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Antimicrobial Resistance Prediction 
in PATRIC and RAST
James J. Davis1,2,†, Sébastien Boisvert3, Thomas Brettin1,2, Ronald W. Kenyon4, 
Chunhong Mao4, Robert Olson1,2, Ross Overbeek2,5, John Santerre6, Maulik Shukla1,2, 
Alice R. Wattam4, Rebecca Will4, Fangfang Xia1,2 & Rick Stevens1,2,6

The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, 
coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being 
able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial 
pathogens prior to culturing could inform clinical decision-making and improve reaction time. At 
PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for 
several years. In order to advance phenotype prediction and the identification of genomic regions 
relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned 
by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using 
this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for 
identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus 
aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies 
ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin 
resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. This set of 
classifiers has been used to provide an initial framework for species-specific AMR phenotype and 
genomic feature prediction in the RAST and PATRIC annotation services.

Over the last 30 years, many antibiotics have become ineffective due to the rise antimicrobial resistance (AMR) 
mechanisms in bacterial pathogens1,2. The World Health Organization and the United States Centers for Disease 
Control and Prevention estimate that that approximately 2 million people are infected by AMR pathogens annu-
ally in the U.S., at an estimated annual health care cost of $20–35 billion3,4. Meanwhile, the identification and 
development of novel antimicrobial compounds for clinical use has remained tedious and major breakthroughs 
are infrequent5.

One contributing factor to the epidemic of AMR pathogens is the overuse and administration of ineffective 
antibiotics in the clinical setting2,6,7. Clinicians are often faced with the decision to treat a patient immediately 
using their best judgment, or wait for laboratory results in order to determine the most efficacious treatment. 
The traditional culture-based detection of AMR phenotypes has drawbacks because many organisms are fas-
tidious growers or may be unculturable8,9. Molecular approaches, including the high-throughput detection of 
biomarkers, has improved dramatically over the years10–12 but is often limited by the number of markers that can 
be detected and is constrained by our current knowledge of AMR resistance mechanisms, which are evolving 
rapidly1,13–15.

As the cost of genome sequencing is decreasing it is becoming feasible to sequence clinical isolates and detect 
their AMR phenotypes directly from the sequence data. This approach is advantageous because phenotype pre-
diction is not reliant on bacterial growth, pure cultures or predefined sets of marker genes. To detect AMR phe-
notypes from sequence data, it is first necessary to gain an understanding of the mutations that exist among 
strains and the impact that these variations have on the phenotype. One way to do this is through traditional 
genome-wide association studies (GWAS). In a GWAS study, reads for many closely related strains are aligned 
against a reference strain in order to determine the significant mutations16–19. A drawback of using GWAS on 

1University of Chicago, Computation Institute, 5735 South Ellis Avenue, Chicago, IL 60637, USA. 2Argonne National 
Laboratory, 9700 Cass Ave, Lemont, IL 60439, USA. 3Gydle Inc. 101-1332 Chanoine Morel Quebec, QC, G1S, 4B4, 
Canada. 4Biocomplexity Institute of Virginia Tech, 1015 Life Science Cir, Blacksburg, VA 24061, USA. 5The Fellowship 
for Interpretation of Genomes, 15w155 81st St, Burr Ridge, IL 60527, USA. 6University of Chicago, Department of 
Computer Science, Ryerson Physical Laboratory, 1100 E 58th St, Chicago, IL 60637, USA. †Present address: Argonne 
National Laboratory Computing, Environment and Life Sciences, 9700 S. Cass Avenue, Argonne, IL 60439, USA. 
Correspondence and requests for materials should be addressed to J.J.D. (email: jimdavis@uchicago.edu)

