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Abstract 
 This work is concerned with the prediction of short (SGF) and long glass fiber (LGF) 
orientation in a center-gated disk and end-gated plaque injection molding test geometry using a 
simulation method that has not been attempted previously. Previous work has used assumptions 
to simplify the fiber orientation geometry (assuming a thin cavity) or flow field (neglecting 
fountain flow and entry regions). LGF orientation is predicted in a center-gated disk injection 
molding geometry including the advancing front and simulating the sprue and gate region (SGM 
method) so that no assumption about fiber orientation at the mold entrance has to be made. Using 
a semi-flexible fiber model and orientation parameters obtained through rheology, increased 
agreement was found between predicted and experimentally obtained values of orientation using 
the SGM method and a semi-flexible fiber model than was found using a Hele-Shaw 
approximation. The SGM method was applied to the end-gated plaque to predict SGF orientation 
both along and away from the centerline using an objective (reduced strain closure model) and 
non-objective (strain reduction factor model) orientation model. The predicted values of the 
strain reduction factor model showed reasonable agreement with experimentally obtained values 
of orientation throughout the three-dimensional cavity when using orientation parameters fit to 
experimental orientation data. Furthermore it was found that the objective model predicted 
results very similar to the non-objective model suggesting that objectivity may not play a role in 
predicting orientation in more complex geometries such as an end-gated plaque. Finally, the 
SGM method was applied to the end-gated plaque geometry to predict LGF orientation using a 
rigid and semi-flexible fiber model. It was found that the SGM method and the semi-flexible 
fiber model provides orientation predictions that are similar to experimentally obtained values of 
orientation. 
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Original Contributions 
• Improved Long Glass Fiber Orientation Predictions by Combining a Semi-Flexible Fiber 

with Gate Effects and the Advancing Front 
 

• Utilized a Simulation Technique to Predict Short and Long Glass Fiber Orientation at a 
Number of Points in Complex Molding Geometries (along and away from centerline of 
mold) 
 

• Developed a Method for Determining Orientation Parameters for Use in Simulating Short 
and Long Glass Fiber Orientation in an End-Gated Plaque 
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1 Introduction 
A polymer composite typically consists of a resin and some type of fiber additive. Glass 

fibers are often a popular choice as an additive and have been readily used since the 1950’s [1]. 
A glass fiber additive acts as a reinforcing phase and can provide increases in stiffness and 
strength of a material [2, 3]. Long glass fibers L >1 mm( )are of particular interest because of the 
advantageous properties they provide over short glass fibers L <1 mm( ) in injection molded 
parts.  

It has been shown and observed that the orientation of fibers within a sample play a 
crucial role in the properties of that part [4]. To predict and optimize the properties of the final 
product, it is highly desirable to be able to accurately model how the fibers orient during the 
filling of a mold to produce a part. It is for this reason that the study of fiber orientation during 
processing has been an area of significant research efforts [5]. 

The injection molding of glass fiber composite systems is a very complex problem 
usually involving a number of simultaneously occurring phenomena. First, many molds of 
industrial interest are geometrically complicated and will involve a number of gates and 
complicated flow regions [6]. Second, the molten composite is almost always a different 
temperature than the mold which it is being injected into, and the viscosity of the fluid is 
temperature dependent so that the momentum and energy equations are coupled. Additionally, 
the fibers within a molten composite also orient in the fluid as a result of the velocity gradients 
and temperature gradients that arise from being injected into the mold [7]. Complicating the 
problem further, the fluid filling a mold is a moving boundary problem so the domain of the 
solution must be continually updated during the solution process. Ultimately, the system to be 
modeled must be simplified in a number of ways so that the problem becomes tangible to solve 
in a realistic time frame.  
1.1 Solution of Equations for Fiber Orientation 

The prediction of long glass fiber orientation in any geometry is a complicated task 
involving the solution of a number of non-linear equations. The solution to any flow problem 
begins with the equations of continuity and the equation of motion. A common assumption is 
that the polymer fluid filling the cavity is in the laminar flow regime which produces continuity 
and motion equations in the form of Eq. (2.1) and Eq. (2.2): 
 0 = ∇⋅v   (2.1) 

 0 = −∇P +∇⋅τ   (2.2) 

In Eq. (2.1) and Eq. (2.2) v  is the velocity vector, P is the isotropic pressure and τ is the 
extra stress tensor. Additionally, many simulations involving the flow of a polymeric fluid into a 
cavity include temperature effects so that the heat equation must also be solved. The heat 
equation is seen in Eq. (2.3) for an incompressible fluid including the effects for viscous 
dissipation. 
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ρCP

DT
Dt

= k∇2T +τ : γ   (2.3) 

In Eq. (2.3) ρ is the density, CP is the heat capacity, DT Dt is the material derivative of the 

temperature, k is the thermal conductivity, τ is the extra stress tensor and  γ is the rate of strain 
tensor. 

The solution of fiber orientation may occur simultaneously with the flow and heat 
equations (“coupled”) or can be solved as a second step in a two-step solution process 
(“decoupled”). In general, the equations to predict fiber orientation can be a function of a number 
of factors given by Eq. (2.4): 

 
 
DA
Dt

= f A,A4 ,D,W ,k,lb( )   (2.4) 

In Eq. (2.4) A is the 2nd moment of the orientation distribution (2nd order orientation 
tensor),  A4 is the 4th moment of the orientation distribution function (4th order orientation 

tensor), D  is the rate of deformation tensor,W is the vorticity tensor, k is a fiber’s resistivity to 
bending and l is the length of a fiber. While coupling the flow equations with the orientation 
equations sometimes yields better results, the complications that arise in the solution of such 
coupled systems generally outweigh the benefits [4, 8, 9]. 

1.2 Solution of Fiber Orientation in a Center-Gated Disk 

One of the most studied geometries in the prediction of glass fiber orientation is the 
center-gated disk mold shown in Figure 1.1. The axisymmetric nature of the problem allows the 
flow calculations to be performed in 1.5 or 2.5 dimensions (Hele-Shaw assumption uses 1.5 
dimensions, entire domain uses 2.5 dimensions). 

 

Figure 1.1: Geometry of a center-gated disk. (a) Qualitative representation of work 
performed up to this point for long-glass fiber systems (Red Square – Hele-Shaw Region, 
Assumptions are made at gate about fiber region, fountain flow not included). (b) Qualitative 
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representation of simulation domain for simulating long glass fibers in this work (Blue Square – 
Simulation includes fountain flow and entry effects, Red Square – Simulation includes sprue). 

Within the center-gated disk, simulations are commonly carried out in the “Hele-Shaw” region. 
This assumes a mainly shear dominating flow field and neglects a frontal flow region, referred to 
as “fountain flow”, and also neglects the entry effects to the mold, referred to as the “gate 
region”. Hele-Shaw flow, represented by Figure 1.1 (a), has been used to simulate flows of fiber-
filled systems and is currently utilized in many numerical simulation packages but has been 
shown to produce less accurate orientation predictions at the walls, near the front, and near the 
gate of the mold [10, 11]. As the review of literature will show, the modeling of long glass fibers 
in a center-gated disk has received relatively little attention. One attempt by Nguyen et al. [12] 
applied a short fiber model to a long fiber system and assumed Hele-Shaw flow. Ortman et al. 
[13] used the Hele-Shaw assumption in order to simulate the orientation kinetics of LGF’s during 
filling using a semi-flexible fiber model. Instead this work seeks to investigate the accuracy 
gained in fiber orientation predictions when no assumptions about fiber orientation into the mold 
cavity are made and the mold is simulated from the sprue/mold interface shown by Figure 1.1 
(b).  

1.3 Solution of Fiber Orientation in End-Gated Plaque 

A more industrially applicable geometry of interest is the end-gated flow domain given 
by the mold in Figure 1.2. Commonly in the end-gated system, the sprue, runner and gate are 
neglected and only flow in the mold cavity is simulated [14-17]. The previous work has 
employed the Hele-Shaw assumption to simplify the three-dimensional geometry into a 
rectangular cavity, as seen in Figure 1.2 (a). 

 
Figure 1.2: Geometry of an end-gated plaque. (a) Solution of fiber orientation through a 

rectangular cavity using Hele-Shaw assumption (may be combined with fountain flow model) 
requiring specification of orientation at mold entry. (b) Solution of fiber orientation using the 
three-dimensional end-gated plaque geometry without assumptions at mold entry. 
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The modeling of LGF orientation while being injected into a fully three-dimensional 
mold, such as an end-gated plaque shown above in Figure 1.2 (b), has seen only one effort by 
Nguyen et al. [12]. In this study a short fiber orientation model was applied to a long glass fiber 
systems and a Hele-Shaw assumption was made. Unfortunately comparisons between predicted 
and experimental fiber orientation values were carried out at the center-line of the mold in this 
study. Hele-Shaw flow makes assumptions about the flow field near the front and near the gate 
which effect the orientation of fibers. Instead both regions should be included when predicting 
fiber orientation in the end-gated mold. Furthermore, the entry to the mold cavity is a complex 
three-dimensional flow field and the effects should be studied to assess effects on fiber 
orientation in the mold. Understanding the evolution of long glass fiber orientation in fully three-
dimensional test geometries is necessary as it is the foundation for predicting fiber orientation in 
more industrially relevant molding geometries.  

1.4 Research Objectives 
The primary goal of this research is to access the increase in accuracy of modeling long 

glass fiber orientation by modeling the entire injection domain as a single entity in two injection 
molding test geometries. Three objectives have been proposed to accomplish this goal: 

1. Quantify the improvement gained in predicting long glass fiber orientation in a center-
gated disk by simulating the sprue, gate and mold (SGM method) as a single domain 
using established orientation equations and rheologically determined orientation 
parameters and comparing results to experimentally obtained fiber orientation data. 
 

2. Assess the accuracy of the SGM method to predict short glass fiber orientation in an end-
gated plaque mold by comparing predicted fiber orientation values (obtained from an 
objective and non-objective rigid fiber model) to experimentally measured fiber 
orientation both along and away from the centerline. 
 

3. Assess the accuracy of the SGM method to predict long glass fiber orientation in an end-
gated plaque mold by comparing predicted fiber orientation values (obtained from both a 
rigid and semi-flexible fiber model) to experimentally determined fiber orientation both 
along and away from the centerline. 

1.5 References 
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Chapter 2 
 

Literature Review 
 

Preface 
This chapter provides a review of the literature relevant to this research. This portion of 

the document is divided into five major subsections: general classifications of glass fiber 
composites, determination of experimental fiber orientation in glass fiber composites, modeling 
equations for the stress tensor used with glass fiber suspensions, modeling equations for the 
prediction of orientation of glass fibers in suspension and a summary of the prediction of glass 
fiber orientation in different geometries. The  figures and tables are given in the text as needed.
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2 Review of Literature 
In the following section, a review of literature concerning glass fiber composites is 

presented. The following text is a review of pertinent information on glass fiber reinforced 
composites which allow the reader to be fluent enough in the subject matter to understand the 
concepts presented throughout this thesis. First, classification of fiber systems based on 
concentration and fiber length is reviewed in § 2.1. Next, in § 2.2 determination of experimental 
fiber orientation in glass filled thermoplastics is reviewed. Rheologically obtained parameters fit 
to stress models are used in rigid and semi-flexible fiber orientation simulations. Therefore, 
modeling of the stress tensor in rigid and semi-flexible fiber suspensions is reviewed in § 2.3. 
Next, modeling fiber orientation for rigid and semi-flexible fibers in a flow field is discussed in 
§2.4. Finally, predicting both rigid and semi-flexible fiber orientation during processing is 
reviewed in § 2.5. 
2.1 Glass Fiber Composites 

Additives have long been used in polymers as a way to change the properties of a matrix. 
Fiber additives are used to increase rigidity and enhance mechanical properties. One such 
example of this is the use of glass fibers in the design of a bus seat reported by Bartus et al. [1]. 
The findings showed a 43% weight reduction and 18% cost reduction while maintaining the 
same standards of previous, non-composite alternates. Parts made from glass-fiber reinforced 
plastics have also been reported to have a high strength to weight ratio along with high stiffness 
and creep endurance [2]. Glass fibers have the ability to be added to a wide range of polymers 
while generally increasing properties [3].  

Classifying a fiber-filled system usually by either length or concentration often dictates 
the assumptions to be made and equations to be solved. First, the classification of fiber-filled 
systems by concentration is addressed in §2.1.1. Next, the use of fiber length when classifying 
fiber filled systems is reviewed in § 2.1.2.  

2.1.1 Classification by Fiber Concentration 
When classifying the concentration of fibers within a system, one common method 

employed is given by Doi and Edwards [4] and is based on concentrated polymer solutions 
adapted for fiber suspensions. This method is based on fiber concentration and is defined by the 
relation given in Eq. (2.1): 

 φ = πnL3

4ar
4   (2.1) 

Eq. (2.1) is taken to be over a given suspension of fibers where φ is the fiber volume fraction, n  
is the number of fibers per unit volume and L and ar are the fiber’s length and aspect ratio, 
respectfully. From the definition, Doi and Edwards [4] described three regions of concentration. 
These regions are termed by the authors as dilute (§ 2.1.1.1), semi-dilute (§ 2.1.1.2), and 
concentrated (§ 2.1.1.3) regions. Figure 2.1 shows the relationship between fiber aspect ratio,ar , 
fiber volume fraction, φ , and the regions that combinations of the two can yield. 



9 

 

 

Figure 2.1: Concentration regimes as a function of volume fraction, f , and aspect ratio, ra .  
Estimations are done using Dinh and Armstrong theory for aligned fibers [5]. 

2.1.1.1 Dilute Region of Fiber Concentration 

A fiber suspension is defined as dilute when the presence of a single fiber is completely 
unaffected by any other fibers in the system. This regime exists, theoretically, when the average 
distance between adjacent fibers is larger than L , the length of a given fiber in the system. 
Additionally, the number of fibers per unit volume is also restricted to a value ofn <1 L3 . The 
volume fraction is now also confined to a value of φ <1 ar

2 . A fiber in the dilute system is never 
able to “observe” another fiber within a system. Specifically, a fiber is unaffected by any other 
fibers around it either by direct fiber-fiber interaction or hydrodynamic interactions.  

2.1.1.2 Semi-Dilute Region of Fiber Concentration 

In the semi-dilute region free rotation of a fiber is restricted by the presence of other 
fibers but fiber collision is still rare. Quantitatively, fiber-fiber interaction can occur when the 
number of rods per unit volume is over n >1 L3 . The upper limit for a system of completely 
random rods in a unit volume to be semi-dilute is given by Eq. (2.2) and the upper limit of a 
system of completely aligned rods is given by Eq. (2.3).    

 
 
Random System → n 1

dL2  (2.2) 

 
 
Aligned System → n 1

d 2L
 (2.3) 

The fiber volume fraction is also restricted to a value of  ar
−2 <φ  ar

−1 . 
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2.1.1.3 Concentrated Region of Fiber Concentration 

The concentrated regime encompasses all those systems which are above the limit of the 
semi-dilute region described in § 2.1.1.2. The quantitative description of this is described as 
either n ≥1 d 2L or φ ≥ ar

−1 for the number of fibers per unit volume and fiber volume fraction, 
respectfully. In this region both hydrodynamic interactions and fiber-fiber interactions are highly 
prevalent with fiber collisions occurring frequently. In concentrated systems it is also possible to 
observe behavior similar to liquid-crystalline polymer systems whereby clustering occurs to form 
a nematic phase of locally preferential alignment [4]. Concentrated systems are inherently 
complex and relatively little is understood about these systems in comparison to dilute and semi-
concentrated regimes. 
2.1.2 Classification by Length 

The second of the two classifications methods for fiber suspensions is by length of the 
fibers within the suspension. Generally, systems are classified by either being “short” glass fiber 
systems (SGF’s) or “long” glass fiber systems (LGF’s). Short glass fibers have been studied 
extensively by a number of authors [6-9]. The term “short” is generally used with systems when 
the fiber length distribution has an average length less than 1mm. Conversely, the term “long” is 
used when L >1 mm with the distinction based primarily on mechanical properties of the fiber 
[10]. A LGF system may exhibit the ability to bend, quantified by Switzer and Klingenberg [11, 
12] as the effective flexibility of a fiber and given in Eq. (2.4): 

 
 
f eff = 64ηm

γ ar
4

EYπ
 (2.4) 

In the equation above, ηm is the matrix viscosity,  γ is the shear rate, ar is the aspect ratio, and 
EY is the Young’s modulus of the individual fiber. From the expression in Eq. (2.4), the 
flexibility of a fiber can be seen to increase with increasing aspect ratio for a given Young’s 
modulus. 

Experimentally, fiber suspensions do not have one fixed length but a number of different 
fiber lengths within a system known as a fiber length distribution (FLD). After the FLD has been 
measured, the average fiber length is commonly calculated by taking the first and second 
moments of the fiber length distribution to form the number average length Ln( )  and weight 
average length Lw( )  shown in Eq. (2.6) and Eq. (2.5), respectfully: 

 Ln =
niLi

2∑
niLi∑

 (2.5) 

 
Lw =

niLi∑
ni∑

 (2.6) 
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2.2  Determination of Experimental Fiber Orientation 

Quantifying experimental fiber orientation is of upmost importance so that theoretical 
models can be developed with reliable experimental fiber orientation data. Fiber orientation can 
vary across the length, width, and thickness of a sample so accurately determining experimental 
fiber orientation is usually difficult and a number of techniques have been investigated including 
microradiography [13], scanning acoustic microscopy [14], scanning electron microscopy [15], 
nuclear magnetic resonance imaging [16], x-ray tomographic imaging [17], and reflection 
microscopy [18]. While many of the above methods show promise, they are limited by the ability 
to quantify large sample areas or have too poor resolution or contrast. The most promising 
method is optical microscopy whereby two-dimensional images are taken of the sample and 
projections are made into the plane to yield a quasi-3-dimensional volume by which to calculate 
orientation [19, 20]. The sample preparation for optical microscopy is labor intensive, but 
necessary, to obtain samples of high quality. Once high quality samples are obtained, image 
acquisition and processing are performed to assist in the elliptical footprint recognition. Once the 
processing has been completed the method of ellipses (MoE) is used to calculated experimental 
fiber orientation of the samples in question. Each step of the process will be addressed in 
separate sections. First, § 2.2.1 covers the composite material sample preparation. Next, § 2.2.2 
discusses the image acquisition and stitching procedure. Finally, § 2.2.3 discusses the calculation 
of fiber orientation based on the method of ellipses. 
2.2.1 Sample Preparation for Optical Microscopy 

Fiber containing composites must be prepared before optical microscopy can be 
performed. Sample preparation directly affects the quality of micrographs obtained in the 
imaging step so care must be maintained throughout the process. The sample preparation steps 
include cutting, marking, mounting, grinding, polishing, etching, and sputtering. The procedure 
presented has been tested on a number of glass containing composites including 30 weight 
percent short fiber polybutlyene terephthalate (SF-PBT, Valox 420, SABIC), 30 weight percent 
short glass fiber polypropylene (SF-PP, RTP-105, RTP Company), and 30 weight percent long 
glass fiber polypropylene (LF-PP, LNP Verton MV006S, SABIC). 

2.2.1.1 Sample Cutting 

Sample cutting is usually a balance between the speed at which a cut can be made and the 
resulting friction that can occur. Aggressive cutting can fracture the surface of the sample in 
question and may even cause irregularities in the fibers being analyzed. In order for fibers to be 
recognized with MoE clear elliptical footprints must be generated. Therefore, the sample is cut 
using a low-speed diamond wheel saw (South Bay Technology, Inc.) using cutting oil (Precision 
Surfaces International, Inc.) to reduce the friction imposed on the sample. 
2.2.1.2 Sample Marking 

In the polishing steps that will be outlined, a very flat surface is required to make 
accurate predictions about fiber orientation. For this reason the samples are marked once they are 
cut so the preparer knows how much material to polish off of the mounted sample. 
Tridimensional sample markers made of a polymeric material are used to identify areas of 
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interest on the sample. The markers are made of red-colored polyethylene terephthalate and 
bonded with cyanoacrylate adhesive (Krazy Glue®). 

2.2.1.3 Sample Mounting 

Once the sample has been cut and marked, it is mounted in a thermoplastic epoxy in the 
shape of a puck roughly 30 mm in diameter. This is done by placing the samples of interest in 20 
ml of acrylic powder (thermoplastic powder, Precision Surfaces International, Inc.), heating to a 
temperature of 458 K and steadily applying 1 kPa of pressure in a specialized molding apparatus. 
After heating the sample for 15 minutes, the heating element is removed while still under 
pressure. The sample is removed only when the thermoplastic powder has solidified around the 
samples. To keep the samples upright during the puck molding, soft clips (spring clips, Precision 
Surfaces International, Inc.) are used around the samples in question. 

 
Figure 2.2: Three-dimensional visualization of the puck including the polishing marker 

looking from the side (left) and bottom (right). 

2.2.1.4 Sample Grinding 

After the sample has been mounted the first of a two-step procedure for obtaining a 
smooth surface of which to image can be carried out. Sample grinding is the use of sand paper to 
gradually wear down the bottom of the puck until the marker on the sample is reached. During 
the grinding procedure it is important to keep the surface of the sample wet to avoid fiber 
breakage. Rotation of the sample is also recommended to evenly wear down the sample instead 
of causing local height fluctuations. A summary of the general procedure for grinding the resins 
containing the samples of fiber filled thermoplastic is given in Table 2.1. The first “stage” uses a 
welt-belt grinder (BG-32 dual belt grinder; LECO) and removes material quickly but must be 
done with care so as to not damage the sample in question. The wet-belt grinder is used twice 
with both 120-grit and 180-grit, done in succession, to remove material the desired amount of 
material. The second stage of grinding is done by hand and uses a wet hand grinder (Handimet® 
2 Roll Grinder; Buehler Co.) and uses the times and conditions outlined in Table 2.2. The use of 
the two stages outlined in this section should be enough to display the plane of interest of the 
sample in the resin puck.   
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Table 2.1: Detailed procedure for the grinding portion of the experimental sample 

preparation adapted from [21]. 

The method of ellipses (discussed in § 2.2.3) is highly dependent on the sampling surface being 
completely flat. To quantify the surface height of the sample, and to make sure that the plane of 
interest is flat, measurements of the surface height are taken throughout the grinding process at 
four 90 degree increments around the puck (0°, 90°, 180°, 270°). These heights are monitored 
during the entire process of grinding and polishing. Careful rotation and height monitoring yield 
surface height fluctuations of less than 0.010 mm [21]. 

2.2.1.5 Sample Polishing 

The polishing of samples is the other of the important two step processes for obtaining 
smooth sample surfaces to image. An automated grinder (MiniMet® 1000 grinder/polisher; 
Buehler Co.) is used to carry out the operation and is crucial for providing the necessary control 
needed for obtaining polished sample surfaces of the utmost quality. Holes are drilled in the top 
center of the puck so that they can be mounted on the apparatus. Synthetic nap cloth (Final finish 
cloth; Precision Surfaces International, Inc.) are used to hold alumina particles of various sizes 
(Precision Surfaces International, Inc.) in an aqueous suspension. The details of the polishing 
procedure are summarized in Table 2.2. 

Stage

CAMI Grit 
Designation 

(Average sizes of the 
abrasive material in 

µm)

Time (min)
Interval for Rotation 

(s)
Objective

30

10

2

30

30

30

10

Removal of material 
to eliminate surface 

grooves

Removal of material 
until plane of 

interest is reached

I                    
(Wet Belt 
Grinder)

II                    
(Wet Hand 
Grinder)

240 (53)

320 (36)

400 (23)

600 (16) 2

2

2

120 (115)

180 (82)

1-2 (Until Marker 
is seen, blurry 
under surface)

1-2 (Until Marker 
is seen, clear 

surface)
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Table 2.2: Detailed procedure for the polishing portion of the experimental sample 

preparation adapted from [21]. 

The quality of the sample surface is related to not only the height fluctuations of the 
sample but also the quality of ellipses seen on the sample surface. The method of ellipses 
(discussed in §2.2.3) needs elliptical footprints of fiber cross-sections in order to make 
quantitative arguments on the orientation of fibers within a sample.    

2.2.1.6 Plasma Etching 

In image processing, and especially in automated image recognition, the color contrast 
between the object of interest and the background is extremely important [22]. For some polymer 
matrices containing glass fibers, polishing alone does not provide a large enough contrast. 
Plasma etching is one of the few experimental techniques that can be used to increase the 
contrast between object and background. Oxygen plasma is generated under vacuum to roughen 
the polished surface of the sample, burning away the matrix and leaving the fibers.  

 
Figure 2.3: Image showing final stage of sample preparation once sample has been etched 

using oxygen plasma under 10 x magnification. 

The polished surface becomes darker during this processes leading to a larger color gradient 
between matrix and fiber. Junkar et al. [23] have shown that etching times vary according to 
matrix and is related to the crystallinity of the particular polymer. 

Alumina 
Particle Size 

(µm)

Speed 
(RPM)

Vertical 
Force (N)

Time (min)

5 40-50 22.2 40

1 40-50 22.2 40

0.3 40-50 22.2 30

0.05 40-50 22.2 30
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2.2.2 Image Acquisition 

With a large color gradient between the fibers and surrounding matrix, it is now possible 
to acquire images of samples and generate experimental orientation data. Clarke and Eberhardt 
[24] argue that 20x magnification of the sample provides adequate resolution. An optical –
reflection microscope (Axiovert 40 MAT; Carl Zeiss LLC) is used to acquire images. The use of 
a motorized stage is also employed so that multiple images can be acquired and “stitched” 
together to form a single large image. 
2.2.3 Image Processing and Experimental Fiber Orientation Calculation 

Experimental fiber orientation is determined using the “Method of Ellipses” which is a 
quasi-three-dimensional method for calculating the orientation of a fiber within a sample. The 
fiber orientation can be calculated with the knowledge of two angles, θ  and φ , shown in Figure 
2.4. 

 
Figure 2.4: Determination of experimental fiber orientation using: (a) in-plane view where 

M is the length of the major axis, m  is the length of the minor axis, and j is the in-plane angle, 
(b) out-of-plane view where p is the vector projected down the major axis of the fiber and q is the 
out-of-plane angle. 

Error! Reference source not found. (a) shows the in-plane ellipse that is commonly encountered 
in the experimentally obtained images, similar to that shown in Error! Reference source not 
found.. The in-plane angle is calculated using simple trigonometry. Error! Reference source not 
found. (b) shows the out of plane angle, or the “projection” of the fiber into and out of the plane. 
The out-of-plane angle is then calculated with Eq. (2.7): 
 θ = cos−1 b a( )  (2.7) 

2.2.4 Summary of Experimental Fiber Orientation 

The use of the experimental technique above makes assumptions about both the length 
and flexibility of the glass fibers in the system under study. The method of ellipses was 
developed for rigid SGF systems so that the original choice of a 0.7 mm bin-width would be 
appropriate for a system whose average fiber length is around 0.3 mm (a bin width roughly twice 
the size of the fiber being investigated). In a LGF system, it is possible to have average fiber 
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lengths around 3.5 mm or greater and single fibers reaching lengths of 10 mm . The bending of 
these longer fibers is also commonly seen during image processing. With longer fibers it is easy 
to see that the traditional bin width of 0.7 mm and the assumption that they are rigid is 
inappropriate.  

At the time of this work two bin widths of 0.7 mm and 5.5 mm were adopted to account 
for the longer fibers in the system. The two bind widths are being studied to determine the effect 
that each have of experimental fiber orientation. At the time of this work, no work has been 
performed to quantify the orientation of a fiber which is bent.  
2.3 Modeling Equations for Stress Tensors in Fiber Suspensions 

In the prediction of glass fiber orientation, parameters arise which are fitted using 
equations of stress for fiber suspensions. In the following section, the development of stress 
tensor for rigid and semi-flexible fiber systems is presented. First, the development of a stress 
tensor for rigid fiber filled systems is discussed in § 2.3.1. Then, the development of a stress 
tensor for flexible fiber systems is covered in § 2.3.2.  
2.3.1 Stress Tensor Modeling in Rigid Fiber Suspensions 

As described in § 2.1.1, fiber suspensions can be classified by concentration. For the 
development of a stress tensor two distinctions are made using the definitions from § 2.1.1: 
dilute/semi-concentrated and concentrated. The stresses inherent to a glass fiber composite differ 
greatly based on a number of factors including fiber volume fraction, fiber length and fiber 
orientation to name a few.  
2.3.1.1 Model for the Stress Tensor in Rigid Dilute Suspensions 

Modeling the stress tensor and viscosity changes that occur with additives to solutions 
have been studied since the work by Einstein [25] where the relative viscosity,ηr , of a dilute 
dispersion of small spheres was modeled as Eq. (2.8) and based on the volume fraction of the 
particles, φ : 

 ηr = 1+ 2.5φ  (2.8) 

Further analysis by Mooney [26] was performed where Eq. (2.9) was developed for more 
concentrated systems where particle “crowding” was taken into account (represented by k ) and 
is the first known relation where interactions are included with the viscosity relation.  

 ηr = exp
2.5φ
1− kφ

⎧
⎨
⎩

⎫
⎬
⎭

 (2.9) 

Hand [27], Giesekus [28, 29] and Batchelor [30] presented a method using averaged 
values over a collection of suspended particles using orientation tensors. The most general form 
of the stress equation is given by Eq. (2.10) which gives a full account of interparticle interaction 
where a ,b , c , and f are geometric shape factors based on the specific system in question [31]: 

 
 
σ = −PI + 2ηmD + 2ηmφ aA4 :D + b D ⋅A + A ⋅D( ) + cD + fdRA⎡

⎣
⎤
⎦   (2.10) 



17 

 

In Eq. (2.10)σ is the total stress tensor, P is the isotropic stress, I is the unit tensor, ηm is the 

matrix viscosity, D  is the rate of deformation tensor, φ is the volume fraction of fibers in the 

system,  A4 is the 4th moment of the orientation distribution function, A is the 2nd moment of 
orientation distribution function. dr  is a term which tries to account for Brownian motion within 
the system, however, for LGF systems the fibers are considered to be non-Brownian (see § B.1) 
so this term may be discarded. Similarly, for long aspect ratio fibers, b and c are small in 
comparison to other terms so these are also neglected. The final equation is thus reduced to a 
form for fiber suspensions shown in Eq. (2.11) where N attempts to represent the associated 
anisotropic stresses associated with the system [31]: 

 
 
σ = −PI + 2ηmD + 2ηmφ NA4 :D + D( )   (2.11) 

Batchelor [30] proposed a similar equation to account for particle-fluid and particle-particle 
interactions, shown  in Eq. (2.12): 

 
 
σ = −PI + 2ηm D + NA4 :D − 1

3 NAI :D( )   (2.12) 

 Estimations have been proposed for the value of N for a dilute suspension of particles, 
most notably by Batchelor [32] where n is the number of fibers per unit volume, L is the length 
of the fiber, d is the fiber diameter, and ε = 1 ln 2L d( ) . 

 N = πnL3

6 ln 2L d( )
1+ 0.64ε
1−1.5ε

+1.659ε 2⎛
⎝⎜

⎞
⎠⎟  (2.13) 

Corrections to dilute theory for two body interactions were proposed by Shaqfeh and Fredrickson 
[33] and are shown for aligned suspensions and isotropic suspensions in Eq. (2.14) and Eq. 
(2.15), respectfully: 

 N = Ndilute + 8.583×10−3 π nL3( )2
ln 2L d( )3

 (2.14) 

 N = Ndilute + 9.250 ×10−3 π nL3( )2
ln 2L d( )3

 (2.15) 

For semi-dilute systems (see § 2.1.1 (b)), Dinh and Armstrong [5] provided a different relation 
for N  seen  in Eq. (2.16): 

 N = πnL3

6 ln 2h d( )  (2.16) 
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Where h is defined for specific systems as either random or aligned in Eq. (2.17) and Eq. (2.18), 
respectively: 

 h = 1
nL2

 (2.17) 

 h = 1
nL( )1 2

 (2.18) 

An expression for h has also be presented for use in systems that are a combination of the two 
above [31]. While many of these relations have seen some success in modeling dilute and semi-
dilute systems, all break down when attempting to predict concentrated fiber suspensions.  
2.3.1.2 Model for the Stress Tensor in Rigid Non-Dilute Suspensions 

Stresses in non-dilute suspensions are generally treated as linear combinations of the 
matrix and particle contributions. Early work was performed by Ericksen [34], Batchelor [32], 
Goddard [35] and Lipscomb [36] in modeling the stress tensor in a concentrated suspension. 
Lipscomb [36] presented a theory which included the fiber volume fraction, φ , in the stress 
equation, seen in Eq. (2.19): 

 
 
σ = −PI + 2ηm D + c1φD + NA4 :D( )   (2.19) 

The value of N is present to account for the effect fiber orientation has on the stress 
enhancement of the system while the value of c1 attempts to quantify the stress enhancement of 
the amount of fiber in the system. Eberle et al. [37] have chosen to use N as a fitting parameter 
and the value of c1 is often fit as well [10]. Varying degrees of success have been reported by 
Ortman et al. [38] using this technique depending on the initial fiber orientation of the system. 

Ait-kadi and Grmela [39] and Azaiez [40] developed viscoelastic models to predict 
stresses in fiber suspensions. The composite stress is given in Eq. (2.20) with the Giesekus model 
for the polymer behavior following in Eq. (2.21): 

 
  
τ c =ηmκ γ +ηm κ +

η γ( )
ηm

⎡

⎣
⎢

⎤

⎦
⎥φ c1 γ + c2 γ :A4

⎡
⎣

⎤
⎦ +τ p   (2.20) 

 
 
λτ p 1( ) +στ p −

αλ
ηm

τ p ⋅τ p( ) + m 1−σ( )
2

A ⋅τ p +τ p ⋅A( ) = −ηm γ   (2.21) 

Other modeling techniques have been suggested for predicting stresses in fiber suspensions [39]. 
The use of viscoelastic or other complicated models to calculate a composite stress tensor may 
increase accuracy but also complicate the solution of a problem by presenting yet another set of 
coupled differential equations to solve decreasing the stability of the solution.  
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2.3.2 Stress Tensor Modeling in Flexible Fiber Suspensions 

The flexibility of a fiber was introduced in § 2.1.2 as a way of quantifying fiber bending 
in a flow field. Forgacs and Mason [41] investigated the role of flexibility in fiber rotations and 
also found a “critical bending stress” for a single fiber in dilute solution. This relation is given in 
Eq. (2.22) where Eb is the bending modulus Eb = 2EY( ) andar is the aspect ratio. 

 
 
γηm( )crit ≅

Eb ln2ar −1.75( )
2ar

4  (2.22) 

This relation shows that axial forces caused by shear flow can bend fibers of high aspect ratio or 
low modulus. Goto et al. [42] carried out a number of studies using glass fibers in both a 
Newtonian and non-Newtonian medium. It was shown that in both cases, fiber flexibility greatly 
increased both the viscous and elastic properties of the fluid. 
2.3.2.1 Model for the Stress Tensor in Dilute Flexible Fiber Suspensions  

The calculation of a stress tensor for a dilute suspension containing flexible or semi-
flexible fibers has been studied mainly by direct simulation [12, 43-48]. These simulations 
require detailed information about the physical interactions on a micro or meso scale in the 
system and are often very computationally intensive. Because of the laborious computational 
technique, the number of fibers must often be limited, thus reducing accuracy for a large system 
of fibers and yielding different theories about the effect that fiber flexibility has on a suspension. 
Joung et al. [38] directly simulated the physics of fibers interacting in a Newtonian fluid, using a 
method where the flexible fibers were modeled as chains of beads joined by connectors, and 
showed that the suspension viscosity increased with increased fiber flexibility. Switzer and 
Klingenberg [42] carried out simulations modeling the fibers as linked cylinders with ball-and-
socket joints and showed that suspension viscosity decreased with increasing fiber flexibility. 
Rajabian et al. [49] instead used an entropy based approach to predict the stress tensor but no 
experimental data has been published corroborating the results.  

The contradiction of results led to a thorough investigation by Keshtar et al. [3] where a 
number of fibers of different flexibilities were investigated in steady and transient shear flows in 
both dilute and semi-dilute concentration. Increasing the flexibility of the fiber enhanced the 
shear-thinning behavior of the suspension. In start-up flow, large transient over shoots were 
reported with the magnitude of overshoot increasing with flexibility, which is also consistent 
with the results reported for rigid fiber suspensions [50]. The prediction of the stress tensor in the 
fiber suspensions investigated by Keshtar et al. [3, 50] was performed using the general equation 
for non-equilibrium reversible-irreversible coupling (GENERIC) which was first proposed by 
Grmela and Öttinger [51] and Öttinger and Grmela [52]. Here, the modeling utilizes the 
orientation tensors for fiber orientation (see § 2.4.1) along with a normalized end-to-end vector 
of the fiber which can be seen in Figure 2.7. The GENERIC model is based on the entropy 
within a system. The GENERIC model is advantageous only in that it is always consistent with 
the hydrodynamic and thermodynamic effects. The major disadvantage is the lack of connection 
between the fiber dynamics and the empirical parameters in to calculate them. Specifically, free 
energy and dissipation parameters directly determine the fiber dynamics of the system and are 
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not measurable functions of the system in question. These inconsistencies lead to consistent 
overshoots in the prediction of the transient stresses [53]. 

2.3.2.2 Model for the Stress Tensor in Concentrated Flexible Fiber Suspensions 

Very little work has been reported in predicting the stress tensor in concentrated flexible 
fiber suspensions. Ortman et al. [54] has reported some success modeling concentrated semi-
fiber suspensions using a combination of the theory presented by Strautins and Latz [55] for 
flexible dilute systems and the theory presented by Dinh and Armstrong [5] for semi-dilute fiber 
suspensions. The stress tensor is presented in Eq. (2.23)where a 3rd term has been added to Eq. 
(2.19) to account for fiber flexibility. In Eq. (2.23), c3 is an empirical fitting parameter, k a 
flexibility parameter for the fiber material, r is the end-to-end vector (see § ), lb is half of the 

average fiber length, and R is the normalized 2nd moment of the end-to-end tensor or 

R = A − B( ) 1-tr B( )( ) : 

 
 
σ flex = −PI + 2ηm D + f1φD + f2A4 :D( ) + c3ηmk

3φar
2
tr r( )
2lb

2 A − R( )   (2.23) 

Ortman et al. [54] provided a quantitative argument for the parameters given  in Eq. (2.24) and 
Eq. (2.25)for f1 and f2 , respectfully: 

 

 

f1 =

c
γ min γ ≤ γ min

c
γ

γ > γ min

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  (2.24) 

 f2 = c2IAIIAIIIA   (2.25) 

where invariants of the orientation tensor, A , are given  in Eqs. (2.26) to (2.28): 

 IA = tr A( )  (2.26) 

 IIA =
1
2
tr A( )2 − tr AA( )⎡
⎣⎢

⎤
⎦⎥

 (2.27) 

 IIIA = det A( )  (2.28) 

Using the stress model presented in Eq. (2.23) and choosing to make the parameters f1 and f2 a 
function of shear rate and fiber orientation has been shown to be quantitatively accurate [56]. To 
date the method presented by Ortman et al. [57]provides the highest amount of accuracy with 
relatively little computation time. 
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2.3.3 Summary of Stress Tensor Modeling 

The methods presented in the preceding section outline techniques for modeling the stress 
tensor of a suspension. It can be seen from the presented literature that the modeling of dilute 
solutions is difficult and relatively little is understood from the perspective of first principles. 
This misunderstanding is magnified when trying to describe increased fiber loading and fiber-
fiber collision because even the most advanced modeling efforts still have empirical parameters 
that must be fit.  

Further complicating the matter, long glass fibers have been shown to exhibit flexing in 
simple shear flow experiments. Ortman et al. [38] showed that modeling the stress tensor of a 
long glass fiber suspension was possible through the fitting of the concentrated rigid stress 
model, Eq. (2.19)but still relied on empirical fitting transient stress curves. At the time of this 
review, no other theory for predicting the stress tensor of long glass fiber systems has been 
presented which accounts for the additional bending that may occur. 
2.4 Modeling Equations for Fiber Orientation 

The probability that a fiber will be oriented between the angles θ1,φ1( )  and
θ1 + dθ ,φ1 + dφ( ) , is given by Eq. (2.29): 

 P θ1 ≤θ ≤θ1 + dθ ,φ1 ≤φ ≤φ1 + dφ( ) =ψ θ1,φ1( )sinθ1  dθ  dφ  (2.29) 

Some authors have used the probability distribution function to describe the orientation in fiber 
systems [58], but it has been observed that the addition of too many fibers to the system of 
interest can make the calculations cumbersome [59]. The use of orientation tensors, given by 
Advani and Tucker [1], will instead be used and is widely accepted to be an accurate 
representation of fiber orientation within a sample.  

The following section is divided up into two main sections for examining rigid fiber 
orientation models and semi-flexible fiber orientation models. The rigid fiber orientation models 
are examined in § 2.4.1 for both the dilute and concentrated case. The semi-flexible fiber models 
for orientation are reviewed in § 2.4.2. 

2.4.1 Rigid Fiber Orientation 

Defining a rigid fiber’s particular orientation is done by representing that fiber as a vector 
running through the longitudinal axis seen in Figure 2.5. 
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Figure 2.5: Rigid-rod representation of fiber. The fiber is represented by the vector p , and is 

characterized by the azimuthal and zenith angles  and j q , respectfully. 

A compact method for quantifying fiber orientation is through the use of orientation tensors. This 
method was explored by Erickson [34, 60, 61] for liquid crystalline polymers and later by 
Advani and Tucker [62] for representing rigid fiber orientation. Advani and Tucker [62] 
described the second and fourth moments of the orientation distribution function by Eq. (2.30) 
and Eq. (2.31), respectively: 

 A = ppψ p,t( )dp∫∫  (2.30) 

  A4 = ppppψ p,t( )dp∫∫  (2.31) 

An issue arises with the calculation of Eq. (2.31) as there is no exact way to calculate the 
fourth moment of the orientation distribution function. Instead the fourth moment must be 
represented as a combination of second moments of the orientation distribution function. The 
estimations are generally referred to as closure approximations and are the subject of a number 
of researcher’s efforts [31]. The choice of closure models is a significant part of the numerical 
simulation scheme and will be the subject of discussion later (§ 2.4.4). 

2.4.1.1 Jeffery’s Equation (Dilute Rigid Fiber Suspensions) 

The motion of a single ellipsoidal particle, proposed by Jeffery [63], can be represented 
by Eq. (2.32) where p is the directional vector of a single rigid ellipsoid, v is the velocity vector, 

W is the vorticity
 
W = 1

2
∇v − ∇v( )T⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟  , D is the rate of deformation

 
D = 1

2
∇v + ∇v( )T⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟ , 

and ξ is the shape factor ξ = ar
2 −1 ar

2 +1 . 

 ∂p
∂t

+ v ⋅∇p =W ⋅ p + ξ D ⋅ p − p p ⋅D ⋅ p( )⎡
⎣

⎤
⎦  (2.32) 

Jeffery predicted that the particles, in laminar flow, would undergo periodic rotations in a 
spherical elliptical orbit experimentally confirmed by Trevelyan and Mason [64]. In simple shear 
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flow v1 = γ y,  v2 = v3 = 0( ) , the differential equations are exact and are written in Eq. (2.33) and 
Eq. (2.34) . 

 
 

∂φ
∂t

=
γ

ar
2 +1

ar
2 cos2φ + sin2φ( )   (2.33) 

 ∂θ
∂t

= ξ sin2θ sin2φ  (2.34) 

The solution is easily solved for and is shown in Eq. (2.35) through Eq.(2.38). 

 
 
tanφ = ar

γ t
ar + ar

−1 + k
⎛
⎝⎜

⎞
⎠⎟

 (2.35) 

 tan k = 1
ar tanφ0

⎛
⎝⎜

⎞
⎠⎟

 (2.36) 

 tanθ = Car
ar
2 sin2φ + cos2φ

 (2.37) 

 C = tanθ0
ar
2 sin2 k + cos2 k

 (2.38) 

Where k andC are obtained from the initial conditions of the spheroid, φ0 andθ0 . The solution to 
the above equations is periodic and is described by Eq. (2.39)  with Figure 2.6 showing the 
periodic rotations for a specific case of ar = 5  and initial conditionsφ0 = 175°,θ0 = 45° . In Eq. 
(2.39) T is the period of rotation,  γ is the magnitude of the shear rate and ar is the aspect ratio of 
the particle. 

 
 
T = 2π

γ
ar +

1
ar

⎛
⎝⎜

⎞
⎠⎟

 (2.39) 
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Figure 2.6: Polar and azimuthal angles describing orientation kinetics of an ellipsoidal 

particle in simple shear flow given by the analytical solution to Jeffery’s equation, Eq. (2.35) to 
Eq. (2.38). Solution is given for a particle with 5ra =  and initial conditions φ0 = 175°,θ0 = 45° . 

Further analyses of Jeffery’s orbits for different cases have been performed by Barbosa 
and Bibbo [65]. Mason and Manley [66] addressed the quantitative periodic rotation of rigid rods 
with distribution functions to measure orientation of rods within a desired coordinate plane. 
Furthermore, Mason and Manley documented drift from one Jeffery’s orbit to another showing 
that orientation kinetics are significantly more complicated than Jeffery first estimated. 
Collisions between two particles were further studied by Manley and Mason [67]. Ferguson [68] 
addressed the issue of rotating rigid particles in a second-order Rivlen-Erickson fluid and 
confirmed that the particles slowly drift through a number of different orbits over time.  

A continuum form of Jeffery’s equation for a single spheroid can be obtained by applying 
Eq. (2.30) and Eq. (2.31) to the model in Eq. (2.32). The left-hand side of Eq. (2.40) is the 

material derivative and will be written as the more compacted form, DA
Dt

= ∂A
∂t

+ v ⋅∇A , 

throughout this chapter. 

 
 
DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4( )  (2.40) 

In the equation above, A is the second moment of the orientation tensor,  A4 is the fourth moment 

of the orientation tensor, W is the vorticity tensor W = 1
2

∇v − ∇v( )T⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟ ,D is the rate or 

deformation tensor D = 1
2

∇v + ∇v( )T⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟  

and ξ  is a shape factor. For glass fiber systems the 
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shape factor is usually given a value of unity, ξ →1 . Objectivity has been attained thus far for 

Eq. (2.40) as the equation is in a form containing the co-deformational derivative of A .  

2.4.1.2 Concentrated Rigid Fiber Suspensions 

The addition of an isotropic rotary diffusion term to Eq. (2.40) was suggested by Folgar 
and Tucker [69] to more accurately describe the orientation kinetics exhibited by concentrated 
fiber systems and is shown in Eq. (2.41) where  γ is the magnitude of the shear rate, CI is a 

phenomenological constant and I is the identity tensor: 

 
  
DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4( ) + 2 γCI I − 3A( )  (2.41) 

Folgar and Tucker [69] theorized that in concentrated suspensions fiber-fiber interactions could 
be captured by the additional term. The model was shown to agree well with experimental data 
from a center-gated disk for short glass fiber systems by Bay and Tucker [70] at 10% of the 
cavity fill but over-predicted wall orientation at 40% at 90% of the mold fill. 

The fiber interaction coefficient, CI , has been continuously studied to improve fiber 
orientation predictions. Based on a number of experiments Bay [71] suggested Eq. (2.42) to 
empirically model the fiber interaction where φ is the fiber volume fraction and ar is the aspect 
ratio: 

 CI = 0.0184exp −0.7148φar{ }  (2.42) 

Ranganathan and Advani [72] proposed that the fiber interaction coefficient inversely 
proportional to the average distance between fibers. Phan-Thien et al. [73] proposed a fiber 
interaction coefficient in the form of Eq. (2.43) where M and N were obtained empirically 
through simple shear experiments as 0.03 and 0.224, respectively: 

 CI = M 1.0 − exp −Nφar{ }⎡⎣ ⎤⎦  (2.43) 

 Stress growth experiments in the startup of simple shear suggested that the orientation 
kinetics in concentrated fiber systems evolved slower than Eq. (2.41) predicted. A slip parameter 
was suggested to delay the predicted fiber orientation to better agree with experimental 
orientation data [7, 74], seen in Eq. (2.44): 

 
  
DA
Dt

=α W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4( ) + 2 γCI I − 3A( )⎡
⎣

⎤
⎦  (2.44) 

The “slip” parameter, α , has a value between 0 and 1 and slows the fiber orientation predictions 
to better match experimental conditions. The addition of this coefficient does result in a loss of 
material objectivity [75] but is still useful in predicting experiment fiber orientation. 
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To model the slow orientation kinetics of glass fiber filled systems and still maintain 
objectivity Wang et al. [76] proposed the “Reduced Strain Closure” (RSC) whereby the slip 
parameter was moved into the double dot product of Eq. (2.44) producing Eq. (2.45). It is 
important to note that a closure approximation is still required for the fourth-order moment 
orientation tensor, A4 , in Eq. (2.45): 

 

  

DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ( ) L4 −M4 :A4( ) :D⎡
⎣

⎤
⎦{ }

+2κ γCI I − 3A( )
 (2.45) 

In Eq. (2.45) κ is a scaling factor between 0 and 1,  A4 is the fourth-order moment orientation 

tensor, and  L4 and  M4 are the corresponding fourth-order moment eigenvalue and eigenvector 
tensors defined in Eq. (2.46) and Eq. (2.47), respectfully: 

 
 
L4 = λieieieiei

i=1

3

∑   (2.46) 

 
 
M4 = eieieiei

i=1

3

∑   (2.47) 

The RSC model has not been tested in systems containing long glass fibers so the accuracy of 
such a model cannot be made. The reference frame for predicting fiber orientation during 
injection molding does not change (there is no rotation or translation of the coordinate frame) so 
while Eq. (2.45) does maintain objectivity it is ultimately unnecessary from an industrial 
modeling standpoint. 

The isotropic rotary diffusion term, first introduced in Eq. (2.41), is a simplification for 
materials that exhibit isotropy, or uniformity in all directions. In commercial application of glass 
fibers, systems are rarely isotropic. The anisotropic nature of these materials was first accounted 
for by Koch [77] where the diffusion constant, CI , was instead represented by a tensor quantity, 
C . With the addition of this tensor, the fiber orientation equations could be defined as a 
combination of hydrodynamic and diffusive contributions, shown in Eq. (2.48). The 
hydrodynamic contribution is unchanged from the original derivation from Jeffery’s equation 
and takes the form of Eq. (2.40) . 

 DA
Dt

= Ah + Ad  (2.48)  

Koch [77] defined a fiber mobility tensor as Eq. (2.49) where n  is the number of fibers 
per unit volume and  A is the sixth moment orientation tensor shown in Eq. (2.50).  

 
   
C = nL3

γ 2 ln ar( )2
β1 D :A4 :D( ) I + β2D :A6 : D⎡
⎣

⎤
⎦  (2.49) 
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A6 = ppppppψ p,t( )dp∫∫  (2.50) 

The sixth moment tensor introduces the need for a different closure approximation in terms of 
the second moment tensor, however, a closure a simple as Eq. (2.74) is not viable. Sixth-order 
closures are briefly discussed in § 2.4.4. 

Koch’s development of the fiber mobility tensor gave a diffusion contribution for Eq. 
(2.48) as Eq. (2.51), but the theory was based on a semi-dilute suspension and gives values above 
and below unity when predicting fiber orientation in concentrated suspensions as well as 
predicting non-symmetric second moment orientation tensors: 

 
  
Ad = γ 2C − 2 tr C( )A − 5 C ⋅A + A ⋅C( ) +10A4 :C⎡

⎣
⎤
⎦  (2.51) 

Fan et al. [78] and Phan-Thien et al. [73] corrected the problems stated above by proposing Eq. 
(2.52) but using their model yields Ad ≠ 0  for an isotropic system which violates the 
conservation of diffusive flux: 

 
  
Ad = γ 2C − 2 tr C( )A − 3 C ⋅A + A ⋅C( ) + 6A4 :C⎡

⎣
⎤
⎦  (2.52) 

Realizing the drawback of the theory presented in Eq. (2.52), Phelps and Tucker [79] formulated 
a relation for anisotropic diffusion in the form of Eq.(2.51) but they redefined the fiber mobility 
tensor as a function of the rate of deformation, D , the second moment of fiber orientation, A , 
and constants b1 − b5 being empirically fit parameters seen in Eq. (2.53): 

 
 
C = b1I + b2A + b3A

2 + b4
γ
D + b5
γ 2 D

2  (2.53) 

Phelps and Tucker [79] also combined the work of Wang et al. [76] to form an anisotropic form 
of the reduced strain closure model shown  in Eq. (2.54): 

 

  

DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ( ) L4 −M4 :A4( ) :D⎡
⎣

⎤
⎦{ }

+ γ 2 C − 1−κ( )M4 :C⎡⎣ ⎤⎦ − 2κ  tr C( )A − 5 C ⋅A + A ⋅C( ){
+10 A + 1−κ( ) L4 −M4 :A4( )⎡

⎣
⎤
⎦ :C}

 (2.54) 

If the material is isotropic the fiber mobility tensor shown in Eq. (2.53) reduces down to the 
constant, CI , and Eq. (2.41) is recovered. Parameter selection for the fiber mobility tensors 
proposed in Eq. (2.49) and Eq. (2.53) is very important and interested readers are directed to 
Koch [77] and Phelps and Tucker [79]. All of the modeling efforts including the anisotropic 
nature of the materials has not been applied to long glass fiber systems as of yet so comments on 
the accuracy of such modeling efforts cannot be made. Again, Eq. (2.54) maintains objectivity 
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but since the coordinate frame is not moving from an industrial modeling standpoint it is again 
unnecessary. 

2.4.2 Flexible Fiber Orientation Models 

Models for flexible fiber orientation may be necessary in the processing of composites 
with longer fibers. Forgacs and Mason [41, 80] were the first to quantitatively address fiber 
bending as an issue in studying flexible fiber dynamics. Hinch [81] addressed the issue of a 
single deformable thread in a viscous media as shown in Eq. (2.55) and Eq. (2.56) assuming 
laminar flow conditions: 

 
∂x
∂t

= ∇v ⋅x + ∂T
∂s

∂x
∂s

+ 1
2
T ∂2x
∂s2

 (2.55) 

 ∂2T
∂s2

− 1
2

∂2x
∂s2

⎛
⎝⎜

⎞
⎠⎟

2

T = − ∂x
∂t

⋅D ⋅ ∂x
∂t

 (2.56) 

In Eq. (2.55) and Eq. (2.56), s  is the arc length of the fiber, x is a function of both s and t and 
represents a three-dimensional position vector of each point along the fiber, the tensor T is also 
and function of s  and t  and v is the velocity field of the fluid. In Hinch’s theory a force balance 
on the hydrodynamic effects of the matrix is used to describe the motion of a single flexible 
thread in a dilute solution. The model consists of two coupled partial differential equations to 
describe the motion of the thread for configuration and tension, respectively. The solution of 
Eqs. (2.55) and (2.56) is not useful because it is only valid in dilute solutions. 

Goddard and Huang [82] improved on this basic model for dilute suspensions by 
including fiber mobility in Eq. (2.55) and Eq. (2.56). This inclusion allowed for the model to 
take into account hydrodynamic effects of nearby fibers. The resulting equations are shown in 
Eq. (2.57) and Eq. (2.58) where KT is the transverse mobility tensor and KL and KN are the 
lateral and normal components of the mobility tensor, respectively: 

 
∂x
∂t

− KL
∂T
∂s

∂x
∂s

= TKT ⋅
∂2x
∂s2

+ v x,t( )  (2.57) 

 ∂
∂s

KL
∂T
∂s

⎛
⎝⎜

⎞
⎠⎟ −

∂2x
∂s2

⎛
⎝⎜

⎞
⎠⎟
⋅ ∂2x

∂s2
⎛
⎝⎜

⎞
⎠⎟
KNT = − ∂x

∂s
⋅
∂v x,t( )

∂s
 (2.58) 

In researching this theory, few authors have utilized Eqs. (2.57) and (2.58) mainly because they 
fail to capture some of the dynamics, and they are cumbersome to solve. 

Strautins and Latz [55] developed a continuum based model for semi flexible fiber 
systems through the use of moment orientation tensors. For fibers that can be considered semi-
flexible, two vectors (labeled p and q ) are defined along the half-length of a deflected fiber seen 
in Figure 2.7 that are attached by a freely rotating joint with an internal resistivity to bending, k . 
If the fiber is strait, the internal spring is not loaded and there is no straitening force on the fiber. 
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If the fiber is in a deformed state (by a flow field acting upon it), the spring acts against the 
deformation to try and return the fiber to a strait state.  

 

Figure 2.7: Semi-flexible representation of fiber. The fiber is represented by the vectorsp and
q , an end-to-end vector r , an internal resistivity to bending k , and the azimuthal and zenith 
angles  and j q , respectfully. 

Efficient modeling of the evolution of orientation in a complex flow field for semi-
flexible fibers required the development of kinematic equations based on orientation tensors. In 
order to simplify the system so that it could be solved with relative ease, a number of 
assumptions were made. The first assumption was that the fibers are only semi-flexible and the 
bending occurs only at the center of the fiber so that p = −q . Also, it was assumed that at any 
time, the first and second moments of the orientation vectors p and q were equal. Three moment 
tensors arose in this analysis for the semi-flexible system, shown in Eqs., (2.59), and (2.61): 

 A = ppψ p,q,t( )∫∫ dpdq  (2.59) 

 B = pqψ p,q,t( )∫∫ dpdq  (2.60) 

 C = pψ p,q,t( )∫∫ dpdq  (2.61) 

The A orientation tensor in Eq. (2.59) represents the second moment of the orientation 
distribution function and is similar to the moment tensor for rigid fiber theory. In the theory for 
semi-flexible fibers a B tensor can also be defined which is a mixed second moment of the 
orientation distribution function given by Eq. (2.60). Finally, the first moment of the orientation 
distribution is given by the C tensor in Eq. (2.61) and is not zero for a semi-flexible fiber (unlike 
the rigid fiber model where the odd numbered moments are always zero). In the limit where the 
semi-flexible fiber is in a straitened state (there are no internal forces trying to straighten the 
fiber) then the mixed second moment (Eq.(2.60)) and the first moment (Eq.(2.61)) go to zero and 
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only the second moment of the orientation distribution function is non-zero, recovering a rigid 
fiber model.  

Similarly, the end-to-end tensor, r , can also be integrated over orientation space to form 
an end-to-end moment tensor seen  in Eq. (2.62) which represents the average orientation of a 
slightly bent fiber: 

 r = lb
2 p − q( ) p − q( )ψ p,q,t( )dpdq∫∫  (2.62) 

Strautins and Latz [55] defined equations to describe the orientation kinetics of non-
Brownian semi-flexible fibers in dilute solution given in Eqs. (2.63) to (2.66) where lb is the 
length of the fiber, k is a resistivity to bending, and m is a vector quantity that takes into account 
fiber bending due to the flow field.  

 

 

DA
Dt

=W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4( )...
+ lb

2
Cm +mC − 2 m ⋅C( )A⎡⎣ ⎤⎦ + 2k B − A tr B( )( )

 (2.63) 

 

DB
Dt

=W ⋅B − B ⋅W + ξ D ⋅B + B ⋅D − 2D :A( )B( )...
   + lb

2
Cm +mC − 2 m ⋅C( )B⎡⎣ ⎤⎦ + 2k A − B tr B( )( )

 (2.64) 

 DC
Dt

= ∇v T ⋅C − A :∇v T( )C + lb
2

m −C m ⋅C( )⎡⎣ ⎤⎦ − kC 1− tr B( )⎡
⎣

⎤
⎦  (2.65) 

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑   (2.66) 

While the semi-flexible fiber system described above yield good results for dilute and semi-
dilute systems, Strautins and Latz [55] were originally concerned with modeling only the 
bending that occurs in long fiber systems and disregarded any fiber-fiber interaction.  

In concentrated suspensions fiber interaction is omnipresent and must be accounted for. 
Ortman et al. [38] adapted Eqs. (2.63) to (2.66) for concentrated systems by incorporating the 
slip parameter, α , and the isotropic rotary diffusion term given in Eqs. (2.67) to (2.70):   

 

  

DA
Dt

=α W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2D :A4( )...⎡
⎣

+ lb
2
Cm +mC − 2 m ⋅C( )A⎡⎣ ⎤⎦ + 2k B − A tr B( )( )− 6CI γ A − 1

3 I( )⎤
⎦⎥

 (2.67) 
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DB
Dt

=α W ⋅B − B ⋅W + ξ D ⋅B + B ⋅D − 2D :A( )B( )...⎡
⎣⎢

   + lb
2
Cm +mC − 2 m ⋅C( )B⎡⎣ ⎤⎦ + 2k A − B tr B( )( )− 4CI γ B

⎤
⎦⎥

 (2.68) 
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Dt

=α ∇v T ⋅C − A :∇v T( )C + lb
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⎣

⎤
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⎣
⎤
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 (2.69) 

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑  (2.70) 

Reasonable comparisons have been made with experimental data using the modified semi-
flexible fiber equations in concentrated suspensions in both simple shear flows [56] and center-
gated disks using the Hele-Shaw approximation [83]. 
2.4.3 Model Objectivity 

Oldroyd first suggested that any constitutive equation (for fluids, fibers, etc.) should have 
three properties: (1) be independent of the frame of reference, (2) be independent of the position 
in space, the translational motion, and the rotational motion of the fluid element, and (3) be 
independent of the stress and strain in the neighboring fluid elements [84, 85]. From these 
requirements, a “convected” coordinate system is utilized whereby the coordinate system 
translates, rotates, and deforms with the fluid element [53]. Detailed examples of convected 
coordinates can be found in any introductory text to continuum mechanics [86-89].  

In the modeling equations presented (§ 2.4.1 and § 2.4.2) only some equations maintain 
objectivity.  Both the original model of Jeffery model (Eq.(2.40)) and the Folgar-Tucker model 
(Eq. (2.41)) maintain objectivity. This is because the co-rotational (Jaumann) derivative can still 
be formed by moving the terms containing vorticity to the left-hand side of the equation. This 
can be seen generally in Eq. (2.71) . 

 
 

DΛ
Dt

= DΛ
Dt

+ W ⋅Λ − Λ ⋅W{ }  (2.71) 

Once the Folgar-Tucker model is multiplied by the slip parameter, α, Eq. (2.71) can no longer be 
formed by moving the vorticity terms to the left hand side. Similarly, when the Bead-Rod model 
is multiplied by the retardation factor, it too is no longer considered objective. The newer models 
presented in Eq. (2.45) and Eq. (2.54) does maintain objectivity by moving the retardation factor 
out of the hydrodynamic contributions. 

The lack of objectivity may not cause a loss of accuracy in the numerical predictions of 
fiber orientation in industrial processes because the coordinate frame does not translate or rotate 
while the molding operation occurs. The models presented in Eq. (2.44) and Eqs. (2.67) to (2.70) 
are still valid to simulate fiber orientation but they violate basic continuum mechanics principles.  



32 

 

2.4.4 Closure Approximations 

The choice of closure approximation for the fourth moment of the orientation tensor, A4 , 
is not trivial and has been the subject of significant research [31]. The fourth moment of the 
orientation tensor is given by Eq. (2.31) which can be expanded to the matrix form seen in Eq. 
(2.72): 

 

 

A4 = Aijlk =

a1111 a1122 a1133 a1123 a1113 a1112
a1122 a2222 a2233 a2223 a2213 a2212
a1133 a2233 a3333 a3323 a3313 a3312
a1123 a2223 a3323 a2323 a2313 a2313
a1113 a2213 a3313 a2313 a1313 a1312
a1112 a2212 a3312 a2312 a1312 a1212

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (2.72) 

Due to symmetries in the matrix in Eq. (2.72) only 15 independent components remain. The 
linear closure by Hand [90] was the first use of a closure approximation to approximate the 
higher order moments an is shown in Eq. (2.73).  

 
Aijkl ≈ − 1

35
δ ijδ kl +δ ikδ jl +δ ilδ jk( )...

       + 1
7
Aijδ kl + Aikδ jl + Ailδ jk + Aklδ ij + Ajlδ ik + Ajkδ il( )

 (2.73) 

One of the most popular closure approximations to date was first proposed by Doi [91] in 1981 
and is known as the quadratic closure approximation shown  in Eq. (2.74): 

 Aijkl ≈ AijAkl  (2.74) 

The quadratic closure approximation is exact for highly aligned systems or for systems 
undergoing pure extensional flow but is used widely because of the simple nature and 
computational efficiency. A combination of the linear and quadratic closures, called the hybrid 
closure approximation, was first reported by Advani and Tucker [62]. The hybrid closure has 
been used to some extent in processing calculations for part warpage [92] and even 3-
dimensional short fiber orientation predictions for center-gated molds [93]. Even though these 
closures offer simplicity, they do not obey the required of characteristic of symmetry 
Aijkl ≠ Aikjl  ∀ i, j,k,l( )  shown in Eq. (2.72).  

Verleye and Dupret [94] introduced an objective closure approximation that maintained 
the condition of symmetry known as the “natural” closure approximation. The closure 
approximation is of the form shown  in Eq. (2.75) and Eq. (2.76) and is the basis for many of the 
currently accepted forms of orthotropic closure approximations: 
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Aijkl = β1S δ ijδ kl( ) + β2S δ ijAkl( ) + β3S AijAkl( ) + β4S δ ijAkmAml( )

+β5S AijAkmAml( ) + β6S AimAmjAknAnl( )
 (2.75) 

where S is the operator given in Eq. (2.76): 

 S Tijkl( ) = 1
24

Tijkl +Tjikl +Tjkil + ..... 24 terms( )  (2.76) 

Cintra and Tucker [95] published a comprehensive work on orthotropic smooth closures and the 
necessary conditions for a closure to be symmetric while maintaining objectivity (§ 2.4.3). Other 
researchers [96, 97] explored the idea of eigenvalue based closures which assumes that the 
principle directions of the second-order moment orientation tensor define the planes of the 
fourth-order moment orientation tensor. 

Invariant based fitting closures are of particular interest because the definition of the 
constants β1,β2,... in Eq. (2.75) are functions of the invariants of the orientation tensor, A [98, 
99]. The invariant based orthotropic fitted (IBOF) closure that is widely used was introduced by 
Chung and Kwon [100] and shows accurate predictions of fiber orientation over a wide range of 
flow conditions and fiber interaction coefficients. For the invariants, the frame of reference is 
taken as the principle frame of the second-order moment orientation tensor so that all terms 
vanish except for the diagonal components, Aii . From this frame of reference, all non-diagonal 
terms go to zero in both the second- and fourth-order moment tensors so that the closure remains 
orthotropic. An extensive discussion of the validity of the IBOF closure can be found in Jack and 
Smith [101]. Sixth-order closure approximations have recently been studied by Jack and Smith 
[102, 103] because of sixth-order moments that have arisen in certain equations. 

