32 -0.01 0.03
0.00 0.63 0.04 0.03 0.35 0.02 0.03
-0.15 0.58 0.01 0.02 0.40 0.02 0.03
-0.31 0.62 0.00 0.04 0.34 -0.03 0.04
-0.46 0.62 0.00 0.02 0.36 -0.02 0.04
-0.62 0.65 -0.01 0.02 0.33 -0.01 0.04
-0.77 0.64 0.02 0.02 0.34 0.06 0.03
-0.92 0.65 0.03 0.02 0.32 0.10 0.04

90% Length, 50% Width

183

Figure D.13: Experimentally determined orientation values at 0% fill and 90% of width in

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

Figure D.14: Experimentally determined orientation values at 10% fill and 90% of width in

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

z/2H A11 A12 A22 A33 A13 A23
0.92 0.71 0.16 0.06 0.23 0.12 0.05
0.77 0.78 0.18 0.05 0.16 0.27 0.06
0.62 0.77 0.12 0.05 0.18 0.23 0.05
0.46 0.60 0.12 0.05 0.36 0.12 0.06
0.31 0.74 0.14 0.07 0.19 0.18 0.05
0.15 0.67 0.17 0.07 0.26 0.19 0.05
0.00 0.67 0.15 0.06 0.27 0.12 0.08
-0.15 0.68 0.16 0.06 0.25 0.15 0.09
-0.31 0.78 0.09 0.03 0.19 0.15 0.04
-0.46 0.58 0.04 0.05 0.37 -0.01 0.04
-0.62 0.82 0.00 0.02 0.16 -0.07 0.01
-0.77 0.60 0.02 0.06 0.34 -0.12 0.06
-0.92 0.42 0.02 0.03 0.55 0.19 0.03

0% Length, 90% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.42 0.05 0.03 0.55 0.12 0.04
0.77 0.65 0.04 0.01 0.34 0.11 0.02
0.62 0.75 0.06 0.02 0.23 0.08 0.02
0.46 0.64 0.05 0.04 0.32 0.08 0.03
0.31 0.76 0.04 0.03 0.21 0.09 0.04
0.15 0.85 0.04 0.02 0.13 0.05 0.02
0.00 0.82 0.02 0.02 0.15 0.04 0.03
-0.15 0.81 0.04 0.03 0.16 0.11 0.04
-0.31 0.76 0.06 0.02 0.21 0.11 0.04
-0.46 0.70 0.00 0.03 0.27 -0.01 0.05
-0.62 0.69 0.01 0.03 0.28 -0.04 0.04
-0.77 0.63 -0.01 0.03 0.35 -0.07 0.04
-0.92 0.75 -0.02 0.01 0.24 -0.12 0.02

10% Length, 90% Width

184

Figure D.15: Experimentally determined orientation values at 40% fill and 90% of width in

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

Figure D.16: Experimentally determined orientation values at 90% fill and 90% of width in

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm.

z/2H A11 A12 A22 A33 A13 A23
0.92 0.43 0.02 0.01 0.55 0.06 0.03
0.77 0.61 0.03 0.02 0.37 0.01 0.03
0.62 0.59 0.00 0.02 0.38 0.02 0.03
0.46 0.62 0.01 0.03 0.35 0.02 0.04
0.31 0.64 0.02 0.04 0.32 0.00 0.04
0.15 0.64 -0.01 0.03 0.33 -0.05 0.04
0.00 0.78 -0.02 0.02 0.20 -0.06 0.03
-0.15 0.74 -0.02 0.04 0.22 -0.05 0.04
-0.31 0.83 -0.01 0.03 0.14 -0.02 0.03
-0.46 0.76 0.00 0.02 0.22 -0.01 0.03
-0.62 0.77 -0.01 0.03 0.20 0.01 0.04
-0.77 0.68 -0.01 0.02 0.30 -0.06 0.03
-0.92 0.35 -0.01 0.01 0.64 -0.04 0.02

40% Length, 90% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.61 0.01 0.02 0.37 0.02 0.03
0.77 0.64 0.01 0.04 0.33 0.00 0.04
0.62 0.70 0.02 0.03 0.27 0.02 0.04
0.46 0.66 -0.01 0.02 0.31 -0.03 0.03
0.31 0.64 0.01 0.03 0.33 0.03 0.04
0.15 0.66 0.04 0.03 0.31 0.08 0.04
0.00 0.73 0.03 0.04 0.23 0.03 0.04
-0.15 0.76 0.05 0.03 0.21 0.06 0.04
-0.31 0.72 0.06 0.05 0.24 0.07 0.05
-0.46 0.63 0.05 0.06 0.31 0.03 0.06
-0.62 0.58 0.03 0.05 0.37 0.01 0.05
-0.77 0.61 0.00 0.02 0.37 0.00 0.03
-0.92 0.69 0.00 0.01 0.30 0.00 0.02

90% Length, 90% Width

185

E MATLAB Fiber Orientation Software Package
E.1 Fiber Orientation Interface Scripts

E.1.1 cgd_ft.m
%% Transient Cross-Section Orientation Calculations
% K.J. Meyer
% 12/10/2011

% clear all
% close all
% clc

%% Defining the POLYFLOW Files Directory
% This is the directory where the POLYFLOW export files are. The files
% should be '.txt' or '.csv' format with a ',' delimiter.
dir = 'D:\Computational Files\Transient CGD Simulation Files\PlanarDataRefine_2mm\';
type = '.csv';
timesteps = dlmread(sprintf('%s%s%s',dir,'timesteps','.txt'),',');

%% Defining the Constants for the FT Simulation
% Folgar-Tucker Constants
C_I = 0.003;
OF = 0.03;

%% Defining Additional Simulation Parameters
SendNotification = 0;
EmailAddress = 'kjmeyer@vt.edu';
save = 0; %Do you want to save the generated files in a txt format?
start = 6;
finish = 590;
fill = 299;
step = 5;

%% Pre-Allocation
% We pre-define a number of variables that would ususally grow inside a
% loop and slow down computation.
vx = zeros(31,fill);
vy = zeros(31,fill);
vz = zeros(31,fill);

fluid_frac = zeros(31,fill);

Aft_t2 = zeros(31,9,fill);
Aft_t1 = zeros(31,9,fill);

count = start;

%% Begin the Simulation

while (count <= finish) % Number of timesteps
 disp(count)
 data = dlmread(sprintf('%s%i%s',dir,count,type),',');

186

 polydata = sortrows(data, [3 1 2]);

 % Specifying the integration time, based on time input given
 % above

 for i = 2:fill
 % Number of fill percentages. Subtracting first and last step.
 % Numerical approximations are used and need i+1 and i-1 data.
 % These are not availible for 1 and 100.
 %===%
 % To calculate the change in distance in the flow direction in the BR
 % model we need to load the cross-section data from the previous
 % two positions. Special conditions are needed for the first two
 % iterative steps in the solution because i /= 0;
 %===%

 %===%
 % Reading in the data for the cross-section of interest. For some
 % of the calculation we need one and two steps back from the region
 % of interest to estimate the derivative.
 %===%
 pointm1 = (i-1)*31;
 point = i*31;
 pointp1 = (i+1)*31;

 v = [polydata(point-30:point,6) polydata(point-30:point,10) polydata(point-30:point,14)];
 v_m1 = [polydata(pointm1-30:pointm1,6) polydata(pointm1-30:pointm1,10) polydata(pointm1-30:pointm1,14)];
 v_p1 = [polydata(pointp1-30:pointp1,6) polydata(pointp1-30:pointp1,10) polydata(pointp1-30:pointp1,14)];

 % For visualization purposes

 vx(:,i) = v(:,1);
 vy(:,i) = v(:,2);
 vz(:,i) = v(:,3);

 dvi_dxi = zeros(31,9,fill);

 dvi_dxi(:,1,i) = polydata(point-30:point,7);
 dvi_dxi(:,2,i) = polydata(point-30:point,8);
 dvi_dxi(:,3,i) = polydata(point-30:point,9);
 dvi_dxi(:,4,i) = polydata(point-30:point,11);
 dvi_dxi(:,5,i) = polydata(point-30:point,12);
 dvi_dxi(:,6,i) = polydata(point-30:point,13);
 dvi_dxi(:,7,i) = polydata(point-30:point,15);
 dvi_dxi(:,8,i) = polydata(point-30:point,16);
 dvi_dxi(:,9,i) = polydata(point-30:point,17);

 fluid_frac(:,i) = polydata(point-30:point,4);

 %% ===%
 % Cross - Section Integration %
 %===%
 % Here we integrate through each cross-section of data outputted by
 % POLYFLOW. j = 1:31 because we have chosen 31 cross-section
 % sampling points but the last sample is out of the domain
 % resulting in NAN's so we have neglected that.

187

 %===%

 % Calculating the orientation values at different cross-sections
 % (j = 1 to # of cross-sections).

 for j = 1:31 % Number of cross sections

 % Inital orientation guesses, starting at position 2 (which is
 % really equal to 1% fill). Further iterations in the i
 % direction use previous solutions of orientation.

 if (fluid_frac(j,i) < 0.1)
 continue
 end

 if (i == 2)
 Aft_t1(j,:,1) = FT_initial(j);
 Aft_t1(j,:,i) = FT_initial(j);
 end

 % To estimate some of the derivatives in the models, we need to
 % calculate the change in coordinates. This calculates that
 % change as we iterate through (j,i) steps (thickness,fill).

 dX = [0.2983 0.0667 0];

 % Reading the velocity gradient data at each node of interest
 % and manipulating the data to calculate the vorticity and rate
 % of deformation.
 dvi = [dvi_dxi(j,1,i) dvi_dxi(j,2,i) dvi_dxi(j,3,i) dvi_dxi(j,4,i) dvi_dxi(j,5,i) dvi_dxi(j,6,i) dvi_dxi(j,7,i) dvi_dxi(j,8,i)
dvi_dxi(j,9,i)];
 delV = reshape(dvi,3,3);
 w = reshape((1/2)*(delV - delV'),1,9);
 d = reshape((1/2)*(delV + delV'),1,9);

 % If there is no previous orientation history, convect the
 % solution to the next spacial position.

 if ((j == 1) || (j == 31))
 A_0 = Aft_t1(j,:,i);

 if (A_0(1) == 0)
 A_0 = Aft_t2(j,:,i-1);
 end

 % ftibof = @(t,A) ARD_RSC_IBOF_mex(w,d,OF,b1,b2,b3,b4,b5,A);
 ftibof = @(t,A) FT_IBOF_mex(w,d,C_I,OF,A);
 [t1,A1] = ode45(ftibof,linspace(timesteps(count-step),timesteps(count),5),A_0);
 Aft_t2(j,:,i) = A1(length(A1(:,1)),:);
 Aft_t2(j,:,i) = Aft_t2(j,:,i)./(Aft_t2(j,1,i) + Aft_t2(j,5,i) + Aft_t2(j,9,i));
 continue
 end

 if ((1 < j) && (j < 31))
 A_0 = Aft_t1(j,:,i);

 if (A_0(1) == 0)

188

 A_0 = Aft_t2(j,:,i-1);
 end

 Am11 = Aft_t2(j,:,i-1);
 Am12 = Aft_t2(j-1,:,i);
 Am13 = zeros(1,9);

 % ftibof = @(t,A) ARD_RSC_IBOFc_mex(w,d,OF,b1,b2,b3,b4,b5,A,Am11,Am12,Am13,dX,[vx(j,i,k)
vy(j,i,k) vz(j,i,k)]);
 ftibof = @(t,A) FT_IBOFc_mex(w,d,C_I,OF,A,Am11,Am12,Am13,dX,[vx(j,i) vy(j,i) vz(j,i)]);
 [t1,A1] = ode45(ftibof,linspace(timesteps(count-step),timesteps(count),5),A_0);
 Aft_t2(j,:,i) = A1(length(A1(:,1)),:);
 Aft_t2(j,:,i) = Aft_t2(j,:,i)./(Aft_t2(j,1,i) + Aft_t2(j,5,i) + Aft_t2(j,9,i));
 end

 end
 end
 count = count + step;
 Aft_t1 = Aft_t2;
end
E.1.2 cgd_br.m
%% Transient Cross-Section Orientation Calculations
% K.J. Meyer
% 12/10/2011

clear all
close all
clc

%% Defining the POLYFLOW Files Directory
dir = 'D:\Computational Files\Transient CGD Simulation Files\PlanarDataRefine_2mm\';
type = '.csv';
timesteps = dlmread(sprintf('%s%s%s',dir,'timesteps','.txt'),',');

%% Defining the Constants for the Simulation
C_I = 0.053;
OF = 0.13;
lb = 1.8;
kbend = 218;

SendNotification = 0;
EmailAddress = 'kjmeyer@vt.edu';
save = 0; %Do you want to save the generated files in a txt format?
start = 6;
finish = 590;
fill = 299;
step = 5;

% Pre-allocation of internal variables for speed
A11br_cross = zeros(31,fill,finish);
A22br_cross = zeros(31,fill,finish);
A33br_cross = zeros(31,fill,finish);
A12br_cross = zeros(31,fill,finish);
A13br_cross = zeros(31,fill,finish);
vx = zeros(31,fill,finish);

189

vy = zeros(31,fill,finish);
vz = zeros(31,fill,finish);
fluid_frac = zeros(31,fill,finish);
temp = zeros(31,fill,finish);
xcoords = zeros(31,fill,finish);
ycoords = zeros(31,fill,finish);
zcoords = zeros(31,fill,finish);
dvi_dxi = zeros(31,9,fill,finish);

tbr = zeros(fill,finish);
Abr = zeros(31,9,fill,finish);
Bbr = zeros(31,9,fill,finish);
Cbr = zeros(31,3,fill,finish);
Rbr = zeros(31,9,fill,finish);

% Movie generation
% dos('del D:\Computational Files\Transient CGD Simulation Files\PlanarData2s\orient_quadconv.avi');
% mov = avifile([dir,'orient_quadconv.avi'],'Compression','none','fps',10);

%% Begin the Simulation
for k = start:step:finish % Number of timesteps
 data = dlmread(sprintf('%s%i%s',dir,k,type),',');
 polydata = sortrows(data, [1 2]);

 % Specifying the integration time, based on time input given
 % above

 % *********WARNING*********%
 % The time specification must be changed depending on the fill time
 % that is being studied. Remember to do this otherwise the predictions
 % will not converge.

 for i = 2:fill % Number of fill percentages. Subtracting first and last step.
 % Numerical approximations are used and need i+1 and i-1 data.
 % These are not availible for 1 and 100.
 %===%
 % To calculate the change in distance in the flow direction in the BR
 % model we need to load the cross-section data from the previous
 % two positions. Special conditions are needed for the first two
 % iterative steps in the solution because i /= 0;
 %===%

 %===%
 % Reading in the data for the cross-section of interest. For some
 % of the calculation we need one and two steps back from the region
 % of interest to estimate the derivative.
 %===%
 pointm1 = (i-1)*31;
 point = i*31;
 pointp1 = (i+1)*31;

 v = [polydata(point-30:point,6) polydata(point-30:point,10) polydata(point-30:point,14)];
 v_m1 = [polydata(pointm1-30:pointm1,6) polydata(pointm1-30:pointm1,10) polydata(pointm1-30:pointm1,14)];
 v_p1 = [polydata(pointp1-30:pointp1,6) polydata(pointp1-30:pointp1,10) polydata(pointp1-30:pointp1,14)];

 vx(:,i,k) = v(:,1);
 vy(:,i,k) = v(:,2);

190

 vz(:,i,k) = v(:,3);

 v(1,:) = 0;
 v(31,:) = 0;
 v_p1(1,:) = 0;
 v_p1(31,:) = 0;
 v_m1(1,:) = 0;
 v_m1(31,:) = 0;

 xcoords(:,i,k) = polydata(point-30:point,1);
 ycoords(:,i,k) = polydata(point-30:point,2);
 zcoords(:,i,k) = polydata(point-30:point,3);

 dvi_dxi(:,1,i) = polydata(point-30:point,7);
 dvi_dxi(:,2,i) = polydata(point-30:point,8);
 dvi_dxi(:,3,i) = polydata(point-30:point,9);
 dvi_dxi(:,4,i) = polydata(point-30:point,11);
 dvi_dxi(:,5,i) = polydata(point-30:point,12);
 dvi_dxi(:,6,i) = polydata(point-30:point,13);
 dvi_dxi(:,7,i) = polydata(point-30:point,15);
 dvi_dxi(:,8,i) = polydata(point-30:point,16);
 dvi_dxi(:,9,i) = polydata(point-30:point,17);

 fluid_frac(:,i,k) = polydata(point-30:point,4);

 %===%
 % Cross - Section Integration %
 %===%
 % Here we integrate through each cross-section of data outputted by
 % POLYFLOW. j = 1:31 because we have chosen 31 cross-section
 % sampling points but the last sample is out of the domain
 % resulting in NAN's so we have neglected that.
 %===%

 % Calculating the orientation values at different cross-sections
 % (j = 1 to # of cross-sections).

 for j = 1:31 % Number of cross sections

 % Inital orientation guesses, starting at position 2 (which is
 % really equal to 1% fill). Further iterations in the i
 % direction use previous solutions of orientation.

 if (fluid_frac(j,i,k) < 0.15)
 continue
 end

 if (i == 2)
 [Br1 Br2 Br3] = BR_initial(j);
 Abr(j,:,1,k) = Br1;
 Bbr(j,:,1,k) = Br2;
 Cbr(j,:,1,k) = Br3;
 end

 % To estimate some of the derivatives in the models, we need to
 % calculate the change in coordinates. This calculates that
 % change as we interate through (j,i) steps (thickness,fill).

191

 dX = [0.2984 0.0667 0];

 % Reading the velocity gradient data at each node of interest
 % and manipulating the data to calculate the vorticity and rate
 % of deformation.
 dvi = [dvi_dxi(j,1,i) dvi_dxi(j,2,i) dvi_dxi(j,3,i) dvi_dxi(j,4,i) dvi_dxi(j,5,i) dvi_dxi(j,6,i) dvi_dxi(j,7,i) dvi_dxi(j,8,i)
dvi_dxi(j,9,i)];
 delV = reshape(dvi,3,3);
 w = reshape((1/2)*(delV - delV'),1,9);
 d = reshape((1/2)*(delV + delV'),1,9);

 % Defining the Input set of Orientation equation

 if ((j == 1) || (j == 31))
 A_0 = [Abr(j,:,i,k-step) Bbr(j,:,i,k-step) Cbr(j,:,i,k-step)];

 if (A_0(1) == 0)
 A_0 = [Abr(j,:,i-1,k) Bbr(j,:,i-1,k) Cbr(j,:,i-1,k)];
 end

 ftibof = @(t,A) BR_IBOF_mex(dX,dvi,v,v_m1,v_p1,w,d,lb,kbend,C_I,OF,A,i,j);
 [t1,A1] = ode45(ftibof,linspace(timesteps(k-step),timesteps(k),15),A_0);
 Abr(j,:,i,k) = A1(length(A1(:,1)),1:9);
 Bbr(j,:,i,k) = A1(length(A1(:,1)),10:18);
 Cbr(j,:,i,k) = A1(length(A1(:,1)),19:21);
 end

 if ((1 < j) && (j < 31))
 A_0 = [Abr(j,:,i,k-step) Bbr(j,:,i,k-step) Cbr(j,:,i,k-step)];

 if (A_0(1) == 0)
 A_0 = [Abr(j,:,i-1,k) Bbr(j,:,i-1,k) Cbr(j,:,i-1,k)];
 end

 Am11 = Abr(j,:,i-1,k);
 Am12 = Abr(j-1,:,i,k);
 Am13 = zeros(1,9);
 Bm11 = Bbr(j,:,i-1,k);
 Bm12 = Bbr(j-1,:,i,k);
 Bm13 = zeros(1,9);
 Cm11 = Cbr(j,:,i-1,k);
 Cm12 = Cbr(j-1,:,i,k);
 Cm13 = zeros(1,3);

 ftibof = @(t,A) BR_IBOFc_mex(dX,dvi,v,v_m1,v_p1,[vx(j,i,k) vy(j,i,k)
vz(j,i,k)],w,d,lb,kbend,C_I,OF,A,i,j,Am11,Am12,Am13,Bm11,Bm12,Bm13,Cm11,Cm12,Cm13);
 [t1,A1] = ode45(ftibof,linspace(timesteps(k-step),timesteps(k),15),A_0);
 Abr(j,:,i,k) = A1(length(A1(:,1)),1:9);
 Bbr(j,:,i,k) = A1(length(A1(:,1)),10:18);
 Cbr(j,:,i,k) = A1(length(A1(:,1)),19:21);
 end

 trB = Bbr(j,1,i,k) + Bbr(j,5,i,k) + Bbr(j,9,i,k);

 Rbr(j,1,i,k) = abs(Abr(j,1,i,k) - Bbr(j,1,i,k))./(1 - trB);
 Rbr(j,5,i,k) = abs(Abr(j,5,i,k) - Bbr(j,5,i,k))./(1 - trB);
 Rbr(j,9,i,k) = abs(Abr(j,9,i,k) - Bbr(j,9,i,k))./(1 - trB);
 Rbr(j,2,i,k) = abs(Abr(j,2,i,k) - Bbr(j,2,i,k))./(1 - trB);

192

 Rbr(j,3,i,k) = abs(Abr(j,3,i,k) - Abr(j,3,i,k))./(1 - trB);
 end

 end

 [x,y] = meshgrid(linspace(0,1,299),linspace(-1,1,31));
 figure(1)
 [C,h] = contourf(x,y,squeeze(Rbr(:,1,:,k)));
 clabel(C,h);
 set(gcf,'color','w','Position',[100 100 1200 300]);
 pause(0.01)
end
E.1.3 egp_ft.m
% K.J. Meyer
% 12/10/2011

clear all
close all
clc
savedir = 'D:\Computational Files\Transient EGP Simulation Files\Full Mold\EGP Mold\Experimental Full\FT Results Fitted
LinearInterp\';

%% Defining the POLYFLOW Files Directory
dir = 'D:\Computational Files\Transient EGP Simulation Files\Full Mold\EGP Mold\';
type = '.csv';
timesteps = dlmread(sprintf('%s%s%s',dir,'timesteps','.txt'),',');

%% Defining the Constants for the Simulation
OF = 0.0087;
C_I = 0.2278;

% b1 = 0.0018;
% b2 = 0.0005;
% b3 = 0.0013;
% b4 = 3.4E-5;
% b5 = 0.0015;

start = 40;
finish = 550;
fill = 299;
planes = 11;
step = 2;

%% Pre-allocation of internal variables for speed
vx = zeros(31,fill);
vy = zeros(31,fill);
vz = zeros(31,fill);

fluid_frac = zeros(31,fill,planes);

Aft_t2 = zeros(31,9,fill,planes);
Aft_t1 = zeros(31,9,fill,planes);

count = start;

%% Begin the Simulation

193

while (count <= finish) % Number of timesteps
 disp(count)
 data = dlmread(sprintf('%s%i%s',dir,count,type),',');
 polydata = sortrows(data, [3 1 2]);

 for k = 1:11

 plane_i_data = polydata(1 + 9300*(k-1):(9300*k),:);

 for i = 2:299
 % Number of fill percentages. Subtracting first and last step.
 % Numerical approximations are used and need i+1 and i-1 data.
 % These are not availible for 1 and 100.
 %===%
 % To calculate the change in distance in the flow direction in the BR
 % model we need to load the cross-section data from the previous
 % two positions. Special conditions are needed for the first two
 % iterative steps in the solution because i /= 0;
 %===%

 %===%
 % Reading in the data for the cross-section of interest. For some
 % of the calculation we need one and two steps back from the region
 % of interest to estimate the derivative.
 %===%

 clear dvi_dxi

 pointm1 = (i-1)*31;
 point = i*31;
 pointp1 = (i+1)*31;

 v = [plane_i_data(point-30:point,6) plane_i_data(point-30:point,10) plane_i_data(point-30:point,14)];
 v_m1 = [plane_i_data(pointm1-30:pointm1,6) plane_i_data(pointm1-30:pointm1,10) plane_i_data(pointm1-
30:pointm1,14)];
 v_p1 = [plane_i_data(pointp1-30:pointp1,6) plane_i_data(pointp1-30:pointp1,10) plane_i_data(pointp1-30:pointp1,14)];

 % For visualization purposes

 vx(:,i,k) = v(:,1);
 vy(:,i,k) = v(:,2);
 vz(:,i,k) = v(:,3);

 dvi_dxi = zeros(31,9,fill);

 dvi_dxi(:,1,i) = plane_i_data(point-30:point,7);
 dvi_dxi(:,2,i) = plane_i_data(point-30:point,8);
 dvi_dxi(:,3,i) = plane_i_data(point-30:point,9);
 dvi_dxi(:,4,i) = plane_i_data(point-30:point,11);
 dvi_dxi(:,5,i) = plane_i_data(point-30:point,12);
 dvi_dxi(:,6,i) = plane_i_data(point-30:point,13);
 dvi_dxi(:,7,i) = plane_i_data(point-30:point,15);
 dvi_dxi(:,8,i) = plane_i_data(point-30:point,16);
 dvi_dxi(:,9,i) = plane_i_data(point-30:point,17);

 fluid_frac(:,i,k) = plane_i_data(point-30:point,4);

194

 %% ===%
 % Cross - Section Integration %
 %===%
 % Here we integrate through each cross-section of data outputted by
 % POLYFLOW. j = 1:31 because we have chosen 31 cross-section
 % sampling points but the last sample is out of the domain
 % resulting in NAN's so we have neglected that.
 %===%

 % Calculating the orientation values at different cross-sections
 % (j = 1 to # of cross-sections).

 for j = 1:31 % Number of cross sections

 % Inital orientation guesses, starting at position 2 (which is
 % really equal to 1% fill). Further iterations in the i
 % direction use previous solutions of orientation.

 if (fluid_frac(j,i,k) < 0.15)
 continue
 end

 if (i == 2)
 Aft_t2(j,:,1,k) = EXP_EGP_full(i,j,k,count);
 Aft_t2(j,:,i,k) = EXP_EGP_full(i,j,k,count);
 end

 % To estimate some of the derivatives in the models, we need to
 % calculate the change in coordinates. This calculates that
 % change as we interate through (j,i) steps (thickness,fill).

 dX = [0.4 0.0500 0];

 if (k > 1)
 dX(1,3) = 3.4114;
 end

 % Reading the velocity gradient data at each node of interest
 % and manipulating the data to calculate the vorticity and rate
 % of deformation.
 dvi = [dvi_dxi(j,1,i) dvi_dxi(j,2,i) dvi_dxi(j,3,i) dvi_dxi(j,4,i) dvi_dxi(j,5,i) dvi_dxi(j,6,i) dvi_dxi(j,7,i) dvi_dxi(j,8,i)
dvi_dxi(j,9,i)];
 delV = reshape(dvi,3,3);
 w = reshape((1/2)*(delV - delV'),1,9);
 d = reshape((1/2)*(delV + delV'),1,9);

 % Defining the Input set of Orientation equations

 if ((j == 1) || (j == 31))
 A_0 = Aft_t1(j,:,i,k);

 if (A_0(1) == 0)
 A_0 = Aft_t2(j,:,i-1,k);
 end

% ftibof = @(t,A) ARD_RSC_IBOF_mex(w,d,OF,b1,b2,b3,b4,b5,A);

195

 ftibof = @(t,A) FT_IBOF_mex(w,d,C_I,OF,A);
 [t1,A1] = ode45(ftibof,linspace(timesteps(count-step),timesteps(count),5),A_0);
 Aft_t2(j,:,i,k) = A1(length(A1(:,1)),:);
 Aft_t2(j,:,i,k) = Aft_t2(j,:,i,k)./(Aft_t2(j,1,i,k) + Aft_t2(j,5,i,k) + Aft_t2(j,9,i,k));
 continue
 end

 if ((1 < j) && (j < 31))
 A_0 = Aft_t1(j,:,i,k);

 if (A_0(1) == 0)
 A_0 = Aft_t2(j,:,i-1,k);
 end

 Am11 = Aft_t2(j,:,i-1,k);
 Am12 = Aft_t2(j-1,:,i,k);
 Am13 = zeros(1,9);

 if (k > 1)
 Am13 = Aft_t2(j,:,i,k-1);
 A_0 = Aft_t2(j,:,i,k-1);
 end
% ftibof = @(t,A) ARD_RSC_IBOFc_mex(w,d,OF,b1,b2,b3,b4,b5,A,Am11,Am12,Am13,dX,[vx(j,i,k) vy(j,i,k)
vz(j,i,k)]);
 ftibof = @(t,A) FT_IBOFc_mex(w,d,C_I,OF,A,Am11,Am12,Am13,dX,[vx(j,i,k) vy(j,i,k) vz(j,i,k)]);
 [t1,A1] = ode45(ftibof,linspace(timesteps(count-step),timesteps(count),5),A_0);
 Aft_t2(j,:,i,k) = A1(length(A1(:,1)),:);
 Aft_t2(j,:,i,k) = Aft_t2(j,:,i,k)./(Aft_t2(j,1,i,k) + Aft_t2(j,5,i,k) + Aft_t2(j,9,i,k));
 end
 end
 end
 if (count > 5)
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A11ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,1,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A12ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,2,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A13ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,3,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A22ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,5,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A33ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,9,:,k)));
 end
 end
 count = count + step;
 Aft_t1 = Aft_t2;
end