Received: 03 February 2016

Accepted: 03 May 2016

Published: 14 June 2016

OPEN

http://patricbrc.org/
mailto:jimdavis@uchicago.edu


www.nature.com/scientificreports/

2Scientific RepoRts | 6:27930 | DOI: 10.1038/srep27930

bacterial genomes is that strain-to-strain variations can be extensive, and the knowledge base of variations is 
being established relative to a single reference genome. To narrow the scope of this problem, several recent studies 
have sequenced hundreds of genomes for a given species and extensively characterized the variations in known 
AMR genes that confer the resistance phenotype. Using this knowledge base of variants, the researchers were able 
to build accurate phenotype identification algorithms for Escherichia, Klebsiella, Streptococcus, Staphylococcus and 
Mycobacterium20–24. This is a successful approach because in many cases AMR can be the result of a single gene 
or a small set of variations13,25. However, like the detection protocols that are currently in use, the main drawback 
is that by focusing on a small set of genes with known phenotypes any potentially novel AMR determinants are 
missed.

Machine learning algorithms may provide an alternative approach to traditional GWAS studies. In general, 
machine learning algorithms work by finding the relevant features in a complex data set that enable the ability 
to make a strong prediction26. These algorithms are currently being used extensively in genomics, particularly in 
cancer research, in order to elucidate clinically important information such as, patient genotypes, gene expression 
related phenotypes and patient outcomes26–29. Recently, two studies have used machine learning algorithms to 
find relevant genomic regions associated with AMR30,31. These studies used a machine learning algorithm to select 
the oligonucleotide k-mers that are relevant to antibiotic resistance. These relevant k-mers were then used as a 
phenotype “classifier” for unknown genomes and as a source for identifying important genomic regions.

One of the reasons that machine learning classifiers are not in widespread use for AMR phenotype detection 
is the difficulty in obtaining large numbers of bacterial genomes with AMR metadata. PATRIC (Pathosystems 
Resource Integration Center, patricbrc.org) is a NIH supported bioinformatics resource center that has been built 
to enable comparative genomic analysis of bacterial pathogens32,33. For the last two years, we have been gathering, 
assembling and maintaining a database containing genomes with AMR panel data from the literature, collabo-
rators and public repositories like GenBank and the SRA34,35. In this study, we describe an infrastructure that we 
have built and deployed in PATRIC that enables users easy access to sets of genomes that are binned by their AMR 
phenotype so that they can do research on AMR detection. We then describe how we have used this infrastruc-
ture to build several machine learning classifiers to detect AMR phenotypes in Acinetobacter Mycobacterium, 
Staphylococcus and Streptococcus. These classifiers have been deployed in the RAST36,37 and PATRIC annotation 
services in order to provide an initial prediction of AMR-related genomic features and phenotype.

Methods
Building AdaBoost classifiers. We start by computing the k-mer occurrences for the contigs of each 
genome by using the k-mer counting program KMC38. We use the contigs as the starting point because we are 
maintaining the contigs for each genome on the PATRIC FTP site, although in principle sequence reads could 
also be used after preprocessing with a suitable error correction or filtering method. The files of the k-mer counts 
are then merged to form a matrix where the rows represent each individual k-mer and the columns depict pres-
ence “1” or absence “0” of each k-mer in a given genome. We chose to abstract the k-mer occurrences to pres-
ence versus absence in order to avoid potential complications resulting from repeat regions and low complexity 
sequence. Since we are seeking k-mers that are signatures of resistance, the most informative k-mers will be the 
ones that are present in the resistant strains and absent in susceptible strains. For simplicity, we invert the values 
for the columns corresponding to susceptible genomes so that the most informative k-mer will be the row with 
the fewest zeros. In other words, if a row in the matrix has a cell with a value of zero, it can then be thought of as 
an error in that k-mer’s ability to accurately classify the data set. This matrix is then passed to the AdaBoost algo-
rithm39. For clarity, we describe our use of AdaBoost in this context below using equations adapted from39. For a 
more in-depth description of AdaBoost please refer to refs 39,40.

The first part of the AdaBoost algorithm seeks the most informative k-mers for classification. During this 
part of the algorithm, two arrays of data are maintained. The first array is the row of values from the matrix 
corresponding to the given k-mer (we call this the matrix array). The second array contains probability values 
assigned to each column in the matrix (we call this the probability array). In the first round (m), each element 
in the probability array (pm) is set to 1/n, where n is the number of columns in the matrix, which amounts to the 
number of genomes.