The use of the IBOF closure has been shown to work well in more complex flow fields 
and is thus the closure approximation of choice for the simulations in this work involving the 4th 
movement of the orientation distribution function [100, 104]. 

2.4.5 Effect of Brownian Motion 

Brownian motion refers to the random movement of particles suspended in a fluid. The 
movement of the particle is a result of liquid molecules randomly impacting the particle in the 
fluid. For systems in which Brownian motion is a substantial effect the particle of interest must 
be small enough to be effected by these random motions. Brownian motion can be translational 
(where the position of the particle, molecule, etc. is changed) or rotational (where the unit normal 
of the surface direction is changed). The effect of Brownian motion on the suspensions is directly 
correlated to the magnitude of the Péclet number, given  in Eq. (2.77) where Dr is the rotary 
diffusivity of the particle and  γ  is the magnitude of the rate of strain [105]. 

 
 
Pe =

γ
Dr

 (2.77) 
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When Pe ≤1 , Brownian motion must be taken into account but when  Pe1 Brownian motion 
is negligible. For a population of fibers with a length greater than 10µmBrownian motion can be 
neglected [37]. Hence, for the fibers under consideration here Brownian motion is neglected. 

2.4.6 Summary of Fiber Orientation Equations 

Predicting the orientation of fibers in suspension has been the subject of a significant 
amount of research starting with Jeffery’s [63] equation for prolate spheroids in 1922. From that 
work a number of studies were launched on understanding how rigid bodies (spheroids, rods, 
etc.) in dilute media orient in different flow fields. As the need for concentrated suspensions in 
industrial applications grew, so did the attempts at modeling them with the development of the 
Folgar-Tucker model and the like. At the present time, a number of models exist to predict both 
rigid and semi-flexible concentrated fiber systems. The drawback of these models is that many of 
the terms which have been added to account for the higher concentration of fibers have been 
done so to decrease the discrepancy between predicted values and experimental values of 
orientation.  As a consequence, there are phenomenological constants that must be fitted to the 
experimental data so that the predictions of fiber orientation are based on experimental data at 
some junction in simulation. 

2.5 Numerical Predictions of Fiber Orientation 

Injection molding is a frequently used method of forming thermoplastic parts reinforced 
with glass fibers [106]. The ease at which the process can be automated makes injection molding 
an attractive choice when high volume production is desired such as in the manufacture of 
automotive parts. 

 
Figure 2.8: Diagram of a typical injection molding machine. Two main regions are described 

involving the injection and clamping sections of the machine. Figure used under the Creative 
Commons Attribution 3.0 License. 

The injection portion of the machine, shown in Figure 2.8, is an extruder whereby the raw 
pellets are fed through a hopper into a heated barrel with a rotating screw. Heat is also generated 
by the viscous shearing of the pellets against the barrel. The pellets are melted in the barrel and 
the screw acts as a piston, pushing the liquid resin into the mold. The molten polymer is then 
allowed to cool in the mold cavity and the part is ejected.  
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Figure 2.9: Diagram of typical geometries used in fiber orientation simulation in (a) center-
gated disk and (b) end-gated plaque.  

For the purpose of this work, the numerical simulations and modeling will be confined to 
the fluid flowing into the mold cavity which is where the fiber orientation predictions are 
generated. Two simple molding geometries used in a number of simulations are the center-gated 
disk and end-gated plaque, shown in (a) and (b) of Figure 2.9, respectfully. In the center-gated 
disk, the fluid enters at the top of the sprue, travels down the sprue, and enters the mold cavity. A 
number of authors have taken advantage of the axisymmetry of the flow field in the cavity to 
simplify their simulations [76, 83, 107]. In the end-gated mold, fluid again travels down the 
sprue, through the runner, and then into the gate and mold areas. The end-gated system has not 
been studied as much as the center-gated system because of the fully three-dimensional nature of 
the end-gated mold (compared to the 2.5 dimensional center-gated disk).  

The amount of work that has been done in the area of flow fields without the addition of 
fillers in complex geometries is vast and a comprehensive review of literature has been the 
subject of entire texts [106]. However, it is important to point out specific advancements that 
have been made in the area of computational fluid dynamics when dealing with fiber 
suspensions. First, the effect of a non-Newtonian suspending matrix is discussed in § 2.5.1. Next, 
a description of simulating systems by either a Hele-Shaw method or full simulation method is 
presented in § 2.5.2. A review of fiber orientation simulations involving center-gated and end-
gated systems is given in § 2.5.3 and § 2.5.4, respectively. 
2.5.1 Effect of a non-Newtonian Suspending Liquid 

In many publications, to simplify the suspension being studied, a Newtonian fluid is 
employed to understand fiber dynamics [6, 57, 108-110]. This is a good first approximation for 
many fluids but a more realistic model would take into account non-Newtonian behavior. 
Commonly a Generalized Newtonian Fluid model (GNF) is used to represent the suspending 
medium presented in Eq. (2.78) where τ  is the extra stress tensor,  η γ( )  means that the viscosity 

is a function of the shear rate and  γ is the rate of strain tensor. 

  τ =η γ( ) γ  (2.78) 

(a) (b) 
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A number of empiricisms for  η γ( ) in GNF models have been successfully used in describing 
neat matrices including, but not limited to, the Power-Law model, Carreau model, and for a 
number of temperature dependent situations, the Cross model [111].  

In certain systems, such as in center-gated disks and end-gated plaques, shear-rates can 
span two orders of magnitude. A number of models can be used to represent this behavior but 
one model of particular interest is the Carreau-Yassuda model, shown in Eq. (2.79), which has 
the ability to capture the viscosity at high and low shear rates. In Eq. (2.79) η0 is the zero shear 
viscosity, λ governs the onset of shear thinning and n is a parameter governing the degree of 
shear-thinning of the matrix. 

 
 
ηm γ( ) =η0 1+ λ γ( )a⎡⎣ ⎤⎦

n−1
a  (2.79) 

A qualitative viscosity curve of what the Carreau-Yasuda model predicts is shown in Figure 2.10 
showing the ability to capture both Newtonian and non-Newtonian effects. 

 
Figure 2.10: Qualitative depiction of Carreau-Yasuda model showing the ability to capture 

the Newtonian and non-Newtonian behavior of shear-thinning fluids. Log-log plot of viscosity 
vs. shear rate where 0h  and h• are the zero-shear viscosity and infinite shear viscosity, 
respectively.  
2.5.2 Hele-Shaw Flow vs. Full Simulation Effects 

Simulating fiber orientation in molding geometries typically requires a number of 
assumptions to be made about the system in question. One significant assumption about the flow 
field in the mold cavity is the implementation of Hele-Shaw flow which disregards a number of 
important features about the flow field [83, 112, 113]. Only few simulations have recognized the 
importance of including such flow features in fiber orientation simulations in subsequent 
publications [114, 115]. 
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2.5.2.1 Hele-Shaw Formulation 

Many early simulations of fiber orientation employed the Hele-Shaw flow approximation 
which uses lubrication theory in conjunction with laminar flow assumption to yield analytical 
solutions to complex flow problems [111, 116]. 

 
Figure 2.11: Qualitative representation of Hele-Shaw geometry where the gradient in one 

direction (z-direction) clearly dominates terms on the momentum equation. 

From the lubrication approximation it is appropriate to solve the problem in the limit of 
the cavity thickness approaching zero, orH → 0 . Also, the no-slip boundary v = 0( )condition is 
imposed at the walls. The Hele-Shaw formation is given for injection molding by Hieber and 
Shen [117] and is the current method of choice for most simulation packages [118, 119]. The 
pressure equations is given as Eq. (2.80): 

 ∂
∂x

S ∂P
∂x

⎛
⎝⎜

⎞
⎠⎟ +

∂
∂y

S ∂P
∂y

⎛
⎝⎜

⎞
⎠⎟
= 0   where S = z2

η
dz

0

b

∫   (2.80) 

The velocities can then be rewritten in terms of the pressure gradient to form the two relations 
shown in Eq. (2.81) where vx is the velocity in the x-direction, vy is the velocity in the y-
direction, z is the normalized thickness and η  is the viscosity: 

 vx = − ∂P
∂x

z
η
dz

z

b

∫ , vy = − ∂P
∂y

z
η
dz

z

b

∫   (2.81) 

Heiber and Shen [117] detailed an approach where in plane calculations were performed using a 
finite-element scheme and the out of plane calculations were performed via a finite difference 
method.  

Hele-Shaw flow, while convenient and computationally efficient, assumes a velocity 
profile and initial fiber orientation at the inlet to the mold and disregards the “fountain flow” 
effect which occurs at the polymer-air boundary in the mold filling process. The two methods are 
compared in Figure 2.12 showing markedly different predictions for fiber orientation near the 
wall for 30 wt. % short glass fiber at 40% fill of a center-gated disk [70]. The lack of accurate 
modeling at the polymer-air interface led to a modified version of Hele-Shaw approximation 
introduced by Bay and Tucker [107] and Han and Im [114] for use in concentrated fiber 
suspensions. The modified Hele-Shaw method more accurately predicts the data reported by Bay 
and Tucker [70] by using an approximation technique for accounting for fountain flow and is an 
improvement on simulating fiber orientation in molding operations. To date, a number of 
simulation types use some form of Hele-Shaw flow to model fluid behind the moving front, 
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including an Eulerian (Fixed) mesh with a control volume approach [117, 120, 121], remeshing 
the frontal flow portion of the domain [122], or sometimes remeshing the domain entirely [123]. 

 
Figure 2.12: Comparison of Hele-Shaw approximation and the “fountain flow” effect in a 

center-gated disk at 40% of the fill domain for 30 wt. percent short glass fibers. When taking into 
account the fountain flow of mold cavity filling, theoretical predictions show much lower 
orientation predictions at the wall, which is commonly observed [70]. 
2.5.2.2 Fountain Flow 

 
Figure 2.13: Qualitative figure of fountain flow effect. Adapted from Baird and Collias [124]. 

The fluid element reaches a stagnation point where the fluid is stretched and moved towards the 
outside wall. 

Fountain flow, as it pertains to polymeric fluid filling a cavity, was introduced in the 
literature by Rose [125] and described the flow front near an advancing interface where one fluid 
is replacing another fluid in a two-phase problem. Fountain flow can be described by the fluid 
element in Figure 2.13 where a fluid element is moved towards the front of the flow and is 
subsequently stretched and moved towards the wall. A number of authors have studied fountain 
flow of a neat matrix including Tadmor [126], Gogos and Huang [127], Coyle et al. [128], and 
Mavridis et al. [129]. For as much work that has been done, modeling the filling of a cavity with 
a neat matrix is still a very complex problem.  
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Givler et al. [130] simulated fiber orientation for dilute suspensions including the 
fountain flow effect between two parallel plates utilizing FEM simulations. Alexandrou and 
Ahmed [131] studied the effects of fountain flow of a dilute suspension between parallel plates 
in an unsteady flow field. Vélez-García et al. [83] observed that the addition of the fountain flow 
at the flow front improved the agreement between predictions of fiber orientation and 
experimental data. 

2.5.3 Fiber Orientation Simulations in a Center-Gated Disk 

 
Figure 2.14: Qualitative representation of fluid filling a mold cavity with distinguishing 

features: Entry region where the fluid entering the mold is very near the gate, the Hele-Shaw 
region where lubrication approximation may be enforced, and the fountain flow region. 

The flow fields within a center-gated disk make the geometry particularly useful in 
studying fiber orientation in mold filling. The three flow regions shown in Figure 2.14 were 
identified by Bay and Tucker [107] during the filling of a center-gated disk with a concentrated 
rigid fiber suspension: the gate region, the lubrication region, and the fountain flow region. Each 
of these regions contains some combination of shearing and extensional deformations. In the gate 
region, extension in the rθ-plane governs the fiber orientation. In the lubrication region (Hele-
Shaw region), small gap heights cause a domination of shearing deformation to occur and highly 
dictate fiber orientation. The flow front is a complicated region which was covered previously 
(See § 2.5.2). 
2.5.3.1 Short Fiber Orientation Simulation for Hele-Shaw Flow in a Center-Gated Disk 

Bay and Tucker [107] assumed that the majority of the mold cavity can be considered 
within the lubrication region (described in § 2.5.2.1) and thus simplifies the equations to solve 
for rigid fiber orientation. For the simulation of isothermal center-gated systems, the equations of 
motion are reduced significantly when the Hele-Shaw approach with a Newtonian fluid is taken. 
The velocity and pressure fields can be solved for directly yielding the analytical solution shown 
in Eq. (2.82) and Eq. (2.83) where cylindrical coordinates have been imposed: 

 vr =
1
r
3Q
8πH

1− z2

H 2

⎛
⎝⎜

⎞
⎠⎟

 (2.82) 

 vz =
vr
r
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From this solution fiber orientation can be solved for by decoupling the orientation and stress 
equations as done in Bay and Tucker [107] who showed good qualitative agreement with 
experimental data far from the gate and melt front [70, 132]. Chiang et al. [120, 133] used the 
Hele-Shaw flow approximation in conjunction with a finite element method (FEM) and finite 
difference method (FDM) to solve for the pressure and temperature fields. 

Using only the Hele-Shaw region in the simulation of rigid fiber orientation does involve 
making broad assumptions about systems that may not generally apply. The Hele-Shaw 
assumption neglects the details of the flow field at the melt front (usually assumes a flat profile 
through the thickness) or abrupt changes in cavity thickness. Additionally, the Hele-Shaw 
approximation requires an assumed initial fiber orientation entering the mold cavity. A popular 
assumption for fiber orientation at the inlet of the mold is random A = 1

3 I( ) [107, 114]. 

2.5.3.2 Short Fiber Orientation Simulation Incorporating Entry and Fountain Flow Effect in a 
Center-Gated Disk 

The limitations of the Hele-Shaw approximation led to Dupret and Vandershuren [134] 
and Bay and Tucker [107] to attempt to predict the velocity, temperature, and orientation fields 
in the fountain flow region using the method of Coyle et al. [128]. The full solution of flow and 
orientation equations in a steady-state radially diverging flow is given by Ranganathan and 
Advani [135] where the effect of particle number was studied. Ko and Young [124] investigated 
the fiber orientation in the thickness plane during injection molding while tracking the flow front 
advancement. Vincent et al. [136] used a decoupled approach and moving mesh technique to 
solve for short fiber orientation in a center-gated disk. VerWeyst and Tucker [137] studied the 
effect of entry flow for short glass fibers using a fully three-dimensional finite element 
technique. Velez-Garcia et al. [83] used a decoupled approach to make short glass fiber 
orientation predictions and found good agreement with experimental data. Ultimately, the choice 
of fiber orientation model and assumptions about the gate region play a far greater role in final 
orientation predictions so that the decoupled approach is a valid first approximation for 
calculating fiber orientation in the center-gated disk. Chung and Kwon [104] performed work 
studying the coupling effect in the advancing front and found that coupling effect was crucial 
especially in regions with high extension and only in the Hele-Shaw region did the coupling 
effect play a small role. 

The short fiber orientation profiles in Figure 2.15 show the three different input values 
for use at the entrance to the mold cavity. The bottom region of the gate cross section shows 
fibers that are less aligned with the flow direction. This is due to the stagnation and change of 
direction that the fluid undergoes when the sprue is taken into account. Chung and Kwon [104] 
suggested that the short glass fiber orientation entering the mold cavity is asymmetric and plays a 
role in dictating fiber orientation in the mold cavity. This has been confirmed experimentally by 
Velez-Garcia et al. [83], and it was shown that the choice of initial fiber orientation values persist 
well into the Hele-Shaw region. Park and Kwon [138] simulated the orientation of short glass 
fiber for a non-isothermal system in a center-gated disk and noted that the temperature of the 
fluid does have an impact on the fiber orientation distribution in the mold cavity. 
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Figure 2.15: Comparison of different fiber orientation values in the gate region (0% fill) of 

the center-gated disk. (■) is random assumption through the thickness, (●) are the results of 
simulating short glass fiber orientation from the sprue to the gate [104], and (▲) are the 
experimental orientation values obtained for short glass fibers [83]. The data is for 30 wt. % 
short glass fiber in polypropylene matrix. 

2.5.3.3 Long Fiber Orientation Simulations in a Center-Gated Disk 

Up to this point, very little work has been done in modeling the orientation of long glass 
fiber composites in center-gated disks. Nguyen et al. [139] applied a short fiber model to a long 
glass fiber system injected into a center gated disk and saw good agreement between predictions 
and experimental orientation but the average fiber length of those systems was only around 1.55 
mm. Ortman et al. [140] compared the ability of strain reduction Folgar-Tucker model (Eq. 
(2.44)) and the strain reduction Bead-Rod model (Eqs. (2.67) - (2.70)) to predict long glass fiber 
orientation (with an average length of 3.1 mm) in center-gated disks using Hele-Shaw flow 
assumption and experimentally obtained initial conditions at the gate and found good agreement 
with experimental data up to 40% of the mold fill. 
2.5.4 Fiber Orientation Simulations in End-Gated Systems 

The amount of literature for the calculation of fiber orientation in a three-dimensional 
channel is limited. Altan et al. [141] assumed a planar random inlet condition to a rectangular 
channel and computed the short fiber orientation using a coupled approach involving both the 4th 
and 6th order tensors of orientation. A number of other works have considered three-dimensional 
channel flow [107, 108, 141-143], sudden contractions [36, 144, 145], sudden expansions [143, 
144, 146, 147], corner flows [148], and branching flows [149] for short glass fiber systems. At 
the time of this review, only one paper deals with the injection of long glass fibers into an end-
gated geometry. Nguyen et al. [139] simulated the orientation of long glass fibers flowing into an 
end-gated mold using the RSC model (developed for short glass fiber systems) and found some 
agreement between experimental observations and predicted results along the center-line of the 
mold but did not compare results at other widths. The average fiber length reported by Nguyen et 
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al. [139] was ≈ 1.55 mm but a large population of fibers were significantly shorter, increasing the 
chance of a short glass fiber model accurately predicting fiber orientation. 

2.5.5 Summary of Numerical Predictions of Fiber Orientation 

From what has been presented in this section, it can be seen broad assumptions are often 
made when predicting the orientation of glass fibers in injection molding geometries. One major 
assumption, still widely used, is the Hele-Shaw assumption which neglects entry effects into the 
mold and also neglects the advancing front. Some simulations for short glass fiber have used an 
advancing front algorithm in conjunction with a Hele-Shaw flow assumption. While these hybrid 
numerical approaches predicted values closer to observed experimental short glass fiber 
orientation, an assumption still had to be made about fiber orientation at the inlet to the mold 
cavity. Recently, a method to simulate short glass fiber orientation was developed whereby the 
sprue and mold were simulated as a single domain which yielded good agreement with 
experimental fiber orientation values.  

At the time of publishing this review, only one two works had reported on simulating 
long glass fibers in a center-gated disk. Both of the simulations utilized the Hele-Shaw method 
and did not account for either the advancing front or the entry effects into the mold. Ortman et al. 
[150] did account for the ability of a fiber to bend during the injection process with a semi-
flexible fiber model which at least qualitatively represents long glass fibers systems more 
accurately. While Ortman et al. heavily simplified simulation was a good first step in predicting 
the orientation of semi-flexible fibers, it is necessary to extend a method where fewer 
assumptions are made to more accurately simulate the orientation kinetics of these complex 
systems.  

Only one reference has reported on predicting semi-flexible fiber orientation in a fully 
three-dimensional system such as an end-gated plaque but used a short fiber model to predict a 
system composed most of short fibers. Predicting the orientation of long fibers in an end-gated 
plaque is the first step in understanding how semi-flexible fibers orient in three-dimensional flow 
fields. With this knowledge the solution method can be extended to geometrically complex parts. 
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Chapter 3 
 

Initial Conditions for Simulating Glass Fiber Orientation in the 
Filling of Center-Gated Disks 

 

Preface 
This chapter describes the simulation of long, semi-flexible fibers in a center-gated disk 

using both a conventional rigid fiber orientation model and a semi-flexible fiber model which 
takes into account fiber flexing when calculating orientation. This chapter is organized as a 
manuscript for publication in Composites Part A: Applied Science and Manufacturing. 
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3.1 Abstract 

This work is concerned with the effect that initial conditions play in simulating long (> 1 
mm) glass fiber (LGF) orientation in the filling of a center-gated disk (CGD). For the CGD, most 
orientation simulations begin at the gate and make assumptions about the initial fiber orientation 
entering the mold. This paper reports on a method for simulating LGF orientation in a CGD by 
simulating the sprue, gate, and mold (S-G-M) as a single domain. The velocity field solution is 
determined using a finite element method including the advancing front. To predict LGF 
orientation, rigid and flexible fiber models are employed using parameters obtained from 
rheology. It is observed that predicting LGF orientation in systems with either model is highly 
sensitive to the choice of initial conditions. Furthermore, the flexible fiber model is observed to 
be more successful at predicting LGF orientation based on agreement with experimental results. 

3.2 Introduction 
The flexibility of a glass fiber is used to describe the fiber’s tendency to bend in the 

presence of flow. Switzer and Klingenberg [1] quantified the effective flexibility of a fiber in a 
viscous medium by proposing the dimensionless group Feff , defined below: 

 
 
Feff = 64ηm γ ar

4

EYπ
 (3.1) 

In Eq. (3.1), ηm is the matrix viscosity,  γ is the shear rate, ar is the aspect ratio (ar = L d  where 
L is the length and d is the diameter of the fiber), and EY is the Young’s modulus. The fiber 
flexibility is observed to increase with increasing aspect ratio for a given material (fixed Young’s 
modulus,EY , and matrix viscosity, ηm ). In the literature [2] long glass fibers are defined as any 
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fiber over the length of 1 mm Feff > 51( )while short glass fibers are considered under 1 mm and 

rigid Feff < 51( ) . The authors recognize that a number of factors goes into the calculation of the 
effective fiber flexibility parameter and have chosen to hold all but the fiber length constant for 
the study presented here.  
 Modeling glass fiber orientation during injection molding has typically been done by 
some variant of the Folgar-Tucker (rigid fiber) model which is a modified form of Jeffery’s  
equation for prolate spheroids in a viscous medium [3, 4]. Folgar and Tucker added an additional 
term, called the isotropic rotary diffusion term, which accounts for the fiber-fiber interaction in a 
concentrated fiber system. The FT model has shown good agreement in some cases with short 
glass fiber orientation values obtained from injection molding experiments and is thus a popular 
choice for commercial software packages [5, 6]. 

Stress growth experiments in the startup of simple shear suggest that the orientation 
kinetics in concentrated fiber systems (φ > ar

−1 , where φ is the fiber volume faction and ar is the 
aspect ratio) may more slowly evolve than the FT model predicts [7-9]. A slip parameter was 
suggested to delay the predicted fiber orientation to better agree with experimental orientation 
data, but this approach results in a non-objective model [10]. The slip parameter is an addition to 
further retard the orientation predictions resulting from additional fiber-fiber interaction not 
accounted for by the rotary diffusion term. An alternative to the non-objective model is the 
reduced strain closure (RSC) proposed by Wang et al. [11], whereby the slip parameter was 
moved into the closure approximation generating an eigenvalue problem and maintaining model 
objectivity. Even though the FT model with the slip parameter is non-objective, it has shown to 
be useful in describing fiber orientation kinetics in simple flow fields as well as center-gated 
disks [3, 5, 8, 12, 13]. 

 In glass fiber suspensions, where fibers can be considered flexible, further modification 
of the theory for fiber orientation may be necessary because of the flexing and deflection that can 
be observed in these systems. The Bead-Rod (semi-flexible) model for dilute suspensions was 
introduced by Strautins and Latz [14] as a method to quantify fiber bending during processing. 
The model was extended to concentrated systems by Ortman et al. [15] with the addition of the 
slip parameter from Eberle et al. [10] and the isotropic rotary diffusion term from the FT model. 
The BR model has been shown to agree well with experimental orientation data for simple shear 
fields [15]. 

 The simulations to calculate fiber orientation utilizing either the rigid fiber model or 
semi-flexible fiber model are highly dependent upon the choice of values for the model 
parameters. The parameters for simulation have typically been obtained by empirical 
relationships or from injection molding experiments [11, 16]. A rheological method to determine 
these parameters has been presented for both SGF and LGF systems in simple, well controlled 
flow fields [9, 15]. Eberle et al. [9] showed that the startup of simple shear flow using a “donut” 
shaped sample in a rotational rheometer can be used to obtain the empirical parameters for 
calculating fiber orientation in SGF systems. Similarly, Ortman et al. [15, 17] showed that the 
empirical parameters can be estimated for LGF systems by startup of simple shear using a sliding 
plate rheometer for both the FT and BR fiber orientation models. 
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Simulations of short glass fiber (SGF) orientation in center-gated disks have typically 
begun near the gate, after the fluid turns to enter the mold. At this position, initial conditions are 
imposed as either assumed values (i.e. completely random, random in the plane, parallel to the 
flow field, etc.) or experimentally measured values that are obtained from the gate (0% line) after 
the mold has been filled. The assumption utilized in this technique is commonly referred to the 
Hele-Shaw approximation and is utilized by many commercial software packages to compute 
fiber orientation. Bay and Tucker [18] assumed a random orientation at the gate and showed 
reasonable results using the Hele-Shaw approximation. Vélez-García et al. [10] reported that, on 
average, the fiber orientation entering the mold is planar random but the orientation did vary 
across the thickness. Vélez-García et al. [12] also observed that the choice of initial conditions 
for fiber orientation at the mold entrance persisted to approximately 50% of the mold. Chung and 
Kwon [19] noted the contribution of the sprue region of the center-gated disk to the predictions 
of fiber orientation in the mold. It was reported that all of the components of orientation for short 
glass fibers were influenced by where the solution of orientation was started (inlet of gate vs. 
inlet of sprue).  

Little work has been performed in the prediction of orientation values for long glass 
fibers in center-gated disks. Ortman et al. [20] used experimentally determined values at the inlet 
to the mold. Orientation predictions were carried out with a rigid fiber model and a semi-flexible 
fiber model and both models showed predictions in reasonable agreement with experimental data 
up to 50% of the mold fill.  

 The goal of this work is to evaluate how the choice of initial conditions affects the 
prediction of long glass fiber orientation in a center-gated disk. Common assumptions about fiber 
orientation at the gate are compared to a method of simulating the sprue, gate, and mold (S-G-M) 
as a single domain [19]. The S-G-M method starts from the beginning of the sprue with an 
initially random fiber orientation and allows the flow field, including the advancing front, to 
completely dictate fiber orientation. The solution for velocity fields and fiber orientation are 
decoupled so that a two-step process to calculate orientation is invoked. The velocity field is 
solved using a non-isothermal volume of fluid method (VOF) in the ANSYS® Polyflow software 
package. Fiber orientation is calculated using MATLAB routines developed in our laboratory 
utilizing the finite difference method. The quality of each initial condition choice is evaluated 
against experimental orientation data obtained from a center-gated disk. Furthermore, a rigid and 
a flexible fiber model are used in predicting LGF orientation with conclusions drawn as to the 
accuracy of each model. 

3.3 Governing Equations 

In the following section, the pertinent equations for the solution of fiber orientation are 
presented. First the equations of motion and energy are presented for the solution of the neat 
polymer matrix. Next, the rigid fiber model is described for concentrated fiber systems utilizing a 
slip parameter. Finally, the semi-flexible fiber model is presented as an alternative to model 
concentrated a fiber system that attempts to account for flexibility sometimes seen in long glass 
fiber systems. 

3.3.1 Equations of Motion 
The fluid is assumed to be incompressible so that the mass and momentum equations take 

on the familiar form of Eq. (3.2) and Eq. (3.3), respectively. 
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 0 = ∇⋅v  (3.2) 

 0 = −∇P +∇⋅τ  (3.3) 

In Eq. (3.2) and Eq. (3.3), v  is the velocity, P is the pressure, and τ is the extra stress tensor due 
to the deforming polymeric fluid.  The flow was assumed laminar after calculation of the 
Reynolds number showed that Re ≈10−3 throughout the cavity. The Carreau model was used to 
account for the shear thinning behavior of the neat matrix and is given below in Eq. (3.4) where 
η0 zero shear viscosity, λ is a parameter which governs the onset of shear thinning, and n is a 
parameter governing the degree of shear thinning of the matrix. 

 
 
ηm γ( ) =η0 1+ λ γ( )2⎡⎣ ⎤⎦

n−1
2  (3.4) 

Finally, the fluid is assumed to be homogenous within the domain. In fiber suspensions, 
especially containing long fibers, the polymer fluid filling the cavity has voids, etc. By 
simulating only the matrix viscosity the assumption of a homogenous flow field is more accurate 
and thus adopted here.  
3.3.2 Thermal Effects 

Minimizing thermal gradients in the molding operation was achieved through the use of 
fast mold fill times. To corroborate the reduction of thermal effects in the experimental injection 
moldings, the molding simulations were initially performed under non-isothermal conditions to 
account for the thermal gradients observed in injection molding. The result of the non-isothermal 
simulations in the mold showed only a 6K temperature drop from the center of the disk to the 
wall ≈1 mm( )of the mold and only a 10K temperature drop very near the wall ≈ 0.1 mm( ) . 
Additionally, the temperature drop observed from the center of the sprue to the wall 
≈ 0.75 mm( )was less than2K . This small temperature gradient in the mold allowed for the 

isothermal assumption in all subsequent simulations. Hence, the viscosity was assumed 
independent of temperature in the melt. 
3.3.3 Equations of Rigid Fiber Orientation 

Quantifying rigid fiber orientation in a concentrated suspension is accomplished through 
the use of orientation tensors given by Advani and Tucker [21]. The orientation distribution 
function, ψ , describes the probability of a single fiber’s orientation within θ ,φ( )  and 
θ + dθ ,φ + dφ( ) . The 2nd and 4th moments of the orientation tensor can be obtained by evaluating 

the integrals shown in Eq. (3.5) and Eq. (3.6), respectfully: 

 A = pp  ψ p,t( )dp∫∫  (3.5) 

 A4 = pppp  ψ p,t( )dp∫∫  (3.6) 

The 4th order tensor in Eq. (3.6) requires the use of a closure approximation that reduces the 4th 
order tensor to a combination of 2nd order tensors. Advani and Tucker recognized the closure 
problem [21] and proposed closure approximations [22] reduce the fourth-order tensor and a 
number of closure approximations are available which are examined in Chung and Kwon [23]. 
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For this work the invariant-based optimal fitting (IBOF) closure is used to estimate the 4th order 
orientation tensor given by Chung and Kwon [24] which is based on polynomial expansions of 
the 2nd and 3rd invariants of the 2nd order orientation tensor, A .  

 Modeling glass fiber orientation in concentrated suspensions has been successful through 
the use of the rigid fiber model [3, 5, 18] which is a modification of Jeffery’s equation for prolate 
spheroids in a viscous medium [4]. To more accurately reflect the slower orientation kinetics 
seen in experimental data of concentrated glass fiber suspensions, Sepehr et al. [8] and Huynh 
[25] proposed adding a phenomenological slip parameter, α , to the original rigid fiber model. 
The modified model is shown in Eq. (3.7) where W is the vorticity tensor W = 1

2 ∇v( )T −∇v⎡⎣ ⎤⎦( ) , 

D is the rate of deformation tensor D = 1
2 ∇v( )T +∇v⎡⎣ ⎤⎦( ) ,  γ is the magnitude of the shear rate

 
γ = 1

2 D :D( ) , ξ is the shape factorξ = ar
2 +1 ar

2 −1 , I is the identity tensor and ∇v = ∂vj ∂xi : 

 
 

DA
Dt

=α W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D( ) + 2CI γ I − 3A( )⎡
⎣

⎤
⎦  (3.7) 

The shape factor,ξ , for glass fiber systems is usually given a value of unity since ar is generally 
large for glass fibers ≈10 −100( ) . The third term on the right hand side of Eq. (3.7) is the 
isotropic rotary diffusion term, which accounts for the fiber-fiber interaction inherent to the 
concentrated suspension and is loosely based on the term for isotropic diffusivity associated with 
Brownian rods [26]. The CI term is an empirical parameter, which accounts for some of the of 
fiber-fiber interaction in a concentrated suspension. The slip coefficient, α , is another empirical 
parameter with a value between 0 and 1 which tries to account for the slower fiber orientation 
kinetics seen in concentrated glass fiber systems. The model given by Eq. (3.7) has been chosen 
to simulate fiber orientation because it is seen to qualitatively agree with experimental data in 
both simple shear flow and center-gated disks [9, 12, 15]. 

3.3.4 Equations of Flexible Fiber Orientation 
As fibers increase in length, the orientation model representing those fibers may need to 

be able to account for the bending and deflection that is sometimes encountered. The semi-
flexible model was first proposed by Strautins and Latz [14] as a method to predict flexible fiber 
orientation in a dilute suspension using the compact tensor notation described above [21]. The 
flexible fiber was represented as two vectors, p andq , connected by a ball and socket joint with 
an internal resistivity to bending shown in Figure 3.2. The semi-flexible system uses the similar 
tensor notation as the rigid fiber model but, because of the two-rod system, three moments occur 
and are defined by Eqs. (3.8) - (3.10): 

 A = pp  ψ p,q,t( )dpdq∫∫  (3.8) 

 B = pq  ψ p,q,t( )dpdq∫∫  (3.9) 

 C = p  ψ p,q,t( )∫∫ dpdq  (3.10) 
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The three moments of the semi-flexible system give rise to a set of three orientation 
equations, which have been extended by Ortman et al. [17] to concentrated solutions by adding 
the isotropic rotary diffusion term from Folgar and Tucker in Eqs. (3.11) - (3.14): 

 

 

DA
Dt

=α W ⋅A − A ⋅W( ) + ξ D ⋅A + A ⋅D − 2D :A4( )⎡
⎣ + ...

     lb
2
Cm +mC − 2 m ⋅C( )A⎡⎣ ⎤⎦+ 2k B − A tr B( )⎡

⎣
⎤
⎦ − 6CI γ A − 1

3 I( )⎤⎦⎥
 (3.11) 

 

 

DB
Dt

=α W ⋅B − B ⋅W( ) + ξ D ⋅B + B ⋅D − 2 D :A( )B( ) +⎡
⎣⎢ ...

                   lb
2
Cm +mC − 2 m ⋅C( )A⎡⎣ ⎤⎦+2k A − B tr B( )⎡

⎣
⎤
⎦ − 4CI γ B⎤⎦⎥

 (3.12) 

 
 

DC
Dt

=α ∇v T ⋅C − A :∇v T( )C + lb
2

m −C m ⋅C( )⎡⎣ ⎤⎦ − kC 1− tr B( )⎡
⎣

⎤
⎦ − 2CI γC

⎡
⎣⎢

⎤
⎦⎥

 (3.13) 

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑  (3.14) 

The internal resistivity to bending, k , is a coefficient that attempts to account for the physical 
bending that may occur in the system of fibers. As the value of k increases, the semi-flexible 
model behaves more like the rigid fiber model and in the limit of k→∞ the semi-flexible model 
parallels the rigid fiber model. Conversely, as the value of k decreases the fiber becomes much 
more flexible. In the equations presented above, the flexibility of the fiber is initiated in the 
hydrodynamic contributions given by Eq. (3.14) and is due to the bending that may occur do to 
gradients in the flow field.  

From these expressions an end-to-end vector is defined which establishes the “average” 
orientation of a slightly bent fiber. This vector is also formulated as a tensor by integrating the 
orientation distribution function with the result being Eq.(3.15): 

 r = lb
2 p − q( ) p − q( )ψ p,q,t( )dpdq∫∫  (3.15) 

If the tensor in Eq. (3.15) is normalized, then the R tensor is produced R = rr tr r( )( ) and is 

related to the A and B tensors through the relation shown in Eq.(3.16):  

 R = A − B
1− tr B( )  (3.16) 

In the limit when no fiber flexing occurs, the B  tensor becomes small and the A  tensor is 
recovered and behaves like rigid fiber theory.  
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3.3.5 Use of Three-Dimensional Orientation Tensors 
The center-gated disk geometry chosen for these studies was based on the industrial 

application of long glass fibers in a radially diverging flow field. Taking into account the average 
fiber length of the system and the gaps with which these fibers must flow through, it is easy to 
see that certain fiber orientations are precluded from ever occurring. Three dimensional 
orientation tensors are used in this work because the technique of simulating the sprue, gate and 
mold region requires it. For example, a long glass fiber, upon entering the sprue, will most likely 
have a large value for the global “2” orientation component and be limited from ever fully being 
oriented in the global “1” or “3” directions because the radius of the sprue is two small. Once 
this same fiber turned to enter the mold, the global “2” component would never be fully reach 
again because of the thickness of the mold and the length of the fiber. If either of these two cases 
were calculated separately than a two-dimensional orientation tensor or possibly some other 
representation could be used. In this work, the entire domain is simulated in a continuous manner 
thus requiring a global three-dimensional orientation tensor.  

3.4 Experimental 
3.4.1 Injection Molding Conditions 

Injection molded center-gated discs were created for experimental evaluation of the 
orientation tensor using 30 wt% long glass fiber (13 mm) reinforced polypropylene provided by 
SABIC Innovative Plastics.  The temperatures of the feed, compression, and metering zones 
within the injection molding machine (Arburg Allrounder, Model 221-55-250) were set to 190, 
210, and 210 °C, respectively, while the mold temperature was held constant at 79 °C.  The 
center-gated discs have a radius of 89.3 mm and thickness of 1.98 mm. The sprue was 65 mm in 
length with an initial radius of 1.45 mm and a radius at the gate of 1.75 mm. The disks were 
molded with a fill time of 2.00 seconds and a backpressure of approximately 20 MPa.  To ensure 
that the machine was operating in an equilibrium state, the first ten discs molded were discarded 
before selecting samples for analysis. Additionally, each disc was left in the mold for a period of 
20 minutes prior to removal in an effort to reduce warping.  

Stress relaxation tests were performed on the suspension in simple shear to observe the 
effect of fibers relaxing during the period of time that the sample is left in the mold to reduce 
warping. It was found that any relaxation of the sample occurs within seconds of the molding 
operation. Furthermore, upon investigation of experimental data, there are still are large 
population of fibers bent suggesting that the fibers do not relax during the holding time in the 
mold. 
3.4.2 Determination of Fiber Length Distribution 

The Fiber Length Distribution (FLD) is determined in order to ascertain the average fiber 
length and to ensure that the injection molded discs contained a truly long glass fiber population.  
Methods described by Nguyen et al. [27] were used to measure the FLD of a population of 
approximately 2,000 fibers.  In brief, this method involves selecting a large portion of an 
injection-molded part and burning off the polymer matrix in a high temperature furnace, leaving 
a mat of glass fibers behind.  A small amount of epoxy resin is applied to the fiber mat and 
allowed to cure, and all excess fibers not encapsulated by the epoxy are carefully removed and 
discarded.  The remaining sampling region is returned to the furnace in order to burn off the 
epoxy resin.  Finally, the remaining glass fibers are separated and measured by image analysis to 
construct the FLD.  By using this method, the post-processing number average fiber length and 
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diameter is determined to be 3.90 mm (± 0.01mm) and 14.5 µm, respectively.  The resulting FLD 
is asymmetric, exhibits a long tail in the long fiber length regime, and appears to be represented 
by a Weibull function, as previously reported in the literature [27, 28].  As such, it can be 
concluded that the majority of fibers in the disc possess lengths greater than 1 mm and that the 
population consists primarily of long semi-flexible fibers. 
3.4.3 Orientation Measurements 

Representative short shot discs stopped at 90% of the mold fill were chosen for analysis 
at 0, 10, 40, and 90% of mold fill.  The selected samples were prepared by polishing and plasma 
etching, using the method described in detail by Vélez-García et al. [29].  After preparation, each 
inspection line was imaged at 20X magnification using an optical microscope with a motorized 
stage and image stitching software (Nikon Eclipse LV100, NIS-Elements Basic Research 
Software, version 3.10).  The resulting images had a width of 700 µm and height equal to the 
thickness of the disc, and included a minimum of 350 fibers per inspection line.  The 
unambiguous components of the orientation tensor were subsequently determined using the 
traditional Method of Ellipses (MoE) [30, 31]. 

Prior to discussing the actual orientation data, however, it is worth discussing the validity 
of the traditional MoE for application to long fiber systems.  While the traditional MoE is based 
upon a rigid-rod assumption, the increased flexibility possible with long fibers presents inherent 
difficulties in evaluation of orientation.  However, the large theta-theta component of the rate of 
deformation tensor, γ θθ , seen in the selected geometry combined with the axisymmetric nature of 
the center-gated disc results in a population of fibers aligned predominantly in the transverse-to-
flow direction (i.e. in the theta direction).  These results, detailed by Hofmann et al. [31], suggest 
that no modifications to the method are necessary for the selected geometry and fiber length.  It 
is worth noting, however, that such a fortuitous result is not expected to translate to more 
complicated parts where the axisymmetric benefit is lost and a 3-dimensional flow dominates.  

3.4.4 Determination of Flexibility Parameter 

The flexibility parameter for each fiber, ki  , was estimated through Eq. (3.17) based on 
basic mechanical analysis of a simply supported beam. 

 ki =
EY
64ηm

⎛
⎝⎜

⎞
⎠⎟
d3

lb3
  (3.17) 

The value for each fiber was then average to determine an average flexibility parameter based on 
Eq. (3.18). 

 k =
niki

i
∑

ni
i
∑   (3.18) 

3.5 Problem Formulation 

3.5.1 Solution Process 
The domain was divided into two separate meshes and merged before solving for the 

velocity fields. The sprue was meshed using 10 × 31 and the mold was meshed using 31× 200
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both utilizing linear rectangular elements. Steep gradients at the wall are captured by using 
unequal grid spacing and no further increase in numerical accuracy is seen by increasing the 
domain discretization either through the thickness or length of the mold.  

Tucker [32] first introduced a simplification for fiber suspensions flowing in narrow gaps 
where the extra stress depends on the velocity gradients but not the fiber orientation. This fiber 
simulation technique is known as the decoupled approach and has been verified by a number of 
authors [12, 16, 18, 33-35] and is the solution approach adopted for the simulations in this work. 
Further justification for using the decoupled approach is the lack of a valid stress tensor for 
concentration fiber suspensions. Forms of the stress tensor has been developed and confirmed for 
dilute [36] While a form of the stress tensor has been developed for dilute and semi-concentrated 
suspensions and semi-dilute [37] suspensions but no such form exists for concentrated fiber 
systems that is successful in all flow fields [19]. The velocity fields during the injection molding 
process are calculated using the ANSYS Polyflow FEM non-Newtonian solver with a time 
dependent volume of fluid (VOF) method. The parameters for simulating the polymer matrix 
filling the center-gated mold are shown in Table 3.1. 

Upon completion of the FEM simulations, the spacial coordinates and velocity data are 
imported into MATLAB® (2011b, ver. 7.13.0.564, The Mathworks, Inc., Natick, MA) routines 
where fiber orientation is calculated. Because the equations of motion and the equations of 
orientation have been decoupled, the set of hyperbolic PDE’s is reduced to a set of highly non-
linear ODE’s which can be solved using the ‘ode15s’ function in the MATLAB software 
package. The routines employ a combination of backward and central finite difference methods 
to approximate the convective term in the material derivative and the mixed partial derivative in 
Eq. (3.14).  

The two phenomenological constants for simulation of fiber orientation have been 
determined using a sliding plate rheometer and the technique described in Ortman et al. [17]. The 
parameters are calculated for 30 wt. % LGF in a polypropylene matrix and are α = 0.25 and 
CI = 0.005  for the rigid fiber model and α = 0.13  and CI = 0.025  for the semi-flexible model. 
Additionally, lb  is one half of the average measured fiber length and k = 218 s-1 for the semi-
flexible fiber suspension of 30 wt. % LGF in a polypropylene matrix. 
3.5.2 Boundary Conditions 

For the solution of the velocity fields it is necessary to impose some boundary conditions 
on the simulated domain. The no-slip condition is applied at the walls v = 0, x ± −h( ) . For the 
air/polymer interface in the mold, the VOF method in ANSYS Polyflow only requires the 
specification of the normal and tangential forces which are defined to be zero fn = ft = 0( ) . The 

inlet volumetric flow was prescribed as 500mm
3

s  and the flow is assumed to be fully 
developed. The neat matrix simulation was suspended when the cavity was 99% full. It was also 
assumed that the mold thickness does not play a role in dictating fiber orientation based on the 
work of Nguyen et al. [38]. 

3.5.3 Initialization of Orientation Solution 
The solution of fiber orientation presented in this work is initialized three different ways. 

The first type of initialization makes an assumption about fiber orientation at the entrance to the 
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mold cavity. Two initial configurations that have been applied to the mold entrance with success 
for glass fiber systems are random [19] and random in the plane [10, 18] shown below by the 
tensors in Eq. (3.19), respectively: 

 A0 =

1
3 0 0
0 1

3 0
0 0 1

3
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 (3.19) 

The second initialization approach uses experimental orientation data obtained at the gate. Chung 
and Kwon [19] , Vélez-García et al. [12], used SGF experimental orientation data obtained from 
the gate and Ortman et al. [39] used LGF experimental orientation values after the mold had 
been filled as initial conditions to the mold entrance and observed reasonable agreement with 
experimental data. The last initialization approach, first proposed by Chung and Kwon [19] for 
SGF systems, will be started at the entrance to the sprue and allow the fiber orientation to evolve 
down the sprue, turn through the gate, and fill the center-gated disk mold. The sprue simulation 
is initialized with a random orientation at the sprue/die interface, as described in Eq. (3.19).  

3.5.4 Testing of Numerical Solution 
The numerical method to calculate the velocity gradients was tested by comparing the 

numerically predicted velocities calculated with Polyflow to the analytical solution for a 
Newtonian fluid in radially diverging flow. Figure 3(a) shows the results of this simulation 
plotting the radial velocity of the fluid at 40% of the mold fill. The maximum discrepancy 
between the analytical solution and the numerical solution is less than 0.25%.  

The numerical prediction of fiber orientation was also verified by using simple shear flow 
as a test case. The transient viscosity of the glass fiber suspensions was calculated by using a 
sliding plate rheometer [17]. The transient viscosity can be solved for easily in simple shear and 
is plotted along with the experimentally obtained data in Figure 3. The transient viscosity was 
also calculated using the Polyflow and MATLAB numerical routines with the resulting 
predictions also plotted in Figure 3(b). It can be seen that the numerical method is very close to 
that of the analytical solution and well inside the error inherent to these long glass fiber systems 
[40]. 

3.6 Results 

In the following section, results from the simulations will be discussed. First LGF 
orientation results from the sprue using the S-G-M method are presented to show that the choice 
of initial conditions at the sprue entry have been washed out by 80% of the fill of the sprue. 
Then, results from different assumptions about solution initialization are compared. Finally, 
results from simulating LGF orientation using the S-G-M method for both a rigid and semi-
flexible fiber model are shown. 
3.6.1 Simulation of Fiber Orientation in the Sprue of a Center-Gated Disk 

The long glass fiber-filled fluid was allowed to fill the sprue to the point where the fluid 
turned to enter the mold and then the injection was stopped. The qualitative representation of this 
investigation is shown in Figure 3.5 where a number of regions of interest have been highlighted. 
Two regions in the sprue were targeted in order to assess the accuracy of the models before the 
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suspension entered the mold cavity. At position CE60, the CE data is compared against predicted 
values of the A11  and A22  (or R11and R22 for the semi-flexible model), as is shown in Figure 3.6 
(a). Qualitatively both fiber orientation models capture the trends in the sprue with high A22  (R22
) values at the wall (high shear) and low A22  ( R22 ) values in the center. Quantitatively the 
flexible fiber model predicts fiber orientation more accurately than the rigid fiber model. At 
postion CE80 shown in Figure 3.6(b), both models perform equally well correctly capturing the
A11andA22  (or R11and R22 ) fiber orientation kinetics. Both models qualitatively predict the CE 
orientation data at 80% of the sprue. It is important to point out that a number of different fiber 
orientations were assumed at the sprue inlet but all of them provided solutions at positions CE60 
and CE80 that were within 5% of one another. From this it can be said that the choice of these 
initial conditions do not play a role in the mold fiber orientation predictions as the assumptions at 
the sprue a washed out before they reach the mold cavity. 
 Often assumptions are made about the orientation of long glass fibers entering the mold 
cavity to simplify the solution, but these assumed values are incorrect based on what has been 
seen experimentally. The two sets of experimental data in Figure 3.6 show that the CE A11  
orientation data and the FE A11  orientation data are markedly different at the gate, by as much as 
40% at the walls. If the predicted fiber orientation values are compared to the CE and FE data, 
both the rigid and flexible model follow the wide orientation distribution exhibited by the 
experimental data well. The CE experimental orientation data is clearly assymetric and that trend 
is also captured by both orientation models. Using the S-G-M method the rigid fiber model 
predicts orientation slightly better at the lower wall and the flexible fiber model predicts slightly 
better at the upper wall. Again using the S-G-M method both of the models are better at 
predicting the A33 ( R33 for flexible model) component than the A11 ( R11 for flexible model) 
component and qualitatively capture the assymetry observed at the gate region. Furthermore, 
using the S-G-M method and comparing the results to experimental orientation data confirm that 
the choice of either random or planar random initial conditions are observed to be unsatisfactory 
for simulating LGF filling operations since the trends in Figure 3.6 show decisively that the 
initial conditions are a function of the mold cavity thickness. 

3.6.2 Simulation of Long Glass Fiber Orientation in the Mold of a Center-Gated Disk 
The prediction of LGF orientation was also carried out using the two models of interest 

with four sets of initial conditions. The results of the LGF simulations at the FE10 sampling 
point for both the FT model and BR model are shown in Figure 3.8 (a) and (b), respectfully. The 
choice of random initial conditions using the FT model shows a traditional shell and core 
structure in the cross section, which does not qualitatively agree with the experimental LGF data. 
The other three initial conditions are observed to more qualitatively agree the experimental data, 
with the exception of the orientation predictions at the wall. Conversely the BR model, shown in 
Figure 3.8 (b), does a more encouraging job at predicting LGF orientation in the CGD. The 
experimental initial conditions as well as the S-G-M method prove to be more successful at 
capturing the asymmetric nature of the system and quantitatively agree well with the 
experimental FE data for LGF through the mold including near the walls.  

At the FE40 sampling point, the FT model does a poor qualitative job of capturing the 
kinetics of the experimental FE data, shown in (a). While the choice of initial condition for fiber 
orientation does affect the predicted values at FE40, none of the choice shown qualitative 
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agreement with experimentally obtained LGF data. The BR model results, presented in Figure 
3.9 (b), show much more encouraging trends overall, with the choice of initial conditions for 
fiber orientation playing a role in the predicted values at FE40. The random and planar random 
choices both qualitatively capture the orientation seen in the center of the mold, but fail to 
predict both the wall orientation and the asymmetric behavior observed in the experimental 
results. The experimental and S-G-M methods are observed to be more accurate than the 
assumed initial conditions, in predicting the asymmetric behavior of the LGF both in the center 
of the cavity and near the walls.  

The results from the LGF orientation simulation for the FE80 position are shown in 
Figure 3.10 (a) and (b) for the FT model and BR model, respectively. Again, the FT model does 
a poor job using any of the four sets of initial conditions. The FT model is observed to 
qualitatively predict orientation of LGF near the center of the mold but does a very poor job near 
the walls. The BR model again does a more encouraging job in predicting LGF orientation. The 
two assumed initial conditions, random and planar random, are seen to agree qualitatively with 
the experimental data, but again do not capture the asymmetric nature of the experimentally 
obtained values at the FE80 position. The experimental initial conditions are the least 
encouraging, predicting larger fluctuations through the thickness than what is observed 
experimentally. The S-G-M method performs well predicting the LGF orientation through the 
thickness with the exception of the walls. 
3.6.3 Comparison of Long Glass Fiber Orientation Predictions Using the S-G-M Method 

To evaluate the success of either the FT model or BR model at predicting LGF 
orientation in a CGD, direct comparisons were made using the S-G-M method shown in Figure 
3.11 (a), (b), and (c) for the FE10, FE40, and FE80 positions, respectfully. At the FE10 position 
both of the models qualitatively predict the LGF orientation through the thickness except near 
the walls. The FT model is seen to quantitatively over-predict fiber orientation through the entire 
cavity and under predict fiber orientation by as much as 500% for the A33 component near the 
walls of the CGD. The BR model shows predictions for LGF orientation that much more closely 
agree with experimental data near the wall. At the FE40 position the FT model performs poorly, 
over predicting LGF orientation near the walls and in the center of the mold using the S-G-M 
method. The BR model performs markedly better capturing both the orientation of LGF near the 
walls as well as through the cavity with only slight discrepancies near the top of the mold. At the 
FE80 position, the FT model qualitatively captures only the center third of the mold cavity, 
significantly over predicting LGF orientation near the walls using the S-G-M method. The BR 
model orientation predictions more closely resemble the experimental LGF orientation data but 
under predict orientation in regions close to the mold walls. 
3.7 Conclusions 

The choice of initial conditions and how to initialize the solution process to calculate 
glass fiber orientation was proposed to be an influential part in the predictions generated by 
current modeling techniques. The study was carried out for long glass fiber systems starting the 
fiber orientation simulations at both the mold entrance and the sprue entrance and using either 
random, planar random, or experimental initial orientation conditions at those positions. The 
choice of initial conditions at the sprue entrance was observed to completely wash out by 80% of 
the sprue length so that the initial conditions into the mold cavity were governed completely by 
the flow field. The gate position (0% mold fill) was examined to investigate the accuracy of the 
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experimental values used to simulate the fiber orientation predictions in the mold. It was shown 
that the orientation of glass fibers at the gate position as they enter the mold cavity and the 
orientation of glass fibers after the cavity has been filled are different, most notably at the walls. 
This provided evidence that the simulations should be carried out from the beginning of the 
sprue and let the fiber orientation evolve according to the flow field.  

Long glass fiber orientation predictions for both the FT model and BR model were 
observed to be influenced by the choice of fiber orientation initial conditions. For the long fiber 
orientation simulations the FT model showed poor agreement with experimental data no matter 
the choice of initialization method. The BR model predictions showed much more encouraging 
results when compared with experimental data, especially when using the S-G-M method. The 
FT and BR models were compared at the FE10, FE40, and FE80 positions using the S-G-M 
method where it was observed that the BR model more accurately predicts experimentally 
observed long glass fiber orientation. 
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3.10 Figures 

 
Figure 3.1: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as 

well as the azimuthal and zenith angles,  φ and θ  respectively.  
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Figure 3.2: Vector definition of flexible fiber. The fiber is characterized by the vectors, p and 

r , as well as the azimuthal and zenith angles,  φ and θ  respectively. The two vector are of equal 

length,  lb , and there is an internal resistivity to bending,  k . The end-to-end vector, r ,is also 
defined to determine a fiber’s “average” direction. 
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Figure 3.3: Comparison of numerical (o) and analytical (☐) solution for radially diverging 

flow using the Hele-Shaw approximation at 40% of the mold fill. Maximum difference is 0.27%. 
  



73 

 

 
Figure 3.4: Comparison of numerical (dashed) and analytical (solid) solution of transient 

viscosity using the semi-flexible fiber model in simple shear flow using a sliding plate rheometer 
(    T = 180°C,α = 0.13,C

I
= 0.04,k = 218s−1      ,φ = 0.1447,l

b
= 1.9mm     c1

= 49,c
2

= 25000  ). 
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Figure 3.5: Qualitative figure to examine initial conditions entering the mold cavity. The 

lightly shaded area represents the currently evolving (CE) data while the combination of the 
lightly shaded and darkly shaded areas constitutes the fully evolved (FE) data. Areas of 
interested for the CE data include 60% of sprue (CE60), 80% of the sprue (CE80), and the 0% 
fill of the mold (CE0). Areas of interest for the FE data include 0% mold fill (FE0) 10% mold fill 
(FE10), 40% mold fill (FE40), and 80% mold fill (FE80). 
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Figure 3.6: Comparing the rigid fiber (solid) model and semi-flexible (dashed) model to 

experimental LGF data for A11 (◊) and A22 (○) obtained from center-gated sprue when the fluid 
has just turned to enter the mold cavity. Comparison of models for (a) CE60 data and (b) CE80 
data region of interest.  
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Figure 3.7: Comparison of rigid fiber (solid) and semi-flexible (dashed) model predictions 

versus the experimentally obtained CE0 (a) A11 or R11, (b) A22 or R22 and (c) A33 or R33. 
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Figure 3.8: Results from simulating the center-gated disk filling operation taken FE10 of the 

mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid fiber model 
and (b) R11 orientation component results using the semi-flexible fiber semi-flexible model. 
Experimental IC’s (dotted), random IC’s (dashed), planar random IC’s (dash-dot), and simulated 
IC’s (solid) compared to experimental data (◊). 
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Figure 3.9: Results from simulating the center-gated disk filling operation taken at FE40 of 

the mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid fiber 
model and (b) R11 orientation component results using the semi-flexible fiber semi-flexible 
model. Experimental IC’s (dotted), random IC’s (dashed), planar random IC’s (dash-dot), and 
simulated IC’s (solid) compared to experimental data (◊). 
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Figure 3.10: Results from simulating the center-gated disk filling operation taken at FE80 of 

the mold fill for LGF. (a) A11 orientation component results using the rigid fiber rigid fiber 
model and (b) R11 orientation component results using the semi-flexible fiber semi-flexible 
model. Experimental IC’s (dotted), random IC’s (dashed), planar random IC’s (dash-dot), and 
simulated IC’s (solid) compared to experimental data (◊). 
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Figure 3.11: Results from simulating the center-gated disk filling operation taken at (a) FE10 

of the mold fill, (b) FE40 of the mold fill, and (c) FE80 of the mold fill. Simulations are carried 
out using S-G-M method for long glass fibers. Predictions are made with the rigid fiber model 
(solid) and flexible fiber model (dash-dot) for 
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11
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orientation components. 
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η0 (Pa·s) 582.14 

λ (s-1) 0.2531 

n 0.7597 

Table 3.1: Parameters for the filling of polypropylene matrix filling the center-gated mold. 
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Chapter 4 
 

Prediction of Short Glass Fiber Orientation in the Filling of an End-
Gated Plaque 

 

Preface 
This chapter describes the prediction of short glass fiber orientation in the filling of a 

three-dimensional end-gated plaque using two rigid fiber models and comparing to 
experimentally determined values of orientation. This chapter is organized as a manuscript for 
publication in Composites Part A: Applied Science and Manufacturing. 
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4.1 Abstract 

This work is concerned with predicting short L ≤1mm( )glass fiber (SGF) orientation 
generated during the filling of an end-gated plaque (EGP). Previous EGP simulations have 
provided results only within the mold cavity and only along the centerline of the mold and made 
assumptions about fiber orientation at the mold entry. This paper reports on a method to simulate 
the flow in the sprue, gate and mold region (SGM) to obtain fiber orientation predictions within 
the end-gated plaque using orientation parameters fit to experimental data. Predicted values of 
orientation are compared to experimental data both along and away from the centerline. It is 
observed that orientation can be accurately predicted in a three dimensional mold cavity using 
the strain reduction factor model. Furthermore, initial conditions at the entrance to mold cavity 
appear to be a function of mold width as well as mold thickness.  
4.2 Introduction 

Short glass fiber composite suspensions are typically processed by injection or compression 
molding to form a part with a complex layered microstructure [1]. Local variations of fiber 
orientation are often seen in even the simplest molding geometries and have led to a variation of 
the properties of the final part [2]. As a result, a large amount of effort has focused on predicting 
the final orientation of fibers in an injection or compression molded part to optimize the 
processing conditions and part performance. 

Modeling the orientation of concentrated short glass fiber (SGF) systems during mold filling 
has typically been accomplished through some variant of Jeffery’s model [3]. Jeffery described 
the motion of a single prolate spheroid in a Newtonian fluid in creeping flow. Folgar and Tucker 
[4] modified Jeffery’s model by adding a term based on isotropic rotary diffusivity that was 
proportional to the velocity gradient to account for fiber-fiber interaction in a concentrated fiber 
system and weighted by an empirical value, CI . The fiber interaction coefficient, CI , has been 
estimated by fitting experimental data [5], through empirical relationships [6, 7] and by fitting 
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transient stress growth at the startup of steady shear [8, 9]. The Folgar-Tucker (FT) model has 
shown good qualitative agreement with experimental data and is thus a popular choice for 
simulating short glass fiber orientation [5, 10]. 

Stress growth experiments in the startup of simple shear have shown that the orientation of 
fibers in concentrated suspension evolves more slowly than predicted by the Folgar-Tucker 
model [11, 12]. To more accurately reflect the observed transient fiber orientation a “slip” 
parameter was suggested by Sepehr et al. [13, 14] and Eberle et al. [11] to slow the evolution of 
orientation. The strain reduction factor (SRF) model proved more accurate in comparison to 
experimental data but the addition of the slip parameter rendered the SRF model non-objective 
[15]. Wang et al. [16] developed the reduced strain closure (RSC) model as an objective form of 
the SRF model where the closure approximation is modified eliminating the objectivity problem 
while including the slower orientation kinetics observed in experimental values of orientation. 
Even though the SRF model is non-objective it has been shown to be useful in describing the 
evolution of orientation in simple flows and in more general flows [14, 17, 18]. Furthermore, 
Wang et al. [19] showed that the SRF model qualitatively predicted fiber orientation in a rotating 
compressing and expanding center-gated disk. Phelps and Tucker [20] have developed a form of 
the RSC model (ARD-RSC) which accounts for the anisotropy in fiber interactions but requires 
additional fitting efforts in determining six model coefficients. 

The prediction of short fiber orientation in complex test geometries for injection molding has 
been the subject of significant work. A number of authors have investigated the prediction of 
SGF orientation in a center-gated disk geometry and have found reasonable agreement with 
experimentally obtained values of fiber orientation under different conditions [5, 10, 21-24]. The 
prediction of SGF orientation in an end-gated plaque geometry has seen considerably less 
attention. Altan et al. [25] assumed a planar random inlet condition to a rectangular channel and 
computed the short fiber orientation using a coupled approach involving both the 4th and 6th order 
tensors of orientation but did not compare his results to experimental orientation values. Bay and 
Tucker [5], Han and Im [26] and Nguyen et al. [27] simulated the orientation of glass fibers in an 
end-gated strip and found reasonable agreement with experimental orientation values but only 
made comparisons along the centerline of the mold. Gupta and Wang [28] performed a more 
detailed analysis of an end-gated plaque using a polyester matrix and SGF’s and saw reasonable 
qualitative agreement between predicted values of orientation and experimentally obtained 
values but no quantitative statement could be made due to course sampling techniques. Thus, 
there is a need for a more comprehensive and quantitative study of predicting the orientation of 
SGF’s in an end-gated plaque geometry. 

Predicting fiber orientation in complex geometries has been shown to be affected by the 
choice of initial conditions. Previous authors have observed that assumed symmetric initial 
conditions for fiber orientation produce symmetric orientation predictions [5, 23, 24]. In contrast, 
experimentally obtained values for fiber orientation are generally observed to be asymmetric 
through the mold thickness and thus require asymmetric initial conditions [24]. One method of 
obtaining asymmetric initial conditions of orientation involves the use of experimental 
orientation values obtained from the gate mold interface. Velez-Garcia et al. [23] used 
experimental data as initial conditions for the simulation of fiber orientation to the mold in a 
center-gated disk and found an increased agreement with experimental orientation values when 
compared to an assumed orientation.  The drawback to this method is that it requires 
experimental knowledge of the system that is being predicted (to predict the orientation of fibers 
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in a system experimental data must first be obtained and analyzed from that system). To address 
this concern, Chung and Kwon [24] suggested simulating the entire mold of a center-gated disk 
(sprue and mold) as a single domain and saw a similar increase in agreement between predicted 
values of orientation and experimental data for a SGF system as Velez-Garcia [23] but did not 
require experimental orientation values. Meyer et al. [21] built on the work of Chung and Kwon 
[24] and developed the sprue-gate-mold (SGM) method for the prediction of orientation of long 
glass fiber suspensions in the center-gated disk and observed an increase in agreement between 
model predictions and experimental data again without the need for experimental orientation 
values at the gate/mold interface.  

The purpose of this work is to predict short glass fiber orientation in an end-gated plaque 
including gate effects, the advancing front and temperature effects and compare the results with 
experimentally obtained values of short glass fiber orientation both along and away from the 
centerline of the mold drawing conclusions as to the accuracy of the predictions. Furthermore, it 
will be determined if objectivity plays a role in predicting SGF orientation throughout the end-
gated plaque by solving both the SRF and RSC models throughout the geometry. The fiber 
orientation predictions are performed using the decoupled approach for the stress and orientation 
tensors [22, 29, 30]. A volume of fluid finite element method is used in the ANSYS Polyflow 
environment to calculate the velocity gradients of a non-isothermal generalized Newtonian fluid 
filling an end-gated plaque geometry incorporating both the gate region and advancing front. The 
solutions of the SRF and RSC fiber orientation models are calculated through a combination of 
MATLAB and C routines in the MATLAB environment. Fiber orientation predictions are carried 
out using orientation parameters (κ  andCI ) obtained through fitting transient stress data from 
shear flow experiments and through fitting experimental data obtained from injection molding 
experiments. 

4.3 Governing Equations 
4.3.1 Flow and Heat Equations 

The flow was assumed laminar Re ≈10−3( ) and incompressible resulting in the equations 
of continuity and motion as given in Eq. (4.1) and Eq. (4.2), respectfully: 
 0 = ∇⋅v   (4.1) 

 0 = −∇P +∇⋅τ   (4.2) 

In Eqs. (4.1) and (4.2), v  is the velocity vector, P  is the isotropic pressure and τ  is the extra 
stress tensor.  