E.1.4 egp_br.m
%% Transient Cross-Section Orientation Calculations
% K.J. Meyer
% 12/10/2011

clear all
close all
clc
savedir = 'D:\Computational Files\Transient EGP Simulation Files\Full Mold\EGP Mold\Experimental\BR Results Fitted\';

%% Defining the POLYFLOW Files Directory
dir = 'D:\Computational Files\Transient EGP Simulation Files\Full Mold\EGP Mold\';
type = '.csv';
timesteps = dlmread(sprintf('%s%s%s',dir,'timesteps','.txt'),',');

196

% Loading A Previous Solution
load = 1;

%% Defining the Constants for the Simulation
OF = 0.0039;
C_I = 0.4843;
lb = 1.9; % mm
dia = 0.1; % mm
eta_0 = 293; % Pa*s
lam = 0.0059; % s^-1
n = 0.24; % none
a = 0.749;
Ey = 80E9; % Pa

start = 40;
finish = 550;
fill = 299;
planes = 11;
step = 2;

%% Pre-allocation of internal variables for speed
vx = zeros(31,fill);
vy = zeros(31,fill);
vz = zeros(31,fill);

fluid_frac = zeros(31,fill,planes);

Abr_t2 = zeros(31,9,fill,planes);
Abr_t1 = zeros(31,9,fill,planes);
Bbr_t2 = zeros(31,9,fill,planes);
Bbr_t1 = zeros(31,9,fill,planes);
Cbr_t2 = zeros(31,3,fill,planes);
Cbr_t1 = zeros(31,3,fill,planes);

count = start;

%% Begin the Simulation
while (count <= finish) % Number of timesteps
 disp(count)
 data = dlmread(sprintf('%s%i%s',dir,count,'.csv'));
 polydata = sortrows(data, [3 1 2]);

 for k = 1

 plane_i_data = polydata(1 + 9300*(k-1):(9300*k),:);

 for i = 2:299
 % Number of fill percentages. Subtracting first and last step.
 % Numerical approximations are used and need i+1 and i-1 data.
 % These are not availible for 1 and 300
 %===%
 % To calculate the change in distance in the flow direction in the BR
 % model we need to load the cross-section data from the previous
 % two positions. Special conditions are needed for the first two
 % iterative steps in the solution because i /= 0;
 %===%

197

 %===%
 % Reading in the data for the cross-section of interest. For some
 % of the calculation we need one and two steps back from the region
 % of interest to estimate the derivative.
 %===%

 pointm1 = (i-1)*31;
 point = i*31;
 pointp1 = (i+1)*31;

 v = [plane_i_data(point-30:point,6) plane_i_data(point-30:point,10) plane_i_data(point-30:point,14)];
 v_m1 = [plane_i_data(pointm1-30:pointm1,6) plane_i_data(pointm1-30:pointm1,10) plane_i_data(pointm1-
30:pointm1,14)];
 v_p1 = [plane_i_data(pointp1-30:pointp1,6) plane_i_data(pointp1-30:pointp1,10) plane_i_data(pointp1-30:pointp1,14)];

 % For visualization purposes

 vx(:,i) = v(:,1);
 vy(:,i) = v(:,2);
 vz(:,i) = v(:,3);

 dvi_dxi = zeros(31,9,fill);

 dvi_dxi(:,1,i) = plane_i_data(point-30:point,7);
 dvi_dxi(:,2,i) = plane_i_data(point-30:point,8);
 dvi_dxi(:,3,i) = plane_i_data(point-30:point,9);
 dvi_dxi(:,4,i) = plane_i_data(point-30:point,11);
 dvi_dxi(:,5,i) = plane_i_data(point-30:point,12);
 dvi_dxi(:,6,i) = plane_i_data(point-30:point,13);
 dvi_dxi(:,7,i) = plane_i_data(point-30:point,15);
 dvi_dxi(:,8,i) = plane_i_data(point-30:point,16);
 dvi_dxi(:,9,i) = plane_i_data(point-30:point,17);

 fluid_frac(:,i,k) = plane_i_data(point-30:point,4);

 %% ===%
 % Cross - Section Integration %
 %===%
 % Here we integrate through each cross-section of data outputted by
 % POLYFLOW. j = 1:31 because we have chosen 31 cross-section
 % sampling points but the last sample is out of the domain
 % resulting in NAN's so we have neglected that.
 %===%

 % Calculating the orientation values at different cross-sections
 % (j = 1 to # of cross-sections).

 for j = 1:31 % Number of cross sections

 if (fluid_frac(j,i,k) < 0.15)
 continue
 end

 if (i == 2)
 Abr_t2(j,:,1,k) = EXP_EGP_full(i,j,k,count);
 Bbr_t2(j,:,1,k) = -EXP_EGP_full(i,j,k,count);
 Cbr_t2(j,:,1,k) = [0 0 0];
 Abr_t2(j,:,i,k) = EXP_EGP_full(i,j,k,count);

198

 Bbr_t2(j,:,i,k) = -EXP_EGP_full(i,j,k,count);
 Cbr_t2(j,:,i,k) = [0 0 0];
 end

 % To estimate some of the derivatives in the models, we need to
 % calculate the change in coordinates. This calculates that
 % change as we interate through (j,i) steps (thickness,fill).

 dX = [0.4 0.0500 0];

 if (k > 1)
 dX(1,3) = 3.4114;
 end

 % Reading the velocity gradient data at each node of interest
 % and manipulating the data to calculate the vorticity and rate
 % of deformation.
 dvi = [dvi_dxi(j,1,i) dvi_dxi(j,2,i) dvi_dxi(j,3,i) dvi_dxi(j,4,i) dvi_dxi(j,5,i) dvi_dxi(j,6,i) dvi_dxi(j,7,i) dvi_dxi(j,8,i)
dvi_dxi(j,9,i)];
 delV = reshape(dvi,3,3);
 w = reshape((1/2)*(delV - delV'),1,9);
 d = reshape((1/2)*(delV + delV'),1,9);

 gamma = 2*d;
 gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ...
 gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ...
 gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9)));

 if ((j == 1) || (j == 31))
 A0 = [Abr_t1(j,:,i,k) Bbr_t1(j,:,i,k) Cbr_t1(j,:,i,k)];

 if (A0(1) == 0)
 A0 = [Abr_t2(j,:,i-1,k) Bbr_t2(j,:,i-1,k) Cbr_t2(j,:,i-1,k)];
 end

% eta_m = eta_0*(1+(lam*gamma_mag)^a)^((n-1)/a);
 kflex = 20; %(Ey/(64*eta_m))*(dia^3/lb^3);

 bribof = @(t,A) BR_IBOF_mex(dX,dvi,v,v_m1,v_p1,w,d,lb,kflex,C_I,OF,A,i,j);
 [t1,A1] = ode45(bribof,linspace(timesteps(count-step),timesteps(count),10),A0);
 Abr_t2(j,:,i,k) = A1(length(A1(:,1)),1:9);
 Bbr_t2(j,:,i,k) = A1(length(A1(:,1)),10:18);
 Cbr_t2(j,:,i,k) = A1(length(A1(:,1)),19:21);
 continue
 end

 % Defining the Input set of Orientation equations

 if ((1 < j) && (j < 31))

 A0 = [Abr_t1(j,:,i,k) Bbr_t1(j,:,i,k) Cbr_t1(j,:,i,k)];

 if (A0(1) == 0)
 A0 = [Abr_t2(j,:,i-1,k) Bbr_t2(j,:,i-1,k) Cbr_t2(j,:,i-1,k)];
 end

 Am11 = Abr_t2(j,:,i-1,k);

199

 Bm11 = Bbr_t2(j,:,i-1,k);
 Cm11 = Cbr_t2(j,:,i-1,k);
 Am12 = Abr_t2(j-1,:,i,k);
 Bm12 = Bbr_t2(j-1,:,i,k);
 Cm12 = Cbr_t2(j-1,:,i,k);
 Am13 = zeros(1,9);
 Bm13 = zeros(1,9);
 Cm13 = zeros(1,3);

 if (k > 1)
 Am13 = Abr_t2(j,:,i,k-1);
 Bm13 = Bbr_t2(j,:,i,k-1);
 Cm13 = Cbr_t2(j,:,i,k-1);
% A0 = [Abr_t2(j,:,i,k-1) Bbr_t2(j,:,i,k-1) Cbr_t2(j,:,i,k-1)];
 end

% eta_m = eta_0*(1+(lam*gamma_mag)^a)^((n-1)/a);
 kflex = 20; %(Ey/(64*eta_m))*(dia^3/lb^3);

 bribof = @(t,A) BR_IBOFc_mex(dX,dvi,v,v_m1,v_p1,[vx(j,i) vy(j,i)
vz(j,i)],w,d,lb,kflex,C_I,OF,A,i,j,Am11,Am12,Am13,Bm11,Bm12,Bm13,Cm11,Cm12,Cm13);
 [t1,A1] = ode45(bribof,linspace(timesteps(count-step),timesteps(count),10),A0);
 Abr_t2(j,:,i,k) = A1(length(A1(:,1)),1:9);
 Bbr_t2(j,:,i,k) = A1(length(A1(:,1)),10:18);
 Cbr_t2(j,:,i,k) = A1(length(A1(:,1)),19:21);
 end

 if (Abr_t2(j,1,i,k) >= 1) || (Abr_t2(j,5,i,k) >= 1) || (Abr_t2(j,9,i,k) >= 1) || (Abr_t2(j,1,i,k) <= 0) || (Abr_t2(j,5,i,k) <= 0)
|| (Abr_t2(j,9,i,k) <= 0) || isnan(Abr_t2(j,1,i,k))
 [Ai Bi Ci Ri] = threed_br_error_func(i,j,k,2,dX,dvi,v,v_m1,v_p1,w,d,lb,kflex,C_I,OF,[timesteps(count-step)
timesteps(count)]);
 Abr_t2(j,:,i,k) = Ai;
 Bbr_t2(j,:,i,k) = Bi;
 Cbr_t2(j,:,i,k) = Ci;
 end
 end
 end
 if (count > 5)
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A11br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,1,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A12br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,2,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A13br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,3,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A22br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,5,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A33br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,9,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B11br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,1,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B12br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,2,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B13br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,3,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B22br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,5,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B33br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,9,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'C11br_cross',k,'_',count,'.txt'),squeeze(Cbr_t2(:,1,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'C22br_cross',k,'_',count,'.txt'),squeeze(Cbr_t2(:,2,:,k)));
 dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'C33br_cross',k,'_',count,'.txt'),squeeze(Cbr_t2(:,3,:,k)));
 end
 end
 count = count + step;
 Abr_t1 = Abr_t2;
 Bbr_t1 = Bbr_t2;
 Cbr_t1 = Cbr_t2;
end

200

E.2 Core Routines

E.2.1 FT_quad.m
function [dA] = FT_quad(w,d,C_I,OF,A)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ...
 gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ...
 gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9)));

%% Orientation Calculations

dA = zeros(9,1);

dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ...
 ((D(1)*A(1) + D(2)*A(4) + D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*Explicit_Quad_v(D,A)*A(1)) + 2 * C_I * gamma_mag * (I(1) - 3 * A(1)));

dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ...
 ((D(1)*A(2) + D(2)*A(5) + D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*Explicit_Quad_v(D,A)*A(2)) + 2 * C_I * gamma_mag * (I(2) - 3 * A(2)));

dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ...
 ((D(1)*A(3) + D(2)*A(6) + D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*Explicit_Quad_v(D,A)*A(3)) + 2 * C_I * gamma_mag * (I(3) - 3 * A(3)));

dA(4) = dA(2);

dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ...
 ((D(4)*A(2) + D(5)*A(5) + D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*Explicit_Quad_v(D,A)*A(5)) + 2 * C_I * gamma_mag * (I(5) - 3 * A(5)));

dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ...
 ((D(4)*A(3) + D(5)*A(6) + D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*Explicit_Quad_v(D,A)*A(6)) + 2 * C_I * gamma_mag * (I(6) - 3 * A(6)));

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ...
 ((D(7)*A(3) + D(8)*A(6) + D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - ...
 2*Explicit_Quad_v(D,A)*A(9)) + 2 * C_I * gamma_mag * (I(9) - 3 * A(9)));

end

201

E.2.2 FT_quadc.m
function [dA] = FT_quadc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ...
 gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ...
 gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9)));

%% Orientation Calculations

convA = convective(A,Am11,Am12,Am13,v,dX);

dA = zeros(9,1);

dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ...
 ((D(1)*A(1) + D(2)*A(4) + D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*Explicit_Quad_v(D,A)*A(1)) + 2 * C_I * gamma_mag * (I(1) - 3 * A(1))) - convA(1);

dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ...
 ((D(1)*A(2) + D(2)*A(5) + D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*Explicit_Quad_v(D,A)*A(2)) + 2 * C_I * gamma_mag * (I(2) - 3 * A(2))) - convA(2);

dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ...
 ((D(1)*A(3) + D(2)*A(6) + D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*Explicit_Quad_v(D,A)*A(3)) + 2 * C_I * gamma_mag * (I(3) - 3 * A(3))) - convA(3);

dA(4) = dA(2);

dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ...
 ((D(4)*A(2) + D(5)*A(5) + D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*Explicit_Quad_v(D,A)*A(5)) + 2 * C_I * gamma_mag * (I(5) - 3 * A(5))) - convA(5);

dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ...
 ((D(4)*A(3) + D(5)*A(6) + D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*Explicit_Quad_v(D,A)*A(6)) + 2 * C_I * gamma_mag * (I(6) - 3 * A(6))) - convA(6);

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ...
 ((D(7)*A(3) + D(8)*A(6) + D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - ...
 2*Explicit_Quad_v(D,A)*A(9)) + 2 * C_I * gamma_mag * (I(9) - 3 * A(9))) - convA(9);

end

202

E.2.3 FT_IBOF.m
function [dA] = FT_IBOFc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)
%# codegen

%% Parameter Definitions
W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ...
 gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ...
 gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9);

%% Folgar-Tucker Equations

convA = convective(A,Am11,Am12,Am13,v,dX);

dA = zeros(9,1);

dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ...
 ((D(1)*A(1) + D(2)*A(4) + D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*Explicit_IBOF_v(D,A,1,1)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(1) - 3 * A(1)));

dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ...
 ((D(1)*A(2) + D(2)*A(5) + D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*Explicit_IBOF_v(D,A,1,2)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(2) - 3 * A(2)));

dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ...
 ((D(1)*A(3) + D(2)*A(6) + D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*Explicit_IBOF_v(D,A,1,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(3) - 3 * A(3)));

dA(4) = dA(2);

dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ...
 ((D(4)*A(2) + D(5)*A(5) + D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*Explicit_IBOF_v(D,A,2,2)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(5) - 3 * A(5)));

dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ...
 ((D(4)*A(3) + D(5)*A(6) + D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*Explicit_IBOF_v(D,A,2,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(6) - 3 * A(6)));

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ...
 ((D(7)*A(3) + D(8)*A(6) + D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - ...
 2*Explicit_IBOF_v(D,A,3,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(9) - 3 * A(9)));

end

203

E.2.4 FT_IBOFc.m
function [dA] = FT_IBOFc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)
%# codegen

%% Parameter Definitions
W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ...
 gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ...
 gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9);

%% Folgar-Tucker Equations

convA = convective(A,Am11,Am12,Am13,v,dX);

dA = zeros(9,1);

dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ...
 ((D(1)*A(1) + D(2)*A(4) + D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*Explicit_IBOF_v(D,A,1,1)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(1) - 3 * A(1))) - convA(1);

dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ...
 ((D(1)*A(2) + D(2)*A(5) + D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*Explicit_IBOF_v(D,A,1,2)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(2) - 3 * A(2))) - convA(2);

dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ...
 ((D(1)*A(3) + D(2)*A(6) + D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*Explicit_IBOF_v(D,A,1,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(3) - 3 * A(3))) - convA(3);

dA(4) = dA(2);

dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ...
 ((D(4)*A(2) + D(5)*A(5) + D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*Explicit_IBOF_v(D,A,2,2)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(5) - 3 * A(5))) - convA(5);

dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ...
 ((D(4)*A(3) + D(5)*A(6) + D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*Explicit_IBOF_v(D,A,2,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(6) - 3 * A(6))) - convA(6);

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ...
 ((D(7)*A(3) + D(8)*A(6) + D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - ...
 2*Explicit_IBOF_v(D,A,3,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(9) - 3 * A(9))) - convA(9);

end

204

E.2.5 BR_IBOF.m
function [dA] = BR_IBOF(dX,dvi,v,v_m1,v_p1,w,d,lb,kk,C_I,OF,A,i,j)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ...
 gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ...
 gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9)));

%% Calculation of trace
trB = A(10) + A(14) + A(18);

%% Calculation of m*C
mdotc = mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) +
mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21);

%% Calculation of D:A
ddoublea = 2*(D(1)*A(1) + D(2)*A(4) + D(3)*A(7) + ...
 D(4)*A(2) + D(5)*A(5) + D(6)*A(8) + ...
 D(7)*A(3) + D(8)*A(6) + D(9)*A(9));

%% A Orientation Tensor Calculations

dA = zeros(21,1);

dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ((D(1)*A(1) + D(2)*A(4) +
D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - 2*Explicit_IBOF_v(D,A,1,1)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,1,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) - 2*(mdotc)*A(1)) -
2*kk*(A(10) - A(1)*trB) - 6*C_I * gamma_mag * (A(1) - (1/3) * I(1)));

dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - 2*Explicit_IBOF_v(D,A,1,2)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(20) - 2*(mdotc)*A(2)) -
2*kk*(A(11) - A(2)*trB) - 6*C_I * gamma_mag * (A(2) - (1/3) * I(2)));

dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - 2*Explicit_IBOF_v(D,A,1,3)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(21) - 2*(mdotc)*A(3)) -
2*kk*(A(12) - A(3)*trB) - 6*C_I * gamma_mag * (A(3) - (1/3) * I(3)));

dA(4) = dA(2);

dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - 2*Explicit_IBOF_v(D,A,2,2)) + ...
 (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) - 2*(mdotc)*A(5)) -
2*kk*(A(14) - A(5)*trB) - 6*C_I * gamma_mag * (A(5) - (1/3) * I(5)));

dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - 2*Explicit_IBOF_v(D,A,2,3)) + ...
 (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(21) - 2*(mdotc)*A(6)) -
2*kk*(A(15) - A(6)*trB) - 6*C_I * gamma_mag * (A(6) - (1/3) * I(6)));

205

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - 2*Explicit_IBOF_v(D,A,3,3)) + ...
 (lb/2)*(A(21)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21) - 2*(mdotc)*A(9)) -
2*kk*(A(18) - A(9)*trB) - 6*C_I * gamma_mag * (A(9) - (1/3) * I(9)));

%% B Orientation Tensor Calculations

dA(10) = OF*(((W(1)*A(10) + W(2)*A(13) + W(3)*A(16)) - (A(10)*W(1) + A(11)*W(4) + A(12)*W(7))) + ((D(1)*A(10) +
D(2)*A(13) + D(3)*A(16)) + (A(10)*D(1) + A(11)*D(4) + A(12)*D(7)) - ddoublea*A(10)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,1,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) - 2*(mdotc)*A(10)) -
2*kk*(A(1) - A(10)*trB) - 4*C_I * gamma_mag * A(10));

dA(11) = OF*(((W(1)*A(11) + W(2)*A(14) + W(3)*A(17)) - (A(10)*W(2) + A(11)*W(5) + A(12)*W(8))) + ((D(1)*A(11) +
D(2)*A(14) + D(3)*A(17)) + (A(10)*D(2) + A(11)*D(5) + A(12)*D(8)) - ddoublea*A(11)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(20) - 2*(mdotc)*A(11)) -
2*kk*(A(2) - A(11)*trB) - 4*C_I * gamma_mag * A(11));

dA(12) = OF*(((W(1)*A(12) + W(2)*A(15) + W(3)*A(18)) - (A(10)*W(3) + A(11)*W(6) + A(12)*W(9))) + ((D(1)*A(12) +
D(2)*A(15) + D(3)*A(18)) + (A(10)*D(3) + A(11)*D(6) + A(12)*D(9)) - ddoublea*A(12)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(21) - 2*(mdotc)*A(12)) -
2*kk*(A(3) - A(12)*trB) - 4*C_I * gamma_mag * A(12));

dA(13) = dA(11);

dA(14) = OF*(((W(4)*A(11) + W(5)*A(14) + W(6)*A(17)) - (A(13)*W(2) + A(14)*W(5) + A(15)*W(8))) + ((D(4)*A(11) +
D(5)*A(14) + D(6)*A(17)) + (A(13)*D(2) + A(14)*D(5) + A(15)*D(8)) - ddoublea*A(14)) + ...
 (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) - 2*(mdotc)*A(14)) -
2*kk*(A(5) - A(14)*trB) - 4*C_I * gamma_mag * A(14));

dA(15) = OF*(((W(4)*A(12) + W(5)*A(15) + W(6)*A(18)) - (A(13)*W(3) + A(14)*W(6) + A(15)*W(9))) + ((D(4)*A(12) +
D(5)*A(15) + D(6)*A(18)) + (A(13)*D(3) + A(14)*D(6) + A(15)*D(9)) - ddoublea*A(15)) + ...
 (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(21) - 2*(mdotc)*A(15)) -
2*kk*(A(6) - A(15)*trB) - 4*C_I * gamma_mag * A(15));

dA(16) = dA(12);

dA(17) = dA(15);

dA(18) = OF*(((W(7)*A(12) + W(8)*A(15) + W(9)*A(18)) - (A(16)*W(3) + A(17)*W(6) + A(18)*W(9))) + ((D(7)*A(12) +
D(8)*A(15) + D(9)*A(18)) + (A(16)*D(3) + A(17)*D(6) + A(18)*D(9)) - ddoublea*A(18)) + ...
 (lb/2)*(A(21)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21) - 2*(mdotc)*A(18)) -
2*kk*(A(9) - A(18)*trB) - 4*C_I * gamma_mag * A(18));

%% C Orientation Tensor Calculations
% Calculating A:delVt

Advidouble = A(1)*dvi(1) + A(2)*dvi(4) + A(3)*dvi(7) + ...
 A(4)*dvi(2) + A(5)*dvi(5) + A(6)*dvi(8) + ...
 A(7)*dvi(3) + A(8)*dvi(6) + A(9)*dvi(9);

206

dA(19) = OF*((dvi(1)*A(19) + dvi(4)*A(20) + dvi(7)*A(21)) - Advidouble*A(19) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,1,i,j) -
A(19)*(mdotc)) - kk*A(19)*(1 - trB) - 2*C_I*gamma_mag*A(19));
dA(20) = OF*((dvi(2)*A(19) + dvi(5)*A(20) + dvi(8)*A(21)) - Advidouble*A(20) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,2,i,j) -
A(20)*(mdotc)) - kk*A(20)*(1 - trB) - 2*C_I*gamma_mag*A(20));
dA(21) = OF*((dvi(3)*A(19) + dvi(6)*A(20) + dvi(9)*A(21)) - Advidouble*A(21) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,3,i,j) -
A(21)*(mdotc)) - kk*A(21)*(1 - trB) - 2*C_I*gamma_mag*A(21));
end

E.2.6 BR_IBOFc.m
function [dA] =
BR_IBOFc(dX,dvi,v,v_m1,v_p1,vv,w,d,lb,kk,C_I,OF,A,i,j,Am11,Am12,Am13,Bm11,Bm12,Bm13,Cm11,Cm12,Cm13)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ...
 gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ...
 gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9)));

%% Calculation of trace
trB = A(10) + A(14) + A(18);

%% Calculation of m*C
mdotc = mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) +
mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21);

%% Calculation of D:A
ddoublea = 2*(D(1)*A(1) + D(2)*A(4) + D(3)*A(7) + ...
 D(4)*A(2) + D(5)*A(5) + D(6)*A(8) + ...
 D(7)*A(3) + D(8)*A(6) + D(9)*A(9));

%% A Orientation Tensor Calculations

convBR = convectiveBR(A,Am11,Am12,Am13,Bm11,Bm12,Bm13,Cm11,Cm12,Cm13,vv,dX);

dA = zeros(21,1);

dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ((D(1)*A(1) + D(2)*A(4) +
D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - 2*Explicit_IBOF_v(D,A,1,1)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,1,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) - 2*(mdotc)*A(1)) -
2*kk*(A(10) - A(1)*trB) - 6*C_I * gamma_mag * (A(1) - (1/3) * I(1))) - convBR(1);

dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - 2*Explicit_IBOF_v(D,A,1,2)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(20) - 2*(mdotc)*A(2)) -
2*kk*(A(11) - A(2)*trB) - 6*C_I * gamma_mag * (A(2) - (1/3) * I(2))) - convBR(2);

dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - 2*Explicit_IBOF_v(D,A,1,3)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(21) - 2*(mdotc)*A(3)) -
2*kk*(A(12) - A(3)*trB) - 6*C_I * gamma_mag * (A(3) - (1/3) * I(3))) - convBR(3);

207

dA(4) = dA(2);

dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - 2*Explicit_IBOF_v(D,A,2,2)) + ...
 (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) - 2*(mdotc)*A(5)) -
2*kk*(A(14) - A(5)*trB) - 6*C_I * gamma_mag * (A(5) - (1/3) * I(5))) - convBR(5);

dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - 2*Explicit_IBOF_v(D,A,2,3)) + ...
 (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(21) - 2*(mdotc)*A(6)) -
2*kk*(A(15) - A(6)*trB) - 6*C_I * gamma_mag * (A(6) - (1/3) * I(6))) - convBR(6);

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - 2*Explicit_IBOF_v(D,A,3,3)) + ...
 (lb/2)*(A(21)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21) - 2*(mdotc)*A(9)) -
2*kk*(A(18) - A(9)*trB) - 6*C_I * gamma_mag * (A(9) - (1/3) * I(9))) - convBR(9);

%% B Orientation Tensor Calculations

dA(10) = OF*(((W(1)*A(10) + W(2)*A(13) + W(3)*A(16)) - (A(10)*W(1) + A(11)*W(4) + A(12)*W(7))) + ((D(1)*A(10) +
D(2)*A(13) + D(3)*A(16)) + (A(10)*D(1) + A(11)*D(4) + A(12)*D(7)) - ddoublea*A(10)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,1,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) - 2*(mdotc)*A(10)) -
2*kk*(A(1) - A(10)*trB) - 4*C_I * gamma_mag * A(10)) - convBR(10);

dA(11) = OF*(((W(1)*A(11) + W(2)*A(14) + W(3)*A(17)) - (A(10)*W(2) + A(11)*W(5) + A(12)*W(8))) + ((D(1)*A(11) +
D(2)*A(14) + D(3)*A(17)) + (A(10)*D(2) + A(11)*D(5) + A(12)*D(8)) - ddoublea*A(11)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(20) - 2*(mdotc)*A(11)) -
2*kk*(A(2) - A(11)*trB) - 4*C_I * gamma_mag * A(11)) - convBR(11);

dA(12) = OF*(((W(1)*A(12) + W(2)*A(15) + W(3)*A(18)) - (A(10)*W(3) + A(11)*W(6) + A(12)*W(9))) + ((D(1)*A(12) +
D(2)*A(15) + D(3)*A(18)) + (A(10)*D(3) + A(11)*D(6) + A(12)*D(9)) - ddoublea*A(12)) + ...
 (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(21) - 2*(mdotc)*A(12)) -
2*kk*(A(3) - A(12)*trB) - 4*C_I * gamma_mag * A(12)) - convBR(12);

dA(13) = dA(11);

dA(14) = OF*(((W(4)*A(11) + W(5)*A(14) + W(6)*A(17)) - (A(13)*W(2) + A(14)*W(5) + A(15)*W(8))) + ((D(4)*A(11) +
D(5)*A(14) + D(6)*A(17)) + (A(13)*D(2) + A(14)*D(5) + A(15)*D(8)) - ddoublea*A(14)) + ...
 (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) - 2*(mdotc)*A(14)) -
2*kk*(A(5) - A(14)*trB) - 4*C_I * gamma_mag * A(14)) - convBR(14);

dA(15) = OF*(((W(4)*A(12) + W(5)*A(15) + W(6)*A(18)) - (A(13)*W(3) + A(14)*W(6) + A(15)*W(9))) + ((D(4)*A(12) +
D(5)*A(15) + D(6)*A(18)) + (A(13)*D(3) + A(14)*D(6) + A(15)*D(9)) - ddoublea*A(15)) + ...
 (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(21) - 2*(mdotc)*A(15)) -
2*kk*(A(6) - A(15)*trB) - 4*C_I * gamma_mag * A(15)) - convBR(15);

dA(16) = dA(12);

dA(17) = dA(15);