Then for each k-mer, a weighted error value equal to the sum of the probabilities for the missed elements in 
the matrix array is assigned to each k-mer. After iterating over all of the k-mers (rows in the matrix), the “best” 
k-mer with the lowest weighted error is retained. A final weight for the best k-mer is then computed as shown in 
equation 1, where α  is the final weight and ε  is the weighted error for the missed elements in the matrix array for 
that given round (t).
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Each element in the probability array is then updated based on the corresponding matrix array index for the 
best k-mer. If the corresponding index position was a miss, the unnormalized probability (pu) for that element is 
updated as shown in equation 2.

= αp e (2)u
pm

If the corresponding index position was a match, the unnormalized probability is updated as shown in equation 3.

= α−p e (3)u
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The unnormalized probability values (pu) are normalized at each index position by dividing by the sum of unno-
rmalized probabilites (Z) for each element in the probability array as shown in equation 4.

=+p
p
Z (4)m

u
( 1)

These normalized probabilities now become the elements of the updated probability array.
Thus, the elements in the matrix that were matched by the best k-mer result in lower probability values, while 

positions that were missed result in higher probability values. In this way, through iterative rounds of “boosting”, 
the algorithm seeks the set of k-mers that are most representative of the data by tiling over the elements in the 
matrix that were missed in the previous round. This process is repeated until the α -value reaches a global mini-
mum. For the classifiers that we have built to date, the α -value typically reaches a minimum by the tenth round 
of boosting (Supplementary Fig. S1).

Classifying a genome. The second part of the AdaBoost algorithm is the classification of an unknown 
genome. To do this we use the set of “best” k-mers found from successive rounds of boosting and their α  values. 
Unless otherwise indicated, classification results in this study are presented using the k-mer set found in the first 
10 rounds of boosting. For each k-mer chosen by AdaBoost, we search for the corresponding k-mer in the target 
genome. If the k-mer exists, it votes by contributing a positive weighted vote corresponding to the α  value for the 
k-mer. If it is absent, it votes by contributing a negative α  value. In practice, there can be multiple k-mers with 
identical matching patterns that are the best in a given round. When this happens we issue a single weighted vote 
corresponding to the presence of one, or the absence of all members. If the sum of all weighted votes is negative 
the genome is predicted to be susceptible to the antibiotic; if the sum is positive, the genome is predicted to be 
resistant to the antibiotic. The magnitude of the resulting weighted vote is a measure of the confidence in the 
prediction.

Displaying AMR-related regions. Using the set of distinguishing k-mers found by AdaBoost, the genomic 
regions corresponding to AMR are displayed by performing a BLASTN41 search using the k-mers as the query 
and the contigs or genes from the target genome as the subject. High scoring segment pairs (HSPs) where the 
k-mers match with 100% coverage and 100% identity are presented as AMR features. If k-mers are found to be 
overlapping, or if they exist in a proximity less than or equal to one k-mer length, the region is presented as a 
single genomic feature relating to AMR.

Selection of Mycobacterium tuberculosis genome sets. The worldwide health threat of multidrug 
resistant tuberculosis has resulted in several studies that have generated a large amount of AMR data for M. tuber-
culosis strains23,42,43. At PATRIC, M. tuberculosis is currently the species with the largest amount of AMR metadata 
(Table 1). However, many M. tuberculosis genomes are resistant to multiple antibiotics, making an unambiguous 
classification of individual antibiotics challenging (Supplementary Table S1). For example, this makes it difficult 
to build a classifier to detect isoniazid-related k-mers that is not also biased by rifampicin-related k-mers and 
vice versa. As a result, we chose to build classifiers for each antibiotic by selecting subsets of genomes with AMR 
profiles that are less correlated between antibiotics (Supplementary Table S2).