Temperature was also taken into account in the simulations using Eq. (4.3) where ρ  is 
the density, CP  is the specific heat capacity per unit mass, DT Dt  is the material derivative 

∂T ∂t + v ⋅∇T( ) , k  is the thermal conductivity,  γ  is the rate of strain tensor and τ  is the extra 
stress tensor: 

 
 
ρCP

DT
Dt

= k∇T +τ : γ   (4.3) 
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The viscosity of the matrix was also dependent on the temperature of the system and is included 
through the use of an Arrhenius law relation shown in Eq. (4.4) where α = Ea R  and Tα  is a 
reference temperature: 

 η T( ) = exp α 1
T
− 1
Tα

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   (4.4) 

For the duration of the work presented here the fluid is assumed to have constant thermal 
conductivity and heat capacity. The parameters for Eq. (4.3) and Eq. (4.4) are given in Table 4.1. 
4.3.2 Extra Stress Tensor Representation 

The decoupled approach for the solution of the stress and orientation tensors was used 
based on previous work by Chung and Kwon [24], Eberle et al. [8], Ortman et al. [9] and 
Mazahir et al. [22] which suggests there is no consistent representation of the stress tensors 
which includes both fiber loading and fiber-fiber interaction for concentrated suspensions. From 
the perspective of the fibers, the major drag experienced is from the polymer melt. The effect of 
fibers was included by incorporating the fiber loading and fiber-fiber interaction contributions 
into the simulations through the values of κ  and CI  so that only the neat matrix properties are 
used to predict the velocity fields. A generalized Newtonian fluid was chosen as the constitutive 
relation, given in Eq. (4.5), to represent the matrix rheology used in this study where  η γ( )  is an 

empirical relation for the viscosity and  γ = 1
2 ∇v +∇v T⎡⎣ ⎤⎦where ∇v = ∂vj ∂xi : 

  τ =η γ( ) γ   (4.5) 

The Cross model was used to account for the shear-thinning nature of neat matrix and is given by 
Eq. (4.6) where η0  is the zero shear viscosity, λ  is the parameter which governs the onset of 
shear thinning and n  is a parameter which governs the degree of shear thinning within the 
matrix: 

 
 
η γ( ) = η0

1+ λ γ( )1−n
  (4.6) 

The parameters for the Cross model can be found in Table 4.1 and were obtained through testing 
in a rotational rheometer (RMS-800, Rheometrics, Inc.). 
4.3.3 Fiber Orientation Equations 

A convenient way of representing the orientation of fibers within an injection-molded 
part is through the use of a 2nd order orientation tensor (shown in Eq. (4.7)) given by Advani and 
Tucker [31] where A  is the orientation tensor, p  is a vector running through the longitudinal 
axis of the individual fiber (shown in Figure 4.1) and ψ p,t( )  is the probability distribution 
function:  

 A = ppψ p,t( )dp∫∫   (4.7) 
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In the equations of orientation, a 4th order tensor also arises due to the drag of the fluid on the 
fiber and is given in Eq. (4.8): 

 A4 = ppppψ p,t( )dp∫∫   (4.8) 

The 4th order orientation tensor in Eq. (4.8) requires the use of a closure approximation and a 
summary of many popular closure approximations is given by Chung and Kwon [32]. [32]. 
Recent work in the area of closure approximations has yielded the Fast Exact closure and Neural 
Network-based closures [33, 34]. For the purpose of this work, the invariant-based optimal fitted 
closure (IBOF) is used which is based on the 2nd and 3rd invariants of the 2nd order orientation 
tensor, A  [35, 36]. Furthermore, the IBOF closure has been shown to produce solutions very 
close to direct calculation of the probability distribution function and is very computationally 
efficient in comparison to other orthotropic closures [36]. 

The strain reduction factor (SRF) model is given in Eq. (4.9) where A  is the second 
moment of the orientation distribution function,  

A  is the material derivative of A

 
A = ∂A ∂t + v ⋅∇A( ) , A4  is the fourth moment of the orientation distribution function, W  is the 

vorticity tensor W = 1
2 ∇v −∇v T⎡⎣ ⎤⎦( ) , D  is the rate of deformation tensor D = 1

2 ∇v +∇v T⎡⎣ ⎤⎦( ) , 

I  is the unit tensor, ξ  is a shape factor (usually given a value of unity for fiber systems),  γ  is 

the magnitude of the rate of deformation tensor 
 
γ = 1

2 D :D⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠  and κ  and CI  are 

phenomenological constants based on the suspension properties [4, 13]: 

 
 
A =κ W ⋅A − A ⋅W( ) + ξ D ⋅A + A ⋅D − 2A4 :D( ) + 2 γCI I − 3A( )⎡

⎣
⎤
⎦   (4.9) 

The orientation equation in Eq. (4.9) has seen wide use since it’s introduction by Sepehr et al. 
[14] and because the vorticity tensor, W  , is multiplied by the strain reduction factor, κ , the 
equation in not objective [15, 21, 23] . 

The reduced strain closure (RSC) model was introduced as the objective form of Eq. (4.9) 
and is given in Eq. (4.10) where the reduction factor, κ , has been moved into the closure 
approximation so that it only effects the objective tensors [16]: 

 

 

A =W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ( ) L4 −M 4 :A4( )⎡
⎣

⎤
⎦ :D{ }

                                                                            + 2κCI γ I − 3A( )
  (4.10) 

The use of the RSC model requires two 4th order tensors, L4  and M 4 , which are based on the 

eigenvalues λi( )  and eigenvectors ei( )  of the 2nd order orientation tensor, A , shown in Eq. 
(4.11) and Eq. (4.12): 
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 L4 = λieieieiei
i=1

3

∑   (4.11) 

 M 4 = eieieiei
i=1

3

∑   (4.12) 

Obtaining the value of the strain reduction factor, κ , and the fiber interaction coefficient, 
CI , for both the SRF and RSC models will be discussed in the results section of this paper. 

4.4 Solution Method 
4.4.1 Finite Element Simulations 

The filling of the cavity was simulated using the ANSYS Polyflow finite element (FEM) 
software package. The entrance to the gate region was meshed using 31 (thickness) x 30 (length) 
x 20 (width) elements. The gate region was meshed using 31 (thickness) x 30 (length) x 50 
(width) hexagonal elements. The mold was meshed using 31 (thickness) x 300 (length) x 50 
(width) hexagonal elements. A lower number of elements caused convergence issues in the fiber 
orientation calculations while a higher number of elements in any of the three meshed areas saw 
no increase in accuracy gained. Using unequal grid spacing captured the large gradients 
encountered near boundaries.  

The volume of fluid (VOF) method was used inside the ANSYS Polyflow environment to 
simulate the transient mold filling process [37]. The VOF method solves the transport equation 
for the volume fraction of fluid at each node where φ  is the volume fraction of the liquid phase 
and v  is the velocity vector at that node given by Eq. (4.13): 

 ∂φ
∂t

+ v ⋅∇φ = 0   (4.13) 

The solution of this equation allows for the fluid front to be tracked as it moves through the 
empty cavity thereby incorporating the “fountain flow” effect in the simulations. The influence 
of this complex moving front has been shown to impact fiber orientation predictions in 
axisymmetric radially diverging flow [5, 10, 24]. 

The solution of the non-isothermal system required the use of an evolution scheme inside 
the ANSYS Polyflow environment to control the viscous dissipation and convection term 
associated with Eq. (4.3). The viscous dissipation term and convection term were scaled based 
on the time step so that at small time steps these terms had little effect on the final solution. The 
terms influence was slowly increased until 20% of the mold fill simulation was completed where 
they were no longer scaled and provided a stable solution. 
4.4.2 Finite Difference Simulations 

The fiber orientation equations were solved using 2nd order accurate finite differences 
(FDM) in MATLAB (The Mathworks Inc., ver. 7.4) and C on a stationary mesh. The equations 
used to predict fiber orientation are originally hyperbolic partial differential equations because of 
the velocity vector in the convective term. But, because the stress tensor and orientation tensor 
are decoupled in this study, the velocity vector is known so that the convective term can be 
explicitly written. This reduces the set of partial differential equations to non-linear ordinary 
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differential equations. The ordinary differential equations are solved using a variable step size 
backwards differences implementation of the Kopfenstein-Shampine family of numerical 
differentiation formulas [38]. Fiber orientation predictions in the fountain flow region are 
calculated through the use of backward differentiation methods. 

4.4.3 Boundary Conditions 
The non-isothermal FEM simulations of the end-gated plaque (shown in Figure 4.2) 

requires specified boundary conditions for both the flow and heat equations. The inlet boundary, 
given by Ωinlet , required an inlet fluid temperature Tin = 463K( )  and volumetric flow rate 

Vin = 3225 mm3

s( )  and are based on experimental conditions. The symmetry condition 

fs = 0,vn = 0( )  is specified by Ωsym . At the walls of the mold both the no slip condition v = 0( )  
and the mold wall temperature Twall = 363K( )  were specified. Because the VOF method here 
does not calculate the movement of air out of the mold, the only other constraint was to set both 
the normal and tangential forces to zero at the moving fluid boundary fn = ft = 0( ) . The FDM 
simulation required only one boundary condition for fiber orientation to be specified at the inlet 
of the gate A = 1

3 I( )  and did not affect orientation predictions. Fiber orientation on all other 

boundaries Ωoutlet ,Ωwall ,Ωsym( )  is based on the velocity fields at those locations. 

4.5 Experimental Data 
4.5.1 Injection Molding Conditions 

End-gated plaques (EGP) were formed for the experimental evaluation of fiber 
orientation using 30 weight percent short glass fiber in a polypropylene matrix (RTP 105, The 
RTP Company, Inc.). The temperatures of the feed, compression and metering zones within the 
injection molding machine (Arburg Allrounder, Model 221-55-250) were set to 190°C, 190°C 
and 190°C, respectively, while the mold temperature was held at 90°C.  The sprue length for the 
mold was 65mm with an initial radius of 1.45mm and a final radius at the gate of 1.75mm. The 
gate region of the plaque has dimensions of 80.68mm (width) by 6.25mm (height) by 6.33mm 
(length) and the mold region of the plaque has dimensions of 75.05mm (width) by 1.55mm 
(height) by 77.65mm (length). The plaques were molded using a fill time of 2.00 seconds with a 
backpressure of 20 MPa.  

4.5.2 Fiber Length Distribution 

The fiber length distribution (FLD) was determined to verify that the average lengths l( )  
of the fibers in the end-gated plaque are indeed in the short fiber regime that is typically defined 
to be l <1mm . Methods described by Nguyen et al. [27] were used to determine the fiber length 
distribution of approximately 2000 fibers. The method involves taking a representative sample of 
the injection-molded sample and burning off the polymer matrix leaving only the glass fibers 
behind. A small amount of epoxy resin was applied to the glass fiber matrix to secure a 
population of fibers and any fibers not secured to the epoxy were removed. The remaining 
fiber/epoxy system was returned to the furnace to remove all the epoxy. Finally, the remaining 
fibers were analyzed through optical techniques to determine the FLD. This method produced a 
number average length and diameter of 0.923± 0.03mm  and 13.9µm , respectively. 
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4.5.3 Fiber Orientation Measurements 
Samples of the injected molded composite were chosen within the end-gated mold 

geometry at a 0%, 10%, 40% and 90% of the length of the mold at the centerline, 50% width of 
the mold and 90% width of the mold (sampled locations are indicated by gray shading in Figure 
4.2). The selected samples were prepared using the method prescribed by Velez-Garcia et al. 
[39]. Optical microscopy was used to analyze samples at each inspection line using 20X 
magnification and motorized stage with image stitching software (Nikon Eclipse LV100, NIS-
Elements Basic Research software, v. 3.10). The resulting images had a width of 700 µm  and 
height equal to the thickness of the disk. The unambiguous components of the orientation tensor 
were determined through the method of ellipses using a traditional size bin width of 0.8 mm [40, 
41]. 
4.6 Results 

4.6.1 Obtaining Fiber Orientation Parameters 
The prediction of short fiber orientation uses parameters (the slip parameter κ  and the fiber 

interaction coefficient CI ) that strongly dictate the final orientation structure through the mold 
cavity thickness. Initially, the orientation parameters κ and CI  were obtained through the fitting 
of transient stress growth data at the startup of simple shear flow as described  by Eberle et al. 
[11] and Ortman et al. [9]. The calculated values of the two fiber orientation parameters were 
determined through the fitting of experimental stress and fiber orientation data at the startup of  
simple shear deformation at  γ = 1 s-1 with resulting values of κ = 0.3436 and CI = 0.0309 . These 
parameters were used to predict the fiber orientation in the end-gated plaque filling process with 
the resultant predictions shown by the solid lines in Figure 4.3. The fiber orientation predictions 
shown in Figure 4.3 appear to produce very distinct shell-core-shell regions that is not reflected 
in the experimental data suggesting that the value of the slip parameter, κ , may be too high. 
Furthermore, at no point within the mold filling comparisons along the centerline do the 
predicted values of orientation agree with the experimentally determined values. The value of the 
fiber interaction coefficient, CI , appears to accurately predict fiber orientation near the walls of 
the mold suggesting that this value may be correct. 

Due to the poor agreement between the orientation predictions using the parameters 
obtained from simple shear flow, experimental data at the 0% fill position in the mold along the 
centerline was fitted (position (1) in Figure 4.2). The fitting was performed by simulating the 
filling of the end-gated sprue, gate and mold and comparing the predicted values of orientation to 
the observed experimental values of orientation at the position of interest (position (4) in Figure 
4.2) and adjusting the orientation parameters accordingly. The fitting procedure used an error 
reducing (error between the experimental and predicted values of the R11 and R33 orientation 
components) non-linear least squares (NLLSQ) analysis to fit both the SRF and RSC model 
predictions to the components of experimental orientation at this fill position. The values of the 
orientation parameters obtained from this position were then used for all other predictions in the 
end-gated geometry both along and away from the centerline. The results of the fitting procedure 
yielded values of κ = 0.0297  and CI = 0.0481 for the non-objective SRF model and values of 
κ = 0.0910  and CI = 0.0658  for the objective RSC model. 
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4.6.2 Comparison of Objective and Non-Objective Fiber Orientation Models 
In order to assess the role objectivity plays in the prediction of short glass fiber 

orientation in the end-gated plaque the SRF model predictions, given by Eq. (4.9), and the RSC 
model predictions, given by Eq. (4.10), were compared at four locations. Figure 4.4 (a) (position 
(1) in Figure 4.2) shows the results of the SRF and RSC model predictions compared to 
experimental data at the 0% fill position along the centerline of the end-gated plaque. It is 
observed that both models predict similar values of orientation through the mold cavity thickness 
and also both accurately predict experimental values of SGF orientation at this position. The 
RSC and SRF models are compared at 10% fill along the centerline (position (7) in Figure 4.2) 
and it is observed that the predictions for both models are very similar and within or very close to 
the error associated with the experimentally obtained values. The third position of interest is 0% 
fill at 50% of the width of the end-gated mold cavity (position (2) in Figure 4.2) where the SRF 
and RSC models produce similar numerical predictions for SGF orientation through the mold 
cavity thickness with neither model performing significantly better or worse when compared to 
experimentally obtained orientation data. Finally, the SRF and RSC models are compared at 40% 
fill and 50% width of the end-gated mold cavity (position (8) in Figure 4.2). At this position well 
away from the centerline it is again observed that the SRF and RSC models predict very similar 
values of orientation through the mold cavity and it cannot be concluded that either is more 
accurate at predicting experimental fiber orientation within the error associated with the 
measurements. Additionally, the RSC model and SRF model were compared at a number of 
other locations and similar results were observed suggesting that objectivity may not play a large 
role in the prediction of SGF orientation in the end-gated plaque. 

4.6.3 Fiber Orientation Predictions at 0% Mold Width 
The SRF model was used to predict fiber orientation along the centerline of the mold 

cavity of the end-gated plaque. The SRF model is compared to experimental data at 0% of the 
mold fill along the centerline in 

Figure 4.5 (a) (position (1) in Figure 4.2). At this position good agreement is observed 
between the model predictions and experimentally observed data accurately predicting a shell-
core-shell region commonly associated with SGF composites in thin cavities.  

Figure 4.5 (b) (position (4) in Figure 4.2) shows the results of the SRF model at 10% of 
the mold fill along the centerline of the end-gated plaque. At this position, the SRF model is 
observed to agree well with experimentally obtained SGF orientation values again accurately 
predicting the shell-core-shell region. The SRF model is compared to experimental SGF 
orientation values at 40% of the mold fill along the centerline of the mold in  

Figure 4.5 (c) (position (7) in Figure 4.2). The SRF model performs encouragingly for all 
three of the shown orientation tensor components. The A33 component prediction is slightly more 
accurate than the A11 component, but both are either within the experimental error or close to the 
values including experimental error with the exception of the center of the mold. At the center of 
the mold the over prediction of the A22 component leads to an under prediction of both the A11 
and A33 components.  Finally, the SRF model is compared to experimental orientation data at 
90% of the mold fill along the centerline of the mold data in  

Figure 4.5 (d) (position (10) in Figure 4.2). Here the experimentally obtained orientation 
data show a wider orientation distribution than at 40% of the mold fill. This wider distribution is 
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captured using the SRF model as the agreement with experimental data is encouraging. The 
exception is near the center of the mold where both the A11 and A33 components of orientation 
are slightly under predicted because of an over predicted A22 component of orientation. This over 
prediction can partially be attributed to the non-uniform velocity gradients experienced across 
the length of the glass fiber. 
4.6.4 Fiber Orientation Predictions at 50% Mold Width 

Comparisons between observed experimental fiber orientation and predicted values of 
orientation using the SRF model were made at 50% of the mold width. Figure 4.6 (a) shows the 
predicted values of fiber orientation using the SRF model and the experimentally observed 
orientation values at 0% mold fill and 50% width of the mold (position (2) in Figure 4.2). The 
SRF model is observed to perform well in predicting experimental fiber orientation at this 
position in the mold cavity for all three shown orientation components. Furthermore, both the 
predicted values and experimentally obtained values are much different than those observed at 
the centerline of the mold cavity. Model predictions are compared to experimental data at 10% of 
the mold fill at 50% percent of the mold within Figure 4.6 (b) (position (5) in Figure 4.2). 
Qualitatively, the shell-core-shell region observed in experimental data along the centerline of 
the mold is lost at this position leading to a much broader and flatter orientation distribution 
profile through the cavity thickness. The SRF model is observed to quantitatively capture this 
phenomenon for all three shown orientation tensor components and generally agrees with 
experimental orientation data except very near the walls. At the walls, A22 is over predicted 
leading to over predicted values of A11 component and an under predicted A33 component at the 
top of the mold cavity. The SRF model predictions were compared to experimentally obtained 
fiber orientation data at 40% of the mold fill and 50% mold width in Figure 4.6 (c) (position (8) 
in Figure 4.2). Here the SRF models predict a very broad fiber orientation distribution through 
the mold cavity thickness and is observed to agree well with experimental data for all three 
shown orientation components.  Very near the bottom mold wall the A11 orientation is over 
predicted causing the A33 component to be under predicted. Finally, the SRF model was 
compared to experimentally obtained fiber orientation values at 90% of the mold fill at 50% of 
the width given in Figure 4.6 (d) (position (11) in Figure 4.2). At this position of the mold a 
shell-core-shell region again emerges in the experimental orientation data and is captured by the 
orientation predictions of the SRF model. Near the top mold wall the accuracy of the SRF model 
is poorer quantitatively over predicting the A11 component and under predicting the A33 
component. 
4.6.5 Fiber Orientation Predictions at 90% Mold Width 

Orientation predictions were compared to experimentally obtained SGF orientation data 
at 90% of the mold width. The results in Figure 4.7 (a) show the SRF model predictions 
compared to experimental data at 0% mold fill and 90% mold width (position (3) in Figure 4.2). 
Qualitatively the SRF model captured the orientation distribution through the thickness of the 
cavity well but quantitatively under predicts the A11 component and over predicts the A33 
component through the entire mold thickness except near the bottom wall. The results in Figure 
4.7 (b) show experimental orientation data compared to predicted values of orientation using the 
SRF model at 10% mold fill and 90% mold width (position (6) in Figure 4.2). At position (9) the 
SRF model predicted SGF orientation values similar to those obtained experimentally through 
the mold thickness with the exception of the top mold wall where the predictions are slightly off. 
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Figure 4.7 (c) shows the results of the SRF model predictions to experimentally observed 
orientation values at 40% mold fill and 90% mold width (position (9) in Figure 4.2). 
Qualitatively the SRF model predicts the correct wide distribution of orientation but 
quantitatively the model performs poorly when compared to experimental orientation values. 
Finally, Figure 4.7 (d) shows the comparison of predicted orientation values using the SRF 
model and the values obtained from experimentation at 90% mold fill and 90% mold width 
(position (12) in Figure 4.2). Again the SRF model qualitatively predicts the correct wide 
distribution through the mold cavity thickness. Quantitatively the predicted A11 orientation 
component agrees well with experimental data in the top half of the mold while the predicted A33 
orientation component agrees well with experimental data in the bottom half of the mold. 

4.7 Conclusions 
Comparisons of the model predictions and experimentally obtained values of SGF orientation 

were made for the non-isothermal filling of an end-gated plaque using the decoupled approach 
for the stress and orientation tensors incorporating the gate region and the advancing front. Fiber 
orientation parameters obtained through fitting transient stress overshoots in shear flow (for both 
the SRF and RSC models) over predicted the degree of orientation through the mold cavity 
thickness yielding values of orientation that suggested a stronger shell-core-shell region than was 
observed experimentally.  This implies that the study of suspensions in simple shear alone to 
obtain orientation parameters may not accurately capture all phenomena associated with this 
system and other rheological studies may be needed (extensional flow, etc.). Due to the poor 
orientation predictions from the parameters fit in simple shear flow, fiber orientation parameters 
were obtained through the fitting of experimental data at one position in the mold (0% fill, 
centerline) using a non-linear least squares analysis. Using the orientation parameters determined 
through fitting experimental data (at 0% of the mold fill along the centerline) proved to be 
successful at predicting experimentally obtained values of orientation for glass 
fiber/polypropylene system presented here. Along the centerline, where most work has been 
done previously, the SRF model quantitatively predicts the experimental values of orientation at 
all of the locations of interest. At two positions along the centerline the A22 component of 
orientation was over predicted when compared to experimental data. It should be pointed out that 
anisotropic models can partially correct this issue but it comes at a much higher computational 
cost. 

 When sampling regions away from the centerline the SRF model does an encouraging job at 
predicting fiber orientation in all of the locations of interest verifying that the model can predict 
fiber orientation away from the centerline of a three-dimensional molding geometry. 
Additionally, at the gate/mold interface away from the centerline of the mold, fiber orientation is 
observed to be a function of the width and thickness of the mold cavity suggesting that general 
assumptions about initial conditions (fibers enter the mold cavity planar random, etc.) cannot be 
made here when predicting SGF orientation. Finally, the non-objective SRF model and the 
objective RSC model appear to exhibit similar trends at the locations sampled in the end-gated 
plaque suggesting that objectivity may not play a significant role in the prediction of fiber 
orientation in a more complex test geometry such as the end-gated plaque. 
4.8 Acknowledgments 

The financial support for this work from the National Science Foundation Grant No. 
CMMI-0853537 is gratefully appreciated and acknowledged. The authors also wish to thank the 



94 

 

RTP Company Inc. for supplying the neat matrix resin (RTP 100) and the 30 wt. % SGF fiber 
material (RTP 105). The authors also acknowledge Syed Mazahir and Mark Cieslinski for the 
fruitful discussions. 
4.9 References 

[1] S. G. Advani and E. M. Sozer, Process modeling in composites manufacturing, 2nd ed. 
Boca Raton, FL: CRC Press, 2011. 

[2] M. W. Darlington and A. C. Smith, "Some features of the injection molding of short fiber 
reinforced thermoplastics in center sprue-gated cavities," Polymer Composites, vol. 8, pp. 
16-21, 1987. 

[3] G. B. Jeffery, "The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid," 
Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 
vol. 100, pp. 161-179, 1922. 

[4] F. Folgar and C. L. Tucker, "Orientation Behavior of Rigid Fibers in Concentrated 
Suspensions," Journal of Rheology, vol. 26, pp. 604-604, 1982. 

[5] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .2. 
Experimental Results," Polymer Composites, vol. 13, pp. 332-341, Aug 1992. 

[6] R. S. Bay, "Fiber orientation in injection molded composites: a comparison of theory and 
experiment," Ph.D. , University of Illinois, Urbana-Champaign, 1991. 

[7] N. Phan-Thien, X. J. Fan, R. I. Tanner, and R. Zheng, "Folgar-Tucker constant for a fibre 
suspension in a Newtonian fluid," Journal of Non-Newtonian Fluid Mechanics, vol. 103, 
pp. 251-260, Mar 25 2002. 

[8] D. G. Baird, A. P. R. Eberle, P. Wapperom, and G. M. Velez-Garcia, "Using transient 
shear rheology to determine material parameters in fiber suspension theory," Journal of 
Rheology, vol. 53, pp. 685-705, May-Jun 2009. 

[9] K. Ortman, D. Baird, P. Wapperom, and A. Whittington, "Using startup of steady shear 
flow in a sliding plate rheometer to determine material parameters for the purpose of 
predicting long fiber orientation," Journal of Rheology, vol. 56, pp. 955-981, Jul 2012. 

[10] R. S. Bay and C. L. Tucker, "Fiber Orientation in Simple Injection Moldings .1. Theory 
and Numerical-Methods," Polymer Composites, vol. 13, pp. 317-331, Aug 1992. 

[11] D. G. Baird, A. P. R. Eberle, G. M. Velez-Garcia, and P. Wapperom, "Fiber orientation 
kinetics of a concentrated short glass fiber suspension in startup of simple shear flow," 
Journal of Non-Newtonian Fluid Mechanics, vol. 165, pp. 110-119, Feb 2010. 

[12] M. Sepehr, P. J. Carreau, M. Moan, and G. Ausias, "Rheological properties of short fiber 
model suspensions," Journal of Rheology, vol. 48, pp. 1023-1048, Sep-Oct 2004. 

[13] M. Sepehr, G. Ausias, and P. J. Carreau, "Rheological properties of short fiber filled 
polypropylene in transient shear flow," Journal of Non-Newtonian Fluid Mechanics, vol. 
123, pp. 19-32, Oct 15 2004. 

[14] M. Sepehr, P. J. Carreau, M. Grmela, G. Ausias, and P. G. Lafleur, "Comparison of 
rheological properties of fiber suspensions with model predictions," Journal of Polymer 
Engineering, vol. 24, pp. 579-610, Nov-Dec 2004. 



95 

 

[15] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids. - 1 : Fluid 
mechanics, 2.ed. ed. New York,N.Y.: Wiley, 1987. 

[16] C. L. Tucker, J. Wang, and J. F. O'Gara, "An objective model for slow orientation 
kinetics in concentrated fiber suspensions: Theory and rheological evidence," Journal of 
Rheology, vol. 52, pp. 1179-1200, Sep-Oct 2008. 

[17] A. P. R. Eberle, D. G. Baird, P. Wapperom, and G. M. Velez-Garcia, "Obtaining reliable 
transient rheological data on concentrated short fiber suspensions using a rotational 
rheometer," Journal of Rheology, vol. 53, pp. 1049-1068, Sep-Oct 2009. 

[18] H. M. Huynh, "Improved Fiber Orientation Predictions for Injection-Molded 
Composites," M.S., Mechanical Engineering, University of Illinois at Urbana-
Champaign, 1999. 

[19] J. Wang, C. A. Silva, J. C. Viana, F. W. J. van Hattum, A. M. Cunha, and C. L. Tucker, 
"Prediction of fiber orientation in a rotating compressing and expanding mold," Polymer 
Engineering and Science, vol. 48, pp. 1405-1413, Jul 2008. 

[20] C. L. Tucker and J. H. Phelps, "An anisotropic rotary diffusion model for fiber 
orientation in short- and long-fiber thermoplastics," Journal of Non-Newtonian Fluid 
Mechanics, vol. 156, pp. 165-176, Feb 2009. 

[21] K. J. Meyer, J. T. Hofmann, and D. G. Baird, "Initial conditions for simulating glass fiber 
orientation in the filling of center-gated disks," Composites Part A: Applied Science and 
Manufacturing, vol. 49, pp. 192-202, 6// 2013. 

[22] S. M. Mazahir, G. M. Vélez-García, P. Wapperom, and D. Baird, "Evolution of fibre 
orientation in radial direction in a center-gated disk: Experiments and simulation," 
Composites Part A: Applied Science and Manufacturing, vol. 51, pp. 108-117, 8// 2013. 

[23] G. M. Velez-Garcia, S. M. Mazahir, P. Wapperom, and D. G. Baird, "Simulation of 
Injection Molding Using a Model with Delayed Fiber Orientation," International 
Polymer Processing, vol. 26, pp. 331-339, Jul 2011. 

[24] D. H. Chung and T. H. Kwon, "Numerical studies of fiber suspensions in an 
axisymmetric radial diverging flow: the effects of modeling and numerical assumptions," 
Journal of Non-Newtonian Fluid Mechanics, vol. 107, pp. 67-96, Dec 6 2002. 

[25] M. Altan, S. Subbiah, S. I. Guceri, and R. B. Pipes, "Numerical Prediction of Three-
Dimensional Fiber Orientation in Hele-Shaw Flows," Polymer Engineering and Science, 
vol. 30, pp. 848-859, 1990. 

[26] K. H. Han and Y. T. Im, "Numerical simulation of three-dimensional fiber orientation in 
injection molding including fountain flow effect," Polymer Composites, vol. 23, pp. 222-
238, Apr 2002. 

[27] B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, et 
al., "Fiber length and orientation in long-fiber injection-molded thermoplastics - Part I: 
Modeling of microstructure and elastic properties," Journal of Composite Materials, vol. 
42, pp. 1003-1029, May 2008. 



96 

 

[28] M. Gupta and K. K. Wang, "Fiber Orientation and Mechanical-Properties of Short-Fiber-
Reinforced Injection-Molded Composites - Simulated and Experimental Results," 
Polymer Composites, vol. 14, pp. 367-382, Oct 1993. 

[29] B. E. VerWeyst and C. L. Tucker, "Fiber suspensions in complex geometries: 
Flow/orientation coupling," Canadian Journal of Chemical Engineering, vol. 80, pp. 
1093-1106, Dec 2002. 

[30] B. E. VerWeyst, C. L. Tucker, P. H. Foss, and J. F. O'Gara, "Fiber orientation in 3-D 
injection molded features - Prediction and experiment," International Polymer 
Processing, vol. 14, pp. 409-420, Dec 1999. 

[31] S. G. Advani and C. L. Tucker, "The Use of Tensors to Describe and Predict Fiber 
Orientation in Short Fiber Composites," Journal of Rheology, vol. 31, pp. 751-784, Nov 
1987. 

[32] D. H. Chung and T. H. Kwon, "Fiber orientation in the processing of polymer 
composites," Korea-Australia Rheology Journal, vol. 14, pp. 175-188, Dec 2002. 

[33] S. Montgomery-Smith, D. Jack, and D. E. Smith, "The Fast Exact Closure for Jeffery's 
equation with diffusion," Journal of Non-Newtonian Fluid Mechanics, vol. 166, pp. 343-
353, Apr 2011. 

[34] D. A. Jack, B. Schache, and D. E. Smith, "Neural Network-Based Closure for Modeling 
Short-Fiber Suspensions," Polymer Composites, vol. 31, pp. 1125-1141, Jul 2010. 

[35] D. H. Chung and T. H. Kwon, "Improved model of orthotropic closure approximation for 
flow induced fiber orientation," Polymer Composites, vol. 22, pp. 636-649, Oct 2001. 

[36] D. H. Chung and T. H. Kwon, "Invariant-based optimal fitting closure approximation for 
the numerical prediction of flow-induced fiber orientation," Journal of Rheology, vol. 46, 
pp. 169-194, Jan-Feb 2002. 

[37] C. W. Hirt and B. D. Nichols, "Volume of Fluid (Vof) Method for the Dynamics of Free 
Boundaries," Journal of Computational Physics, vol. 39, pp. 201-225, 1981. 

[38] L. F. R. Shampine, M.W., "The MATLAB ODE Suite," ed. 24 Prime Park Way, Natick, 
MA 01760: The Mathworks, Inc. 

[39] G. M. Velez-Garcia, P. Wapperom, V. Kunc, D. G. Baird, and A. Zink-Sharp, "Sample 
preparation and image acquisition using optical-reflective microscopy in the 
measurement of fiber orientation in thermoplastic composites," Journal of Microscopy, 
vol. 248, pp. 23-33, Oct 2012. 

[40] G. M. Velez-Garcia, P. Wapperom, D. G. Baird, A. O. Aning, and V. Kunc, 
"Unambiguous orientation in short fiber composites over small sampling area in a center-
gated disk," Composites Part a-Applied Science and Manufacturing, vol. 43, pp. 104-
113, Jan 2012. 

[41] J. T. Hofmann, G. M. Velez-Garcia, D. G. Baird, and A. R. Whittington, "Application 
and evaluation of the method of ellipses for measuring the orientation of long, semi-
flexible fibers," Polymer Composites, vol. 34, pp. 390-398, Mar 2013. 

 



97 

 

 
4.10 Figures 

 
Figure 4.1: Vector definition of rigid-fiber. The fiber is characterized by the vector,  p , as 

well as the azimuthal and zenith angles,  φ and θ  respectfully. 
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Figure 4.2: End-gated plaque geometry with highlighted regions of interest (1) 0% fill, 0% 

width, (4) 10% fill, 0% width, (7) 40% fill, 0% width, (10) 90% fill, 0% width, (2) 0% fill, 50% 
width, (5) 10% fill, 50% width, (8) 40% fill, 50% width, (11) 90% fill, 50% width, (3) 0% fill, 
90% width, (6) 10% fill, 90% width, (9) 40% fill, 90% width, (12) 90% fill, 90% width. 
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Figure 4.3: Model predictions of the SRF model using orientation parameters obtained from 

fitting stress growth at the startup of shear flow. Predictions are compared to experimentally 
determined fiber orientation (A11 - O, A22 - Δ, A33 - ☐) at 0% of the mold width (centerline) at (a) 
0% mold fill (position (4) in Figure 4.2), (b) 10% mold fill (position (7) in Figure 4.2), (c) 40% 
mold fill (position (10) in Figure 4.2) and (d) 90% mold fill (position (13) in Figure 4.2). 2H = 
1.55 mm. 
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Figure 4.4: Model predictions of SRF (solid) and RSC (dashed) models compared to 

experimentally determined fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 0% of the mold width 
(centerline) at (a) 0% mold fill along the centerline (position (4) in Figure 4.2), (b) 10% mold fill 
along the centerline (position (7) in Figure 4.2), (c) 0% mold fill at 50% width (position (5) in 
Figure 4.2) and (d) 40% mold fill at 50% width (position (11) in Figure 4.2). 2H = 1.55 mm. 
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Figure 4.5: Model predictions of SRF (solid) model compared to experimentally determined 

fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 0% of the mold width (centerline) at (a) 0% mold 
fill (position (4) in Figure 4.2), (b) 10% mold fill (position (7) in Figure 4.2), (c) 40% mold fill 
(position (10) in Figure 4.2) and (d) 90% mold fill (position (13) in Figure 4.2). 2H = 1.55 mm. 
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Figure 4.6: Model predictions of SRF (solid) model compared to experimentally determined 

fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 50% of the mold width (centerline) at (a) 0% mold 
fill (position (5) in Figure 4.2), (b) 10% mold fill (position (8) in Figure 4.2), (c) 40% mold fill 
(position (11) in Figure 4.2) and (d) 90% mold fill (position (14) in Figure 4.2). 2H = 1.55 mm. 
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Figure 4.7: Model predictions of SRF (solid) model compared to experimentally determined 

fiber orientation (A11 - ¢, A22 - Δ, A33 - ☐) at 50% of the mold width (centerline) at (a) 0% mold 
fill (position (6) in Figure 4.2), (b) 10% mold fill (position (9) in Figure 4.2), (c) 40% mold fill 
(position (12) in Figure 4.2) and (d) 90% mold fill (position (15) in Figure 4.2). 2H = 1.55 mm. 
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Parameter Value 

ρ kg m3( )   1100 

η Pa ⋅s( )  4814 

λ s-1( )  0.2777 

n  0.9090 

CP J kg ⋅K( )   2800 

k W m ⋅K( )   0.234 

α K( )   4220 

Tα K( )   427.23 

TWall K( )  363 

TInlet K( )  463 

Table 4.1: Material properties for non-isothermal finite element simulation. 
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Parameter SRF RSC 

κ  0.0297 0.0910 

CI  0.0481 0.0658 

Table 4.2: Fiber orientation simulation parameters. 
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Chapter 5 
 

Prediction of Orientation of Long Semi-Flexible Glass Fiber 
Orientation during the Injection Molding of an End-Gated Plaque 

 

Preface 
This chapter describes the prediction of long glass fiber orientation in the filling of a 

three-dimensional end-gated plaque using a rigid and semi-flexible fiber orientation model and 
comparing to experimentally determined values of orientation. This chapter is organized as a 
manuscript for publication in Composites Part A: Applied Science and Manufacturing. 
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5.1 Abstract 

This work is concerned with predicting the orientation of long L >1 mm( )  glass fibers 
(LGF) during injection molding in an end-gated plaque (EGP), which represents a basic 3-
dimensional geometry. Previous EGP simulations have provided orientation predictions results 
only within the mold cavity along the centerline of the mold. This paper reports on a method to 
simulate the entire domain of the EGP to obtain fiber orientation predictions without making 
assumptions about fiber orientation entering the mold and comparing results to experimental data 
both along and away from the centerline. Furthermore, rigid and semi-flexible fiber orientation 
models are employed to predict LGF orientation. Model parameters are obtained through both a 
rheological and experimental fitting procedure. The semi-flexible fiber model is observed to be 
in better quantitative agreement than the rigid fiber model at predicting observed experimental 
fiber orientation at a number of positions in the EGP. 

5.2 Introduction 
A “long glass fiber” is defined here for the duration of this work as a fiber that exhibits 

the ability to deform during processing. This bending can effect a fiber’s ability to orient in a 
given flow field and alter the material’s microstructure and thus altering the bulk material 
properties. The dimensionless parameter suggested by Swtizer and Klingenberg [1] is adopted in 
this work to quantify the potential for bending and is given by Eq. (5.1): 

 
 
F eff = 64ηm γ ar

4

EYπ
  (5.1) 

In Eq. (5.1) ηm  is the matrix viscosity,  γ  is the magnitude of the second invariant of the rate of 
deformation, ar  is the aspect ratio of the particle and EY  is the Young’s modulus. In literature a 
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glass fiber is typically considered long when it’s length is above 1 mm [2]. Calculating an 
effective fiber flexibility using this convention and the properties of an e-glass fiber suggests that 
a rigid glass fiber exists when F eff < 51  and a flexible glass fiber exists when F eff > 51  . 
Therefore, when the effective fiber flexibility parameter exceeds a value of 51, flexibility may 
play a role in dictating a material’s microstructure. 

Predicting the orientation of a concentrated rigid glass fiber suspension typically starts 
with a modified form of Jeffery’s equation for the motion of an ellipsoidal particle in a viscous 
medium [3]. Folgar and Tucker [4] modified Jeffery’s equation by adding a term based on 
isotropic diffusivity that was proportional to the velocity gradient to account for fiber-fiber 
interaction in a concentrated fiber system. The isotropic rotary diffusion term does depend on a 
fiber interaction coefficient, CI , that has been studied through both theoretical and experimental 
means [5, 6]. The Folgar-Tucker (FT) model has shown good qualitative agreement in the Hele-
Shaw region with experimental data and is thus a popular choice simulating short glass fiber 
orientation [6, 7]. 

Stress growth experiments in the startup of simple shear flow have shown that the 
orientation of rigid fibers in concentrated suspension evolves more slowly than predicted by the 
Folgar-Tucker model [8, 9]. To more accurately reflect the observed transient fiber orientation a 
“slip” parameter, κ , was suggested by Sepehr et al. [10, 11] and Eberle et al. [8]. The strain 
reduction factor (SRF) model more closely agreed with experimental data but is not objective 
[12]. Wang et al. [13] developed the reduced strain closure (RSC) model as an objective form of 
the SRF model where the closure approximation is modified eliminating the objectivity problem 
while including the slower orientation kinetics observed in experimental values of orientation. 
Phelps and Tucker [14] have developed a form of the RSC model (ARD-RSC) which accounts 
for the anisotropy in fiber interactions but requires additional fitting efforts in determining six 
model coefficients. Even though the SRF model is non-objective and assumes isotropy, it has 
been shown to be useful in describing the evolution of orientation in simple flows and in more 
general flows [14-16]. Furthermore, Mazahir et al. [17] showed that for Hele-Shaw flows and 
Meyer et al. [18] showed for flows including the gate region and advancing front that the SRF 
and RSC model provide similar predictions for short glass fibers in the center-gated disk and 
end-gated plaque. 

During the processing of concentrated long glass fiber (LGF) suspensions further 
modification to the orientation equations may be necessary. Strautins and Latz [19] proposed a 
two rod continuum based approach for modeling deformable fibers assuming that suspension 
was dilute (φ <1 ar

2 ). This two-rod model incorporated the effect that fiber length and fiber 
flexibility play in predicting LGF orientation. Ortman et al. [15] adapted the dilute theory to a 
concentrated suspension by adding the isotropic rotary diffusion term from the Folgar-Tucker 
model and saw good agreement with predicted fiber orientation in simple shear flow [4]. Ortman 
et al. [16] observed an increased agreement between predicted LGF orientation values and 
experimentally observed LGF orientation values up to 40% of the mold fill but used 
experimental orientation values as initial conditions to the orientation predictions. Meyer et al. 
[20] used a semi-flexible fiber model and incorporated the gate region and advancing front and 
observed that this semi-flexible fiber model was more successful at predicting experimental LGF 
orientation in a CGD geometry at a number of positions. 
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The prediction fiber orientation in commercially relevant complex test geometries has 
been the subject of little work for LGF systems. Meyer et al. [20] investigated LGF orientation in 
a CGD and saw an increased agreement with experimental orientation data when using an 
orientation model that included terms taking into account a fiber’s ability to mildly deform and 
including the gate region and advancing front. Nguyen et al. [21] simulated long glass fiber 
orientation with a rigid fiber model in an EGP and also found reasonable agreement with 
experimental orientation data but only made comparisons along the centerline of the mold. 
Furthermore, the work of Nguyen et al. [21] in the EGP geometry had an average fiber length of 
LW ≈1.83mm  with a strong majority of the population of fibers being under 1 mm in length 
which may have contributed to a rigid fiber model developed for short fiber systems accurately 
predicting long fiber orientation. Therefore, there is a void in current literature for a 
comprehensive analysis of the ability of current predictive models to predict fiber orientation 
both along and away from the centerline of the EGP geometry.  

The purpose of this work is to predict long semi-flexible fiber orientation 
LW ≈ 3.90mm( )  in a commercially relevant end-gated plaque geometry using both a rigid and 

semi-flexible fiber orientation model and compare the predicted results with experimentally 
obtained values of fiber orientation both along and away from the centerline and drawing 
conclusions as to the accuracy of the predictions.  The gate and mold of the EGP are simulated as 
one continuous domain so that no assumptions about fiber orientation or inlet velocity profile 
have to be made at the mold entrance which has been shown to affect predicted orientation 
values [20]. The solution for velocity fields and fiber orientation are decoupled so that a two-step 
process to calculate orientation is invoked [20, 22]. The finite element method in the ANSYS 
Polyflow© environment is used for the non-isothermal velocity field solution including the 
advancing front. The solution of the rigid and semi-flexible fiber orientation equations uses finite 
difference methods written in MATLAB and C. Fiber orientation predictions are carried out 
using orientation parameters κ  and CI( )  obtained through fitting transient shear stress over 
shoots from the startup of shear flow experiments and through fitting experimental orientation 
data from injection molding experiments. . Rigid and semi-flexible fiber orientation model 
predictions are compared to experimental data obtained through the method of ellipses given by 
Vélez-García [23] at a number of positions in the EGP mold to access the predictive ability of 
the modeling techniques. 

5.3 Governing Equations 
5.3.1 Equations of Motion and Energy 

The flow inside the cavity is assumed incompressible and laminar (calculations of 
Reynolds numbers in the cavity produced values of Re ≤10−3 ). From these assumptions the 
continuity equations and the equation of motion are written as Eq. (5.2) and Eq. (5.3) where v  is 
the velocity vector, P  is the isotropic pressure and τ  is the extra stress tensor: 

 ∇⋅ v = 0   (5.2) 

 −∇P +∇⋅τ = 0   (5.3) 

Eq. (5.3) requires the choice of an extra stress tensor representation and is discussed in a 
following section. 
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The energy equation is solved to include temperature effects in the form given in Eq. 
(5.4) where ρ  is the fluid density, CP  is the specific heat capacity, β  is the thermal 
conductivity, τ  is the extra stress tensor, 

 
γ  is the rate of deformation tensor and D Dt  is the 

material derivative D Dt = ∂ ∂t + v ⋅∇( ) : 

 
 
ρCP

DT
Dt

= β ∇2T + τ : γ   (5.4) 

The viscosity of the fluid was assumed to be temperature dependent through the use of an 
Arrhenius-type relationship given in Eq. (5.5) where  η γ( )  is the shear dependent viscosity, α  is 
the ratio of activation energy to Boltzmann’s constant α = Ea k( )  and Tα  is a reference 
temperature: 

 
 
η γ ,T( ) =η γ( )exp α 1

T
− 1
Tα

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   (5.5) 

The values for the temperature dependence of the system can be found in Table 5.1. 
5.3.2 Stress Tensor Representation 

During the fitting of constants for long glass fiber systems, the Dinh-Armstrong stress 
tensor model, multiple solutions were obtained suggesting that the stress tensor may not 
accurately capture all of the phenomena occurring in the concentrated fiber system [24]. This 
suggests that the rheology of the concentrated suspension is more complex than current models 
can predict and thus a decoupled approach for the stress and orientation tensors is used in this 
work. From the perspective of the fibers, the major drag experienced is from the polymer melt. 
The effect of fibers in the suspension was included by incorporating the fiber loading and fiber-
fiber interaction contributions into the simulations through the values of κ  and CI  so that only 
the neat matrix properties are used to predict the velocity fields.  

 
 
τ =η γ( ) γ   (5.6) 

A Generalized Newtonian Fluid was chosen as the constitutive relation to represent the 
matrix used in this study given by the relation in Eq. (5.6) where τ  is the extra stress tensor, 

 η γ( )  is an empirical relation for describing the viscosity as a function of shear rate and 
 
γ  is the 

rate of strain tensor. The stress tensor is taken as positive for tensile stresses following the 
mechanics sign convention. 

 
 
η γ( ) =η0 1+ λ γ( )a⎡⎣ ⎤⎦

n−1
a   (5.7) 

The Carreau-Yasuda model was used to account for the shear-thinning nature of neat matrix 
where η0  is the zero shear viscosity, λ  is the parameter which governs the onset of shear 
thinning, n  is a parameter which governs the degree of shear thinning within the matrix and a  is 
a parameter that describes the transition region between the zero-shear region and the power-law 
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region and is given by Eq. (4.6). The values used in the Carreau-Yasuda model are given in 
Table 5.1 and were estimated using a rotation rheometer (RMS-800, Rheometrics, Inc.). 

5.3.3 Rigid Fiber Orientation Equation 
The orientation tensor of Advani and Tucker [25] is a compact way of representing fiber 

orientation and is defined by Eq. (5.8) where A  is the second-order orientation tensor, p  is a 

vector drawn through the longitudinal axis of the fiber (shown in Figure 5.1) and ψ p,t( )  is the 
probability distribution function and t  is time: 

 A = ppψ p,t( )dp∫∫   (5.8) 

Within in the equations of orientation a fourth order tensor also arises shown in Eq. (5.9): 

 A4 = ppppψ p,t( )dp∫∫   (5.9) 

The fourth-order tensor requires the use of a closure approximation, for which there are a number 
of choices summarized in Chung and Kwon [26]. For the duration of this work the invariant-
based optimal fitting (IBOF) closure is used because  has been shown by Chung and Kwon to 
produce results very similar to directly calculating the orientation distribution function and is 
more computationally efficient [27].  

In order to efficiently predict fiber orientation in molding geometries, Jeffery’s equation has 
been used with the addition of an interaction term to account for fiber-fiber interaction known as 
the modified Folgar-Tucker model [3, 4]. Sepehr et al. [10] proposed a modified form of the 
Folgar-Tucker model shown in Eq. (5.10) where  

A  is the material derivative ∂A ∂t + v ⋅∇A( )  of 

the 2nd order orientation tensor A , W  is the vorticity W = 1
2 ∇vT −∇v⎡⎣ ⎤⎦( ) , D  is the rate of 

deformation D = 1
2 ∇vT +∇v⎡⎣ ⎤⎦( ) , A4  is the 4th order orientation tensor,  γ  is the magnitude of 

the rate of deformation tensor 
 
γ = 2 D :D( )( ) , and I  is the identity tensor and ∇v = ∂vj ∂xi : 

 
 
A =κ W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D( ) + 2CI γ I − 3A( )⎡⎣ ⎤⎦   (5.10)  

The variables κ  and CI  are empirical parameters used to represent fiber-fiber interaction and 
fiber loading and are commonly fit to experimental data [28]. The value of CI  will dictate how 
highly fibers align in the flow direction (lower value of CI  will yield higher flow aligned fibers) 
while the value of κ  accounts for the overall slower orientation evolution seen in concentrated 
fiber systems and has a value of between zero and unity. 

5.3.4 Semi-Flexible Fiber Orientation Equations 
Strautins and Latz [19] developed orientation equations for a dilute semi-flexible fiber 

suspension using orientation tensors shown in Eq. (5.11) to Eq. (5.13) where p  and q  represent 

the two vectors of the bent fiber (shown in Figure 5.2) and ψ p,q,t( )  is the probability 
distribution function for an individual rod: 
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A = ppψ p,q,t( )dpdq∫∫   (5.11) 

 B = pqψ p,q,t( )dpdq∫∫   (5.12) 

 C = pψ p,q,t( )dpdq∫∫   (5.13) 

A final tensor of interest is the end-to-end orientation tensor,R , that represents the average 
orientation of a slightly deformed fiber and is given by Eq. (5.14): 

 R =
A − B( )
1− tr B( )   (5.14) 

Ortman et al. [15] adapted the orientation equations given by Strautins and Latz [19] to 
concentrated suspensions by including the isotropic rotary diffusion term and slip parameter 
from previous work [6, 10]. The adaptation utilizes the orientation tensors in Eqs. (5.11) - (5.13) 
and is given by Eqs. (5.15) - (5.18) where lb  is the length of one rod of the two rod system: 

 

 

A =κ W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D( )− 6CI γ A − 1
3 I( )⎡⎣ + ...

                                    lb
2
Cm +mC − 2 m ⋅C( )A⎡⎣ ⎤⎦ + 2k B − Atr B( )( )⎤

⎦⎥
   (5.15) 

 

 

B =κ W ⋅B − B ⋅W + ξ D ⋅B + B ⋅D − 2 D :A( )B( )⎡
⎣ − 4CI γ B + ....

                                       lb
2
Cm +mC − 2 m ⋅C( )A⎡⎣ ⎤⎦ + 2k A − B tr B( )⎡⎣ ⎤⎦

⎤
⎦⎥

  (5.16) 

 
 
C =κ ∇vT ⋅C − A :∇vT( )C + lb

2
m −C m ⋅C( )⎡⎣ ⎤⎦ − kC 1− tr B( )⎡⎣ ⎤⎦ − 2CI γC

⎡
⎣⎢

⎤
⎦⎥

  (5.17) 

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑   (5.18) 

The vector m  accounts for the bending of a fiber due to the flow field surrounding that fiber if 
the second derivative of the velocity gradient is present.  

In the semi-flexible fiber model, the fiber flexibility parameter can modify the evolution 
of fiber orientation when a flow field is applied. The fiber flexibility parameter, k , is a 
coefficient that attempts to account for the physical bending that may occur in the system of 
fibers. For this work the fiber flexibility parameter is calculated through a relation derived from a 
beam simply supported on both ends with a point force applied at the center. The value of k  is 
calculated at each node on the mesh through the use of Eq. (5.19): 
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 k = EY
64ηmar

3   (5.19) 

In Eq. (5.19) k  is the fiber flexibility at a particular mesh node, EY  is the Young’s modulus of 
the fiber, ηm  is the viscosity of the matrix at a particular mesh node (given by Eq. (5.7)) and ar  
is the aspect ratio of the fiber. As the value of k increases, the semi-flexible model behaves more 
like the rigid fiber model and in the limit of k→∞ the semi-flexible model parallels the rigid 
fiber model. Conversely, as the value of k  decreases the fiber becomes much more flexible and 
in the limit of k→ 0  the fiber is completely flexible. In the equations presented above, the 
flexibility of the fiber is initiated in the hydrodynamic contributions given by Eq. (5.18) and is 
due to the bending that may occur due to gradients in the flow field. 

The semi-flexible fiber model also includes a length term that may further modify the 
evolution of orientation when a flow field is applied. The length of one half of the semi-flexible 
rod, lb , is used in all three of the equations for the semi-flexible fiber model (Eqs. (5.15) -(5.17)) 
and incorporates the length of the fiber system into the orientation equations which has not been 
done in previous modeling rigid modeling techniques.  
5.4 Numerical Method 
5.4.1 Fiber Orientation Prediction Method 

The filling of the cavity was simulated using the ANSYS finite element (FEM) software 
package. The entrance to the gate region was meshed using 31 (thickness) x 30 (length) x 20 
(width) elements. The gate region was meshed using 31 (thickness) x 31 (length) x 50 (width) 
hexagonal elements. The mold was meshed using 31 (thickness) x 300 (length) x 50 (width) 
hexagonal elements. Increasing the number of elements did not change the results on the scale of 
the plots.  

The time-stepping scheme chosen to solve for the transient mold filling is the volume of 
fluid method inside the ANSYS Polyflow environment that solves a transport equation to capture 
the air-polymer interface with an internally managed variable time step. The flow and transport 
equations are solved in a decoupled fashion at each time step. The solution of the transport 
equation uses streamline upwinding and interpolates between elements with a linear sub-element 
interpolation method. The solution of the non-isothermal system required the use of an evolution 
scheme at each time step inside the ANSYS Polyflow environment to control the viscous 
dissipation and convection term associated with Eq. (5.4).  

The fiber orientation equations were solved using 1st order accurate finite differences 
(FDM) in MATLAB (The Mathworks Inc., ver. 7.4) and C. By discretizing in space the 
convected part of the derivative, the equations of orientation may be rewritten as a function of 
time only. This reduces the set of partial differential equations to a system of non-linear ordinary 
differential equations. The ordinary differential equations are solved using a variable step size 
backwards differences implementation of the Kopfenstein-Shampine family [29]. 

5.4.2 Boundary Conditions 
The non-isothermal FEM simulations of the EGP (shown in Figure 5.3) require specified 

boundary conditions for both the flow and heat equations. The inlet boundary requires an inlet 
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fluid temperature Tin = 463K( )  and volumetric flow rate Qin = 3225 mm3

s( )  and the velocity field 
is assumed to be fully developed. The symmetry condition is specified on the boundary Ωsym in 
Figure 5.3. At the walls of the mold, specified by Ωwall in Figure 5.3, both the mold wall 
temperature and the no slip condition Twall = 363K, v = 0( )  were specified. Furthermore, a zero 

traction vector is defined at the fluid front i.e.    n iσ i n = 0  and 
   
σ i n − n iσ i n( )n = 0 . These 

free boundary conditions are prescribed where the fluid fraction is zero. The temperature 
equation at the fluid front is solved using a prescribed temperature of 300K.The FDM simulation 
required initial values for the orientation tensor to be specified at the inlet to the sprue. The 
orientation of the fibers entering the inlet boundary, , was prescribed as completely random 

 but this choice did not influence orientation predictions in the mold. 

5.5 Experimental Conditions 
5.5.1 Geometry and Processing Methods 

End-gated plaques (EGP) were formed for the experimental evaluation of fiber 
orientation using 30 weight percent LGF in a polypropylene matrix (LNP Verton MV006S) 
provided by Sabic Innovation Plastics.  The EGP has a sprue length of 65mm with an initial 
radius of 1.45mm and a final radius at the gate of 1.75mm. The gate region of the plaque has 
dimensions of 80.68mm (width) by 6.25mm (height) by 6.33mm (length) and the mold region of 
the plaque has dimensions of 75.05mm (width) by 1.55mm (height) by 77.65mm (length).    

An injection molding machine was utilized to mold a series of EGP’s.  The temperatures 
of the feed, compression and metering zones within the injection molding machine (Arburg 
Allrounder, Model 221-55-250) were set to 190 °C, 210 °C, and 210 °C, respectively, while the 
mold temperature was held constant at 79 °C.  The plaques were molded using a fill time of 2 
seconds (fast fill times were chosen to minimize non-isothermal effects) with a backpressure of 
approximately 20 MPa.  Additionally, the end-gated mold was filled using a 90% short shot in 
order to mitigate any potential packing effects, and the resulting plaques had an average final 
length of 68.65 ± 1.87 mm.  Furthermore, all plaques were left to cool in the closed mold for a 
period of twenty minutes prior to removal in order to reduce warping. 
5.5.2 Fiber Length Distribution Determination 

The fiber length distribution (FLD) was determined to verify that the average lengths of 
the fibers in the EGP were indeed in the long fiber regime that is typically defined as . 
Methods described by Nguyen et al. [30] were used to determine the fiber length distribution of 
approximately 2000 fibers. The method involves taking a representative sample of the 
suspension of the injection-molded sample and burning off the polymer matrix in a high 
temperature furnace leaving only the glass fiber mat behind. A small amount of epoxy resin was 
applied to the glass fiber matrix to secure a population of fibers and any fibers not secured to the 
epoxy were carefully removed. The remaining fiber/epoxy sample was returned to the furnace to 
remove the epoxy and leave only the glass fibers. Finally, the remaining fibers are analyzed 
through optical techniques in order to determine the experimental FLD.  The post-processing 
number average fiber length was  3.90mm ± 0.11mm and the average fiber diameter was 

Ωinlet

A = 1
3 I( )

l >1mm
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determined to be . This wider distribution of LGF is important because of the relevance 
to fiber length distributions found in larger commercially relevant injection molded parts [31]. 
5.5.3 Fiber Orientation Measurements 

A set of five representative plaques were selected and prepared for analysis at multiple 
locations according to procedure described in detail by Velez-Garcia et al. [32].  The chosen 
inspection points to obtain experimental values of orientation were 0%, 10%, 40%, and 90% of 
length of the mold, and along the centerline, 50% of the half-width of the mold, and 90% of the 
half-width of the mold.  After sample preparation via polishing, an optical microscope with a 
motorized stage and image-stitching software (Nikon Eclipse LV100, NIS-Elemets Basic 
Research software, v.3.10) was subsequently utilized to image each inspection point at 20X 
magnification. 

The experimental components of the orientation tensor were subsequently computed 
using in-house written MATLAB image analysis routines.  This was done using a modified 
version of the Method of Ellipses, a topic which will be discussed in detail in an upcoming 
publication [33].  In brief, this method consists of application of the traditional Method of 
Ellipses (MOE) within the end-gated geometry [34].  However, the traditional MOE must be 
modified to utilize the application of the modified image analysis width determined by Hofmann 
et al. [35].  This is necessary in the regions of highly shear-aligned fibers near the mold side 
walls, where too narrow of an image analysis region results in an increase in partial ellipses and 
associated error.  This modified method allows for the accurate determination of the 
unambiguous components of the orientation tensor at all inspection points within the EGP [36]. 
5.6 Results 

5.6.1 Orientation Tensors 
The results section presents three different types of data: predicted orientation values 

using the rigid fiber model, predicted orientation values using the semi-flexible fiber model and 
measured values of experimental orientation. The rigid fiber model produces component values 
of the orientation tensor described by Eq. (5.8) so that when a component is discussed pertaining 
the rigid fiber model it will be represented by Aii  or Aij . The solution of the semi-flexible fiber 
model produces two orientation tensors, A  and B  that represent the tensors given in Eq. (5.11) 
and Eq. (5.12). The results presented in this work utilize a combination of the two orientation 
tensors given by R  which is that “average” end-to-end orientation of a slightly deformed fiber. 
The results of the semi-flexible fiber orientation model are given through the components of R . 
Finally, the measured values of experimental fiber orientation are measured using the method 
described in the previous section. The method of ellipses generates the rigid model orientation 
tensor, A . But, recent results published by Hofmann et al. describe a technique of verifying 
experimental long glass fiber orientation through a “top-down” method and concluded that over 
the length of the fiber in systems such as the end-gated plaque, A ≈ R . Therefore, the 
experimentally measured orientation data will be referred to by the components of R . 

14.2µm
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5.6.2 Temperature Effects 
The system under study in this work was clearly non-isothermal and, as such, an effort to 

incorporate those effects was made. Non-isothermal conditions present issues such as a large 
thermal gradient near the walls. To minimize the effect of the large thermal gradients near the 
walls a fast fill time was chosen. The fluid filling simulation showed a steep temperature gradient 
near the walls but, after calculating both the isothermal and non-isothermal orientation 
predictions, only an 8% - 10% difference was observed between the two no further than 0.12 mm 
from the wall.  

Another issue that can arise from taking into account the temperature effects in the system is 
the formation of a skin layer near the wall. This is due to the fluid coming into contact with the 
mold ΔT ≈ 70K( )  and cooling quickly. For the purpose of the study presented here, and because 
of the fast fill times chosen in this study, the skin formation was neglected. 
5.6.3 Determination of Fiber Orientation Parameters 

The fiber interaction coefficient, CI , and the slip parameter, κ , were determined through the 
use of a sliding plate rheometer and the analysis of transient stress overshoots in the startup of 
simple shear as prescribed by Ortman et al. [15] and confirmed for orientation predictions in a 
CGD by Ortman et al. [16] and Meyer et al. [20]. A randomly oriented A ≈ 1

3 I( )  long glass fiber 

sample was sheared at  γ = 1 s-1  for 120 seconds. The resulting transient stresses were modeling 
using a modified Dinh-Armstrong stress tensor form. The values for the slip parameter and fiber 
interaction coefficient calculated through this method are given in Table 5.2. Using these 
parameters, fiber orientation was predicted in the end-gated plaque with the results from a single 
position (centerline at 0% mold fill, position (1) in Figure 5.3) shown for different orientation 
components in Figure 5.4 (a). The results shown in Figure 5.4 (a) clearly suggest that the 
characterization technique using only simple shear flow may not completely describe the 
rheological and orientation evolution of a concentrated fiber system and rheological testing in 
different flows (i.e. extensional flow) may be required to fully understand the suspension. 

The fiber interaction coefficient, CI , and the slip parameter, κ , were then determined 
through the fitting of experimental data at the 0% fill position along the centerline of the end-
gated plaque (position (1) in Figure 5.3). These parameters were fit using a non-linear least 
squares analysis with the resulting values given in Table 5.2. The results of the predicted fit are 
shown in Figure 5.4 (b). 
5.6.4 LGF Orientation Predictions at 0% of the Mold Fill 

Using the conditions obtained from simulating LGF orientation in the gate region, 
predictions about LGF orientation in the mold cavity could be made. Figure 5.5 shows the results 
of predicting fiber orientation at 0% of the mold fill along two widths (50% of the width and 
90% of the width) of the mold cavity. Figure 5.5 (b) shows the comparison of experimental LGF 
orientation data with model predictions at 50% of the mold width (sampling position (2) in 
Figure 5.3). The rigid and semi-flexible fiber models both qualitatively behave in a similar 
manner predicting a flatter orientation profile through the thickness of the mold cavity forgoing 
the traditional “shell-core-shell” profile. The rigid fiber model is observed to qualitatively agree 
with the experimental fiber orientation data but over predicts the R33 component of the 
orientation tensor and under predicts the R11 component of the orientation through the majority 
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of the mold cavity. The semi-flexible fiber model is also observed to agree qualitatively with 
experimental data and more accurately describes the observed quantitative experimental fiber 
orientation values. 

The results in Figure 5.5 (c) shows the comparison of experimentally observed fiber 
orientation values with model predictions at 90% of the mold width (sampling position (3) in 
Figure 5.3). Both models are observed to qualitatively agree with the shape of the fiber 
orientation distribution through the mold cavity. Quantitatively, both models perform equally as 
well at predicting the observed fiber orientation with the exception of the top of the mold cavity, 
where the semi-flexible fiber model is slightly more accurate. 
5.6.5 LGF Orientation Predictions at 10% of the Mold Fill 

Comparisons of predictions and experimental data were made at 10% of the mold fill at 
three widths of the mold in Figure 5.6. First, Figure 5.6 (a) shows predicted LGF orientation 
values using a rigid and semi-flexible fiber model compared to experimentally observed fiber 
orientation values at 0% of the mold width (sampling position (4) in Figure 5.3). Both models 
again predict the classic SCS region commonly associated with fiber orientation predictions in 
thin cavities. The semi-flexible fiber model predictions are observed to more closely agree with 
experimental orientation values because of the flatter profile across the mold cavity thickness. 

The comparison of predicted LGF orientation values and experimentally obtained data at 
50% of the mold width are given in Figure 5.6(b) (sampling position (5) in Figure 5.6). The rigid 
and semi-flexible fiber models both predict flat orientation profiles through the mold cavity that 
is observed to be in agreement with experimental LGF orientation values. The rigid fiber model 
quantitatively under predicts the R11 component of the orientation tensor and over predicts the 
R33 component of the orientation tensor. The semi-flexible fiber model is observed to more 
accurately predict the R33 component of the experimental fiber orientation tensor but performs 
almost as poorly as the rigid fiber model at predicting the R11 component of the experimental 
orientation. Furthermore, the rigid fiber model continues to predict a shallow SCS-type profile 
through the thickness of the cavity while the semi-flexible fiber model does not. 

The comparison of experimental data with predicted orientation values of LGF was also 
performed at 90% of the mold width given in Figure 5.6 (c) (sampling position (6) in Figure 5.3). 
The rigid fiber model still slightly predicts a SCS region through the cross-section of the mold 
but in this case it is observed to be both qualitatively and quantitatively inaccurate. The rigid 
fiber model under predicts the R11 component of fiber orientation and over predicts the R33 
component of fiber orientation when compared to experimental LGF orientation data. 
Conversely, the semi-flexible fiber model performs encouragingly more accurately reflecting the 
qualitatively trends observed in the mold cavity. Specifically, the semi-flexible fiber model is 
observed to accurately predict the experimental LGF orientation values for both the R11 and R33 
components of orientation with the exception of predictions near the bottom wall for the R11 
component and top wall for the R33 component. The semi-flexible fiber model also more 
accurately predicts the R22 component of fiber orientation when compared to experimental LGF 
orientation in the center of the mold but performs poorly near the walls. 

5.6.6 LGF Orientation Predictions at 40% of the Mold Fill 
Comparisons of predicted and observed LGF orientation values continued at 40% of the 

mold fill given by the plots given in Figure 5.7. Figure 5.7 (a) shows the rigid fiber and semi-
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flexible fiber model predictions compared to observed experimental LGF orientation values 
(sampling position (7) in Figure 5.3). Both model predictions again show SCS regions through 
the mold cavity thickness. The rigid fiber model over predicts the R11 component of orientation 
near the walls of the cavity and under predicts the R11 component of orientation in the center of 
the cavity when compared to observed experimental values of LGF orientation. The rigid fiber 
model also under predicts the A33 component of orientation and over predicts the R22 component 
of orientation through the entire thickness when compared to experimental LGF orientation data. 