208

dA(18) = OF*(((W(7)*A(12) + W(8)*A(15) + W(9)*A(18)) - (A(16)*W(3) + A(17)*W(6) + A(18)*W(9))) + ((D(7)*A(12) +
D(8)*A(15) + D(9)*A(18)) + (A(16)*D(3) + A(17)*D(6) + A(18)*D(9)) - ddoublea*A(18)) + ...
 (lb/2)*(A(21)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21) - 2*(mdotc)*A(18)) -
2*kk*(A(9) - A(18)*trB) - 4*C_I * gamma_mag * A(18)) - convBR(18);

%% C Orientation Tensor Calculations
% Calculating A:delVt

Advidouble = A(1)*dvi(1) + A(2)*dvi(4) + A(3)*dvi(7) + ...
 A(4)*dvi(2) + A(5)*dvi(5) + A(6)*dvi(8) + ...
 A(7)*dvi(3) + A(8)*dvi(6) + A(9)*dvi(9);

dA(19) = OF*((dvi(1)*A(19) + dvi(4)*A(20) + dvi(7)*A(21)) - Advidouble*A(19) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,1,i,j) -
A(19)*(mdotc)) - kk*A(19)*(1 - trB) - 2*C_I*gamma_mag*A(19)) - convBR(19);
dA(20) = OF*((dvi(2)*A(19) + dvi(5)*A(20) + dvi(8)*A(21)) - Advidouble*A(20) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,2,i,j) -
A(20)*(mdotc)) - kk*A(20)*(1 - trB) - 2*C_I*gamma_mag*A(20)) - convBR(20);
dA(21) = OF*((dvi(3)*A(19) + dvi(6)*A(20) + dvi(9)*A(21)) - Advidouble*A(21) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,3,i,j) -
A(21)*(mdotc)) - kk*A(21)*(1 - trB) - 2*C_I*gamma_mag*A(21)) - convBR(21);
end

E.2.7 RSC_quad.m
function [dA] = RSC_quad(w,d,C_I,OF,A)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ...
 gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ...
 gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9)));
%% Orientation Calculations

LD = LddD(D,A);

MAD = MddAddD(D,A);

dA = zeros(9,1);

dA(1) = (W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) +
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*(A(1)*Explicit_Quad_v(D,A) + (1-OF)*(LD(1) - MAD(1)))) + 2 * C_I * OF * gamma_mag * (I(1) - 3 * A(1));

dA(2) = (W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*(A(2)*Explicit_Quad_v(D,A) + (1-OF)*(LD(2) - MAD(2)))) + 2 * C_I * OF * gamma_mag * (I(2) - 3 * A(2));

dA(3) = (W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*(A(3)*Explicit_Quad_v(D,A) + (1-OF)*(LD(3) - MAD(3)))) + 2 * C_I * OF * gamma_mag * (I(3) - 3 * A(3));

dA(4) = dA(2);

209

dA(5) = (W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*(A(5)*Explicit_Quad_v(D,A) + (1-OF)*(LD(5) - MAD(5)))) + 2 * C_I * OF * gamma_mag * (I(5) - 3 * A(5));

dA(6) = (W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*(A(6)*Explicit_Quad_v(D,A) + (1-OF)*(LD(6) - MAD(6)))) + 2 * C_I * OF * gamma_mag * (I(6) - 3 * A(6));

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = (W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ...
 2*(A(9)*Explicit_Quad_v(D,A) + (1-OF)*(LD(9) - MAD(9)))) + 2 * C_I * OF * gamma_mag * (I(9) - 3 * A(9));

E.2.8 RSC_quadc.m
function [dA] = RSC_quadc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ...
 gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ...
 gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9)));
%% Orientation Calculations

LD = LddD(D,A);

MAD = MddAddD(D,A);

convA = convective(A,Am11,Am12,Am13,v,dX);

dA = zeros(9,1);

dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) +
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*(A(1)*Explicit_Quad_v(D,A) + (1-OF)*(LD(1) - MAD(1)))) + 2 * C_I * OF * gamma_mag * (I(1) - 3 * A(1)) -
convA(1));

dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*(A(2)*Explicit_Quad_v(D,A) + (1-OF)*(LD(2) - MAD(2)))) + 2 * C_I * OF * gamma_mag * (I(2) - 3 * A(2)) -
convA(2));

dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*(A(3)*Explicit_Quad_v(D,A) + (1-OF)*(LD(3) - MAD(3)))) + 2 * C_I * OF * gamma_mag * (I(3) - 3 * A(3)) -
convA(3));

dA(4) = dA(2);

210

dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*(A(5)*Explicit_Quad_v(D,A) + (1-OF)*(LD(5) - MAD(5)))) + 2 * C_I * OF * gamma_mag * (I(5) - 3 * A(5)) -
convA(5));

dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*(A(6)*Explicit_Quad_v(D,A) + (1-OF)*(LD(6) - MAD(6)))) + 2 * C_I * OF * gamma_mag * (I(6) - 3 * A(6)) -
convA(6));

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ...
 2*(A(9)*Explicit_Quad_v(D,A) + (1-OF)*(LD(9) - MAD(9)))) + 2 * C_I * OF * gamma_mag * (I(9) - 3 * A(9)) -
convA(9));
end

E.2.9 RSC_IBOF.m
function [dA] = RSC_IBOF(w,d,C_I,OF,A)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ...
 gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ...
 gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9)));
%% Orientation Calculations

LD = LddD(D,A);

MAD = MddAddD_IBOF(D,A);

dA = zeros(9,1);

dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) +
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*(Explicit_IBOF_v(D,A,1,1) + (1-OF)*(LD(1) - MAD(1)))) + 2 * C_I * OF * gamma_mag * (I(1) - 3 * A(1)));

dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*(Explicit_IBOF_v(D,A,1,2) + (1-OF)*(LD(2) - MAD(2)))) + 2 * C_I * OF * gamma_mag * (I(2) - 3 * A(2)));

dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,1,3) + (1-OF)*(LD(3) - MAD(3)))) + 2 * C_I * OF * gamma_mag * (I(3) - 3 * A(3)));

dA(4) = dA(2);

211

dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*(Explicit_IBOF_v(D,A,2,2) + (1-OF)*(LD(5) - MAD(5)))) + 2 * C_I * OF * gamma_mag * (I(5) - 3 * A(5)));

dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,2,3) + (1-OF)*(LD(6) - MAD(6)))) + 2 * C_I * OF * gamma_mag * (I(6) - 3 * A(6)));

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,3,3) + (1-OF)*(LD(9) - MAD(9)))) + 2 * C_I * OF * gamma_mag * (I(9) - 3 * A(9)));
End

E.2.10 RSC_IBOFc.m
function [dA] = RSC_IBOFc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ...
 gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ...
 gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9)));

%% Orientation Calculations

LD = LddD(D,A);

MAD = MddAddD_IBOF(D,A);

convA = convective(A,Am11,Am12,Am13,v,dX);

dA = zeros(9,1);

dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) +
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*(Explicit_IBOF_v(D,A,1,1) + (1-OF)*(LD(1) - MAD(1)))) + 2 * C_I * OF * gamma_mag * (I(1) - 3 * A(1))) - convA(1);

dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*(Explicit_IBOF_v(D,A,1,2) + (1-OF)*(LD(2) - MAD(2)))) + 2 * C_I * OF * gamma_mag * (I(2) - 3 * A(2))) - convA(2);

dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,1,3) + (1-OF)*(LD(3) - MAD(3)))) + 2 * C_I * OF * gamma_mag * (I(3) - 3 * A(3))) - convA(3);

dA(4) = dA(2);

212

dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*(Explicit_IBOF_v(D,A,2,2) + (1-OF)*(LD(5) - MAD(5)))) + 2 * C_I * OF * gamma_mag * (I(5) - 3 * A(5))) - convA(5);

dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,2,3) + (1-OF)*(LD(6) - MAD(6)))) + 2 * C_I * OF * gamma_mag * (I(6) - 3 * A(6))) - convA(6);

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,3,3) + (1-OF)*(LD(9) - MAD(9)))) + 2 * C_I * OF * gamma_mag * (I(9) - 3 * A(9))) - convA(9);
end

E.2.11 ARD_RSC_quad.m
function [dA] = ARD_RSC_quad(w,d,OF,b1,b2,b3,b4,b5,A)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ...
 gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ...
 gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9)));
%% Orientation Calculations

% Calculating the components of the anisotropic tensor, C.

C1 = b1*I(1) + b2*A(1) + b3*A(1)^2 + (b4/gamma_mag)*D(1) + (b5/gamma_mag^2)*D(1)^2;
C2 = b1*I(2) + b2*A(2) + b3*A(2)^2 + (b4/gamma_mag)*D(2) + (b5/gamma_mag^2)*D(2)^2;
C3 = b1*I(3) + b2*A(3) + b3*A(3)^2 + (b4/gamma_mag)*D(3) + (b5/gamma_mag^2)*D(3)^2;
C4 = b1*I(4) + b2*A(4) + b3*A(4)^2 + (b4/gamma_mag)*D(4) + (b5/gamma_mag^2)*D(4)^2;
C5 = b1*I(5) + b2*A(5) + b3*A(5)^2 + (b4/gamma_mag)*D(5) + (b5/gamma_mag^2)*D(5)^2;
C6 = b1*I(6) + b2*A(6) + b3*A(6)^2 + (b4/gamma_mag)*D(6) + (b5/gamma_mag^2)*D(6)^2;
C7 = b1*I(7) + b2*A(7) + b3*A(7)^2 + (b4/gamma_mag)*D(7) + (b5/gamma_mag^2)*D(7)^2;
C8 = b1*I(8) + b2*A(8) + b3*A(8)^2 + (b4/gamma_mag)*D(8) + (b5/gamma_mag^2)*D(8)^2;
C9 = b1*I(9) + b2*A(9) + b3*A(9)^2 + (b4/gamma_mag)*D(9) + (b5/gamma_mag^2)*D(9)^2;

trC = C1 + C5 + C9;

C = [C1 C2 C3 C4 C5 C6 C7 C8 C9];

LD = LddD(D,A);

MAD = MddAddD(D,A);

MC = MddC(C,A);

LC = LddC(C,A);

213

MAC = MddAddC(C,A);

dA = zeros(9,1);

dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) +
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*(A(1)*Explicit_Quad_v(D,A) + (1-OF)*(LD(1) - MAD(1)))) + gamma_mag*(2*(C1 - (1-OF)*MC(1)) - 2 * OF * trC *
A(1) - ...
 5*((C1*A(1) + C2*A(2) + C3*A(3)) + (A(1)*C1 + A(2)*C4 + A(3)*C7)) + 10*(A(1)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(1) - MAC(1)))));

dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*(A(2)*Explicit_Quad_v(D,A) + (1-OF)*(LD(2) - MAD(2)))) + gamma_mag*(2*(C2 - (1-OF)*MC(2)) - 2 * OF * trC *
A(2) - ...
 5*((C1*A(2) + C2*A(5) + C3*A(6)) + (A(1)*C2 + A(2)*C5 + A(3)*C8)) + 10*(A(2)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(2) - MAC(2)))));

dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*(A(3)*Explicit_Quad_v(D,A) + (1-OF)*(LD(3) - MAD(3)))) + gamma_mag*(2*(C3 - (1-OF)*MC(3)) - 2 * OF * trC *
A(3) - ...
 5*((C1*A(3) + C2*A(6) + C3*A(9)) + (A(1)*C3 + A(2)*C6 + A(3)*C9)) + 10*(A(3)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(3) - MAC(3)))));

dA(4) = dA(2);

dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*(A(5)*Explicit_Quad_v(D,A) + (1-OF)*(LD(5) - MAD(5)))) + gamma_mag*(2*(C5 - (1-OF)*MC(5)) - 2 * OF * trC *
A(5) - ...
 5*((C4*A(2) + C5*A(5) + C6*A(6)) + (A(2)*C2 + A(5)*C5 + A(6)*C8)) + 10*(A(5)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(5) - MAC(5)))));

dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*(A(6)*Explicit_Quad_v(D,A) + (1-OF)*(LD(6) - MAD(6)))) + gamma_mag*(2*(C6 - (1-OF)*MC(6)) - 2 * OF * trC *
A(6) - ...
 5*((C4*A(3) + C5*A(6) + C6*A(9)) + (A(2)*C3 + A(5)*C6 + A(6)*C9)) + 10*(A(6)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(6) - MAC(6)))));

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ...
 2*(A(9)*Explicit_Quad_v(D,A) + (1-OF)*(LD(9) - MAD(9)))) + gamma_mag*(2*(C9 - (1-OF)*MC(9)) - 2 * OF * trC *
A(9) - ...
 5*((C7*A(3) + C8*A(6) + C9*A(9)) + (A(3)*C3 + A(6)*C6 + A(9)*C9)) + 10*(A(9)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(9) - MAC(9)))));
end

E.2.12 ARD_RSC_quadc.m
function [dA] = ARD_RSC_quadc(w,d,OF,b1,b2,b3,b4,b5,A,Am11,Am12,Am13,dX,v)

214

%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ...
 gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ...
 gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9)));

%% Orientation Calculations

% Calculating the components of the anisotropic tensor, C.

C1 = b1*I(1) + b2*A(1) + b3*A(1)^2 + (b4/gamma_mag)*D(1) + (b5/gamma_mag^2)*D(1)^2;
C2 = b1*I(2) + b2*A(2) + b3*A(2)^2 + (b4/gamma_mag)*D(2) + (b5/gamma_mag^2)*D(2)^2;
C3 = b1*I(3) + b2*A(3) + b3*A(3)^2 + (b4/gamma_mag)*D(3) + (b5/gamma_mag^2)*D(3)^2;
C4 = b1*I(4) + b2*A(4) + b3*A(4)^2 + (b4/gamma_mag)*D(4) + (b5/gamma_mag^2)*D(4)^2;
C5 = b1*I(5) + b2*A(5) + b3*A(5)^2 + (b4/gamma_mag)*D(5) + (b5/gamma_mag^2)*D(5)^2;
C6 = b1*I(6) + b2*A(6) + b3*A(6)^2 + (b4/gamma_mag)*D(6) + (b5/gamma_mag^2)*D(6)^2;
C7 = b1*I(7) + b2*A(7) + b3*A(7)^2 + (b4/gamma_mag)*D(7) + (b5/gamma_mag^2)*D(7)^2;
C8 = b1*I(8) + b2*A(8) + b3*A(8)^2 + (b4/gamma_mag)*D(8) + (b5/gamma_mag^2)*D(8)^2;
C9 = b1*I(9) + b2*A(9) + b3*A(9)^2 + (b4/gamma_mag)*D(9) + (b5/gamma_mag^2)*D(9)^2;

trC = C1 + C5 + C9;

C = [C1 C2 C3 C4 C5 C6 C7 C8 C9];

LD = LddD(D,A);

MAD = MddAddD(D,A);

MC = MddC(C,A);

LC = LddC(C,A);

MAC = MddAddC(C,A);

convA = convective(A,Am11,Am12,Am13,v,dX);

dA = zeros(9,1);

dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) +
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*(A(1)*Explicit_Quad_v(D,A) + (1-OF)*(LD(1) - MAD(1)))) + gamma_mag*(2*(C1 - (1-OF)*MC(1)) - 2 * OF * trC *
A(1) - ...
 5*((C1*A(1) + C2*A(2) + C3*A(3)) + (A(1)*C1 + A(2)*C4 + A(3)*C7)) + 10*(A(1)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(1) - MAC(1))))) - convA(1);

dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*(A(2)*Explicit_Quad_v(D,A) + (1-OF)*(LD(2) - MAD(2)))) + gamma_mag*(2*(C2 - (1-OF)*MC(2)) - 2 * OF * trC *
A(2) - ...

215

 5*((C1*A(2) + C2*A(5) + C3*A(6)) + (A(1)*C2 + A(2)*C5 + A(3)*C8)) + 10*(A(2)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(2) - MAC(2))))) - convA(2);

dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*(A(3)*Explicit_Quad_v(D,A) + (1-OF)*(LD(3) - MAD(3)))) + gamma_mag*(2*(C3 - (1-OF)*MC(3)) - 2 * OF * trC *
A(3) - ...
 5*((C1*A(3) + C2*A(6) + C3*A(9)) + (A(1)*C3 + A(2)*C6 + A(3)*C9)) + 10*(A(3)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(3) - MAC(3))))) - convA(3);

dA(4) = dA(2);

dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*(A(5)*Explicit_Quad_v(D,A) + (1-OF)*(LD(5) - MAD(5)))) + gamma_mag*(2*(C5 - (1-OF)*MC(5)) - 2 * OF * trC *
A(5) - ...
 5*((C4*A(2) + C5*A(5) + C6*A(6)) + (A(2)*C2 + A(5)*C5 + A(6)*C8)) + 10*(A(5)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(5) - MAC(5))))) - convA(5);

dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*(A(6)*Explicit_Quad_v(D,A) + (1-OF)*(LD(6) - MAD(6)))) + gamma_mag*(2*(C6 - (1-OF)*MC(6)) - 2 * OF * trC *
A(6) - ...
 5*((C4*A(3) + C5*A(6) + C6*A(9)) + (A(2)*C3 + A(5)*C6 + A(6)*C9)) + 10*(A(6)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(6) - MAC(6))))) - convA(6);

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ...
 2*(A(9)*Explicit_Quad_v(D,A) + (1-OF)*(LD(9) - MAD(9)))) + gamma_mag*(2*(C9 - (1-OF)*MC(9)) - 2 * OF * trC *
A(9) - ...
 5*((C7*A(3) + C8*A(6) + C9*A(9)) + (A(3)*C3 + A(6)*C6 + A(9)*C9)) + 10*(A(9)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(9) - MAC(9))))) - convA(9);
End

E.2.13 ARD_RSC_IBOF.m
function [dA] = ARD_RSC_IBOF(w,d,OF,b1,b2,b3,b4,b5,A)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ...
 gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ...
 gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9)));
%% Orientation Calculations

% Calculating the components of the anisotropic tensor, C.

C(1) = b1*I(1) + b2*A(1) + b3*A(1)^2 + (b4/gamma_mag)*D(1) + (b5/gamma_mag^2)*D(1)^2;
C(2) = b1*I(2) + b2*A(2) + b3*A(2)^2 + (b4/gamma_mag)*D(2) + (b5/gamma_mag^2)*D(2)^2;

216

C(3) = b1*I(3) + b2*A(3) + b3*A(3)^2 + (b4/gamma_mag)*D(3) + (b5/gamma_mag^2)*D(3)^2;
C(4) = b1*I(4) + b2*A(4) + b3*A(4)^2 + (b4/gamma_mag)*D(4) + (b5/gamma_mag^2)*D(4)^2;
C(5) = b1*I(5) + b2*A(5) + b3*A(5)^2 + (b4/gamma_mag)*D(5) + (b5/gamma_mag^2)*D(5)^2;
C(6) = b1*I(6) + b2*A(6) + b3*A(6)^2 + (b4/gamma_mag)*D(6) + (b5/gamma_mag^2)*D(6)^2;
C(7) = b1*I(7) + b2*A(7) + b3*A(7)^2 + (b4/gamma_mag)*D(7) + (b5/gamma_mag^2)*D(7)^2;
C(8) = b1*I(8) + b2*A(8) + b3*A(8)^2 + (b4/gamma_mag)*D(8) + (b5/gamma_mag^2)*D(8)^2;
C(9) = b1*I(9) + b2*A(9) + b3*A(9)^2 + (b4/gamma_mag)*D(9) + (b5/gamma_mag^2)*D(9)^2;

trC = C(1) + C(5) + C(9);

LD = LddD(D,A);

MAD = MddAddD_IBOF(D,A);

MC = MddC(C,A);

LC = LddC(C,A);

MAC = MddAddC_IBOF(C,A);

dA = zeros(9,1);

dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) +
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*(Explicit_IBOF_v(D,A,1,1) + (1-OF)*(LD(1) - MAD(1)))) + gamma_mag*(2*(C(1) - (1-OF)*MC(1)) - 2 * OF * trC *
A(1) - ...
 5*((C(1)*A(1) + C(2)*A(2) + C(3)*A(3)) + (A(1)*C(1) + A(2)*C(4) + A(3)*C(7))) + 10*(Explicit_IBOF_v(C,A,1,1) + (1-
OF)*(LC(1) - MAC(1)))));

dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*(Explicit_IBOF_v(D,A,1,2) + (1-OF)*(LD(2) - MAD(2)))) + gamma_mag*(2*(C(2) - (1-OF)*MC(2)) - 2 * OF * trC *
A(2) - ...
 5*((C(1)*A(2) + C(2)*A(5) + C(3)*A(6)) + (A(1)*C(2) + A(2)*C(5) + A(3)*C(8))) + 10*(Explicit_IBOF_v(C,A,1,2) + (1-
OF)*(LC(2) - MAC(2)))));

dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,1,3) + (1-OF)*(LD(3) - MAD(3)))) + gamma_mag*(2*(C(3) - (1-OF)*MC(3)) - 2 * OF * trC *
A(3) - ...
 5*((C(1)*A(3) + C(2)*A(6) + C(3)*A(9)) + (A(1)*C(3) + A(2)*C(6) + A(3)*C(9))) + 10*(Explicit_IBOF_v(C,A,1,3) + (1-
OF)*(LC(3) - MAC(3)))));

dA(4) = dA(2);

dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*(Explicit_IBOF_v(D,A,2,2) + (1-OF)*(LD(5) - MAD(5)))) + gamma_mag*(2*(C(5) - (1-OF)*MC(5)) - 2 * OF * trC *
A(5) - ...
 5*((C(4)*A(2) + C(5)*A(5) + C(6)*A(6)) + (A(2)*C(2) + A(5)*C(5) + A(6)*C(8))) + 10*(Explicit_IBOF_v(C,A,2,2) + (1-
OF)*(LC(5) - MAC(5)))));

dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,2,3) + (1-OF)*(LD(6) - MAD(6)))) + gamma_mag*(2*(C(6) - (1-OF)*MC(6)) - 2 * OF * trC *
A(6) - ...

217

 5*((C(4)*A(3) + C(5)*A(6) + C(6)*A(9)) + (A(2)*C(3) + A(5)*C(6) + A(6)*C(9))) + 10*(Explicit_IBOF_v(C,A,2,3) + (1-
OF)*(LC(6) - MAC(6)))));

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,3,3) + (1-OF)*(LD(9) - MAD(9)))) + gamma_mag*(2*(C(9) - (1-OF)*MC(9)) - 2 * OF * trC *
A(9) - ...
 5*((C(7)*A(3) + C(8)*A(6) + C(9)*A(9)) + (A(3)*C(3) + A(6)*C(6) + A(9)*C(9))) + 10*(Explicit_IBOF_v(C,A,3,3) + (1-
OF)*(LC(9) - MAC(9)))));

end

E.2.14 ARD_RSC_IBOFc.m
function [dA] = ARD_RSC_IBOFc(w,d,OF,b1,b2,b3,b4,b5,A,Am11,Am12,Am13,dX,v)
%% Parameter Definitions

W = w;
D = d;
gamma = 2*D;
I = [1 0 0 0 1 0 0 0 1];

%% Double-Dot Terms
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ...
 gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ...
 gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9)));
%% Orientation Calculations

% Calculating the components of the anisotropic tensor, C.

C1 = b1*I(1) + b2*A(1) + b3*A(1)^2 + (b4/gamma_mag)*D(1) + (b5/gamma_mag^2)*D(1)^2;
C2 = b1*I(2) + b2*A(2) + b3*A(2)^2 + (b4/gamma_mag)*D(2) + (b5/gamma_mag^2)*D(2)^2;
C3 = b1*I(3) + b2*A(3) + b3*A(3)^2 + (b4/gamma_mag)*D(3) + (b5/gamma_mag^2)*D(3)^2;
C4 = b1*I(4) + b2*A(4) + b3*A(4)^2 + (b4/gamma_mag)*D(4) + (b5/gamma_mag^2)*D(4)^2;
C5 = b1*I(5) + b2*A(5) + b3*A(5)^2 + (b4/gamma_mag)*D(5) + (b5/gamma_mag^2)*D(5)^2;
C6 = b1*I(6) + b2*A(6) + b3*A(6)^2 + (b4/gamma_mag)*D(6) + (b5/gamma_mag^2)*D(6)^2;
C7 = b1*I(7) + b2*A(7) + b3*A(7)^2 + (b4/gamma_mag)*D(7) + (b5/gamma_mag^2)*D(7)^2;
C8 = b1*I(8) + b2*A(8) + b3*A(8)^2 + (b4/gamma_mag)*D(8) + (b5/gamma_mag^2)*D(8)^2;
C9 = b1*I(9) + b2*A(9) + b3*A(9)^2 + (b4/gamma_mag)*D(9) + (b5/gamma_mag^2)*D(9)^2;

trC = C1 + C5 + C9;

C = [C1 C2 C3 C4 C5 C6 C7 C8 C9];

LD = LddD(D,A);

MAD = MddAddD_IBOF(D,A);

MC = MddC(C,A);

LC = LddC(C,A);