We converted the AMR SIR (Susceptible, Intermediate, or Resistant) data for each genome to numeric val-
ues: + 1 for resistant, 0 for intermediate or unknown and –1 for susceptible. Then using these values for all of 
the genomes, we computed the correlation between each antibiotic. We systematically removed each genome 
from the set and then recomputed the correlation summing the difference in the correlation across all antibi-
otics for each genome. After doing this for all genomes, we chose the set of genomes for each antibiotic that 
minimizes the magnitude of the correlation with the other antibiotics. These less correlated genome sets were 
chosen for building the M. tuberculosis classifiers (Supplementary Table S2). After performing this analysis, we 
built classifiers for genome sets built from 100, 150, 200, 250 and 300 genomes respectively. We chose to use 
classifiers built from the 250 genomes because they offer an adequate number of genomes for classification, while 

Organism Antibiotic* Susceptible Resistant
Major data 

sources

Acinetobacter baumannii carbapenem 110 122 67

Mycobacterium tuberculosis

ethambutol 691 333

42, 43, 67

ethionamide 250 173

isoniazid 453 814

kanamycin 484 188

ofloxacin 514 239

rifampicin 509 666

streptomycin 656 490

Staphylococcus aureus methicillin 115 491 67

Streptococcus pneumoniae
beta-lactam 1504 1563

16, 17
co-trimoxazole 584 2126

Table 1. Bacterial species with over 100 distinct susceptible and resistant phenotypes on the PATRIC FTP 
site (http://ftp.patricbrc.org/). *AMR data may exist for single antibiotics and families of antibiotics.

http://ftp.patricbrc.org/
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still minimizing correlations. This can be seen in Supplementary Tables S2 and 3, where the top k-mer for the 
rifampicin classifier is located within the RNA polymerase beta-subunit gene (the expected target) in the 150-, 
200- and 250-genome sets (Pearson correlation coefficients (PCC) equal to 0.370, 0.524 and 0.617 respectively), 
but then becomes located within the katG gene (the expected target of isoniazid resistance) in the 300-genome 
set (with a PCC equal to 0.746).

Results
Accessing AMR genomes and metadata in PATRIC. PATRIC is a bioinformatic resource that is 
designed to enable comparative genomic analysis of bacterial pathogens. At the time of writing, the database at 
the core of PATRIC contains ~33,000 bacterial genomes, and drives the user interface on the website as well as 
the service environment (which includes assembly, annotation and RNA-seq analysis). Each time there is a data 
release, newly obtained bacterial genomes that have been obtained are annotated and released on the website. 
These genomes are also pushed to the PATRIC FTP site (ftp://ftp.patricbrc.org/patric2/patric3/genomes/) where 
users can download the original source data and the PATRIC-specific analyses including the RASTtk annotation 
results36, biochemical pathways44,45, and BLAST matches to the ARDB (antibiotic resistance genes database) and 
CARD (the comprehensive antibiotic resistance database) compendia of hand-curated AMR-related genes41,46,47.

Until recently, it has been difficult to publicly deposit or obtain AMR data for specific strains48. At PATRIC 
we have been collecting AMR data for strains that have been given to us by collaborators and that have been 
published in the literature. These AMR metadata are typically represented as minimum inhibitory concentra-
tions (MIC) for commonly used antibiotics, which are generated using standard laboratory techniques49. They 
can also be in the form of susceptible, intermediate or resistant (SIR) determinations that have been made by 
the researcher. In the case of MIC data, the laboratory tests can vary depending on the growth requirements of 
the organism. SIR data are usually a researcher’s conclusion based on a MIC test, but sometimes they can be an 
assertion that is based on the MIC result for a similar antibiotic. To date, we have not actively incorporated AMR 
determinations resulting from purely genomic inference17,49. The PATRIC FTP site also contains AMR metadata 
that have been reported for an entire family of antibiotics, such as beta-lactam or carbapenem resistance.