The rigid and semi-flexible fiber model were compared against experimentally observed 
LGF orientation at 50% of the mold width given by Figure 5.7 (b) (sampling position (8) in 
Figure 5.3). The rigid fiber model predicts a shallow SCS orientation profile through the 
thickness that is qualitatively incorrect when compared to observed experimental LGF 
orientation values. The semi-flexible fiber performs marginally better by qualitatively predicting 
a flatter orientation profile through the thickness but quantitatively does not predict orientation 
values similar to the observed experimental values with the exception of the R33 orientation 
component in the top half of the mold. 

At 90% of the mold width comparisons of model predictions against observed 
experimental orientation values were again performed with the results shown in Figure 5.7 (c) 
(sampling position (9) in Figure 5.3). The rigid fiber model predicts a SCS profile through the 
thickness of the mold cavity that is qualitatively in disagreement with experimental LGF 
orientation values in this system. The semi-flexible model performs encouragingly both 
predicting the qualitative trends through the mold cavity as well as agreeing quantitatively with 
observed orientation for this LGF system. The exception is around “-0.4” normalized mold 
thickness where the R22 component of orientation is over predicted and the R11 component of 
orientation is under predicted. 

5.6.7 LGF Orientation Predictions at 90% of the Mold Fill 
In order to verify the predictions of fiber orientation near the advancing front, 

experimental LGF orientation values were compared to model predictions at 90% of the mold fill 
at three widths shown in Figure 5.8. The results in Figure 5.8 (a) show the comparisons of model 
predictions with observed LGF orientation at 0% of the mold width (sampling position (10) in 
Figure 5.3). Both the rigid and semi-flexible fiber models perform qualitatively and 
quantitatively well at this position when compared to experimental data with the exception of the 
bottom mold wall. Furthermore, both models over predict the experimental R22 component of 
orientation through the mold cavity. 

At 50% of the width similar comparisons of predicted and experimentally observed LGF 
orientation were carried out and given in Figure 5.8 (b) (sampling position (11) in Figure 5.3). 
Here the rigid fiber model qualitatively captured the wide orientation distribution through the 
mold cavity and is observed to correctly predict the experimental R33 component of orientation 
through the mold cavity thickness. Conversely, the rigid fiber under predicts the experimental 
R11 component of orientation and over predicts the R22 component of orientation through the 
mold thickness. The semi-flexible fiber model is observed to qualitatively capture the flat 
orientation profile through the thickness of the cavity. Furthermore, the semi-flexible fiber model 
quantitatively describes the observed experimental orientation for the R11 and R33 orientation 
components but fails to accurately capture the R22 orientation component.  
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Finally, experimentally observed LGF orientation data and model predictions were 
compared at 90% of the mold width given by Figure 5.8 (c) (sampling position (12) in Figure 
5.3). The rigid fiber model again predicts a SCS profile through the mold cavity thickness that at 
this sampling position which is in disagreement with experimental LGF orientation values. The 
semi-flexible fiber model more accurately captures the qualitative trends seen in the 
experimental data and additionally agrees quantitatively with experimentally observed values of 
the R11 and R33 orientation components through the entire mold cavity with the except of near the 
top wall of the mold. The rigid and semi-flexible fiber models are observed to over predict the 
R22 orientation component albeit the semi-flexible fiber model is closer to experimentally 
observed values of LGF orientation. 

5.7 Conclusions 
Long glass fiber orientation predictions were compared to experimentally measured 

values of orientation in a non-isothermal end-gated plaque at a number of positions in the gate 
and mold cavity. The orientation predictions were made using a decoupled approach for the 
stress and orientation tensors and included the gate region and the advancing front. The fiber 
orientation parameters were first obtained through an independent rheological technique where 
transient stress overshoots from the startup of simple shear were fitted to a stress model 
incorporating fiber contribution. The long glass fiber orientation predictions were in poor 
agreement when compared to experimental orientation data suggesting that a more thorough 
rheological investigation (i.e. behavior in extensional flow fields) may be necessary to 
characterize the concentrated suspension. Parameters in the rigid and semi-flexible fiber models 
were then estimated through fitting experimental orientation data at a single position in the mold 
(along the centerline at the 0% fill position) using a non-linear least squares analysis and then 
used to predict fiber orientation at all other locations in the mold. Along the centerline of the 
mold cavity both the rigid and semi-flexible fiber model qualitatively predicted the trends that 
were seen in the experimentally obtained fiber orientation data but the semi-flexible fiber model 
predictions more closely agreed with the experimental values of orientation. Away from the 
centerline of the mold the semi-flexible fiber model performs encouragingly more accurately 
predicting experimental fiber orientation at every position investigated with the exception of one 
position where the rigid and semi-flexible fiber models provided similar accuracy. Along the 
width of the 0% fill line the model predictions and experimental data suggest that the fiber 
orientation across the gate/mold interface appears to be a function of mold width so that previous 
simulations assuming a single orientation across the gate/mold interface could provide less 
accurate orientation predictions in the mold cavity. Furthermore, the semi-flexible fiber model 
predicted values of orientation that were in greater agreement with experimental values of 
orientation. This increase in agreement can be attributed to the semi-flexible fiber model 
including terms for fiber length in the system and the incorporation of long glass fiber flexibility. 
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5.10 Figures 

 
Figure 5.1: Vector definition of rigid-fiber. The fiber is characterized by the vector, p , as 

well as the azimuthal and zenith angles, φ andθ  respectively. 
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Figure 5.2: Vector definition of flexible fiber. The fiber is characterized by the vectors, p and 

q , as well as the azimuthal and zenith angles, φ andθ  respectively. The two vector are of equal 
length, lb , and there is an internal resistivity to bending, k . The end-to-end vector, r , is also 
defined to determine a fiber’s “average” direction. 
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Figure 5.3: End-gated plaque geometry with highlighted regions of interest (1) 0% fill, 0% 

width, (4) 10% fill, 0% width, (7) 40% fill, 0% width, (10) 90% fill, 0% width, (2) 0% fill, 50% 
width, (5) 10% fill, 50% width, (8) 40% fill, 50% width, (11) 90% fill, 50% width, (3) 0% fill, 
90% width, (6) 10% fill, 90% width, (9) 40% fill, 90% width, (12) 90% fill, 90% width.
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Figure 5.4: Orientation predictions using the (a) rheologically determined parameters (rigid = 

dashed κ R = 0.23  and CI
R = 0.005 , semi-flexible = solid, κ SF = 0.13  and CI

SF = 0.053 ) and (b) 
experimentally fit parameters (rigid = dashed κ = 0.0087  and CI = 0.2278 , semi-flexible = 
solid, κ = 0.0039  and CI = 0.4843 ). Predictions are compared to experimentally determined 
fiber orientation (A11 - o, A33 - ☐) at 0% of the mold width and 0% mold fill (position (4) in 
Figure 5.3). 
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Figure 5.5: Model predictions of rigid (dashed) and semi-flexible (rigid) models compared to 

experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 0% of the mold fill at (a) 
0% mold width (position (4) in), (b) 50% mold width (position (5) in Figure 5.3) and (c) 90% 
mold width (position (6) in Figure 5.3). 
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Figure 5.6: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to 

experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 10% of the mold fill at 
(a) 0% mold width (position (7) in Figure 5.3), (b) 50% mold width (position (8) in Figure 5.3) 
and (c) 90% mold width (position (9) in Figure 5.3). 
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Figure 5.7: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to 

experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 40% of the mold fill at 
(a) 0% mold width (position (10) in Figure 5.3), (b) 50% mold width (position (11) in Figure 5.3) 
and (c) 90% mold width (position (12) in Figure 5.3). 
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Figure 5.8: Model predictions of rigid (dashed) and semi-flexible (solid) models compared to 

experimentally determined fiber orientation (A11 - o, A22 - Δ, A33 - ☐) at 90% of the mold fill at 
(a) 0% mold width (position (13) in Figure 5.3), (b) 50% mold width (position (14) in Figure 5.3) 
and (c) 90% mold width (position (15) in Figure 5.3). 
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Parameter Value 

ρ kg m3( )  1100 

η0 Pa ⋅s( )  227.0 

λ s-1( )  0.0065 

n  0.2759 

a   0.8263 

CP J kg ⋅K( )   2620 

k W m ⋅K( )   0.3100 

α K( )   4937 

Tα K( )   452.7 

Table 5.1: Material properties for non-isothermal finite element simulation obtained from 
rheological testing in torsional rheometer (RMS-800, Rheometrics Inc.) and extensional 
rheometer (Rheograph 2001, Göttfert Inc.). 
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Rheological Technique Fit 

Parameter Rigid Model Flexible Model 

κ  0.2500 0.1300 

CI  0.0050 0.0530 

Experimental Data Fit 

Parameter Rigid Model Flexible Model 

κ   0.0087 0.0039 

CI   0.2278 0.4843 

Table 5.2: Fiber orientation simulation parameters. 
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Chapter 6 
 

Conclusions 
 

Preface 
This section addressed the success or failure of the proposed research objectives and 

general conclusions linked to those objectives. 
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6 Conclusions 
The following conclusions are made based on the research objectives described in 

Chapter 1 along with an additional conclusions that were found as a result of working on the 
objectives presented in Chapter 1: 
1. Utilizing the sprue, gate and mold simulation method along with a using a semi-flexible fiber 

model showed an improved agreement between predicted and experimentally obtained values 
of long glass fiber orientation in a center-gated disk than of using the semi-flexible model in 
Hele-Shaw flow.  

The SGM method was used to simulate the sprue, gate and mold region of a 
center-gated injection molding test geometry including the fountain flow effect to assess 
if a semi-flexible fiber model was more accurate at predicting experimental long glass 
fiber orientation values than previous work utilizing the semi-flexible fiber model in 
Hele-Shaw flow. The semi-flexible fiber model was observed to more accurately predict 
long glass fiber orientation than the rigid fiber model when compared to experimentally 
measured orientation data at a number of positions in the center-gated disk. Furthermore, 
it was shown that the SGM method of simulation produced entry conditions of fiber 
orientation to the mold that were very similar to the asymmetric experimental orientation 
values obtained suggesting that assuming a “random” or “planar random” orientation 
initial condition at the gate/mold interface may not be sufficient for accurate fiber 
orientation predictions. Rheologically determined orientation parameters were used in the 
center-gated disk long fiber orientation predictions. 

 
2. The extension of the sprue, gate and mold method to a three dimensional end-gated plaque 

geometry showed that the strain reduction factor model can predict short glass fiber 
orientation values that are in agreement with experimentally determined values of 
orientation. Furthermore, it was observed that objectivity did not play a role in the prediction 
of short glass fiber orientation at the positions investigated in the mold cavity. 

The sprue, gate and mold of a three-dimensional end-gated plaque was 
incorporated into a single domain to predict short glass fiber orientation using the strain 
reduction factor model (SRF) and the reduced strain closure model (RSC) [1, 2]. A 
number of outcomes from this work are relevant to the proposed research objective. First, 
the RSC and SRF models provide similar results at all of the locations investigated in the 
end-gated plaque mold cavity suggesting that objectivity may not play a role in more 
complicated molding geometries. Second, the SRF model does a reasonably good job at 
predicting fiber orientation in the end-gated plaque mold at a number of the positions 
investigated when compared to experimentally measured values of short glass fiber 
orientation. Finally, the assumption of a fiber orientation as initial conditions at the 
gate/mold interface (i.e. “random” or “planar random”) is most likely incorrect. This is 
clearly discerned by looking at both the predicted and experimentally measured 
orientation values that suggest an inlet condition dependence of mold thickness as well as 
mold width.  

On the first attempt at prediction short glass fiber orientation, orientation 
parameters obtained from fitting transient stress overshoots were used but over-predicted 
the evolution rate of orientation in the system. As a secondary approach, the orientation 
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parameters were fit to a single position in the end-gated mold cavity and then used to 
predict orientation at all other locations of interest. 

 
3. The sprue, gate and mold method was applied to predict long glass fiber orientation in the 

end-gated plaque and showed that the semi-flexible fiber model can accurately predict 
experimentally determined values of fiber orientation both along and away from the 
centerline of the geometry. 

The sprue, gate and mold method was again used to make predictions both along 
and away from the centerline of the end-gated plaque mold region. It was observed that 
the semi-flexible fiber model, using the sprue, gate and mold method, produced 
orientation predictions that more closely agreed with experimentally measured values of 
long glass fiber orientation at a majority of the points investigated in the mold cavity 
suggesting that the work here has significantly improved currently predictive techniques 
for longer fiber systems. But, at a few locations predictions of long glass fiber orientation 
did not agree well with measured values of long glass fiber orientation suggesting that 
further study of concentrated long fiber suspensions is necessary. 

On the first attempt at predicting long glass fiber orientation, orientation 
parameters obtained from fitting transient shear stress overshoots generated in the sliding 
plate rheometer were used but over-predicted the evolution rate of orientation in the 
system. As a secondary approach, the orientation parameters were fit to a single position 
in the end-gated mold cavity and then used to predict orientation at all other locations of 
interest. 

 
4. The technique of using a sliding plate rheometer and a simple shear field to determine 

orientation parameters failed to produce accurate orientation predictions in the end-gated 
plaque. 

During the course of working on the proposed research objectives for the end-
gated plaque geometry an issue arose with the ability to obtain orientation parameters 
from sliding plate tests using simple shear given by Ortman et al. [3]. For the center-
gated disk geometry, orientation parameters used in the prediction of glass fiber 
orientation were obtained through fitting transient stress growth overshoots of the 
concentrated suspension in simple shear flow. Reasonable agreement was found between 
the predicted values of glass fiber orientation and observed experimental orientation 
values. But, in the end-gated plaque, the same technique for determining the orientation 
parameters yielded poor short and long glass fiber predictions at all of the positions 
investigated. This led to the adoption of a non-linear least squares fitting technique for 
the three diagonal orientation components at one position in the end-gated mold. The 
parameters fitted to experimental orientation data were an order of magnitude different 
(smaller for the slip parameter, larger for the interaction coefficient) than the parameters 
obtained by fitting the stress tensor to the transient stress growth in simple shear 
suggesting that testing of concentrated suspensions in other simple flows (i.e. extensional 
flow) may be required to characterized these complex suspensions through rheology 
alone. 
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Chapter 7 
 

Recommendations 
 

Preface 
This section details some suggested improvements that can be made using this project as 

a basis.
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7 Recommendations 
The following recommendations are based on overall conclusions drawn from the 

accomplishment of the research objectives as well as overall concerns with the work. 

1. Rewrite the fiber orientation software in the format of an ANSYS “user defined function.” 

All of the numerical predictions of short and long glass fiber orientation presented 
in this work relied on the use of a combination of the finite element method as well as the 
finite difference method. This approach provided numerical orientation predictions that 
were in agreement with experimentally determined orientation values in the center-gated 
disk and end-gated plaque geometry. One major drawback to the approach used in this 
work is that the finite difference method is difficult to extend to more complex geometric 
shapes including curves and multiple contractions and expansions as well as multiple 
gates.  

The finite element modeler used for the prediction of the fluid entering the mold 
cavity, ANSYS Polyflow, is able to solve a “user defined function” or C code which has 
been written for an explicit set of equations. It would be of great value to rewrite the fiber 
orientation equations in a form that ANSYS Polyflow is able to solve simultaneously 
with the flow and heat equations. 

2. Determine a more accurate way to represent a single fiber’s flexibility. 

Previous efforts used a simply supported beam with a point load in the center 
(shown in Figure 7.1) to estimate the fiber flexibility parameter, k . 

 
Figure 7.1: Qualitative representation of simply supported beam with a point force 

acting on the center. 
To calculate the fiber flexibility, Eq. (7.1) was proposed: 

 ki =
EY
64ηm

⎛
⎝⎜

⎞
⎠⎟
d 3

lb
3   (7.1) 

In Eq. (7.1) ki  is a flexibility for a particular fiber length, EY  is the Young’s modulus, 
ηm  is the matrix viscosity, d  is the diameter of the individual fiber and lbi  is the half-
length of a particular fiber length in the distribution. The fiber flexibility parameter is 
then averaged using either a weight- or number-averaged technique. 
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Figure 7.2: Qualitative representation of simply supported beam with a distributed 

force acting on the length of the beam. 

One improvement to this predictive technique would be to apply a distributed load 
over the length of the fiber which would more accurately reflect the fiber-fluid interaction 
in the suspension. This could be done by again applying basic mechanics techniques but 
instead derive the relation for a distributed load over the fiber. 

3. Determine the sensitivity of the semi-flexible fiber model with respect to the fiber length.  

Currently the fiber flexibility parameter, k , is estimated in the orientation 
predictions (Eq. (7.1)) but the effect that these parameters play in dictating orientation 
evolution is still not well understood. 

 
Figure 7.3: Predicted R11 orientation component in simple shear flow for increasing 

values of the flexibility parameter, . 
The results in Figure 7.3 show the effect of the flexibility parameter on the prediction of 
the R11 component of orientation when in the startup of simple shear. It is observed that 
reducing the value of the flexibility parameter (thereby increasing the flexibility of the 
fiber) can slow the evolution of orientation as well as affect the steady-state value of 
orientation. Experimental studies using different fibers with different values of the 
flexibility parameters would be useful in confirming the effect seen in Figure 7.3. 

The value of the length parameter, lb , can also play a role in dictating the 
evolution of orientation within a fiber suspension in two ways: the length parameter 

k
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directly weights one term in the semi-flexible fiber orientation equations and it is also 
used in the estimation of the fiber flexibility parameter, k . Currently the length term has 
been determined for one glass fiber system (the SABIC glass fiber/polypropylene 
material investigated in Chapter 3 and Chapter 5 of this work) so much could be learned 
from simulating materials with different fiber lengths. Furthermore, the length parameter 
is treated as a constant value in the predictions presented throughout this work but in 
reality the fiber length of a system is represented by a distribution. Incorporating this 
distribution into the orientation predictions or possibly even a time-dependent fiber 
breakage model could further increase the accuracy of the orientation simulations. 

4. Determine a more robust method for determining the orientation parameters.   

The work presented here attempts to provide a foundation for the prediction of 
short and long glass fiber orientation in complex test geometries using orientation 
equation parameters obtained from transient stress growth experiments performed in a 
sliding plate rheometer. The prediction of long glass fiber orientation for a center-gated 
disk geometry used orientation parameters obtained from the simple shear flow tests and 
found good agreement with experimental data using a semi-flexible fiber model. This 
suggested that the orientation parameters for a particular suspension could be estimated 
through stress growth experiments in simple shear alone. The same orientation 
parameters for the composite materials were used in the prediction of long glass fiber 
orientation in the end gated plaque with significantly less accurate results and instead a 
fitting method was adopted to obtain agreement with predicted and experimental results. 
This discrepancy may suggest that simple shear may not be sufficient to determine the 
orientation parameters for predictions and testing in other simple flow fields (i.e. 
extensional flow) may be necessary. Furthermore, a more accurate stress tensor model 
may be necessary to describe these very complex concentrated fiber suspensions. 
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A Appendix: Simulation Software Overview  
Fiber Orientation Simulation Software Overview 

Kevin J. Meyer1 

Polymer Processing Laboratory 
Department of Chemical Engineering, Virginia Tech  

A.1 Introduction  
The purpose of this document is to provide an end-user with enough basic knowledge 

about the fiber orientation prediction method so that he/she is proficient in using the software 
and numerical method without too much background. Furthermore, it may be necessary to edit 
functions from time to time and some of the latter material will go into detail on the numerical 
methods so that this may also be possible for an advanced user. 

During the development of this numerical package, a few assumptions were made at the 
outset. To use the code as it was originally designed the same assumptions must be made about 
the systems that are being simulated (carbon fiber, liquid crystalline polymer, etc.). The 
assumptions are as follows: 

• The fiber orientation equations are based on rigid rod theory of polymers and as such, are 
treated as either rigid or semi-rigid rods during the simulations. If the system under study 
cannot be assumed rigid or close to rigid the equations for fiber orientation may not 
produce viable results [1]. 

• The method employed for simulation of the rigid or semi-rigid rods is a continuum 
method so that “orientation tensors” can be used. If a molecular simulation or some other 
non-continuum based simulation would better suit the system under study this method 
may not produce viable results [2]. 

• Finally, the use of the two step method given here (finite element to calculate velocity 
profiles and finite difference to calculate orientation profiles) is only accurate if the stress 
and orientation equations may be decoupled [3, 4]. A coupled analysis is possible through 
the use of a user-defined function within Polyflow but, at the date of this publication, has 
not been completed. 

A.2 Finite Element Analysis for Injection Molding Simulations 
The following section will outline the details for using finite element analysis (FEM) for 

solving the injection molding problems currently encountered in the polymer processing 
laboratory. This section is not meant to demonstrate the full power of the FEM inside the 
Polyflow environment but is instead a guide for those only concerned with injection molding 
simulations. 

                                                
1 Kevin J. Meyer (kjmeyer@vt.edu) 
Department of Chemical Engineering 
156 Randolph Hall  
Virginia Tech, Blacksburg, VA 24061  
Phone: +1 941 916 0725. 
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A.2.1 Steady-State Simulation 
The first run of any type of simulation should be a steady-state form of the more 

complicated problem. The steady-state form will likely yield insight to any major problems that 
can occur during the more complex simulation which may include high Reynolds numbers, high 
Péclet numbers, high Brinkman numbers, a combination of all three or other numerical 
instabilities. 

 Isothermal Laminar Flow Problem A.2.1.1
The first step in the solution of the mold-filling problem is the isothermal steady-state 

solution. The flow is assumed laminar and incompressible so that the continuity equation and the 
Cauchy momentum equation can be written as (A.1) and (A.2) where v  is the velocity vector 
and σ  is the total stress tensor2: 

 ∇⋅v = 0   (A.1) 

 ∇⋅σ = 0   (A.2) 

The total stress tensor requires the specification of an extra stress tensor for the fluid. In the fiber 
orientation simulations the decoupled approach was taken and the fiber loading fraction was 
taken into account through the phenomenological parameters in the fiber orientation equations 
[3, 5-7]. Therefore, the fluid was treated as a generalized Newtonian fluid given by (A.3)3 where 

 η γ( )  is any relation for the viscosity as a function of shear rate and  γ  is the rate of strain tensor: 

  τ =η γ( ) γ   (A.3) 

At this point any empiricism can be chosen to represent the viscosity of the fluid but generally 
speaking the Carreau-Yasuda model fits many shear-thinning materials and converges quickly4 
where η0  is the zero shear viscosity, η∞  is the infinite shear viscosity, λ  governs the onset of 
shear thinning andn and a  govern the degree of shear thinning. 

 
 

η γ( )−η∞

η0 −η∞

= 1+ λ γ( )a⎡
⎣

⎤
⎦

n−1
a   (A.4) 

The simplified solution will help determine how accurate or inaccurate the mesh is and 
where problems may arise during the solution. Often this simulation will be run a number of 
times moving back and forth between this and mesh generation to determine the optimal mesh 
characteristics. An example of this is shown below comparing the mesh revision number versus 
computational time. 
                                                
2 ANSYS Polyflow allows for a number of interpolation methods in steady state but the researcher is strongly 
encouraged to use only linear interpolations for velocity and pressure as linear interpolation is the highest allowed 
order in the transient simulations. 
3 ANSYS Polyflow has the ability to handle a number of stress tensor representations including generalized 
Newtonian fluids, differential viscoelastic models and simplified integral viscoelastic models. Convergence and 
numerical stability is directly related to the complexity of the model. 
4 ANSYS Polyflow has a wide variety of GNF models including Power Law, Bird-Carreau, Carreau-Yasuda, Cross, 
Bingham, Herschel-Bulkley, etc. 
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Figure A.1: Computational Time and FEM Nodes vs. Number of Refinements for center-

gated disk. Revision 1: tetrahedral meshing only, automated meshing from ANSYS meshing 
utility. Revision 2: Quad/Tet meshing combination, manual meshing. Revision 3: hexagonal 
dominant meshing, automated meshing. Revision 4: Hexagonal meshing only, manual meshing. 

 Non-Isothermal Laminar Flow Problem A.2.1.2

The next step in the solution of the mold filling problem is to solve the same problem as 
presented in § A.2.1.1 with the addition of temperature. The heat equation including the viscous 
dissipation term is given in (A.5) where ρ  is the density of the fluid, CP  is the heat capacity of 

the fluid, k  is the thermal conductivity of the fluid, τ  is the extra stress tensor and  γ  is the rate 
of strain tensor: 

 
 
ρCP

DT
Dt

= k∇2T +τ : γ   (A.5) 

The FEM simulations should also take into account the viscosity’s dependence on temperature. 
The Polyflow environment takes this viscosity enhancement into account through (A.6): 

  η γ ,T( ) =η γ ⋅H T( )( )H T( )   (A.6) 

Where H T( )  is an Arrhenius-type relationship given by (A.7)5,6: 

 H T( ) = exp α
T −T0

− α
Tα −T0

⎡

⎣
⎢

⎤

⎦
⎥   (A.7) 

                                                
5 ANSYS Polyflow has different ways of representing temperature dependence of viscosity including Arrhenius, 
WLF and Fulcher methods. 
6 It is often necessary to use Picard iterations on the viscosity and increase the number of iterations for convergence. 



145 

 

A.2.2 Volume of Fluid Approach for Transient Filling Simulation 
Once the steady-state problem has been solved, the next step is to solve the time 

dependent flow problem. This involves the use of a time-marching iterative method where the 
fluid is tracked on the domain as it fills the mold cavity. The following section is an outline of 
how the time-dependent simulation is solved. 

 The Volume of Fluid Method A.2.2.1

The volume of fluid (VOF) method was used inside the ANSYS Polyflow environment to 
simulate the transient mold filling process [8]. The VOF method solves the transport equation, 
given by (A.8), for the volume fraction of fluid at each node where φ  is the volume fraction of 
the liquid phase and v  is the velocity vector at that node.  

 ∂φ
∂t

+ v ⋅∇φ = 0   (A.8) 

The solution of this equation allows for the fluid front to be tracked as it moves through the 
empty cavity thereby incorporating the “fountain flow” effect in the simulations. The influence 
of this complex moving front has been shown to impact fiber orientation predictions [4, 9, 10] in 
axisymmetric radially diverging flow. 

An advantage that the Polyflow solver has over many other VOF solvers is that Polyflow 
does not solve the “two-fluid” problem commonly associated with the VOF method (liquid 
entering the mold and air exiting the mold simultaneously). The calculations presented here only 
calculate the velocity of the fluid in the mold at any node where the volume fraction, φ , is 
greater than zero thereby decreasing the computational time necessary to solve the mold-filling 
problem. 
Assumptions Involved with Using the Volume of Fluid Method: 

• Linear interpolation across elements. 
• Streamline upwinding to solve transport equation.  
• Transport equation is decoupled from motion equations and solved at each time step. 
• Transport equation uses sub-element interpolation. 
• Time step is automatically chosen based on internal calculations performed by Polyflow. 

 Evolution Parameters for Non-Isothermal Solution Stability A.2.2.2

During the solution of the non-isothermal time-dependent flow simulation high Brinkman 
numbers (viscous heating/conduction) can be encountered and are dealt with using an evolution 
scheme on certain material parameters. 

 VIN =
ti ≤ 1

2 tfill VIN ti
ti > 1

2 tfill VIN

⎧
⎨
⎪

⎩⎪
  (A.9) 

 CP =
ti ≤ 1

2 tfill CP ti
ti > 1

2 tfill CP

⎧
⎨
⎪

⎩⎪
  (A.10) 
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 k =
ti ≤ 1

2 tfill k
ti

ti > 1
2 tfill k

⎧
⎨
⎪

⎩⎪
  (A.11) 

 
 

F τ : γ( ) = ti ≤ tfill Fti
ti > tfill F

⎧
⎨
⎪

⎩⎪
  (A.12) 

A.3 Finite Difference Calculations for Orientation Predictions 
The bulk of my thesis has used the computations that will be presented in this section. As 

such, great detail will be given whenever possible to help the read understand not only the 
author’s method of solution for a specific problem but also the numerics involved with the 
problem.  
A.3.1 Probability Distribution Function and Orientation Tensors 

All of the models in the software package accompanying this text used the concept of an 
orientation tensor described by Advani and Tucker [2]. An orientation tensor is a compact way of 
representing a rigid rod’s orientation instead of using either orientation parameters, which 
involve some assumption about the orientation state [11, 12], or the orientation distribution 
function, which can become computationally inefficient. 

The orientation state of a given rod at a point in space can be described by the probability 
distribution function (PDF) ψ θ1,φ1( ) . This function is defined so that the probability of finding a 
fiber between the angles of θ1,φ1( )  and θ1 + dθ ,φ1 + dφ( ) is unity. 

 P(θ1 ≤θ ≤θ1 + dθ ,φ1 ≤φ ≤φ1 + dφ) =ψ θ1,φ1( )sinθ dθ dφ   (A.13) 

 
Figure A.2: Vector definition of rigid-fiber. The fiber is characterized by the vector,  p , as 

well as the azimuthal and zenith angles,  φ and θ  respectively. 

We may instead describe an equivalent orientation of a rod as a unit vector, p , (shown in Figure 
A.2) and may write the PDF in terms of that vector, ψ p( ) . The components of the vector of the 
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rod, p , are given by (A.14)-(A.16) and are interrelated since the length of the vector is fixed 
pi pj = 1( ) : 

 p1 = sinθ cosφ   (A.14) 

 p2 = sinφ sinθ   (A.15) 

 p3 = cosθ   (A.16) 

The PDF,ψ θ ,φ( ) , must satisfy certain conditions so a continuum form must also satisfy these 
same conditions. First a fiber at any angle θ ,φ( )  must be indistinguishable from a fiber oriented 
at an angle π −θ ,φ +π( )  so that ψ  is periodic or ψ p( ) =ψ − p( ) . Second, the PDF must be 
normalized given by (A.17): 

 
 

ψ θ ,φ( )sinθ
φ=0

2π

∫
θ=0

π

∫ dθ dφ = ψ p( )dp = 1∫   (A.17) 

The third condition describes the conservation of the PDF with time when the fibers are 
changing orientation. If we assume the fibers move with the bulk motion of the fluid then the 
PDF is a convected quantity and may be written as (A.18): 

 
 

Dψ
Dt

= −∇ θψ( )− 1
sinθ

∇ φψ( ) = −∇⋅ ψ p( )   (A.18) 

While the PDF gives a complete and unambiguous description of orientation, it can be 
cumbersome to calculate for large groups of fibers. 

Taking the dyadic product of the single fiber orientation vector, p , multiplying by the 
PDF and integrating of all possible orientation directions generates a set of orientation tensors. 
Since the PDF is periodic and even, the odd ordered integrals are zero. The second and forth 
order tensors are: 

 
 
A = pi pjψ p( )dp∫   (A.19) 

 
 
A4 = pi pj pk plψ p( )dp∫   (A.20) 

Using the method above higher order orientation tensors are possible and can be encountered in 
certain stress models for fiber suspensions and orientation models [13, 14]. Further information 
about the orientation tensors can be found in Advani and Tucker [2]. 
A.3.2 Fiber Orientation Models 

The finite difference MATLAB package contains a number of fiber orientation models 
than can be found in literature. This section outlines the models available and the differences 
involved with each model. 
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 Folgar-Tucker Model A.3.2.1
The Folgar-Tucker model is the earliest form of a model derived by Folgar and Tucker 

[15] using the orientation tensors described in § A.3.1. In (A.21),  
A  is the material derivative 

∂A ∂t + v ⋅∇A( ) , A  is the 2nd order orientation tensor,  A4  is the 4th order orientation tensor, W  

is the vorticity, D  is the rate of deformation and I  is the identity tensor. 

 
  
A =W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D( ) + 2 γCI I − 3A( )   (A.21) 

The variable ξ  is a shape factor with the value given in (A.22): 

 ξ = ar
2 +1
ar
2 −1

  (A.22) 

The variable CI  is a phenomenological constant that accounts for fiber-fiber interaction in the 
concentrated suspension and is typically determined by fitting experimental fiber orientation or 
through transient stress fitting [6, 10]. Common values of the parameter can range from 0.003 – 
0.016 [16]. Efforts have been made to fit the value through other means but the judgment of the 
experimenter must be used here [10, 17, 18]. 

 Modified Folgar-Tucker Model A.3.2.2

Stress growth experiments in the startup of simple shear have shown that the orientation 
of rigid fibers in concentrated suspension evolves more slowly than predicted by the Folgar-
Tucker model [5, 19]. To more accurately reflect the observed transient fiber orientation a “slip” 
parameter was suggested by Sepehr et al. [20, 21]. The strain reduction factor (SRF) model 
proved more accurate in comparison to experimental data but is not objective. 

 
  
A =κ W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D( ) + 2 γCI I − 3A( )⎡

⎣
⎤
⎦   (A.23) 

The equations seen in (A.22) and (A.23) are identical with the exception of adding the “strain 
reduction parameter”, κ , to (A.23). This value is usually fit using experimental orientation data 
or through transient stress fitting. 

 Reduced Strain Closure Model A.3.2.3
In an effort to make (A.23) into an objective form, Wang et al. [22] proposed the 

“reduced strain closure” model whereby the strain reduction factor was rearranged so that it 
acted only on the objective tensors of the equation. The resulting model is (A.24): 

 

  

A =W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ( ) L4 −M4 :A4( )⎡
⎣

⎤
⎦ :D{ }...

  + 2κ γCI I − 3A( )
  (A.24) 

The new terms in (A.24) 
 
L4 ,M4( )  are the eigenvalues, λi , and eigenvectors, ei , of the 2nd order 

orientation tensor. 
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L4 = λi

i=1

3

∑ eieieiei   (A.25) 

 
 
M4 = eieieiei

i=1

3

∑   (A.26) 

 Anisotropic Rotary Diffusion Reduced Strain Closure Model A.3.2.4

The previous models utilized CI  to account for fiber-fiber interaction in concentrated 
fiber suspensions. This term assumes that the material is isotropic but this assumption is rarely 
valid in glass fiber systems. Phelps and Tucker developed a model where by the fiber interaction 
coefficient is a 2nd order tensor to more accurately reflect the anisotropic nature of fiber 
composite materials. The ARD-RSC model is given in (A.27): 

 

  

A =W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2 A4 + 1−κ( ) L4 −M4 :A4( )⎡
⎣

⎤
⎦ :D{ }...

   + γ 2 C − 1−κ( )M4 :C⎡
⎣

⎤
⎦ − 2κ trC( )A − 5 C ⋅A + A ⋅C( ){ ...

   +10 A4 + 1−κ( ) L4 −M4 :A4( )⎡
⎣

⎤
⎦ :C}

  (A.27) 

Where the fiber interaction tensor,C , is given in (A.28): 

 
 
C = b1I + b2A + b3A

2 + b4
γ
D + b5
γ 2 D

2   (A.28) 

The values of b1 − b5  are fit through similar methods as CI . 

 Semi-Flexible Fiber Model (Concentrated Bead-Rod Model) A.3.2.5

 

Figure A.3: Vector definition of flexible fiber. The fiber is characterized by the vectors,  p
and q , as well as the azimuthal and zenith angles,  φ and θ  respectively. The two vector are of 
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equal length,  lb , and there is an internal resistivity to bending,  k . The end-to-end vector,  r , is 
also defined to determine a fiber’s “average” direction. 

The method of orientation tensors presented by Advani and Tucker [2] was adapted by 
Strautins and Latz [23] shown in (A.29) to (A.31) where p  and q  represent the two vectors of 
the bent fiber (shown in) and ψ p,q,t( )  is the probability distribution function for an individual 
fiber. 

 
 
A = ppψ p,q,t( )dpdq∫   (A.29) 

 
 
B = pqψ p,q,t( )dpdq∫   (A.30) 

 
 
C = ppψ p,q,t( )dpdq∫   (A.31) 

Ortman et al. [24] adapted the orientation equations given by Strautins and Latz [23] to 
concentrated suspensions by including the isotropic rotary diffusion term and slip parameter 
from previous work [9, 20]. The adaptation utilizes the orientation tensors in (A.29) - (A.31) and 
is given by (A.32) - (A.35) where lb  is the length of one rod of the two rod system. 

 

 

 

A =κ W ⋅A − A ⋅W + ξ D ⋅A + A ⋅D − 2A4 :D( )− 6CI γ A − 1
3 I( )⎡

⎣ ...

   + lb
2
Cm +mC − 2 m ⋅C( )A⎡⎣ ⎤⎦ + 2k B − Atr B( )( )⎤⎦⎥

  (A.32) 

 

 

B =κ W ⋅B − B ⋅W + ξ D ⋅B + B ⋅D − 2 D :A( )B( )⎡
⎣⎢ − 4CI γ B...

   + lb
2
Cm +mC − 2 m ⋅C( )A⎡⎣ ⎤⎦ + 2k A − B tr B( )⎡

⎣
⎤
⎦
⎤
⎦⎥

  (A.33) 

 
 

C =κ ∇v T ⋅C − A :∇v T( )C + lb
2

m −C m ⋅C( )⎡⎣ ⎤⎦ − kC 1− tr B( )⎡
⎣

⎤
⎦ − 2CI γC

⎡
⎣⎢

⎤
⎦⎥

  (A.34) 

 m = ∂2vi
∂x j ∂xk

Ajkδ i
k=1

3

∑
j=1

3

∑
i=1

3

∑   (A.35) 

The internal resistivity to bending, k , is a coefficient that attempts to account for the physical 
bending that may occur in the system of fibers. As the value of k increases, the semi-flexible 
model behaves more like the rigid fiber model and in the limit of k→∞ the semi-flexible model 
parallels the rigid fiber model. Conversely, as the value of k decreases the fiber becomes much 
more flexible and in the limit of k→ 0  the fiber is completely flexible. In the equations 
presented above, the flexibility of the fiber is initiated in the hydrodynamic contributions given 
by (A.35) and is due to the bending that may occur because of gradients in the flow field.  
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A.3.3 Numerical Method 
Within this section, a number of the numerical techniques used in the finite difference 

calculations will be discussed. 
 Choice of Integration Routine A.3.3.1

The integration technique utilized for the simulations is the ‘ode45’ or ‘ode15s’ built-in 
routine in the MATLAB environment. The ode45 routine is the Range-Kutta 4,5 technique that 
can be found in any number of numerical mathematics books. The ‘ode15s’ routine is used when 
‘ode45’ runs slow or has poor convergence and has a number of advantages over the Range-
Kutta method including: 

• Allows for specification of both relative and absolute tolerance. 
• Allows for vectorization of ODE system. 
• Automatic time step adjustment during integration. 
• Calculation of Jacobian matrix when necessary. 
• Calculation of mass matrix. 
• Allows specification of NDF or BDF type differentiation. 
• Allows for specification of max order differentiation for numerically unstable problems. 
• Solves differential equations of the form: M t, y( )y ' = f t, y( )  

 Fiber Orientation Prediction Boundary Conditions and Derivatives A.3.3.2

Two derivatives were estimated though the use of finite differences. In all of the 
following examples the super scripts and subscripts may be changed to calculate different 
derivatives as long as the pattern is followed. It is important to note that the grid spacing for the 
finite difference calculations was equal through out with a size of 0.045 mm x 0.045 mm x 0.045 
mm.  

Discretization of  m  vector was carried out through the use of central, forward and 
backward difference methods. In the hexagonal mesh,  i  is the index of a particular  x  coordinate 
(flow direction),  j  is the index of a particular  y  coordinate (vertical direction) and  k  is the 
index of a particular  z  coordinate (transverse to flow direction). Furthermore,  v  is any 
component of the velocity vector,  Δx is the distance between nodes in the primary flow direction 
and  Δy  is the distance between nodes in the vertical direction. 

Interior Nodes – Central Difference 

  

∂2 v
∂x∂y

xi , y j , zk( ) = vi+1, j+1,k − vi−1, j+1,k − vi+1, j−1,k + vi−1, j−1,k

4 ΔxΔy( )   

  

∂2 v
∂x2 xi , y j , zk( ) = vi+1, j ,k − 2vi, j ,k + vi−1, j ,k

Δx( )2   

Boundary Nodes – Forward or Backward Difference 

  

∂2 v
∂x∂y

xi , y j , zk( ) = vi, j ,k − vi−1, j ,k − vi, j−1,k + vi−1, j−1,k

ΔxΔy
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∂2 v
∂x∂y

xi , y j , zk( ) = vi+1, j+1,k − vi, j+1,k − vi+1, j ,k + vi, j ,k

ΔxΔy
  

  

∂2 v
∂x2 xi , y j , zk( ) = vi, j ,k − 2vi−1, j ,k + vi−2, j ,k

Δx( )2   

  

∂2 v
∂x2 xi , y j , zk( ) = vi+2, j ,k − 2vi+1, j ,k + vi, j ,k

Δx( )2

 
Discretization of the  v ⋅∇A  is carried out through the use of backward and forward 

(shown in order below) difference methods with examples for the   A12  component of orientation 
and the  v  component of velocity. In the hexagonal mesh,  i  is the index of a particular  x  
coordinate (flow direction),  j  is the index of a particular  y  coordinate (vertical direction) and  k  
is the index of a particular  z  coordinate (transverse to flow direction). Furthermore,  v  is any 
component of the velocity vector and  Δx is the distance between nodes transverse to the primary 
flow direction. 

  
v
∂A12

∂x
xi ,x j ,xk( ) = v

A12
i−2, j ,k − 4A12

i−1, j ,k + 3A12
i, j ,k

2Δx

⎛

⎝⎜
⎞

⎠⎟
  

  
v
∂A12

∂x
xi ,x j ,xk( ) = v

A12
i, j ,k − 4A12

i+1, j ,k + 3A12
i+2, j ,k

2Δx

⎛

⎝⎜
⎞

⎠⎟  

Boundary Conditions
 

• Boundary condition at the wall is no slip. The temperature of the wall is is prescribed as 

  TWALL = 363K  

• Boundary condition at free surface is given in terms of  σ = −PI + τ  where σ  is the total 

stress tensor,  P  is the isotropic pressure,  I  is the unit tensor and τ  is the extra stress 

tensor: 
o Use a zero traction vector at the front, i.e    n iσ i n = 0  and 

   
σ i n − n iσ i n( )n = 0 . 

o Applied where the fluid fraction is zero. 

o The temperature equation at the front is solved with a prescribed temperature of 
300 K. 

• The volumetric flow rate was given at the inlet to the domain and a fully developed 
velocity profile was assumed. Furthermore, an initial temperature was provided at the 
inlet to the domain.  
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The initial temperature is given as:    TIN
= 463K   

The volumetic flow rate at the inlet is given by: 
   
Q

IN
=

Total Volume of Mold
Desired Fill Time of Mold

 

A.3.4 Fiber Orientation Simulation Output 

When the selected fiber orientation prediction script is run the data is output at each time 
step to a specified directory. A person simulating should be comfortable with multi-dimensional 
(4-5 dimensional) arrays inside the MATLAB environment. To date no explicit script has been 
written to help in visualizing results from the simulations since different studies will require 
different comparisons. An example of visualizing orientation data is given in Figure A.4. 

 
Figure A.4: Example of post-processing fiber orientation data to visualize cross-section of 

center-gated disk. Contours represent value of A11 orientation component. 
A.3.5 Automated Transient Stress Fitting 

The method used to fit transient stress overshoots in simple shear flow has the complexity 
of producing multiple solutions. To combat this, an unbiased way of fitting was attempted 
through the use on non-linear least squares fitted (NLLSQ) analysis using the ‘lsqnonlin’ 
function within the MATLAB environment. There are two stress models that can be used during 
the fitting of the transient stress over shoots provided by Dinh and Armstrong [25] and Ortman et 
al. [24] shown in (A.36) and respectively (A.37). 

 τ = 2ηm D + c1φD + c2φD :A4( )   (A.36) 

 τ = 2ηm D + f1φD + f2A4 :D( ) + c3ηmk
3φar
2
tr r( )
2lb

2 A − R( )   (A.37) 

Where, 

 R =
rr
tr r( ) =

A − B
1− tr B( )   (A.38) 

The results of such a fitting procedure are shown below in Figure A.5. 
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Figure A.5: NLLSQ fitting of experimental orientation data (left) and transient viscosity 

(right) for various fiber orientation equations. 

A.3.6 Batch Processing 
The solution of the fiber orientation equations, especially when simulating the full end-

gated plaque, can take upwards of 24-48 hours. This is a long time to keep the MATLAB 
interface window in a “busy” state. To run the simulation scripts and keep the MATLAB 
interface open to other work use the batch scheduling ability of MATLAB to run the simulations 
on other cores. The batch processing ability can be accessed by entering the following: 

sched = findResource(‘scheduler’,’type’,’local’); 
job = batch(sched,’D:\...\myscript.m’); 

A.4 Complete List of Files 
A.4.1 Interface Scripts 

• cgd_ft.m (Center-gated disk simulation, FT model) 
• cgd_br.m (Center-gated disk simulation, BR model) 
• cgd_rsc.m (Center-gated disk simulation, RSC model) 
• cgd_ard.m (Center-gated disk simulation, ARD-RSC model) 
• egp_ft.m (End-gated plaque simulation, FT model) 
• egp_br.m (End-gated plaque simulation, BR model) 
• egp_rsc.m (End-gated plaque simulation, RSC model) 
• egp_ard.m (End-gated plaque simulation, ARD-RSC model) 

A.4.2 Automated Fitting Scripts 

• stress_orient_fit.m (NLLSQ Fitting of Sliding Plate Data, Rigid Models) 
• stress_orient_fit_br.m (NLLSQ Fitting of Sliding Plate Data, Semi-flexible Models) 
• param_fit.m (NLLSQ Fitting of Experimental Orientation Data, Rigid Models) 
• param_fit_br.m (NLLSQ Fitting of Experimental Orientation Data, Semi-flexible 

Models) 

A.4.3 Model Files 

• FT_quad.m (Modified FT Model, Quadratic Closure) 
• FT_IBOF.m (Modified FT Model, IBOF Closure) 
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• FT_quadc.m (Modified FT Model, Quadratic Closure, w/ Convection) 
• FT_IBOFc.m (Modified FT Model, IBOF Closure, w/ Convection) 
• BR_quad.m (Modified BR Model, Quadratic Closure) 
• BR_IBOF.m (Modified BR Model, IBOF Closure) 
• BR_quadc.m (Modified BR Model, Quadratic Closure, w/ Convection) 
• BR_IBOFc.m (Modified BR Model, IBOF Closure, w/ Convection) 
• RSC_quad.m (RSC Model, Quadratic Closure) 
• RSC_IBOF.m (RSC Model, IBOF Closure) 
• RSC_quadc.m (RSC Model, Quadratic Closure, w/ Convection) 
• RSC_IBOFc.m (RSC Model, IBOF Closure, w/ Convection) 
• ARD_RSC_quad.m (ARD-RSC Model, Quadratic Closure) 
• ARD_RSC_IBOF.m (ARD-RSC Model, IBOF Closure) 
• ARD_RSC_quadc.m (ARD-RSC Model, Quadratic Closure, w/ Convection) 
• ARD_RSC_IBOFc.m (ARD-RSC Model, IBOF Closure, w/ Convection) 

A.4.4 Ancillary Files 

• convective_v.m (calculation of convection for given Aij ,Bij , vectorized) 
• mvector.m (calculation of m  for Bead-Rod Model) 
• Explicit_IBOF_v.m (IBOF Closure Approximation  A4 :D , vectorized) 

• Explicit_Quad_v.m (Quadratic Closure Approximation  A4 :D , vectorized) 

• LddC.m 
 
L4 :C( )   

• LddD.m 
 
L4 :D( )   

• MddC.m 
 
M4 :C( )   

• MddAddC.m 
 
M4 :A4 :C,  Quadratic Closure Approximation( )   

• MddAddC_IBOF.m 
 
M4 :A4 :C,  IBOF Closure Approximation( )   

• MddAddD.m 
 
M4 :A4 :D,  Quadratic Closure Approximation( )   

• MddAddD_IBOF.m 
 
M4 :A4 :D,  IBOF Closure Approximation( )   

• timestepconverter.m (HTML to Text Conversion) 
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B Appendix: Comments on Numerical Routine 
B.1 Dimensional Analysis for Complex Geometry Simulations 

In simulations involving significant computational resources, dimensional analysis is a 
simple way of speeding up computation time by removing certain terms in the general set of 
equations that are orders of magnitude smaller than others. In the following section an analysis of 
terms for both the heat and motion equations will be performed for general cases of non-
Newtonian flow in complex geometries. 

B.1.1 Dimensional Analysis for Equation of Motion 
The most general form of the equation of motion is given in Eq. (B.1) where the left-hand 

side represents the inertial terms and the right-hand side represents the viscous terms where ρ is 
the density, v is the velocity, P is the pressure, and τ is deviatoric stress tensor. 

 

 

ρ ∂v
∂t

Unsteady
Acceleration

+ ρ v ⋅∇v( )

Convective
Acceleration  

Intertial Contribution
  

= −∇P
Pressure Gradient

+ ∇⋅τ
Viscosity

Divergence of Stress
    (B.1) 

By assuming constant density and Stokes flow Re <1( ) , Eq. (B.1) can be rewritten for laminar 
flow where the inertial contributions become orders of magnitude smaller than the terms on the 
right-hand side and thus Eq. (B.2) is produced. 

 0 = −∇P +∇⋅τ  (B.2) 

While the reduction of terms in the momentum equation is not significant for most modern 
workstations or clusters, when the motion equations are coupled with other conservations 
equations (i.e. stress, heat, orientation) the Stokes flow case can reduce computation time and 
convergence issues.  
B.1.2 Dimensional Analysis for Equation of Heat 

Dimensional analysis for the heat equation can provide useful insight into which terms of 
the equation can be kept and which can be dropped. The most general form of the energy 
equation is shown  in Eq. (B.3) where Cp is the heat capacity, k is the thermal conductivity, T is 

the temperature, τ is deviatoric stress tensor, and  γ is the rate-of-deformation tensor or 

 γ = ∇v + ∇v( )T . 

 

 

ρCp
DT
Dt

Convection
 

= k∇2T
Conduction
 + τ : γ

Dissipation
  (B.3) 

The heat equation can be rewritten in a dimensionless form by making the assumption that the 
viscosity of the fluid is dependent on both temperature and shear-rate or η T , γ( ) . Using 
dimensionless variables, described by Winter [1], the dimensionless form of Eq. (B.3) can be 
written yielding Eq. (B.4) where the GNF model for viscosity has been used for   and η0 is the 
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reference viscosity, ΔT 0 is the reference temperature difference, V is the reference velocity, and 
H and L are the characteristic height and length, respectively. Also the substitutions for the 
dimensionless variables are: T * = T −T0( ) ΔT 0 , t* = tL V , ∇* = H∇ , η* =η η0 , and 

 γ
* = γ H V . These two dimensionless groups become important in determining if convection 

and viscous dissipation terms should be included in the system being solved.  

 

 

ρCpVH
k

Graetz Number
 

H
L
DT *

Dt* = ∇*T * + 1
2

V 2η0

kΔT 0

Generation Number


η* γ * : γ *( )  (B.4) 

Thermal convection can usually be neglected if the Graetz number is much less than one, 
or Gr <<1 . For many mold filling operations the Hele-Shaw and lubrication approximations are 
employed. Here the same reasoning for those approximations will be used, that the length of the 
cavity is orders of magnitude larger than the thickness, or L H >>1 . At first it may seem 
appropriate to remove the convective term from the equation but mold filling velocities are 
usually high to ensure quick fill times. For the polymer systems of interest, the Graetz number is 
estimated at the mold entrance to be around 100 so that thermal convection cannot be neglected, 
at least not in the mold entry region. This theory is further reinforced by use of the Péclet number 
where estimates are on the order of 103 -104 and is defined as the ratio of thermal advection to 
diffusion given by Eq. (B.5). 

 Pe = LV
k ρCp

 (B.5) 

Viscous dissipation is usually a concern when dealing with polymeric systems because of 
the non-linear nature of their viscosities. If the problem is defined as a molding operation, where 
the temperature of the mold is a known quantity, the reference temperature difference is given as 
ΔTprocess = Tfluid −Twall and the generation number is redefined as the Brinkman number, Br , and is 
defined by Eq. (B.6). The Brinkman number can also be formed by the product of the Prandtl 
number, Pr, and Eckert number, Ec. 

 Br = V 2η0

kΔTprocess
 (B.6) 

The Brinkman number for molding operations can vary depending on neat matrix and any 
additive that may be present. For the fiber filled systems of interest, the Brinkman number is on 
the order of 102 -103 and thus cannot be neglected. 

 To simplify the system of equations, the ratio of convection to generation may be 
compared on a case-by-case basis. The ratio of the generation (Brinkman) to the rate of 
convection (Graetz) is around one order of magnitude. This is not sufficiently large enough to 
neglect one term or the other so both will be kept when simulations are carried out [2]. 
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B.2 Improvements to the FEM Solution Method 
B.2.1 Domain Meshing 

One of the most dominating characteristics in FEM computations, no matter how 
efficiently the code has been written, is how the domain of interest is meshed. As evidence of the 
requirement of efficient meshing, Figure B.1 shows the number of nodes and computational time 
as a function optimized meshes where an increasing mesh number represents a higher degree of 
optimization.  

 
Figure B.1: Computational Time and FEM Nodes vs. Number of Refinements for center-gated disk. Revision 1: 
tetrahedral meshing only, automated meshing From ANSYS meshing utility. Revision 2: Quad/Tet meshing 
combination, manual meshing. Revision 3: hexagonal dominant meshing, automated meshing. Revision 4: 
Hexagonal meshing only, manual meshing. 

When the ANSYS meshing utility is allowed to mesh the domain automatically the 
resulting mesh is cumbersome and takes hours of computation time for Newtonian and GNF 
fluids. The improvements to the generated meshes came through the use of different element 
shapes and sizes, as well as manually defining where coarse and fine meshing was required, 
depending on the location within the domain. For example, it is more prudent to mesh with bias 
towards the domain boundary because of the large gradients that occur near the wall as seen in 
Figure B.2. 
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Figure B.2: Finite Element Meshes over a Generic Domain. (Left) Mesh exhibiting no bias. 
(Right) Mesh exhibiting bias in one horizontal direction (from left to right) and two biases in the 
vertical direction (near the walls). 

The two test geometries which have been heavily simulated throughout this work are the 
center-gated disk and end-gated plaque. The figures included show the optimized meshes for the 
center-gated sprue, end-gated sprue, center-gated mold, and end-gated mold, respectfully. 

 
Figure B.3: FEM meshes for CGD sprue (left) and CGD sprue/mold interface (right). 

 
 

 

 
Figure B.4: Axisymmetric center-gated mold FEM mesh. (Left) The mold filling simulation 

begins from the left edge of the mold and progresses through to the right edge. (Right) Close-up 
of the mold cavity thickness noting the bias shown towards the walls of the mold. 
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B.2.2 Meshing Analysis 

For finite difference and finite element analyses a balance must be struck between the 
number of elements and computational accuracy. Generally, a higher number of elements in a 
domain yield a higher numerical accuracy and a longer computation time. However, there is an 
upper limit where a significant increase in elements yields only minimal increases in 
computational accuracy while still greatly increasing computation time. The studies performed in 
this section show results where the number of cross-sectional elements in a center-gated disk was 
varied until little increase in accuracy was observed. Any further number of elements over 13 
through the cross-section of the mold yielded differences in predicted velocity fields of < 0.12 %. 

 
Figure B.5: Results for (Up-Left) x-velocity (Up-Right) y-velocity (Bottom) z-velocity 

components during mesh benchmarking. The number of cross-sectional elements is varied from 
7 to 41.  

One major drawback to the ANSYS Polyflow solver is the limits that the program puts on 
interpolation between elements. Using the volume of fluid method in Polyflow limits the 
interpolation between elements to a linear basis function only. This is because the solver is 
designed to handle the solution of complicated viscoelastic constitutive relations where a linear 
interpolation provides stability to the solution. For this reason, a higher number of elements (31 
elements through the thickness of both the center-gated disk and end-gated plaque) were often 
chosen to try and minimize the effect of linear interpolation between elements. 

B.3 Improvements to the FDM Solution Method 
The majority of the computations for the work presented here have been performed 

through the use of MATLAB® (2011b, ver. 7.13.0.564, The Mathworks, Inc., Natick, MA) core 
language and a number of the associated built-in functions. A number of other language exist 
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which provide more efficient computations such as C and FORTRAN, however, MATLAB was 
chosen because of the ease of use and the results visualization ability that the language provides.  

B.3.1 Major Code Updates 

 
Figure B.6: Reduction of Computation Time with Successive Code Improvements. Version 2 

introduced vectorization into the MATLAB routines. Version 3 was the conversion of some core 
routines into the C programming language. 

The MATLAB code which is being used for the simulations presented in this work has 
undergone a number of revisions since the inception in early 2011. Figure B.6 above shows the 
improvements in computational time for two models in calculating the fiber orientation in a 
generic center-gated disk simulation domain. The first attempt at writing the software was made 
with convenience to the programmer in mind, so that all of the code was in matrix format (i.e the 
data was stored in m-by-n data arrays). The 2nd revision of code was the transformation of the 
matrix format to vectorized format in MATLAB (1-by-m data storage format) which resulted in 
the first major reduction of computation time. The 3rd major revision of the code involved 
rewriting some subroutines in the C programming language and calling these subroutines in the 
MATLAB environment through the “mex” file format. This conversion of subroutines allowed 
an order of magnitude reduction in computation time. The 4th major revision of the software will 
include a GUI interface so that users unfamiliar with higher level MATLAB/C programming will 
still be capable of using the developed software package with only marginal training. 

B.4 References 
[1] H. H. Winter, "Viscous dissipation term in energy equations," in Calculation and 

Measurement Techniques for Momentum, Energy, and Mass Transfer. vol. 7, R. J. 
Gordon, Ed., ed: AIChE Modular Instruction, 1987, pp. 27-34. 

[2] J. R. A. Pearson, "Polymer Flows Dominated by High Heat-Generation and Low Heat-
Transfer," Polymer Engineering and Science, vol. 18, pp. 222-229, 1978. 

 



165 

 

 
 
 
 
 
 
 
 

Appendix: Experimental Rheological Data



166 

 

 

C Appendix: Rheological Data 
C.1 Neat SABIC Polypropylene Data 

C.1.1 Dynamic Neat Matrix Data at 180°C 

 
Figure C.1: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in 

25mm cone-and-plate fixture obtained from RMS-800 at 180°C. 

Frequency (rad/s) G' (Pa) G'' (Pa) Torque (g*cm) η*(Pa*s)
0.10 0.239 37.070 0.619 370.706
0.13 0.295 46.702 0.779 370.973
0.16 0.394 58.788 0.981 370.938
0.20 0.663 73.952 1.234 370.659
0.25 0.908 93.065 1.553 370.527
0.32 1.516 117.163 1.955 370.547
0.40 2.412 147.329 2.459 370.143
0.50 3.689 185.399 3.095 370.012
0.63 5.692 233.129 3.892 369.616
0.79 8.668 292.788 4.889 368.788
1.00 13.454 368.001 6.146 368.247
1.26 20.582 459.793 7.683 365.632
1.58 31.167 575.970 9.629 363.985
2.00 46.524 720.872 12.059 362.086
2.51 69.154 901.088 15.093 359.835
3.16 102.241 1122.870 18.835 356.605
3.98 151.019 1397.300 23.484 353.088
5.01 218.717 1731.070 29.160 348.201
6.31 313.426 2138.860 36.138 342.673
7.94 445.809 2633.770 44.662 336.358
10.00 623.813 3225.300 54.933 328.579
12.59 867.118 3934.620 67.377 320.109
15.85 1188.980 4773.880 82.258 310.486
19.95 1607.900 5757.740 99.908 299.685
25.11 2149.780 6906.730 120.761 288.049
31.61 2840.410 8228.290 145.017 275.343
39.80 3710.720 9735.650 172.873 261.781
50.10 4790.230 11448.900 204.440 247.696
63.08 6107.210 13362.000 238.944 232.913
79.41 7692.980 15472.000 275.137 217.597

100.00 9579.140 17794.500 310.779 202.090

180°C
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C.1.2 Dynamic Neat Matrix Data at 190°C 

 
Figure C.2: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in 

25mm cone-and-plate fixture obtained from RMS-800 at 190°C. 

Frequency (rad/s) G' (Pa) G'' (Pa) Torque (g*cm) η*(Pa*s)
0.10 0.131 28.141 0.470 281.409
0.13 0.160 35.364 0.590 280.910
0.16 0.271 44.416 0.741 280.252
0.20 0.328 55.944 0.934 280.391
0.25 0.587 70.286 1.173 279.831
0.32 0.831 88.422 1.476 279.638
0.40 1.379 111.301 1.858 279.612
0.50 2.096 140.019 2.337 279.421
0.63 3.249 176.112 2.940 279.183
0.79 5.004 221.285 3.695 278.675
1.00 7.810 278.152 4.645 278.287
1.26 12.106 349.542 5.839 277.848
1.58 18.426 438.584 7.329 277.003
2.00 28.373 549.834 9.192 275.969
2.51 41.911 688.274 11.519 274.553
3.16 63.783 859.781 14.406 272.674
3.98 94.317 1074.160 18.022 270.900
5.01 139.932 1335.690 22.454 268.011
6.31 204.966 1655.740 27.903 264.472
7.94 293.908 2049.420 34.640 260.700

10.00 417.693 2522.170 42.790 255.652
12.59 566.489 2963.590 50.524 239.722
15.85 805.318 3528.670 60.613 228.422
19.95 1052.980 4007.440 69.406 207.716
25.11 1352.800 4686.810 81.693 194.253
31.61 1728.970 5454.890 95.721 181.005
39.80 2208.600 6477.370 114.187 171.949
50.10 2892.000 7846.720 138.763 166.905
63.08 3708.360 9160.930 162.331 156.682
79.41 4441.970 10032.800 177.260 138.174
100.00 4790.780 10168.300 177.220 112.403

190°C
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C.1.3 Dynamic Neat Matrix Data at 200°C 

 
Figure C.3: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in 

25mm cone-and-plate fixture obtained from RMS-800 at 200°C. 

Frequency (rad/s) G' (Pa) G'' (Pa) Torque (g*cm) η*(Pa*s)
0.10 0.011 22.483 0.375 224.829
0.13 0.016 28.339 0.473 225.106
0.16 0.104 35.664 0.595 225.025
0.20 0.235 44.837 0.748 224.723
0.25 0.300 56.354 0.940 224.359
0.32 0.514 70.970 1.184 224.442
0.40 0.773 89.278 1.490 224.276
0.50 1.226 112.297 1.874 224.088
0.63 1.950 141.437 2.361 224.197
0.79 3.162 177.847 2.969 223.949
1.00 4.993 223.521 3.732 223.597
1.26 7.735 281.092 4.694 223.388
1.58 12.214 352.970 5.896 222.867
2.00 18.504 443.017 7.403 222.255
2.51 29.309 555.309 9.291 221.411
3.16 43.156 695.741 11.648 220.468
3.98 64.836 868.589 14.559 218.823
5.01 96.014 1082.110 18.167 216.796
6.31 142.520 1349.260 22.698 215.075
7.94 205.410 1672.720 28.208 212.208

10.00 298.382 2068.490 34.996 208.990
12.59 419.403 2533.900 43.039 204.059
15.85 590.171 3107.060 53.013 199.594
19.95 820.100 3790.230 65.026 194.405
25.11 1124.800 4603.910 79.456 188.725
31.61 1525.250 5558.220 96.527 182.313
39.80 2043.980 6666.000 116.486 175.185
50.10 2705.930 7947.390 139.523 167.558
63.08 3537.620 9407.730 165.376 159.343
79.41 4572.700 11053.900 193.449 150.644
100.00 5838.790 12896.800 222.422 141.569

200°C
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C.1.4 Dynamic Neat Matrix Data at 220°C 

 
Figure C.4: Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in 

25mm cone-and-plate fixture obtained from RMS-800 at 220°C. 

Frequency (rad/s) G' (Pa) G'' (Pa) Torque (g*cm) η*(Pa*s)
0.10 0.033 15.823 0.264 158.230
0.13 0.048 19.834 0.331 157.543
0.16 0.143 24.880 0.415 156.986
0.20 0.112 31.334 0.523 157.046
0.25 0.170 39.372 0.657 156.749
0.32 0.251 49.502 0.826 156.548
0.40 0.407 62.369 1.041 156.676
0.50 0.650 78.386 1.308 156.414
0.63 0.926 98.695 1.648 156.437
0.79 1.515 124.133 2.073 156.298
1.00 2.497 156.155 2.607 156.189
1.26 3.881 196.397 3.280 156.051
1.58 6.042 246.850 4.123 155.816
2.00 9.407 310.060 5.180 155.488
2.51 14.012 388.805 6.501 154.908
3.16 22.174 488.016 8.166 154.507
3.98 33.632 612.359 10.255 154.075
5.01 51.484 765.727 12.838 153.155
6.31 76.131 955.648 16.045 151.969
7.94 113.909 1192.010 20.054 150.779

10.00 165.951 1481.270 24.978 149.054
12.59 238.069 1815.970 30.716 145.515
15.85 340.707 2242.170 38.060 143.129
19.95 481.542 2755.370 46.971 140.223
25.11 674.577 3374.930 57.807 137.052
31.61 932.588 4108.620 70.727 133.267
39.80 1272.380 4976.180 86.056 129.053
50.10 1717.740 5989.920 103.925 124.367
63.08 2292.800 7163.420 124.343 119.241
79.41 3014.580 8508.280 146.960 113.673
100.00 3924.440 10033.800 170.986 107.740

220°C
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C.1.5 Dynamic Viscosity Data 

 
Figure C.5:  Frequency sweep data for SABIC Verton® polypropylene matrix at 5% strain in 

25mm cone-and-plate fixture obtained from RMS-800. 

 
 

180°C 190°C 200°C 220°C
0.100 371.56 293.03 227.99 153.90
0.126 371.52 292.58 226.27 153.72
0.158 371.12 292.80 225.63 153.46
0.200 371.07 292.75 225.21 153.31
0.251 370.74 292.25 224.76 153.14
0.316 370.71 292.35 224.76 153.03
0.398 369.88 292.18 224.50 154.41
0.501 369.33 292.02 224.34 154.24
0.631 368.95 291.82 224.34 154.11
0.794 368.12 291.38 223.09 153.94
1.000 367.37 292.00 222.99 152.84
1.259 365.80 291.37 222.32 152.74
1.585 363.99 290.39 221.88 152.45
1.995 362.07 289.12 221.27 152.19
2.512 359.64 287.67 220.38 151.73
3.162 356.61 285.57 219.36 151.34
3.980 352.84 283.12 217.98 150.72
5.011 348.05 280.02 216.10 149.93
6.308 342.61 276.25 213.94 148.85
7.942 336.23 272.00 211.35 147.64
9.998 328.53 266.76 208.03 145.97
12.586 320.07 262.07 203.93 142.86
15.845 310.40 255.11 199.49 140.73
19.948 299.58 247.17 194.33 137.91
25.112 287.94 238.53 188.64 134.80
31.614 275.23 229.05 182.20 131.20
39.800 261.71 218.82 175.11 127.06
50.105 247.60 207.98 167.50 122.53
63.077 232.81 196.52 159.27 117.54
79.408 217.50 184.64 150.59 112.09

100.000 202.01 172.29 141.51 106.28

Dynamic Viscosity, η (Pa*s)
Frequency, ω (s-1)
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C.1.6 Neat Matrix Capillary Data 

 
Figure C.6: Capillary data for SABIC Verton® polypropylene Matrix from Göttfert Capillary 

Rheometer. 