218

MAC = MddAddC_IBOF(C,A);

convA = convective(A,Am11,Am12,Am13,v,dX);

dA = zeros(9,1);

dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) +
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ...
 2*(Explicit_IBOF_v(D,A,1,1) + (1-OF)*(LD(1) - MAD(1)))) + gamma_mag*(2*(C1 - (1-OF)*MC(1)) - 2 * OF * trC *
A(1) - ...
 5*((C1*A(1) + C2*A(2) + C3*A(3)) + (A(1)*C1 + A(2)*C4 + A(3)*C7)) + 10*(Explicit_IBOF_v(C,A,1,1) + (1-
OF)*(LC(1) - MAC(1))))) - convA(1);

dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) +
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ...
 2*(Explicit_IBOF_v(D,A,1,2) + (1-OF)*(LD(2) - MAD(2)))) + gamma_mag*(2*(C2 - (1-OF)*MC(2)) - 2 * OF * trC *
A(2) - ...
 5*((C1*A(2) + C2*A(5) + C3*A(6)) + (A(1)*C2 + A(2)*C5 + A(3)*C8)) + 10*(Explicit_IBOF_v(C,A,1,2) + (1-
OF)*(LC(2) - MAC(2))))) - convA(2);

dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) +
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,1,3) + (1-OF)*(LD(3) - MAD(3)))) + gamma_mag*(2*(C3 - (1-OF)*MC(3)) - 2 * OF * trC *
A(3) - ...
 5*((C1*A(3) + C2*A(6) + C3*A(9)) + (A(1)*C3 + A(2)*C6 + A(3)*C9)) + 10*(Explicit_IBOF_v(C,A,1,3) + (1-
OF)*(LC(3) - MAC(3))))) - convA(3);

dA(4) = dA(2);

dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) +
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ...
 2*(Explicit_IBOF_v(D,A,2,2) + (1-OF)*(LD(5) - MAD(5)))) + gamma_mag*(2*(C5 - (1-OF)*MC(5)) - 2 * OF * trC *
A(5) - ...
 5*((C4*A(2) + C5*A(5) + C6*A(6)) + (A(2)*C2 + A(5)*C5 + A(6)*C8)) + 10*(Explicit_IBOF_v(C,A,2,2) + (1-
OF)*(LC(5) - MAC(5))))) - convA(5);

dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) +
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,2,3) + (1-OF)*(LD(6) - MAD(6)))) + gamma_mag*(2*(C6 - (1-OF)*MC(6)) - 2 * OF * trC *
A(6) - ...
 5*((C4*A(3) + C5*A(6) + C6*A(9)) + (A(2)*C3 + A(5)*C6 + A(6)*C9)) + 10*(Explicit_IBOF_v(C,A,2,3) + (1-
OF)*(LC(6) - MAC(6))))) - convA(6);

dA(7) = dA(3);

dA(8) = dA(6);

dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) +
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ...
 2*(Explicit_IBOF_v(D,A,3,3) + (1-OF)*(LD(9) - MAD(9)))) + gamma_mag*(2*(C9 - (1-OF)*MC(9)) - 2 * OF * trC *
A(9) - ...
 5*((C7*A(3) + C8*A(6) + C9*A(9)) + (A(3)*C3 + A(6)*C6 + A(9)*C9)) + 10*(Explicit_IBOF_v(C,A,3,3) + (1-
OF)*(LC(9) - MAC(9))))) - convA(9);

end

219

E.3 Ancillary Routines

E.3.1 convective.m
function [convA] = convective(A,Am11,Am12,Am13,v,dX)

dA11dx1 = v(1)*((A(1) - Am11(1))/dX(1));
dA12dx1 = v(1)*((A(2) - Am11(2))/dX(1));
dA13dx1 = v(1)*((A(3) - Am11(3))/dX(1));
dA22dx1 = v(1)*((A(5) - Am11(5))/dX(1));
dA23dx1 = v(1)*((A(6) - Am11(6))/dX(1));
dA33dx1 = v(1)*((A(9) - Am11(9))/dX(1));

dA11dx2 = v(2)*((A(1) - Am12(1))/dX(2));
dA12dx2 = v(2)*((A(2) - Am12(2))/dX(2));
dA13dx2 = v(2)*((A(3) - Am12(3))/dX(2));
dA22dx2 = v(2)*((A(5) - Am12(5))/dX(2));
dA23dx2 = v(2)*((A(6) - Am12(6))/dX(2));
dA33dx2 = v(2)*((A(9) - Am12(9))/dX(2));

dA11dx3 = v(3)*((A(1) - Am13(1))/dX(3));
dA12dx3 = v(3)*((A(2) - Am13(2))/dX(3));
dA13dx3 = v(3)*((A(3) - Am13(3))/dX(3));
dA22dx3 = v(3)*((A(5) - Am13(5))/dX(3));
dA23dx3 = v(3)*((A(6) - Am13(6))/dX(3));
dA33dx3 = v(3)*((A(9) - Am13(9))/dX(3));

convA11 = dA11dx1 + dA11dx2 + dA11dx3;
convA12 = dA12dx1 + dA12dx2 + dA12dx3;
convA13 = dA13dx1 + dA13dx2 + dA13dx3;
convA22 = dA22dx1 + dA22dx2 + dA22dx3;
convA23 = dA23dx1 + dA23dx2 + dA23dx3;
convA33 = dA33dx1 + dA33dx2 + dA33dx3;

convA = [convA11 convA12 convA13 convA12 convA22 convA23 convA13 convA23 convA33];

convA(isnan(convA)) = 0;
convA(isinf(convA)) = 0;

end

E.3.2 convectiveBR.m
function [convBR] = convectiveBR(A,Am11,Am12,Am13,v,dX)
%% Convective Calculation of A

dA11dx1 = v(1)*((A(1) - Am11(1))/dX(1));
dA12dx1 = v(1)*((A(2) - Am11(2))/dX(1));
dA13dx1 = v(1)*((A(3) - Am11(3))/dX(1));
dA22dx1 = v(1)*((A(5) - Am11(5))/dX(1));
dA23dx1 = v(1)*((A(6) - Am11(6))/dX(1));
dA33dx1 = v(1)*((A(9) - Am11(9))/dX(1));

dA11dx2 = v(2)*((A(1) - Am12(1))/dX(2));
dA12dx2 = v(2)*((A(2) - Am12(2))/dX(2));
dA13dx2 = v(2)*((A(3) - Am12(3))/dX(2));
dA22dx2 = v(2)*((A(5) - Am12(5))/dX(2));
dA23dx2 = v(2)*((A(6) - Am12(6))/dX(2));

220

dA33dx2 = v(2)*((A(9) - Am12(9))/dX(2));

dA11dx3 = v(3)*((A(1) - Am13(1))/dX(3));
dA12dx3 = v(3)*((A(2) - Am13(2))/dX(3));
dA13dx3 = v(3)*((A(3) - Am13(3))/dX(3));
dA22dx3 = v(3)*((A(5) - Am13(5))/dX(3));
dA23dx3 = v(3)*((A(6) - Am13(6))/dX(3));
dA33dx3 = v(3)*((A(9) - Am13(9))/dX(3));

%% Convective Calculation of B

dB11dx1 = v(1)*((A(10) - Bm11(1))/dX(1));
dB12dx1 = v(1)*((A(11) - Bm11(2))/dX(1));
dB13dx1 = v(1)*((A(12) - Bm11(3))/dX(1));
dB22dx1 = v(1)*((A(14) - Bm11(5))/dX(1));
dB23dx1 = v(1)*((A(15) - Bm11(6))/dX(1));
dB33dx1 = v(1)*((A(18) - Bm11(9))/dX(1));

dB11dx2 = v(2)*((A(10) - Bm12(1))/dX(2));
dB12dx2 = v(2)*((A(11) - Bm12(2))/dX(2));
dB13dx2 = v(2)*((A(12) - Bm12(3))/dX(2));
dB22dx2 = v(2)*((A(14) - Bm12(5))/dX(2));
dB23dx2 = v(2)*((A(15) - Bm12(6))/dX(2));
dB33dx2 = v(2)*((A(18) - Bm12(9))/dX(2));

dB11dx3 = v(3)*((A(10) - Bm13(1))/dX(3));
dB12dx3 = v(3)*((A(11) - Bm13(2))/dX(3));
dB13dx3 = v(3)*((A(12) - Bm13(3))/dX(3));
dB22dx3 = v(3)*((A(14) - Bm13(5))/dX(3));
dB23dx3 = v(3)*((A(15) - Bm13(6))/dX(3));
dB33dx3 = v(3)*((A(18) - Bm13(9))/dX(3));

%% Convective Calculation of C

dC1dx1 = v(1)*((A(19) - Cm12(5))/dX(1));
dC2dx1 = v(1)*((A(20) - Cm12(6))/dX(1));
dC3dx1 = v(1)*((A(21) - Cm12(9))/dX(1));

dC1dx2 = v(2)*((A(19) - Cm13(1))/dX(2));
dC2dx2 = v(2)*((A(20) - Cm13(2))/dX(2));
dC3dx2 = v(2)*((A(21) - Cm13(3))/dX(2));

dC1dx3 = v(3)*((A(19) - Cm13(5))/dX(3));
dC2dx3 = v(3)*((A(20) - Cm13(6))/dX(3));
dC3dx3 = v(3)*((A(21) - Cm13(9))/dX(3));

%% Summation of Individual Terms to Form Tensor

convA11 = dA11dx1 + dA11dx2 + dA11dx3;
convA12 = dA12dx1 + dA12dx2 + dA12dx3;
convA13 = dA13dx1 + dA13dx2 + dA13dx3;
convA22 = dA22dx1 + dA22dx2 + dA22dx3;
convA23 = dA23dx1 + dA23dx2 + dA23dx3;
convA33 = dA33dx1 + dA33dx2 + dA33dx3;

convB11 = dB11dx1 + dB11dx2 + dB11dx3;
convB12 = dB12dx1 + dB12dx2 + dB12dx3;
convB13 = dB13dx1 + dB13dx2 + dB13dx3;

221

convB22 = dB22dx1 + dB22dx2 + dB22dx3;
convB23 = dB23dx1 + dB23dx2 + dB23dx3;
convB33 = dB33dx1 + dB33dx2 + dB33dx3;

convC1 = dC1dx1 + dC1dx2 + dC1dx3;
convC2 = dC2dx1 + dC2dx2 + dC2dx3;
convC3 = dC3dx1 + dC3dx2 + dC3dx3;

convA = [convA11 convA12 convA13 convA12 convA22 convA23 convA13 convA23 convA33];

convB = [convB11 convB12 convB13 convB12 convB22 convB23 convB13 convB23 convB33];

convC = [convC1 convC2 convC3];

convA(isnan(convA)) = 0;
convA(isinf(convA)) = 0;
convB(isnan(convB)) = 0;
convB(isinf(convB)) = 0;
convC(isnan(convC)) = 0;
convC(isinf(convC)) = 0;

convBR = [convA convB convC];

end
E.3.3 mvector.m
function [m] = mvector(dXbr,v,v_m1,v_p1,A0,k,i,j)

dx = dXbr(1);
dy = dXbr(2);
dz = dXbr(3);

d2V_dxidxj = zeros(9,3);

% Zeroing the entire dV2_dxidxj matrix so that it doesn't fill with NaN's
% when dx, dy, or dz are zero. (NaN is produced when dividing by zero.)

dV1_dx1dx1 = 0;
dV2_dx1dx1 = 0;
dV2_dx2dx1 = 0;
dV2_dx3dx1 = 0;
dV3_dx1dx1 = 0;
dV3_dx2dx1 = 0;
dV3_dx3dx1 = 0;
dV1_dx2dx1 = 0;
dV1_dx3dx1 = 0;

dV1_dx1dx2 = 0;
dV2_dx1dx2 = 0;
dV1_dx2dx2 = 0;
dV1_dx3dx2 = 0;
dV3_dx1dx2 = 0;
dV3_dx2dx2 = 0;
dV3_dx3dx2 = 0;
dV2_dx2dx2 = 0;
dV2_dx3dx2 = 0;

222

dV1_dx1dx3 = 0;
dV1_dx2dx3 = 0;
dV1_dx3dx3 = 0;
dV3_dx1dx3 = 0;
dV2_dx1dx3 = 0;
dV2_dx2dx3 = 0;
dV2_dx3dx3 = 0;
dV3_dx2dx3 = 0;
dV3_dx3dx3 = 0;

% Estimating the second derivatives using the central difference
% approximation.

if (j == 1)
% Here we have set the j-1 term equal to the no slip condition of v = 0
 if (v_p1(j,1) ~= 0) && (v_p1(j+1,1) ~= 0)
 dV1_dx1dx1 = A110*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dx^2));
 dV1_dx1dx2 = A120*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dx*dy));
 dV1_dx1dx3 = A130*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dx*dz));
 dV1_dx2dx1 = A210*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dy*dx));
 dV1_dx2dx2 = A220*((v(j+2,1) - 2*v(j+1,1) + v(j,1))/(dy^2));
 dV1_dx2dx3 = A230*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dy*dz));
 dV1_dx3dx1 = A310*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dz*dx));
 dV1_dx3dx2 = A320*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dz*dy));
 dV1_dx3dx3 = A330*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dz^2));
 end

 if(v_p1(j,2) ~= 0) && (v_p1(j+1,2) ~= 0)
 dV2_dx1dx1 = A110*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dx^2));
 dV2_dx1dx2 = A120*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dx*dy));
 dV2_dx1dx3 = A130*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dx*dz));
 dV2_dx2dx1 = A210*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dy*dx));
 dV2_dx2dx2 = A220*((v(j+2,2) - 2*v(j+1,2) + v(j,2))/(dy^2));
 dV2_dx2dx3 = A230*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dy*dz));
 dV2_dx3dx1 = A310*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dz*dx));
 dV2_dx3dx2 = A320*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dz*dy));
 dV2_dx3dx3 = A330*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dz^2));
 end

 if(v_p1(j,3) ~= 0) && (v_p1(j+1,3) ~= 0)
 dV3_dx1dx1 = A110*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dx^2));
 dV3_dx1dx2 = A120*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dx*dy));
 dV3_dx1dx3 = A130*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dx*dz));
 dV3_dx2dx1 = A210*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dy*dx));
 dV3_dx2dx2 = A220*((v(j+2,3) - 2*v(j+1,3) + v(j,3))/(dy^2));
 dV3_dx2dx3 = A230*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dy*dz));
 dV3_dx3dx1 = A310*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dz*dx));
 dV3_dx3dx2 = A320*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dz*dy));
 dV3_dx3dx3 = A330*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dz^2));
 end

end

if (j > 1 && j < 31)
 % Here we are estimating the numerical derivatives away from the wall
 % so no boundary conditions are imposed in the code.

 if (v_p1(j+1,1) ~= 0) && (v_p1(j,1) ~= 0) && (v_p1(j-1,1) ~= 0)
 dV1_dx1dx1 = A110*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dx^2));

223

 dV1_dx1dx2 = A120*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dx*dy));
 dV1_dx1dx3 = A130*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dx*dz));
 dV1_dx2dx1 = A210*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dy*dx));
 dV1_dx2dx2 = A220*((v(j+1,1) - 2*v(j,1) + v(j-1,1))/(dy^2));
 dV1_dx2dx3 = A230*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dy*dz));
 dV1_dx3dx1 = A310*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dz*dx));
 dV1_dx3dx2 = A320*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dz*dy));
 dV1_dx3dx3 = A330*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dz^2));
 end

 if (v_p1(j+1,2) ~= 0) && (v_p1(j,2) ~= 0) && (v_p1(j-1,2) ~= 0)
 dV2_dx1dx1 = A110*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dx^2));
 dV2_dx1dx2 = A120*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dx*dy));
 dV2_dx1dx3 = A130*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dx*dz));
 dV2_dx2dx1 = A210*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dy*dx));
 dV2_dx2dx2 = A220*((v(j+1,2) - 2*v(j,2) + v(j-1,2))/(dy^2));
 dV2_dx2dx3 = A230*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dy*dz));
 dV2_dx3dx1 = A310*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dz*dx));
 dV2_dx3dx2 = A320*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dz*dy));
 dV2_dx3dx3 = A330*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dz^2));
 end

 if (v_p1(j+1,3) ~= 0) && (v_p1(j,3) ~= 0) && (v_p1(j-1,3) ~= 0)
 dV3_dx1dx1 = A110*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dx^2));
 dV3_dx1dx2 = A120*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dx*dy));
 dV3_dx1dx3 = A130*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dx*dz));
 dV3_dx2dx1 = A210*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dy*dx));
 dV3_dx2dx2 = A220*((v(j+1,3) - 2*v(j,3) + v(j-1,3))/(dy^2));
 dV3_dx2dx3 = A230*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dy*dz));
 dV3_dx3dx1 = A310*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dz*dx));
 dV3_dx3dx2 = A320*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dz*dy));
 dV3_dx3dx3 = A330*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dz^2));
 end

end

if (j == 31)
% Here we again impose the no slip boundary condition, but instead we
% equate the j+1 term equal to zero.

 if (v_p1(j,1) ~= 0) && (v(j,1) ~= 0) && (v_m1(j,1) ~= 0)
 dV1_dx1dx1 = A110*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dx^2));
 dV1_dx1dx2 = A120*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dx*dy));
 dV1_dx1dx3 = A130*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dx*dz));
 dV1_dx2dx1 = A210*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dy*dx));
 dV1_dx2dx2 = A220*((v(j,1) - 2*v(j-1,1) + v(j-2,1))/(dy^2));
 dV1_dx2dx3 = A230*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dy*dz));
 dV1_dx3dx1 = A310*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dz*dx));
 dV1_dx3dx2 = A320*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dz*dy));
 dV1_dx3dx3 = A330*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dz^2));
 end

 if (v_p1(j,2) ~= 0) && (v_p1(j-1,2) ~= 0)
 dV2_dx1dx1 = A110*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dx^2));
 dV2_dx1dx2 = A120*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dx*dy));
 dV2_dx1dx3 = A130*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dx*dz));
 dV2_dx2dx1 = A210*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dy*dx));
 dV2_dx2dx2 = A220*((v(j,2) - 2*v(j-1,2) + v(j-2,2))/(dy^2));
 dV2_dx2dx3 = A230*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dy*dz));
 dV2_dx3dx1 = A310*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dz*dx));

224

 dV2_dx3dx2 = A320*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dz*dy));
 dV2_dx3dx3 = A330*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dz^2));
 end

 if (v_p1(j,3) ~= 0) && (v_p1(j-1,3) ~= 0)
 dV3_dx1dx1 = A110*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dx^2));
 dV3_dx1dx2 = A120*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dx*dy));
 dV3_dx1dx3 = A130*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dx*dz));
 dV3_dx2dx1 = A210*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dy*dx));
 dV3_dx2dx2 = A220*((v(j,3) - 2*v(j-1,3) + v(j-2,3))/(dy^2));
 dV3_dx2dx3 = A230*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dy*dz));
 dV3_dx3dx1 = A310*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dz*dx));
 dV3_dx3dx2 = A320*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dz*dy));
 dV3_dx3dx3 = A330*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dz^2));
 end

end

d2V_dxidxj(:,1) = [dV1_dx1dx1 dV1_dx1dx2 dV1_dx1dx3 dV1_dx2dx1 dV1_dx2dx2 dV1_dx2dx3 dV1_dx3dx1 dV1_dx3dx2
dV1_dx3dx3];

d2V_dxidxj(:,2) = [dV2_dx1dx1 dV2_dx1dx2 dV2_dx1dx3 dV2_dx2dx1 dV2_dx2dx2 dV2_dx2dx3 dV2_dx3dx1 dV2_dx3dx2
dV2_dx3dx3];

d2V_dxidxj(:,3) = [dV3_dx1dx1 dV3_dx1dx2 dV3_dx1dx3 dV3_dx2dx1 dV3_dx2dx2 dV3_dx2dx3 dV3_dx3dx1 dV3_dx3dx2
dV3_dx3dx3];

d2V_dxidxj(isnan(d2V_dxidxj)) = 0;
d2V_dxidxj(isinf(d2V_dxidxj)) = 0;

m = sum(d2V_dxidxj(:,k));
end

E.3.4 LddD.m
function [LddD] = LddD(D,A)

% Function written to compute the 4th order L tensor double dotted into the
% 2nd order rate of strain tensor (D).

[eigAvec,eigAval] = eig(reshape(A,3,3)); % Calculation of the numerical eigenvalues and eigenvectors.

eigAvec = fliplr(eigAvec);
eigAval = rot90(rot90(eigAval));

% Assigning the numerical values to discrete variables to ease in
% calculation.

eigAval1 = eigAval(1);
eigAval2 = eigAval(5);
eigAval3 = eigAval(9);

eigAvec1 = eigAvec(:,1);
eigAvec2 = eigAvec(:,2);
eigAvec3 = eigAvec(:,3);

%% CALCULATION FOR I = 1

225

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

LddD1111 = eigAvec1(1)^4 *D(1);
LddD1112 = eigAvec1(1)^3 *eigAvec1(2) *D(4);
LddD1113 = eigAvec1(1)^3 *eigAvec1(3) *D(7);
LddD1121 = eigAvec1(1)^3 *eigAvec1(2) *D(2);
LddD1122 = eigAvec1(1)^2 *eigAvec1(2)^2 *D(5);
LddD1123 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *D(8);
LddD1131 = eigAvec1(1)^3 *eigAvec1(3) *D(3);
LddD1132 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *D(6);
LddD1133 = eigAvec1(1)^2 *eigAvec1(3)^2 *D(9);

LddD11_e1 = eigAval1*(LddD1111 + LddD1112 + LddD1113 + LddD1121 + LddD1122 + LddD1123 + LddD1131 +
LddD1132 + LddD1133);

% Calculation of the 1,2 Component of the LddD 2nd Order Tensor

LddD1211 = eigAvec1(1)^3 *eigAvec1(2) *D(1);
LddD1212 = eigAvec1(1)^2 *eigAvec1(2)^2 *D(4);
LddD1213 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *D(7);
LddD1221 = eigAvec1(1)^2 *eigAvec1(2)^2 *D(2);
LddD1222 = eigAvec1(1) *eigAvec1(2)^3 *D(5);
LddD1223 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *D(8);
LddD1231 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *D(3);
LddD1232 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *D(6);
LddD1233 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *D(9);

LddD12_e1 = eigAval1*(LddD1211 + LddD1212 + LddD1213 + LddD1221 + LddD1222 + LddD1223 + LddD1231 +
LddD1232 + LddD1233);

% Calculation of the 1,3 Component of the LddD 2nd Order Tensor

LddD1311 = eigAvec1(1)^3 *eigAvec1(3) *D(1);
LddD1312 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *D(4);
LddD1313 = eigAvec1(1)^2 *eigAvec1(3)^2 *D(7);
LddD1321 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *D(2);
LddD1322 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *D(5);
LddD1323 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *D(8);
LddD1331 = eigAvec1(1)^2 *eigAvec1(3)^2 *D(3);
LddD1332 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *D(6);
LddD1333 = eigAvec1(1) *eigAvec1(3)^3 *D(9);

LddD13_e1 = eigAval1*(LddD1311 + LddD1312 + LddD1313 + LddD1321 + LddD1322 + LddD1323 + LddD1331 +
LddD1332 + LddD1333);

% Calculation of the 2,1 Component of the LddD 2nd Order Tensor

LddD21_e1 = LddD12_e1; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the LddD 2nd Order Tensor

LddD2211 = eigAvec1(1)^2 *eigAvec1(2)^2 *D(1);
LddD2212 = eigAvec1(1) *eigAvec1(2)^3 *D(4);
LddD2213 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *D(7);
LddD2221 = eigAvec1(1) *eigAvec1(2)^3 *D(2);
LddD2222 = eigAvec1(2)^4 *D(5);

226

LddD2223 = eigAvec1(2)^3 *eigAvec1(3) *D(8);
LddD2231 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *D(3);
LddD2232 = eigAvec1(2)^3 *eigAvec1(3) *D(6);
LddD2233 = eigAvec1(2)^2 *eigAvec1(3)^2 *D(9);

LddD22_e1 = eigAval1*(LddD2211 + LddD2212 + LddD2213 + LddD2221 + LddD2222 + LddD2223 + LddD2231 +
LddD2232 + LddD2233);

% Calculation of the 2,3 Component of the LddD 2nd Order Tensor

LddD2311 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *D(1);
LddD2312 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *D(4);
LddD2313 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *D(7);
LddD2321 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *D(2);
LddD2322 = eigAvec1(2)^3 *eigAvec1(3) *D(5);
LddD2323 = eigAvec1(2)^2 *eigAvec1(3)^2 *D(8);
LddD2331 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *D(3);
LddD2332 = eigAvec1(2)^2 *eigAvec1(3)^2 *D(6);
LddD2333 = eigAvec1(2) *eigAvec1(3)^3 *D(9);

LddD23_e1 = eigAval1*(LddD2311 + LddD2312 + LddD2313 + LddD2321 + LddD2322 + LddD2323 + LddD2331 +
LddD2332 + LddD2333);

% Calculation of the 3,1 Component of the LddD 2nd Order Tensor

LddD31_e1 = LddD13_e1; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the LddD 2nd Order Tensor

LddD32_e1 = LddD23_e1; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the LddD 2nd Order Tensor

LddD3311 = eigAvec1(1)^2 *eigAvec1(3)^2 *D(1);
LddD3312 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *D(4);
LddD3313 = eigAvec1(1) *eigAvec1(3)^3 *D(7);
LddD3321 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *D(2);
LddD3322 = eigAvec1(2)^2 *eigAvec1(3)^2 *D(5);
LddD3323 = eigAvec1(2) *eigAvec1(3)^3 *D(8);
LddD3331 = eigAvec1(1) *eigAvec1(3)^3 *D(3);
LddD3332 = eigAvec1(2) *eigAvec1(3)^3 *D(6);
LddD3333 = eigAvec1(3)^4 *D(9);

LddD33_e1 = eigAval1*(LddD3311 + LddD3312 + LddD3313 + LddD3321 + LddD3322 + LddD3323 + LddD3331 +
LddD3332 + LddD3333);

%% CALCULATION FOR I = 2

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

LddD1111 = eigAvec2(1)^4 *D(1);
LddD1112 = eigAvec2(1)^3 *eigAvec2(2) *D(4);
LddD1113 = eigAvec2(1)^3 *eigAvec2(3) *D(7);
LddD1121 = eigAvec2(1)^3 *eigAvec2(2) *D(2);
LddD1122 = eigAvec2(1)^2 *eigAvec2(2)^2 *D(5);
LddD1123 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *D(8);
LddD1131 = eigAvec2(1)^3 *eigAvec2(3) *D(3);

227

LddD1132 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *D(6);
LddD1133 = eigAvec2(1)^2 *eigAvec2(3)^2 *D(9);

LddD11_e2 = eigAval2*(LddD1111 + LddD1112 + LddD1113 + LddD1121 + LddD1122 + LddD1123 + LddD1131 +
LddD1132 + LddD1133);

% Calculation of the 1,2 Component of the LddD 2nd Order Tensor

LddD1211 = eigAvec2(1)^3 *eigAvec2(2) *D(1);
LddD1212 = eigAvec2(1)^2 *eigAvec2(2)^2 *D(4);
LddD1213 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *D(7);
LddD1221 = eigAvec2(1)^2 *eigAvec2(2)^2 *D(2);
LddD1222 = eigAvec2(1) *eigAvec2(2)^3 *D(5);
LddD1223 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *D(8);
LddD1231 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *D(3);
LddD1232 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *D(6);
LddD1233 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *D(9);

LddD12_e2 = eigAval2*(LddD1211 + LddD1212 + LddD1213 + LddD1221 + LddD1222 + LddD1223 + LddD1231 +
LddD1232 + LddD1233);

% Calculation of the 1,3 Component of the LddD 2nd Order Tensor

LddD1311 = eigAvec2(1)^3 *eigAvec2(3) *D(1);
LddD1312 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *D(4);
LddD1313 = eigAvec2(1)^2 *eigAvec2(3)^2 *D(7);
LddD1321 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *D(2);
LddD1322 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *D(5);
LddD1323 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *D(8);
LddD1331 = eigAvec2(1)^2 *eigAvec2(3)^2 *D(3);
LddD1332 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *D(6);
LddD1333 = eigAvec2(1) *eigAvec2(3)^3 *D(9);

LddD13_e2 = eigAval2*(LddD1311 + LddD1312 + LddD1313 + LddD1321 + LddD1322 + LddD1323 + LddD1331 +
LddD1332 + LddD1333);

% Calculation of the 2,1 Component of the LddD 2nd Order Tensor

LddD21_e2 = LddD12_e2; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the LddD 2nd Order Tensor

LddD2211 = eigAvec2(1)^2 *eigAvec2(2)^2 *D(1);
LddD2212 = eigAvec2(1) *eigAvec2(2)^3 *D(4);
LddD2213 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *D(7);
LddD2221 = eigAvec2(1) *eigAvec2(2)^3 *D(2);
LddD2222 = eigAvec2(2)^4 *D(5);
LddD2223 = eigAvec2(2)^3 *eigAvec2(3) *D(8);
LddD2231 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *D(3);
LddD2232 = eigAvec2(2)^3 *eigAvec2(3) *D(6);
LddD2233 = eigAvec2(2)^2 *eigAvec2(3)^2 *D(9);

LddD22_e2 = eigAval2*(LddD2211 + LddD2212 + LddD2213 + LddD2221 + LddD2222 + LddD2223 + LddD2231 +
LddD2232 + LddD2233);

% Calculation of the 2,3 Component of the LddD 2nd Order Tensor

228

LddD2311 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *D(1);
LddD2312 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *D(4);
LddD2313 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *D(7);
LddD2321 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *D(2);
LddD2322 = eigAvec2(2)^3 *eigAvec2(3) *D(5);
LddD2323 = eigAvec2(2)^2 *eigAvec2(3)^2 *D(8);
LddD2331 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *D(3);
LddD2332 = eigAvec2(2)^2 *eigAvec2(3)^2 *D(6);
LddD2333 = eigAvec2(2) *eigAvec2(3)^3 *D(9);

LddD23_e2 = eigAval2*(LddD2311 + LddD2312 + LddD2313 + LddD2321 + LddD2322 + LddD2323 + LddD2331 +
LddD2332 + LddD2333);

% Calculation of the 3,1 Component of the LddD 2nd Order Tensor

LddD31_e2 = LddD13_e2; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the LddD 2nd Order Tensor

LddD32_e2 = LddD23_e2; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the LddD 2nd Order Tensor

LddD3311 = eigAvec2(1)^2 *eigAvec2(3)^2 *D(1);
LddD3312 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *D(4);
LddD3313 = eigAvec2(1) *eigAvec2(3)^3 *D(7);
LddD3321 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *D(2);
LddD3322 = eigAvec2(2)^2 *eigAvec2(3)^2 *D(5);
LddD3323 = eigAvec2(2) *eigAvec2(3)^3 *D(8);
LddD3331 = eigAvec2(1) *eigAvec2(3)^3 *D(3);
LddD3332 = eigAvec2(2) *eigAvec2(3)^3 *D(6);
LddD3333 = eigAvec2(3)^4 *D(9);