We maintain a list of genomes with AMR data on the FTP site (ftp://ftp.patricbrc.org/BRC_Mirrors/AMR/) 
and report both MIC and SIR data when they are available. For species with at least 100 susceptible and resist-
ant genomes for a given antibiotic, we also maintain directories of the susceptible and resistant genomes (ftp://
ftp.patricbrc.org/patric2/current_release/AMR_genome_sets/). The goal of this organized distribution of AMR 
data is to enable more rapid improvements in the detection and annotation of AMR-related genomic features. 
Bacterial species on the PATRIC FTP site that have over 100 susceptible and resistant genomes for a given antibi-
otic are presented in Table 1.

Using the AdaBoost algorithm for whole-genome AMR classification. Given a framework for dis-
tributing sets of genomes binned according to their AMR phenotype, we built a set of classifiers for predicting 
the AMR phenotypes for the genomes that are being submitted to our annotation services in RAST and PATRIC. 
Since we want to be able to detect phenotypic determinants found in intergenic regions as well as within genes, 
we built our classifiers from whole genome data using 31 base pair nucleotide k-mers. We decided to use 31-mers 
because they offer considerable specificity and a manageable memory footprint. In general, k-mers ranging in size 
from 24–31 nucleotides (and perhaps longer) work well for similar classification problems50,51. In order to make 
an accurate phenotype prediction, it is necessary to find the set of k-mers that distinguishes resistant genomes 
from susceptible genomes. In this initial implementation, we have chosen to find these distinguishing k-mers by 
using the AdaBoost (Adaptive Boosting) algorithm39,52,53. AdaBoost works by taking a weak ensemble of classifi-
ers—in this case the occurrence of our 31-mers across a set of genomes—and ranking them through a process of 
iterative refinement (i.e., “boosting” or “learning”). This set of distinguishing k-mers and their associated weights 
becomes the classifier that is used to predict the phenotype of an incoming genome (Materials and Methods). 
The overall workflow is described in Fig. 1. We chose AdaBoost for its simplicity and ease of implementation, 
although in principle other machine learning algorithms, such as random forests, support vector machines and 
the set covering machine might also work well in this context, and may ultimately be used to improve upon this 
initial set of classifiers30,31,54–56.

AMR classification for Acinetobacter Staphylococcus and Streptococcus. We started by build-
ing AdaBoost classifiers to detect carbapenem resistance in Acinetobacter baumannii, methicillin resistance in 
Staphylococcus aureus and beta-lactam and co-trimoxazole resistance Streptococcus pneumoniae. We chose these 
four examples because we have a sufficient number of sequenced resistant and susceptible strains in the PATRIC 
database. In our experience with AdaBoost, the genomes in each set should be balanced, so in all cases we present 
classifiers that have been built with an equal number of susceptible and resistant genomes. Unless otherwise indi-
cated, in this study we describe classifiers learned with at least 100 genomes because we have observed lower accu-
racies when we try to build classifiers using less than 100 genomes (Supplementary Fig. S2). However, the ease of 
classification can depend on the AMR mechanism with single nucleotide polymorphism (SNP) based resistance 
being more difficult to classify than resistance resulting from the presence of entire genes or mobile elements.

We tested the ability to accurately classify the AMR phenotype for genomes of the same species by randomly 
selecting 80% of the available genomes for training and the remaining 20% of the genomes for testing. This was 
repeated ten times as a cross validation experiment. In all four cases, we plotted the results of the combined test 
sets as receiver operating characteristic (ROC) curves which depict the true-positive rate versus the false positive 
rate for each classifier (Fig. 2). In all four cases, the classifiers are very accurate with the area under the ROC curve 
(AUC) values greater than 94%, and accuracies ranging from 87% for classifying co-trimoxazole resistance in  
S. pneumoniae to 99% for classifying methicillin resistance S. aureus. The F1 score, which is the harmonic mean  

ftp://ftp.patricbrc.org/patric2/patric3/genomes/
ftp://ftp.patricbrc.org/BRC_Mirrors/AMR/
ftp://ftp.patricbrc.org/patric2/current_release/AMR_genome_sets/
ftp://ftp.patricbrc.org/patric2/current_release/AMR_genome_sets/
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of precision and recall and is commonly used to compare different classification methods, is similarly high 
(Table 2). In order to understand the effect of misclassified genomes adversely influencing the accuracy of the 
classifiers, we introduced error into the analysis by mixing susceptible and resistant genomes in the training sets. 
Although the accuracies diminish with mixing, the classifiers retain some ability to classify even when mixing 
exceeds 20% of the total genomes in the training set (Supplementary Fig. S3).