 
 

 
 

 
 

 
 

 
 

 
 

 

Shear Rate, γ (s-1) Viscosity, η (Pa*s) Shear Rate, γ (s-1) Viscosity, η (Pa*s)
18.49 343.90 18.10 201.65
36.98 225.45 36.20 143.30
92.44 201.26 90.50 117.33

184.89 154.65 181.01 91.44
369.78 102.30 362.01 63.63
924.44 70.31 905.03 39.96
1848.88 48.83 1810.06 26.73
3697.76 29.21 3620.12 19.13
9244.40 13.87 9050.31 10.46

18488.80 8.21 18100.61 6.29
36977.60 4.76 36201.22 3.78

180°C 220°C
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C.2 SABIC Polypropylene w/ 30 % (wt.) Long Glass Fiber 

 
Figure C.7:  Transient viscosity data for SABIC Verton®   polypropylene/ 30 wt. % LGF 

obtained from sliding plate rheometer at 180° C 

γ = 0.4 s-1 γ = 1.0 s-1 γ = 4.0 s-1 γ = 0.4 s-1 γ = 1.0 s-1 γ = 4.0 s-1

0 0.00 0.00 0.00 70 5293.23 770.16 0.00
2 4370.93 542.47 320.59 72 5281.47 714.39 0.00
4 5325.34 592.90 391.13 74 5263.69 773.64 0.00
6 5839.11 653.81 397.75 76 5236.25 784.35 0.00
8 6517.87 696.19 353.14 78 5229.92 1073.69 0.00

10 7138.55 713.05 293.43 80 5227.81 952.89 0.00
12 7284.88 801.96 262.55 82 5214.09 1040.45 0.00
14 7416.44 819.57 236.34 84 5217.61 1029.53 0.00
16 7489.17 844.13 272.91 86 5229.92 897.04 0.00
18 7524.45 954.63 265.78 88 5229.92 788.99 0.00
20 7534.63 964.52 225.36 90 5215.99 756.78 0.00
22 7527.77 919.72 276.60 92 5207.76 687.21 0.00
24 7514.05 993.22 410.22 94 5200.97 676.83 0.00
26 7433.03 1025.18 524.78 96 5177.46 704.29 0.00
28 7346.26 1041.97 509.18 98 5170.82 683.94 0.00
30 7251.72 1091.90 524.40 100 5185.60 640.63 0.00
32 7131.99 1041.87 523.62 102 5185.60 559.49 0.00
34 6989.76 1022.83 634.46 104 5156.31 416.60 0.00
36 6844.88 1122.28 811.64 106 5141.27 607.01 0.00
38 6706.05 1056.02 912.01 108 5135.47 588.95 0.00
40 6569.05 894.59 1016.10 110 5121.75 500.17 0.00
42 6404.43 1016.89 1075.12 112 5119.11 349.04 0.00
44 6239.81 1114.16 1089.26 114 5114.63 461.52 0.00
46 6107.48 1067.42 1100.68 116 5100.91 557.33 0.00
48 6002.37 894.94 1084.18 118 5096.95 624.83 0.00
50 5921.79 921.02 981.35 120 5096.95 321.24 0.00
52 5846.96 1078.23 885.63
54 5760.91 1017.11 739.55
56 5673.13 933.08 682.65
58 5590.82 938.22 698.13
60 5522.90 861.13 698.79
62 5478.00 738.98 644.56
64 5424.09 812.47 606.40
66 5372.38 805.74 638.11
68 5328.48 792.00 682.16

Time (s)
Transient Viscosity, η+ (Pa*s)

Time (s)
Transient Viscosity, η+ (Pa*s)



173 

 

C.3 Neat RTP Polypropylene Data 
C.3.1 Dynamic Neat Matrix Data at 180°C 

 
Figure C.8: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in 25mm 

cone-and-plate fixture obtained from RMS-800 at 180°C. 

Frequency (rad/s) G' (Pa) G'' (Pa) η*(Pa*s)
0.10 154.67 745.30 7612.81
0.13 203.99 905.40 7373.22
0.16 267.39 1097.36 7127.66
0.20 350.40 1325.31 6871.77
0.25 456.39 1595.05 6606.19
0.32 590.84 1914.36 6336.82
0.40 760.42 2288.29 6058.34
0.50 975.28 2724.05 5774.41
0.63 1241.30 3227.30 5481.60
0.79 1574.39 3810.95 5192.40
1.00 1979.97 4477.93 4897.48
1.26 2475.02 5233.23 4599.64
1.58 3071.99 6089.24 4304.52
1.99 3788.63 7051.29 4013.04
2.51 4641.12 8109.05 3720.78
3.16 5655.24 9295.42 3441.85
3.98 6852.23 10602.49 3172.07
5.01 8221.02 12001.65 2903.58
6.31 9824.26 13545.30 2652.97
7.94 11671.44 15192.99 2412.82

10.00 13762.02 16955.54 2184.62
12.58 16129.87 18841.93 1970.96
15.84 18815.42 20797.32 1770.26
19.94 21804.95 22872.03 1584.43
25.11 25118.42 24992.24 1411.26
31.61 28748.82 27214.89 1252.43
39.79 32751.90 29471.49 1107.25
50.09 37107.38 31765.55 975.09
63.06 41797.39 34074.57 855.11
79.39 46828.77 36358.73 746.75
100.00 52162.53 38547.28 648.60

180°C
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C.3.2 Dynamic Neat Matrix Data at 200°C 

 
Figure C.9: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in 25mm 

cone-and-plate fixture obtained from RMS-800 at 200°C. 

Frequency (rad/s) G' (Pa) G'' (Pa) η*(Pa*s)
0.10 75.55 451.21 4575.54
0.13 101.10 551.90 4457.52
0.16 135.24 673.87 4337.36
0.20 179.51 820.23 4208.97
0.25 237.88 995.82 4076.81
0.32 313.04 1205.56 3939.55
0.40 408.92 1453.71 3794.13
0.50 530.73 1746.72 3643.36
0.63 686.79 2089.16 3486.30
0.79 880.90 2490.43 3326.51
1.00 1125.13 2953.74 3161.64
1.26 1425.76 3487.63 2993.71
1.58 1796.17 4101.79 2826.12
1.99 2249.31 4799.89 2657.49
2.51 2789.74 5585.00 2486.15
3.16 3457.12 6474.23 2321.68
3.98 4240.64 7471.60 2158.72
5.01 5174.65 8547.72 1994.36
6.31 6281.85 9745.42 1838.30
7.94 7542.63 11052.77 1685.22

10.00 9018.84 12471.61 1539.69
12.58 10725.71 13985.75 1400.57
15.84 12652.42 15598.18 1267.76
19.94 14846.68 17313.01 1143.54
25.11 17328.53 19116.24 1027.62
31.61 20080.53 20993.31 919.08
39.79 23135.15 22939.81 818.76
50.09 26503.45 24924.20 726.26
63.06 30169.29 26934.89 641.30
79.39 34164.58 28945.09 564.00
100.00 38446.43 30913.48 493.33

200°C
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C.3.3 Dynamic Neat Matrix Data at 220°C 

 
Figure C.10: Frequency sweep data for RTP 100® polypropylene matrix at 5% strain in 

25mm cone-and-plate fixture obtained from RMS-800 at 220°C. 
 

 
 

 
 

Frequency (rad/s) G' (Pa) G'' (Pa) η*(Pa*s)
0.10 91.72 261.40 2770.63
0.13 105.90 316.98 2655.05
0.16 122.75 385.56 2553.44
0.20 143.88 469.05 2459.39
0.25 172.91 569.46 2369.76
0.32 208.49 691.79 2285.30
0.40 254.91 838.72 2202.41
0.50 313.82 1014.15 2118.67
0.63 390.23 1223.64 2036.08
0.79 487.86 1474.25 1955.48
1.00 610.66 1766.21 1869.31
1.26 766.55 2112.55 1785.61
1.58 964.32 2514.95 1699.96
1.99 1210.33 2981.13 1613.04
2.51 1520.93 3518.85 1526.61
3.16 1888.83 4137.28 1438.69
3.98 2345.02 4840.13 1351.42
5.01 2894.66 5626.09 1262.86
6.31 3564.84 6519.79 1178.12
7.94 4361.73 7502.53 1092.94

10.00 5311.42 8589.85 1010.33
12.58 6415.75 9779.23 929.41
15.84 7699.91 11082.70 851.82
19.94 9183.40 12494.40 777.48
25.11 10902.62 14002.76 706.82
31.61 12845.05 15614.37 639.67
39.79 15047.85 17332.39 576.83
50.09 17528.94 19110.99 517.67
63.06 20263.37 20955.37 462.23
79.39 23298.78 22846.00 411.01
100.00 26620.33 24753.03 363.50

220°C
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D Appendix: Fiber Orientation Data 
D.1 Center-Gated Disk LGF Orientation Data – 0.7mm Bin Width 

 
Figure D.1: Experimentally determined orientation values at 0% fill of the center-gated disk 

for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 
Figure D.2: Experimentally determined orientation values at 10% fill of the center-gated disk 

for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

z/2H A11 A12 A22 A33 A13 A23
0.92 0.56 0.14 0.10 0.34 0.29 0.08
0.77 0.73 0.18 0.09 0.18 0.26 0.06
0.62 0.60 0.15 0.07 0.33 0.32 0.06
0.46 0.40 0.06 0.07 0.53 0.36 0.05
0.31 0.47 0.08 0.05 0.48 0.33 0.06
0.15 0.35 0.05 0.05 0.61 0.35 0.04
0.00 0.27 0.00 0.07 0.67 0.35 0.04
-0.15 0.41 -0.04 0.04 0.55 0.38 -0.04
-0.31 0.44 -0.05 0.03 0.53 0.40 -0.06
-0.46 0.38 -0.02 0.02 0.59 0.38 -0.04
-0.62 0.57 -0.04 0.02 0.41 0.31 -0.02
-0.77 0.41 -0.05 0.04 0.55 0.37 -0.07
-0.92 0.48 0.00 0.03 0.50 0.35 -0.01

0%

z/2H A11 A12 A22 A33 A13 A23
0.92 0.55 0.04 0.02 0.42 0.38 0.04
0.77 0.46 0.02 0.04 0.50 0.36 -0.01
0.62 0.58 0.04 0.04 0.38 0.32 0.03
0.46 0.36 0.01 0.05 0.59 0.33 0.03
0.31 0.24 0.01 0.03 0.72 0.29 0.02
0.15 0.24 -0.01 0.04 0.72 0.35 -0.02
0.00 0.43 -0.01 0.03 0.54 0.37 0.01
-0.15 0.49 -0.04 0.04 0.47 0.34 -0.01
-0.31 0.35 -0.02 0.03 0.62 0.36 -0.01
-0.46 0.39 -0.03 0.04 0.57 0.32 -0.01
-0.62 0.33 -0.03 0.04 0.63 0.33 -0.05
-0.77 0.49 0.01 0.03 0.48 0.36 0.01
-0.92 0.37 0.00 0.04 0.59 0.36 -0.03

10%
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Figure D.3: Experimentally determined orientation values at 40% fill of the center-gated disk 

for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 
Figure D.4: Experimentally determined orientation values at 40% fill of the center-gated disk 

for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 

z/2H A11 A12 A22 A33 A13 A23
0.92 0.49 0.02 0.03 0.48 0.33 0.03
0.77 0.52 0.00 0.05 0.43 0.32 0.02
0.62 0.53 0.01 0.05 0.42 0.33 0.02
0.46 0.43 0.03 0.05 0.52 0.34 0.01
0.31 0.26 0.01 0.05 0.69 0.27 0.01
0.15 0.20 0.01 0.06 0.74 0.30 0.01
0.00 0.31 0.00 0.05 0.64 0.35 -0.02
-0.15 0.36 -0.04 0.04 0.60 0.34 -0.05
-0.31 0.34 -0.03 0.05 0.61 0.30 -0.03
-0.46 0.37 -0.01 0.04 0.59 0.34 -0.05
-0.62 0.42 -0.01 0.04 0.54 0.37 -0.03
-0.77 0.39 -0.02 0.04 0.57 0.37 -0.04
-0.92 0.27 -0.01 0.05 0.69 0.33 -0.03

40%

z/2H A11 A12 A22 A33 A13 A23
0.92 0.46 0.04 0.07 0.47 0.35 0.03
0.77 0.44 0.00 0.08 0.48 0.34 0.02
0.62 0.37 0.03 0.09 0.54 0.35 0.02
0.46 0.32 0.02 0.08 0.60 0.35 0.02
0.31 0.30 0.01 0.07 0.63 0.28 0.00
0.15 0.17 0.01 0.06 0.77 0.31 0.01
0.00 0.16 0.01 0.07 0.78 0.27 0.03
-0.15 0.28 0.00 0.05 0.67 0.36 0.00
-0.31 0.35 -0.01 0.04 0.61 0.36 -0.01
-0.46 0.35 0.01 0.04 0.61 0.37 0.03
-0.62 0.34 0.01 0.04 0.62 0.34 0.00
-0.77 0.32 -0.01 0.03 0.65 0.37 -0.02
-0.92 0.48 0.00 0.04 0.48 0.35 0.01

90%
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D.2 End-Gated Plaque Mold LGF Orientation Data – 0.7 mm Bin Width 

 
Figure D.5: Experimentally determined orientation values at 0% fill and 0% of width in the 

end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 
Figure D.6: Experimentally determined orientation values at 10% fill and 0% of width in the 

end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 
 

z/2H A11 A12 A22 A33 A13 A23
0.92 0.60 0.09 0.05 0.35 0.07 0.06
0.77 0.38 0.05 0.06 0.56 0.04 0.11
0.62 0.30 0.15 0.17 0.53 0.19 0.12
0.46 0.37 0.12 0.07 0.56 0.13 0.10
0.31 0.41 0.15 0.09 0.50 0.18 0.10
0.15 0.36 0.14 0.10 0.54 0.12 0.12
0.00 0.23 0.11 0.08 0.69 0.10 0.13
-0.15 0.24 0.07 0.07 0.69 0.11 0.10
-0.31 0.18 0.05 0.08 0.75 0.08 0.07
-0.46 0.11 0.02 0.04 0.84 -0.01 0.04
-0.62 0.21 0.00 0.02 0.77 0.02 0.01
-0.77 0.18 -0.02 0.03 0.80 -0.04 0.01
-0.92 0.64 -0.05 0.02 0.34 -0.19 -0.01

0% Length, 0% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.40 0.04 0.06 0.54 0.01 0.04
0.77 0.53 -0.01 0.06 0.41 0.10 0.02
0.62 0.47 0.02 0.05 0.48 0.10 0.03
0.46 0.17 0.00 0.09 0.74 0.04 -0.02
0.31 0.29 0.05 0.09 0.62 0.09 0.08
0.15 0.32 0.04 0.11 0.58 0.06 0.07
0.00 0.44 -0.01 0.08 0.48 0.04 0.02
-0.15 0.21 0.02 0.18 0.61 0.01 0.07
-0.31 0.19 -0.02 0.19 0.62 0.03 -0.03
-0.46 0.18 0.04 0.18 0.64 -0.03 0.10
-0.62 0.37 -0.01 0.17 0.46 -0.03 0.05
-0.77 0.51 0.03 0.11 0.39 0.01 0.06
-0.92 0.53 0.00 0.02 0.44 0.08 0.01

10% Length, 0% Width
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Figure D.7: Experimentally determined orientation values at 40% fill and 0% of width in the 

end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 
Figure D.8: Experimentally determined fiber orientation values at 90% fill and 0% of width 

in the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

z/2H A11 A12 A22 A33 A13 A23
0.92 0.53 0.00 0.02 0.45 0.05 0.03
0.77 0.43 0.01 0.02 0.55 0.16 0.02
0.62 0.36 0.01 0.04 0.60 0.10 0.06
0.46 0.45 0.03 0.05 0.50 0.10 0.03
0.31 0.35 0.02 0.02 0.62 0.14 0.03
0.15 0.28 0.06 0.04 0.68 0.17 0.08
0.00 0.25 0.04 0.04 0.72 0.12 0.06
-0.15 0.10 -0.01 0.04 0.86 0.08 0.01
-0.31 0.19 0.01 0.04 0.77 0.12 0.04
-0.46 0.40 -0.04 0.04 0.56 -0.01 0.07
-0.62 0.60 0.01 0.04 0.37 0.06 0.03
-0.77 0.52 -0.01 0.06 0.41 0.08 0.02
-0.92 0.53 0.01 0.03 0.44 0.10 0.02

40% Length, 0% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.51 0.07 0.04 0.45 0.05 0.08
0.77 0.69 0.04 0.01 0.30 -0.03 0.02
0.62 0.26 0.03 0.02 0.72 0.07 0.04
0.46 0.20 0.02 0.03 0.76 0.00 0.05
0.31 0.18 0.01 0.03 0.79 0.02 0.03
0.15 0.07 0.01 0.03 0.90 0.04 0.05
0.00 0.18 0.03 0.08 0.74 0.08 0.09
-0.15 0.19 0.10 0.11 0.70 0.04 0.05
-0.31 0.16 0.06 0.08 0.76 0.05 0.09
-0.46 0.18 0.05 0.10 0.72 0.00 0.07
-0.62 0.31 0.01 0.06 0.63 0.00 0.02
-0.77 0.20 -0.02 0.04 0.76 0.00 0.00
-0.92 0.71 -0.03 0.03 0.27 0.02 0.01

90% Length, 0% Width
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Figure D.9: Experimentally determined orientation values at 0% fill and 50% of width in the 

end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 
Figure D.10: Experimentally determined orientation values at 10% fill and 50% of width in 

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 

z/2H A11 A12 A22 A33 A13 A23
0.92 0.54 0.12 0.07 0.39 0.25 0.08
0.77 0.59 0.12 0.05 0.36 -0.02 0.07
0.62 0.54 0.11 0.05 0.41 0.04 0.06
0.46 0.55 0.07 0.04 0.41 0.03 0.06
0.31 0.45 0.12 0.06 0.50 0.15 0.10
0.15 0.57 0.12 0.05 0.38 0.16 0.08
0.00 0.70 0.14 0.05 0.25 0.24 0.07
-0.15 0.64 0.12 0.04 0.32 0.15 0.06
-0.31 0.69 0.12 0.04 0.27 0.19 0.06
-0.46 0.45 0.04 0.03 0.52 0.02 0.05
-0.62 0.38 0.05 0.03 0.59 0.06 0.05
-0.77 0.53 0.00 0.02 0.45 -0.09 0.01
-0.92 0.50 -0.01 0.02 0.48 -0.11 0.01

0% Length, 50% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.53 0.01 0.01 0.46 0.06 0.02
0.77 0.64 -0.01 0.02 0.35 0.01 0.03
0.62 0.66 0.02 0.02 0.32 0.05 0.03
0.46 0.75 0.02 0.01 0.23 0.03 0.02
0.31 0.55 0.03 0.01 0.44 0.06 0.02
0.15 0.59 0.04 0.02 0.39 0.09 0.03
0.00 0.65 0.03 0.02 0.33 0.07 0.03
-0.15 0.66 0.00 0.01 0.32 0.01 0.03
-0.31 0.57 0.01 0.03 0.41 0.02 0.03
-0.46 0.53 -0.02 0.02 0.44 -0.01 0.03
-0.62 0.51 -0.01 0.01 0.48 -0.03 0.02
-0.77 0.57 0.00 0.02 0.41 -0.03 0.03
-0.92 0.57 0.00 0.01 0.42 -0.01 0.03

10% Length, 50% Width
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Figure D.11: Experimentally determined orientation values at 40% fill and 50% of width in 

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 
Figure D.12: Experimentally determined orientation values at 90% fill and 50% of width in 

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 

z/2H A11 A12 A22 A33 A13 A23
0.92 0.41 0.01 0.02 0.56 0.02 0.03
0.77 0.45 0.00 0.02 0.54 -0.01 0.03
0.62 0.71 0.01 0.02 0.27 0.03 0.03
0.46 0.75 0.01 0.02 0.23 0.04 0.03
0.31 0.71 0.02 0.01 0.27 0.02 0.02
0.15 0.57 0.01 0.02 0.41 0.04 0.04
0.00 0.62 0.04 0.03 0.36 0.03 0.04
-0.15 0.63 0.02 0.03 0.34 0.03 0.04
-0.31 0.50 -0.01 0.02 0.48 -0.01 0.04
-0.46 0.58 -0.01 0.01 0.40 -0.02 0.03
-0.62 0.54 -0.01 0.02 0.45 -0.03 0.04
-0.77 0.69 -0.01 0.02 0.29 -0.02 0.03
-0.92 0.71 -0.01 0.02 0.28 -0.03 0.03

40% Length, 50% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.41 0.02 0.03 0.56 0.08 0.04
0.77 0.46 0.01 0.01 0.52 0.01 0.03
0.62 0.49 0.01 0.02 0.49 0.01 0.03
0.46 0.53 0.01 0.03 0.44 0.02 0.03
0.31 0.64 -0.02 0.02 0.35 -0.03 0.03
0.15 0.64 0.01 0.04 0.32 -0.01 0.03
0.00 0.63 0.04 0.03 0.35 0.02 0.03
-0.15 0.58 0.01 0.02 0.40 0.02 0.03
-0.31 0.62 0.00 0.04 0.34 -0.03 0.04
-0.46 0.62 0.00 0.02 0.36 -0.02 0.04
-0.62 0.65 -0.01 0.02 0.33 -0.01 0.04
-0.77 0.64 0.02 0.02 0.34 0.06 0.03
-0.92 0.65 0.03 0.02 0.32 0.10 0.04

90% Length, 50% Width
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Figure D.13: Experimentally determined orientation values at 0% fill and 90% of width in 

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 
Figure D.14: Experimentally determined orientation values at 10% fill and 90% of width in 

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 

z/2H A11 A12 A22 A33 A13 A23
0.92 0.71 0.16 0.06 0.23 0.12 0.05
0.77 0.78 0.18 0.05 0.16 0.27 0.06
0.62 0.77 0.12 0.05 0.18 0.23 0.05
0.46 0.60 0.12 0.05 0.36 0.12 0.06
0.31 0.74 0.14 0.07 0.19 0.18 0.05
0.15 0.67 0.17 0.07 0.26 0.19 0.05
0.00 0.67 0.15 0.06 0.27 0.12 0.08
-0.15 0.68 0.16 0.06 0.25 0.15 0.09
-0.31 0.78 0.09 0.03 0.19 0.15 0.04
-0.46 0.58 0.04 0.05 0.37 -0.01 0.04
-0.62 0.82 0.00 0.02 0.16 -0.07 0.01
-0.77 0.60 0.02 0.06 0.34 -0.12 0.06
-0.92 0.42 0.02 0.03 0.55 0.19 0.03

0% Length, 90% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.42 0.05 0.03 0.55 0.12 0.04
0.77 0.65 0.04 0.01 0.34 0.11 0.02
0.62 0.75 0.06 0.02 0.23 0.08 0.02
0.46 0.64 0.05 0.04 0.32 0.08 0.03
0.31 0.76 0.04 0.03 0.21 0.09 0.04
0.15 0.85 0.04 0.02 0.13 0.05 0.02
0.00 0.82 0.02 0.02 0.15 0.04 0.03
-0.15 0.81 0.04 0.03 0.16 0.11 0.04
-0.31 0.76 0.06 0.02 0.21 0.11 0.04
-0.46 0.70 0.00 0.03 0.27 -0.01 0.05
-0.62 0.69 0.01 0.03 0.28 -0.04 0.04
-0.77 0.63 -0.01 0.03 0.35 -0.07 0.04
-0.92 0.75 -0.02 0.01 0.24 -0.12 0.02

10% Length, 90% Width
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Figure D.15: Experimentally determined orientation values at 40% fill and 90% of width in 

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 

 
Figure D.16: Experimentally determined orientation values at 90% fill and 90% of width in 

the end-gated plaque for SABIC Verton PP/30 wt. % LGF using bin width of 0.7 mm. 
  

z/2H A11 A12 A22 A33 A13 A23
0.92 0.43 0.02 0.01 0.55 0.06 0.03
0.77 0.61 0.03 0.02 0.37 0.01 0.03
0.62 0.59 0.00 0.02 0.38 0.02 0.03
0.46 0.62 0.01 0.03 0.35 0.02 0.04
0.31 0.64 0.02 0.04 0.32 0.00 0.04
0.15 0.64 -0.01 0.03 0.33 -0.05 0.04
0.00 0.78 -0.02 0.02 0.20 -0.06 0.03
-0.15 0.74 -0.02 0.04 0.22 -0.05 0.04
-0.31 0.83 -0.01 0.03 0.14 -0.02 0.03
-0.46 0.76 0.00 0.02 0.22 -0.01 0.03
-0.62 0.77 -0.01 0.03 0.20 0.01 0.04
-0.77 0.68 -0.01 0.02 0.30 -0.06 0.03
-0.92 0.35 -0.01 0.01 0.64 -0.04 0.02

40% Length, 90% Width

z/2H A11 A12 A22 A33 A13 A23
0.92 0.61 0.01 0.02 0.37 0.02 0.03
0.77 0.64 0.01 0.04 0.33 0.00 0.04
0.62 0.70 0.02 0.03 0.27 0.02 0.04
0.46 0.66 -0.01 0.02 0.31 -0.03 0.03
0.31 0.64 0.01 0.03 0.33 0.03 0.04
0.15 0.66 0.04 0.03 0.31 0.08 0.04
0.00 0.73 0.03 0.04 0.23 0.03 0.04
-0.15 0.76 0.05 0.03 0.21 0.06 0.04
-0.31 0.72 0.06 0.05 0.24 0.07 0.05
-0.46 0.63 0.05 0.06 0.31 0.03 0.06
-0.62 0.58 0.03 0.05 0.37 0.01 0.05
-0.77 0.61 0.00 0.02 0.37 0.00 0.03
-0.92 0.69 0.00 0.01 0.30 0.00 0.02

90% Length, 90% Width
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E MATLAB Fiber Orientation Software Package 
E.1 Fiber Orientation Interface Scripts 

E.1.1 cgd_ft.m 
%% Transient Cross-Section Orientation Calculations 
% K.J. Meyer 
% 12/10/2011 
  
% clear all 
% close all 
% clc 
  
%% Defining the POLYFLOW Files Directory 
% This is the directory where the POLYFLOW export files are. The files 
% should be '.txt' or '.csv' format with a ',' delimiter. 
dir = 'D:\Computational Files\Transient CGD Simulation Files\PlanarDataRefine_2mm\'; 
type = '.csv'; 
timesteps = dlmread(sprintf('%s%s%s',dir,'timesteps','.txt'),','); 
  
  
%% Defining the Constants for the FT Simulation 
% Folgar-Tucker Constants 
C_I = 0.003; 
OF = 0.03; 
  
  
%% Defining Additional Simulation Parameters 
SendNotification = 0; 
EmailAddress = 'kjmeyer@vt.edu'; 
save = 0; %Do you want to save the generated files in a txt format? 
start = 6; 
finish = 590; 
fill = 299; 
step = 5; 
  
%% Pre-Allocation 
% We pre-define a number of variables that would ususally grow inside a 
% loop and slow down computation. 
vx = zeros(31,fill); 
vy = zeros(31,fill); 
vz = zeros(31,fill); 
  
fluid_frac = zeros(31,fill); 
  
Aft_t2 = zeros(31,9,fill); 
Aft_t1 = zeros(31,9,fill); 
  
count = start; 
  
  
%% Begin the Simulation 
  
while (count <= finish) % Number of timesteps 
    disp(count) 
    data = dlmread(sprintf('%s%i%s',dir,count,type),','); 
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    polydata = sortrows(data, [3 1 2]); 
     
    % Specifying the integration time, based on time input given 
    % above 
     
    for i = 2:fill 
        % Number of fill percentages. Subtracting first and last step. 
        % Numerical approximations are used and need i+1 and i-1 data. 
        % These are not availible for 1 and 100. 
        %=========================================================================% 
        % To calculate the change in distance in the flow direction in the BR 
        % model we need to load the cross-section data from the previous 
        % two positions. Special conditions are needed for the first two 
        % iterative steps in the solution because i /= 0; 
        %=========================================================================% 
         
         
        %=========================================================================% 
        % Reading in the data for the cross-section of interest. For some 
        % of the calculation we need one and two steps back from the region 
        % of interest to estimate the derivative. 
        %=========================================================================% 
        pointm1 = (i-1)*31; 
        point = i*31; 
        pointp1 = (i+1)*31; 
         
        v = [polydata(point-30:point,6) polydata(point-30:point,10) polydata(point-30:point,14)]; 
        v_m1 = [polydata(pointm1-30:pointm1,6) polydata(pointm1-30:pointm1,10) polydata(pointm1-30:pointm1,14)]; 
        v_p1 = [polydata(pointp1-30:pointp1,6) polydata(pointp1-30:pointp1,10) polydata(pointp1-30:pointp1,14)]; 
         
        % For visualization purposes 
         
        vx(:,i) = v(:,1); 
        vy(:,i) = v(:,2); 
        vz(:,i) = v(:,3); 
         
        dvi_dxi = zeros(31,9,fill); 
         
        dvi_dxi(:,1,i) = polydata(point-30:point,7); 
        dvi_dxi(:,2,i) = polydata(point-30:point,8); 
        dvi_dxi(:,3,i) = polydata(point-30:point,9); 
        dvi_dxi(:,4,i) = polydata(point-30:point,11); 
        dvi_dxi(:,5,i) = polydata(point-30:point,12); 
        dvi_dxi(:,6,i) = polydata(point-30:point,13); 
        dvi_dxi(:,7,i) = polydata(point-30:point,15); 
        dvi_dxi(:,8,i) = polydata(point-30:point,16); 
        dvi_dxi(:,9,i) = polydata(point-30:point,17); 
         
        fluid_frac(:,i) = polydata(point-30:point,4); 
         
         
        %% =======================================================================% 
        %                      Cross - Section Integration                        % 
        %=========================================================================% 
        % Here we integrate through each cross-section of data outputted by 
        % POLYFLOW. j = 1:31 because we have chosen 31 cross-section 
        % sampling points but the last sample is out of the domain 
        % resulting in NAN's so we have neglected that. 
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        %=========================================================================% 
         
        % Calculating the orientation values at different cross-sections 
        % (j = 1 to # of cross-sections). 
         
        for j = 1:31 % Number of cross sections 
             
            % Inital orientation guesses, starting at position 2 (which is 
            % really equal to 1% fill). Further iterations in the i 
            % direction use previous solutions of orientation. 
             
            if (fluid_frac(j,i) < 0.1) 
                continue 
            end 
             
            if (i == 2) 
                Aft_t1(j,:,1) = FT_initial(j); 
                Aft_t1(j,:,i) = FT_initial(j); 
            end 
             
            % To estimate some of the derivatives in the models, we need to 
            % calculate the change in coordinates. This calculates that 
            % change as we iterate through (j,i) steps (thickness,fill). 
             
            dX = [0.2983 0.0667 0]; 
             
            % Reading the velocity gradient data at each node of interest 
            % and manipulating the data to calculate the vorticity and rate 
            % of deformation. 
            dvi = [dvi_dxi(j,1,i) dvi_dxi(j,2,i) dvi_dxi(j,3,i) dvi_dxi(j,4,i) dvi_dxi(j,5,i) dvi_dxi(j,6,i) dvi_dxi(j,7,i) dvi_dxi(j,8,i) 
dvi_dxi(j,9,i)]; 
            delV = reshape(dvi,3,3); 
            w = reshape((1/2)*(delV - delV'),1,9); 
            d = reshape((1/2)*(delV + delV'),1,9); 
             
            % If there is no previous orientation history, convect the 
            % solution to the next spacial position. 
             
            if ((j == 1) || (j == 31)) 
                A_0 = Aft_t1(j,:,i); 
                 
                if (A_0(1) == 0) 
                    A_0 = Aft_t2(j,:,i-1); 
                end 
                 
                %                 ftibof = @(t,A) ARD_RSC_IBOF_mex(w,d,OF,b1,b2,b3,b4,b5,A); 
                ftibof = @(t,A) FT_IBOF_mex(w,d,C_I,OF,A); 
                [t1,A1] = ode45(ftibof,linspace(timesteps(count-step),timesteps(count),5),A_0); 
                Aft_t2(j,:,i) = A1(length(A1(:,1)),:); 
                Aft_t2(j,:,i) = Aft_t2(j,:,i)./(Aft_t2(j,1,i) + Aft_t2(j,5,i) + Aft_t2(j,9,i)); 
                continue 
            end 
             
            if ((1 < j) && (j < 31)) 
                A_0 = Aft_t1(j,:,i); 
                 
                if (A_0(1) == 0) 
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                    A_0 = Aft_t2(j,:,i-1); 
                end 
                 
                Am11 = Aft_t2(j,:,i-1); 
                Am12 = Aft_t2(j-1,:,i); 
                Am13 = zeros(1,9); 
                 
                %                 ftibof = @(t,A) ARD_RSC_IBOFc_mex(w,d,OF,b1,b2,b3,b4,b5,A,Am11,Am12,Am13,dX,[vx(j,i,k) 
vy(j,i,k) vz(j,i,k)]); 
                ftibof = @(t,A) FT_IBOFc_mex(w,d,C_I,OF,A,Am11,Am12,Am13,dX,[vx(j,i) vy(j,i) vz(j,i)]); 
                [t1,A1] = ode45(ftibof,linspace(timesteps(count-step),timesteps(count),5),A_0); 
                Aft_t2(j,:,i) = A1(length(A1(:,1)),:); 
                Aft_t2(j,:,i) = Aft_t2(j,:,i)./(Aft_t2(j,1,i) + Aft_t2(j,5,i) + Aft_t2(j,9,i)); 
            end 
             
             
        end 
    end 
    count = count + step; 
    Aft_t1 = Aft_t2; 
end 
E.1.2 cgd_br.m 
%% Transient Cross-Section Orientation Calculations 
% K.J. Meyer 
% 12/10/2011 
  
clear all 
close all 
clc 
  
%% Defining the POLYFLOW Files Directory 
dir = 'D:\Computational Files\Transient CGD Simulation Files\PlanarDataRefine_2mm\'; 
type = '.csv'; 
timesteps = dlmread(sprintf('%s%s%s',dir,'timesteps','.txt'),','); 
  
%% Defining the Constants for the Simulation 
C_I = 0.053; 
OF = 0.13; 
lb = 1.8; 
kbend = 218; 
  
SendNotification = 0; 
EmailAddress = 'kjmeyer@vt.edu'; 
save = 0; %Do you want to save the generated files in a txt format? 
start = 6; 
finish = 590; 
fill = 299; 
step = 5; 
  
  
% Pre-allocation of internal variables for speed 
A11br_cross = zeros(31,fill,finish); 
A22br_cross = zeros(31,fill,finish); 
A33br_cross = zeros(31,fill,finish); 
A12br_cross = zeros(31,fill,finish); 
A13br_cross = zeros(31,fill,finish); 
vx = zeros(31,fill,finish); 
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vy = zeros(31,fill,finish); 
vz = zeros(31,fill,finish); 
fluid_frac = zeros(31,fill,finish); 
temp = zeros(31,fill,finish); 
xcoords = zeros(31,fill,finish); 
ycoords = zeros(31,fill,finish); 
zcoords = zeros(31,fill,finish); 
dvi_dxi = zeros(31,9,fill,finish); 
  
tbr = zeros(fill,finish); 
Abr = zeros(31,9,fill,finish); 
Bbr = zeros(31,9,fill,finish); 
Cbr = zeros(31,3,fill,finish); 
Rbr = zeros(31,9,fill,finish); 
  
% Movie generation 
% dos('del D:\Computational Files\Transient CGD Simulation Files\PlanarData2s\orient_quadconv.avi'); 
% mov = avifile([dir,'orient_quadconv.avi'],'Compression','none','fps',10); 
  
%% Begin the Simulation 
for k = start:step:finish % Number of timesteps 
    data = dlmread(sprintf('%s%i%s',dir,k,type),','); 
    polydata = sortrows(data, [1 2]); 
     
    % Specifying the integration time, based on time input given 
    % above 
     
    % *********WARNING*********% 
    % The time specification must be changed depending on the fill time 
    % that is being studied. Remember to do this otherwise the predictions 
    % will not converge. 
     
    for i = 2:fill  % Number of fill percentages. Subtracting first and last step. 
        % Numerical approximations are used and need i+1 and i-1 data. 
        % These are not availible for 1 and 100. 
        %=========================================================================% 
        % To calculate the change in distance in the flow direction in the BR 
        % model we need to load the cross-section data from the previous 
        % two positions. Special conditions are needed for the first two 
        % iterative steps in the solution because i /= 0; 
        %=========================================================================% 
         
         
        %=========================================================================% 
        % Reading in the data for the cross-section of interest. For some 
        % of the calculation we need one and two steps back from the region 
        % of interest to estimate the derivative. 
        %=========================================================================% 
        pointm1 = (i-1)*31; 
        point = i*31; 
        pointp1 = (i+1)*31; 
         
        v = [polydata(point-30:point,6) polydata(point-30:point,10) polydata(point-30:point,14)]; 
        v_m1 = [polydata(pointm1-30:pointm1,6) polydata(pointm1-30:pointm1,10) polydata(pointm1-30:pointm1,14)]; 
        v_p1 = [polydata(pointp1-30:pointp1,6) polydata(pointp1-30:pointp1,10) polydata(pointp1-30:pointp1,14)]; 
         
        vx(:,i,k) = v(:,1); 
        vy(:,i,k) = v(:,2); 
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        vz(:,i,k) = v(:,3); 
         
        v(1,:) = 0; 
        v(31,:) = 0; 
        v_p1(1,:) = 0; 
        v_p1(31,:) = 0;         
        v_m1(1,:) = 0; 
        v_m1(31,:) = 0; 
         
        xcoords(:,i,k) = polydata(point-30:point,1); 
        ycoords(:,i,k) = polydata(point-30:point,2); 
        zcoords(:,i,k) = polydata(point-30:point,3); 
         
        dvi_dxi(:,1,i) = polydata(point-30:point,7); 
        dvi_dxi(:,2,i) = polydata(point-30:point,8); 
        dvi_dxi(:,3,i) = polydata(point-30:point,9); 
        dvi_dxi(:,4,i) = polydata(point-30:point,11); 
        dvi_dxi(:,5,i) = polydata(point-30:point,12); 
        dvi_dxi(:,6,i) = polydata(point-30:point,13); 
        dvi_dxi(:,7,i) = polydata(point-30:point,15); 
        dvi_dxi(:,8,i) = polydata(point-30:point,16); 
        dvi_dxi(:,9,i) = polydata(point-30:point,17); 
         
        fluid_frac(:,i,k) = polydata(point-30:point,4); 
         
        %=========================================================================% 
        %                      Cross - Section Integration                        % 
        %=========================================================================% 
        % Here we integrate through each cross-section of data outputted by 
        % POLYFLOW. j = 1:31 because we have chosen 31 cross-section 
        % sampling points but the last sample is out of the domain 
        % resulting in NAN's so we have neglected that. 
        %=========================================================================% 
         
        % Calculating the orientation values at different cross-sections 
        % (j = 1 to # of cross-sections). 
         
        for j = 1:31 % Number of cross sections 
             
            % Inital orientation guesses, starting at position 2 (which is 
            % really equal to 1% fill). Further iterations in the i 
            % direction use previous solutions of orientation. 
             
            if (fluid_frac(j,i,k) < 0.15) 
                continue 
            end 
             
            if (i == 2) 
                [Br1 Br2 Br3] = BR_initial(j); 
                Abr(j,:,1,k) = Br1; 
                Bbr(j,:,1,k) = Br2; 
                Cbr(j,:,1,k) = Br3; 
            end 
             
            % To estimate some of the derivatives in the models, we need to 
            % calculate the change in coordinates. This calculates that 
            % change as we interate through (j,i) steps (thickness,fill). 
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            dX = [0.2984 0.0667 0]; 
             
            % Reading the velocity gradient data at each node of interest 
            % and manipulating the data to calculate the vorticity and rate 
            % of deformation. 
            dvi = [dvi_dxi(j,1,i) dvi_dxi(j,2,i) dvi_dxi(j,3,i) dvi_dxi(j,4,i) dvi_dxi(j,5,i) dvi_dxi(j,6,i) dvi_dxi(j,7,i) dvi_dxi(j,8,i) 
dvi_dxi(j,9,i)]; 
            delV = reshape(dvi,3,3); 
            w = reshape((1/2)*(delV - delV'),1,9); 
            d = reshape((1/2)*(delV + delV'),1,9); 
             
            % Defining the Input set of Orientation equation 
             
            if ((j == 1) || (j == 31)) 
                A_0 = [Abr(j,:,i,k-step) Bbr(j,:,i,k-step) Cbr(j,:,i,k-step)]; 
                 
                if (A_0(1) == 0) 
                    A_0 = [Abr(j,:,i-1,k) Bbr(j,:,i-1,k) Cbr(j,:,i-1,k)]; 
                end 
                 
                ftibof = @(t,A) BR_IBOF_mex(dX,dvi,v,v_m1,v_p1,w,d,lb,kbend,C_I,OF,A,i,j); 
                [t1,A1] = ode45(ftibof,linspace(timesteps(k-step),timesteps(k),15),A_0); 
                Abr(j,:,i,k) = A1(length(A1(:,1)),1:9); 
                Bbr(j,:,i,k) = A1(length(A1(:,1)),10:18); 
                Cbr(j,:,i,k) = A1(length(A1(:,1)),19:21); 
            end 
             
            if ((1 < j) && (j < 31)) 
                A_0 = [Abr(j,:,i,k-step) Bbr(j,:,i,k-step) Cbr(j,:,i,k-step)]; 
                 
                if (A_0(1) == 0) 
                    A_0 = [Abr(j,:,i-1,k) Bbr(j,:,i-1,k) Cbr(j,:,i-1,k)]; 
                end 
  
                Am11 = Abr(j,:,i-1,k); 
                Am12 = Abr(j-1,:,i,k); 
                Am13 = zeros(1,9); 
                Bm11 = Bbr(j,:,i-1,k); 
                Bm12 = Bbr(j-1,:,i,k); 
                Bm13 = zeros(1,9); 
                Cm11 = Cbr(j,:,i-1,k); 
                Cm12 = Cbr(j-1,:,i,k); 
                Cm13 = zeros(1,3); 
                 
                ftibof = @(t,A) BR_IBOFc_mex(dX,dvi,v,v_m1,v_p1,[vx(j,i,k) vy(j,i,k) 
vz(j,i,k)],w,d,lb,kbend,C_I,OF,A,i,j,Am11,Am12,Am13,Bm11,Bm12,Bm13,Cm11,Cm12,Cm13); 
                [t1,A1] = ode45(ftibof,linspace(timesteps(k-step),timesteps(k),15),A_0); 
                Abr(j,:,i,k) = A1(length(A1(:,1)),1:9); 
                Bbr(j,:,i,k) = A1(length(A1(:,1)),10:18); 
                Cbr(j,:,i,k) = A1(length(A1(:,1)),19:21); 
            end 
             
            trB = Bbr(j,1,i,k) + Bbr(j,5,i,k) + Bbr(j,9,i,k); 
             
            Rbr(j,1,i,k) = abs(Abr(j,1,i,k) - Bbr(j,1,i,k))./(1 - trB); 
            Rbr(j,5,i,k) = abs(Abr(j,5,i,k) - Bbr(j,5,i,k))./(1 - trB); 
            Rbr(j,9,i,k) = abs(Abr(j,9,i,k) - Bbr(j,9,i,k))./(1 - trB); 
            Rbr(j,2,i,k) = abs(Abr(j,2,i,k) - Bbr(j,2,i,k))./(1 - trB); 
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            Rbr(j,3,i,k) = abs(Abr(j,3,i,k) - Abr(j,3,i,k))./(1 - trB); 
        end 
         
    end 
     
    [x,y] = meshgrid(linspace(0,1,299),linspace(-1,1,31)); 
    figure(1) 
    [C,h] = contourf(x,y,squeeze(Rbr(:,1,:,k))); 
    clabel(C,h); 
    set(gcf,'color','w','Position',[100 100 1200 300]); 
    pause(0.01) 
end 
E.1.3 egp_ft.m 
% K.J. Meyer 
% 12/10/2011 
  
clear all 
close all 
clc 
savedir = 'D:\Computational Files\Transient EGP Simulation Files\Full Mold\EGP Mold\Experimental Full\FT Results Fitted 
LinearInterp\'; 
  
%% Defining the POLYFLOW Files Directory 
dir = 'D:\Computational Files\Transient EGP Simulation Files\Full Mold\EGP Mold\'; 
type = '.csv'; 
timesteps = dlmread(sprintf('%s%s%s',dir,'timesteps','.txt'),','); 
  
%% Defining the Constants for the Simulation 
OF = 0.0087; 
C_I = 0.2278; 
  
% b1 = 0.0018; 
% b2 = 0.0005; 
% b3 = 0.0013; 
% b4 = 3.4E-5; 
% b5 = 0.0015; 
  
start = 40; 
finish = 550; 
fill = 299; 
planes = 11; 
step = 2; 
  
%% Pre-allocation of internal variables for speed 
vx = zeros(31,fill); 
vy = zeros(31,fill); 
vz = zeros(31,fill); 
  
fluid_frac = zeros(31,fill,planes); 
  
Aft_t2 = zeros(31,9,fill,planes); 
Aft_t1 = zeros(31,9,fill,planes); 
  
count = start; 
  
%% Begin the Simulation 
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while (count <= finish) % Number of timesteps 
    disp(count) 
    data = dlmread(sprintf('%s%i%s',dir,count,type),','); 
    polydata = sortrows(data, [3 1 2]); 
     
    for k = 1:11 
         
        plane_i_data = polydata(1 + 9300*(k-1):(9300*k),:); 
         
        for i = 2:299 
            % Number of fill percentages. Subtracting first and last step. 
            % Numerical approximations are used and need i+1 and i-1 data. 
            % These are not availible for 1 and 100. 
            %=========================================================================% 
            % To calculate the change in distance in the flow direction in the BR 
            % model we need to load the cross-section data from the previous 
            % two positions. Special conditions are needed for the first two 
            % iterative steps in the solution because i /= 0; 
            %=========================================================================% 
             
             
            %=========================================================================% 
            % Reading in the data for the cross-section of interest. For some 
            % of the calculation we need one and two steps back from the region 
            % of interest to estimate the derivative. 
            %=========================================================================% 
             
            clear dvi_dxi 
             
            pointm1 = (i-1)*31; 
            point = i*31; 
            pointp1 = (i+1)*31; 
             
            v = [plane_i_data(point-30:point,6) plane_i_data(point-30:point,10) plane_i_data(point-30:point,14)]; 
            v_m1 = [plane_i_data(pointm1-30:pointm1,6) plane_i_data(pointm1-30:pointm1,10) plane_i_data(pointm1-
30:pointm1,14)]; 
            v_p1 = [plane_i_data(pointp1-30:pointp1,6) plane_i_data(pointp1-30:pointp1,10) plane_i_data(pointp1-30:pointp1,14)]; 
             
            % For visualization purposes 
             
            vx(:,i,k) = v(:,1); 
            vy(:,i,k) = v(:,2); 
            vz(:,i,k) = v(:,3); 
             
            dvi_dxi = zeros(31,9,fill); 
             
            dvi_dxi(:,1,i) = plane_i_data(point-30:point,7); 
            dvi_dxi(:,2,i) = plane_i_data(point-30:point,8); 
            dvi_dxi(:,3,i) = plane_i_data(point-30:point,9); 
            dvi_dxi(:,4,i) = plane_i_data(point-30:point,11); 
            dvi_dxi(:,5,i) = plane_i_data(point-30:point,12); 
            dvi_dxi(:,6,i) = plane_i_data(point-30:point,13); 
            dvi_dxi(:,7,i) = plane_i_data(point-30:point,15); 
            dvi_dxi(:,8,i) = plane_i_data(point-30:point,16); 
            dvi_dxi(:,9,i) = plane_i_data(point-30:point,17); 
             
            fluid_frac(:,i,k) = plane_i_data(point-30:point,4); 
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            %% =======================================================================% 
            %                      Cross - Section Integration                        % 
            %=========================================================================% 
            % Here we integrate through each cross-section of data outputted by 
            % POLYFLOW. j = 1:31 because we have chosen 31 cross-section 
            % sampling points but the last sample is out of the domain 
            % resulting in NAN's so we have neglected that. 
            %=========================================================================% 
             
            % Calculating the orientation values at different cross-sections 
            % (j = 1 to # of cross-sections). 
             
            for j = 1:31 % Number of cross sections 
                                 
                % Inital orientation guesses, starting at position 2 (which is 
                % really equal to 1% fill). Further iterations in the i 
                % direction use previous solutions of orientation. 
                 
                if (fluid_frac(j,i,k) < 0.15) 
                    continue 
                end 
                 
                if (i == 2) 
                    Aft_t2(j,:,1,k) = EXP_EGP_full(i,j,k,count); 
                    Aft_t2(j,:,i,k) = EXP_EGP_full(i,j,k,count); 
                end               
                 
                % To estimate some of the derivatives in the models, we need to 
                % calculate the change in coordinates. This calculates that 
                % change as we interate through (j,i) steps (thickness,fill).   
                 
                dX = [0.4 0.0500 0]; 
                 
                if (k > 1) 
                    dX(1,3) = 3.4114; 
                end 
                 
                % Reading the velocity gradient data at each node of interest 
                % and manipulating the data to calculate the vorticity and rate 
                % of deformation. 
                dvi = [dvi_dxi(j,1,i) dvi_dxi(j,2,i) dvi_dxi(j,3,i) dvi_dxi(j,4,i) dvi_dxi(j,5,i) dvi_dxi(j,6,i) dvi_dxi(j,7,i) dvi_dxi(j,8,i) 
dvi_dxi(j,9,i)]; 
                delV = reshape(dvi,3,3); 
                w = reshape((1/2)*(delV - delV'),1,9); 
                d = reshape((1/2)*(delV + delV'),1,9); 
                 
                % Defining the Input set of Orientation equations 
                                                
                if ((j == 1) || (j == 31)) 
                    A_0 = Aft_t1(j,:,i,k); 
                     
                    if (A_0(1) == 0) 
                        A_0 = Aft_t2(j,:,i-1,k); 
                    end 
                     
%                     ftibof = @(t,A) ARD_RSC_IBOF_mex(w,d,OF,b1,b2,b3,b4,b5,A); 
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                    ftibof = @(t,A) FT_IBOF_mex(w,d,C_I,OF,A); 
                    [t1,A1] = ode45(ftibof,linspace(timesteps(count-step),timesteps(count),5),A_0); 
                    Aft_t2(j,:,i,k) = A1(length(A1(:,1)),:); 
                    Aft_t2(j,:,i,k) = Aft_t2(j,:,i,k)./(Aft_t2(j,1,i,k) + Aft_t2(j,5,i,k) + Aft_t2(j,9,i,k)); 
                    continue 
                end 
                 
                if ((1 < j) && (j < 31)) 
                    A_0 = Aft_t1(j,:,i,k); 
                     
                    if (A_0(1) == 0) 
                        A_0 = Aft_t2(j,:,i-1,k); 
                    end 
                     
                    Am11 = Aft_t2(j,:,i-1,k); 
                    Am12 = Aft_t2(j-1,:,i,k); 
                    Am13 = zeros(1,9); 
                     
                    if (k > 1) 
                        Am13 = Aft_t2(j,:,i,k-1); 
                        A_0 = Aft_t2(j,:,i,k-1); 
                    end 
%                     ftibof = @(t,A) ARD_RSC_IBOFc_mex(w,d,OF,b1,b2,b3,b4,b5,A,Am11,Am12,Am13,dX,[vx(j,i,k) vy(j,i,k) 
vz(j,i,k)]); 
                    ftibof = @(t,A) FT_IBOFc_mex(w,d,C_I,OF,A,Am11,Am12,Am13,dX,[vx(j,i,k) vy(j,i,k) vz(j,i,k)]); 
                    [t1,A1] = ode45(ftibof,linspace(timesteps(count-step),timesteps(count),5),A_0); 
                    Aft_t2(j,:,i,k) = A1(length(A1(:,1)),:); 
                    Aft_t2(j,:,i,k) = Aft_t2(j,:,i,k)./(Aft_t2(j,1,i,k) + Aft_t2(j,5,i,k) + Aft_t2(j,9,i,k)); 
                end 
            end 
        end 
        if (count > 5) 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A11ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,1,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A12ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,2,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A13ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,3,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A22ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,5,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A33ft_cross',k,'_',count,'.txt'),squeeze(Aft_t2(:,9,:,k)));             
        end 
    end 
    count = count + step; 
    Aft_t1 = Aft_t2; 
end 
 
E.1.4 egp_br.m 
%% Transient Cross-Section Orientation Calculations 
% K.J. Meyer 
% 12/10/2011 
  
clear all 
close all 
clc 
savedir = 'D:\Computational Files\Transient EGP Simulation Files\Full Mold\EGP Mold\Experimental\BR Results Fitted\'; 
  
%% Defining the POLYFLOW Files Directory 
dir = 'D:\Computational Files\Transient EGP Simulation Files\Full Mold\EGP Mold\'; 
type = '.csv'; 
timesteps = dlmread(sprintf('%s%s%s',dir,'timesteps','.txt'),','); 
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% Loading A Previous Solution 
load = 1; 
  
%% Defining the Constants for the Simulation 
OF = 0.0039; 
C_I = 0.4843; 
lb = 1.9;       % mm 
dia = 0.1;      % mm 
eta_0 = 293;   % Pa*s 
lam = 0.0059;   % s^-1 
n = 0.24;     % none 
a = 0.749; 
Ey = 80E9;      % Pa 
  
start = 40; 
finish = 550; 
fill = 299; 
planes = 11; 
step = 2; 
  
%% Pre-allocation of internal variables for speed 
vx = zeros(31,fill); 
vy = zeros(31,fill); 
vz = zeros(31,fill); 
  
fluid_frac = zeros(31,fill,planes); 
  
Abr_t2 = zeros(31,9,fill,planes); 
Abr_t1 = zeros(31,9,fill,planes); 
Bbr_t2 = zeros(31,9,fill,planes); 
Bbr_t1 = zeros(31,9,fill,planes); 
Cbr_t2 = zeros(31,3,fill,planes); 
Cbr_t1 = zeros(31,3,fill,planes); 
  
count = start; 
  
%% Begin the Simulation 
while (count <= finish) % Number of timesteps 
    disp(count) 
    data = dlmread(sprintf('%s%i%s',dir,count,'.csv')); 
    polydata = sortrows(data, [3 1 2]); 
     
    for k = 1 
         
        plane_i_data = polydata(1 + 9300*(k-1):(9300*k),:); 
         
        for i = 2:299 
            % Number of fill percentages. Subtracting first and last step. 
            % Numerical approximations are used and need i+1 and i-1 data. 
            % These are not availible for 1 and 300 
            %=========================================================================% 
            % To calculate the change in distance in the flow direction in the BR 
            % model we need to load the cross-section data from the previous 
            % two positions. Special conditions are needed for the first two 
            % iterative steps in the solution because i /= 0; 
            %=========================================================================% 
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            %=========================================================================% 
            % Reading in the data for the cross-section of interest. For some 
            % of the calculation we need one and two steps back from the region 
            % of interest to estimate the derivative. 
            %=========================================================================% 
             
            pointm1 = (i-1)*31; 
            point = i*31; 
            pointp1 = (i+1)*31; 
             
            v = [plane_i_data(point-30:point,6) plane_i_data(point-30:point,10) plane_i_data(point-30:point,14)]; 
            v_m1 = [plane_i_data(pointm1-30:pointm1,6) plane_i_data(pointm1-30:pointm1,10) plane_i_data(pointm1-
30:pointm1,14)]; 
            v_p1 = [plane_i_data(pointp1-30:pointp1,6) plane_i_data(pointp1-30:pointp1,10) plane_i_data(pointp1-30:pointp1,14)]; 
             
            % For visualization purposes 
             
            vx(:,i) = v(:,1); 
            vy(:,i) = v(:,2); 
            vz(:,i) = v(:,3); 
             
            dvi_dxi = zeros(31,9,fill); 
             
            dvi_dxi(:,1,i) = plane_i_data(point-30:point,7); 
            dvi_dxi(:,2,i) = plane_i_data(point-30:point,8); 
            dvi_dxi(:,3,i) = plane_i_data(point-30:point,9); 
            dvi_dxi(:,4,i) = plane_i_data(point-30:point,11); 
            dvi_dxi(:,5,i) = plane_i_data(point-30:point,12); 
            dvi_dxi(:,6,i) = plane_i_data(point-30:point,13); 
            dvi_dxi(:,7,i) = plane_i_data(point-30:point,15); 
            dvi_dxi(:,8,i) = plane_i_data(point-30:point,16); 
            dvi_dxi(:,9,i) = plane_i_data(point-30:point,17); 
             
            fluid_frac(:,i,k) = plane_i_data(point-30:point,4); 
             
            %% =======================================================================% 
            %                      Cross - Section Integration                        % 
            %=========================================================================% 
            % Here we integrate through each cross-section of data outputted by 
            % POLYFLOW. j = 1:31 because we have chosen 31 cross-section 
            % sampling points but the last sample is out of the domain 
            % resulting in NAN's so we have neglected that. 
            %=========================================================================% 
             
            % Calculating the orientation values at different cross-sections 
            % (j = 1 to # of cross-sections). 
             
            for j = 1:31 % Number of cross sections 
                 
                if (fluid_frac(j,i,k) < 0.15) 
                    continue 
                end 
                 
                if (i == 2) 
                    Abr_t2(j,:,1,k) = EXP_EGP_full(i,j,k,count); 
                    Bbr_t2(j,:,1,k) = -EXP_EGP_full(i,j,k,count); 
                    Cbr_t2(j,:,1,k) = [0 0 0]; 
                    Abr_t2(j,:,i,k) = EXP_EGP_full(i,j,k,count); 
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                    Bbr_t2(j,:,i,k) = -EXP_EGP_full(i,j,k,count); 
                    Cbr_t2(j,:,i,k) = [0 0 0]; 
                end 
                   
                % To estimate some of the derivatives in the models, we need to 
                % calculate the change in coordinates. This calculates that 
                % change as we interate through (j,i) steps (thickness,fill). 
                 
                dX = [0.4 0.0500 0]; 
                 
                if (k > 1) 
                    dX(1,3) = 3.4114; 
                end 
                 
                % Reading the velocity gradient data at each node of interest 
                % and manipulating the data to calculate the vorticity and rate 
                % of deformation. 
                dvi = [dvi_dxi(j,1,i) dvi_dxi(j,2,i) dvi_dxi(j,3,i) dvi_dxi(j,4,i) dvi_dxi(j,5,i) dvi_dxi(j,6,i) dvi_dxi(j,7,i) dvi_dxi(j,8,i) 
dvi_dxi(j,9,i)]; 
                delV = reshape(dvi,3,3); 
                w = reshape((1/2)*(delV - delV'),1,9); 
                d = reshape((1/2)*(delV + delV'),1,9); 
                 
                gamma = 2*d; 
                gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ... 
                                        gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ... 
                                        gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9))); 
                 
                if ((j == 1) || (j == 31)) 
                    A0 = [Abr_t1(j,:,i,k) Bbr_t1(j,:,i,k) Cbr_t1(j,:,i,k)]; 
                     
                    if (A0(1) == 0) 
                        A0 = [Abr_t2(j,:,i-1,k) Bbr_t2(j,:,i-1,k) Cbr_t2(j,:,i-1,k)]; 
                    end 
                     
%                     eta_m = eta_0*(1+(lam*gamma_mag)^a)^((n-1)/a); 
                    kflex = 20; %(Ey/(64*eta_m))*(dia^3/lb^3); 
                         
                    bribof = @(t,A) BR_IBOF_mex(dX,dvi,v,v_m1,v_p1,w,d,lb,kflex,C_I,OF,A,i,j); 
                    [t1,A1] = ode45(bribof,linspace(timesteps(count-step),timesteps(count),10),A0); 
                    Abr_t2(j,:,i,k) = A1(length(A1(:,1)),1:9); 
                    Bbr_t2(j,:,i,k) = A1(length(A1(:,1)),10:18); 
                    Cbr_t2(j,:,i,k) = A1(length(A1(:,1)),19:21); 
                    continue 
                end 
                 
                % Defining the Input set of Orientation equations 
                 
                if ((1 < j) && (j < 31)) 
                     
                    A0 = [Abr_t1(j,:,i,k) Bbr_t1(j,:,i,k) Cbr_t1(j,:,i,k)]; 
                     
                    if (A0(1) == 0) 
                        A0 = [Abr_t2(j,:,i-1,k) Bbr_t2(j,:,i-1,k) Cbr_t2(j,:,i-1,k)]; 
                    end 
                     
                    Am11 = Abr_t2(j,:,i-1,k); 
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                    Bm11 = Bbr_t2(j,:,i-1,k); 
                    Cm11 = Cbr_t2(j,:,i-1,k); 
                    Am12 = Abr_t2(j-1,:,i,k); 
                    Bm12 = Bbr_t2(j-1,:,i,k); 
                    Cm12 = Cbr_t2(j-1,:,i,k); 
                    Am13 = zeros(1,9); 
                    Bm13 = zeros(1,9); 
                    Cm13 = zeros(1,3); 
                     
                    if (k > 1) 
                        Am13 = Abr_t2(j,:,i,k-1); 
                        Bm13 = Bbr_t2(j,:,i,k-1); 
                        Cm13 = Cbr_t2(j,:,i,k-1); 
%                         A0 = [Abr_t2(j,:,i,k-1) Bbr_t2(j,:,i,k-1) Cbr_t2(j,:,i,k-1)]; 
                    end 
                     
%                     eta_m = eta_0*(1+(lam*gamma_mag)^a)^((n-1)/a); 
                    kflex = 20; %(Ey/(64*eta_m))*(dia^3/lb^3); 
                     
                    bribof = @(t,A) BR_IBOFc_mex(dX,dvi,v,v_m1,v_p1,[vx(j,i) vy(j,i) 
vz(j,i)],w,d,lb,kflex,C_I,OF,A,i,j,Am11,Am12,Am13,Bm11,Bm12,Bm13,Cm11,Cm12,Cm13); 
                    [t1,A1] = ode45(bribof,linspace(timesteps(count-step),timesteps(count),10),A0); 
                    Abr_t2(j,:,i,k) = A1(length(A1(:,1)),1:9); 
                    Bbr_t2(j,:,i,k) = A1(length(A1(:,1)),10:18); 
                    Cbr_t2(j,:,i,k) = A1(length(A1(:,1)),19:21); 
                end 
                 
                if (Abr_t2(j,1,i,k) >= 1) || (Abr_t2(j,5,i,k) >= 1) || (Abr_t2(j,9,i,k) >= 1) || (Abr_t2(j,1,i,k) <= 0) || (Abr_t2(j,5,i,k) <= 0) 
|| (Abr_t2(j,9,i,k) <= 0) || isnan(Abr_t2(j,1,i,k)) 
                    [Ai Bi Ci Ri] = threed_br_error_func(i,j,k,2,dX,dvi,v,v_m1,v_p1,w,d,lb,kflex,C_I,OF,[timesteps(count-step) 
timesteps(count)]); 
                    Abr_t2(j,:,i,k) = Ai; 
                    Bbr_t2(j,:,i,k) = Bi; 
                    Cbr_t2(j,:,i,k) = Ci; 
                end 
            end 
        end 
        if (count > 5) 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A11br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,1,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A12br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,2,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A13br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,3,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A22br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,5,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'A33br_cross',k,'_',count,'.txt'),squeeze(Abr_t2(:,9,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B11br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,1,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B12br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,2,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B13br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,3,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B22br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,5,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'B33br_cross',k,'_',count,'.txt'),squeeze(Bbr_t2(:,9,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'C11br_cross',k,'_',count,'.txt'),squeeze(Cbr_t2(:,1,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'C22br_cross',k,'_',count,'.txt'),squeeze(Cbr_t2(:,2,:,k))); 
            dlmwrite(sprintf('%s%s%i%s%i%s',savedir,'C33br_cross',k,'_',count,'.txt'),squeeze(Cbr_t2(:,3,:,k))); 
        end 
    end 
    count = count + step; 
    Abr_t1 = Abr_t2; 
    Bbr_t1 = Bbr_t2; 
    Cbr_t1 = Cbr_t2; 
end 
 



200 

 

E.2 Core Routines 

E.2.1 FT_quad.m 
function [dA] = FT_quad(w,d,C_I,OF,A) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ... 
                        gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ... 
                        gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9))); 
  
  
%% Orientation Calculations 
  
dA = zeros(9,1); 
     
dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ... 
            ((D(1)*A(1) + D(2)*A(4) + D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
            2*Explicit_Quad_v(D,A)*A(1)) + 2 * C_I * gamma_mag * (I(1) - 3 * A(1))); 
  
dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ... 
            ((D(1)*A(2) + D(2)*A(5) + D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
            2*Explicit_Quad_v(D,A)*A(2)) + 2 * C_I * gamma_mag * (I(2) - 3 * A(2))); 
  
dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ... 
            ((D(1)*A(3) + D(2)*A(6) + D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
            2*Explicit_Quad_v(D,A)*A(3)) + 2 * C_I * gamma_mag * (I(3) - 3 * A(3))); 
  
dA(4) = dA(2); 
  
dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ... 
            ((D(4)*A(2) + D(5)*A(5) + D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
            2*Explicit_Quad_v(D,A)*A(5)) + 2 * C_I * gamma_mag * (I(5) - 3 * A(5))); 
  
dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ... 
            ((D(4)*A(3) + D(5)*A(6) + D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
            2*Explicit_Quad_v(D,A)*A(6)) + 2 * C_I * gamma_mag * (I(6) - 3 * A(6))); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ... 
            ((D(7)*A(3) + D(8)*A(6) + D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - ... 
            2*Explicit_Quad_v(D,A)*A(9)) + 2 * C_I * gamma_mag * (I(9) - 3 * A(9))); 
  
  
end 
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E.2.2 FT_quadc.m 
function [dA] = FT_quadc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)  
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ... 
                        gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ... 
                        gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9)));                     
  