LddD33_e2 = eigAval2*(LddD3311 + LddD3312 + LddD3313 + LddD3321 + LddD3322 + LddD3323 + LddD3331 +
LddD3332 + LddD3333);

%% CALCULATION FOR I = 3

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

LddD1111 = eigAvec3(1)^4 *D(1);
LddD1112 = eigAvec3(1)^3 *eigAvec3(2) *D(4);
LddD1113 = eigAvec3(1)^3 *eigAvec3(3) *D(7);
LddD1121 = eigAvec3(1)^3 *eigAvec3(2) *D(2);
LddD1122 = eigAvec3(1)^2 *eigAvec3(2)^2 *D(5);
LddD1123 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *D(8);
LddD1131 = eigAvec3(1)^3 *eigAvec3(3) *D(3);
LddD1132 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *D(6);
LddD1133 = eigAvec3(1)^2 *eigAvec3(3)^2 *D(9);

LddD11_e3 = eigAval3*(LddD1111 + LddD1112 + LddD1113 + LddD1121 + LddD1122 + LddD1123 + LddD1131 +
LddD1132 + LddD1133);

% Calculation of the 1,2 Component of the LddD 2nd Order Tensor

LddD1211 = eigAvec3(1)^3 *eigAvec3(2) *D(1);
LddD1212 = eigAvec3(1)^2 *eigAvec3(2)^2 *D(4);

229

LddD1213 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *D(7);
LddD1221 = eigAvec3(1)^2 *eigAvec3(2)^2 *D(2);
LddD1222 = eigAvec3(1) *eigAvec3(2)^3 *D(5);
LddD1223 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *D(8);
LddD1231 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *D(3);
LddD1232 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *D(6);
LddD1233 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *D(9);

LddD12_e3 = eigAval3*(LddD1211 + LddD1212 + LddD1213 + LddD1221 + LddD1222 + LddD1223 + LddD1231 +
LddD1232 + LddD1233);

% Calculation of the 1,3 Component of the LddD 2nd Order Tensor

LddD1311 = eigAvec3(1)^3 *eigAvec3(3) *D(1);
LddD1312 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *D(4);
LddD1313 = eigAvec3(1)^2 *eigAvec3(3)^2 *D(7);
LddD1321 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *D(2);
LddD1322 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *D(5);
LddD1323 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *D(8);
LddD1331 = eigAvec3(1)^2 *eigAvec3(3)^2 *D(3);
LddD1332 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *D(6);
LddD1333 = eigAvec3(1) *eigAvec3(3)^3 *D(9);

LddD13_e3 = eigAval3*(LddD1311 + LddD1312 + LddD1313 + LddD1321 + LddD1322 + LddD1323 + LddD1331 +
LddD1332 + LddD1333);

% Calculation of the 2,1 Component of the LddD 2nd Order Tensor

LddD21_e3 = LddD12_e3; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the LddD 2nd Order Tensor

LddD2211 = eigAvec3(1)^2 *eigAvec3(2)^2 *D(1);
LddD2212 = eigAvec3(1) *eigAvec3(2)^3 *D(4);
LddD2213 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *D(7);
LddD2221 = eigAvec3(1) *eigAvec3(2)^3 *D(2);
LddD2222 = eigAvec3(2)^4 *D(5);
LddD2223 = eigAvec3(2)^3 *eigAvec3(3) *D(8);
LddD2231 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *D(3);
LddD2232 = eigAvec3(2)^3 *eigAvec3(3) *D(6);
LddD2233 = eigAvec3(2)^2 *eigAvec3(3)^2 *D(9);

LddD22_e3 = eigAval3*(LddD2211 + LddD2212 + LddD2213 + LddD2221 + LddD2222 + LddD2223 + LddD2231 +
LddD2232 + LddD2233);

% Calculation of the 2,3 Component of the LddD 2nd Order Tensor

LddD2311 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *D(1);
LddD2312 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *D(4);
LddD2313 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *D(7);
LddD2321 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *D(2);
LddD2322 = eigAvec3(2)^3 *eigAvec3(3) *D(5);
LddD2323 = eigAvec3(2)^2 *eigAvec3(3)^2 *D(8);
LddD2331 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *D(3);
LddD2332 = eigAvec3(2)^2 *eigAvec3(3)^2 *D(6);
LddD2333 = eigAvec3(2) *eigAvec3(3)^3 *D(9);

230

LddD23_e3 = eigAval3*(LddD2311 + LddD2312 + LddD2313 + LddD2321 + LddD2322 + LddD2323 + LddD2331 +
LddD2332 + LddD2333);

% Calculation of the 3,1 Component of the LddD 2nd Order Tensor

LddD31_e3 = LddD13_e3; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the LddD 2nd Order Tensor

LddD32_e3 = LddD23_e3; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the LddD 2nd Order Tensor

LddD3311 = eigAvec3(1)^2 *eigAvec3(3)^2 *D(1);
LddD3312 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *D(4);
LddD3313 = eigAvec3(1) *eigAvec3(3)^3 *D(7);
LddD3321 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *D(2);
LddD3322 = eigAvec3(2)^2 *eigAvec3(3)^2 *D(5);
LddD3323 = eigAvec3(2) *eigAvec3(3)^3 *D(8);
LddD3331 = eigAvec3(1) *eigAvec3(3)^3 *D(3);
LddD3332 = eigAvec3(2) *eigAvec3(3)^3 *D(6);
LddD3333 = eigAvec3(3)^4 *D(9);

LddD33_e3 = eigAval2*(LddD3311 + LddD3312 + LddD3313 + LddD3321 + LddD3322 + LddD3323 + LddD3331 +
LddD3332 + LddD3333);

LddD11 = LddD11_e1 + LddD11_e2 + LddD11_e3;
LddD12 = LddD12_e1 + LddD12_e2 + LddD12_e3;
LddD13 = LddD13_e1 + LddD13_e2 + LddD13_e3;
LddD21 = LddD21_e1 + LddD21_e2 + LddD21_e3;
LddD22 = LddD22_e1 + LddD22_e2 + LddD22_e3;
LddD23 = LddD23_e1 + LddD23_e2 + LddD23_e3;
LddD31 = LddD32_e1 + LddD31_e2 + LddD31_e3;
LddD32 = LddD32_e1 + LddD32_e2 + LddD32_e3;
LddD33 = LddD33_e1 + LddD33_e2 + LddD33_e3;

LddD = [LddD11 LddD12 LddD13 LddD21 LddD22 LddD23 LddD31 LddD32 LddD33];

LddD(isnan(LddD)) = 0;
LddD(isinf(LddD)) = 0;

end
E.3.5 LddC.m
function [LddC] = LddC(C,A)

% Function written to compute the 4th order L tensor double dotted into the
% 2nd order anisotropy tensor (C).

[eigAvec,eigAval] = eig(reshape(A,3,3)); % Calculation of the numerical eigenvalues and eigenvectors.

eigAvec = fliplr(eigAvec);
eigAval = rot90(rot90(eigAval));

% Assigning the numerical values to discrete variables to ease in
% calculation.

231

eigAval1 = eigAval(1);
eigAval2 = eigAval(5);
eigAval3 = eigAval(9);

eigAvec1 = eigAvec(:,1);
eigAvec2 = eigAvec(:,2);
eigAvec3 = eigAvec(:,3);

%% CALCULATION FOR I = 1

% Calculation of the 1,1 Component of the LddC 2nd Order Tensor

LddC1111 = eigAvec1(1)^4 *C(1);
LddC1112 = eigAvec1(1)^3 *eigAvec1(2) *C(4);
LddC1113 = eigAvec1(1)^3 *eigAvec1(3) *C(7);
LddC1121 = eigAvec1(1)^3 *eigAvec1(2) *C(2);
LddC1122 = eigAvec1(1)^2 *eigAvec1(2)^2 *C(5);
LddC1123 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(8);
LddC1131 = eigAvec1(1)^3 *eigAvec1(3) *C(3);
LddC1132 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(6);
LddC1133 = eigAvec1(1)^2 *eigAvec1(3)^2 *C(9);

LddC11_e1 = eigAval1*(LddC1111 + LddC1112 + LddC1113 + LddC1121 + LddC1122 + LddC1123 + LddC1131 + LddC1132
+ LddC1133);

% Calculation of the 1,2 Component of the LddC 2nd Order Tensor

LddC1211 = eigAvec1(1)^3 *eigAvec1(2) *C(1);
LddC1212 = eigAvec1(1)^2 *eigAvec1(2)^2 *C(4);
LddC1213 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(7);
LddC1221 = eigAvec1(1)^2 *eigAvec1(2)^2 *C(2);
LddC1222 = eigAvec1(1) *eigAvec1(2)^3 *C(5);
LddC1223 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(8);
LddC1231 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(3);
LddC1232 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(6);
LddC1233 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(9);

LddC12_e1 = eigAval1*(LddC1211 + LddC1212 + LddC1213 + LddC1221 + LddC1222 + LddC1223 + LddC1231 + LddC1232
+ LddC1233);

% Calculation of the 1,3 Component of the LddC 2nd Order Tensor

LddC1311 = eigAvec1(1)^3 *eigAvec1(3) *C(1);
LddC1312 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(4);
LddC1313 = eigAvec1(1)^2 *eigAvec1(3)^2 *C(7);
LddC1321 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(2);
LddC1322 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(5);
LddC1323 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(8);
LddC1331 = eigAvec1(1)^2 *eigAvec1(3)^2 *C(3);
LddC1332 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(6);
LddC1333 = eigAvec1(1) *eigAvec1(3)^3 *C(9);

LddC13_e1 = eigAval1*(LddC1311 + LddC1312 + LddC1313 + LddC1321 + LddC1322 + LddC1323 + LddC1331 + LddC1332
+ LddC1333);

% Calculation of the 2,1 Component of the LddC 2nd Order Tensor

232

LddC21_e1 = LddC12_e1; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the LddC 2nd Order Tensor

LddC2211 = eigAvec1(1)^2 *eigAvec1(2)^2 *C(1);
LddC2212 = eigAvec1(1) *eigAvec1(2)^3 *C(4);
LddC2213 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(7);
LddC2221 = eigAvec1(1) *eigAvec1(2)^3 *C(2);
LddC2222 = eigAvec1(2)^4 *C(5);
LddC2223 = eigAvec1(2)^3 *eigAvec1(3) *C(8);
LddC2231 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(3);
LddC2232 = eigAvec1(2)^3 *eigAvec1(3) *C(6);
LddC2233 = eigAvec1(2)^2 *eigAvec1(3)^2 *C(9);

LddC22_e1 = eigAval1*(LddC2211 + LddC2212 + LddC2213 + LddC2221 + LddC2222 + LddC2223 + LddC2231 + LddC2232
+ LddC2233);

% Calculation of the 2,3 Component of the LddC 2nd Order Tensor

LddC2311 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(1);
LddC2312 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(4);
LddC2313 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(7);
LddC2321 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(2);
LddC2322 = eigAvec1(2)^3 *eigAvec1(3) *C(5);
LddC2323 = eigAvec1(2)^2 *eigAvec1(3)^2 *C(8);
LddC2331 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(3);
LddC2332 = eigAvec1(2)^2 *eigAvec1(3)^2 *C(6);
LddC2333 = eigAvec1(2) *eigAvec1(3)^3 *C(9);

LddC23_e1 = eigAval1*(LddC2311 + LddC2312 + LddC2313 + LddC2321 + LddC2322 + LddC2323 + LddC2331 + LddC2332
+ LddC2333);

% Calculation of the 3,1 Component of the LddC 2nd Order Tensor

LddC31_e1 = LddC13_e1; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the LddC 2nd Order Tensor

LddC32_e1 = LddC23_e1; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the LddC 2nd Order Tensor

LddC3311 = eigAvec1(1)^2 *eigAvec1(3)^2 *C(1);
LddC3312 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(4);
LddC3313 = eigAvec1(1) *eigAvec1(3)^3 *C(7);
LddC3321 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(2);
LddC3322 = eigAvec1(2)^2 *eigAvec1(3)^2 *C(5);
LddC3323 = eigAvec1(2) *eigAvec1(3)^3 *C(8);
LddC3331 = eigAvec1(1) *eigAvec1(3)^3 *C(3);
LddC3332 = eigAvec1(2) *eigAvec1(3)^3 *C(6);
LddC3333 = eigAvec1(3)^4 *C(9);

LddC33_e1 = eigAval1*(LddC3311 + LddC3312 + LddC3313 + LddC3321 + LddC3322 + LddC3323 + LddC3331 + LddC3332
+ LddC3333);

%% CALCULATION FOR I = 2

233

% Calculation of the 1,1 Component of the LddC 2nd Order Tensor

LddC1111 = eigAvec2(1)^4 *C(1);
LddC1112 = eigAvec2(1)^3 *eigAvec2(2) *C(4);
LddC1113 = eigAvec2(1)^3 *eigAvec2(3) *C(7);
LddC1121 = eigAvec2(1)^3 *eigAvec2(2) *C(2);
LddC1122 = eigAvec2(1)^2 *eigAvec2(2)^2 *C(5);
LddC1123 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(8);
LddC1131 = eigAvec2(1)^3 *eigAvec2(3) *C(3);
LddC1132 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(6);
LddC1133 = eigAvec2(1)^2 *eigAvec2(3)^2 *C(9);

LddC11_e2 = eigAval2*(LddC1111 + LddC1112 + LddC1113 + LddC1121 + LddC1122 + LddC1123 + LddC1131 + LddC1132
+ LddC1133);

% Calculation of the 1,2 Component of the LddC 2nd Order Tensor

LddC1211 = eigAvec2(1)^3 *eigAvec2(2) *C(1);
LddC1212 = eigAvec2(1)^2 *eigAvec2(2)^2 *C(4);
LddC1213 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(7);
LddC1221 = eigAvec2(1)^2 *eigAvec2(2)^2 *C(2);
LddC1222 = eigAvec2(1) *eigAvec2(2)^3 *C(5);
LddC1223 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(8);
LddC1231 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(3);
LddC1232 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(6);
LddC1233 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(9);

LddC12_e2 = eigAval2*(LddC1211 + LddC1212 + LddC1213 + LddC1221 + LddC1222 + LddC1223 + LddC1231 + LddC1232
+ LddC1233);

% Calculation of the 1,3 Component of the LddC 2nd Order Tensor

LddC1311 = eigAvec2(1)^3 *eigAvec2(3) *C(1);
LddC1312 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(4);
LddC1313 = eigAvec2(1)^2 *eigAvec2(3)^2 *C(7);
LddC1321 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(2);
LddC1322 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(5);
LddC1323 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(8);
LddC1331 = eigAvec2(1)^2 *eigAvec2(3)^2 *C(3);
LddC1332 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(6);
LddC1333 = eigAvec2(1) *eigAvec2(3)^3 *C(9);

LddC13_e2 = eigAval2*(LddC1311 + LddC1312 + LddC1313 + LddC1321 + LddC1322 + LddC1323 + LddC1331 + LddC1332
+ LddC1333);

% Calculation of the 2,1 Component of the LddC 2nd Order Tensor

LddC21_e2 = LddC12_e2; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the LddC 2nd Order Tensor

LddC2211 = eigAvec2(1)^2 *eigAvec2(2)^2 *C(1);
LddC2212 = eigAvec2(1) *eigAvec2(2)^3 *C(4);
LddC2213 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(7);
LddC2221 = eigAvec2(1) *eigAvec2(2)^3 *C(2);
LddC2222 = eigAvec2(2)^4 *C(5);

234

LddC2223 = eigAvec2(2)^3 *eigAvec2(3) *C(8);
LddC2231 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(3);
LddC2232 = eigAvec2(2)^3 *eigAvec2(3) *C(6);
LddC2233 = eigAvec2(2)^2 *eigAvec2(3)^2 *C(9);

LddC22_e2 = eigAval2*(LddC2211 + LddC2212 + LddC2213 + LddC2221 + LddC2222 + LddC2223 + LddC2231 + LddC2232
+ LddC2233);

% Calculation of the 2,3 Component of the LddC 2nd Order Tensor

LddC2311 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(1);
LddC2312 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(4);
LddC2313 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(7);
LddC2321 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(2);
LddC2322 = eigAvec2(2)^3 *eigAvec2(3) *C(5);
LddC2323 = eigAvec2(2)^2 *eigAvec2(3)^2 *C(8);
LddC2331 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(3);
LddC2332 = eigAvec2(2)^2 *eigAvec2(3)^2 *C(6);
LddC2333 = eigAvec2(2) *eigAvec2(3)^3 *C(9);

LddC23_e2 = eigAval2*(LddC2311 + LddC2312 + LddC2313 + LddC2321 + LddC2322 + LddC2323 + LddC2331 + LddC2332
+ LddC2333);

% Calculation of the 3,1 Component of the LddC 2nd Order Tensor

LddC31_e2 = LddC13_e2; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the LddC 2nd Order Tensor

LddC32_e2 = LddC23_e2; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the LddC 2nd Order Tensor

LddC3311 = eigAvec2(1)^2 *eigAvec2(3)^2 *C(1);
LddC3312 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(4);
LddC3313 = eigAvec2(1) *eigAvec2(3)^3 *C(7);
LddC3321 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(2);
LddC3322 = eigAvec2(2)^2 *eigAvec2(3)^2 *C(5);
LddC3323 = eigAvec2(2) *eigAvec2(3)^3 *C(8);
LddC3331 = eigAvec2(1) *eigAvec2(3)^3 *C(3);
LddC3332 = eigAvec2(2) *eigAvec2(3)^3 *C(6);
LddC3333 = eigAvec2(3)^4 *C(9);

LddC33_e2 = eigAval2*(LddC3311 + LddC3312 + LddC3313 + LddC3321 + LddC3322 + LddC3323 + LddC3331 + LddC3332
+ LddC3333);

%% CALCULATION FOR I = 3

% Calculation of the 1,1 Component of the LddC 2nd Order Tensor

LddC1111 = eigAvec3(1)^4 *C(1);
LddC1112 = eigAvec3(1)^3 *eigAvec3(2) *C(4);
LddC1113 = eigAvec3(1)^3 *eigAvec3(3) *C(7);
LddC1121 = eigAvec3(1)^3 *eigAvec3(2) *C(2);
LddC1122 = eigAvec3(1)^2 *eigAvec3(2)^2 *C(5);
LddC1123 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(8);
LddC1131 = eigAvec3(1)^3 *eigAvec3(3) *C(3);

235

LddC1132 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(6);
LddC1133 = eigAvec3(1)^2 *eigAvec3(3)^2 *C(9);

LddC11_e3 = eigAval3*(LddC1111 + LddC1112 + LddC1113 + LddC1121 + LddC1122 + LddC1123 + LddC1131 + LddC1132
+ LddC1133);

% Calculation of the 1,2 Component of the LddC 2nd Order Tensor

LddC1211 = eigAvec3(1)^3 *eigAvec3(2) *C(1);
LddC1212 = eigAvec3(1)^2 *eigAvec3(2)^2 *C(4);
LddC1213 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(7);
LddC1221 = eigAvec3(1)^2 *eigAvec3(2)^2 *C(2);
LddC1222 = eigAvec3(1) *eigAvec3(2)^3 *C(5);
LddC1223 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(8);
LddC1231 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(3);
LddC1232 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(6);
LddC1233 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(9);

LddC12_e3 = eigAval3*(LddC1211 + LddC1212 + LddC1213 + LddC1221 + LddC1222 + LddC1223 + LddC1231 + LddC1232
+ LddC1233);

% Calculation of the 1,3 Component of the LddC 2nd Order Tensor

LddC1311 = eigAvec3(1)^3 *eigAvec3(3) *C(1);
LddC1312 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(4);
LddC1313 = eigAvec3(1)^2 *eigAvec3(3)^2 *C(7);
LddC1321 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(2);
LddC1322 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(5);
LddC1323 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(8);
LddC1331 = eigAvec3(1)^2 *eigAvec3(3)^2 *C(3);
LddC1332 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(6);
LddC1333 = eigAvec3(1) *eigAvec3(3)^3 *C(9);

LddC13_e3 = eigAval3*(LddC1311 + LddC1312 + LddC1313 + LddC1321 + LddC1322 + LddC1323 + LddC1331 + LddC1332
+ LddC1333);

% Calculation of the 2,1 Component of the LddC 2nd Order Tensor

LddC21_e3 = LddC12_e3; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the LddC 2nd Order Tensor

LddC2211 = eigAvec3(1)^2 *eigAvec3(2)^2 *C(1);
LddC2212 = eigAvec3(1) *eigAvec3(2)^3 *C(4);
LddC2213 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(7);
LddC2221 = eigAvec3(1) *eigAvec3(2)^3 *C(2);
LddC2222 = eigAvec3(2)^4 *C(5);
LddC2223 = eigAvec3(2)^3 *eigAvec3(3) *C(8);
LddC2231 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(3);
LddC2232 = eigAvec3(2)^3 *eigAvec3(3) *C(6);
LddC2233 = eigAvec3(2)^2 *eigAvec3(3)^2 *C(9);

LddC22_e3 = eigAval3*(LddC2211 + LddC2212 + LddC2213 + LddC2221 + LddC2222 + LddC2223 + LddC2231 + LddC2232
+ LddC2233);

% Calculation of the 2,3 Component of the LddC 2nd Order Tensor

236

LddC2311 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(1);
LddC2312 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(4);
LddC2313 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(7);
LddC2321 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(2);
LddC2322 = eigAvec3(2)^3 *eigAvec3(3) *C(5);
LddC2323 = eigAvec3(2)^2 *eigAvec3(3)^2 *C(8);
LddC2331 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(3);
LddC2332 = eigAvec3(2)^2 *eigAvec3(3)^2 *C(6);
LddC2333 = eigAvec3(2) *eigAvec3(3)^3 *C(9);

LddC23_e3 = eigAval3*(LddC2311 + LddC2312 + LddC2313 + LddC2321 + LddC2322 + LddC2323 + LddC2331 + LddC2332
+ LddC2333);

% Calculation of the 3,1 Component of the LddC 2nd Order Tensor

LddC31_e3 = LddC13_e3; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the LddC 2nd Order Tensor

LddC32_e3 = LddC23_e3; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the LddC 2nd Order Tensor

LddC3311 = eigAvec3(1)^2 *eigAvec3(3)^2 *C(1);
LddC3312 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(4);
LddC3313 = eigAvec3(1) *eigAvec3(3)^3 *C(7);
LddC3321 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(2);
LddC3322 = eigAvec3(2)^2 *eigAvec3(3)^2 *C(5);
LddC3323 = eigAvec3(2) *eigAvec3(3)^3 *C(8);
LddC3331 = eigAvec3(1) *eigAvec3(3)^3 *C(3);
LddC3332 = eigAvec3(2) *eigAvec3(3)^3 *C(6);
LddC3333 = eigAvec3(3)^4 *C(9);

LddC33_e3 = eigAval3*(LddC3311 + LddC3312 + LddC3313 + LddC3321 + LddC3322 + LddC3323 + LddC3331 + LddC3332
+ LddC3333);

%% Summing the terms over i (i.e. i = 1,2,3)

LddC11 = LddC11_e1 + LddC11_e2 + LddC11_e3;
LddC12 = LddC12_e1 + LddC12_e2 + LddC12_e3;
LddC13 = LddC13_e1 + LddC13_e2 + LddC13_e3;
LddC21 = LddC21_e1 + LddC21_e2 + LddC21_e3;
LddC22 = LddC22_e1 + LddC22_e2 + LddC22_e3;
LddC23 = LddC23_e1 + LddC23_e2 + LddC23_e3;
LddC31 = LddC32_e1 + LddC31_e2 + LddC31_e3;
LddC32 = LddC32_e1 + LddC32_e2 + LddC32_e3;
LddC33 = LddC33_e1 + LddC33_e2 + LddC33_e3;

%% Forming the L:C Tensor (2nd Order)

LddC = [LddC11 LddC12 LddC13 LddC21 LddC22 LddC23 LddC31 LddC32 LddC33];

end
E.3.6 MddC.m
function [MddC] = MddC(C,A)

237

% Function written to compute the 4th order M tensor double dotted into the
% 2nd order anistropy tensor (D).

[eigAvec,eigAval] = eig(reshape(A,3,3)); % Calculation of the numerical eigenvalues and eigenvectors.

eigAvec = fliplr(eigAvec);
eigAval = rot90(rot90(eigAval));

% Assigning the numerical values to discrete variables to ease in
% calculation.

eigAvec1 = eigAvec(:,1);
eigAvec2 = eigAvec(:,2);
eigAvec3 = eigAvec(:,3);

%% CALCULATION FOR I = 1

% Calculation of the 1,1 Component of the MddC 2nd Order Tensor

MddC1111 = eigAvec1(1)^4 *C(1);
MddC1112 = eigAvec1(1)^3 *eigAvec1(2) *C(4);
MddC1113 = eigAvec1(1)^3 *eigAvec1(3) *C(7);
MddC1121 = eigAvec1(1)^3 *eigAvec1(2) *C(2);
MddC1122 = eigAvec1(1)^2 *eigAvec1(2)^2 *C(5);
MddC1123 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(8);
MddC1131 = eigAvec1(1)^3 *eigAvec1(3) *C(3);
MddC1132 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(6);
MddC1133 = eigAvec1(1)^2 *eigAvec1(3)^2 *C(9);

MddC11_e1 = (MddC1111 + MddC1112 + MddC1113 + MddC1121 + MddC1122 + MddC1123 + MddC1131 + MddC1132 +
MddC1133);

% Calculation of the 1,2 Component of the MddC 2nd Order Tensor

MddC1211 = eigAvec1(1)^3 *eigAvec1(2) *C(1);
MddC1212 = eigAvec1(1)^2 *eigAvec1(2)^2 *C(4);
MddC1213 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(7);
MddC1221 = eigAvec1(1)^2 *eigAvec1(2)^2 *C(2);
MddC1222 = eigAvec1(1) *eigAvec1(2)^3 *C(5);
MddC1223 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(8);
MddC1231 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(3);
MddC1232 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(6);
MddC1233 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(9);

MddC12_e1 = (MddC1211 + MddC1212 + MddC1213 + MddC1221 + MddC1222 + MddC1223 + MddC1231 + MddC1232 +
MddC1233);

% Calculation of the 1,3 Component of the MddC 2nd Order Tensor

MddC1311 = eigAvec1(1)^3 *eigAvec1(3) *C(1);
MddC1312 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(4);
MddC1313 = eigAvec1(1)^2 *eigAvec1(3)^2 *C(7);
MddC1321 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(2);
MddC1322 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(5);
MddC1323 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(8);
MddC1331 = eigAvec1(1)^2 *eigAvec1(3)^2 *C(3);
MddC1332 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(6);

238

MddC1333 = eigAvec1(1) *eigAvec1(3)^3 *C(9);

MddC13_e1 = (MddC1311 + MddC1312 + MddC1313 + MddC1321 + MddC1322 + MddC1323 + MddC1331 + MddC1332 +
MddC1333);

% Calculation of the 2,1 Component of the MddC 2nd Order Tensor

MddC21_e1 = MddC12_e1; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddC 2nd Order Tensor

MddC2211 = eigAvec1(1)^2 *eigAvec1(2)^2 *C(1);
MddC2212 = eigAvec1(1) *eigAvec1(2)^3 *C(4);
MddC2213 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(7);
MddC2221 = eigAvec1(1) *eigAvec1(2)^3 *C(2);
MddC2222 = eigAvec1(2)^4 *C(5);
MddC2223 = eigAvec1(2)^3 *eigAvec1(3) *C(8);
MddC2231 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(3);
MddC2232 = eigAvec1(2)^3 *eigAvec1(3) *C(6);
MddC2233 = eigAvec1(2)^2 *eigAvec1(3)^2 *C(9);

MddC22_e1 = (MddC2211 + MddC2212 + MddC2213 + MddC2221 + MddC2222 + MddC2223 + MddC2231 + MddC2232 +
MddC2233);

% Calculation of the 2,3 Component of the MddC 2nd Order Tensor

MddC2311 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *C(1);
MddC2312 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(4);
MddC2313 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(7);
MddC2321 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *C(2);
MddC2322 = eigAvec1(2)^3 *eigAvec1(3) *C(5);
MddC2323 = eigAvec1(2)^2 *eigAvec1(3)^2 *C(8);
MddC2331 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(3);
MddC2332 = eigAvec1(2)^2 *eigAvec1(3)^2 *C(6);
MddC2333 = eigAvec1(2) *eigAvec1(3)^3 *C(9);

MddC23_e1 = (MddC2311 + MddC2312 + MddC2313 + MddC2321 + MddC2322 + MddC2323 + MddC2331 + MddC2332 +
MddC2333);