Figure 1. A typical machine learning workflow for AMR phenotype detection. Genomes for a given 
species are binned according to whether they are resistant or susceptible to an antibiotic and the k-mer counts 
are computed for each genome. The k-mer counts are then merged to form a matrix. A machine learning 
algorithm searches this matrix to find the k-mers that distinguish the resistant and susceptible genomes. These 
distinguishing k-mers are then used as a “classifier” to predict the phenotype for a new genome.
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For each classifier it is important to establish whether the k-mers that are used for classification are indeed 
related to a known mechanism of AMR. Since we are using AdaBoost to seek a minimum number of k-mers for 
classification, we will not find all known AMR determinants, but rather those that describe the most variation in 
the training set genomes. In the case of carbapenem resistance in A. baumannii, the top ranking k-mer is found in 
a LysR transcriptional regulator gene that is located immediately downstream of a metallo-beta-lactamase gene 
that may be conferring resistance to carbapenem antibiotics57 (Table 3). In the case of S. aureus, the set of top 
ranking k-mers relating to methicillin resistance span a 3-gene region containing the mecA gene, which is known 
for conferring methicillin resistance e.g.,58. The 17 highest ranking k-mers, and the 14 third-highest ranking 
k-mers for S. pneumoniae β -lactam resistance are found in the peptidoglycan synthase gene (pbp2x), a penicillin 
binding protein for which SNPs conferring β -lactam resistance have been extensively characterized17. The 5 high-
est and 2 second-highest ranking k-mers found relating to co-trimoxazole resistance in S. pneumoniae are found 
in an intergenic region immediately downstream of the dihydropteroate synthase and within the dihydrofolate 
reductase genes respectively. Co-trimoxazole is a combination drug comprised of sulfamethoxazole and trimeth-
oprim. Both drugs inhibit steps in folate synthesis with sulfamethoxazole inhibiting dihydropterate synthase and 
trimethoprim inhibiting dihydrofolate reductase59. Overall, in all four cases, the selection of the highest-ranking 
k-mers by AdaBoost results in k-mers that correspond with known AMR determinants.

Figure 2. ROC curves for AdaBoost classifiers built for A. baumannii carbapenem resistance (red line with 
square symbols), S. aureus methicillin resistance (orange line with diamond symbols), S. pneumoniae beta-
lactam resistance (green line with triangle symbols) and S. pneumoniae co-trimoxazole resistance (blue line 
with circle symbols). Data are the results of cross validation on the set of genomes described in Table 2. Equal 
numbers of susceptible and resistant genomes were used in the experiment.

Antibiotic

Available 
Genomes

Genomes used 
per trial* Classifier statistics

RES SUS
Test 
set

Training 
set AUC

F1 
plot 

point
F1 

Score

Accuracy 
at F1 
point

Accuracy 
at point 

zero

A. baumannii

 Carbapenem 122 110 11 99 0.964 0.193 0.950 0.950 0.945

S. aureus

 Methicillin 491 115 11 99 0.991 2.283 0.995 0.995 0.995

S. pneumoniae

 Beta-lactam 1563 1504 150 1350 0.971 –0.029 0.907 0.909 0.909

 Co-trimoxazole 2124 584 58 522 0.942 –0.189 0.880 0.878 0.876

Table 2. Characteristics of the cross validation experiments for the Acinetobacter baumannii, 
Staphylococcus aureus and Streptococcus pneumoniae AdaBoost classifiers. *For each round of cross 
validation the depicted set size was chosen for the susceptible and resistant genomes.
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In some cases, the second and third highest-ranking k-mers do not appear to have an obvious role in AMR. 
For instance the 4 second-highest ranking k-mers in A. baumannii carbapenem resistance correspond with a 
NAD+ –asparagine ADP-ribosyltransferase gene and the 3 third-highest ranking k-mers correspond with a 
gene encoding Dihydrodipicolinate synthase family protein-encoding gene. In the case of Streptococcus β -lactam 
resistance, the second highest-ranking k-mers occur in an intergenic region between ABC transporter genes. If 
any of these genes are involved in AMR, their role seems to be unclear from the current annotations. It is also 
possible that these regions reflect overfitting or variation from linear descent that may ultimately be eliminated as 
the diversity of the strains used in the training can be expanded.