%% Orientation Calculations 
  
convA = convective(A,Am11,Am12,Am13,v,dX); 
  
dA = zeros(9,1); 
     
dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ... 
            ((D(1)*A(1) + D(2)*A(4) + D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
            2*Explicit_Quad_v(D,A)*A(1)) + 2 * C_I * gamma_mag * (I(1) - 3 * A(1))) - convA(1); 
  
dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ... 
            ((D(1)*A(2) + D(2)*A(5) + D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
            2*Explicit_Quad_v(D,A)*A(2)) + 2 * C_I * gamma_mag * (I(2) - 3 * A(2))) - convA(2); 
  
dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ... 
            ((D(1)*A(3) + D(2)*A(6) + D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
            2*Explicit_Quad_v(D,A)*A(3)) + 2 * C_I * gamma_mag * (I(3) - 3 * A(3))) - convA(3); 
  
dA(4) = dA(2); 
  
dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ... 
            ((D(4)*A(2) + D(5)*A(5) + D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
            2*Explicit_Quad_v(D,A)*A(5)) + 2 * C_I * gamma_mag * (I(5) - 3 * A(5))) - convA(5); 
  
dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ... 
            ((D(4)*A(3) + D(5)*A(6) + D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
            2*Explicit_Quad_v(D,A)*A(6)) + 2 * C_I * gamma_mag * (I(6) - 3 * A(6))) - convA(6); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ... 
            ((D(7)*A(3) + D(8)*A(6) + D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - ... 
            2*Explicit_Quad_v(D,A)*A(9)) + 2 * C_I * gamma_mag * (I(9) - 3 * A(9))) - convA(9); 
  
  
end 
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E.2.3 FT_IBOF.m 
function [dA] = FT_IBOFc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)  
%# codegen 
  
%% Parameter Definitions 
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ... 
            gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ... 
            gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9); 
  
%% Folgar-Tucker Equations 
  
convA = convective(A,Am11,Am12,Am13,v,dX); 
  
dA = zeros(9,1); 
     
dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ... 
    ((D(1)*A(1) + D(2)*A(4) + D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
    2*Explicit_IBOF_v(D,A,1,1)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(1) - 3 * A(1))); 
  
dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ... 
    ((D(1)*A(2) + D(2)*A(5) + D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
    2*Explicit_IBOF_v(D,A,1,2)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(2) - 3 * A(2))); 
  
dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ... 
    ((D(1)*A(3) + D(2)*A(6) + D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
    2*Explicit_IBOF_v(D,A,1,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(3) - 3 * A(3))); 
  
dA(4) = dA(2); 
  
dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ... 
    ((D(4)*A(2) + D(5)*A(5) + D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
    2*Explicit_IBOF_v(D,A,2,2)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(5) - 3 * A(5))); 
  
dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ... 
    ((D(4)*A(3) + D(5)*A(6) + D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
    2*Explicit_IBOF_v(D,A,2,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(6) - 3 * A(6))); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ... 
    ((D(7)*A(3) + D(8)*A(6) + D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - ... 
    2*Explicit_IBOF_v(D,A,3,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(9) - 3 * A(9))); 
  
end 
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E.2.4 FT_IBOFc.m 
function [dA] = FT_IBOFc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)  
%# codegen 
  
%% Parameter Definitions 
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ... 
            gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ... 
            gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9); 
  
%% Folgar-Tucker Equations 
  
convA = convective(A,Am11,Am12,Am13,v,dX); 
  
dA = zeros(9,1); 
     
dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ... 
    ((D(1)*A(1) + D(2)*A(4) + D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
    2*Explicit_IBOF_v(D,A,1,1)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(1) - 3 * A(1))) - convA(1); 
  
dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ... 
    ((D(1)*A(2) + D(2)*A(5) + D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
    2*Explicit_IBOF_v(D,A,1,2)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(2) - 3 * A(2))) - convA(2); 
  
dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ... 
    ((D(1)*A(3) + D(2)*A(6) + D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
    2*Explicit_IBOF_v(D,A,1,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(3) - 3 * A(3))) - convA(3); 
  
dA(4) = dA(2); 
  
dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ... 
    ((D(4)*A(2) + D(5)*A(5) + D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
    2*Explicit_IBOF_v(D,A,2,2)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(5) - 3 * A(5))) - convA(5); 
  
dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ... 
    ((D(4)*A(3) + D(5)*A(6) + D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
    2*Explicit_IBOF_v(D,A,2,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(6) - 3 * A(6))) - convA(6); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ... 
    ((D(7)*A(3) + D(8)*A(6) + D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - ... 
    2*Explicit_IBOF_v(D,A,3,3)) + 2 * C_I * sqrt((1/2)*gamma_mag) * (I(9) - 3 * A(9))) - convA(9); 
  
end 
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E.2.5 BR_IBOF.m 
function [dA] = BR_IBOF(dX,dvi,v,v_m1,v_p1,w,d,lb,kk,C_I,OF,A,i,j) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ... 
                        gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ... 
                        gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9))); 
         
%% Calculation of trace 
trB = A(10) + A(14) + A(18); 
  
%% Calculation of m*C 
mdotc = mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) + 
mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21); 
  
%% Calculation of D:A 
ddoublea = 2*(D(1)*A(1) + D(2)*A(4) + D(3)*A(7) + ... 
              D(4)*A(2) + D(5)*A(5) + D(6)*A(8) + ... 
              D(7)*A(3) + D(8)*A(6) + D(9)*A(9)); 
         
%% A Orientation Tensor Calculations 
  
dA = zeros(21,1); 
     
dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ((D(1)*A(1) + D(2)*A(4) + 
D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - 2*Explicit_IBOF_v(D,A,1,1)) + ...  
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,1,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) - 2*(mdotc)*A(1)) - 
2*kk*(A(10) - A(1)*trB) - 6*C_I * gamma_mag * (A(1) - (1/3) * I(1))); 
  
dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - 2*Explicit_IBOF_v(D,A,1,2)) + ... 
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(20) - 2*(mdotc)*A(2)) - 
2*kk*(A(11) - A(2)*trB) - 6*C_I * gamma_mag * (A(2) - (1/3) * I(2))); 
  
dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - 2*Explicit_IBOF_v(D,A,1,3)) + ... 
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(21) - 2*(mdotc)*A(3)) - 
2*kk*(A(12) - A(3)*trB) - 6*C_I * gamma_mag * (A(3) - (1/3) * I(3))); 
  
dA(4) = dA(2); 
  
dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - 2*Explicit_IBOF_v(D,A,2,2)) + ...  
             (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) - 2*(mdotc)*A(5)) - 
2*kk*(A(14) - A(5)*trB) - 6*C_I * gamma_mag * (A(5) - (1/3) * I(5))); 
  
dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - 2*Explicit_IBOF_v(D,A,2,3)) + ... 
             (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(21) - 2*(mdotc)*A(6)) - 
2*kk*(A(15) - A(6)*trB) - 6*C_I * gamma_mag * (A(6) - (1/3) * I(6))); 
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dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - 2*Explicit_IBOF_v(D,A,3,3)) + ... 
             (lb/2)*(A(21)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21) - 2*(mdotc)*A(9)) - 
2*kk*(A(18) - A(9)*trB) - 6*C_I * gamma_mag * (A(9) - (1/3) * I(9))); 
  
%% B Orientation Tensor Calculations 
  
dA(10) = OF*(((W(1)*A(10) + W(2)*A(13) + W(3)*A(16)) - (A(10)*W(1) + A(11)*W(4) + A(12)*W(7))) + ((D(1)*A(10) + 
D(2)*A(13) + D(3)*A(16)) + (A(10)*D(1) + A(11)*D(4) + A(12)*D(7)) - ddoublea*A(10)) + ...  
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,1,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) - 2*(mdotc)*A(10)) - 
2*kk*(A(1) - A(10)*trB) - 4*C_I * gamma_mag * A(10)); 
  
dA(11) = OF*(((W(1)*A(11) + W(2)*A(14) + W(3)*A(17)) - (A(10)*W(2) + A(11)*W(5) + A(12)*W(8))) + ((D(1)*A(11) + 
D(2)*A(14) + D(3)*A(17)) + (A(10)*D(2) + A(11)*D(5) + A(12)*D(8)) - ddoublea*A(11)) + ... 
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(20) - 2*(mdotc)*A(11)) - 
2*kk*(A(2) - A(11)*trB) - 4*C_I * gamma_mag * A(11)); 
  
dA(12) = OF*(((W(1)*A(12) + W(2)*A(15) + W(3)*A(18)) - (A(10)*W(3) + A(11)*W(6) + A(12)*W(9))) + ((D(1)*A(12) + 
D(2)*A(15) + D(3)*A(18)) + (A(10)*D(3) + A(11)*D(6) + A(12)*D(9)) - ddoublea*A(12)) + ... 
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(21) - 2*(mdotc)*A(12)) - 
2*kk*(A(3) - A(12)*trB) - 4*C_I * gamma_mag * A(12)); 
  
dA(13) = dA(11); 
  
dA(14) = OF*(((W(4)*A(11) + W(5)*A(14) + W(6)*A(17)) - (A(13)*W(2) + A(14)*W(5) + A(15)*W(8))) + ((D(4)*A(11) + 
D(5)*A(14) + D(6)*A(17)) + (A(13)*D(2) + A(14)*D(5) + A(15)*D(8)) - ddoublea*A(14)) + ...  
             (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) - 2*(mdotc)*A(14)) - 
2*kk*(A(5) - A(14)*trB) - 4*C_I * gamma_mag * A(14)); 
  
dA(15) = OF*(((W(4)*A(12) + W(5)*A(15) + W(6)*A(18)) - (A(13)*W(3) + A(14)*W(6) + A(15)*W(9))) + ((D(4)*A(12) + 
D(5)*A(15) + D(6)*A(18)) + (A(13)*D(3) + A(14)*D(6) + A(15)*D(9)) - ddoublea*A(15)) + ... 
             (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(21) - 2*(mdotc)*A(15)) - 
2*kk*(A(6) - A(15)*trB) - 4*C_I * gamma_mag * A(15)); 
  
dA(16) = dA(12); 
  
dA(17) = dA(15); 
  
dA(18) = OF*(((W(7)*A(12) + W(8)*A(15) + W(9)*A(18)) - (A(16)*W(3) + A(17)*W(6) + A(18)*W(9))) + ((D(7)*A(12) + 
D(8)*A(15) + D(9)*A(18)) + (A(16)*D(3) + A(17)*D(6) + A(18)*D(9)) - ddoublea*A(18)) + ... 
             (lb/2)*(A(21)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21) - 2*(mdotc)*A(18)) - 
2*kk*(A(9) - A(18)*trB) - 4*C_I * gamma_mag * A(18)); 
          
          
%% C Orientation Tensor Calculations 
% Calculating A:delVt 
  
Advidouble = A(1)*dvi(1) + A(2)*dvi(4) + A(3)*dvi(7) + ... 
             A(4)*dvi(2) + A(5)*dvi(5) + A(6)*dvi(8) + ... 
             A(7)*dvi(3) + A(8)*dvi(6) + A(9)*dvi(9); 
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dA(19) = OF*((dvi(1)*A(19) + dvi(4)*A(20) + dvi(7)*A(21)) - Advidouble*A(19) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,1,i,j) - 
A(19)*(mdotc)) - kk*A(19)*(1 - trB) - 2*C_I*gamma_mag*A(19)); 
dA(20) = OF*((dvi(2)*A(19) + dvi(5)*A(20) + dvi(8)*A(21)) - Advidouble*A(20) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,2,i,j) - 
A(20)*(mdotc)) - kk*A(20)*(1 - trB) - 2*C_I*gamma_mag*A(20)); 
dA(21) = OF*((dvi(3)*A(19) + dvi(6)*A(20) + dvi(9)*A(21)) - Advidouble*A(21) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,3,i,j) - 
A(21)*(mdotc)) - kk*A(21)*(1 - trB) - 2*C_I*gamma_mag*A(21)); 
end 
 
E.2.6 BR_IBOFc.m 
function [dA] = 
BR_IBOFc(dX,dvi,v,v_m1,v_p1,vv,w,d,lb,kk,C_I,OF,A,i,j,Am11,Am12,Am13,Bm11,Bm12,Bm13,Cm11,Cm12,Cm13) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ... 
                        gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ... 
                        gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9))); 
         
%% Calculation of trace 
trB = A(10) + A(14) + A(18); 
  
%% Calculation of m*C 
mdotc = mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) + 
mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21); 
  
%% Calculation of D:A 
ddoublea = 2*(D(1)*A(1) + D(2)*A(4) + D(3)*A(7) + ... 
              D(4)*A(2) + D(5)*A(5) + D(6)*A(8) + ... 
              D(7)*A(3) + D(8)*A(6) + D(9)*A(9)); 
         
%% A Orientation Tensor Calculations 
  
convBR = convectiveBR(A,Am11,Am12,Am13,Bm11,Bm12,Bm13,Cm11,Cm12,Cm13,vv,dX); 
  
dA = zeros(21,1); 
     
dA(1) = OF*(((W(1)*A(1) + W(2)*A(4) + W(3)*A(7)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7))) + ((D(1)*A(1) + D(2)*A(4) + 
D(3)*A(7)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - 2*Explicit_IBOF_v(D,A,1,1)) + ...  
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,1,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) - 2*(mdotc)*A(1)) - 
2*kk*(A(10) - A(1)*trB) - 6*C_I * gamma_mag * (A(1) - (1/3) * I(1))) - convBR(1); 
  
dA(2) = OF*(((W(1)*A(2) + W(2)*A(5) + W(3)*A(8)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8))) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(8)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - 2*Explicit_IBOF_v(D,A,1,2)) + ... 
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(20) - 2*(mdotc)*A(2)) - 
2*kk*(A(11) - A(2)*trB) - 6*C_I * gamma_mag * (A(2) - (1/3) * I(2))) - convBR(2); 
  
dA(3) = OF*(((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9))) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - 2*Explicit_IBOF_v(D,A,1,3)) + ... 
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(21) - 2*(mdotc)*A(3)) - 
2*kk*(A(12) - A(3)*trB) - 6*C_I * gamma_mag * (A(3) - (1/3) * I(3))) - convBR(3); 
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dA(4) = dA(2); 
  
dA(5) = OF*(((W(4)*A(2) + W(5)*A(5) + W(6)*A(8)) - (A(4)*W(2) + A(5)*W(5) + A(6)*W(8))) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(8)) + (A(4)*D(2) + A(5)*D(5) + A(6)*D(8)) - 2*Explicit_IBOF_v(D,A,2,2)) + ...  
             (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) - 2*(mdotc)*A(5)) - 
2*kk*(A(14) - A(5)*trB) - 6*C_I * gamma_mag * (A(5) - (1/3) * I(5))) - convBR(5); 
  
dA(6) = OF*(((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(4)*W(3) + A(5)*W(6) + A(6)*W(9))) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(4)*D(3) + A(5)*D(6) + A(6)*D(9)) - 2*Explicit_IBOF_v(D,A,2,3)) + ... 
             (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(21) - 2*(mdotc)*A(6)) - 
2*kk*(A(15) - A(6)*trB) - 6*C_I * gamma_mag * (A(6) - (1/3) * I(6))) - convBR(6); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = OF*(((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(7)*W(3) + A(8)*W(6) + A(9)*W(9))) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(7)*D(3) + A(8)*D(6) + A(9)*D(9)) - 2*Explicit_IBOF_v(D,A,3,3)) + ... 
             (lb/2)*(A(21)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21) - 2*(mdotc)*A(9)) - 
2*kk*(A(18) - A(9)*trB) - 6*C_I * gamma_mag * (A(9) - (1/3) * I(9))) - convBR(9); 
  
%% B Orientation Tensor Calculations 
  
dA(10) = OF*(((W(1)*A(10) + W(2)*A(13) + W(3)*A(16)) - (A(10)*W(1) + A(11)*W(4) + A(12)*W(7))) + ((D(1)*A(10) + 
D(2)*A(13) + D(3)*A(16)) + (A(10)*D(1) + A(11)*D(4) + A(12)*D(7)) - ddoublea*A(10)) + ...  
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,1,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(19) - 2*(mdotc)*A(10)) - 
2*kk*(A(1) - A(10)*trB) - 4*C_I * gamma_mag * A(10)) - convBR(10); 
  
dA(11) = OF*(((W(1)*A(11) + W(2)*A(14) + W(3)*A(17)) - (A(10)*W(2) + A(11)*W(5) + A(12)*W(8))) + ((D(1)*A(11) + 
D(2)*A(14) + D(3)*A(17)) + (A(10)*D(2) + A(11)*D(5) + A(12)*D(8)) - ddoublea*A(11)) + ... 
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(20) - 2*(mdotc)*A(11)) - 
2*kk*(A(2) - A(11)*trB) - 4*C_I * gamma_mag * A(11)) - convBR(11); 
  
dA(12) = OF*(((W(1)*A(12) + W(2)*A(15) + W(3)*A(18)) - (A(10)*W(3) + A(11)*W(6) + A(12)*W(9))) + ((D(1)*A(12) + 
D(2)*A(15) + D(3)*A(18)) + (A(10)*D(3) + A(11)*D(6) + A(12)*D(9)) - ddoublea*A(12)) + ... 
             (lb/2)*(A(19)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,1,i,j)*A(21) - 2*(mdotc)*A(12)) - 
2*kk*(A(3) - A(12)*trB) - 4*C_I * gamma_mag * A(12)) - convBR(12); 
  
dA(13) = dA(11); 
  
dA(14) = OF*(((W(4)*A(11) + W(5)*A(14) + W(6)*A(17)) - (A(13)*W(2) + A(14)*W(5) + A(15)*W(8))) + ((D(4)*A(11) + 
D(5)*A(14) + D(6)*A(17)) + (A(13)*D(2) + A(14)*D(5) + A(15)*D(8)) - ddoublea*A(14)) + ...  
             (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,2,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(20) - 2*(mdotc)*A(14)) - 
2*kk*(A(5) - A(14)*trB) - 4*C_I * gamma_mag * A(14)) - convBR(14); 
  
dA(15) = OF*(((W(4)*A(12) + W(5)*A(15) + W(6)*A(18)) - (A(13)*W(3) + A(14)*W(6) + A(15)*W(9))) + ((D(4)*A(12) + 
D(5)*A(15) + D(6)*A(18)) + (A(13)*D(3) + A(14)*D(6) + A(15)*D(9)) - ddoublea*A(15)) + ... 
             (lb/2)*(A(20)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,2,i,j)*A(21) - 2*(mdotc)*A(15)) - 
2*kk*(A(6) - A(15)*trB) - 4*C_I * gamma_mag * A(15)) - convBR(15); 
  
dA(16) = dA(12); 
  
dA(17) = dA(15); 
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dA(18) = OF*(((W(7)*A(12) + W(8)*A(15) + W(9)*A(18)) - (A(16)*W(3) + A(17)*W(6) + A(18)*W(9))) + ((D(7)*A(12) + 
D(8)*A(15) + D(9)*A(18)) + (A(16)*D(3) + A(17)*D(6) + A(18)*D(9)) - ddoublea*A(18)) + ... 
             (lb/2)*(A(21)*mvector(dX,v,v_m1,v_p1,A,3,i,j) + mvector(dX,v,v_m1,v_p1,A,3,i,j)*A(21) - 2*(mdotc)*A(18)) - 
2*kk*(A(9) - A(18)*trB) - 4*C_I * gamma_mag * A(18)) - convBR(18); 
          
          
%% C Orientation Tensor Calculations 
% Calculating A:delVt 
  
Advidouble = A(1)*dvi(1) + A(2)*dvi(4) + A(3)*dvi(7) + ... 
             A(4)*dvi(2) + A(5)*dvi(5) + A(6)*dvi(8) + ... 
             A(7)*dvi(3) + A(8)*dvi(6) + A(9)*dvi(9); 
  
dA(19) = OF*((dvi(1)*A(19) + dvi(4)*A(20) + dvi(7)*A(21)) - Advidouble*A(19) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,1,i,j) - 
A(19)*(mdotc)) - kk*A(19)*(1 - trB) - 2*C_I*gamma_mag*A(19)) - convBR(19); 
dA(20) = OF*((dvi(2)*A(19) + dvi(5)*A(20) + dvi(8)*A(21)) - Advidouble*A(20) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,2,i,j) - 
A(20)*(mdotc)) - kk*A(20)*(1 - trB) - 2*C_I*gamma_mag*A(20)) - convBR(20); 
dA(21) = OF*((dvi(3)*A(19) + dvi(6)*A(20) + dvi(9)*A(21)) - Advidouble*A(21) + (lb/2)*(mvector(dX,v,v_m1,v_p1,A,3,i,j) - 
A(21)*(mdotc)) - kk*A(21)*(1 - trB) - 2*C_I*gamma_mag*A(21)) - convBR(21); 
end 
 

E.2.7 RSC_quad.m 
function [dA] = RSC_quad(w,d,C_I,OF,A) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ... 
                        gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ... 
                        gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9))); 
%% Orientation Calculations 
  
LD = LddD(D,A); 
  
MAD = MddAddD(D,A); 
  
dA = zeros(9,1); 
  
dA(1) = (W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) + 
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
        2*(A(1)*Explicit_Quad_v(D,A) + (1-OF)*(LD(1) - MAD(1)))) + 2 * C_I * OF * gamma_mag * (I(1) - 3 * A(1)); 
  
dA(2) = (W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
        2*(A(2)*Explicit_Quad_v(D,A) + (1-OF)*(LD(2) - MAD(2)))) + 2 * C_I * OF * gamma_mag * (I(2) - 3 * A(2)); 
  
dA(3) = (W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
        2*(A(3)*Explicit_Quad_v(D,A) + (1-OF)*(LD(3) - MAD(3)))) + 2 * C_I * OF * gamma_mag * (I(3) - 3 * A(3)); 
  
dA(4) = dA(2); 
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dA(5) = (W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
        2*(A(5)*Explicit_Quad_v(D,A) + (1-OF)*(LD(5) - MAD(5)))) + 2 * C_I * OF * gamma_mag * (I(5) - 3 * A(5)); 
  
dA(6) = (W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
        2*(A(6)*Explicit_Quad_v(D,A) + (1-OF)*(LD(6) - MAD(6)))) + 2 * C_I * OF * gamma_mag * (I(6) - 3 * A(6)); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = (W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ... 
        2*(A(9)*Explicit_Quad_v(D,A) + (1-OF)*(LD(9) - MAD(9)))) + 2 * C_I * OF * gamma_mag * (I(9) - 3 * A(9)); 
 

E.2.8 RSC_quadc.m 
function [dA] = RSC_quadc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ... 
                        gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ... 
                        gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9))); 
%% Orientation Calculations 
  
LD = LddD(D,A); 
  
MAD = MddAddD(D,A); 
  
convA = convective(A,Am11,Am12,Am13,v,dX); 
  
dA = zeros(9,1); 
  
dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) + 
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
        2*(A(1)*Explicit_Quad_v(D,A) + (1-OF)*(LD(1) - MAD(1)))) + 2 * C_I * OF * gamma_mag * (I(1) - 3 * A(1)) - 
convA(1)); 
  
dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
        2*(A(2)*Explicit_Quad_v(D,A) + (1-OF)*(LD(2) - MAD(2)))) + 2 * C_I * OF * gamma_mag * (I(2) - 3 * A(2)) - 
convA(2)); 
  
dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
        2*(A(3)*Explicit_Quad_v(D,A) + (1-OF)*(LD(3) - MAD(3)))) + 2 * C_I * OF * gamma_mag * (I(3) - 3 * A(3)) - 
convA(3)); 
  
dA(4) = dA(2); 
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dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
        2*(A(5)*Explicit_Quad_v(D,A) + (1-OF)*(LD(5) - MAD(5)))) + 2 * C_I * OF * gamma_mag * (I(5) - 3 * A(5)) - 
convA(5)); 
  
dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
        2*(A(6)*Explicit_Quad_v(D,A) + (1-OF)*(LD(6) - MAD(6)))) + 2 * C_I * OF * gamma_mag * (I(6) - 3 * A(6)) - 
convA(6)); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ... 
        2*(A(9)*Explicit_Quad_v(D,A) + (1-OF)*(LD(9) - MAD(9)))) + 2 * C_I * OF * gamma_mag * (I(9) - 3 * A(9)) - 
convA(9)); 
end 
 

E.2.9 RSC_IBOF.m 
function [dA] = RSC_IBOF(w,d,C_I,OF,A) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ... 
                        gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ... 
                        gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9))); 
%% Orientation Calculations 
  
LD = LddD(D,A); 
  
MAD = MddAddD_IBOF(D,A); 
  
dA = zeros(9,1); 
  
dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) + 
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
        2*(Explicit_IBOF_v(D,A,1,1) + (1-OF)*(LD(1) - MAD(1)))) + 2 * C_I * OF * gamma_mag * (I(1) - 3 * A(1))); 
  
dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
        2*(Explicit_IBOF_v(D,A,1,2) + (1-OF)*(LD(2) - MAD(2)))) + 2 * C_I * OF * gamma_mag * (I(2) - 3 * A(2))); 
  
dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,1,3) + (1-OF)*(LD(3) - MAD(3)))) + 2 * C_I * OF * gamma_mag * (I(3) - 3 * A(3))); 
  
dA(4) = dA(2); 
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dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
        2*(Explicit_IBOF_v(D,A,2,2) + (1-OF)*(LD(5) - MAD(5)))) + 2 * C_I * OF * gamma_mag * (I(5) - 3 * A(5))); 
  
dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,2,3) + (1-OF)*(LD(6) - MAD(6)))) + 2 * C_I * OF * gamma_mag * (I(6) - 3 * A(6))); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,3,3) + (1-OF)*(LD(9) - MAD(9)))) + 2 * C_I * OF * gamma_mag * (I(9) - 3 * A(9))); 
End 

E.2.10 RSC_IBOFc.m 
function [dA] = RSC_IBOFc(w,d,C_I,OF,A,Am11,Am12,Am13,dX,v)  
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(4) + gamma(3)*gamma(7) + ... 
                        gamma(4)*gamma(2) + gamma(5)*gamma(5) + gamma(6)*gamma(8) + ... 
                        gamma(7)*gamma(3) + gamma(8)*gamma(6) + gamma(9)*gamma(9))); 
                     
%% Orientation Calculations 
  
LD = LddD(D,A); 
  
MAD = MddAddD_IBOF(D,A); 
  
convA = convective(A,Am11,Am12,Am13,v,dX); 
  
dA = zeros(9,1); 
  
dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) + 
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
        2*(Explicit_IBOF_v(D,A,1,1) + (1-OF)*(LD(1) - MAD(1)))) + 2 * C_I * OF * gamma_mag * (I(1) - 3 * A(1))) - convA(1); 
  
dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
        2*(Explicit_IBOF_v(D,A,1,2) + (1-OF)*(LD(2) - MAD(2)))) + 2 * C_I * OF * gamma_mag * (I(2) - 3 * A(2))) - convA(2); 
  
dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,1,3) + (1-OF)*(LD(3) - MAD(3)))) + 2 * C_I * OF * gamma_mag * (I(3) - 3 * A(3))) - convA(3); 
  
dA(4) = dA(2); 
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dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
        2*(Explicit_IBOF_v(D,A,2,2) + (1-OF)*(LD(5) - MAD(5)))) + 2 * C_I * OF * gamma_mag * (I(5) - 3 * A(5))) - convA(5); 
  
dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,2,3) + (1-OF)*(LD(6) - MAD(6)))) + 2 * C_I * OF * gamma_mag * (I(6) - 3 * A(6))) - convA(6); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,3,3) + (1-OF)*(LD(9) - MAD(9)))) + 2 * C_I * OF * gamma_mag * (I(9) - 3 * A(9))) - convA(9); 
end 
  

E.2.11 ARD_RSC_quad.m 
function [dA] = ARD_RSC_quad(w,d,OF,b1,b2,b3,b4,b5,A) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ... 
                        gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ... 
                        gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9))); 
%% Orientation Calculations 
  
% Calculating the components of the anisotropic tensor, C. 
  
C1 = b1*I(1) + b2*A(1) + b3*A(1)^2 + (b4/gamma_mag)*D(1) + (b5/gamma_mag^2)*D(1)^2; 
C2 = b1*I(2) + b2*A(2) + b3*A(2)^2 + (b4/gamma_mag)*D(2) + (b5/gamma_mag^2)*D(2)^2; 
C3 = b1*I(3) + b2*A(3) + b3*A(3)^2 + (b4/gamma_mag)*D(3) + (b5/gamma_mag^2)*D(3)^2; 
C4 = b1*I(4) + b2*A(4) + b3*A(4)^2 + (b4/gamma_mag)*D(4) + (b5/gamma_mag^2)*D(4)^2; 
C5 = b1*I(5) + b2*A(5) + b3*A(5)^2 + (b4/gamma_mag)*D(5) + (b5/gamma_mag^2)*D(5)^2; 
C6 = b1*I(6) + b2*A(6) + b3*A(6)^2 + (b4/gamma_mag)*D(6) + (b5/gamma_mag^2)*D(6)^2; 
C7 = b1*I(7) + b2*A(7) + b3*A(7)^2 + (b4/gamma_mag)*D(7) + (b5/gamma_mag^2)*D(7)^2; 
C8 = b1*I(8) + b2*A(8) + b3*A(8)^2 + (b4/gamma_mag)*D(8) + (b5/gamma_mag^2)*D(8)^2; 
C9 = b1*I(9) + b2*A(9) + b3*A(9)^2 + (b4/gamma_mag)*D(9) + (b5/gamma_mag^2)*D(9)^2; 
  
trC = C1 + C5 + C9; 
  
C = [C1 C2 C3 C4 C5 C6 C7 C8 C9]; 
  
LD = LddD(D,A); 
  
MAD = MddAddD(D,A); 
  
MC = MddC(C,A); 
  
LC = LddC(C,A); 
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MAC = MddAddC(C,A); 
  
dA = zeros(9,1); 
  
dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) + 
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
        2*(A(1)*Explicit_Quad_v(D,A) + (1-OF)*(LD(1) - MAD(1)))) + gamma_mag*(2*(C1 - (1-OF)*MC(1)) - 2 * OF * trC * 
A(1) - ... 
        5*((C1*A(1) + C2*A(2) + C3*A(3)) + (A(1)*C1 + A(2)*C4 + A(3)*C7)) + 10*(A(1)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(1) - MAC(1))))); 
  
dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
        2*(A(2)*Explicit_Quad_v(D,A) + (1-OF)*(LD(2) - MAD(2)))) + gamma_mag*(2*(C2 - (1-OF)*MC(2)) - 2 * OF * trC * 
A(2) - ... 
        5*((C1*A(2) + C2*A(5) + C3*A(6)) + (A(1)*C2 + A(2)*C5 + A(3)*C8)) + 10*(A(2)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(2) - MAC(2))))); 
  
dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
        2*(A(3)*Explicit_Quad_v(D,A) + (1-OF)*(LD(3) - MAD(3)))) + gamma_mag*(2*(C3 - (1-OF)*MC(3)) - 2 * OF * trC * 
A(3) - ... 
        5*((C1*A(3) + C2*A(6) + C3*A(9)) + (A(1)*C3 + A(2)*C6 + A(3)*C9)) + 10*(A(3)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(3) - MAC(3))))); 
  
dA(4) = dA(2); 
  
dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
        2*(A(5)*Explicit_Quad_v(D,A) + (1-OF)*(LD(5) - MAD(5)))) + gamma_mag*(2*(C5 - (1-OF)*MC(5)) - 2 * OF * trC * 
A(5) - ... 
        5*((C4*A(2) + C5*A(5) + C6*A(6)) + (A(2)*C2 + A(5)*C5 + A(6)*C8)) + 10*(A(5)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(5) - MAC(5))))); 
  
dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
        2*(A(6)*Explicit_Quad_v(D,A) + (1-OF)*(LD(6) - MAD(6)))) + gamma_mag*(2*(C6 - (1-OF)*MC(6)) - 2 * OF * trC * 
A(6) - ... 
        5*((C4*A(3) + C5*A(6) + C6*A(9)) + (A(2)*C3 + A(5)*C6 + A(6)*C9)) + 10*(A(6)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(6) - MAC(6))))); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ... 
        2*(A(9)*Explicit_Quad_v(D,A) + (1-OF)*(LD(9) - MAD(9)))) + gamma_mag*(2*(C9 - (1-OF)*MC(9)) - 2 * OF * trC * 
A(9) - ... 
        5*((C7*A(3) + C8*A(6) + C9*A(9)) + (A(3)*C3 + A(6)*C6 + A(9)*C9)) + 10*(A(9)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(9) - MAC(9))))); 
end 
  
E.2.12 ARD_RSC_quadc.m 
function [dA] = ARD_RSC_quadc(w,d,OF,b1,b2,b3,b4,b5,A,Am11,Am12,Am13,dX,v) 
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%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ... 
                        gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ... 
                        gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9))); 
                     
%% Orientation Calculations 
  
% Calculating the components of the anisotropic tensor, C. 
  
C1 = b1*I(1) + b2*A(1) + b3*A(1)^2 + (b4/gamma_mag)*D(1) + (b5/gamma_mag^2)*D(1)^2; 
C2 = b1*I(2) + b2*A(2) + b3*A(2)^2 + (b4/gamma_mag)*D(2) + (b5/gamma_mag^2)*D(2)^2; 
C3 = b1*I(3) + b2*A(3) + b3*A(3)^2 + (b4/gamma_mag)*D(3) + (b5/gamma_mag^2)*D(3)^2; 
C4 = b1*I(4) + b2*A(4) + b3*A(4)^2 + (b4/gamma_mag)*D(4) + (b5/gamma_mag^2)*D(4)^2; 
C5 = b1*I(5) + b2*A(5) + b3*A(5)^2 + (b4/gamma_mag)*D(5) + (b5/gamma_mag^2)*D(5)^2; 
C6 = b1*I(6) + b2*A(6) + b3*A(6)^2 + (b4/gamma_mag)*D(6) + (b5/gamma_mag^2)*D(6)^2; 
C7 = b1*I(7) + b2*A(7) + b3*A(7)^2 + (b4/gamma_mag)*D(7) + (b5/gamma_mag^2)*D(7)^2; 
C8 = b1*I(8) + b2*A(8) + b3*A(8)^2 + (b4/gamma_mag)*D(8) + (b5/gamma_mag^2)*D(8)^2; 
C9 = b1*I(9) + b2*A(9) + b3*A(9)^2 + (b4/gamma_mag)*D(9) + (b5/gamma_mag^2)*D(9)^2; 
  
trC = C1 + C5 + C9; 
  
C = [C1 C2 C3 C4 C5 C6 C7 C8 C9]; 
  
LD = LddD(D,A); 
  
MAD = MddAddD(D,A); 
  
MC = MddC(C,A); 
  
LC = LddC(C,A); 
  
MAC = MddAddC(C,A); 
  
convA = convective(A,Am11,Am12,Am13,v,dX); 
  
dA = zeros(9,1); 
  
dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) + 
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
        2*(A(1)*Explicit_Quad_v(D,A) + (1-OF)*(LD(1) - MAD(1)))) + gamma_mag*(2*(C1 - (1-OF)*MC(1)) - 2 * OF * trC * 
A(1) - ... 
        5*((C1*A(1) + C2*A(2) + C3*A(3)) + (A(1)*C1 + A(2)*C4 + A(3)*C7)) + 10*(A(1)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(1) - MAC(1))))) - convA(1); 
  
dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
        2*(A(2)*Explicit_Quad_v(D,A) + (1-OF)*(LD(2) - MAD(2)))) + gamma_mag*(2*(C2 - (1-OF)*MC(2)) - 2 * OF * trC * 
A(2) - ... 
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        5*((C1*A(2) + C2*A(5) + C3*A(6)) + (A(1)*C2 + A(2)*C5 + A(3)*C8)) + 10*(A(2)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(2) - MAC(2))))) - convA(2); 
  
dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
        2*(A(3)*Explicit_Quad_v(D,A) + (1-OF)*(LD(3) - MAD(3)))) + gamma_mag*(2*(C3 - (1-OF)*MC(3)) - 2 * OF * trC * 
A(3) - ... 
        5*((C1*A(3) + C2*A(6) + C3*A(9)) + (A(1)*C3 + A(2)*C6 + A(3)*C9)) + 10*(A(3)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(3) - MAC(3))))) - convA(3); 
  
dA(4) = dA(2); 
  
dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
        2*(A(5)*Explicit_Quad_v(D,A) + (1-OF)*(LD(5) - MAD(5)))) + gamma_mag*(2*(C5 - (1-OF)*MC(5)) - 2 * OF * trC * 
A(5) - ... 
        5*((C4*A(2) + C5*A(5) + C6*A(6)) + (A(2)*C2 + A(5)*C5 + A(6)*C8)) + 10*(A(5)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(5) - MAC(5))))) - convA(5); 
  
dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
        2*(A(6)*Explicit_Quad_v(D,A) + (1-OF)*(LD(6) - MAD(6)))) + gamma_mag*(2*(C6 - (1-OF)*MC(6)) - 2 * OF * trC * 
A(6) - ... 
        5*((C4*A(3) + C5*A(6) + C6*A(9)) + (A(2)*C3 + A(5)*C6 + A(6)*C9)) + 10*(A(6)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(6) - MAC(6))))) - convA(6); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ... 
        2*(A(9)*Explicit_Quad_v(D,A) + (1-OF)*(LD(9) - MAD(9)))) + gamma_mag*(2*(C9 - (1-OF)*MC(9)) - 2 * OF * trC * 
A(9) - ... 
        5*((C7*A(3) + C8*A(6) + C9*A(9)) + (A(3)*C3 + A(6)*C6 + A(9)*C9)) + 10*(A(9)*Explicit_Quad_v(C,A) + (1-
OF)*(LC(9) - MAC(9))))) - convA(9);         
End 
 

E.2.13 ARD_RSC_IBOF.m 
function [dA] = ARD_RSC_IBOF(w,d,OF,b1,b2,b3,b4,b5,A) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ... 
                        gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ... 
                        gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9))); 
%% Orientation Calculations 
  
% Calculating the components of the anisotropic tensor, C. 
  
C(1) = b1*I(1) + b2*A(1) + b3*A(1)^2 + (b4/gamma_mag)*D(1) + (b5/gamma_mag^2)*D(1)^2; 
C(2) = b1*I(2) + b2*A(2) + b3*A(2)^2 + (b4/gamma_mag)*D(2) + (b5/gamma_mag^2)*D(2)^2; 
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C(3) = b1*I(3) + b2*A(3) + b3*A(3)^2 + (b4/gamma_mag)*D(3) + (b5/gamma_mag^2)*D(3)^2; 
C(4) = b1*I(4) + b2*A(4) + b3*A(4)^2 + (b4/gamma_mag)*D(4) + (b5/gamma_mag^2)*D(4)^2; 
C(5) = b1*I(5) + b2*A(5) + b3*A(5)^2 + (b4/gamma_mag)*D(5) + (b5/gamma_mag^2)*D(5)^2; 
C(6) = b1*I(6) + b2*A(6) + b3*A(6)^2 + (b4/gamma_mag)*D(6) + (b5/gamma_mag^2)*D(6)^2; 
C(7) = b1*I(7) + b2*A(7) + b3*A(7)^2 + (b4/gamma_mag)*D(7) + (b5/gamma_mag^2)*D(7)^2; 
C(8) = b1*I(8) + b2*A(8) + b3*A(8)^2 + (b4/gamma_mag)*D(8) + (b5/gamma_mag^2)*D(8)^2; 
C(9) = b1*I(9) + b2*A(9) + b3*A(9)^2 + (b4/gamma_mag)*D(9) + (b5/gamma_mag^2)*D(9)^2; 
  
trC = C(1) + C(5) + C(9); 
  
  
LD = LddD(D,A); 
  
MAD = MddAddD_IBOF(D,A); 
  
MC = MddC(C,A); 
  
LC = LddC(C,A); 
  
MAC = MddAddC_IBOF(C,A); 
  
dA = zeros(9,1); 
  
dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) + 
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
        2*(Explicit_IBOF_v(D,A,1,1) + (1-OF)*(LD(1) - MAD(1)))) + gamma_mag*(2*(C(1) - (1-OF)*MC(1)) - 2 * OF * trC * 
A(1) - ... 
        5*((C(1)*A(1) + C(2)*A(2) + C(3)*A(3)) + (A(1)*C(1) + A(2)*C(4) + A(3)*C(7))) + 10*(Explicit_IBOF_v(C,A,1,1) + (1-
OF)*(LC(1) - MAC(1))))); 
  
dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
        2*(Explicit_IBOF_v(D,A,1,2) + (1-OF)*(LD(2) - MAD(2)))) + gamma_mag*(2*(C(2) - (1-OF)*MC(2)) - 2 * OF * trC * 
A(2) - ... 
        5*((C(1)*A(2) + C(2)*A(5) + C(3)*A(6)) + (A(1)*C(2) + A(2)*C(5) + A(3)*C(8))) + 10*(Explicit_IBOF_v(C,A,1,2) + (1-
OF)*(LC(2) - MAC(2))))); 
  
dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,1,3) + (1-OF)*(LD(3) - MAD(3)))) + gamma_mag*(2*(C(3) - (1-OF)*MC(3)) - 2 * OF * trC * 
A(3) - ... 
        5*((C(1)*A(3) + C(2)*A(6) + C(3)*A(9)) + (A(1)*C(3) + A(2)*C(6) + A(3)*C(9))) + 10*(Explicit_IBOF_v(C,A,1,3) + (1-
OF)*(LC(3) - MAC(3))))); 
  
dA(4) = dA(2); 
  
dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
        2*(Explicit_IBOF_v(D,A,2,2) + (1-OF)*(LD(5) - MAD(5)))) + gamma_mag*(2*(C(5) - (1-OF)*MC(5)) - 2 * OF * trC * 
A(5) - ... 
        5*((C(4)*A(2) + C(5)*A(5) + C(6)*A(6)) + (A(2)*C(2) + A(5)*C(5) + A(6)*C(8))) + 10*(Explicit_IBOF_v(C,A,2,2) + (1-
OF)*(LC(5) - MAC(5))))); 
  
dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,2,3) + (1-OF)*(LD(6) - MAD(6)))) + gamma_mag*(2*(C(6) - (1-OF)*MC(6)) - 2 * OF * trC * 
A(6) - ... 



217 

 

        5*((C(4)*A(3) + C(5)*A(6) + C(6)*A(9)) + (A(2)*C(3) + A(5)*C(6) + A(6)*C(9))) + 10*(Explicit_IBOF_v(C,A,2,3) + (1-
OF)*(LC(6) - MAC(6))))); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,3,3) + (1-OF)*(LD(9) - MAD(9)))) + gamma_mag*(2*(C(9) - (1-OF)*MC(9)) - 2 * OF * trC * 
A(9) - ... 
        5*((C(7)*A(3) + C(8)*A(6) + C(9)*A(9)) + (A(3)*C(3) + A(6)*C(6) + A(9)*C(9))) + 10*(Explicit_IBOF_v(C,A,3,3) + (1-
OF)*(LC(9) - MAC(9))))); 
         
end 
  

E.2.14 ARD_RSC_IBOFc.m 
function [dA] = ARD_RSC_IBOFc(w,d,OF,b1,b2,b3,b4,b5,A,Am11,Am12,Am13,dX,v) 
%% Parameter Definitions 
  
W = w; 
D = d; 
gamma = 2*D; 
I = [1 0 0 0 1 0 0 0 1]; 
  
%% Double-Dot Terms 
gamma_mag = sqrt((1/2)*(gamma(1)*gamma(1) + gamma(2)*gamma(2) + gamma(3)*gamma(3) + ... 
                        gamma(4)*gamma(4) + gamma(5)*gamma(5) + gamma(6)*gamma(6) + ... 
                        gamma(7)*gamma(7) + gamma(8)*gamma(8) + gamma(9)*gamma(9))); 
%% Orientation Calculations 
  
% Calculating the components of the anisotropic tensor, C. 
  
C1 = b1*I(1) + b2*A(1) + b3*A(1)^2 + (b4/gamma_mag)*D(1) + (b5/gamma_mag^2)*D(1)^2; 
C2 = b1*I(2) + b2*A(2) + b3*A(2)^2 + (b4/gamma_mag)*D(2) + (b5/gamma_mag^2)*D(2)^2; 
C3 = b1*I(3) + b2*A(3) + b3*A(3)^2 + (b4/gamma_mag)*D(3) + (b5/gamma_mag^2)*D(3)^2; 
C4 = b1*I(4) + b2*A(4) + b3*A(4)^2 + (b4/gamma_mag)*D(4) + (b5/gamma_mag^2)*D(4)^2; 
C5 = b1*I(5) + b2*A(5) + b3*A(5)^2 + (b4/gamma_mag)*D(5) + (b5/gamma_mag^2)*D(5)^2; 
C6 = b1*I(6) + b2*A(6) + b3*A(6)^2 + (b4/gamma_mag)*D(6) + (b5/gamma_mag^2)*D(6)^2; 
C7 = b1*I(7) + b2*A(7) + b3*A(7)^2 + (b4/gamma_mag)*D(7) + (b5/gamma_mag^2)*D(7)^2; 
C8 = b1*I(8) + b2*A(8) + b3*A(8)^2 + (b4/gamma_mag)*D(8) + (b5/gamma_mag^2)*D(8)^2; 
C9 = b1*I(9) + b2*A(9) + b3*A(9)^2 + (b4/gamma_mag)*D(9) + (b5/gamma_mag^2)*D(9)^2; 
  
trC = C1 + C5 + C9; 
  
C = [C1 C2 C3 C4 C5 C6 C7 C8 C9]; 
  
LD = LddD(D,A); 
  
MAD = MddAddD_IBOF(D,A); 
  
MC = MddC(C,A); 
  
LC = LddC(C,A); 
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MAC = MddAddC_IBOF(C,A); 
  
convA = convective(A,Am11,Am12,Am13,v,dX); 
  
dA = zeros(9,1); 
  
dA(1) = real((W(1)*A(1) + W(2)*A(2) + W(3)*A(3)) - (A(1)*W(1) + A(2)*W(4) + A(3)*W(7)) + ((D(1)*A(1) + D(2)*A(2) + 
D(3)*A(3)) + (A(1)*D(1) + A(2)*D(4) + A(3)*D(7)) - ... 
        2*(Explicit_IBOF_v(D,A,1,1) + (1-OF)*(LD(1) - MAD(1)))) + gamma_mag*(2*(C1 - (1-OF)*MC(1)) - 2 * OF * trC * 
A(1) - ... 
        5*((C1*A(1) + C2*A(2) + C3*A(3)) + (A(1)*C1 + A(2)*C4 + A(3)*C7)) + 10*(Explicit_IBOF_v(C,A,1,1) + (1-
OF)*(LC(1) - MAC(1))))) - convA(1); 
  
dA(2) = real((W(1)*A(2) + W(2)*A(5) + W(3)*A(6)) - (A(1)*W(2) + A(2)*W(5) + A(3)*W(8)) + ((D(1)*A(2) + D(2)*A(5) + 
D(3)*A(6)) + (A(1)*D(2) + A(2)*D(5) + A(3)*D(8)) - ... 
        2*(Explicit_IBOF_v(D,A,1,2) + (1-OF)*(LD(2) - MAD(2)))) + gamma_mag*(2*(C2 - (1-OF)*MC(2)) - 2 * OF * trC * 
A(2) - ... 
        5*((C1*A(2) + C2*A(5) + C3*A(6)) + (A(1)*C2 + A(2)*C5 + A(3)*C8)) + 10*(Explicit_IBOF_v(C,A,1,2) + (1-
OF)*(LC(2) - MAC(2))))) - convA(2); 
  
dA(3) = real((W(1)*A(3) + W(2)*A(6) + W(3)*A(9)) - (A(1)*W(3) + A(2)*W(6) + A(3)*W(9)) + ((D(1)*A(3) + D(2)*A(6) + 
D(3)*A(9)) + (A(1)*D(3) + A(2)*D(6) + A(3)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,1,3) + (1-OF)*(LD(3) - MAD(3)))) + gamma_mag*(2*(C3 - (1-OF)*MC(3)) - 2 * OF * trC * 
A(3) - ... 
        5*((C1*A(3) + C2*A(6) + C3*A(9)) + (A(1)*C3 + A(2)*C6 + A(3)*C9)) + 10*(Explicit_IBOF_v(C,A,1,3) + (1-
OF)*(LC(3) - MAC(3))))) - convA(3); 
  
dA(4) = dA(2); 
  
dA(5) = real((W(4)*A(2) + W(5)*A(5) + W(6)*A(6)) - (A(2)*W(2) + A(5)*W(5) + A(6)*W(8)) + ((D(4)*A(2) + D(5)*A(5) + 
D(6)*A(6)) + (A(2)*D(2) + A(5)*D(5) + A(6)*D(8)) - ... 
        2*(Explicit_IBOF_v(D,A,2,2) + (1-OF)*(LD(5) - MAD(5)))) + gamma_mag*(2*(C5 - (1-OF)*MC(5)) - 2 * OF * trC * 
A(5) - ... 
        5*((C4*A(2) + C5*A(5) + C6*A(6)) + (A(2)*C2 + A(5)*C5 + A(6)*C8)) + 10*(Explicit_IBOF_v(C,A,2,2) + (1-
OF)*(LC(5) - MAC(5))))) - convA(5); 
  
dA(6) = real((W(4)*A(3) + W(5)*A(6) + W(6)*A(9)) - (A(2)*W(3) + A(5)*W(6) + A(6)*W(9)) + ((D(4)*A(3) + D(5)*A(6) + 
D(6)*A(9)) + (A(2)*D(3) + A(5)*D(6) + A(6)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,2,3) + (1-OF)*(LD(6) - MAD(6)))) + gamma_mag*(2*(C6 - (1-OF)*MC(6)) - 2 * OF * trC * 
A(6) - ... 
        5*((C4*A(3) + C5*A(6) + C6*A(9)) + (A(2)*C3 + A(5)*C6 + A(6)*C9)) + 10*(Explicit_IBOF_v(C,A,2,3) + (1-
OF)*(LC(6) - MAC(6))))) - convA(6); 
  
dA(7) = dA(3); 
  
dA(8) = dA(6); 
  
dA(9) = real((W(7)*A(3) + W(8)*A(6) + W(9)*A(9)) - (A(3)*W(3) + A(6)*W(6) + A(9)*W(9)) + ((D(7)*A(3) + D(8)*A(6) + 
D(9)*A(9)) + (A(3)*D(3) + A(6)*D(6) + A(9)*D(9)) - ... 
        2*(Explicit_IBOF_v(D,A,3,3) + (1-OF)*(LD(9) - MAD(9)))) + gamma_mag*(2*(C9 - (1-OF)*MC(9)) - 2 * OF * trC * 
A(9) - ... 
        5*((C7*A(3) + C8*A(6) + C9*A(9)) + (A(3)*C3 + A(6)*C6 + A(9)*C9)) + 10*(Explicit_IBOF_v(C,A,3,3) + (1-
OF)*(LC(9) - MAC(9))))) - convA(9); 
         
end 
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E.3 Ancillary Routines 

E.3.1 convective.m 
function [convA] = convective(A,Am11,Am12,Am13,v,dX) 
  
dA11dx1 = v(1)*((A(1) - Am11(1))/dX(1)); 
dA12dx1 = v(1)*((A(2) - Am11(2))/dX(1)); 
dA13dx1 = v(1)*((A(3) - Am11(3))/dX(1)); 
dA22dx1 = v(1)*((A(5) - Am11(5))/dX(1)); 
dA23dx1 = v(1)*((A(6) - Am11(6))/dX(1)); 
dA33dx1 = v(1)*((A(9) - Am11(9))/dX(1)); 
  
dA11dx2 = v(2)*((A(1) - Am12(1))/dX(2)); 
dA12dx2 = v(2)*((A(2) - Am12(2))/dX(2)); 
dA13dx2 = v(2)*((A(3) - Am12(3))/dX(2)); 
dA22dx2 = v(2)*((A(5) - Am12(5))/dX(2)); 
dA23dx2 = v(2)*((A(6) - Am12(6))/dX(2)); 
dA33dx2 = v(2)*((A(9) - Am12(9))/dX(2)); 
  
dA11dx3 = v(3)*((A(1) - Am13(1))/dX(3)); 
dA12dx3 = v(3)*((A(2) - Am13(2))/dX(3)); 
dA13dx3 = v(3)*((A(3) - Am13(3))/dX(3)); 
dA22dx3 = v(3)*((A(5) - Am13(5))/dX(3)); 
dA23dx3 = v(3)*((A(6) - Am13(6))/dX(3)); 
dA33dx3 = v(3)*((A(9) - Am13(9))/dX(3)); 
  
convA11 = dA11dx1 + dA11dx2 + dA11dx3; 
convA12 = dA12dx1 + dA12dx2 + dA12dx3; 
convA13 = dA13dx1 + dA13dx2 + dA13dx3; 
convA22 = dA22dx1 + dA22dx2 + dA22dx3; 
convA23 = dA23dx1 + dA23dx2 + dA23dx3; 
convA33 = dA33dx1 + dA33dx2 + dA33dx3; 
  
convA = [convA11 convA12 convA13 convA12 convA22 convA23 convA13 convA23 convA33]; 
  
convA(isnan(convA)) = 0; 
convA(isinf(convA)) = 0; 
  
end 
 

E.3.2 convectiveBR.m 
function [convBR] = convectiveBR(A,Am11,Am12,Am13,v,dX) 
%% Convective Calculation of A 
  
dA11dx1 = v(1)*((A(1) - Am11(1))/dX(1)); 
dA12dx1 = v(1)*((A(2) - Am11(2))/dX(1)); 
dA13dx1 = v(1)*((A(3) - Am11(3))/dX(1)); 
dA22dx1 = v(1)*((A(5) - Am11(5))/dX(1)); 
dA23dx1 = v(1)*((A(6) - Am11(6))/dX(1)); 
dA33dx1 = v(1)*((A(9) - Am11(9))/dX(1)); 
  
dA11dx2 = v(2)*((A(1) - Am12(1))/dX(2)); 
dA12dx2 = v(2)*((A(2) - Am12(2))/dX(2)); 
dA13dx2 = v(2)*((A(3) - Am12(3))/dX(2)); 
dA22dx2 = v(2)*((A(5) - Am12(5))/dX(2)); 
dA23dx2 = v(2)*((A(6) - Am12(6))/dX(2)); 
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dA33dx2 = v(2)*((A(9) - Am12(9))/dX(2)); 
  
dA11dx3 = v(3)*((A(1) - Am13(1))/dX(3)); 
dA12dx3 = v(3)*((A(2) - Am13(2))/dX(3)); 
dA13dx3 = v(3)*((A(3) - Am13(3))/dX(3)); 
dA22dx3 = v(3)*((A(5) - Am13(5))/dX(3)); 
dA23dx3 = v(3)*((A(6) - Am13(6))/dX(3)); 
dA33dx3 = v(3)*((A(9) - Am13(9))/dX(3)); 
  
%% Convective Calculation of B 
  
dB11dx1 = v(1)*((A(10) - Bm11(1))/dX(1)); 
dB12dx1 = v(1)*((A(11) - Bm11(2))/dX(1)); 
dB13dx1 = v(1)*((A(12) - Bm11(3))/dX(1)); 
dB22dx1 = v(1)*((A(14) - Bm11(5))/dX(1)); 
dB23dx1 = v(1)*((A(15) - Bm11(6))/dX(1)); 
dB33dx1 = v(1)*((A(18) - Bm11(9))/dX(1)); 
  
dB11dx2 = v(2)*((A(10) - Bm12(1))/dX(2)); 
dB12dx2 = v(2)*((A(11) - Bm12(2))/dX(2)); 
dB13dx2 = v(2)*((A(12) - Bm12(3))/dX(2)); 
dB22dx2 = v(2)*((A(14) - Bm12(5))/dX(2)); 
dB23dx2 = v(2)*((A(15) - Bm12(6))/dX(2)); 
dB33dx2 = v(2)*((A(18) - Bm12(9))/dX(2)); 
  
dB11dx3 = v(3)*((A(10) - Bm13(1))/dX(3)); 
dB12dx3 = v(3)*((A(11) - Bm13(2))/dX(3)); 
dB13dx3 = v(3)*((A(12) - Bm13(3))/dX(3)); 
dB22dx3 = v(3)*((A(14) - Bm13(5))/dX(3)); 
dB23dx3 = v(3)*((A(15) - Bm13(6))/dX(3)); 
dB33dx3 = v(3)*((A(18) - Bm13(9))/dX(3)); 
  
%% Convective Calculation of C 
  
dC1dx1 = v(1)*((A(19) - Cm12(5))/dX(1)); 
dC2dx1 = v(1)*((A(20) - Cm12(6))/dX(1)); 
dC3dx1 = v(1)*((A(21) - Cm12(9))/dX(1)); 
  
dC1dx2 = v(2)*((A(19) - Cm13(1))/dX(2)); 
dC2dx2 = v(2)*((A(20) - Cm13(2))/dX(2)); 
dC3dx2 = v(2)*((A(21) - Cm13(3))/dX(2)); 
  
dC1dx3 = v(3)*((A(19) - Cm13(5))/dX(3)); 
dC2dx3 = v(3)*((A(20) - Cm13(6))/dX(3)); 
dC3dx3 = v(3)*((A(21) - Cm13(9))/dX(3)); 
  
%% Summation of Individual Terms to Form Tensor 
  
convA11 = dA11dx1 + dA11dx2 + dA11dx3; 
convA12 = dA12dx1 + dA12dx2 + dA12dx3; 
convA13 = dA13dx1 + dA13dx2 + dA13dx3; 
convA22 = dA22dx1 + dA22dx2 + dA22dx3; 
convA23 = dA23dx1 + dA23dx2 + dA23dx3; 
convA33 = dA33dx1 + dA33dx2 + dA33dx3; 
  
convB11 = dB11dx1 + dB11dx2 + dB11dx3; 
convB12 = dB12dx1 + dB12dx2 + dB12dx3; 
convB13 = dB13dx1 + dB13dx2 + dB13dx3; 
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convB22 = dB22dx1 + dB22dx2 + dB22dx3; 
convB23 = dB23dx1 + dB23dx2 + dB23dx3; 
convB33 = dB33dx1 + dB33dx2 + dB33dx3; 
  
convC1 = dC1dx1 + dC1dx2 + dC1dx3; 
convC2 = dC2dx1 + dC2dx2 + dC2dx3; 
convC3 = dC3dx1 + dC3dx2 + dC3dx3; 
  
convA = [convA11 convA12 convA13 convA12 convA22 convA23 convA13 convA23 convA33]; 
  
convB = [convB11 convB12 convB13 convB12 convB22 convB23 convB13 convB23 convB33]; 
  
convC = [convC1 convC2 convC3]; 
  
convA(isnan(convA)) = 0; 
convA(isinf(convA)) = 0; 
convB(isnan(convB)) = 0; 
convB(isinf(convB)) = 0; 
convC(isnan(convC)) = 0; 
convC(isinf(convC)) = 0; 
  
convBR = [convA convB convC]; 
  
end 
E.3.3 mvector.m 
function [m] = mvector(dXbr,v,v_m1,v_p1,A0,k,i,j) 
  
dx = dXbr(1); 
dy = dXbr(2); 
dz = dXbr(3); 
  
d2V_dxidxj = zeros(9,3); 
  
% Zeroing the entire dV2_dxidxj matrix so that it doesn't fill with NaN's 
% when dx, dy, or dz are zero. (NaN is produced when dividing by zero.) 
  
dV1_dx1dx1 = 0; 
dV2_dx1dx1 = 0; 
dV2_dx2dx1 = 0; 
dV2_dx3dx1 = 0; 
dV3_dx1dx1 = 0; 
dV3_dx2dx1 = 0; 
dV3_dx3dx1 = 0; 
dV1_dx2dx1 = 0; 
dV1_dx3dx1 = 0; 
  
dV1_dx1dx2 = 0; 
dV2_dx1dx2 = 0; 
dV1_dx2dx2 = 0; 
dV1_dx3dx2 = 0; 
dV3_dx1dx2 = 0; 
dV3_dx2dx2 = 0; 
dV3_dx3dx2 = 0; 
dV2_dx2dx2 = 0; 
dV2_dx3dx2 = 0; 
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dV1_dx1dx3 = 0; 
dV1_dx2dx3 = 0; 
dV1_dx3dx3 = 0; 
dV3_dx1dx3 = 0; 
dV2_dx1dx3 = 0; 
dV2_dx2dx3 = 0; 
dV2_dx3dx3 = 0; 
dV3_dx2dx3 = 0; 
dV3_dx3dx3 = 0; 
  
% Estimating the second derivatives using the central difference 
% approximation. 
  
if (j == 1) 
%     Here we have set the j-1 term equal to the no slip condition of v = 0 
    if (v_p1(j,1) ~= 0) && (v_p1(j+1,1) ~= 0) 
        dV1_dx1dx1 = A110*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dx^2)); 
        dV1_dx1dx2 = A120*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dx*dy)); 
        dV1_dx1dx3 = A130*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dx*dz)); 
        dV1_dx2dx1 = A210*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dy*dx)); 
        dV1_dx2dx2 = A220*((v(j+2,1) - 2*v(j+1,1) + v(j,1))/(dy^2)); 
        dV1_dx2dx3 = A230*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dy*dz)); 
        dV1_dx3dx1 = A310*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dz*dx)); 
        dV1_dx3dx2 = A320*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j,1) + v_m1(j,1))/(4*dz*dy)); 
        dV1_dx3dx3 = A330*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dz^2)); 
    end 
     
    if(v_p1(j,2) ~= 0) && (v_p1(j+1,2) ~= 0) 
        dV2_dx1dx1 = A110*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dx^2)); 
        dV2_dx1dx2 = A120*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dx*dy)); 
        dV2_dx1dx3 = A130*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dx*dz)); 
        dV2_dx2dx1 = A210*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dy*dx)); 
        dV2_dx2dx2 = A220*((v(j+2,2) - 2*v(j+1,2) + v(j,2))/(dy^2)); 
        dV2_dx2dx3 = A230*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dy*dz)); 
        dV2_dx3dx1 = A310*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dz*dx)); 
        dV2_dx3dx2 = A320*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j,2) + v_m1(j,2))/(4*dz*dy)); 
        dV2_dx3dx3 = A330*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dz^2)); 
    end 
     
    if(v_p1(j,3) ~= 0) && (v_p1(j+1,3) ~= 0) 
        dV3_dx1dx1 = A110*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dx^2)); 
        dV3_dx1dx2 = A120*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dx*dy)); 
        dV3_dx1dx3 = A130*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dx*dz)); 
        dV3_dx2dx1 = A210*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dy*dx)); 
        dV3_dx2dx2 = A220*((v(j+2,3) - 2*v(j+1,3) + v(j,3))/(dy^2)); 
        dV3_dx2dx3 = A230*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dy*dz)); 
        dV3_dx3dx1 = A310*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dz*dx)); 
        dV3_dx3dx2 = A320*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j,3) + v_m1(j,3))/(4*dz*dy)); 
        dV3_dx3dx3 = A330*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dz^2)); 
    end 
     
end 
  
if (j > 1 && j < 31) 
    % Here we are estimating the numerical derivatives away from the wall 
    % so no boundary conditions are imposed in the code. 
     
    if (v_p1(j+1,1) ~= 0) && (v_p1(j,1) ~= 0) && (v_p1(j-1,1) ~= 0) 
        dV1_dx1dx1 = A110*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dx^2)); 
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        dV1_dx1dx2 = A120*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dx*dy)); 
        dV1_dx1dx3 = A130*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dx*dz)); 
        dV1_dx2dx1 = A210*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dy*dx)); 
        dV1_dx2dx2 = A220*((v(j+1,1) - 2*v(j,1) + v(j-1,1))/(dy^2)); 
        dV1_dx2dx3 = A230*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dy*dz)); 
        dV1_dx3dx1 = A310*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dz*dx)); 
        dV1_dx3dx2 = A320*((v_p1(j+1,1) - v_m1(j+1,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dz*dy)); 
        dV1_dx3dx3 = A330*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dz^2)); 
    end 
     
    if (v_p1(j+1,2) ~= 0) && (v_p1(j,2) ~= 0) && (v_p1(j-1,2) ~= 0) 
        dV2_dx1dx1 = A110*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dx^2)); 
        dV2_dx1dx2 = A120*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dx*dy)); 
        dV2_dx1dx3 = A130*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dx*dz)); 
        dV2_dx2dx1 = A210*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dy*dx)); 
        dV2_dx2dx2 = A220*((v(j+1,2) - 2*v(j,2) + v(j-1,2))/(dy^2)); 
        dV2_dx2dx3 = A230*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dy*dz)); 
        dV2_dx3dx1 = A310*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dz*dx)); 
        dV2_dx3dx2 = A320*((v_p1(j+1,2) - v_m1(j+1,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dz*dy)); 
        dV2_dx3dx3 = A330*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dz^2)); 
    end 
     
    if (v_p1(j+1,3) ~= 0) && (v_p1(j,3) ~= 0) && (v_p1(j-1,3) ~= 0) 
        dV3_dx1dx1 = A110*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dx^2)); 
        dV3_dx1dx2 = A120*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dx*dy)); 
        dV3_dx1dx3 = A130*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dx*dz)); 
        dV3_dx2dx1 = A210*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dy*dx)); 
        dV3_dx2dx2 = A220*((v(j+1,3) - 2*v(j,3) + v(j-1,3))/(dy^2)); 
        dV3_dx2dx3 = A230*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dy*dz)); 
        dV3_dx3dx1 = A310*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dz*dx)); 
        dV3_dx3dx2 = A320*((v_p1(j+1,3) - v_m1(j+1,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dz*dy)); 
        dV3_dx3dx3 = A330*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dz^2)); 
    end 
     
end 
  
if (j == 31) 
%     Here we again impose the no slip boundary condition, but instead we 
%     equate the j+1 term equal to zero. 
     
    if (v_p1(j,1) ~= 0) && (v(j,1) ~= 0) && (v_m1(j,1) ~= 0) 
        dV1_dx1dx1 = A110*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dx^2)); 
        dV1_dx1dx2 = A120*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dx*dy)); 
        dV1_dx1dx3 = A130*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dx*dz)); 
        dV1_dx2dx1 = A210*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dy*dx)); 
        dV1_dx2dx2 = A220*((v(j,1) - 2*v(j-1,1) + v(j-2,1))/(dy^2)); 
        dV1_dx2dx3 = A230*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dy*dz)); 
        dV1_dx3dx1 = A310*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dz*dx)); 
        dV1_dx3dx2 = A320*((v_p1(j,1) - v_m1(j,1) - v_p1(j-1,1) + v_m1(j-1,1))/(4*dz*dy)); 
        dV1_dx3dx3 = A330*((v_m1(j,1) - 2*v(j,1) + v_p1(j,1))/(dz^2)); 
    end 
     
    if (v_p1(j,2) ~= 0) && (v_p1(j-1,2) ~= 0) 
        dV2_dx1dx1 = A110*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dx^2)); 
        dV2_dx1dx2 = A120*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dx*dy)); 
        dV2_dx1dx3 = A130*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dx*dz)); 
        dV2_dx2dx1 = A210*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dy*dx)); 
        dV2_dx2dx2 = A220*((v(j,2) - 2*v(j-1,2) + v(j-2,2))/(dy^2)); 
        dV2_dx2dx3 = A230*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dy*dz)); 
        dV2_dx3dx1 = A310*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dz*dx)); 
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        dV2_dx3dx2 = A320*((v_p1(j,2) - v_m1(j,2) - v_p1(j-1,2) + v_m1(j-1,2))/(4*dz*dy)); 
        dV2_dx3dx3 = A330*((v_m1(j,2) - 2*v(j,2) + v_p1(j,2))/(dz^2)); 
    end 
     
    if (v_p1(j,3) ~= 0) && (v_p1(j-1,3) ~= 0) 
        dV3_dx1dx1 = A110*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dx^2)); 
        dV3_dx1dx2 = A120*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dx*dy)); 
        dV3_dx1dx3 = A130*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dx*dz)); 
        dV3_dx2dx1 = A210*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dy*dx)); 
        dV3_dx2dx2 = A220*((v(j,3) - 2*v(j-1,3) + v(j-2,3))/(dy^2)); 
        dV3_dx2dx3 = A230*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dy*dz)); 
        dV3_dx3dx1 = A310*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dz*dx)); 
        dV3_dx3dx2 = A320*((v_p1(j,3) - v_m1(j,3) - v_p1(j-1,3) + v_m1(j-1,3))/(4*dz*dy)); 
        dV3_dx3dx3 = A330*((v_m1(j,3) - 2*v(j,3) + v_p1(j,3))/(dz^2)); 
    end 
     
end 
  
d2V_dxidxj(:,1) = [dV1_dx1dx1 dV1_dx1dx2 dV1_dx1dx3 dV1_dx2dx1 dV1_dx2dx2 dV1_dx2dx3 dV1_dx3dx1 dV1_dx3dx2 
dV1_dx3dx3]; 
  
d2V_dxidxj(:,2) = [dV2_dx1dx1 dV2_dx1dx2 dV2_dx1dx3 dV2_dx2dx1 dV2_dx2dx2 dV2_dx2dx3 dV2_dx3dx1 dV2_dx3dx2 
dV2_dx3dx3]; 
  
d2V_dxidxj(:,3) = [dV3_dx1dx1 dV3_dx1dx2 dV3_dx1dx3 dV3_dx2dx1 dV3_dx2dx2 dV3_dx2dx3 dV3_dx3dx1 dV3_dx3dx2 
dV3_dx3dx3]; 
  
d2V_dxidxj(isnan(d2V_dxidxj)) = 0; 
d2V_dxidxj(isinf(d2V_dxidxj)) = 0; 
  
m = sum(d2V_dxidxj(:,k)); 
end 

E.3.4 LddD.m 
function [LddD] = LddD(D,A) 
  
% Function written to compute the 4th order L tensor double dotted into the 
% 2nd order rate of strain tensor (D). 
  