% Calculation of the 3,1 Component of the MddC 2nd Order Tensor

MddC31_e1 = MddC13_e1; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddC 2nd Order Tensor

MddC32_e1 = MddC23_e1; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddC 2nd Order Tensor

MddC3311 = eigAvec1(1)^2 *eigAvec1(3)^2 *C(1);
MddC3312 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(4);
MddC3313 = eigAvec1(1) *eigAvec1(3)^3 *C(7);
MddC3321 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *C(2);
MddC3322 = eigAvec1(2)^2 *eigAvec1(3)^2 *C(5);
MddC3323 = eigAvec1(2) *eigAvec1(3)^3 *C(8);
MddC3331 = eigAvec1(1) *eigAvec1(3)^3 *C(3);
MddC3332 = eigAvec1(2) *eigAvec1(3)^3 *C(6);

239

MddC3333 = eigAvec1(3)^4 *C(9);

MddC33_e1 = (MddC3311 + MddC3312 + MddC3313 + MddC3321 + MddC3322 + MddC3323 + MddC3331 + MddC3332 +
MddC3333);

%% CALCULATION FOR I = 2

% Calculation of the 1,1 Component of the MddC 2nd Order Tensor

MddC1111 = eigAvec2(1)^4 *C(1);
MddC1112 = eigAvec2(1)^3 *eigAvec2(2) *C(4);
MddC1113 = eigAvec2(1)^3 *eigAvec2(3) *C(7);
MddC1121 = eigAvec2(1)^3 *eigAvec2(2) *C(2);
MddC1122 = eigAvec2(1)^2 *eigAvec2(2)^2 *C(5);
MddC1123 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(8);
MddC1131 = eigAvec2(1)^3 *eigAvec2(3) *C(3);
MddC1132 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(6);
MddC1133 = eigAvec2(1)^2 *eigAvec2(3)^2 *C(9);

MddC11_e2 = (MddC1111 + MddC1112 + MddC1113 + MddC1121 + MddC1122 + MddC1123 + MddC1131 + MddC1132 +
MddC1133);

% Calculation of the 1,2 Component of the MddC 2nd Order Tensor

MddC1211 = eigAvec2(1)^3 *eigAvec2(2) *C(1);
MddC1212 = eigAvec2(1)^2 *eigAvec2(2)^2 *C(4);
MddC1213 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(7);
MddC1221 = eigAvec2(1)^2 *eigAvec2(2)^2 *C(2);
MddC1222 = eigAvec2(1) *eigAvec2(2)^3 *C(5);
MddC1223 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(8);
MddC1231 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(3);
MddC1232 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(6);
MddC1233 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(9);

MddC12_e2 = (MddC1211 + MddC1212 + MddC1213 + MddC1221 + MddC1222 + MddC1223 + MddC1231 + MddC1232 +
MddC1233);

% Calculation of the 1,3 Component of the MddC 2nd Order Tensor

MddC1311 = eigAvec2(1)^3 *eigAvec2(3) *C(1);
MddC1312 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(4);
MddC1313 = eigAvec2(1)^2 *eigAvec2(3)^2 *C(7);
MddC1321 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(2);
MddC1322 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(5);
MddC1323 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(8);
MddC1331 = eigAvec2(1)^2 *eigAvec2(3)^2 *C(3);
MddC1332 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(6);
MddC1333 = eigAvec2(1) *eigAvec2(3)^3 *C(9);

MddC13_e2 = (MddC1311 + MddC1312 + MddC1313 + MddC1321 + MddC1322 + MddC1323 + MddC1331 + MddC1332 +
MddC1333);

% Calculation of the 2,1 Component of the MddC 2nd Order Tensor

MddC21_e2 = MddC12_e2; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddC 2nd Order Tensor

240

MddC2211 = eigAvec2(1)^2 *eigAvec2(2)^2 *C(1);
MddC2212 = eigAvec2(1) *eigAvec2(2)^3 *C(4);
MddC2213 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(7);
MddC2221 = eigAvec2(1) *eigAvec2(2)^3 *C(2);
MddC2222 = eigAvec2(2)^4 *C(5);
MddC2223 = eigAvec2(2)^3 *eigAvec2(3) *C(8);
MddC2231 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(3);
MddC2232 = eigAvec2(2)^3 *eigAvec2(3) *C(6);
MddC2233 = eigAvec2(2)^2 *eigAvec2(3)^2 *C(9);

MddC22_e2 = (MddC2211 + MddC2212 + MddC2213 + MddC2221 + MddC2222 + MddC2223 + MddC2231 + MddC2232 +
MddC2233);

% Calculation of the 2,3 Component of the MddC 2nd Order Tensor

MddC2311 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *C(1);
MddC2312 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(4);
MddC2313 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(7);
MddC2321 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *C(2);
MddC2322 = eigAvec2(2)^3 *eigAvec2(3) *C(5);
MddC2323 = eigAvec2(2)^2 *eigAvec2(3)^2 *C(8);
MddC2331 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(3);
MddC2332 = eigAvec2(2)^2 *eigAvec2(3)^2 *C(6);
MddC2333 = eigAvec2(2) *eigAvec2(3)^3 *C(9);

MddC23_e2 = (MddC2311 + MddC2312 + MddC2313 + MddC2321 + MddC2322 + MddC2323 + MddC2331 + MddC2332 +
MddC2333);

% Calculation of the 3,1 Component of the MddC 2nd Order Tensor

MddC31_e2 = MddC13_e2; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddC 2nd Order Tensor

MddC32_e2 = MddC23_e2; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddC 2nd Order Tensor

MddC3311 = eigAvec2(1)^2 *eigAvec2(3)^2 *C(1);
MddC3312 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(4);
MddC3313 = eigAvec2(1) *eigAvec2(3)^3 *C(7);
MddC3321 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *C(2);
MddC3322 = eigAvec2(2)^2 *eigAvec2(3)^2 *C(5);
MddC3323 = eigAvec2(2) *eigAvec2(3)^3 *C(8);
MddC3331 = eigAvec2(1) *eigAvec2(3)^3 *C(3);
MddC3332 = eigAvec2(2) *eigAvec2(3)^3 *C(6);
MddC3333 = eigAvec2(3)^4 *C(9);

MddC33_e2 = (MddC3311 + MddC3312 + MddC3313 + MddC3321 + MddC3322 + MddC3323 + MddC3331 + MddC3332 +
MddC3333);

%% CALCULATION FOR I = 3

% Calculation of the 1,1 Component of the MddC 2nd Order Tensor

MddC1111 = eigAvec3(1)^4 *C(1);

241

MddC1112 = eigAvec3(1)^3 *eigAvec3(2) *C(4);
MddC1113 = eigAvec3(1)^3 *eigAvec3(3) *C(7);
MddC1121 = eigAvec3(1)^3 *eigAvec3(2) *C(2);
MddC1122 = eigAvec3(1)^2 *eigAvec3(2)^2 *C(5);
MddC1123 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(8);
MddC1131 = eigAvec3(1)^3 *eigAvec3(3) *C(3);
MddC1132 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(6);
MddC1133 = eigAvec3(1)^2 *eigAvec3(3)^2 *C(9);

MddC11_e3 = (MddC1111 + MddC1112 + MddC1113 + MddC1121 + MddC1122 + MddC1123 + MddC1131 + MddC1132 +
MddC1133);

% Calculation of the 1,2 Component of the MddC 2nd Order Tensor

MddC1211 = eigAvec3(1)^3 *eigAvec3(2) *C(1);
MddC1212 = eigAvec3(1)^2 *eigAvec3(2)^2 *C(4);
MddC1213 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(7);
MddC1221 = eigAvec3(1)^2 *eigAvec3(2)^2 *C(2);
MddC1222 = eigAvec3(1) *eigAvec3(2)^3 *C(5);
MddC1223 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(8);
MddC1231 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(3);
MddC1232 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(6);
MddC1233 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(9);

MddC12_e3 = (MddC1211 + MddC1212 + MddC1213 + MddC1221 + MddC1222 + MddC1223 + MddC1231 + MddC1232 +
MddC1233);

% Calculation of the 1,3 Component of the MddC 2nd Order Tensor

MddC1311 = eigAvec3(1)^3 *eigAvec3(3) *C(1);
MddC1312 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(4);
MddC1313 = eigAvec3(1)^2 *eigAvec3(3)^2 *C(7);
MddC1321 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(2);
MddC1322 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(5);
MddC1323 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(8);
MddC1331 = eigAvec3(1)^2 *eigAvec3(3)^2 *C(3);
MddC1332 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(6);
MddC1333 = eigAvec3(1) *eigAvec3(3)^3 *C(9);

MddC13_e3 = (MddC1311 + MddC1312 + MddC1313 + MddC1321 + MddC1322 + MddC1323 + MddC1331 + MddC1332 +
MddC1333);

% Calculation of the 2,1 Component of the MddC 2nd Order Tensor

MddC21_e3 = MddC12_e3; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddC 2nd Order Tensor

MddC2211 = eigAvec3(1)^2 *eigAvec3(2)^2 *C(1);
MddC2212 = eigAvec3(1) *eigAvec3(2)^3 *C(4);
MddC2213 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(7);
MddC2221 = eigAvec3(1) *eigAvec3(2)^3 *C(2);
MddC2222 = eigAvec3(2)^4 *C(5);
MddC2223 = eigAvec3(2)^3 *eigAvec3(3) *C(8);
MddC2231 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(3);
MddC2232 = eigAvec3(2)^3 *eigAvec3(3) *C(6);
MddC2233 = eigAvec3(2)^2 *eigAvec3(3)^2 *C(9);

242

MddC22_e3 = (MddC2211 + MddC2212 + MddC2213 + MddC2221 + MddC2222 + MddC2223 + MddC2231 + MddC2232 +
MddC2233);

% Calculation of the 2,3 Component of the MddC 2nd Order Tensor

MddC2311 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *C(1);
MddC2312 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(4);
MddC2313 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(7);
MddC2321 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *C(2);
MddC2322 = eigAvec3(2)^3 *eigAvec3(3) *C(5);
MddC2323 = eigAvec3(2)^2 *eigAvec3(3)^2 *C(8);
MddC2331 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(3);
MddC2332 = eigAvec3(2)^2 *eigAvec3(3)^2 *C(6);
MddC2333 = eigAvec3(2) *eigAvec3(3)^3 *C(9);

MddC23_e3 = (MddC2311 + MddC2312 + MddC2313 + MddC2321 + MddC2322 + MddC2323 + MddC2331 + MddC2332 +
MddC2333);

% Calculation of the 3,1 Component of the MddC 2nd Order Tensor

MddC31_e3 = MddC13_e3; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddC 2nd Order Tensor

MddC32_e3 = MddC23_e3; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddC 2nd Order Tensor

MddC3311 = eigAvec3(1)^2 *eigAvec3(3)^2 *C(1);
MddC3312 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(4);
MddC3313 = eigAvec3(1) *eigAvec3(3)^3 *C(7);
MddC3321 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *C(2);
MddC3322 = eigAvec3(2)^2 *eigAvec3(3)^2 *C(5);
MddC3323 = eigAvec3(2) *eigAvec3(3)^3 *C(8);
MddC3331 = eigAvec3(1) *eigAvec3(3)^3 *C(3);
MddC3332 = eigAvec3(2) *eigAvec3(3)^3 *C(6);
MddC3333 = eigAvec3(3)^4 *C(9);

MddC33_e3 = (MddC3311 + MddC3312 + MddC3313 + MddC3321 + MddC3322 + MddC3323 + MddC3331 + MddC3332 +
MddC3333);

%% Summing the terms over i (i.e. i = 1,2,3)

MddC11 = MddC11_e1 + MddC11_e2 + MddC11_e3;
MddC12 = MddC12_e1 + MddC12_e2 + MddC12_e3;
MddC13 = MddC13_e1 + MddC13_e2 + MddC13_e3;
MddC21 = MddC21_e1 + MddC21_e2 + MddC21_e3;
MddC22 = MddC22_e1 + MddC22_e2 + MddC22_e3;
MddC23 = MddC23_e1 + MddC23_e2 + MddC23_e3;
MddC31 = MddC32_e1 + MddC31_e2 + MddC31_e3;
MddC32 = MddC32_e1 + MddC32_e2 + MddC32_e3;
MddC33 = MddC33_e1 + MddC33_e2 + MddC33_e3;

%% Forming the M:C Tensor (M:C)

MddC = [MddC11 MddC12 MddC13 MddC21 MddC22 MddC23 MddC31 MddC32 MddC33];

243

end
E.3.7 MddAddC.m
function [MddAddC] = MddAddC(C,A)

% Function written to compute the 4th order M tensor double dotted into the
% 4th order A tensor double dotted into the 2nd order anistropy tensor (D).

% 4th Order A tensor used the quadratic closure (AA)

[eigAvec,eigAval] = eig(reshape(A,3,3)); % Calculation of the numerical eigenvalues and eigenvectors.

eigAvec = fliplr(eigAvec);
eigAval = rot90(rot90(eigAval));

% Assigning the numerical values to discrete variables to ease in
% calculation.

eigAvec1 = eigAvec(:,1);
eigAvec2 = eigAvec(:,2);
eigAvec3 = eigAvec(:,3);

%% CALCULATION FOR I = 1

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddC1111 = eigAvec1(1)^4 *A(1);
MddAddC1112 = eigAvec1(1)^3 *eigAvec1(2) *A(4);
MddAddC1113 = eigAvec1(1)^3 *eigAvec1(3) *A(7);
MddAddC1121 = eigAvec1(1)^3 *eigAvec1(2) *A(2);
MddAddC1122 = eigAvec1(1)^2 *eigAvec1(2)^2 *A(5);
MddAddC1123 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(8);
MddAddC1131 = eigAvec1(1)^3 *eigAvec1(3) *A(3);
MddAddC1132 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(6);
MddAddC1133 = eigAvec1(1)^2 *eigAvec1(3)^2 *A(9);

MddAddC11_e1 = Explicit_Quad_v(C,A)*(MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 +
MddAddC1122 + MddAddC1123 + MddAddC1131 + MddAddC1132 + MddAddC1133);

% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor

MddAddC1211 = eigAvec1(1)^3 *eigAvec1(2) *A(1);
MddAddC1212 = eigAvec1(1)^2 *eigAvec1(2)^2 *A(4);
MddAddC1213 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(7);
MddAddC1221 = eigAvec1(1)^2 *eigAvec1(2)^2 *A(2);
MddAddC1222 = eigAvec1(1) *eigAvec1(2)^3 *A(5);
MddAddC1223 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(8);
MddAddC1231 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(3);
MddAddC1232 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(6);
MddAddC1233 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(9);

MddAddC12_e1 = Explicit_Quad_v(C,A)*(MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 +
MddAddC1222 + MddAddC1223 + MddAddC1231 + MddAddC1232 + MddAddC1233);

% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor

244

MddAddC1311 = eigAvec1(1)^3 *eigAvec1(3) *A(1);
MddAddC1312 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(4);
MddAddC1313 = eigAvec1(1)^2 *eigAvec1(3)^2 *A(7);
MddAddC1321 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(2);
MddAddC1322 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(5);
MddAddC1323 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(8);
MddAddC1331 = eigAvec1(1)^2 *eigAvec1(3)^2 *A(3);
MddAddC1332 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(6);
MddAddC1333 = eigAvec1(1) *eigAvec1(3)^3 *A(9);

MddAddC13_e1 = Explicit_Quad_v(C,A)*(MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 +
MddAddC1322 + MddAddC1323 + MddAddC1331 + MddAddC1332 + MddAddC1333);

% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor

MddAddC21_e1 = MddAddC12_e1; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor

MddAddC2211 = eigAvec1(1)^2 *eigAvec1(2)^2 *A(1);
MddAddC2212 = eigAvec1(1) *eigAvec1(2)^3 *A(4);
MddAddC2213 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(7);
MddAddC2221 = eigAvec1(1) *eigAvec1(2)^3 *A(2);
MddAddC2222 = eigAvec1(2)^4 *A(5);
MddAddC2223 = eigAvec1(2)^3 *eigAvec1(3) *A(8);
MddAddC2231 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(3);
MddAddC2232 = eigAvec1(2)^3 *eigAvec1(3) *A(6);
MddAddC2233 = eigAvec1(2)^2 *eigAvec1(3)^2 *A(9);

MddAddC22_e1 = Explicit_Quad_v(C,A)*(MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 +
MddAddC2222 + MddAddC2223 + MddAddC2231 + MddAddC2232 + MddAddC2233);

% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor

MddAddC2311 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(1);
MddAddC2312 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(4);
MddAddC2313 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(7);
MddAddC2321 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(2);
MddAddC2322 = eigAvec1(2)^3 *eigAvec1(3) *A(5);
MddAddC2323 = eigAvec1(2)^2 *eigAvec1(3)^2 *A(8);
MddAddC2331 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(3);
MddAddC2332 = eigAvec1(2)^2 *eigAvec1(3)^2 *A(6);
MddAddC2333 = eigAvec1(2) *eigAvec1(3)^3 *A(9);

MddAddC23_e1 = Explicit_Quad_v(C,A)*(MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 +
MddAddC2322 + MddAddC2323 + MddAddC2331 + MddAddC2332 + MddAddC2333);

% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor

MddAddC31_e1 = MddAddC13_e1; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor

MddAddC32_e1 = MddAddC23_e1; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor

245

MddAddC3311 = eigAvec1(1)^2 *eigAvec1(3)^2 *A(1);
MddAddC3312 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(4);
MddAddC3313 = eigAvec1(1) *eigAvec1(3)^3 *A(7);
MddAddC3321 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(2);
MddAddC3322 = eigAvec1(2)^2 *eigAvec1(3)^2 *A(5);
MddAddC3323 = eigAvec1(2) *eigAvec1(3)^3 *A(8);
MddAddC3331 = eigAvec1(1) *eigAvec1(3)^3 *A(3);
MddAddC3332 = eigAvec1(2) *eigAvec1(3)^3 *A(6);
MddAddC3333 = eigAvec1(3)^4 *A(9);

MddAddC33_e1 = Explicit_Quad_v(C,A)*(MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 +
MddAddC3322 + MddAddC3323 + MddAddC3331 + MddAddC3332 + MddAddC3333);

%% CALCULATION FOR I = 2

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddC1111 = eigAvec2(1)^4 *A(1);
MddAddC1112 = eigAvec2(1)^3 *eigAvec2(2) *A(4);
MddAddC1113 = eigAvec2(1)^3 *eigAvec2(3) *A(7);
MddAddC1121 = eigAvec2(1)^3 *eigAvec2(2) *A(2);
MddAddC1122 = eigAvec2(1)^2 *eigAvec2(2)^2 *A(5);
MddAddC1123 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(8);
MddAddC1131 = eigAvec2(1)^3 *eigAvec2(3) *A(3);
MddAddC1132 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(6);
MddAddC1133 = eigAvec2(1)^2 *eigAvec2(3)^2 *A(9);

MddAddC11_e2 = Explicit_Quad_v(C,A)*(MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 +
MddAddC1122 + MddAddC1123 + MddAddC1131 + MddAddC1132 + MddAddC1133);

% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor

MddAddC1211 = eigAvec2(1)^3 *eigAvec2(2) *A(1);
MddAddC1212 = eigAvec2(1)^2 *eigAvec2(2)^2 *A(4);
MddAddC1213 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(7);
MddAddC1221 = eigAvec2(1)^2 *eigAvec2(2)^2 *A(2);
MddAddC1222 = eigAvec2(1) *eigAvec2(2)^3 *A(5);
MddAddC1223 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(8);
MddAddC1231 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(3);
MddAddC1232 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(6);
MddAddC1233 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(9);

MddAddC12_e2 = Explicit_Quad_v(C,A)*(MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 +
MddAddC1222 + MddAddC1223 + MddAddC1231 + MddAddC1232 + MddAddC1233);

% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor

MddAddC1311 = eigAvec2(1)^3 *eigAvec2(3) *A(1);
MddAddC1312 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(4);
MddAddC1313 = eigAvec2(1)^2 *eigAvec2(3)^2 *A(7);
MddAddC1321 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(2);
MddAddC1322 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(5);
MddAddC1323 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(8);
MddAddC1331 = eigAvec2(1)^2 *eigAvec2(3)^2 *A(3);
MddAddC1332 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(6);
MddAddC1333 = eigAvec2(1) *eigAvec2(3)^3 *A(9);

246

MddAddC13_e2 = Explicit_Quad_v(C,A)*(MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 +
MddAddC1322 + MddAddC1323 + MddAddC1331 + MddAddC1332 + MddAddC1333);

% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor

MddAddC21_e2 = MddAddC12_e2; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor

MddAddC2211 = eigAvec2(1)^2 *eigAvec2(2)^2 *A(1);
MddAddC2212 = eigAvec2(1) *eigAvec2(2)^3 *A(4);
MddAddC2213 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(7);
MddAddC2221 = eigAvec2(1) *eigAvec2(2)^3 *A(2);
MddAddC2222 = eigAvec2(2)^4 *A(5);
MddAddC2223 = eigAvec2(2)^3 *eigAvec2(3) *A(8);
MddAddC2231 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(3);
MddAddC2232 = eigAvec2(2)^3 *eigAvec2(3) *A(6);
MddAddC2233 = eigAvec2(2)^2 *eigAvec2(3)^2 *A(9);

MddAddC22_e2 = Explicit_Quad_v(C,A)*(MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 +
MddAddC2222 + MddAddC2223 + MddAddC2231 + MddAddC2232 + MddAddC2233);

% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor

MddAddC2311 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(1);
MddAddC2312 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(4);
MddAddC2313 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(7);
MddAddC2321 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(2);
MddAddC2322 = eigAvec2(2)^3 *eigAvec2(3) *A(5);
MddAddC2323 = eigAvec2(2)^2 *eigAvec2(3)^2 *A(8);
MddAddC2331 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(3);
MddAddC2332 = eigAvec2(2)^2 *eigAvec2(3)^2 *A(6);
MddAddC2333 = eigAvec2(2) *eigAvec2(3)^3 *A(9);

MddAddC23_e2 = Explicit_Quad_v(C,A)*(MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 +
MddAddC2322 + MddAddC2323 + MddAddC2331 + MddAddC2332 + MddAddC2333);

% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor

MddAddC31_e2 = MddAddC13_e2; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor

MddAddC32_e2 = MddAddC23_e2; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor

MddAddC3311 = eigAvec2(1)^2 *eigAvec2(3)^2 *A(1);
MddAddC3312 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(4);
MddAddC3313 = eigAvec2(1) *eigAvec2(3)^3 *A(7);
MddAddC3321 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(2);
MddAddC3322 = eigAvec2(2)^2 *eigAvec2(3)^2 *A(5);
MddAddC3323 = eigAvec2(2) *eigAvec2(3)^3 *A(8);
MddAddC3331 = eigAvec2(1) *eigAvec2(3)^3 *A(3);
MddAddC3332 = eigAvec2(2) *eigAvec2(3)^3 *A(6);
MddAddC3333 = eigAvec2(3)^4 *A(9);

247

MddAddC33_e2 = Explicit_Quad_v(C,A)*(MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 +
MddAddC3322 + MddAddC3323 + MddAddC3331 + MddAddC3332 + MddAddC3333);

%% CALCULATION FOR I = 3

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddC1111 = eigAvec3(1)^4 *A(1);
MddAddC1112 = eigAvec3(1)^3 *eigAvec3(2) *A(4);
MddAddC1113 = eigAvec3(1)^3 *eigAvec3(3) *A(7);
MddAddC1121 = eigAvec3(1)^3 *eigAvec3(2) *A(2);
MddAddC1122 = eigAvec3(1)^2 *eigAvec3(2)^2 *A(5);
MddAddC1123 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(8);
MddAddC1131 = eigAvec3(1)^3 *eigAvec3(3) *A(3);
MddAddC1132 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(6);
MddAddC1133 = eigAvec3(1)^2 *eigAvec3(3)^2 *A(9);

MddAddC11_e3 = Explicit_Quad_v(C,A)*(MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 +
MddAddC1122 + MddAddC1123 + MddAddC1131 + MddAddC1132 + MddAddC1133);

% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor

MddAddC1211 = eigAvec3(1)^3 *eigAvec3(2) *A(1);
MddAddC1212 = eigAvec3(1)^2 *eigAvec3(2)^2 *A(4);
MddAddC1213 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(7);
MddAddC1221 = eigAvec3(1)^2 *eigAvec3(2)^2 *A(2);
MddAddC1222 = eigAvec3(1) *eigAvec3(2)^3 *A(5);
MddAddC1223 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(8);
MddAddC1231 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(3);
MddAddC1232 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(6);
MddAddC1233 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(9);

MddAddC12_e3 = Explicit_Quad_v(C,A)*(MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 +
MddAddC1222 + MddAddC1223 + MddAddC1231 + MddAddC1232 + MddAddC1233);

% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor

MddAddC1311 = eigAvec3(1)^3 *eigAvec3(3) *A(1);
MddAddC1312 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(4);
MddAddC1313 = eigAvec3(1)^2 *eigAvec3(3)^2 *A(7);
MddAddC1321 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(2);
MddAddC1322 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(5);
MddAddC1323 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(8);
MddAddC1331 = eigAvec3(1)^2 *eigAvec3(3)^2 *A(3);
MddAddC1332 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(6);
MddAddC1333 = eigAvec3(1) *eigAvec3(3)^3 *A(9);

MddAddC13_e3 = Explicit_Quad_v(C,A)*(MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 +
MddAddC1322 + MddAddC1323 + MddAddC1331 + MddAddC1332 + MddAddC1333);

% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor

MddAddC21_e3 = MddAddC12_e3; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor

MddAddC2211 = eigAvec3(1)^2 *eigAvec3(2)^2 *A(1);

248

MddAddC2212 = eigAvec3(1) *eigAvec3(2)^3 *A(4);
MddAddC2213 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(7);
MddAddC2221 = eigAvec3(1) *eigAvec3(2)^3 *A(2);
MddAddC2222 = eigAvec3(2)^4 *A(5);
MddAddC2223 = eigAvec3(2)^3 *eigAvec3(3) *A(8);
MddAddC2231 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(3);
MddAddC2232 = eigAvec3(2)^3 *eigAvec3(3) *A(6);
MddAddC2233 = eigAvec3(2)^2 *eigAvec3(3)^2 *A(9);

MddAddC22_e3 = Explicit_Quad_v(C,A)*(MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 +
MddAddC2222 + MddAddC2223 + MddAddC2231 + MddAddC2232 + MddAddC2233);

% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor

MddAddC2311 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(1);
MddAddC2312 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(4);
MddAddC2313 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(7);
MddAddC2321 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(2);
MddAddC2322 = eigAvec3(2)^3 *eigAvec3(3) *A(5);
MddAddC2323 = eigAvec3(2)^2 *eigAvec3(3)^2 *A(8);
MddAddC2331 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(3);
MddAddC2332 = eigAvec3(2)^2 *eigAvec3(3)^2 *A(6);
MddAddC2333 = eigAvec3(2) *eigAvec3(3)^3 *A(9);

MddAddC23_e3 = Explicit_Quad_v(C,A)*(MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 +
MddAddC2322 + MddAddC2323 + MddAddC2331 + MddAddC2332 + MddAddC2333);

% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor

MddAddC31_e3 = MddAddC13_e3; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor

MddAddC32_e3 = MddAddC23_e3; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor

MddAddC3311 = eigAvec3(1)^2 *eigAvec3(3)^2 *A(1);
MddAddC3312 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(4);
MddAddC3313 = eigAvec3(1) *eigAvec3(3)^3 *A(7);
MddAddC3321 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(2);
MddAddC3322 = eigAvec3(2)^2 *eigAvec3(3)^2 *A(5);
MddAddC3323 = eigAvec3(2) *eigAvec3(3)^3 *A(8);
MddAddC3331 = eigAvec3(1) *eigAvec3(3)^3 *A(3);
MddAddC3332 = eigAvec3(2) *eigAvec3(3)^3 *A(6);
MddAddC3333 = eigAvec3(3)^4 *A(9);

MddAddC33_e3 = Explicit_Quad_v(C,A)*(MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 +
MddAddC3322 + MddAddC3323 + MddAddC3331 + MddAddC3332 + MddAddC3333);

%% Summing the terms over i (i.e. i = 1,2,3)

MddAddC11 = MddAddC11_e1 + MddAddC11_e2 + MddAddC11_e3;
MddAddC12 = MddAddC12_e1 + MddAddC12_e2 + MddAddC12_e3;
MddAddC13 = MddAddC13_e1 + MddAddC13_e2 + MddAddC13_e3;
MddAddC21 = MddAddC21_e1 + MddAddC21_e2 + MddAddC21_e3;
MddAddC22 = MddAddC22_e1 + MddAddC22_e2 + MddAddC22_e3;

249

MddAddC23 = MddAddC23_e1 + MddAddC23_e2 + MddAddC23_e3;
MddAddC31 = MddAddC32_e1 + MddAddC31_e2 + MddAddC31_e3;
MddAddC32 = MddAddC32_e1 + MddAddC32_e2 + MddAddC32_e3;
MddAddC33 = MddAddC33_e1 + MddAddC33_e2 + MddAddC33_e3;

%% Forming the M:A:C Tensor (2nd Order)

MddAddC = [MddAddC11 MddAddC12 MddAddC13 MddAddC21 MddAddC22 MddAddC23 MddAddC31 MddAddC32
MddAddC33];
E.3.8 MddAddC_IBOF.m
function [MddAddC] = MddAddC_IBOF(C,A)

% Function written to compute the 4th order M tensor double dotted into the
% 4th Order A tensor double dotted into 2nd order anisotropy tensor (D).

% 4th Order A Tensor Used IBOF Closure Approximation.

[eigAvec,eigAval] = eig(reshape(A,3,3)); % Calculation of the numerical eigenvalues and eigenvectors.

eigAvec = fliplr(eigAvec);
eigAval = rot90(rot90(eigAval));

% Assigning the numerical values to discrete variables to ease in
% calculation.

eigAvec1 = eigAvec(:,1);
eigAvec2 = eigAvec(:,2);
eigAvec3 = eigAvec(:,3);

%% CALCULATION FOR I = 1

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddC1111 = eigAvec1(1)^4 *Explicit_IBOF_v(C,A,1,1);
MddAddC1112 = eigAvec1(1)^3 *eigAvec1(2) *Explicit_IBOF_v(C,A,2,1);
MddAddC1113 = eigAvec1(1)^3 *eigAvec1(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC1121 = eigAvec1(1)^3 *eigAvec1(2) *Explicit_IBOF_v(C,A,1,2);
MddAddC1122 = eigAvec1(1)^2 *eigAvec1(2)^2 *Explicit_IBOF_v(C,A,2,2);
MddAddC1123 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC1131 = eigAvec1(1)^3 *eigAvec1(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC1132 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *Explicit_IBOF_v(C,A,2,3);
MddAddC1133 = eigAvec1(1)^2 *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC11_e1 = (MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + MddAddC1122 + MddAddC1123 +
MddAddC1131 + MddAddC1132 + MddAddC1133);

% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor

MddAddC1211 = eigAvec1(1)^3 *eigAvec1(2) *Explicit_IBOF_v(C,A,1,1);
MddAddC1212 = eigAvec1(1)^2 *eigAvec1(2)^2 *Explicit_IBOF_v(C,A,2,1);
MddAddC1213 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC1221 = eigAvec1(1)^2 *eigAvec1(2)^2 *Explicit_IBOF_v(C,A,1,2);
MddAddC1222 = eigAvec1(1) *eigAvec1(2)^3 *Explicit_IBOF_v(C,A,2,2);
MddAddC1223 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC1231 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC1232 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *Explicit_IBOF_v(C,A,2,3);

250

MddAddC1233 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC12_e1 = (MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + MddAddC1222 + MddAddC1223 +
MddAddC1231 + MddAddC1232 + MddAddC1233);

% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor

MddAddC1311 = eigAvec1(1)^3 *eigAvec1(3) *Explicit_IBOF_v(C,A,1,1);
MddAddC1312 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *Explicit_IBOF_v(C,A,2,1);
MddAddC1313 = eigAvec1(1)^2 *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,3,1);
MddAddC1321 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *Explicit_IBOF_v(C,A,1,2);
MddAddC1322 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *Explicit_IBOF_v(C,A,2,2);
MddAddC1323 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,3,2);
MddAddC1331 = eigAvec1(1)^2 *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,1,3);
MddAddC1332 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,2,3);
MddAddC1333 = eigAvec1(1) *eigAvec1(3)^3 *Explicit_IBOF_v(C,A,3,3);

MddAddC13_e1 = (MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + MddAddC1322 + MddAddC1323 +
MddAddC1331 + MddAddC1332 + MddAddC1333);

% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor

MddAddC21_e1 = MddAddC12_e1; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor

MddAddC2211 = eigAvec1(1)^2 *eigAvec1(2)^2 *Explicit_IBOF_v(C,A,1,1);
MddAddC2212 = eigAvec1(1) *eigAvec1(2)^3 *Explicit_IBOF_v(C,A,2,1);
MddAddC2213 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC2221 = eigAvec1(1) *eigAvec1(2)^3 *Explicit_IBOF_v(C,A,1,2);
MddAddC2222 = eigAvec1(2)^4 *Explicit_IBOF_v(C,A,2,2);
MddAddC2223 = eigAvec1(2)^3 *eigAvec1(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC2231 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC2232 = eigAvec1(2)^3 *eigAvec1(3) *Explicit_IBOF_v(C,A,2,3);
MddAddC2233 = eigAvec1(2)^2 *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC22_e1 = (MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + MddAddC2222 + MddAddC2223 +
MddAddC2231 + MddAddC2232 + MddAddC2233);

% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor

MddAddC2311 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *Explicit_IBOF_v(C,A,1,1);
MddAddC2312 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *Explicit_IBOF_v(C,A,2,1);
MddAddC2313 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,3,1);
MddAddC2321 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *Explicit_IBOF_v(C,A,1,2);
MddAddC2322 = eigAvec1(2)^3 *eigAvec1(3) *Explicit_IBOF_v(C,A,2,2);
MddAddC2323 = eigAvec1(2)^2 *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,3,2);
MddAddC2331 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,1,3);
MddAddC2332 = eigAvec1(2)^2 *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,2,3);
MddAddC2333 = eigAvec1(2) *eigAvec1(3)^3 *Explicit_IBOF_v(C,A,3,3);

MddAddC23_e1 = (MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + MddAddC2322 + MddAddC2323 +
MddAddC2331 + MddAddC2332 + MddAddC2333);

% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor

MddAddC31_e1 = MddAddC13_e1; %DUE TO SYMMETRY!

251

% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor

MddAddC32_e1 = MddAddC23_e1; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor

MddAddC3311 = eigAvec1(1)^2 *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,1,1);
MddAddC3312 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,2,1);
MddAddC3313 = eigAvec1(1) *eigAvec1(3)^3 *Explicit_IBOF_v(C,A,3,1);
MddAddC3321 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,1,2);
MddAddC3322 = eigAvec1(2)^2 *eigAvec1(3)^2 *Explicit_IBOF_v(C,A,2,2);
MddAddC3323 = eigAvec1(2) *eigAvec1(3)^3 *Explicit_IBOF_v(C,A,3,2);
MddAddC3331 = eigAvec1(1) *eigAvec1(3)^3 *Explicit_IBOF_v(C,A,1,3);
MddAddC3332 = eigAvec1(2) *eigAvec1(3)^3 *Explicit_IBOF_v(C,A,2,3);
MddAddC3333 = eigAvec1(3)^4 *Explicit_IBOF_v(C,A,3,3);

MddAddC33_e1 = (MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + MddAddC3322 + MddAddC3323 +
MddAddC3331 + MddAddC3332 + MddAddC3333);

%% CALCULATION FOR I = 2

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddC1111 = eigAvec2(1)^4 *Explicit_IBOF_v(C,A,1,1);
MddAddC1112 = eigAvec2(1)^3 *eigAvec2(2) *Explicit_IBOF_v(C,A,2,1);
MddAddC1113 = eigAvec2(1)^3 *eigAvec2(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC1121 = eigAvec2(1)^3 *eigAvec2(2) *Explicit_IBOF_v(C,A,1,2);
MddAddC1122 = eigAvec2(1)^2 *eigAvec2(2)^2 *Explicit_IBOF_v(C,A,2,2);
MddAddC1123 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC1131 = eigAvec2(1)^3 *eigAvec2(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC1132 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *Explicit_IBOF_v(C,A,2,3);
MddAddC1133 = eigAvec2(1)^2 *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC11_e2 = (MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + MddAddC1122 + MddAddC1123 +
MddAddC1131 + MddAddC1132 + MddAddC1133);

% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor

MddAddC1211 = eigAvec2(1)^3 *eigAvec2(2) *Explicit_IBOF_v(C,A,1,1);
MddAddC1212 = eigAvec2(1)^2 *eigAvec2(2)^2 *Explicit_IBOF_v(C,A,2,1);
MddAddC1213 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC1221 = eigAvec2(1)^2 *eigAvec2(2)^2 *Explicit_IBOF_v(C,A,1,2);
MddAddC1222 = eigAvec2(1) *eigAvec2(2)^3 *Explicit_IBOF_v(C,A,2,2);
MddAddC1223 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC1231 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC1232 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *Explicit_IBOF_v(C,A,2,3);
MddAddC1233 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC12_e2 = (MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + MddAddC1222 + MddAddC1223 +
MddAddC1231 + MddAddC1232 + MddAddC1233);

% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor

MddAddC1311 = eigAvec2(1)^3 *eigAvec2(3) *Explicit_IBOF_v(C,A,1,1);
MddAddC1312 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *Explicit_IBOF_v(C,A,2,1);
MddAddC1313 = eigAvec2(1)^2 *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,3,1);

252

MddAddC1321 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *Explicit_IBOF_v(C,A,1,2);
MddAddC1322 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *Explicit_IBOF_v(C,A,2,2);
MddAddC1323 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,3,2);
MddAddC1331 = eigAvec2(1)^2 *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,1,3);
MddAddC1332 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,2,3);
MddAddC1333 = eigAvec2(1) *eigAvec2(3)^3 *Explicit_IBOF_v(C,A,3,3);

MddAddC13_e2 = (MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + MddAddC1322 + MddAddC1323 +
MddAddC1331 + MddAddC1332 + MddAddC1333);

% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor

MddAddC21_e2 = MddAddC12_e2; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor

MddAddC2211 = eigAvec2(1)^2 *eigAvec2(2)^2 *Explicit_IBOF_v(C,A,1,1);
MddAddC2212 = eigAvec2(1) *eigAvec2(2)^3 *Explicit_IBOF_v(C,A,2,1);
MddAddC2213 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC2221 = eigAvec2(1) *eigAvec2(2)^3 *Explicit_IBOF_v(C,A,1,2);
MddAddC2222 = eigAvec2(2)^4 *Explicit_IBOF_v(C,A,2,2);
MddAddC2223 = eigAvec2(2)^3 *eigAvec2(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC2231 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC2232 = eigAvec2(2)^3 *eigAvec2(3) *Explicit_IBOF_v(C,A,2,3);
MddAddC2233 = eigAvec2(2)^2 *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC22_e2 = (MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + MddAddC2222 + MddAddC2223 +
MddAddC2231 + MddAddC2232 + MddAddC2233);

% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor

MddAddC2311 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *Explicit_IBOF_v(C,A,1,1);
MddAddC2312 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *Explicit_IBOF_v(C,A,2,1);
MddAddC2313 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,3,1);
MddAddC2321 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *Explicit_IBOF_v(C,A,1,2);
MddAddC2322 = eigAvec2(2)^3 *eigAvec2(3) *Explicit_IBOF_v(C,A,2,2);
MddAddC2323 = eigAvec2(2)^2 *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,3,2);
MddAddC2331 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,1,3);
MddAddC2332 = eigAvec2(2)^2 *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,2,3);
MddAddC2333 = eigAvec2(2) *eigAvec2(3)^3 *Explicit_IBOF_v(C,A,3,3);

MddAddC23_e2 = (MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + MddAddC2322 + MddAddC2323 +
MddAddC2331 + MddAddC2332 + MddAddC2333);

% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor

MddAddC31_e2 = MddAddC13_e2; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor

MddAddC32_e2 = MddAddC23_e2; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor

MddAddC3311 = eigAvec2(1)^2 *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,1,1);
MddAddC3312 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,2,1);
MddAddC3313 = eigAvec2(1) *eigAvec2(3)^3 *Explicit_IBOF_v(C,A,3,1);

253

MddAddC3321 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,1,2);
MddAddC3322 = eigAvec2(2)^2 *eigAvec2(3)^2 *Explicit_IBOF_v(C,A,2,2);
MddAddC3323 = eigAvec2(2) *eigAvec2(3)^3 *Explicit_IBOF_v(C,A,3,2);
MddAddC3331 = eigAvec2(1) *eigAvec2(3)^3 *Explicit_IBOF_v(C,A,1,3);
MddAddC3332 = eigAvec2(2) *eigAvec2(3)^3 *Explicit_IBOF_v(C,A,2,3);
MddAddC3333 = eigAvec2(3)^4 *Explicit_IBOF_v(C,A,3,3);

MddAddC33_e2 = (MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + MddAddC3322 + MddAddC3323 +
MddAddC3331 + MddAddC3332 + MddAddC3333);

%% CALCULATION FOR I = 3

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddC1111 = eigAvec3(1)^4 *Explicit_IBOF_v(C,A,1,1);
MddAddC1112 = eigAvec3(1)^3 *eigAvec3(2) *Explicit_IBOF_v(C,A,2,1);
MddAddC1113 = eigAvec3(1)^3 *eigAvec3(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC1121 = eigAvec3(1)^3 *eigAvec3(2) *Explicit_IBOF_v(C,A,1,2);
MddAddC1122 = eigAvec3(1)^2 *eigAvec3(2)^2 *Explicit_IBOF_v(C,A,2,2);
MddAddC1123 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC1131 = eigAvec3(1)^3 *eigAvec3(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC1132 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *Explicit_IBOF_v(C,A,2,3);
MddAddC1133 = eigAvec3(1)^2 *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC11_e3 = (MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + MddAddC1122 + MddAddC1123 +
MddAddC1131 + MddAddC1132 + MddAddC1133);

% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor

MddAddC1211 = eigAvec3(1)^3 *eigAvec3(2) *Explicit_IBOF_v(C,A,1,1);
MddAddC1212 = eigAvec3(1)^2 *eigAvec3(2)^2 *Explicit_IBOF_v(C,A,2,1);
MddAddC1213 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC1221 = eigAvec3(1)^2 *eigAvec3(2)^2 *Explicit_IBOF_v(C,A,1,2);
MddAddC1222 = eigAvec3(1) *eigAvec3(2)^3 *Explicit_IBOF_v(C,A,2,2);
MddAddC1223 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC1231 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC1232 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *Explicit_IBOF_v(C,A,2,3);
MddAddC1233 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC12_e3 = (MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + MddAddC1222 + MddAddC1223 +
MddAddC1231 + MddAddC1232 + MddAddC1233);

% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor

MddAddC1311 = eigAvec3(1)^3 *eigAvec3(3) *Explicit_IBOF_v(C,A,1,1);
MddAddC1312 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *Explicit_IBOF_v(C,A,2,1);
MddAddC1313 = eigAvec3(1)^2 *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,3,1);
MddAddC1321 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *Explicit_IBOF_v(C,A,1,2);
MddAddC1322 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *Explicit_IBOF_v(C,A,2,2);
MddAddC1323 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,3,2);
MddAddC1331 = eigAvec3(1)^2 *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,1,3);
MddAddC1332 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,2,3);
MddAddC1333 = eigAvec3(1) *eigAvec3(3)^3 *Explicit_IBOF_v(C,A,3,3);

MddAddC13_e3 = (MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + MddAddC1322 + MddAddC1323 +
MddAddC1331 + MddAddC1332 + MddAddC1333);

% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor

254

MddAddC21_e3 = MddAddC12_e3; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor

MddAddC2211 = eigAvec3(1)^2 *eigAvec3(2)^2 *Explicit_IBOF_v(C,A,1,1);
MddAddC2212 = eigAvec3(1) *eigAvec3(2)^3 *Explicit_IBOF_v(C,A,2,1);
MddAddC2213 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *Explicit_IBOF_v(C,A,3,1);
MddAddC2221 = eigAvec3(1) *eigAvec3(2)^3 *Explicit_IBOF_v(C,A,1,2);
MddAddC2222 = eigAvec3(2)^4 *Explicit_IBOF_v(C,A,2,2);
MddAddC2223 = eigAvec3(2)^3 *eigAvec3(3) *Explicit_IBOF_v(C,A,3,2);
MddAddC2231 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *Explicit_IBOF_v(C,A,1,3);
MddAddC2232 = eigAvec3(2)^3 *eigAvec3(3) *Explicit_IBOF_v(C,A,2,3);
MddAddC2233 = eigAvec3(2)^2 *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,3,3);

MddAddC22_e3 = (MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + MddAddC2222 + MddAddC2223 +
MddAddC2231 + MddAddC2232 + MddAddC2233);

% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor

MddAddC2311 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *Explicit_IBOF_v(C,A,1,1);
MddAddC2312 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *Explicit_IBOF_v(C,A,2,1);
MddAddC2313 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,3,1);
MddAddC2321 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *Explicit_IBOF_v(C,A,1,2);
MddAddC2322 = eigAvec3(2)^3 *eigAvec3(3) *Explicit_IBOF_v(C,A,2,2);
MddAddC2323 = eigAvec3(2)^2 *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,3,2);
MddAddC2331 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,1,3);
MddAddC2332 = eigAvec3(2)^2 *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,2,3);
MddAddC2333 = eigAvec3(2) *eigAvec3(3)^3 *Explicit_IBOF_v(C,A,3,3);

MddAddC23_e3 = (MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + MddAddC2322 + MddAddC2323 +
MddAddC2331 + MddAddC2332 + MddAddC2333);

% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor

MddAddC31_e3 = MddAddC13_e3; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor

MddAddC32_e3 = MddAddC23_e3; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor

MddAddC3311 = eigAvec3(1)^2 *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,1,1);
MddAddC3312 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,2,1);
MddAddC3313 = eigAvec3(1) *eigAvec3(3)^3 *Explicit_IBOF_v(C,A,3,1);
MddAddC3321 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,1,2);
MddAddC3322 = eigAvec3(2)^2 *eigAvec3(3)^2 *Explicit_IBOF_v(C,A,2,2);
MddAddC3323 = eigAvec3(2) *eigAvec3(3)^3 *Explicit_IBOF_v(C,A,3,2);
MddAddC3331 = eigAvec3(1) *eigAvec3(3)^3 *Explicit_IBOF_v(C,A,1,3);
MddAddC3332 = eigAvec3(2) *eigAvec3(3)^3 *Explicit_IBOF_v(C,A,2,3);
MddAddC3333 = eigAvec3(3)^4 *Explicit_IBOF_v(C,A,3,3);

MddAddC33_e3 = (MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + MddAddC3322 + MddAddC3323 +
MddAddC3331 + MddAddC3332 + MddAddC3333);

%% Summing the terms over i (i.e. i = 1,2,3)

255

MddAddC11 = MddAddC11_e1 + MddAddC11_e2 + MddAddC11_e3;
MddAddC12 = MddAddC12_e1 + MddAddC12_e2 + MddAddC12_e3;
MddAddC13 = MddAddC13_e1 + MddAddC13_e2 + MddAddC13_e3;
MddAddC21 = MddAddC21_e1 + MddAddC21_e2 + MddAddC21_e3;
MddAddC22 = MddAddC22_e1 + MddAddC22_e2 + MddAddC22_e3;
MddAddC23 = MddAddC23_e1 + MddAddC23_e2 + MddAddC23_e3;
MddAddC31 = MddAddC31_e1 + MddAddC31_e2 + MddAddC31_e3;
MddAddC32 = MddAddC32_e1 + MddAddC32_e2 + MddAddC32_e3;
MddAddC33 = MddAddC33_e1 + MddAddC33_e2 + MddAddC33_e3;

%% Forming the M:A:C Tensor (2nd Order)

MddAddC = [MddAddC11 MddAddC12 MddAddC13 MddAddC21 MddAddC22 MddAddC23 MddAddC31 MddAddC32
MddAddC33];
E.3.9 MddAddD.m
function [MddAddD] = MddAddD(D,A)

% Function written to compute the 4th order M tensor double dotted into the
% 4th order A tensor double dotted into the 2nd order rate of strain tensor (D).

% 4th Order A tensor used quadratic closure (AA)

[eigAvec,eigAval] = eig(reshape(A,3,3)); % Calculation of the numerical eigenvalues and eigenvectors.

eigAvec = fliplr(eigAvec);
eigAval = rot90(rot90(eigAval));

% Assigning the numerical values to discrete variables to ease in
% calculation.

eigAval1 = eigAval(1);
eigAval2 = eigAval(5);
eigAval3 = eigAval(9);

eigAvec1 = eigAvec(:,1);
eigAvec2 = eigAvec(:,2);
eigAvec3 = eigAvec(:,3);

%% CALCULATION FOR I = 1

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddD1111 = eigAvec1(1)^4 *A(1);
MddAddD1112 = eigAvec1(1)^3 *eigAvec1(2) *A(4);
MddAddD1113 = eigAvec1(1)^3 *eigAvec1(3) *A(7);
MddAddD1121 = eigAvec1(1)^3 *eigAvec1(2) *A(2);
MddAddD1122 = eigAvec1(1)^2 *eigAvec1(2)^2 *A(5);
MddAddD1123 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(8);
MddAddD1131 = eigAvec1(1)^3 *eigAvec1(3) *A(3);
MddAddD1132 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(6);
MddAddD1133 = eigAvec1(1)^2 *eigAvec1(3)^2 *A(9);

MddAddD11_e1 = Explicit_Quad_v(D,A)*(MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 +
MddAddD1122 + MddAddD1123 + MddAddD1131 + MddAddD1132 + MddAddD1133);

256

% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor

MddAddD1211 = eigAvec1(1)^3 *eigAvec1(2) *A(1);
MddAddD1212 = eigAvec1(1)^2 *eigAvec1(2)^2 *A(4);
MddAddD1213 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(7);
MddAddD1221 = eigAvec1(1)^2 *eigAvec1(2)^2 *A(2);
MddAddD1222 = eigAvec1(1) *eigAvec1(2)^3 *A(5);
MddAddD1223 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(8);
MddAddD1231 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(3);
MddAddD1232 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(6);
MddAddD1233 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(9);

MddAddD12_e1 = Explicit_Quad_v(D,A)*(MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 +
MddAddD1222 + MddAddD1223 + MddAddD1231 + MddAddD1232 + MddAddD1233);

% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor

MddAddD1311 = eigAvec1(1)^3 *eigAvec1(3) *A(1);
MddAddD1312 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(4);
MddAddD1313 = eigAvec1(1)^2 *eigAvec1(3)^2 *A(7);
MddAddD1321 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(2);
MddAddD1322 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(5);
MddAddD1323 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(8);
MddAddD1331 = eigAvec1(1)^2 *eigAvec1(3)^2 *A(3);
MddAddD1332 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(6);
MddAddD1333 = eigAvec1(1) *eigAvec1(3)^3 *A(9);

MddAddD13_e1 = Explicit_Quad_v(D,A)*(MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 +
MddAddD1322 + MddAddD1323 + MddAddD1331 + MddAddD1332 + MddAddD1333);

% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor

MddAddD21_e1 = MddAddD12_e1; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor

MddAddD2211 = eigAvec1(1)^2 *eigAvec1(2)^2 *A(1);
MddAddD2212 = eigAvec1(1) *eigAvec1(2)^3 *A(4);
MddAddD2213 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(7);
MddAddD2221 = eigAvec1(1) *eigAvec1(2)^3 *A(2);
MddAddD2222 = eigAvec1(2)^4 *A(5);
MddAddD2223 = eigAvec1(2)^3 *eigAvec1(3) *A(8);
MddAddD2231 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(3);
MddAddD2232 = eigAvec1(2)^3 *eigAvec1(3) *A(6);
MddAddD2233 = eigAvec1(2)^2 *eigAvec1(3)^2 *A(9);

MddAddD22_e1 = Explicit_Quad_v(D,A)*(MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 +
MddAddD2222 + MddAddD2223 + MddAddD2231 + MddAddD2232 + MddAddD2233);

% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor

MddAddD2311 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A(1);
MddAddD2312 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(4);
MddAddD2313 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(7);
MddAddD2321 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A(2);
MddAddD2322 = eigAvec1(2)^3 *eigAvec1(3) *A(5);

257

MddAddD2323 = eigAvec1(2)^2 *eigAvec1(3)^2 *A(8);
MddAddD2331 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(3);
MddAddD2332 = eigAvec1(2)^2 *eigAvec1(3)^2 *A(6);
MddAddD2333 = eigAvec1(2) *eigAvec1(3)^3 *A(9);

MddAddD23_e1 = Explicit_Quad_v(D,A)*(MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 +
MddAddD2322 + MddAddD2323 + MddAddD2331 + MddAddD2332 + MddAddD2333);

% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor

MddAddD31_e1 = MddAddD13_e1; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor

MddAddD32_e1 = MddAddD23_e1; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor

MddAddD3311 = eigAvec1(1)^2 *eigAvec1(3)^2 *A(1);
MddAddD3312 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(4);
MddAddD3313 = eigAvec1(1) *eigAvec1(3)^3 *A(7);
MddAddD3321 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A(2);
MddAddD3322 = eigAvec1(2)^2 *eigAvec1(3)^2 *A(5);
MddAddD3323 = eigAvec1(2) *eigAvec1(3)^3 *A(8);
MddAddD3331 = eigAvec1(1) *eigAvec1(3)^3 *A(3);
MddAddD3332 = eigAvec1(2) *eigAvec1(3)^3 *A(6);
MddAddD3333 = eigAvec1(3)^4 *A(9);

MddAddD33_e1 = Explicit_Quad_v(D,A)*(MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 +
MddAddD3322 + MddAddD3323 + MddAddD3331 + MddAddD3332 + MddAddD3333);

%% CALCULATION FOR I = 2

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddD1111 = eigAvec2(1)^4 *A(1);
MddAddD1112 = eigAvec2(1)^3 *eigAvec2(2) *A(4);
MddAddD1113 = eigAvec2(1)^3 *eigAvec2(3) *A(7);
MddAddD1121 = eigAvec2(1)^3 *eigAvec2(2) *A(2);
MddAddD1122 = eigAvec2(1)^2 *eigAvec2(2)^2 *A(5);
MddAddD1123 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(8);
MddAddD1131 = eigAvec2(1)^3 *eigAvec2(3) *A(3);
MddAddD1132 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(6);
MddAddD1133 = eigAvec2(1)^2 *eigAvec2(3)^2 *A(9);

MddAddD11_e2 = Explicit_Quad_v(D,A)*(MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 +
MddAddD1122 + MddAddD1123 + MddAddD1131 + MddAddD1132 + MddAddD1133);

% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor

MddAddD1211 = eigAvec2(1)^3 *eigAvec2(2) *A(1);
MddAddD1212 = eigAvec2(1)^2 *eigAvec2(2)^2 *A(4);
MddAddD1213 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(7);
MddAddD1221 = eigAvec2(1)^2 *eigAvec2(2)^2 *A(2);
MddAddD1222 = eigAvec2(1) *eigAvec2(2)^3 *A(5);
MddAddD1223 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(8);
MddAddD1231 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(3);

258

MddAddD1232 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(6);
MddAddD1233 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(9);

MddAddD12_e2 = Explicit_Quad_v(D,A)*(MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 +
MddAddD1222 + MddAddD1223 + MddAddD1231 + MddAddD1232 + MddAddD1233);

% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor

MddAddD1311 = eigAvec2(1)^3 *eigAvec2(3) *A(1);
MddAddD1312 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(4);
MddAddD1313 = eigAvec2(1)^2 *eigAvec2(3)^2 *A(7);
MddAddD1321 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(2);
MddAddD1322 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(5);
MddAddD1323 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(8);
MddAddD1331 = eigAvec2(1)^2 *eigAvec2(3)^2 *A(3);
MddAddD1332 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(6);
MddAddD1333 = eigAvec2(1) *eigAvec2(3)^3 *A(9);

MddAddD13_e2 = Explicit_Quad_v(D,A)*(MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 +
MddAddD1322 + MddAddD1323 + MddAddD1331 + MddAddD1332 + MddAddD1333);

% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor

MddAddD21_e2 = MddAddD12_e2; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor

MddAddD2211 = eigAvec2(1)^2 *eigAvec2(2)^2 *A(1);
MddAddD2212 = eigAvec2(1) *eigAvec2(2)^3 *A(4);
MddAddD2213 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(7);
MddAddD2221 = eigAvec2(1) *eigAvec2(2)^3 *A(2);
MddAddD2222 = eigAvec2(2)^4 *A(5);
MddAddD2223 = eigAvec2(2)^3 *eigAvec2(3) *A(8);
MddAddD2231 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(3);
MddAddD2232 = eigAvec2(2)^3 *eigAvec2(3) *A(6);
MddAddD2233 = eigAvec2(2)^2 *eigAvec2(3)^2 *A(9);

MddAddD22_e2 = Explicit_Quad_v(D,A)*(MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 +
MddAddD2222 + MddAddD2223 + MddAddD2231 + MddAddD2232 + MddAddD2233);

% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor

MddAddD2311 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A(1);
MddAddD2312 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(4);
MddAddD2313 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(7);
MddAddD2321 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A(2);
MddAddD2322 = eigAvec2(2)^3 *eigAvec2(3) *A(5);
MddAddD2323 = eigAvec2(2)^2 *eigAvec2(3)^2 *A(8);
MddAddD2331 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(3);
MddAddD2332 = eigAvec2(2)^2 *eigAvec2(3)^2 *A(6);
MddAddD2333 = eigAvec2(2) *eigAvec2(3)^3 *A(9);

MddAddD23_e2 = Explicit_Quad_v(D,A)*(MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 +
MddAddD2322 + MddAddD2323 + MddAddD2331 + MddAddD2332 + MddAddD2333);

% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor

259

MddAddD31_e2 = MddAddD13_e2; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor

MddAddD32_e2 = MddAddD23_e2; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor

MddAddD3311 = eigAvec2(1)^2 *eigAvec2(3)^2 *A(1);
MddAddD3312 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(4);
MddAddD3313 = eigAvec2(1) *eigAvec2(3)^3 *A(7);
MddAddD3321 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A(2);
MddAddD3322 = eigAvec2(2)^2 *eigAvec2(3)^2 *A(5);
MddAddD3323 = eigAvec2(2) *eigAvec2(3)^3 *A(8);
MddAddD3331 = eigAvec2(1) *eigAvec2(3)^3 *A(3);
MddAddD3332 = eigAvec2(2) *eigAvec2(3)^3 *A(6);
MddAddD3333 = eigAvec2(3)^4 *A(9);

MddAddD33_e2 = Explicit_Quad_v(D,A)*(MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 +
MddAddD3322 + MddAddD3323 + MddAddD3331 + MddAddD3332 + MddAddD3333);

%% CALCULATION FOR I = 3

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddD1111 = eigAvec3(1)^4 *A(1);
MddAddD1112 = eigAvec3(1)^3 *eigAvec3(2) *A(4);
MddAddD1113 = eigAvec3(1)^3 *eigAvec3(3) *A(7);
MddAddD1121 = eigAvec3(1)^3 *eigAvec3(2) *A(2);
MddAddD1122 = eigAvec3(1)^2 *eigAvec3(2)^2 *A(5);
MddAddD1123 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(8);
MddAddD1131 = eigAvec3(1)^3 *eigAvec3(3) *A(3);
MddAddD1132 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(6);
MddAddD1133 = eigAvec3(1)^2 *eigAvec3(3)^2 *A(9);

MddAddD11_e3 = Explicit_Quad_v(D,A)*(MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 +
MddAddD1122 + MddAddD1123 + MddAddD1131 + MddAddD1132 + MddAddD1133);

% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor

MddAddD1211 = eigAvec3(1)^3 *eigAvec3(2) *A(1);
MddAddD1212 = eigAvec3(1)^2 *eigAvec3(2)^2 *A(4);
MddAddD1213 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(7);
MddAddD1221 = eigAvec3(1)^2 *eigAvec3(2)^2 *A(2);
MddAddD1222 = eigAvec3(1) *eigAvec3(2)^3 *A(5);
MddAddD1223 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(8);
MddAddD1231 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(3);
MddAddD1232 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(6);
MddAddD1233 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(9);

MddAddD12_e3 = Explicit_Quad_v(D,A)*(MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 +
MddAddD1222 + MddAddD1223 + MddAddD1231 + MddAddD1232 + MddAddD1233);

% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor

MddAddD1311 = eigAvec3(1)^3 *eigAvec3(3) *A(1);
MddAddD1312 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(4);

260

MddAddD1313 = eigAvec3(1)^2 *eigAvec3(3)^2 *A(7);
MddAddD1321 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(2);
MddAddD1322 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(5);
MddAddD1323 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(8);
MddAddD1331 = eigAvec3(1)^2 *eigAvec3(3)^2 *A(3);
MddAddD1332 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(6);
MddAddD1333 = eigAvec3(1) *eigAvec3(3)^3 *A(9);

MddAddD13_e3 = Explicit_Quad_v(D,A)*(MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 +
MddAddD1322 + MddAddD1323 + MddAddD1331 + MddAddD1332 + MddAddD1333);

% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor

MddAddD21_e3 = MddAddD12_e3; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor

MddAddD2211 = eigAvec3(1)^2 *eigAvec3(2)^2 *A(1);
MddAddD2212 = eigAvec3(1) *eigAvec3(2)^3 *A(4);
MddAddD2213 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(7);
MddAddD2221 = eigAvec3(1) *eigAvec3(2)^3 *A(2);
MddAddD2222 = eigAvec3(2)^4 *A(5);
MddAddD2223 = eigAvec3(2)^3 *eigAvec3(3) *A(8);
MddAddD2231 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(3);
MddAddD2232 = eigAvec3(2)^3 *eigAvec3(3) *A(6);
MddAddD2233 = eigAvec3(2)^2 *eigAvec3(3)^2 *A(9);

MddAddD22_e3 = Explicit_Quad_v(D,A)*(MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 +
MddAddD2222 + MddAddD2223 + MddAddD2231 + MddAddD2232 + MddAddD2233);

% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor

MddAddD2311 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A(1);
MddAddD2312 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(4);
MddAddD2313 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(7);
MddAddD2321 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A(2);
MddAddD2322 = eigAvec3(2)^3 *eigAvec3(3) *A(5);
MddAddD2323 = eigAvec3(2)^2 *eigAvec3(3)^2 *A(8);
MddAddD2331 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(3);
MddAddD2332 = eigAvec3(2)^2 *eigAvec3(3)^2 *A(6);
MddAddD2333 = eigAvec3(2) *eigAvec3(3)^3 *A(9);

MddAddD23_e3 = Explicit_Quad_v(D,A)*(MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 +
MddAddD2322 + MddAddD2323 + MddAddD2331 + MddAddD2332 + MddAddD2333);

% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor

MddAddD31_e3 = MddAddD13_e3; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor

MddAddD32_e3 = MddAddD23_e3; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor

MddAddD3311 = eigAvec3(1)^2 *eigAvec3(3)^2 *A(1);
MddAddD3312 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(4);

261

MddAddD3313 = eigAvec3(1) *eigAvec3(3)^3 *A(7);
MddAddD3321 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A(2);
MddAddD3322 = eigAvec3(2)^2 *eigAvec3(3)^2 *A(5);
MddAddD3323 = eigAvec3(2) *eigAvec3(3)^3 *A(8);
MddAddD3331 = eigAvec3(1) *eigAvec3(3)^3 *A(3);
MddAddD3332 = eigAvec3(2) *eigAvec3(3)^3 *A(6);
MddAddD3333 = eigAvec3(3)^4 *A(9);

MddAddD33_e3 = Explicit_Quad_v(D,A)*(MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 +
MddAddD3322 + MddAddD3323 + MddAddD3331 + MddAddD3332 + MddAddD3333);

%% Summing the terms over i (i.e. i = 1,2,3)

MddAddD11 = MddAddD11_e1 + MddAddD11_e2 + MddAddD11_e3;
MddAddD12 = MddAddD12_e1 + MddAddD12_e2 + MddAddD12_e3;
MddAddD13 = MddAddD13_e1 + MddAddD13_e2 + MddAddD13_e3;
MddAddD21 = MddAddD21_e1 + MddAddD21_e2 + MddAddD21_e3;
MddAddD22 = MddAddD22_e1 + MddAddD22_e2 + MddAddD22_e3;
MddAddD23 = MddAddD23_e1 + MddAddD23_e2 + MddAddD23_e3;
MddAddD31 = MddAddD32_e1 + MddAddD31_e2 + MddAddD31_e3;
MddAddD32 = MddAddD32_e1 + MddAddD32_e2 + MddAddD32_e3;
MddAddD33 = MddAddD33_e1 + MddAddD33_e2 + MddAddD33_e3;

%% Forming the M:A:D Tensor (M:A:D)

MddAddD = [MddAddD11 MddAddD12 MddAddD13 MddAddD21 MddAddD22 MddAddD23 MddAddD31 MddAddD32
MddAddD33];
%
% MddAddD(isnan(MddAddD)) = 0;
% MddAddD(isinf(MddAddD)) = 0;

E.3.10 MddAddD_IBOF.m
function [MddAddD] = MddAddD_IBOF(D,A)

% Function written to compute the 4th order M tensor double dotted into the
% 4th Order A tensor double dotted into 2nd order rate of strain tensor (D).

% 4th Order A Tensor Used IBOF Closure Approximation.

[eigAvec,eigAval] = eig(reshape(A,3,3)); % Calculation of the numerical eigenvalues and eigenvectors.

eigAvec = fliplr(eigAvec);
eigAval = rot90(rot90(eigAval));

% Assigning the numerical values to discrete variables to ease in
% calculation.

eigAvec1 = eigAvec(:,1);
eigAvec2 = eigAvec(:,2);
eigAvec3 = eigAvec(:,3);

A11IBOF_val = Explicit_IBOF_v(D,A,1,1);
A12IBOF_val = Explicit_IBOF_v(D,A,1,2);
A13IBOF_val = Explicit_IBOF_v(D,A,1,3);
A22IBOF_val = Explicit_IBOF_v(D,A,2,2);
A23IBOF_val = Explicit_IBOF_v(D,A,2,3);

262

A33IBOF_val = Explicit_IBOF_v(D,A,3,3);

%% CALCULATION FOR I = 1

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddD1111 = eigAvec1(1)^4 *A11IBOF_val;
MddAddD1112 = eigAvec1(1)^3 *eigAvec1(2) *A12IBOF_val;
MddAddD1113 = eigAvec1(1)^3 *eigAvec1(3) *A13IBOF_val;
MddAddD1121 = eigAvec1(1)^3 *eigAvec1(2) *A12IBOF_val;
MddAddD1122 = eigAvec1(1)^2 *eigAvec1(2)^2 *A22IBOF_val;
MddAddD1123 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A23IBOF_val;
MddAddD1131 = eigAvec1(1)^3 *eigAvec1(3) *A13IBOF_val;
MddAddD1132 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A23IBOF_val;
MddAddD1133 = eigAvec1(1)^2 *eigAvec1(3)^2 *A33IBOF_val;

MddAddD11_e1 = (MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + MddAddD1122 + MddAddD1123
+ MddAddD1131 + MddAddD1132 + MddAddD1133);

% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor

MddAddD1211 = eigAvec1(1)^3 *eigAvec1(2) *A11IBOF_val;
MddAddD1212 = eigAvec1(1)^2 *eigAvec1(2)^2 *A12IBOF_val;
MddAddD1213 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A13IBOF_val;
MddAddD1221 = eigAvec1(1)^2 *eigAvec1(2)^2 *A12IBOF_val;
MddAddD1222 = eigAvec1(1) *eigAvec1(2)^3 *A22IBOF_val;
MddAddD1223 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A23IBOF_val;
MddAddD1231 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A13IBOF_val;
MddAddD1232 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A23IBOF_val;
MddAddD1233 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A33IBOF_val;

MddAddD12_e1 = (MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + MddAddD1222 + MddAddD1223
+ MddAddD1231 + MddAddD1232 + MddAddD1233);

% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor

MddAddD1311 = eigAvec1(1)^3 *eigAvec1(3) *A11IBOF_val;
MddAddD1312 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A12IBOF_val;
MddAddD1313 = eigAvec1(1)^2 *eigAvec1(3)^2 *A13IBOF_val;
MddAddD1321 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A12IBOF_val;
MddAddD1322 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A22IBOF_val;
MddAddD1323 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A23IBOF_val;
MddAddD1331 = eigAvec1(1)^2 *eigAvec1(3)^2 *A13IBOF_val;
MddAddD1332 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A23IBOF_val;
MddAddD1333 = eigAvec1(1) *eigAvec1(3)^3 *A33IBOF_val;

MddAddD13_e1 = (MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + MddAddD1322 + MddAddD1323
+ MddAddD1331 + MddAddD1332 + MddAddD1333);

% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor

MddAddD21_e1 = MddAddD12_e1; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor

MddAddD2211 = eigAvec1(1)^2 *eigAvec1(2)^2 *A11IBOF_val;
MddAddD2212 = eigAvec1(1) *eigAvec1(2)^3 *A12IBOF_val;

263

MddAddD2213 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A13IBOF_val;
MddAddD2221 = eigAvec1(1) *eigAvec1(2)^3 *A12IBOF_val;
MddAddD2222 = eigAvec1(2)^4 *A22IBOF_val;
MddAddD2223 = eigAvec1(2)^3 *eigAvec1(3) *A23IBOF_val;
MddAddD2231 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A13IBOF_val;
MddAddD2232 = eigAvec1(2)^3 *eigAvec1(3) *A23IBOF_val;
MddAddD2233 = eigAvec1(2)^2 *eigAvec1(3)^2 *A33IBOF_val;

MddAddD22_e1 = (MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + MddAddD2222 + MddAddD2223
+ MddAddD2231 + MddAddD2232 + MddAddD2233);

% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor

MddAddD2311 = eigAvec1(1)^2 *eigAvec1(2) *eigAvec1(3) *A11IBOF_val;
MddAddD2312 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A12IBOF_val;
MddAddD2313 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A13IBOF_val;
MddAddD2321 = eigAvec1(1) *eigAvec1(2)^2 *eigAvec1(3) *A12IBOF_val;
MddAddD2322 = eigAvec1(2)^3 *eigAvec1(3) *A22IBOF_val;
MddAddD2323 = eigAvec1(2)^2 *eigAvec1(3)^2 *A23IBOF_val;
MddAddD2331 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A13IBOF_val;
MddAddD2332 = eigAvec1(2)^2 *eigAvec1(3)^2 *A23IBOF_val;
MddAddD2333 = eigAvec1(2) *eigAvec1(3)^3 *A33IBOF_val;

MddAddD23_e1 = (MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + MddAddD2322 + MddAddD2323
+ MddAddD2331 + MddAddD2332 + MddAddD2333);

% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor

MddAddD31_e1 = MddAddD13_e1; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor

MddAddD32_e1 = MddAddD23_e1; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor

MddAddD3311 = eigAvec1(1)^2 *eigAvec1(3)^2 *A11IBOF_val;
MddAddD3312 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A12IBOF_val;
MddAddD3313 = eigAvec1(1) *eigAvec1(3)^3 *A13IBOF_val;
MddAddD3321 = eigAvec1(1) *eigAvec1(2) *eigAvec1(3)^2 *A12IBOF_val;
MddAddD3322 = eigAvec1(2)^2 *eigAvec1(3)^2 *A22IBOF_val;
MddAddD3323 = eigAvec1(2) *eigAvec1(3)^3 *A23IBOF_val;
MddAddD3331 = eigAvec1(1) *eigAvec1(3)^3 *A13IBOF_val;
MddAddD3332 = eigAvec1(2) *eigAvec1(3)^3 *A23IBOF_val;
MddAddD3333 = eigAvec1(3)^4 *A33IBOF_val;

MddAddD33_e1 = (MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + MddAddD3322 + MddAddD3323
+ MddAddD3331 + MddAddD3332 + MddAddD3333);

%% CALCULATION FOR I = 2

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddD1111 = eigAvec2(1)^4 *A11IBOF_val;
MddAddD1112 = eigAvec2(1)^3 *eigAvec2(2) *A12IBOF_val;
MddAddD1113 = eigAvec2(1)^3 *eigAvec2(3) *A13IBOF_val;
MddAddD1121 = eigAvec2(1)^3 *eigAvec2(2) *A12IBOF_val;

264

MddAddD1122 = eigAvec2(1)^2 *eigAvec2(2)^2 *A22IBOF_val;
MddAddD1123 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A23IBOF_val;
MddAddD1131 = eigAvec2(1)^3 *eigAvec2(3) *A13IBOF_val;
MddAddD1132 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A23IBOF_val;
MddAddD1133 = eigAvec2(1)^2 *eigAvec2(3)^2 *A33IBOF_val;

MddAddD11_e2 = (MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + MddAddD1122 + MddAddD1123
+ MddAddD1131 + MddAddD1132 + MddAddD1133);

% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor

MddAddD1211 = eigAvec2(1)^3 *eigAvec2(2) *A11IBOF_val;
MddAddD1212 = eigAvec2(1)^2 *eigAvec2(2)^2 *A12IBOF_val;
MddAddD1213 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A13IBOF_val;
MddAddD1221 = eigAvec2(1)^2 *eigAvec2(2)^2 *A12IBOF_val;
MddAddD1222 = eigAvec2(1) *eigAvec2(2)^3 *A22IBOF_val;
MddAddD1223 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A23IBOF_val;
MddAddD1231 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A13IBOF_val;
MddAddD1232 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A23IBOF_val;
MddAddD1233 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A33IBOF_val;

MddAddD12_e2 = (MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + MddAddD1222 + MddAddD1223
+ MddAddD1231 + MddAddD1232 + MddAddD1233);

% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor

MddAddD1311 = eigAvec2(1)^3 *eigAvec2(3) *A11IBOF_val;
MddAddD1312 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A12IBOF_val;
MddAddD1313 = eigAvec2(1)^2 *eigAvec2(3)^2 *A13IBOF_val;
MddAddD1321 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A12IBOF_val;
MddAddD1322 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A22IBOF_val;
MddAddD1323 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A23IBOF_val;
MddAddD1331 = eigAvec2(1)^2 *eigAvec2(3)^2 *A13IBOF_val;
MddAddD1332 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A23IBOF_val;
MddAddD1333 = eigAvec2(1) *eigAvec2(3)^3 *A33IBOF_val;

MddAddD13_e2 = (MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + MddAddD1322 + MddAddD1323
+ MddAddD1331 + MddAddD1332 + MddAddD1333);

% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor

MddAddD21_e2 = MddAddD12_e2; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor

MddAddD2211 = eigAvec2(1)^2 *eigAvec2(2)^2 *A11IBOF_val;
MddAddD2212 = eigAvec2(1) *eigAvec2(2)^3 *A12IBOF_val;
MddAddD2213 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A13IBOF_val;
MddAddD2221 = eigAvec2(1) *eigAvec2(2)^3 *A12IBOF_val;
MddAddD2222 = eigAvec2(2)^4 *A22IBOF_val;
MddAddD2223 = eigAvec2(2)^3 *eigAvec2(3) *A23IBOF_val;
MddAddD2231 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A13IBOF_val;
MddAddD2232 = eigAvec2(2)^3 *eigAvec2(3) *A23IBOF_val;
MddAddD2233 = eigAvec2(2)^2 *eigAvec2(3)^2 *A33IBOF_val;

MddAddD22_e2 = (MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + MddAddD2222 + MddAddD2223
+ MddAddD2231 + MddAddD2232 + MddAddD2233);

265

% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor

MddAddD2311 = eigAvec2(1)^2 *eigAvec2(2) *eigAvec2(3) *A11IBOF_val;
MddAddD2312 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A12IBOF_val;
MddAddD2313 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A13IBOF_val;
MddAddD2321 = eigAvec2(1) *eigAvec2(2)^2 *eigAvec2(3) *A12IBOF_val;
MddAddD2322 = eigAvec2(2)^3 *eigAvec2(3) *A22IBOF_val;
MddAddD2323 = eigAvec2(2)^2 *eigAvec2(3)^2 *A23IBOF_val;
MddAddD2331 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A13IBOF_val;
MddAddD2332 = eigAvec2(2)^2 *eigAvec2(3)^2 *A23IBOF_val;
MddAddD2333 = eigAvec2(2) *eigAvec2(3)^3 *A33IBOF_val;

MddAddD23_e2 = (MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + MddAddD2322 + MddAddD2323
+ MddAddD2331 + MddAddD2332 + MddAddD2333);

% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor

MddAddD31_e2 = MddAddD13_e2; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor

MddAddD32_e2 = MddAddD23_e2; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor

MddAddD3311 = eigAvec2(1)^2 *eigAvec2(3)^2 *A11IBOF_val;
MddAddD3312 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A12IBOF_val;
MddAddD3313 = eigAvec2(1) *eigAvec2(3)^3 *A13IBOF_val;
MddAddD3321 = eigAvec2(1) *eigAvec2(2) *eigAvec2(3)^2 *A12IBOF_val;
MddAddD3322 = eigAvec2(2)^2 *eigAvec2(3)^2 *A22IBOF_val;
MddAddD3323 = eigAvec2(2) *eigAvec2(3)^3 *A23IBOF_val;
MddAddD3331 = eigAvec2(1) *eigAvec2(3)^3 *A13IBOF_val;
MddAddD3332 = eigAvec2(2) *eigAvec2(3)^3 *A23IBOF_val;
MddAddD3333 = eigAvec2(3)^4 *A33IBOF_val;

MddAddD33_e2 = (MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + MddAddD3322 + MddAddD3323
+ MddAddD3331 + MddAddD3332 + MddAddD3333);

%% CALCULATION FOR I = 3

% Calculation of the 1,1 Component of the LddD 2nd Order Tensor

MddAddD1111 = eigAvec3(1)^4 *A11IBOF_val;
MddAddD1112 = eigAvec3(1)^3 *eigAvec3(2) *A12IBOF_val;
MddAddD1113 = eigAvec3(1)^3 *eigAvec3(3) *A13IBOF_val;
MddAddD1121 = eigAvec3(1)^3 *eigAvec3(2) *A12IBOF_val;
MddAddD1122 = eigAvec3(1)^2 *eigAvec3(2)^2 *A22IBOF_val;
MddAddD1123 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A23IBOF_val;
MddAddD1131 = eigAvec3(1)^3 *eigAvec3(3) *A13IBOF_val;
MddAddD1132 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A23IBOF_val;
MddAddD1133 = eigAvec3(1)^2 *eigAvec3(3)^2 *A33IBOF_val;

MddAddD11_e3 = (MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + MddAddD1122 + MddAddD1123
+ MddAddD1131 + MddAddD1132 + MddAddD1133);

% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor

266

MddAddD1211 = eigAvec3(1)^3 *eigAvec3(2) *A11IBOF_val;
MddAddD1212 = eigAvec3(1)^2 *eigAvec3(2)^2 *A12IBOF_val;
MddAddD1213 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A13IBOF_val;
MddAddD1221 = eigAvec3(1)^2 *eigAvec3(2)^2 *A12IBOF_val;
MddAddD1222 = eigAvec3(1) *eigAvec3(2)^3 *A22IBOF_val;
MddAddD1223 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A23IBOF_val;
MddAddD1231 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A13IBOF_val;
MddAddD1232 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A23IBOF_val;
MddAddD1233 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A33IBOF_val;

MddAddD12_e3 = (MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + MddAddD1222 + MddAddD1223
+ MddAddD1231 + MddAddD1232 + MddAddD1233);

% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor

MddAddD1311 = eigAvec3(1)^3 *eigAvec3(3) *A11IBOF_val;
MddAddD1312 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A12IBOF_val;
MddAddD1313 = eigAvec3(1)^2 *eigAvec3(3)^2 *A13IBOF_val;
MddAddD1321 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A12IBOF_val;
MddAddD1322 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A22IBOF_val;
MddAddD1323 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A23IBOF_val;
MddAddD1331 = eigAvec3(1)^2 *eigAvec3(3)^2 *A13IBOF_val;
MddAddD1332 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A23IBOF_val;
MddAddD1333 = eigAvec3(1) *eigAvec3(3)^3 *A33IBOF_val;

MddAddD13_e3 = (MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + MddAddD1322 + MddAddD1323
+ MddAddD1331 + MddAddD1332 + MddAddD1333);

% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor

MddAddD21_e3 = MddAddD12_e3; %DUE TO SYMMETRY!

% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor

MddAddD2211 = eigAvec3(1)^2 *eigAvec3(2)^2 *A11IBOF_val;
MddAddD2212 = eigAvec3(1) *eigAvec3(2)^3 *A12IBOF_val;
MddAddD2213 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A13IBOF_val;
MddAddD2221 = eigAvec3(1) *eigAvec3(2)^3 *A12IBOF_val;
MddAddD2222 = eigAvec3(2)^4 *A22IBOF_val;
MddAddD2223 = eigAvec3(2)^3 *eigAvec3(3) *A23IBOF_val;
MddAddD2231 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A13IBOF_val;
MddAddD2232 = eigAvec3(2)^3 *eigAvec3(3) *A23IBOF_val;
MddAddD2233 = eigAvec3(2)^2 *eigAvec3(3)^2 *A33IBOF_val;

MddAddD22_e3 = (MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + MddAddD2222 + MddAddD2223
+ MddAddD2231 + MddAddD2232 + MddAddD2233);

% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor

MddAddD2311 = eigAvec3(1)^2 *eigAvec3(2) *eigAvec3(3) *A11IBOF_val;
MddAddD2312 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A12IBOF_val;
MddAddD2313 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A13IBOF_val;
MddAddD2321 = eigAvec3(1) *eigAvec3(2)^2 *eigAvec3(3) *A12IBOF_val;
MddAddD2322 = eigAvec3(2)^3 *eigAvec3(3) *A22IBOF_val;
MddAddD2323 = eigAvec3(2)^2 *eigAvec3(3)^2 *A23IBOF_val;
MddAddD2331 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A13IBOF_val;
MddAddD2332 = eigAvec3(2)^2 *eigAvec3(3)^2 *A23IBOF_val;

267

MddAddD2333 = eigAvec3(2) *eigAvec3(3)^3 *A33IBOF_val;

MddAddD23_e3 = (MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + MddAddD2322 + MddAddD2323
+ MddAddD2331 + MddAddD2332 + MddAddD2333);

% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor

MddAddD31_e3 = MddAddD13_e3; %DUE TO SYMMETRY!

% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor

MddAddD32_e3 = MddAddD23_e3; %DUE TO SYMMETRY!

% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor

MddAddD3311 = eigAvec3(1)^2 *eigAvec3(3)^2 *A11IBOF_val;
MddAddD3312 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A12IBOF_val;
MddAddD3313 = eigAvec3(1) *eigAvec3(3)^3 *A13IBOF_val;
MddAddD3321 = eigAvec3(1) *eigAvec3(2) *eigAvec3(3)^2 *A12IBOF_val;
MddAddD3322 = eigAvec3(2)^2 *eigAvec3(3)^2 *A22IBOF_val;
MddAddD3323 = eigAvec3(2) *eigAvec3(3)^3 *A23IBOF_val;
MddAddD3331 = eigAvec3(1) *eigAvec3(3)^3 *A13IBOF_val;
MddAddD3332 = eigAvec3(2) *eigAvec3(3)^3 *A23IBOF_val;
MddAddD3333 = eigAvec3(3)^4 *A33IBOF_val;

MddAddD33_e3 = (MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + MddAddD3322 + MddAddD3323
+ MddAddD3331 + MddAddD3332 + MddAddD3333);

%% Summing the terms over i (i.e. i = 1,2,3)

MddAddD11 = MddAddD11_e1 + MddAddD11_e2 + MddAddD11_e3;
MddAddD12 = MddAddD12_e1 + MddAddD12_e2 + MddAddD12_e3;
MddAddD13 = MddAddD13_e1 + MddAddD13_e2 + MddAddD13_e3;
MddAddD21 = MddAddD21_e1 + MddAddD21_e2 + MddAddD21_e3;
MddAddD22 = MddAddD22_e1 + MddAddD22_e2 + MddAddD22_e3;
MddAddD23 = MddAddD23_e1 + MddAddD23_e2 + MddAddD23_e3;
MddAddD31 = MddAddD31_e1 + MddAddD31_e2 + MddAddD31_e3;
MddAddD32 = MddAddD32_e1 + MddAddD32_e2 + MddAddD32_e3;
MddAddD33 = MddAddD33_e1 + MddAddD33_e2 + MddAddD33_e3;

%% Forming the M:A:D Tensor (2nd Order)

MddAddD = [MddAddD11 MddAddD12 MddAddD13 MddAddD21 MddAddD22 MddAddD23 MddAddD31 MddAddD32
MddAddD33];

MddAddD(isnan(MddAddD)) = 0;
MddAddD(isinf(MddAddD)) = 0;