[eigAvec,eigAval] = eig(reshape(A,3,3));   % Calculation of the numerical eigenvalues and eigenvectors. 
  
eigAvec = fliplr(eigAvec); 
eigAval = rot90(rot90(eigAval)); 
  
% Assigning the numerical values to discrete variables to ease in 
% calculation. 
  
eigAval1 = eigAval(1); 
eigAval2 = eigAval(5); 
eigAval3 = eigAval(9); 
  
eigAvec1 = eigAvec(:,1); 
eigAvec2 = eigAvec(:,2); 
eigAvec3 = eigAvec(:,3); 
  
%% CALCULATION FOR I = 1 
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% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
LddD1111 = eigAvec1(1)^4                                *D(1); 
LddD1112 = eigAvec1(1)^3 *eigAvec1(2)                   *D(4); 
LddD1113 = eigAvec1(1)^3                *eigAvec1(3)    *D(7); 
LddD1121 = eigAvec1(1)^3 *eigAvec1(2)                   *D(2); 
LddD1122 = eigAvec1(1)^2 *eigAvec1(2)^2                 *D(5); 
LddD1123 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *D(8); 
LddD1131 = eigAvec1(1)^3                *eigAvec1(3)    *D(3); 
LddD1132 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *D(6); 
LddD1133 = eigAvec1(1)^2                *eigAvec1(3)^2  *D(9); 
  
LddD11_e1 = eigAval1*(LddD1111 + LddD1112 + LddD1113 + LddD1121 + LddD1122 + LddD1123 + LddD1131 + 
LddD1132 + LddD1133); 
  
% Calculation of the 1,2 Component of the LddD 2nd Order Tensor 
  
LddD1211 = eigAvec1(1)^3 *eigAvec1(2)                   *D(1); 
LddD1212 = eigAvec1(1)^2 *eigAvec1(2)^2                 *D(4); 
LddD1213 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *D(7); 
LddD1221 = eigAvec1(1)^2 *eigAvec1(2)^2                 *D(2); 
LddD1222 = eigAvec1(1)   *eigAvec1(2)^3                 *D(5); 
LddD1223 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *D(8); 
LddD1231 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *D(3); 
LddD1232 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *D(6); 
LddD1233 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2  *D(9); 
  
LddD12_e1 = eigAval1*(LddD1211 + LddD1212 + LddD1213 + LddD1221 + LddD1222 + LddD1223 + LddD1231 + 
LddD1232 + LddD1233); 
  
% Calculation of the 1,3 Component of the LddD 2nd Order Tensor 
  
LddD1311 = eigAvec1(1)^3                *eigAvec1(3)     *D(1); 
LddD1312 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *D(4); 
LddD1313 = eigAvec1(1)^2                *eigAvec1(3)^2   *D(7); 
LddD1321 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *D(2); 
LddD1322 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *D(5); 
LddD1323 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *D(8); 
LddD1331 = eigAvec1(1)^2                *eigAvec1(3)^2   *D(3); 
LddD1332 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *D(6); 
LddD1333 = eigAvec1(1)                  *eigAvec1(3)^3   *D(9); 
  
LddD13_e1 = eigAval1*(LddD1311 + LddD1312 + LddD1313 + LddD1321 + LddD1322 + LddD1323 + LddD1331 + 
LddD1332 + LddD1333); 
  
% Calculation of the 2,1 Component of the LddD 2nd Order Tensor 
  
LddD21_e1 = LddD12_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the LddD 2nd Order Tensor 
  
LddD2211 = eigAvec1(1)^2 *eigAvec1(2)^2                  *D(1);  
LddD2212 = eigAvec1(1)   *eigAvec1(2)^3                  *D(4); 
LddD2213 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *D(7); 
LddD2221 = eigAvec1(1)   *eigAvec1(2)^3                  *D(2); 
LddD2222 =                eigAvec1(2)^4                  *D(5); 
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LddD2223 =                eigAvec1(2)^3 *eigAvec1(3)     *D(8); 
LddD2231 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *D(3); 
LddD2232 =                eigAvec1(2)^3 *eigAvec1(3)     *D(6); 
LddD2233 =                eigAvec1(2)^2 *eigAvec1(3)^2   *D(9);   
  
LddD22_e1 = eigAval1*(LddD2211 + LddD2212 + LddD2213 + LddD2221 + LddD2222 + LddD2223 + LddD2231 + 
LddD2232 + LddD2233); 
  
% Calculation of the 2,3 Component of the LddD 2nd Order Tensor 
  
LddD2311 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *D(1); 
LddD2312 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *D(4); 
LddD2313 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *D(7); 
LddD2321 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *D(2); 
LddD2322 =                eigAvec1(2)^3 *eigAvec1(3)     *D(5); 
LddD2323 =                eigAvec1(2)^2 *eigAvec1(3)^2   *D(8); 
LddD2331 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *D(3); 
LddD2332 =                eigAvec1(2)^2 *eigAvec1(3)^2   *D(6); 
LddD2333 =                eigAvec1(2)   *eigAvec1(3)^3   *D(9); 
  
LddD23_e1 = eigAval1*(LddD2311 + LddD2312 + LddD2313 + LddD2321 + LddD2322 + LddD2323 + LddD2331 + 
LddD2332 + LddD2333); 
  
% Calculation of the 3,1 Component of the LddD 2nd Order Tensor 
  
LddD31_e1 = LddD13_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the LddD 2nd Order Tensor 
  
LddD32_e1 = LddD23_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the LddD 2nd Order Tensor 
  
LddD3311 = eigAvec1(1)^2                *eigAvec1(3)^2   *D(1); 
LddD3312 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *D(4); 
LddD3313 = eigAvec1(1)                  *eigAvec1(3)^3   *D(7); 
LddD3321 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *D(2); 
LddD3322 =                eigAvec1(2)^2 *eigAvec1(3)^2   *D(5); 
LddD3323 =                eigAvec1(2)   *eigAvec1(3)^3   *D(8); 
LddD3331 = eigAvec1(1)                  *eigAvec1(3)^3   *D(3); 
LddD3332 =                eigAvec1(2)   *eigAvec1(3)^3   *D(6); 
LddD3333 =                               eigAvec1(3)^4   *D(9); 
  
LddD33_e1 = eigAval1*(LddD3311 + LddD3312 + LddD3313 + LddD3321 + LddD3322 + LddD3323 + LddD3331 + 
LddD3332 + LddD3333); 
  
%% CALCULATION FOR I = 2 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
LddD1111 = eigAvec2(1)^4                                *D(1); 
LddD1112 = eigAvec2(1)^3 *eigAvec2(2)                   *D(4); 
LddD1113 = eigAvec2(1)^3                *eigAvec2(3)    *D(7); 
LddD1121 = eigAvec2(1)^3 *eigAvec2(2)                   *D(2); 
LddD1122 = eigAvec2(1)^2 *eigAvec2(2)^2                 *D(5); 
LddD1123 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *D(8); 
LddD1131 = eigAvec2(1)^3                *eigAvec2(3)    *D(3); 
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LddD1132 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *D(6); 
LddD1133 = eigAvec2(1)^2                *eigAvec2(3)^2  *D(9); 
  
LddD11_e2 = eigAval2*(LddD1111 + LddD1112 + LddD1113 + LddD1121 + LddD1122 + LddD1123 + LddD1131 + 
LddD1132 + LddD1133); 
  
% Calculation of the 1,2 Component of the LddD 2nd Order Tensor 
  
LddD1211 = eigAvec2(1)^3 *eigAvec2(2)                   *D(1); 
LddD1212 = eigAvec2(1)^2 *eigAvec2(2)^2                 *D(4); 
LddD1213 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *D(7); 
LddD1221 = eigAvec2(1)^2 *eigAvec2(2)^2                 *D(2); 
LddD1222 = eigAvec2(1)   *eigAvec2(2)^3                 *D(5); 
LddD1223 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *D(8); 
LddD1231 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *D(3); 
LddD1232 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *D(6); 
LddD1233 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2  *D(9); 
  
LddD12_e2 = eigAval2*(LddD1211 + LddD1212 + LddD1213 + LddD1221 + LddD1222 + LddD1223 + LddD1231 + 
LddD1232 + LddD1233); 
  
% Calculation of the 1,3 Component of the LddD 2nd Order Tensor 
  
LddD1311 = eigAvec2(1)^3                *eigAvec2(3)     *D(1); 
LddD1312 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *D(4); 
LddD1313 = eigAvec2(1)^2                *eigAvec2(3)^2   *D(7); 
LddD1321 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *D(2); 
LddD1322 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *D(5); 
LddD1323 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *D(8); 
LddD1331 = eigAvec2(1)^2                *eigAvec2(3)^2   *D(3); 
LddD1332 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *D(6); 
LddD1333 = eigAvec2(1)                  *eigAvec2(3)^3   *D(9); 
  
LddD13_e2 = eigAval2*(LddD1311 + LddD1312 + LddD1313 + LddD1321 + LddD1322 + LddD1323 + LddD1331 + 
LddD1332 + LddD1333); 
  
% Calculation of the 2,1 Component of the LddD 2nd Order Tensor 
  
LddD21_e2 = LddD12_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the LddD 2nd Order Tensor 
  
LddD2211 = eigAvec2(1)^2 *eigAvec2(2)^2                  *D(1);  
LddD2212 = eigAvec2(1)   *eigAvec2(2)^3                  *D(4); 
LddD2213 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *D(7); 
LddD2221 = eigAvec2(1)   *eigAvec2(2)^3                  *D(2); 
LddD2222 =                eigAvec2(2)^4                  *D(5); 
LddD2223 =                eigAvec2(2)^3 *eigAvec2(3)     *D(8); 
LddD2231 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *D(3); 
LddD2232 =                eigAvec2(2)^3 *eigAvec2(3)     *D(6); 
LddD2233 =                eigAvec2(2)^2 *eigAvec2(3)^2   *D(9);   
  
LddD22_e2 = eigAval2*(LddD2211 + LddD2212 + LddD2213 + LddD2221 + LddD2222 + LddD2223 + LddD2231 + 
LddD2232 + LddD2233); 
  
% Calculation of the 2,3 Component of the LddD 2nd Order Tensor 
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LddD2311 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *D(1); 
LddD2312 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *D(4); 
LddD2313 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *D(7); 
LddD2321 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *D(2); 
LddD2322 =                eigAvec2(2)^3 *eigAvec2(3)     *D(5); 
LddD2323 =                eigAvec2(2)^2 *eigAvec2(3)^2   *D(8); 
LddD2331 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *D(3); 
LddD2332 =                eigAvec2(2)^2 *eigAvec2(3)^2   *D(6); 
LddD2333 =                eigAvec2(2)   *eigAvec2(3)^3   *D(9); 
  
LddD23_e2 = eigAval2*(LddD2311 + LddD2312 + LddD2313 + LddD2321 + LddD2322 + LddD2323 + LddD2331 + 
LddD2332 + LddD2333); 
  
% Calculation of the 3,1 Component of the LddD 2nd Order Tensor 
  
LddD31_e2 = LddD13_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the LddD 2nd Order Tensor 
  
LddD32_e2 = LddD23_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the LddD 2nd Order Tensor 
  
LddD3311 = eigAvec2(1)^2                *eigAvec2(3)^2   *D(1); 
LddD3312 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *D(4); 
LddD3313 = eigAvec2(1)                  *eigAvec2(3)^3   *D(7); 
LddD3321 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *D(2); 
LddD3322 =                eigAvec2(2)^2 *eigAvec2(3)^2   *D(5); 
LddD3323 =                eigAvec2(2)   *eigAvec2(3)^3   *D(8); 
LddD3331 = eigAvec2(1)                  *eigAvec2(3)^3   *D(3); 
LddD3332 =                eigAvec2(2)   *eigAvec2(3)^3   *D(6); 
LddD3333 =                               eigAvec2(3)^4   *D(9); 
  
LddD33_e2 = eigAval2*(LddD3311 + LddD3312 + LddD3313 + LddD3321 + LddD3322 + LddD3323 + LddD3331 + 
LddD3332 + LddD3333); 
  
%% CALCULATION FOR I = 3 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
LddD1111 = eigAvec3(1)^4                                *D(1); 
LddD1112 = eigAvec3(1)^3 *eigAvec3(2)                   *D(4); 
LddD1113 = eigAvec3(1)^3                *eigAvec3(3)    *D(7); 
LddD1121 = eigAvec3(1)^3 *eigAvec3(2)                   *D(2); 
LddD1122 = eigAvec3(1)^2 *eigAvec3(2)^2                 *D(5); 
LddD1123 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *D(8); 
LddD1131 = eigAvec3(1)^3                *eigAvec3(3)    *D(3); 
LddD1132 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *D(6); 
LddD1133 = eigAvec3(1)^2                *eigAvec3(3)^2  *D(9); 
  
LddD11_e3 = eigAval3*(LddD1111 + LddD1112 + LddD1113 + LddD1121 + LddD1122 + LddD1123 + LddD1131 + 
LddD1132 + LddD1133); 
  
% Calculation of the 1,2 Component of the LddD 2nd Order Tensor 
  
LddD1211 = eigAvec3(1)^3 *eigAvec3(2)                   *D(1); 
LddD1212 = eigAvec3(1)^2 *eigAvec3(2)^2                 *D(4); 
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LddD1213 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *D(7); 
LddD1221 = eigAvec3(1)^2 *eigAvec3(2)^2                 *D(2); 
LddD1222 = eigAvec3(1)   *eigAvec3(2)^3                 *D(5); 
LddD1223 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *D(8); 
LddD1231 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *D(3); 
LddD1232 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *D(6); 
LddD1233 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2  *D(9); 
  
LddD12_e3 = eigAval3*(LddD1211 + LddD1212 + LddD1213 + LddD1221 + LddD1222 + LddD1223 + LddD1231 + 
LddD1232 + LddD1233); 
  
% Calculation of the 1,3 Component of the LddD 2nd Order Tensor 
  
LddD1311 = eigAvec3(1)^3                *eigAvec3(3)     *D(1); 
LddD1312 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *D(4); 
LddD1313 = eigAvec3(1)^2                *eigAvec3(3)^2   *D(7); 
LddD1321 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *D(2); 
LddD1322 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *D(5); 
LddD1323 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *D(8); 
LddD1331 = eigAvec3(1)^2                *eigAvec3(3)^2   *D(3); 
LddD1332 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *D(6); 
LddD1333 = eigAvec3(1)                  *eigAvec3(3)^3   *D(9); 
  
LddD13_e3 = eigAval3*(LddD1311 + LddD1312 + LddD1313 + LddD1321 + LddD1322 + LddD1323 + LddD1331 + 
LddD1332 + LddD1333); 
  
% Calculation of the 2,1 Component of the LddD 2nd Order Tensor 
  
LddD21_e3 = LddD12_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the LddD 2nd Order Tensor 
  
LddD2211 = eigAvec3(1)^2 *eigAvec3(2)^2                  *D(1);  
LddD2212 = eigAvec3(1)   *eigAvec3(2)^3                  *D(4); 
LddD2213 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *D(7); 
LddD2221 = eigAvec3(1)   *eigAvec3(2)^3                  *D(2); 
LddD2222 =                eigAvec3(2)^4                  *D(5); 
LddD2223 =                eigAvec3(2)^3 *eigAvec3(3)     *D(8); 
LddD2231 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *D(3); 
LddD2232 =                eigAvec3(2)^3 *eigAvec3(3)     *D(6); 
LddD2233 =                eigAvec3(2)^2 *eigAvec3(3)^2   *D(9);   
  
LddD22_e3 = eigAval3*(LddD2211 + LddD2212 + LddD2213 + LddD2221 + LddD2222 + LddD2223 + LddD2231 + 
LddD2232 + LddD2233); 
  
% Calculation of the 2,3 Component of the LddD 2nd Order Tensor 
  
LddD2311 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *D(1); 
LddD2312 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *D(4); 
LddD2313 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *D(7); 
LddD2321 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *D(2); 
LddD2322 =                eigAvec3(2)^3 *eigAvec3(3)     *D(5); 
LddD2323 =                eigAvec3(2)^2 *eigAvec3(3)^2   *D(8); 
LddD2331 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *D(3); 
LddD2332 =                eigAvec3(2)^2 *eigAvec3(3)^2   *D(6); 
LddD2333 =                eigAvec3(2)   *eigAvec3(3)^3   *D(9); 
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LddD23_e3 = eigAval3*(LddD2311 + LddD2312 + LddD2313 + LddD2321 + LddD2322 + LddD2323 + LddD2331 + 
LddD2332 + LddD2333); 
  
% Calculation of the 3,1 Component of the LddD 2nd Order Tensor 
  
LddD31_e3 = LddD13_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the LddD 2nd Order Tensor 
  
LddD32_e3 = LddD23_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the LddD 2nd Order Tensor 
  
LddD3311 = eigAvec3(1)^2                *eigAvec3(3)^2   *D(1); 
LddD3312 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *D(4); 
LddD3313 = eigAvec3(1)                  *eigAvec3(3)^3   *D(7); 
LddD3321 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *D(2); 
LddD3322 =                eigAvec3(2)^2 *eigAvec3(3)^2   *D(5); 
LddD3323 =                eigAvec3(2)   *eigAvec3(3)^3   *D(8); 
LddD3331 = eigAvec3(1)                  *eigAvec3(3)^3   *D(3); 
LddD3332 =                eigAvec3(2)   *eigAvec3(3)^3   *D(6); 
LddD3333 =                               eigAvec3(3)^4   *D(9); 
  
LddD33_e3 = eigAval2*(LddD3311 + LddD3312 + LddD3313 + LddD3321 + LddD3322 + LddD3323 + LddD3331 + 
LddD3332 + LddD3333); 
  
LddD11 = LddD11_e1 + LddD11_e2 + LddD11_e3; 
LddD12 = LddD12_e1 + LddD12_e2 + LddD12_e3; 
LddD13 = LddD13_e1 + LddD13_e2 + LddD13_e3; 
LddD21 = LddD21_e1 + LddD21_e2 + LddD21_e3; 
LddD22 = LddD22_e1 + LddD22_e2 + LddD22_e3; 
LddD23 = LddD23_e1 + LddD23_e2 + LddD23_e3; 
LddD31 = LddD32_e1 + LddD31_e2 + LddD31_e3; 
LddD32 = LddD32_e1 + LddD32_e2 + LddD32_e3; 
LddD33 = LddD33_e1 + LddD33_e2 + LddD33_e3; 
  
LddD = [LddD11 LddD12 LddD13 LddD21 LddD22 LddD23 LddD31 LddD32 LddD33]; 
  
LddD(isnan(LddD)) = 0; 
LddD(isinf(LddD)) = 0; 
  
end 
E.3.5 LddC.m 
function [LddC] = LddC(C,A) 
  
% Function written to compute the 4th order L tensor double dotted into the 
% 2nd order anisotropy tensor (C). 
  
[eigAvec,eigAval] = eig(reshape(A,3,3));   % Calculation of the numerical eigenvalues and eigenvectors. 
  
eigAvec = fliplr(eigAvec); 
eigAval = rot90(rot90(eigAval)); 
  
% Assigning the numerical values to discrete variables to ease in 
% calculation. 
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eigAval1 = eigAval(1); 
eigAval2 = eigAval(5); 
eigAval3 = eigAval(9); 
  
eigAvec1 = eigAvec(:,1); 
eigAvec2 = eigAvec(:,2); 
eigAvec3 = eigAvec(:,3); 
  
%% CALCULATION FOR I = 1 
  
% Calculation of the 1,1 Component of the LddC 2nd Order Tensor 
  
LddC1111 = eigAvec1(1)^4                                *C(1); 
LddC1112 = eigAvec1(1)^3 *eigAvec1(2)                   *C(4); 
LddC1113 = eigAvec1(1)^3                *eigAvec1(3)    *C(7); 
LddC1121 = eigAvec1(1)^3 *eigAvec1(2)                   *C(2); 
LddC1122 = eigAvec1(1)^2 *eigAvec1(2)^2                 *C(5); 
LddC1123 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *C(8); 
LddC1131 = eigAvec1(1)^3                *eigAvec1(3)    *C(3); 
LddC1132 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *C(6); 
LddC1133 = eigAvec1(1)^2                *eigAvec1(3)^2  *C(9); 
  
LddC11_e1 = eigAval1*(LddC1111 + LddC1112 + LddC1113 + LddC1121 + LddC1122 + LddC1123 + LddC1131 + LddC1132 
+ LddC1133); 
  
% Calculation of the 1,2 Component of the LddC 2nd Order Tensor 
  
LddC1211 = eigAvec1(1)^3 *eigAvec1(2)                   *C(1); 
LddC1212 = eigAvec1(1)^2 *eigAvec1(2)^2                 *C(4); 
LddC1213 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *C(7); 
LddC1221 = eigAvec1(1)^2 *eigAvec1(2)^2                 *C(2); 
LddC1222 = eigAvec1(1)   *eigAvec1(2)^3                 *C(5); 
LddC1223 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *C(8); 
LddC1231 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *C(3); 
LddC1232 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *C(6); 
LddC1233 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2  *C(9); 
  
LddC12_e1 = eigAval1*(LddC1211 + LddC1212 + LddC1213 + LddC1221 + LddC1222 + LddC1223 + LddC1231 + LddC1232 
+ LddC1233); 
  
% Calculation of the 1,3 Component of the LddC 2nd Order Tensor 
  
LddC1311 = eigAvec1(1)^3                *eigAvec1(3)     *C(1); 
LddC1312 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *C(4); 
LddC1313 = eigAvec1(1)^2                *eigAvec1(3)^2   *C(7); 
LddC1321 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *C(2); 
LddC1322 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(5); 
LddC1323 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(8); 
LddC1331 = eigAvec1(1)^2                *eigAvec1(3)^2   *C(3); 
LddC1332 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(6); 
LddC1333 = eigAvec1(1)                  *eigAvec1(3)^3   *C(9); 
  
LddC13_e1 = eigAval1*(LddC1311 + LddC1312 + LddC1313 + LddC1321 + LddC1322 + LddC1323 + LddC1331 + LddC1332 
+ LddC1333); 
  
% Calculation of the 2,1 Component of the LddC 2nd Order Tensor 
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LddC21_e1 = LddC12_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the LddC 2nd Order Tensor 
  
LddC2211 = eigAvec1(1)^2 *eigAvec1(2)^2                  *C(1);  
LddC2212 = eigAvec1(1)   *eigAvec1(2)^3                  *C(4); 
LddC2213 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(7); 
LddC2221 = eigAvec1(1)   *eigAvec1(2)^3                  *C(2); 
LddC2222 =                eigAvec1(2)^4                  *C(5); 
LddC2223 =                eigAvec1(2)^3 *eigAvec1(3)     *C(8); 
LddC2231 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(3); 
LddC2232 =                eigAvec1(2)^3 *eigAvec1(3)     *C(6); 
LddC2233 =                eigAvec1(2)^2 *eigAvec1(3)^2   *C(9);   
  
LddC22_e1 = eigAval1*(LddC2211 + LddC2212 + LddC2213 + LddC2221 + LddC2222 + LddC2223 + LddC2231 + LddC2232 
+ LddC2233); 
  
% Calculation of the 2,3 Component of the LddC 2nd Order Tensor 
  
LddC2311 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *C(1); 
LddC2312 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(4); 
LddC2313 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(7); 
LddC2321 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(2); 
LddC2322 =                eigAvec1(2)^3 *eigAvec1(3)     *C(5); 
LddC2323 =                eigAvec1(2)^2 *eigAvec1(3)^2   *C(8); 
LddC2331 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(3); 
LddC2332 =                eigAvec1(2)^2 *eigAvec1(3)^2   *C(6); 
LddC2333 =                eigAvec1(2)   *eigAvec1(3)^3   *C(9); 
  
LddC23_e1 = eigAval1*(LddC2311 + LddC2312 + LddC2313 + LddC2321 + LddC2322 + LddC2323 + LddC2331 + LddC2332 
+ LddC2333); 
  
% Calculation of the 3,1 Component of the LddC 2nd Order Tensor 
  
LddC31_e1 = LddC13_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the LddC 2nd Order Tensor 
  
LddC32_e1 = LddC23_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the LddC 2nd Order Tensor 
  
LddC3311 = eigAvec1(1)^2                *eigAvec1(3)^2   *C(1); 
LddC3312 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(4); 
LddC3313 = eigAvec1(1)                  *eigAvec1(3)^3   *C(7); 
LddC3321 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(2); 
LddC3322 =                eigAvec1(2)^2 *eigAvec1(3)^2   *C(5); 
LddC3323 =                eigAvec1(2)   *eigAvec1(3)^3   *C(8); 
LddC3331 = eigAvec1(1)                  *eigAvec1(3)^3   *C(3); 
LddC3332 =                eigAvec1(2)   *eigAvec1(3)^3   *C(6); 
LddC3333 =                               eigAvec1(3)^4   *C(9); 
  
LddC33_e1 = eigAval1*(LddC3311 + LddC3312 + LddC3313 + LddC3321 + LddC3322 + LddC3323 + LddC3331 + LddC3332 
+ LddC3333); 
  
%% CALCULATION FOR I = 2 
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% Calculation of the 1,1 Component of the LddC 2nd Order Tensor 
  
LddC1111 = eigAvec2(1)^4                                *C(1); 
LddC1112 = eigAvec2(1)^3 *eigAvec2(2)                   *C(4); 
LddC1113 = eigAvec2(1)^3                *eigAvec2(3)    *C(7); 
LddC1121 = eigAvec2(1)^3 *eigAvec2(2)                   *C(2); 
LddC1122 = eigAvec2(1)^2 *eigAvec2(2)^2                 *C(5); 
LddC1123 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *C(8); 
LddC1131 = eigAvec2(1)^3                *eigAvec2(3)    *C(3); 
LddC1132 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *C(6); 
LddC1133 = eigAvec2(1)^2                *eigAvec2(3)^2  *C(9); 
  
LddC11_e2 = eigAval2*(LddC1111 + LddC1112 + LddC1113 + LddC1121 + LddC1122 + LddC1123 + LddC1131 + LddC1132 
+ LddC1133); 
  
% Calculation of the 1,2 Component of the LddC 2nd Order Tensor 
  
LddC1211 = eigAvec2(1)^3 *eigAvec2(2)                   *C(1); 
LddC1212 = eigAvec2(1)^2 *eigAvec2(2)^2                 *C(4); 
LddC1213 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *C(7); 
LddC1221 = eigAvec2(1)^2 *eigAvec2(2)^2                 *C(2); 
LddC1222 = eigAvec2(1)   *eigAvec2(2)^3                 *C(5); 
LddC1223 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *C(8); 
LddC1231 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *C(3); 
LddC1232 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *C(6); 
LddC1233 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2  *C(9); 
  
LddC12_e2 = eigAval2*(LddC1211 + LddC1212 + LddC1213 + LddC1221 + LddC1222 + LddC1223 + LddC1231 + LddC1232 
+ LddC1233); 
  
% Calculation of the 1,3 Component of the LddC 2nd Order Tensor 
  
LddC1311 = eigAvec2(1)^3                *eigAvec2(3)     *C(1); 
LddC1312 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *C(4); 
LddC1313 = eigAvec2(1)^2                *eigAvec2(3)^2   *C(7); 
LddC1321 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *C(2); 
LddC1322 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(5); 
LddC1323 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(8); 
LddC1331 = eigAvec2(1)^2                *eigAvec2(3)^2   *C(3); 
LddC1332 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(6); 
LddC1333 = eigAvec2(1)                  *eigAvec2(3)^3   *C(9); 
  
LddC13_e2 = eigAval2*(LddC1311 + LddC1312 + LddC1313 + LddC1321 + LddC1322 + LddC1323 + LddC1331 + LddC1332 
+ LddC1333); 
  
% Calculation of the 2,1 Component of the LddC 2nd Order Tensor 
  
LddC21_e2 = LddC12_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the LddC 2nd Order Tensor 
  
LddC2211 = eigAvec2(1)^2 *eigAvec2(2)^2                  *C(1);  
LddC2212 = eigAvec2(1)   *eigAvec2(2)^3                  *C(4); 
LddC2213 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(7); 
LddC2221 = eigAvec2(1)   *eigAvec2(2)^3                  *C(2); 
LddC2222 =                eigAvec2(2)^4                  *C(5); 
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LddC2223 =                eigAvec2(2)^3 *eigAvec2(3)     *C(8); 
LddC2231 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(3); 
LddC2232 =                eigAvec2(2)^3 *eigAvec2(3)     *C(6); 
LddC2233 =                eigAvec2(2)^2 *eigAvec2(3)^2   *C(9);   
  
LddC22_e2 = eigAval2*(LddC2211 + LddC2212 + LddC2213 + LddC2221 + LddC2222 + LddC2223 + LddC2231 + LddC2232 
+ LddC2233); 
  
% Calculation of the 2,3 Component of the LddC 2nd Order Tensor 
  
LddC2311 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *C(1); 
LddC2312 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(4); 
LddC2313 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(7); 
LddC2321 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(2); 
LddC2322 =                eigAvec2(2)^3 *eigAvec2(3)     *C(5); 
LddC2323 =                eigAvec2(2)^2 *eigAvec2(3)^2   *C(8); 
LddC2331 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(3); 
LddC2332 =                eigAvec2(2)^2 *eigAvec2(3)^2   *C(6); 
LddC2333 =                eigAvec2(2)   *eigAvec2(3)^3   *C(9); 
  
LddC23_e2 = eigAval2*(LddC2311 + LddC2312 + LddC2313 + LddC2321 + LddC2322 + LddC2323 + LddC2331 + LddC2332 
+ LddC2333); 
  
% Calculation of the 3,1 Component of the LddC 2nd Order Tensor 
  
LddC31_e2 = LddC13_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the LddC 2nd Order Tensor 
  
LddC32_e2 = LddC23_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the LddC 2nd Order Tensor 
  
LddC3311 = eigAvec2(1)^2                *eigAvec2(3)^2   *C(1); 
LddC3312 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(4); 
LddC3313 = eigAvec2(1)                  *eigAvec2(3)^3   *C(7); 
LddC3321 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(2); 
LddC3322 =                eigAvec2(2)^2 *eigAvec2(3)^2   *C(5); 
LddC3323 =                eigAvec2(2)   *eigAvec2(3)^3   *C(8); 
LddC3331 = eigAvec2(1)                  *eigAvec2(3)^3   *C(3); 
LddC3332 =                eigAvec2(2)   *eigAvec2(3)^3   *C(6); 
LddC3333 =                               eigAvec2(3)^4   *C(9); 
  
LddC33_e2 = eigAval2*(LddC3311 + LddC3312 + LddC3313 + LddC3321 + LddC3322 + LddC3323 + LddC3331 + LddC3332 
+ LddC3333); 
  
%% CALCULATION FOR I = 3 
  
% Calculation of the 1,1 Component of the LddC 2nd Order Tensor 
  
LddC1111 = eigAvec3(1)^4                                *C(1); 
LddC1112 = eigAvec3(1)^3 *eigAvec3(2)                   *C(4); 
LddC1113 = eigAvec3(1)^3                *eigAvec3(3)    *C(7); 
LddC1121 = eigAvec3(1)^3 *eigAvec3(2)                   *C(2); 
LddC1122 = eigAvec3(1)^2 *eigAvec3(2)^2                 *C(5); 
LddC1123 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *C(8); 
LddC1131 = eigAvec3(1)^3                *eigAvec3(3)    *C(3); 
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LddC1132 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *C(6); 
LddC1133 = eigAvec3(1)^2                *eigAvec3(3)^2  *C(9); 
  
LddC11_e3 = eigAval3*(LddC1111 + LddC1112 + LddC1113 + LddC1121 + LddC1122 + LddC1123 + LddC1131 + LddC1132 
+ LddC1133); 
  
% Calculation of the 1,2 Component of the LddC 2nd Order Tensor 
  
LddC1211 = eigAvec3(1)^3 *eigAvec3(2)                   *C(1); 
LddC1212 = eigAvec3(1)^2 *eigAvec3(2)^2                 *C(4); 
LddC1213 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *C(7); 
LddC1221 = eigAvec3(1)^2 *eigAvec3(2)^2                 *C(2); 
LddC1222 = eigAvec3(1)   *eigAvec3(2)^3                 *C(5); 
LddC1223 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *C(8); 
LddC1231 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *C(3); 
LddC1232 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *C(6); 
LddC1233 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2  *C(9); 
  
LddC12_e3 = eigAval3*(LddC1211 + LddC1212 + LddC1213 + LddC1221 + LddC1222 + LddC1223 + LddC1231 + LddC1232 
+ LddC1233); 
  
% Calculation of the 1,3 Component of the LddC 2nd Order Tensor 
  
LddC1311 = eigAvec3(1)^3                *eigAvec3(3)     *C(1); 
LddC1312 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *C(4); 
LddC1313 = eigAvec3(1)^2                *eigAvec3(3)^2   *C(7); 
LddC1321 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *C(2); 
LddC1322 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(5); 
LddC1323 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(8); 
LddC1331 = eigAvec3(1)^2                *eigAvec3(3)^2   *C(3); 
LddC1332 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(6); 
LddC1333 = eigAvec3(1)                  *eigAvec3(3)^3   *C(9); 
  
LddC13_e3 = eigAval3*(LddC1311 + LddC1312 + LddC1313 + LddC1321 + LddC1322 + LddC1323 + LddC1331 + LddC1332 
+ LddC1333); 
  
% Calculation of the 2,1 Component of the LddC 2nd Order Tensor 
  
LddC21_e3 = LddC12_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the LddC 2nd Order Tensor 
  
LddC2211 = eigAvec3(1)^2 *eigAvec3(2)^2                  *C(1);  
LddC2212 = eigAvec3(1)   *eigAvec3(2)^3                  *C(4); 
LddC2213 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(7); 
LddC2221 = eigAvec3(1)   *eigAvec3(2)^3                  *C(2); 
LddC2222 =                eigAvec3(2)^4                  *C(5); 
LddC2223 =                eigAvec3(2)^3 *eigAvec3(3)     *C(8); 
LddC2231 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(3); 
LddC2232 =                eigAvec3(2)^3 *eigAvec3(3)     *C(6); 
LddC2233 =                eigAvec3(2)^2 *eigAvec3(3)^2   *C(9);   
  
LddC22_e3 = eigAval3*(LddC2211 + LddC2212 + LddC2213 + LddC2221 + LddC2222 + LddC2223 + LddC2231 + LddC2232 
+ LddC2233); 
  
% Calculation of the 2,3 Component of the LddC 2nd Order Tensor 
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LddC2311 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *C(1); 
LddC2312 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(4); 
LddC2313 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(7); 
LddC2321 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(2); 
LddC2322 =                eigAvec3(2)^3 *eigAvec3(3)     *C(5); 
LddC2323 =                eigAvec3(2)^2 *eigAvec3(3)^2   *C(8); 
LddC2331 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(3); 
LddC2332 =                eigAvec3(2)^2 *eigAvec3(3)^2   *C(6); 
LddC2333 =                eigAvec3(2)   *eigAvec3(3)^3   *C(9); 
  
LddC23_e3 = eigAval3*(LddC2311 + LddC2312 + LddC2313 + LddC2321 + LddC2322 + LddC2323 + LddC2331 + LddC2332 
+ LddC2333); 
  
% Calculation of the 3,1 Component of the LddC 2nd Order Tensor 
  
LddC31_e3 = LddC13_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the LddC 2nd Order Tensor 
  
LddC32_e3 = LddC23_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the LddC 2nd Order Tensor 
  
LddC3311 = eigAvec3(1)^2                *eigAvec3(3)^2   *C(1); 
LddC3312 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(4); 
LddC3313 = eigAvec3(1)                  *eigAvec3(3)^3   *C(7); 
LddC3321 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(2); 
LddC3322 =                eigAvec3(2)^2 *eigAvec3(3)^2   *C(5); 
LddC3323 =                eigAvec3(2)   *eigAvec3(3)^3   *C(8); 
LddC3331 = eigAvec3(1)                  *eigAvec3(3)^3   *C(3); 
LddC3332 =                eigAvec3(2)   *eigAvec3(3)^3   *C(6); 
LddC3333 =                               eigAvec3(3)^4   *C(9); 
  
LddC33_e3 = eigAval3*(LddC3311 + LddC3312 + LddC3313 + LddC3321 + LddC3322 + LddC3323 + LddC3331 + LddC3332 
+ LddC3333); 
  
%% Summing the terms over i (i.e. i = 1,2,3) 
  
LddC11 = LddC11_e1 + LddC11_e2 + LddC11_e3; 
LddC12 = LddC12_e1 + LddC12_e2 + LddC12_e3; 
LddC13 = LddC13_e1 + LddC13_e2 + LddC13_e3; 
LddC21 = LddC21_e1 + LddC21_e2 + LddC21_e3; 
LddC22 = LddC22_e1 + LddC22_e2 + LddC22_e3; 
LddC23 = LddC23_e1 + LddC23_e2 + LddC23_e3; 
LddC31 = LddC32_e1 + LddC31_e2 + LddC31_e3; 
LddC32 = LddC32_e1 + LddC32_e2 + LddC32_e3; 
LddC33 = LddC33_e1 + LddC33_e2 + LddC33_e3; 
  
%% Forming the L:C Tensor (2nd Order) 
  
LddC = [LddC11 LddC12 LddC13 LddC21 LddC22 LddC23 LddC31 LddC32 LddC33]; 
  
end 
E.3.6 MddC.m 
function [MddC] = MddC(C,A) 
  



237 

 

% Function written to compute the 4th order M tensor double dotted into the 
% 2nd order anistropy tensor (D). 
  
[eigAvec,eigAval] = eig(reshape(A,3,3));   % Calculation of the numerical eigenvalues and eigenvectors. 
  
eigAvec = fliplr(eigAvec); 
eigAval = rot90(rot90(eigAval)); 
  
% Assigning the numerical values to discrete variables to ease in 
% calculation. 
  
eigAvec1 = eigAvec(:,1); 
eigAvec2 = eigAvec(:,2); 
eigAvec3 = eigAvec(:,3); 
  
%% CALCULATION FOR I = 1 
  
% Calculation of the 1,1 Component of the MddC 2nd Order Tensor 
  
MddC1111 = eigAvec1(1)^4                                *C(1); 
MddC1112 = eigAvec1(1)^3 *eigAvec1(2)                   *C(4); 
MddC1113 = eigAvec1(1)^3                *eigAvec1(3)    *C(7); 
MddC1121 = eigAvec1(1)^3 *eigAvec1(2)                   *C(2); 
MddC1122 = eigAvec1(1)^2 *eigAvec1(2)^2                 *C(5); 
MddC1123 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *C(8); 
MddC1131 = eigAvec1(1)^3                *eigAvec1(3)    *C(3); 
MddC1132 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *C(6); 
MddC1133 = eigAvec1(1)^2                *eigAvec1(3)^2  *C(9); 
  
MddC11_e1 = (MddC1111 + MddC1112 + MddC1113 + MddC1121 + MddC1122 + MddC1123 + MddC1131 + MddC1132 + 
MddC1133); 
  
% Calculation of the 1,2 Component of the MddC 2nd Order Tensor 
  
MddC1211 = eigAvec1(1)^3 *eigAvec1(2)                   *C(1); 
MddC1212 = eigAvec1(1)^2 *eigAvec1(2)^2                 *C(4); 
MddC1213 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *C(7); 
MddC1221 = eigAvec1(1)^2 *eigAvec1(2)^2                 *C(2); 
MddC1222 = eigAvec1(1)   *eigAvec1(2)^3                 *C(5); 
MddC1223 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *C(8); 
MddC1231 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *C(3); 
MddC1232 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *C(6); 
MddC1233 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2  *C(9); 
  
MddC12_e1 = (MddC1211 + MddC1212 + MddC1213 + MddC1221 + MddC1222 + MddC1223 + MddC1231 + MddC1232 + 
MddC1233); 
  
% Calculation of the 1,3 Component of the MddC 2nd Order Tensor 
  
MddC1311 = eigAvec1(1)^3                *eigAvec1(3)     *C(1); 
MddC1312 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *C(4); 
MddC1313 = eigAvec1(1)^2                *eigAvec1(3)^2   *C(7); 
MddC1321 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *C(2); 
MddC1322 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(5); 
MddC1323 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(8); 
MddC1331 = eigAvec1(1)^2                *eigAvec1(3)^2   *C(3); 
MddC1332 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(6); 



238 

 

MddC1333 = eigAvec1(1)                  *eigAvec1(3)^3   *C(9); 
  
MddC13_e1 = (MddC1311 + MddC1312 + MddC1313 + MddC1321 + MddC1322 + MddC1323 + MddC1331 + MddC1332 + 
MddC1333); 
  
% Calculation of the 2,1 Component of the MddC 2nd Order Tensor 
  
MddC21_e1 = MddC12_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddC 2nd Order Tensor 
  
MddC2211 = eigAvec1(1)^2 *eigAvec1(2)^2                  *C(1);  
MddC2212 = eigAvec1(1)   *eigAvec1(2)^3                  *C(4); 
MddC2213 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(7); 
MddC2221 = eigAvec1(1)   *eigAvec1(2)^3                  *C(2); 
MddC2222 =                eigAvec1(2)^4                  *C(5); 
MddC2223 =                eigAvec1(2)^3 *eigAvec1(3)     *C(8); 
MddC2231 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(3); 
MddC2232 =                eigAvec1(2)^3 *eigAvec1(3)     *C(6); 
MddC2233 =                eigAvec1(2)^2 *eigAvec1(3)^2   *C(9);   
  
MddC22_e1 = (MddC2211 + MddC2212 + MddC2213 + MddC2221 + MddC2222 + MddC2223 + MddC2231 + MddC2232 + 
MddC2233); 
  
% Calculation of the 2,3 Component of the MddC 2nd Order Tensor 
  
MddC2311 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *C(1); 
MddC2312 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(4); 
MddC2313 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(7); 
MddC2321 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *C(2); 
MddC2322 =                eigAvec1(2)^3 *eigAvec1(3)     *C(5); 
MddC2323 =                eigAvec1(2)^2 *eigAvec1(3)^2   *C(8); 
MddC2331 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(3); 
MddC2332 =                eigAvec1(2)^2 *eigAvec1(3)^2   *C(6); 
MddC2333 =                eigAvec1(2)   *eigAvec1(3)^3   *C(9); 
  
MddC23_e1 = (MddC2311 + MddC2312 + MddC2313 + MddC2321 + MddC2322 + MddC2323 + MddC2331 + MddC2332 + 
MddC2333); 
  
% Calculation of the 3,1 Component of the MddC 2nd Order Tensor 
  
MddC31_e1 = MddC13_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddC 2nd Order Tensor 
  
MddC32_e1 = MddC23_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddC 2nd Order Tensor 
  
MddC3311 = eigAvec1(1)^2                *eigAvec1(3)^2   *C(1); 
MddC3312 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(4); 
MddC3313 = eigAvec1(1)                  *eigAvec1(3)^3   *C(7); 
MddC3321 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *C(2); 
MddC3322 =                eigAvec1(2)^2 *eigAvec1(3)^2   *C(5); 
MddC3323 =                eigAvec1(2)   *eigAvec1(3)^3   *C(8); 
MddC3331 = eigAvec1(1)                  *eigAvec1(3)^3   *C(3); 
MddC3332 =                eigAvec1(2)   *eigAvec1(3)^3   *C(6); 
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MddC3333 =                               eigAvec1(3)^4   *C(9); 
  
MddC33_e1 = (MddC3311 + MddC3312 + MddC3313 + MddC3321 + MddC3322 + MddC3323 + MddC3331 + MddC3332 + 
MddC3333); 
  
%% CALCULATION FOR I = 2 
  
% Calculation of the 1,1 Component of the MddC 2nd Order Tensor 
  
MddC1111 = eigAvec2(1)^4                                *C(1); 
MddC1112 = eigAvec2(1)^3 *eigAvec2(2)                   *C(4); 
MddC1113 = eigAvec2(1)^3                *eigAvec2(3)    *C(7); 
MddC1121 = eigAvec2(1)^3 *eigAvec2(2)                   *C(2); 
MddC1122 = eigAvec2(1)^2 *eigAvec2(2)^2                 *C(5); 
MddC1123 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *C(8); 
MddC1131 = eigAvec2(1)^3                *eigAvec2(3)    *C(3); 
MddC1132 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *C(6); 
MddC1133 = eigAvec2(1)^2                *eigAvec2(3)^2  *C(9); 
  
MddC11_e2 = (MddC1111 + MddC1112 + MddC1113 + MddC1121 + MddC1122 + MddC1123 + MddC1131 + MddC1132 + 
MddC1133); 
  
% Calculation of the 1,2 Component of the MddC 2nd Order Tensor 
  
MddC1211 = eigAvec2(1)^3 *eigAvec2(2)                   *C(1); 
MddC1212 = eigAvec2(1)^2 *eigAvec2(2)^2                 *C(4); 
MddC1213 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *C(7); 
MddC1221 = eigAvec2(1)^2 *eigAvec2(2)^2                 *C(2); 
MddC1222 = eigAvec2(1)   *eigAvec2(2)^3                 *C(5); 
MddC1223 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *C(8); 
MddC1231 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *C(3); 
MddC1232 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *C(6); 
MddC1233 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2  *C(9); 
  
MddC12_e2 = (MddC1211 + MddC1212 + MddC1213 + MddC1221 + MddC1222 + MddC1223 + MddC1231 + MddC1232 + 
MddC1233); 
  
% Calculation of the 1,3 Component of the MddC 2nd Order Tensor 
  
MddC1311 = eigAvec2(1)^3                *eigAvec2(3)     *C(1); 
MddC1312 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *C(4); 
MddC1313 = eigAvec2(1)^2                *eigAvec2(3)^2   *C(7); 
MddC1321 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *C(2); 
MddC1322 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(5); 
MddC1323 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(8); 
MddC1331 = eigAvec2(1)^2                *eigAvec2(3)^2   *C(3); 
MddC1332 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(6); 
MddC1333 = eigAvec2(1)                  *eigAvec2(3)^3   *C(9); 
  
MddC13_e2 = (MddC1311 + MddC1312 + MddC1313 + MddC1321 + MddC1322 + MddC1323 + MddC1331 + MddC1332 + 
MddC1333); 
  
% Calculation of the 2,1 Component of the MddC 2nd Order Tensor 
  
MddC21_e2 = MddC12_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddC 2nd Order Tensor 
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MddC2211 = eigAvec2(1)^2 *eigAvec2(2)^2                  *C(1);  
MddC2212 = eigAvec2(1)   *eigAvec2(2)^3                  *C(4); 
MddC2213 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(7); 
MddC2221 = eigAvec2(1)   *eigAvec2(2)^3                  *C(2); 
MddC2222 =                eigAvec2(2)^4                  *C(5); 
MddC2223 =                eigAvec2(2)^3 *eigAvec2(3)     *C(8); 
MddC2231 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(3); 
MddC2232 =                eigAvec2(2)^3 *eigAvec2(3)     *C(6); 
MddC2233 =                eigAvec2(2)^2 *eigAvec2(3)^2   *C(9);   
  
MddC22_e2 = (MddC2211 + MddC2212 + MddC2213 + MddC2221 + MddC2222 + MddC2223 + MddC2231 + MddC2232 + 
MddC2233); 
  
% Calculation of the 2,3 Component of the MddC 2nd Order Tensor 
  
MddC2311 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *C(1); 
MddC2312 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(4); 
MddC2313 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(7); 
MddC2321 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *C(2); 
MddC2322 =                eigAvec2(2)^3 *eigAvec2(3)     *C(5); 
MddC2323 =                eigAvec2(2)^2 *eigAvec2(3)^2   *C(8); 
MddC2331 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(3); 
MddC2332 =                eigAvec2(2)^2 *eigAvec2(3)^2   *C(6); 
MddC2333 =                eigAvec2(2)   *eigAvec2(3)^3   *C(9); 
  
MddC23_e2 = (MddC2311 + MddC2312 + MddC2313 + MddC2321 + MddC2322 + MddC2323 + MddC2331 + MddC2332 + 
MddC2333); 
  
% Calculation of the 3,1 Component of the MddC 2nd Order Tensor 
  
MddC31_e2 = MddC13_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddC 2nd Order Tensor 
  
MddC32_e2 = MddC23_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddC 2nd Order Tensor 
  
MddC3311 = eigAvec2(1)^2                *eigAvec2(3)^2   *C(1); 
MddC3312 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(4); 
MddC3313 = eigAvec2(1)                  *eigAvec2(3)^3   *C(7); 
MddC3321 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *C(2); 
MddC3322 =                eigAvec2(2)^2 *eigAvec2(3)^2   *C(5); 
MddC3323 =                eigAvec2(2)   *eigAvec2(3)^3   *C(8); 
MddC3331 = eigAvec2(1)                  *eigAvec2(3)^3   *C(3); 
MddC3332 =                eigAvec2(2)   *eigAvec2(3)^3   *C(6); 
MddC3333 =                               eigAvec2(3)^4   *C(9); 
  
MddC33_e2 = (MddC3311 + MddC3312 + MddC3313 + MddC3321 + MddC3322 + MddC3323 + MddC3331 + MddC3332 + 
MddC3333); 
  
%% CALCULATION FOR I = 3 
  
% Calculation of the 1,1 Component of the MddC 2nd Order Tensor 
  
MddC1111 = eigAvec3(1)^4                                *C(1); 
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MddC1112 = eigAvec3(1)^3 *eigAvec3(2)                   *C(4); 
MddC1113 = eigAvec3(1)^3                *eigAvec3(3)    *C(7); 
MddC1121 = eigAvec3(1)^3 *eigAvec3(2)                   *C(2); 
MddC1122 = eigAvec3(1)^2 *eigAvec3(2)^2                 *C(5); 
MddC1123 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *C(8); 
MddC1131 = eigAvec3(1)^3                *eigAvec3(3)    *C(3); 
MddC1132 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *C(6); 
MddC1133 = eigAvec3(1)^2                *eigAvec3(3)^2  *C(9); 
  
MddC11_e3 = (MddC1111 + MddC1112 + MddC1113 + MddC1121 + MddC1122 + MddC1123 + MddC1131 + MddC1132 + 
MddC1133); 
  
% Calculation of the 1,2 Component of the MddC 2nd Order Tensor 
  
MddC1211 = eigAvec3(1)^3 *eigAvec3(2)                   *C(1); 
MddC1212 = eigAvec3(1)^2 *eigAvec3(2)^2                 *C(4); 
MddC1213 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *C(7); 
MddC1221 = eigAvec3(1)^2 *eigAvec3(2)^2                 *C(2); 
MddC1222 = eigAvec3(1)   *eigAvec3(2)^3                 *C(5); 
MddC1223 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *C(8); 
MddC1231 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *C(3); 
MddC1232 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *C(6); 
MddC1233 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2  *C(9); 
  
MddC12_e3 = (MddC1211 + MddC1212 + MddC1213 + MddC1221 + MddC1222 + MddC1223 + MddC1231 + MddC1232 + 
MddC1233); 
  
% Calculation of the 1,3 Component of the MddC 2nd Order Tensor 
  
MddC1311 = eigAvec3(1)^3                *eigAvec3(3)     *C(1); 
MddC1312 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *C(4); 
MddC1313 = eigAvec3(1)^2                *eigAvec3(3)^2   *C(7); 
MddC1321 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *C(2); 
MddC1322 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(5); 
MddC1323 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(8); 
MddC1331 = eigAvec3(1)^2                *eigAvec3(3)^2   *C(3); 
MddC1332 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(6); 
MddC1333 = eigAvec3(1)                  *eigAvec3(3)^3   *C(9); 
  
MddC13_e3 = (MddC1311 + MddC1312 + MddC1313 + MddC1321 + MddC1322 + MddC1323 + MddC1331 + MddC1332 + 
MddC1333); 
  
% Calculation of the 2,1 Component of the MddC 2nd Order Tensor 
  
MddC21_e3 = MddC12_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddC 2nd Order Tensor 
  
MddC2211 = eigAvec3(1)^2 *eigAvec3(2)^2                  *C(1);  
MddC2212 = eigAvec3(1)   *eigAvec3(2)^3                  *C(4); 
MddC2213 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(7); 
MddC2221 = eigAvec3(1)   *eigAvec3(2)^3                  *C(2); 
MddC2222 =                eigAvec3(2)^4                  *C(5); 
MddC2223 =                eigAvec3(2)^3 *eigAvec3(3)     *C(8); 
MddC2231 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(3); 
MddC2232 =                eigAvec3(2)^3 *eigAvec3(3)     *C(6); 
MddC2233 =                eigAvec3(2)^2 *eigAvec3(3)^2   *C(9);   
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MddC22_e3 = (MddC2211 + MddC2212 + MddC2213 + MddC2221 + MddC2222 + MddC2223 + MddC2231 + MddC2232 + 
MddC2233); 
  
% Calculation of the 2,3 Component of the MddC 2nd Order Tensor 
  
MddC2311 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *C(1); 
MddC2312 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(4); 
MddC2313 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(7); 
MddC2321 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *C(2); 
MddC2322 =                eigAvec3(2)^3 *eigAvec3(3)     *C(5); 
MddC2323 =                eigAvec3(2)^2 *eigAvec3(3)^2   *C(8); 
MddC2331 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(3); 
MddC2332 =                eigAvec3(2)^2 *eigAvec3(3)^2   *C(6); 
MddC2333 =                eigAvec3(2)   *eigAvec3(3)^3   *C(9); 
  
MddC23_e3 = (MddC2311 + MddC2312 + MddC2313 + MddC2321 + MddC2322 + MddC2323 + MddC2331 + MddC2332 + 
MddC2333); 
  
% Calculation of the 3,1 Component of the MddC 2nd Order Tensor 
  
MddC31_e3 = MddC13_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddC 2nd Order Tensor 
  
MddC32_e3 = MddC23_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddC 2nd Order Tensor 
  
MddC3311 = eigAvec3(1)^2                *eigAvec3(3)^2   *C(1); 
MddC3312 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(4); 
MddC3313 = eigAvec3(1)                  *eigAvec3(3)^3   *C(7); 
MddC3321 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *C(2); 
MddC3322 =                eigAvec3(2)^2 *eigAvec3(3)^2   *C(5); 
MddC3323 =                eigAvec3(2)   *eigAvec3(3)^3   *C(8); 
MddC3331 = eigAvec3(1)                  *eigAvec3(3)^3   *C(3); 
MddC3332 =                eigAvec3(2)   *eigAvec3(3)^3   *C(6); 
MddC3333 =                               eigAvec3(3)^4   *C(9); 
  
MddC33_e3 = (MddC3311 + MddC3312 + MddC3313 + MddC3321 + MddC3322 + MddC3323 + MddC3331 + MddC3332 + 
MddC3333); 
  
%% Summing the terms over i (i.e. i = 1,2,3) 
  
MddC11 = MddC11_e1 + MddC11_e2 + MddC11_e3; 
MddC12 = MddC12_e1 + MddC12_e2 + MddC12_e3; 
MddC13 = MddC13_e1 + MddC13_e2 + MddC13_e3; 
MddC21 = MddC21_e1 + MddC21_e2 + MddC21_e3; 
MddC22 = MddC22_e1 + MddC22_e2 + MddC22_e3; 
MddC23 = MddC23_e1 + MddC23_e2 + MddC23_e3; 
MddC31 = MddC32_e1 + MddC31_e2 + MddC31_e3; 
MddC32 = MddC32_e1 + MddC32_e2 + MddC32_e3; 
MddC33 = MddC33_e1 + MddC33_e2 + MddC33_e3; 
  
%% Forming the M:C Tensor (M:C) 
  
MddC = [MddC11 MddC12 MddC13 MddC21 MddC22 MddC23 MddC31 MddC32 MddC33]; 
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end 
E.3.7 MddAddC.m 
function [MddAddC] = MddAddC(C,A) 
  
% Function written to compute the 4th order M tensor double dotted into the 
% 4th order A tensor double dotted into the 2nd order anistropy tensor (D). 
  
% 4th Order A tensor used the quadratic closure (AA) 
  
[eigAvec,eigAval] = eig(reshape(A,3,3));   % Calculation of the numerical eigenvalues and eigenvectors. 
  
eigAvec = fliplr(eigAvec); 
eigAval = rot90(rot90(eigAval)); 
  
% Assigning the numerical values to discrete variables to ease in 
% calculation. 
  
eigAvec1 = eigAvec(:,1); 
eigAvec2 = eigAvec(:,2); 
eigAvec3 = eigAvec(:,3); 
  
%% CALCULATION FOR I = 1 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddC1111 = eigAvec1(1)^4                                *A(1); 
MddAddC1112 = eigAvec1(1)^3 *eigAvec1(2)                   *A(4); 
MddAddC1113 = eigAvec1(1)^3                *eigAvec1(3)    *A(7); 
MddAddC1121 = eigAvec1(1)^3 *eigAvec1(2)                   *A(2); 
MddAddC1122 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A(5); 
MddAddC1123 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A(8); 
MddAddC1131 = eigAvec1(1)^3                *eigAvec1(3)    *A(3); 
MddAddC1132 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A(6); 
MddAddC1133 = eigAvec1(1)^2                *eigAvec1(3)^2  *A(9); 
  
MddAddC11_e1 = Explicit_Quad_v(C,A)*(MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + 
MddAddC1122 + MddAddC1123 + MddAddC1131 + MddAddC1132 + MddAddC1133); 
  
% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1211 = eigAvec1(1)^3 *eigAvec1(2)                   *A(1); 
MddAddC1212 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A(4); 
MddAddC1213 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A(7); 
MddAddC1221 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A(2); 
MddAddC1222 = eigAvec1(1)   *eigAvec1(2)^3                 *A(5); 
MddAddC1223 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *A(8); 
MddAddC1231 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A(3); 
MddAddC1232 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *A(6); 
MddAddC1233 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2  *A(9); 
  
MddAddC12_e1 = Explicit_Quad_v(C,A)*(MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + 
MddAddC1222 + MddAddC1223 + MddAddC1231 + MddAddC1232 + MddAddC1233); 
  
% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor 
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MddAddC1311 = eigAvec1(1)^3                *eigAvec1(3)     *A(1); 
MddAddC1312 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A(4); 
MddAddC1313 = eigAvec1(1)^2                *eigAvec1(3)^2   *A(7); 
MddAddC1321 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A(2); 
MddAddC1322 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(5); 
MddAddC1323 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(8); 
MddAddC1331 = eigAvec1(1)^2                *eigAvec1(3)^2   *A(3); 
MddAddC1332 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(6); 
MddAddC1333 = eigAvec1(1)                  *eigAvec1(3)^3   *A(9); 
  
MddAddC13_e1 = Explicit_Quad_v(C,A)*(MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + 
MddAddC1322 + MddAddC1323 + MddAddC1331 + MddAddC1332 + MddAddC1333); 
  
% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC21_e1 = MddAddC12_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2211 = eigAvec1(1)^2 *eigAvec1(2)^2                  *A(1);  
MddAddC2212 = eigAvec1(1)   *eigAvec1(2)^3                  *A(4); 
MddAddC2213 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(7); 
MddAddC2221 = eigAvec1(1)   *eigAvec1(2)^3                  *A(2); 
MddAddC2222 =                eigAvec1(2)^4                  *A(5); 
MddAddC2223 =                eigAvec1(2)^3 *eigAvec1(3)     *A(8); 
MddAddC2231 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(3); 
MddAddC2232 =                eigAvec1(2)^3 *eigAvec1(3)     *A(6); 
MddAddC2233 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A(9);   
  
MddAddC22_e1 = Explicit_Quad_v(C,A)*(MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + 
MddAddC2222 + MddAddC2223 + MddAddC2231 + MddAddC2232 + MddAddC2233); 
  
% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2311 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A(1); 
MddAddC2312 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(4); 
MddAddC2313 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(7); 
MddAddC2321 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(2); 
MddAddC2322 =                eigAvec1(2)^3 *eigAvec1(3)     *A(5); 
MddAddC2323 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A(8); 
MddAddC2331 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(3); 
MddAddC2332 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A(6); 
MddAddC2333 =                eigAvec1(2)   *eigAvec1(3)^3   *A(9); 
  
MddAddC23_e1 = Explicit_Quad_v(C,A)*(MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + 
MddAddC2322 + MddAddC2323 + MddAddC2331 + MddAddC2332 + MddAddC2333); 
  
% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC31_e1 = MddAddC13_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC32_e1 = MddAddC23_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor 
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MddAddC3311 = eigAvec1(1)^2                *eigAvec1(3)^2   *A(1); 
MddAddC3312 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(4); 
MddAddC3313 = eigAvec1(1)                  *eigAvec1(3)^3   *A(7); 
MddAddC3321 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(2); 
MddAddC3322 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A(5); 
MddAddC3323 =                eigAvec1(2)   *eigAvec1(3)^3   *A(8); 
MddAddC3331 = eigAvec1(1)                  *eigAvec1(3)^3   *A(3); 
MddAddC3332 =                eigAvec1(2)   *eigAvec1(3)^3   *A(6); 
MddAddC3333 =                               eigAvec1(3)^4   *A(9); 
  
MddAddC33_e1 = Explicit_Quad_v(C,A)*(MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + 
MddAddC3322 + MddAddC3323 + MddAddC3331 + MddAddC3332 + MddAddC3333); 
  
%% CALCULATION FOR I = 2 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddC1111 = eigAvec2(1)^4                                *A(1); 
MddAddC1112 = eigAvec2(1)^3 *eigAvec2(2)                   *A(4); 
MddAddC1113 = eigAvec2(1)^3                *eigAvec2(3)    *A(7); 
MddAddC1121 = eigAvec2(1)^3 *eigAvec2(2)                   *A(2); 
MddAddC1122 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A(5); 
MddAddC1123 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A(8); 
MddAddC1131 = eigAvec2(1)^3                *eigAvec2(3)    *A(3); 
MddAddC1132 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A(6); 
MddAddC1133 = eigAvec2(1)^2                *eigAvec2(3)^2  *A(9); 
  
MddAddC11_e2 = Explicit_Quad_v(C,A)*(MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + 
MddAddC1122 + MddAddC1123 + MddAddC1131 + MddAddC1132 + MddAddC1133); 
  
% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1211 = eigAvec2(1)^3 *eigAvec2(2)                   *A(1); 
MddAddC1212 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A(4); 
MddAddC1213 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A(7); 
MddAddC1221 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A(2); 
MddAddC1222 = eigAvec2(1)   *eigAvec2(2)^3                 *A(5); 
MddAddC1223 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *A(8); 
MddAddC1231 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A(3); 
MddAddC1232 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *A(6); 
MddAddC1233 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2  *A(9); 
  
MddAddC12_e2 = Explicit_Quad_v(C,A)*(MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + 
MddAddC1222 + MddAddC1223 + MddAddC1231 + MddAddC1232 + MddAddC1233); 
  
% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1311 = eigAvec2(1)^3                *eigAvec2(3)     *A(1); 
MddAddC1312 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A(4); 
MddAddC1313 = eigAvec2(1)^2                *eigAvec2(3)^2   *A(7); 
MddAddC1321 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A(2); 
MddAddC1322 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(5); 
MddAddC1323 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(8); 
MddAddC1331 = eigAvec2(1)^2                *eigAvec2(3)^2   *A(3); 
MddAddC1332 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(6); 
MddAddC1333 = eigAvec2(1)                  *eigAvec2(3)^3   *A(9); 
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MddAddC13_e2 = Explicit_Quad_v(C,A)*(MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + 
MddAddC1322 + MddAddC1323 + MddAddC1331 + MddAddC1332 + MddAddC1333); 
  
% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC21_e2 = MddAddC12_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2211 = eigAvec2(1)^2 *eigAvec2(2)^2                  *A(1);  
MddAddC2212 = eigAvec2(1)   *eigAvec2(2)^3                  *A(4); 
MddAddC2213 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(7); 
MddAddC2221 = eigAvec2(1)   *eigAvec2(2)^3                  *A(2); 
MddAddC2222 =                eigAvec2(2)^4                  *A(5); 
MddAddC2223 =                eigAvec2(2)^3 *eigAvec2(3)     *A(8); 
MddAddC2231 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(3); 
MddAddC2232 =                eigAvec2(2)^3 *eigAvec2(3)     *A(6); 
MddAddC2233 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A(9);   
  
MddAddC22_e2 = Explicit_Quad_v(C,A)*(MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + 
MddAddC2222 + MddAddC2223 + MddAddC2231 + MddAddC2232 + MddAddC2233); 
  
% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2311 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A(1); 
MddAddC2312 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(4); 
MddAddC2313 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(7); 
MddAddC2321 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(2); 
MddAddC2322 =                eigAvec2(2)^3 *eigAvec2(3)     *A(5); 
MddAddC2323 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A(8); 
MddAddC2331 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(3); 
MddAddC2332 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A(6); 
MddAddC2333 =                eigAvec2(2)   *eigAvec2(3)^3   *A(9); 
  
MddAddC23_e2 = Explicit_Quad_v(C,A)*(MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + 
MddAddC2322 + MddAddC2323 + MddAddC2331 + MddAddC2332 + MddAddC2333); 
  
% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC31_e2 = MddAddC13_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC32_e2 = MddAddC23_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC3311 = eigAvec2(1)^2                *eigAvec2(3)^2   *A(1); 
MddAddC3312 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(4); 
MddAddC3313 = eigAvec2(1)                  *eigAvec2(3)^3   *A(7); 
MddAddC3321 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(2); 
MddAddC3322 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A(5); 
MddAddC3323 =                eigAvec2(2)   *eigAvec2(3)^3   *A(8); 
MddAddC3331 = eigAvec2(1)                  *eigAvec2(3)^3   *A(3); 
MddAddC3332 =                eigAvec2(2)   *eigAvec2(3)^3   *A(6); 
MddAddC3333 =                               eigAvec2(3)^4   *A(9); 
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MddAddC33_e2 = Explicit_Quad_v(C,A)*(MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + 
MddAddC3322 + MddAddC3323 + MddAddC3331 + MddAddC3332 + MddAddC3333); 
  
%% CALCULATION FOR I = 3 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddC1111 = eigAvec3(1)^4                                *A(1); 
MddAddC1112 = eigAvec3(1)^3 *eigAvec3(2)                   *A(4); 
MddAddC1113 = eigAvec3(1)^3                *eigAvec3(3)    *A(7); 
MddAddC1121 = eigAvec3(1)^3 *eigAvec3(2)                   *A(2); 
MddAddC1122 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A(5); 
MddAddC1123 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A(8); 
MddAddC1131 = eigAvec3(1)^3                *eigAvec3(3)    *A(3); 
MddAddC1132 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A(6); 
MddAddC1133 = eigAvec3(1)^2                *eigAvec3(3)^2  *A(9); 
  
MddAddC11_e3 = Explicit_Quad_v(C,A)*(MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + 
MddAddC1122 + MddAddC1123 + MddAddC1131 + MddAddC1132 + MddAddC1133); 
  
% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1211 = eigAvec3(1)^3 *eigAvec3(2)                   *A(1); 
MddAddC1212 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A(4); 
MddAddC1213 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A(7); 
MddAddC1221 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A(2); 
MddAddC1222 = eigAvec3(1)   *eigAvec3(2)^3                 *A(5); 
MddAddC1223 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *A(8); 
MddAddC1231 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A(3); 
MddAddC1232 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *A(6); 
MddAddC1233 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2  *A(9); 
  
MddAddC12_e3 = Explicit_Quad_v(C,A)*(MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + 
MddAddC1222 + MddAddC1223 + MddAddC1231 + MddAddC1232 + MddAddC1233); 
  
% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1311 = eigAvec3(1)^3                *eigAvec3(3)     *A(1); 
MddAddC1312 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A(4); 
MddAddC1313 = eigAvec3(1)^2                *eigAvec3(3)^2   *A(7); 
MddAddC1321 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A(2); 
MddAddC1322 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(5); 
MddAddC1323 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(8); 
MddAddC1331 = eigAvec3(1)^2                *eigAvec3(3)^2   *A(3); 
MddAddC1332 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(6); 
MddAddC1333 = eigAvec3(1)                  *eigAvec3(3)^3   *A(9); 
  
MddAddC13_e3 = Explicit_Quad_v(C,A)*(MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + 
MddAddC1322 + MddAddC1323 + MddAddC1331 + MddAddC1332 + MddAddC1333); 
  
% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC21_e3 = MddAddC12_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2211 = eigAvec3(1)^2 *eigAvec3(2)^2                  *A(1);  
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MddAddC2212 = eigAvec3(1)   *eigAvec3(2)^3                  *A(4); 
MddAddC2213 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(7); 
MddAddC2221 = eigAvec3(1)   *eigAvec3(2)^3                  *A(2); 
MddAddC2222 =                eigAvec3(2)^4                  *A(5); 
MddAddC2223 =                eigAvec3(2)^3 *eigAvec3(3)     *A(8); 
MddAddC2231 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(3); 
MddAddC2232 =                eigAvec3(2)^3 *eigAvec3(3)     *A(6); 
MddAddC2233 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A(9);   
  
MddAddC22_e3 = Explicit_Quad_v(C,A)*(MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + 
MddAddC2222 + MddAddC2223 + MddAddC2231 + MddAddC2232 + MddAddC2233); 
  
% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2311 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A(1); 
MddAddC2312 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(4); 
MddAddC2313 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(7); 
MddAddC2321 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(2); 
MddAddC2322 =                eigAvec3(2)^3 *eigAvec3(3)     *A(5); 
MddAddC2323 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A(8); 
MddAddC2331 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(3); 
MddAddC2332 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A(6); 
MddAddC2333 =                eigAvec3(2)   *eigAvec3(3)^3   *A(9); 
  
MddAddC23_e3 = Explicit_Quad_v(C,A)*(MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + 
MddAddC2322 + MddAddC2323 + MddAddC2331 + MddAddC2332 + MddAddC2333); 
  
% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC31_e3 = MddAddC13_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC32_e3 = MddAddC23_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC3311 = eigAvec3(1)^2                *eigAvec3(3)^2   *A(1); 
MddAddC3312 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(4); 
MddAddC3313 = eigAvec3(1)                  *eigAvec3(3)^3   *A(7); 
MddAddC3321 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(2); 
MddAddC3322 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A(5); 
MddAddC3323 =                eigAvec3(2)   *eigAvec3(3)^3   *A(8); 
MddAddC3331 = eigAvec3(1)                  *eigAvec3(3)^3   *A(3); 
MddAddC3332 =                eigAvec3(2)   *eigAvec3(3)^3   *A(6); 
MddAddC3333 =                               eigAvec3(3)^4   *A(9); 
  
MddAddC33_e3 = Explicit_Quad_v(C,A)*(MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + 
MddAddC3322 + MddAddC3323 + MddAddC3331 + MddAddC3332 + MddAddC3333); 
  
%% Summing the terms over i (i.e. i = 1,2,3) 
  
MddAddC11 = MddAddC11_e1 + MddAddC11_e2 + MddAddC11_e3; 
MddAddC12 = MddAddC12_e1 + MddAddC12_e2 + MddAddC12_e3; 
MddAddC13 = MddAddC13_e1 + MddAddC13_e2 + MddAddC13_e3; 
MddAddC21 = MddAddC21_e1 + MddAddC21_e2 + MddAddC21_e3; 
MddAddC22 = MddAddC22_e1 + MddAddC22_e2 + MddAddC22_e3; 
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MddAddC23 = MddAddC23_e1 + MddAddC23_e2 + MddAddC23_e3; 
MddAddC31 = MddAddC32_e1 + MddAddC31_e2 + MddAddC31_e3; 
MddAddC32 = MddAddC32_e1 + MddAddC32_e2 + MddAddC32_e3; 
MddAddC33 = MddAddC33_e1 + MddAddC33_e2 + MddAddC33_e3; 
  
%% Forming the M:A:C Tensor (2nd Order) 
  
MddAddC = [MddAddC11 MddAddC12 MddAddC13 MddAddC21 MddAddC22 MddAddC23 MddAddC31 MddAddC32 
MddAddC33]; 
E.3.8 MddAddC_IBOF.m 
function [MddAddC] = MddAddC_IBOF(C,A) 
  
% Function written to compute the 4th order M tensor double dotted into the 
% 4th Order A tensor double dotted into 2nd order anisotropy tensor (D). 
  
% 4th Order A Tensor Used IBOF Closure Approximation. 
  
[eigAvec,eigAval] = eig(reshape(A,3,3));   % Calculation of the numerical eigenvalues and eigenvectors. 
  
eigAvec = fliplr(eigAvec); 
eigAval = rot90(rot90(eigAval)); 
  
% Assigning the numerical values to discrete variables to ease in 
% calculation. 
  
eigAvec1 = eigAvec(:,1); 
eigAvec2 = eigAvec(:,2); 
eigAvec3 = eigAvec(:,3); 
  
%% CALCULATION FOR I = 1 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddC1111 = eigAvec1(1)^4                                *Explicit_IBOF_v(C,A,1,1); 
MddAddC1112 = eigAvec1(1)^3 *eigAvec1(2)                   *Explicit_IBOF_v(C,A,2,1); 
MddAddC1113 = eigAvec1(1)^3                *eigAvec1(3)    *Explicit_IBOF_v(C,A,3,1); 
MddAddC1121 = eigAvec1(1)^3 *eigAvec1(2)                   *Explicit_IBOF_v(C,A,1,2); 
MddAddC1122 = eigAvec1(1)^2 *eigAvec1(2)^2                 *Explicit_IBOF_v(C,A,2,2); 
MddAddC1123 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *Explicit_IBOF_v(C,A,3,2); 
MddAddC1131 = eigAvec1(1)^3                *eigAvec1(3)    *Explicit_IBOF_v(C,A,1,3); 
MddAddC1132 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *Explicit_IBOF_v(C,A,2,3); 
MddAddC1133 = eigAvec1(1)^2                *eigAvec1(3)^2  *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC11_e1 = (MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + MddAddC1122 + MddAddC1123 + 
MddAddC1131 + MddAddC1132 + MddAddC1133); 
  
% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1211 = eigAvec1(1)^3 *eigAvec1(2)                   *Explicit_IBOF_v(C,A,1,1); 
MddAddC1212 = eigAvec1(1)^2 *eigAvec1(2)^2                 *Explicit_IBOF_v(C,A,2,1); 
MddAddC1213 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *Explicit_IBOF_v(C,A,3,1); 
MddAddC1221 = eigAvec1(1)^2 *eigAvec1(2)^2                 *Explicit_IBOF_v(C,A,1,2); 
MddAddC1222 = eigAvec1(1)   *eigAvec1(2)^3                 *Explicit_IBOF_v(C,A,2,2); 
MddAddC1223 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *Explicit_IBOF_v(C,A,3,2); 
MddAddC1231 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *Explicit_IBOF_v(C,A,1,3); 
MddAddC1232 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *Explicit_IBOF_v(C,A,2,3); 
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MddAddC1233 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2  *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC12_e1 = (MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + MddAddC1222 + MddAddC1223 + 
MddAddC1231 + MddAddC1232 + MddAddC1233); 
  
% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1311 = eigAvec1(1)^3                *eigAvec1(3)     *Explicit_IBOF_v(C,A,1,1); 
MddAddC1312 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *Explicit_IBOF_v(C,A,2,1); 
MddAddC1313 = eigAvec1(1)^2                *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,3,1); 
MddAddC1321 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *Explicit_IBOF_v(C,A,1,2); 
MddAddC1322 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *Explicit_IBOF_v(C,A,2,2); 
MddAddC1323 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,3,2); 
MddAddC1331 = eigAvec1(1)^2                *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,1,3); 
MddAddC1332 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,2,3); 
MddAddC1333 = eigAvec1(1)                  *eigAvec1(3)^3   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC13_e1 = (MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + MddAddC1322 + MddAddC1323 + 
MddAddC1331 + MddAddC1332 + MddAddC1333); 
  
% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC21_e1 = MddAddC12_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2211 = eigAvec1(1)^2 *eigAvec1(2)^2                  *Explicit_IBOF_v(C,A,1,1);  
MddAddC2212 = eigAvec1(1)   *eigAvec1(2)^3                  *Explicit_IBOF_v(C,A,2,1); 
MddAddC2213 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *Explicit_IBOF_v(C,A,3,1); 
MddAddC2221 = eigAvec1(1)   *eigAvec1(2)^3                  *Explicit_IBOF_v(C,A,1,2); 
MddAddC2222 =                eigAvec1(2)^4                  *Explicit_IBOF_v(C,A,2,2); 
MddAddC2223 =                eigAvec1(2)^3 *eigAvec1(3)     *Explicit_IBOF_v(C,A,3,2); 
MddAddC2231 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *Explicit_IBOF_v(C,A,1,3); 
MddAddC2232 =                eigAvec1(2)^3 *eigAvec1(3)     *Explicit_IBOF_v(C,A,2,3); 
MddAddC2233 =                eigAvec1(2)^2 *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,3,3);   
  
MddAddC22_e1 = (MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + MddAddC2222 + MddAddC2223 + 
MddAddC2231 + MddAddC2232 + MddAddC2233); 
  
% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2311 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *Explicit_IBOF_v(C,A,1,1); 
MddAddC2312 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *Explicit_IBOF_v(C,A,2,1); 
MddAddC2313 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,3,1); 
MddAddC2321 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *Explicit_IBOF_v(C,A,1,2); 
MddAddC2322 =                eigAvec1(2)^3 *eigAvec1(3)     *Explicit_IBOF_v(C,A,2,2); 
MddAddC2323 =                eigAvec1(2)^2 *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,3,2); 
MddAddC2331 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,1,3); 
MddAddC2332 =                eigAvec1(2)^2 *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,2,3); 
MddAddC2333 =                eigAvec1(2)   *eigAvec1(3)^3   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC23_e1 = (MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + MddAddC2322 + MddAddC2323 + 
MddAddC2331 + MddAddC2332 + MddAddC2333); 
  
% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC31_e1 = MddAddC13_e1;    %DUE TO SYMMETRY! 
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% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC32_e1 = MddAddC23_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC3311 = eigAvec1(1)^2                *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,1,1); 
MddAddC3312 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,2,1); 
MddAddC3313 = eigAvec1(1)                  *eigAvec1(3)^3   *Explicit_IBOF_v(C,A,3,1); 
MddAddC3321 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,1,2); 
MddAddC3322 =                eigAvec1(2)^2 *eigAvec1(3)^2   *Explicit_IBOF_v(C,A,2,2); 
MddAddC3323 =                eigAvec1(2)   *eigAvec1(3)^3   *Explicit_IBOF_v(C,A,3,2); 
MddAddC3331 = eigAvec1(1)                  *eigAvec1(3)^3   *Explicit_IBOF_v(C,A,1,3); 
MddAddC3332 =                eigAvec1(2)   *eigAvec1(3)^3   *Explicit_IBOF_v(C,A,2,3); 
MddAddC3333 =                               eigAvec1(3)^4   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC33_e1 = (MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + MddAddC3322 + MddAddC3323 + 
MddAddC3331 + MddAddC3332 + MddAddC3333); 
  
%% CALCULATION FOR I = 2 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddC1111 = eigAvec2(1)^4                                *Explicit_IBOF_v(C,A,1,1); 
MddAddC1112 = eigAvec2(1)^3 *eigAvec2(2)                   *Explicit_IBOF_v(C,A,2,1); 
MddAddC1113 = eigAvec2(1)^3                *eigAvec2(3)    *Explicit_IBOF_v(C,A,3,1); 
MddAddC1121 = eigAvec2(1)^3 *eigAvec2(2)                   *Explicit_IBOF_v(C,A,1,2); 
MddAddC1122 = eigAvec2(1)^2 *eigAvec2(2)^2                 *Explicit_IBOF_v(C,A,2,2); 
MddAddC1123 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *Explicit_IBOF_v(C,A,3,2); 
MddAddC1131 = eigAvec2(1)^3                *eigAvec2(3)    *Explicit_IBOF_v(C,A,1,3); 
MddAddC1132 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *Explicit_IBOF_v(C,A,2,3); 
MddAddC1133 = eigAvec2(1)^2                *eigAvec2(3)^2  *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC11_e2 = (MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + MddAddC1122 + MddAddC1123 + 
MddAddC1131 + MddAddC1132 + MddAddC1133); 
  
% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1211 = eigAvec2(1)^3 *eigAvec2(2)                   *Explicit_IBOF_v(C,A,1,1); 
MddAddC1212 = eigAvec2(1)^2 *eigAvec2(2)^2                 *Explicit_IBOF_v(C,A,2,1); 
MddAddC1213 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *Explicit_IBOF_v(C,A,3,1); 
MddAddC1221 = eigAvec2(1)^2 *eigAvec2(2)^2                 *Explicit_IBOF_v(C,A,1,2); 
MddAddC1222 = eigAvec2(1)   *eigAvec2(2)^3                 *Explicit_IBOF_v(C,A,2,2); 
MddAddC1223 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *Explicit_IBOF_v(C,A,3,2); 
MddAddC1231 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *Explicit_IBOF_v(C,A,1,3); 
MddAddC1232 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *Explicit_IBOF_v(C,A,2,3); 
MddAddC1233 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2  *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC12_e2 = (MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + MddAddC1222 + MddAddC1223 + 
MddAddC1231 + MddAddC1232 + MddAddC1233); 
  
% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1311 = eigAvec2(1)^3                *eigAvec2(3)     *Explicit_IBOF_v(C,A,1,1); 
MddAddC1312 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *Explicit_IBOF_v(C,A,2,1); 
MddAddC1313 = eigAvec2(1)^2                *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,3,1); 
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MddAddC1321 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *Explicit_IBOF_v(C,A,1,2); 
MddAddC1322 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *Explicit_IBOF_v(C,A,2,2); 
MddAddC1323 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,3,2); 
MddAddC1331 = eigAvec2(1)^2                *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,1,3); 
MddAddC1332 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,2,3); 
MddAddC1333 = eigAvec2(1)                  *eigAvec2(3)^3   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC13_e2 = (MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + MddAddC1322 + MddAddC1323 + 
MddAddC1331 + MddAddC1332 + MddAddC1333); 
  
% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC21_e2 = MddAddC12_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2211 = eigAvec2(1)^2 *eigAvec2(2)^2                  *Explicit_IBOF_v(C,A,1,1);  
MddAddC2212 = eigAvec2(1)   *eigAvec2(2)^3                  *Explicit_IBOF_v(C,A,2,1); 
MddAddC2213 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *Explicit_IBOF_v(C,A,3,1); 
MddAddC2221 = eigAvec2(1)   *eigAvec2(2)^3                  *Explicit_IBOF_v(C,A,1,2); 
MddAddC2222 =                eigAvec2(2)^4                  *Explicit_IBOF_v(C,A,2,2); 
MddAddC2223 =                eigAvec2(2)^3 *eigAvec2(3)     *Explicit_IBOF_v(C,A,3,2); 
MddAddC2231 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *Explicit_IBOF_v(C,A,1,3); 
MddAddC2232 =                eigAvec2(2)^3 *eigAvec2(3)     *Explicit_IBOF_v(C,A,2,3); 
MddAddC2233 =                eigAvec2(2)^2 *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,3,3);   
  
MddAddC22_e2 = (MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + MddAddC2222 + MddAddC2223 + 
MddAddC2231 + MddAddC2232 + MddAddC2233); 
  
% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2311 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *Explicit_IBOF_v(C,A,1,1); 
MddAddC2312 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *Explicit_IBOF_v(C,A,2,1); 
MddAddC2313 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,3,1); 
MddAddC2321 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *Explicit_IBOF_v(C,A,1,2); 
MddAddC2322 =                eigAvec2(2)^3 *eigAvec2(3)     *Explicit_IBOF_v(C,A,2,2); 
MddAddC2323 =                eigAvec2(2)^2 *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,3,2); 
MddAddC2331 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,1,3); 
MddAddC2332 =                eigAvec2(2)^2 *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,2,3); 
MddAddC2333 =                eigAvec2(2)   *eigAvec2(3)^3   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC23_e2 = (MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + MddAddC2322 + MddAddC2323 + 
MddAddC2331 + MddAddC2332 + MddAddC2333); 
  
% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC31_e2 = MddAddC13_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC32_e2 = MddAddC23_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC3311 = eigAvec2(1)^2                *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,1,1); 
MddAddC3312 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,2,1); 
MddAddC3313 = eigAvec2(1)                  *eigAvec2(3)^3   *Explicit_IBOF_v(C,A,3,1); 
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MddAddC3321 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,1,2); 
MddAddC3322 =                eigAvec2(2)^2 *eigAvec2(3)^2   *Explicit_IBOF_v(C,A,2,2); 
MddAddC3323 =                eigAvec2(2)   *eigAvec2(3)^3   *Explicit_IBOF_v(C,A,3,2); 
MddAddC3331 = eigAvec2(1)                  *eigAvec2(3)^3   *Explicit_IBOF_v(C,A,1,3); 
MddAddC3332 =                eigAvec2(2)   *eigAvec2(3)^3   *Explicit_IBOF_v(C,A,2,3); 
MddAddC3333 =                               eigAvec2(3)^4   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC33_e2 = (MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + MddAddC3322 + MddAddC3323 + 
MddAddC3331 + MddAddC3332 + MddAddC3333); 
  
%% CALCULATION FOR I = 3 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddC1111 = eigAvec3(1)^4                                *Explicit_IBOF_v(C,A,1,1); 
MddAddC1112 = eigAvec3(1)^3 *eigAvec3(2)                   *Explicit_IBOF_v(C,A,2,1); 
MddAddC1113 = eigAvec3(1)^3                *eigAvec3(3)    *Explicit_IBOF_v(C,A,3,1); 
MddAddC1121 = eigAvec3(1)^3 *eigAvec3(2)                   *Explicit_IBOF_v(C,A,1,2); 
MddAddC1122 = eigAvec3(1)^2 *eigAvec3(2)^2                 *Explicit_IBOF_v(C,A,2,2); 
MddAddC1123 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *Explicit_IBOF_v(C,A,3,2); 
MddAddC1131 = eigAvec3(1)^3                *eigAvec3(3)    *Explicit_IBOF_v(C,A,1,3); 
MddAddC1132 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *Explicit_IBOF_v(C,A,2,3); 
MddAddC1133 = eigAvec3(1)^2                *eigAvec3(3)^2  *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC11_e3 = (MddAddC1111 + MddAddC1112 + MddAddC1113 + MddAddC1121 + MddAddC1122 + MddAddC1123 + 
MddAddC1131 + MddAddC1132 + MddAddC1133); 
  
% Calculation of the 1,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1211 = eigAvec3(1)^3 *eigAvec3(2)                   *Explicit_IBOF_v(C,A,1,1); 
MddAddC1212 = eigAvec3(1)^2 *eigAvec3(2)^2                 *Explicit_IBOF_v(C,A,2,1); 
MddAddC1213 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *Explicit_IBOF_v(C,A,3,1); 
MddAddC1221 = eigAvec3(1)^2 *eigAvec3(2)^2                 *Explicit_IBOF_v(C,A,1,2); 
MddAddC1222 = eigAvec3(1)   *eigAvec3(2)^3                 *Explicit_IBOF_v(C,A,2,2); 
MddAddC1223 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *Explicit_IBOF_v(C,A,3,2); 
MddAddC1231 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *Explicit_IBOF_v(C,A,1,3); 
MddAddC1232 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *Explicit_IBOF_v(C,A,2,3); 
MddAddC1233 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2  *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC12_e3 = (MddAddC1211 + MddAddC1212 + MddAddC1213 + MddAddC1221 + MddAddC1222 + MddAddC1223 + 
MddAddC1231 + MddAddC1232 + MddAddC1233); 
  
% Calculation of the 1,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC1311 = eigAvec3(1)^3                *eigAvec3(3)     *Explicit_IBOF_v(C,A,1,1); 
MddAddC1312 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *Explicit_IBOF_v(C,A,2,1); 
MddAddC1313 = eigAvec3(1)^2                *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,3,1); 
MddAddC1321 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *Explicit_IBOF_v(C,A,1,2); 
MddAddC1322 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *Explicit_IBOF_v(C,A,2,2); 
MddAddC1323 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,3,2); 
MddAddC1331 = eigAvec3(1)^2                *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,1,3); 
MddAddC1332 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,2,3); 
MddAddC1333 = eigAvec3(1)                  *eigAvec3(3)^3   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC13_e3 = (MddAddC1311 + MddAddC1312 + MddAddC1313 + MddAddC1321 + MddAddC1322 + MddAddC1323 + 
MddAddC1331 + MddAddC1332 + MddAddC1333); 
  
% Calculation of the 2,1 Component of the MddAddC 2nd Order Tensor 
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MddAddC21_e3 = MddAddC12_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2211 = eigAvec3(1)^2 *eigAvec3(2)^2                  *Explicit_IBOF_v(C,A,1,1);  
MddAddC2212 = eigAvec3(1)   *eigAvec3(2)^3                  *Explicit_IBOF_v(C,A,2,1); 
MddAddC2213 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *Explicit_IBOF_v(C,A,3,1); 
MddAddC2221 = eigAvec3(1)   *eigAvec3(2)^3                  *Explicit_IBOF_v(C,A,1,2); 
MddAddC2222 =                eigAvec3(2)^4                  *Explicit_IBOF_v(C,A,2,2); 
MddAddC2223 =                eigAvec3(2)^3 *eigAvec3(3)     *Explicit_IBOF_v(C,A,3,2); 
MddAddC2231 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *Explicit_IBOF_v(C,A,1,3); 
MddAddC2232 =                eigAvec3(2)^3 *eigAvec3(3)     *Explicit_IBOF_v(C,A,2,3); 
MddAddC2233 =                eigAvec3(2)^2 *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,3,3);   
  
MddAddC22_e3 = (MddAddC2211 + MddAddC2212 + MddAddC2213 + MddAddC2221 + MddAddC2222 + MddAddC2223 + 
MddAddC2231 + MddAddC2232 + MddAddC2233); 
  
% Calculation of the 2,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC2311 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *Explicit_IBOF_v(C,A,1,1); 
MddAddC2312 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *Explicit_IBOF_v(C,A,2,1); 
MddAddC2313 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,3,1); 
MddAddC2321 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *Explicit_IBOF_v(C,A,1,2); 
MddAddC2322 =                eigAvec3(2)^3 *eigAvec3(3)     *Explicit_IBOF_v(C,A,2,2); 
MddAddC2323 =                eigAvec3(2)^2 *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,3,2); 
MddAddC2331 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,1,3); 
MddAddC2332 =                eigAvec3(2)^2 *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,2,3); 
MddAddC2333 =                eigAvec3(2)   *eigAvec3(3)^3   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC23_e3 = (MddAddC2311 + MddAddC2312 + MddAddC2313 + MddAddC2321 + MddAddC2322 + MddAddC2323 + 
MddAddC2331 + MddAddC2332 + MddAddC2333); 
  
% Calculation of the 3,1 Component of the MddAddC 2nd Order Tensor 
  
MddAddC31_e3 = MddAddC13_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddC 2nd Order Tensor 
  
MddAddC32_e3 = MddAddC23_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddC 2nd Order Tensor 
  
MddAddC3311 = eigAvec3(1)^2                *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,1,1); 
MddAddC3312 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,2,1); 
MddAddC3313 = eigAvec3(1)                  *eigAvec3(3)^3   *Explicit_IBOF_v(C,A,3,1); 
MddAddC3321 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,1,2); 
MddAddC3322 =                eigAvec3(2)^2 *eigAvec3(3)^2   *Explicit_IBOF_v(C,A,2,2); 
MddAddC3323 =                eigAvec3(2)   *eigAvec3(3)^3   *Explicit_IBOF_v(C,A,3,2); 
MddAddC3331 = eigAvec3(1)                  *eigAvec3(3)^3   *Explicit_IBOF_v(C,A,1,3); 
MddAddC3332 =                eigAvec3(2)   *eigAvec3(3)^3   *Explicit_IBOF_v(C,A,2,3); 
MddAddC3333 =                               eigAvec3(3)^4   *Explicit_IBOF_v(C,A,3,3); 
  
MddAddC33_e3 = (MddAddC3311 + MddAddC3312 + MddAddC3313 + MddAddC3321 + MddAddC3322 + MddAddC3323 + 
MddAddC3331 + MddAddC3332 + MddAddC3333); 
  
%% Summing the terms over i (i.e. i = 1,2,3) 
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MddAddC11 = MddAddC11_e1 + MddAddC11_e2 + MddAddC11_e3; 
MddAddC12 = MddAddC12_e1 + MddAddC12_e2 + MddAddC12_e3; 
MddAddC13 = MddAddC13_e1 + MddAddC13_e2 + MddAddC13_e3; 
MddAddC21 = MddAddC21_e1 + MddAddC21_e2 + MddAddC21_e3; 
MddAddC22 = MddAddC22_e1 + MddAddC22_e2 + MddAddC22_e3; 
MddAddC23 = MddAddC23_e1 + MddAddC23_e2 + MddAddC23_e3; 
MddAddC31 = MddAddC31_e1 + MddAddC31_e2 + MddAddC31_e3; 
MddAddC32 = MddAddC32_e1 + MddAddC32_e2 + MddAddC32_e3; 
MddAddC33 = MddAddC33_e1 + MddAddC33_e2 + MddAddC33_e3; 
  
%% Forming the M:A:C Tensor (2nd Order) 
  
MddAddC = [MddAddC11 MddAddC12 MddAddC13 MddAddC21 MddAddC22 MddAddC23 MddAddC31 MddAddC32 
MddAddC33]; 
E.3.9 MddAddD.m 
function [MddAddD] = MddAddD(D,A) 
  
% Function written to compute the 4th order M tensor double dotted into the 
% 4th order A tensor double dotted into the 2nd order rate of strain tensor (D). 
  
% 4th Order A tensor used quadratic closure (AA) 
  
[eigAvec,eigAval] = eig(reshape(A,3,3));   % Calculation of the numerical eigenvalues and eigenvectors. 
  
eigAvec = fliplr(eigAvec); 
eigAval = rot90(rot90(eigAval)); 
  
% Assigning the numerical values to discrete variables to ease in 
% calculation. 
  
eigAval1 = eigAval(1); 
eigAval2 = eigAval(5); 
eigAval3 = eigAval(9); 
  
eigAvec1 = eigAvec(:,1); 
eigAvec2 = eigAvec(:,2); 
eigAvec3 = eigAvec(:,3); 
  
%% CALCULATION FOR I = 1 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddD1111 = eigAvec1(1)^4                                *A(1); 
MddAddD1112 = eigAvec1(1)^3 *eigAvec1(2)                   *A(4); 
MddAddD1113 = eigAvec1(1)^3                *eigAvec1(3)    *A(7); 
MddAddD1121 = eigAvec1(1)^3 *eigAvec1(2)                   *A(2); 
MddAddD1122 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A(5); 
MddAddD1123 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A(8); 
MddAddD1131 = eigAvec1(1)^3                *eigAvec1(3)    *A(3); 
MddAddD1132 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A(6); 
MddAddD1133 = eigAvec1(1)^2                *eigAvec1(3)^2  *A(9); 
  
MddAddD11_e1 = Explicit_Quad_v(D,A)*(MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + 
MddAddD1122 + MddAddD1123 + MddAddD1131 + MddAddD1132 + MddAddD1133); 
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% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1211 = eigAvec1(1)^3 *eigAvec1(2)                   *A(1); 
MddAddD1212 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A(4); 
MddAddD1213 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A(7); 
MddAddD1221 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A(2); 
MddAddD1222 = eigAvec1(1)   *eigAvec1(2)^3                 *A(5); 
MddAddD1223 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *A(8); 
MddAddD1231 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A(3); 
MddAddD1232 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *A(6); 
MddAddD1233 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2  *A(9); 
  
MddAddD12_e1 = Explicit_Quad_v(D,A)*(MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + 
MddAddD1222 + MddAddD1223 + MddAddD1231 + MddAddD1232 + MddAddD1233); 
  
% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1311 = eigAvec1(1)^3                *eigAvec1(3)     *A(1); 
MddAddD1312 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A(4); 
MddAddD1313 = eigAvec1(1)^2                *eigAvec1(3)^2   *A(7); 
MddAddD1321 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A(2); 
MddAddD1322 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(5); 
MddAddD1323 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(8); 
MddAddD1331 = eigAvec1(1)^2                *eigAvec1(3)^2   *A(3); 
MddAddD1332 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(6); 
MddAddD1333 = eigAvec1(1)                  *eigAvec1(3)^3   *A(9); 
  
MddAddD13_e1 = Explicit_Quad_v(D,A)*(MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + 
MddAddD1322 + MddAddD1323 + MddAddD1331 + MddAddD1332 + MddAddD1333); 
  
% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD21_e1 = MddAddD12_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2211 = eigAvec1(1)^2 *eigAvec1(2)^2                  *A(1);  
MddAddD2212 = eigAvec1(1)   *eigAvec1(2)^3                  *A(4); 
MddAddD2213 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(7); 
MddAddD2221 = eigAvec1(1)   *eigAvec1(2)^3                  *A(2); 
MddAddD2222 =                eigAvec1(2)^4                  *A(5); 
MddAddD2223 =                eigAvec1(2)^3 *eigAvec1(3)     *A(8); 
MddAddD2231 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(3); 
MddAddD2232 =                eigAvec1(2)^3 *eigAvec1(3)     *A(6); 
MddAddD2233 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A(9);   
  
MddAddD22_e1 = Explicit_Quad_v(D,A)*(MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + 
MddAddD2222 + MddAddD2223 + MddAddD2231 + MddAddD2232 + MddAddD2233); 
  
% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2311 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A(1); 
MddAddD2312 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(4); 
MddAddD2313 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(7); 
MddAddD2321 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A(2); 
MddAddD2322 =                eigAvec1(2)^3 *eigAvec1(3)     *A(5); 



257 

 

MddAddD2323 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A(8); 
MddAddD2331 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(3); 
MddAddD2332 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A(6); 
MddAddD2333 =                eigAvec1(2)   *eigAvec1(3)^3   *A(9); 
  
MddAddD23_e1 = Explicit_Quad_v(D,A)*(MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + 
MddAddD2322 + MddAddD2323 + MddAddD2331 + MddAddD2332 + MddAddD2333); 
  
% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD31_e1 = MddAddD13_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD32_e1 = MddAddD23_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD3311 = eigAvec1(1)^2                *eigAvec1(3)^2   *A(1); 
MddAddD3312 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(4); 
MddAddD3313 = eigAvec1(1)                  *eigAvec1(3)^3   *A(7); 
MddAddD3321 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A(2); 
MddAddD3322 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A(5); 
MddAddD3323 =                eigAvec1(2)   *eigAvec1(3)^3   *A(8); 
MddAddD3331 = eigAvec1(1)                  *eigAvec1(3)^3   *A(3); 
MddAddD3332 =                eigAvec1(2)   *eigAvec1(3)^3   *A(6); 
MddAddD3333 =                               eigAvec1(3)^4   *A(9); 
  
MddAddD33_e1 = Explicit_Quad_v(D,A)*(MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + 
MddAddD3322 + MddAddD3323 + MddAddD3331 + MddAddD3332 + MddAddD3333); 
  
%% CALCULATION FOR I = 2 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddD1111 = eigAvec2(1)^4                                *A(1); 
MddAddD1112 = eigAvec2(1)^3 *eigAvec2(2)                   *A(4); 
MddAddD1113 = eigAvec2(1)^3                *eigAvec2(3)    *A(7); 
MddAddD1121 = eigAvec2(1)^3 *eigAvec2(2)                   *A(2); 
MddAddD1122 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A(5); 
MddAddD1123 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A(8); 
MddAddD1131 = eigAvec2(1)^3                *eigAvec2(3)    *A(3); 
MddAddD1132 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A(6); 
MddAddD1133 = eigAvec2(1)^2                *eigAvec2(3)^2  *A(9); 
  
MddAddD11_e2 = Explicit_Quad_v(D,A)*(MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + 
MddAddD1122 + MddAddD1123 + MddAddD1131 + MddAddD1132 + MddAddD1133); 
  
% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1211 = eigAvec2(1)^3 *eigAvec2(2)                   *A(1); 
MddAddD1212 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A(4); 
MddAddD1213 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A(7); 
MddAddD1221 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A(2); 
MddAddD1222 = eigAvec2(1)   *eigAvec2(2)^3                 *A(5); 
MddAddD1223 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *A(8); 
MddAddD1231 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A(3); 
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MddAddD1232 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *A(6); 
MddAddD1233 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2  *A(9); 
  
MddAddD12_e2 = Explicit_Quad_v(D,A)*(MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + 
MddAddD1222 + MddAddD1223 + MddAddD1231 + MddAddD1232 + MddAddD1233); 
  
% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1311 = eigAvec2(1)^3                *eigAvec2(3)     *A(1); 
MddAddD1312 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A(4); 
MddAddD1313 = eigAvec2(1)^2                *eigAvec2(3)^2   *A(7); 
MddAddD1321 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A(2); 
MddAddD1322 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(5); 
MddAddD1323 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(8); 
MddAddD1331 = eigAvec2(1)^2                *eigAvec2(3)^2   *A(3); 
MddAddD1332 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(6); 
MddAddD1333 = eigAvec2(1)                  *eigAvec2(3)^3   *A(9); 
  
MddAddD13_e2 = Explicit_Quad_v(D,A)*(MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + 
MddAddD1322 + MddAddD1323 + MddAddD1331 + MddAddD1332 + MddAddD1333); 
  
% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD21_e2 = MddAddD12_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2211 = eigAvec2(1)^2 *eigAvec2(2)^2                  *A(1);  
MddAddD2212 = eigAvec2(1)   *eigAvec2(2)^3                  *A(4); 
MddAddD2213 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(7); 
MddAddD2221 = eigAvec2(1)   *eigAvec2(2)^3                  *A(2); 
MddAddD2222 =                eigAvec2(2)^4                  *A(5); 
MddAddD2223 =                eigAvec2(2)^3 *eigAvec2(3)     *A(8); 
MddAddD2231 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(3); 
MddAddD2232 =                eigAvec2(2)^3 *eigAvec2(3)     *A(6); 
MddAddD2233 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A(9);   
  
MddAddD22_e2 = Explicit_Quad_v(D,A)*(MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + 
MddAddD2222 + MddAddD2223 + MddAddD2231 + MddAddD2232 + MddAddD2233); 
  
% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2311 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A(1); 
MddAddD2312 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(4); 
MddAddD2313 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(7); 
MddAddD2321 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A(2); 
MddAddD2322 =                eigAvec2(2)^3 *eigAvec2(3)     *A(5); 
MddAddD2323 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A(8); 
MddAddD2331 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(3); 
MddAddD2332 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A(6); 
MddAddD2333 =                eigAvec2(2)   *eigAvec2(3)^3   *A(9); 
  
MddAddD23_e2 = Explicit_Quad_v(D,A)*(MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + 
MddAddD2322 + MddAddD2323 + MddAddD2331 + MddAddD2332 + MddAddD2333); 
  
% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor 
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MddAddD31_e2 = MddAddD13_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD32_e2 = MddAddD23_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD3311 = eigAvec2(1)^2                *eigAvec2(3)^2   *A(1); 
MddAddD3312 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(4); 
MddAddD3313 = eigAvec2(1)                  *eigAvec2(3)^3   *A(7); 
MddAddD3321 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A(2); 
MddAddD3322 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A(5); 
MddAddD3323 =                eigAvec2(2)   *eigAvec2(3)^3   *A(8); 
MddAddD3331 = eigAvec2(1)                  *eigAvec2(3)^3   *A(3); 
MddAddD3332 =                eigAvec2(2)   *eigAvec2(3)^3   *A(6); 
MddAddD3333 =                               eigAvec2(3)^4   *A(9); 
  
MddAddD33_e2 = Explicit_Quad_v(D,A)*(MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + 
MddAddD3322 + MddAddD3323 + MddAddD3331 + MddAddD3332 + MddAddD3333); 
  
%% CALCULATION FOR I = 3 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddD1111 = eigAvec3(1)^4                                *A(1); 
MddAddD1112 = eigAvec3(1)^3 *eigAvec3(2)                   *A(4); 
MddAddD1113 = eigAvec3(1)^3                *eigAvec3(3)    *A(7); 
MddAddD1121 = eigAvec3(1)^3 *eigAvec3(2)                   *A(2); 
MddAddD1122 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A(5); 
MddAddD1123 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A(8); 
MddAddD1131 = eigAvec3(1)^3                *eigAvec3(3)    *A(3); 
MddAddD1132 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A(6); 
MddAddD1133 = eigAvec3(1)^2                *eigAvec3(3)^2  *A(9); 
  
MddAddD11_e3 = Explicit_Quad_v(D,A)*(MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + 
MddAddD1122 + MddAddD1123 + MddAddD1131 + MddAddD1132 + MddAddD1133); 
  
% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1211 = eigAvec3(1)^3 *eigAvec3(2)                   *A(1); 
MddAddD1212 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A(4); 
MddAddD1213 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A(7); 
MddAddD1221 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A(2); 
MddAddD1222 = eigAvec3(1)   *eigAvec3(2)^3                 *A(5); 
MddAddD1223 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *A(8); 
MddAddD1231 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A(3); 
MddAddD1232 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *A(6); 
MddAddD1233 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2  *A(9); 
  
MddAddD12_e3 = Explicit_Quad_v(D,A)*(MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + 
MddAddD1222 + MddAddD1223 + MddAddD1231 + MddAddD1232 + MddAddD1233); 
  
% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1311 = eigAvec3(1)^3                *eigAvec3(3)     *A(1); 
MddAddD1312 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A(4); 
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MddAddD1313 = eigAvec3(1)^2                *eigAvec3(3)^2   *A(7); 
MddAddD1321 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A(2); 
MddAddD1322 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(5); 
MddAddD1323 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(8); 
MddAddD1331 = eigAvec3(1)^2                *eigAvec3(3)^2   *A(3); 
MddAddD1332 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(6); 
MddAddD1333 = eigAvec3(1)                  *eigAvec3(3)^3   *A(9); 
  
MddAddD13_e3 = Explicit_Quad_v(D,A)*(MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + 
MddAddD1322 + MddAddD1323 + MddAddD1331 + MddAddD1332 + MddAddD1333); 
  
% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD21_e3 = MddAddD12_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2211 = eigAvec3(1)^2 *eigAvec3(2)^2                  *A(1);  
MddAddD2212 = eigAvec3(1)   *eigAvec3(2)^3                  *A(4); 
MddAddD2213 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(7); 
MddAddD2221 = eigAvec3(1)   *eigAvec3(2)^3                  *A(2); 
MddAddD2222 =                eigAvec3(2)^4                  *A(5); 
MddAddD2223 =                eigAvec3(2)^3 *eigAvec3(3)     *A(8); 
MddAddD2231 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(3); 
MddAddD2232 =                eigAvec3(2)^3 *eigAvec3(3)     *A(6); 
MddAddD2233 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A(9);   
  
MddAddD22_e3 = Explicit_Quad_v(D,A)*(MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + 
MddAddD2222 + MddAddD2223 + MddAddD2231 + MddAddD2232 + MddAddD2233); 
  
% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2311 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A(1); 
MddAddD2312 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(4); 
MddAddD2313 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(7); 
MddAddD2321 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A(2); 
MddAddD2322 =                eigAvec3(2)^3 *eigAvec3(3)     *A(5); 
MddAddD2323 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A(8); 
MddAddD2331 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(3); 
MddAddD2332 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A(6); 
MddAddD2333 =                eigAvec3(2)   *eigAvec3(3)^3   *A(9); 
  
MddAddD23_e3 = Explicit_Quad_v(D,A)*(MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + 
MddAddD2322 + MddAddD2323 + MddAddD2331 + MddAddD2332 + MddAddD2333); 
  
% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD31_e3 = MddAddD13_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD32_e3 = MddAddD23_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD3311 = eigAvec3(1)^2                *eigAvec3(3)^2   *A(1); 
MddAddD3312 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(4); 
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MddAddD3313 = eigAvec3(1)                  *eigAvec3(3)^3   *A(7); 
MddAddD3321 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A(2); 
MddAddD3322 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A(5); 
MddAddD3323 =                eigAvec3(2)   *eigAvec3(3)^3   *A(8); 
MddAddD3331 = eigAvec3(1)                  *eigAvec3(3)^3   *A(3); 
MddAddD3332 =                eigAvec3(2)   *eigAvec3(3)^3   *A(6); 
MddAddD3333 =                               eigAvec3(3)^4   *A(9); 
  
MddAddD33_e3 = Explicit_Quad_v(D,A)*(MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + 
MddAddD3322 + MddAddD3323 + MddAddD3331 + MddAddD3332 + MddAddD3333); 
  
%% Summing the terms over i (i.e. i = 1,2,3) 
  
MddAddD11 = MddAddD11_e1 + MddAddD11_e2 + MddAddD11_e3; 
MddAddD12 = MddAddD12_e1 + MddAddD12_e2 + MddAddD12_e3; 
MddAddD13 = MddAddD13_e1 + MddAddD13_e2 + MddAddD13_e3; 
MddAddD21 = MddAddD21_e1 + MddAddD21_e2 + MddAddD21_e3; 
MddAddD22 = MddAddD22_e1 + MddAddD22_e2 + MddAddD22_e3; 
MddAddD23 = MddAddD23_e1 + MddAddD23_e2 + MddAddD23_e3; 
MddAddD31 = MddAddD32_e1 + MddAddD31_e2 + MddAddD31_e3; 
MddAddD32 = MddAddD32_e1 + MddAddD32_e2 + MddAddD32_e3; 
MddAddD33 = MddAddD33_e1 + MddAddD33_e2 + MddAddD33_e3; 
  
%% Forming the M:A:D Tensor (M:A:D) 
  
MddAddD = [MddAddD11 MddAddD12 MddAddD13 MddAddD21 MddAddD22 MddAddD23 MddAddD31 MddAddD32 
MddAddD33]; 
%  
% MddAddD(isnan(MddAddD)) = 0; 
% MddAddD(isinf(MddAddD)) = 0; 
 
E.3.10 MddAddD_IBOF.m 
function [MddAddD] = MddAddD_IBOF(D,A) 
  
% Function written to compute the 4th order M tensor double dotted into the 
% 4th Order A tensor double dotted into 2nd order rate of strain tensor (D). 
  
% 4th Order A Tensor Used IBOF Closure Approximation. 
  
[eigAvec,eigAval] = eig(reshape(A,3,3));   % Calculation of the numerical eigenvalues and eigenvectors. 
  
eigAvec = fliplr(eigAvec); 
eigAval = rot90(rot90(eigAval)); 
  
% Assigning the numerical values to discrete variables to ease in 
% calculation. 
  
eigAvec1 = eigAvec(:,1); 
eigAvec2 = eigAvec(:,2); 
eigAvec3 = eigAvec(:,3); 
  
A11IBOF_val = Explicit_IBOF_v(D,A,1,1); 
A12IBOF_val = Explicit_IBOF_v(D,A,1,2); 
A13IBOF_val = Explicit_IBOF_v(D,A,1,3); 
A22IBOF_val = Explicit_IBOF_v(D,A,2,2); 
A23IBOF_val = Explicit_IBOF_v(D,A,2,3); 
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A33IBOF_val = Explicit_IBOF_v(D,A,3,3); 
  
%% CALCULATION FOR I = 1 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddD1111 = eigAvec1(1)^4                                *A11IBOF_val; 
MddAddD1112 = eigAvec1(1)^3 *eigAvec1(2)                   *A12IBOF_val; 
MddAddD1113 = eigAvec1(1)^3                *eigAvec1(3)    *A13IBOF_val; 
MddAddD1121 = eigAvec1(1)^3 *eigAvec1(2)                   *A12IBOF_val; 
MddAddD1122 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A22IBOF_val; 
MddAddD1123 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A23IBOF_val; 
MddAddD1131 = eigAvec1(1)^3                *eigAvec1(3)    *A13IBOF_val; 
MddAddD1132 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A23IBOF_val; 
MddAddD1133 = eigAvec1(1)^2                *eigAvec1(3)^2  *A33IBOF_val; 
  
MddAddD11_e1 = (MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + MddAddD1122 + MddAddD1123 
+ MddAddD1131 + MddAddD1132 + MddAddD1133); 
  
% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1211 = eigAvec1(1)^3 *eigAvec1(2)                   *A11IBOF_val; 
MddAddD1212 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A12IBOF_val; 
MddAddD1213 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A13IBOF_val; 
MddAddD1221 = eigAvec1(1)^2 *eigAvec1(2)^2                 *A12IBOF_val; 
MddAddD1222 = eigAvec1(1)   *eigAvec1(2)^3                 *A22IBOF_val; 
MddAddD1223 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *A23IBOF_val; 
MddAddD1231 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)    *A13IBOF_val; 
MddAddD1232 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)    *A23IBOF_val; 
MddAddD1233 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2  *A33IBOF_val; 
  
MddAddD12_e1 = (MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + MddAddD1222 + MddAddD1223 
+ MddAddD1231 + MddAddD1232 + MddAddD1233); 
  
% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1311 = eigAvec1(1)^3                *eigAvec1(3)     *A11IBOF_val; 
MddAddD1312 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A12IBOF_val; 
MddAddD1313 = eigAvec1(1)^2                *eigAvec1(3)^2   *A13IBOF_val; 
MddAddD1321 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A12IBOF_val; 
MddAddD1322 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A22IBOF_val; 
MddAddD1323 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A23IBOF_val; 
MddAddD1331 = eigAvec1(1)^2                *eigAvec1(3)^2   *A13IBOF_val; 
MddAddD1332 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A23IBOF_val; 
MddAddD1333 = eigAvec1(1)                  *eigAvec1(3)^3   *A33IBOF_val; 
  
MddAddD13_e1 = (MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + MddAddD1322 + MddAddD1323 
+ MddAddD1331 + MddAddD1332 + MddAddD1333); 
  
% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD21_e1 = MddAddD12_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2211 = eigAvec1(1)^2 *eigAvec1(2)^2                  *A11IBOF_val;  
MddAddD2212 = eigAvec1(1)   *eigAvec1(2)^3                  *A12IBOF_val; 
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MddAddD2213 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A13IBOF_val; 
MddAddD2221 = eigAvec1(1)   *eigAvec1(2)^3                  *A12IBOF_val; 
MddAddD2222 =                eigAvec1(2)^4                  *A22IBOF_val; 
MddAddD2223 =                eigAvec1(2)^3 *eigAvec1(3)     *A23IBOF_val; 
MddAddD2231 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A13IBOF_val; 
MddAddD2232 =                eigAvec1(2)^3 *eigAvec1(3)     *A23IBOF_val; 
MddAddD2233 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A33IBOF_val;   
  
MddAddD22_e1 = (MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + MddAddD2222 + MddAddD2223 
+ MddAddD2231 + MddAddD2232 + MddAddD2233); 
  
% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2311 = eigAvec1(1)^2 *eigAvec1(2)   *eigAvec1(3)     *A11IBOF_val; 
MddAddD2312 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A12IBOF_val; 
MddAddD2313 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A13IBOF_val; 
MddAddD2321 = eigAvec1(1)   *eigAvec1(2)^2 *eigAvec1(3)     *A12IBOF_val; 
MddAddD2322 =                eigAvec1(2)^3 *eigAvec1(3)     *A22IBOF_val; 
MddAddD2323 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A23IBOF_val; 
MddAddD2331 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A13IBOF_val; 
MddAddD2332 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A23IBOF_val; 
MddAddD2333 =                eigAvec1(2)   *eigAvec1(3)^3   *A33IBOF_val; 
  
MddAddD23_e1 = (MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + MddAddD2322 + MddAddD2323 
+ MddAddD2331 + MddAddD2332 + MddAddD2333); 
  
% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD31_e1 = MddAddD13_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD32_e1 = MddAddD23_e1;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD3311 = eigAvec1(1)^2                *eigAvec1(3)^2   *A11IBOF_val; 
MddAddD3312 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A12IBOF_val; 
MddAddD3313 = eigAvec1(1)                  *eigAvec1(3)^3   *A13IBOF_val; 
MddAddD3321 = eigAvec1(1)   *eigAvec1(2)   *eigAvec1(3)^2   *A12IBOF_val; 
MddAddD3322 =                eigAvec1(2)^2 *eigAvec1(3)^2   *A22IBOF_val; 
MddAddD3323 =                eigAvec1(2)   *eigAvec1(3)^3   *A23IBOF_val; 
MddAddD3331 = eigAvec1(1)                  *eigAvec1(3)^3   *A13IBOF_val; 
MddAddD3332 =                eigAvec1(2)   *eigAvec1(3)^3   *A23IBOF_val; 
MddAddD3333 =                               eigAvec1(3)^4   *A33IBOF_val; 
  
MddAddD33_e1 = (MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + MddAddD3322 + MddAddD3323 
+ MddAddD3331 + MddAddD3332 + MddAddD3333); 
  
%% CALCULATION FOR I = 2 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddD1111 = eigAvec2(1)^4                                *A11IBOF_val; 
MddAddD1112 = eigAvec2(1)^3 *eigAvec2(2)                   *A12IBOF_val; 
MddAddD1113 = eigAvec2(1)^3                *eigAvec2(3)    *A13IBOF_val; 
MddAddD1121 = eigAvec2(1)^3 *eigAvec2(2)                   *A12IBOF_val; 
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MddAddD1122 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A22IBOF_val; 
MddAddD1123 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A23IBOF_val; 
MddAddD1131 = eigAvec2(1)^3                *eigAvec2(3)    *A13IBOF_val; 
MddAddD1132 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A23IBOF_val; 
MddAddD1133 = eigAvec2(1)^2                *eigAvec2(3)^2  *A33IBOF_val; 
  
MddAddD11_e2 = (MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + MddAddD1122 + MddAddD1123 
+ MddAddD1131 + MddAddD1132 + MddAddD1133); 
  
% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1211 = eigAvec2(1)^3 *eigAvec2(2)                   *A11IBOF_val; 
MddAddD1212 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A12IBOF_val; 
MddAddD1213 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A13IBOF_val; 
MddAddD1221 = eigAvec2(1)^2 *eigAvec2(2)^2                 *A12IBOF_val; 
MddAddD1222 = eigAvec2(1)   *eigAvec2(2)^3                 *A22IBOF_val; 
MddAddD1223 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *A23IBOF_val; 
MddAddD1231 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)    *A13IBOF_val; 
MddAddD1232 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)    *A23IBOF_val; 
MddAddD1233 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2  *A33IBOF_val; 
  
MddAddD12_e2 = (MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + MddAddD1222 + MddAddD1223 
+ MddAddD1231 + MddAddD1232 + MddAddD1233); 
  
% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1311 = eigAvec2(1)^3                *eigAvec2(3)     *A11IBOF_val; 
MddAddD1312 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A12IBOF_val; 
MddAddD1313 = eigAvec2(1)^2                *eigAvec2(3)^2   *A13IBOF_val; 
MddAddD1321 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A12IBOF_val; 
MddAddD1322 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A22IBOF_val; 
MddAddD1323 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A23IBOF_val; 
MddAddD1331 = eigAvec2(1)^2                *eigAvec2(3)^2   *A13IBOF_val; 
MddAddD1332 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A23IBOF_val; 
MddAddD1333 = eigAvec2(1)                  *eigAvec2(3)^3   *A33IBOF_val; 
  
MddAddD13_e2 = (MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + MddAddD1322 + MddAddD1323 
+ MddAddD1331 + MddAddD1332 + MddAddD1333); 
  
% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD21_e2 = MddAddD12_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2211 = eigAvec2(1)^2 *eigAvec2(2)^2                  *A11IBOF_val;  
MddAddD2212 = eigAvec2(1)   *eigAvec2(2)^3                  *A12IBOF_val; 
MddAddD2213 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A13IBOF_val; 
MddAddD2221 = eigAvec2(1)   *eigAvec2(2)^3                  *A12IBOF_val; 
MddAddD2222 =                eigAvec2(2)^4                  *A22IBOF_val; 
MddAddD2223 =                eigAvec2(2)^3 *eigAvec2(3)     *A23IBOF_val; 
MddAddD2231 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A13IBOF_val; 
MddAddD2232 =                eigAvec2(2)^3 *eigAvec2(3)     *A23IBOF_val; 
MddAddD2233 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A33IBOF_val;   
  
MddAddD22_e2 = (MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + MddAddD2222 + MddAddD2223 
+ MddAddD2231 + MddAddD2232 + MddAddD2233); 
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% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2311 = eigAvec2(1)^2 *eigAvec2(2)   *eigAvec2(3)     *A11IBOF_val; 
MddAddD2312 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A12IBOF_val; 
MddAddD2313 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A13IBOF_val; 
MddAddD2321 = eigAvec2(1)   *eigAvec2(2)^2 *eigAvec2(3)     *A12IBOF_val; 
MddAddD2322 =                eigAvec2(2)^3 *eigAvec2(3)     *A22IBOF_val; 
MddAddD2323 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A23IBOF_val; 
MddAddD2331 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A13IBOF_val; 
MddAddD2332 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A23IBOF_val; 
MddAddD2333 =                eigAvec2(2)   *eigAvec2(3)^3   *A33IBOF_val; 
  
MddAddD23_e2 = (MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + MddAddD2322 + MddAddD2323 
+ MddAddD2331 + MddAddD2332 + MddAddD2333); 
  
% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD31_e2 = MddAddD13_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD32_e2 = MddAddD23_e2;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD3311 = eigAvec2(1)^2                *eigAvec2(3)^2   *A11IBOF_val; 
MddAddD3312 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A12IBOF_val; 
MddAddD3313 = eigAvec2(1)                  *eigAvec2(3)^3   *A13IBOF_val; 
MddAddD3321 = eigAvec2(1)   *eigAvec2(2)   *eigAvec2(3)^2   *A12IBOF_val; 
MddAddD3322 =                eigAvec2(2)^2 *eigAvec2(3)^2   *A22IBOF_val; 
MddAddD3323 =                eigAvec2(2)   *eigAvec2(3)^3   *A23IBOF_val; 
MddAddD3331 = eigAvec2(1)                  *eigAvec2(3)^3   *A13IBOF_val; 
MddAddD3332 =                eigAvec2(2)   *eigAvec2(3)^3   *A23IBOF_val; 
MddAddD3333 =                               eigAvec2(3)^4   *A33IBOF_val; 
  
MddAddD33_e2 = (MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + MddAddD3322 + MddAddD3323 
+ MddAddD3331 + MddAddD3332 + MddAddD3333); 
  
%% CALCULATION FOR I = 3 
  
% Calculation of the 1,1 Component of the LddD 2nd Order Tensor 
  
MddAddD1111 = eigAvec3(1)^4                                *A11IBOF_val; 
MddAddD1112 = eigAvec3(1)^3 *eigAvec3(2)                   *A12IBOF_val; 
MddAddD1113 = eigAvec3(1)^3                *eigAvec3(3)    *A13IBOF_val; 
MddAddD1121 = eigAvec3(1)^3 *eigAvec3(2)                   *A12IBOF_val; 
MddAddD1122 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A22IBOF_val; 
MddAddD1123 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A23IBOF_val; 
MddAddD1131 = eigAvec3(1)^3                *eigAvec3(3)    *A13IBOF_val; 
MddAddD1132 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A23IBOF_val; 
MddAddD1133 = eigAvec3(1)^2                *eigAvec3(3)^2  *A33IBOF_val; 
  
MddAddD11_e3 = (MddAddD1111 + MddAddD1112 + MddAddD1113 + MddAddD1121 + MddAddD1122 + MddAddD1123 
+ MddAddD1131 + MddAddD1132 + MddAddD1133); 
  
% Calculation of the 1,2 Component of the MddAddD 2nd Order Tensor 
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MddAddD1211 = eigAvec3(1)^3 *eigAvec3(2)                   *A11IBOF_val; 
MddAddD1212 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A12IBOF_val; 
MddAddD1213 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A13IBOF_val; 
MddAddD1221 = eigAvec3(1)^2 *eigAvec3(2)^2                 *A12IBOF_val; 
MddAddD1222 = eigAvec3(1)   *eigAvec3(2)^3                 *A22IBOF_val; 
MddAddD1223 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *A23IBOF_val; 
MddAddD1231 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)    *A13IBOF_val; 
MddAddD1232 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)    *A23IBOF_val; 
MddAddD1233 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2  *A33IBOF_val; 
  
MddAddD12_e3 = (MddAddD1211 + MddAddD1212 + MddAddD1213 + MddAddD1221 + MddAddD1222 + MddAddD1223 
+ MddAddD1231 + MddAddD1232 + MddAddD1233); 
  
% Calculation of the 1,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD1311 = eigAvec3(1)^3                *eigAvec3(3)     *A11IBOF_val; 
MddAddD1312 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A12IBOF_val; 
MddAddD1313 = eigAvec3(1)^2                *eigAvec3(3)^2   *A13IBOF_val; 
MddAddD1321 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A12IBOF_val; 
MddAddD1322 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A22IBOF_val; 
MddAddD1323 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A23IBOF_val; 
MddAddD1331 = eigAvec3(1)^2                *eigAvec3(3)^2   *A13IBOF_val; 
MddAddD1332 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A23IBOF_val; 
MddAddD1333 = eigAvec3(1)                  *eigAvec3(3)^3   *A33IBOF_val; 
  
MddAddD13_e3 = (MddAddD1311 + MddAddD1312 + MddAddD1313 + MddAddD1321 + MddAddD1322 + MddAddD1323 
+ MddAddD1331 + MddAddD1332 + MddAddD1333); 
  
% Calculation of the 2,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD21_e3 = MddAddD12_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 2,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2211 = eigAvec3(1)^2 *eigAvec3(2)^2                  *A11IBOF_val;  
MddAddD2212 = eigAvec3(1)   *eigAvec3(2)^3                  *A12IBOF_val; 
MddAddD2213 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A13IBOF_val; 
MddAddD2221 = eigAvec3(1)   *eigAvec3(2)^3                  *A12IBOF_val; 
MddAddD2222 =                eigAvec3(2)^4                  *A22IBOF_val; 
MddAddD2223 =                eigAvec3(2)^3 *eigAvec3(3)     *A23IBOF_val; 
MddAddD2231 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A13IBOF_val; 
MddAddD2232 =                eigAvec3(2)^3 *eigAvec3(3)     *A23IBOF_val; 
MddAddD2233 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A33IBOF_val;   
  
MddAddD22_e3 = (MddAddD2211 + MddAddD2212 + MddAddD2213 + MddAddD2221 + MddAddD2222 + MddAddD2223 
+ MddAddD2231 + MddAddD2232 + MddAddD2233); 
  
% Calculation of the 2,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD2311 = eigAvec3(1)^2 *eigAvec3(2)   *eigAvec3(3)     *A11IBOF_val; 
MddAddD2312 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A12IBOF_val; 
MddAddD2313 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A13IBOF_val; 
MddAddD2321 = eigAvec3(1)   *eigAvec3(2)^2 *eigAvec3(3)     *A12IBOF_val; 
MddAddD2322 =                eigAvec3(2)^3 *eigAvec3(3)     *A22IBOF_val; 
MddAddD2323 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A23IBOF_val; 
MddAddD2331 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A13IBOF_val; 
MddAddD2332 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A23IBOF_val; 
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MddAddD2333 =                eigAvec3(2)   *eigAvec3(3)^3   *A33IBOF_val; 
  
MddAddD23_e3 = (MddAddD2311 + MddAddD2312 + MddAddD2313 + MddAddD2321 + MddAddD2322 + MddAddD2323 
+ MddAddD2331 + MddAddD2332 + MddAddD2333); 
  
% Calculation of the 3,1 Component of the MddAddD 2nd Order Tensor 
  
MddAddD31_e3 = MddAddD13_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,2 Component of the MddAddD 2nd Order Tensor 
  
MddAddD32_e3 = MddAddD23_e3;    %DUE TO SYMMETRY! 
  
% Calculation of the 3,3 Component of the MddAddD 2nd Order Tensor 
  
MddAddD3311 = eigAvec3(1)^2                *eigAvec3(3)^2   *A11IBOF_val; 
MddAddD3312 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A12IBOF_val; 
MddAddD3313 = eigAvec3(1)                  *eigAvec3(3)^3   *A13IBOF_val; 
MddAddD3321 = eigAvec3(1)   *eigAvec3(2)   *eigAvec3(3)^2   *A12IBOF_val; 
MddAddD3322 =                eigAvec3(2)^2 *eigAvec3(3)^2   *A22IBOF_val; 
MddAddD3323 =                eigAvec3(2)   *eigAvec3(3)^3   *A23IBOF_val; 
MddAddD3331 = eigAvec3(1)                  *eigAvec3(3)^3   *A13IBOF_val; 
MddAddD3332 =                eigAvec3(2)   *eigAvec3(3)^3   *A23IBOF_val; 
MddAddD3333 =                               eigAvec3(3)^4   *A33IBOF_val; 
  
MddAddD33_e3 = (MddAddD3311 + MddAddD3312 + MddAddD3313 + MddAddD3321 + MddAddD3322 + MddAddD3323 
+ MddAddD3331 + MddAddD3332 + MddAddD3333); 
  
%% Summing the terms over i (i.e. i = 1,2,3) 
  
MddAddD11 = MddAddD11_e1 + MddAddD11_e2 + MddAddD11_e3; 
MddAddD12 = MddAddD12_e1 + MddAddD12_e2 + MddAddD12_e3; 
MddAddD13 = MddAddD13_e1 + MddAddD13_e2 + MddAddD13_e3; 
MddAddD21 = MddAddD21_e1 + MddAddD21_e2 + MddAddD21_e3; 
MddAddD22 = MddAddD22_e1 + MddAddD22_e2 + MddAddD22_e3; 
MddAddD23 = MddAddD23_e1 + MddAddD23_e2 + MddAddD23_e3; 
MddAddD31 = MddAddD31_e1 + MddAddD31_e2 + MddAddD31_e3; 
MddAddD32 = MddAddD32_e1 + MddAddD32_e2 + MddAddD32_e3; 
MddAddD33 = MddAddD33_e1 + MddAddD33_e2 + MddAddD33_e3; 
  
%% Forming the M:A:D Tensor (2nd Order) 
  
MddAddD = [MddAddD11 MddAddD12 MddAddD13 MddAddD21 MddAddD22 MddAddD23 MddAddD31 MddAddD32 
MddAddD33]; 
  
MddAddD(isnan(MddAddD)) = 0; 
MddAddD(isinf(MddAddD)) = 0; 

 
 

 