AMR classification for Mycobacterium tuberculosis. Since antibiotics are often co-prescribed, 
many sequenced isolates are resistant to multiple antibiotics23,42,43. This is particularly the case for M. tubercu-
losis (Supplementary Table S1). In order to obtain classifiers for individual antibiotics, we selected subsets of M. 
tuberculosis genomes that minimize the correlation between antibiotic resistance profiles (see Methods section) 
(Supplementary Table S2). The AdaBoost classifiers built from subsets of M. tuberculosis genomes perform well 
with AUC values > 0.70 for all antibiotics. Overall, the classifiers built for isoniazid, kanamycin, and rifampicin 
resistance are the best, with AUC values ≈ 0.9 and accuracies between 86–88% (Fig. 3, Table 4). The classifier built 
for ethambutol was the worst with an AUC value of 0.72 and an accuracy of 58%. Since we had a large number 
of genomes that were resistant to at least six of the seven antibiotics (83 genomes) and susceptible to at least six 
of the seven antibiotics (139 genomes), we also built a classifier of “pan-resistance” to the available antibiotics 
(Supplementary Tables S4 and 5). This combined classifier performed well with an AUC value of 0.97 and an 
accuracy of 93% (Fig. 3, Table 4).

For five of the seven antibiotics listed in Table 5, we observe a top matching k-mer hit in the expected drug 
target for the antibiotic. The highest ranking set of k-mers for isoniazid resistance match the katG gene60, the 
highest-ranking k-mer for kanamycin resistance corresponds to a region of the 16S rRNA gene that is known 
to be involved in kanamycin resistance61, the highest-ranking k-mer for ofloxacin resistance corresponds with 
the DNA gyrase subunit A gene62, the highest-ranking k-mer for rifampicin resistance corresponds to the RNA 
polymerase beta-subunit gene63 and the highest ranking k-mer for streptomycin is found in the small subunit 
ribosomal protein S12 gene64. In the case of ethambutol, the top ranking k-mer does not appear to have an obvi-
ous link to an AMR mechanism and instead matches the beta subunit of the RNA polymerase gene, which is a 
likely correlation with rifampicin (Table 5, Supplementary Table S2). The second-highest ranking k-mers match 
the embB gene, which is one of the the targets of ethambutol65. If more genomes were available with ethambutol 
panel data that were also uncorrelated with the other antibiotics, we would expect the embB gene to become the 

Rank α-value

k-mers with 
an identical 

pattern Corresponding genes PATRIC annotation

A. baumannii, carbapenem

 1 1.21 1 fig|1221255.3.peg.3516 LysR-family transcriptional regulator clustered with PA0057* 

 2 0.82 4 fig|1221255.3.peg.3314 NAD+ –asparagine ADP-ribosyltransferase

 3 0.77 3 fig|1221255.3.peg.631 Dihydrodipicolinate synthase family

S. aureus, methicillin

 1 2.37 3321 fig|1413344.3.peg.2510,fig|1413344.3.peg.2511,fig|1413344.3.peg.2512
Glycerophosphoryl diester phosphodiesterase (EC 3.1.4.46); 
MaoC domain protein; Penicillin-binding protein PBP2a, 
Penicillin-binding protein PBP2a, methicillin resistance 
determinant MecA, transpeptidase

 2 1.16 26 fig|1413344.3.peg.1752 hypothetical protein

 3 0.84 17 fig|1413344.3.peg.1698 Phage protein

S. pneumoniae, beta-lactam

 1 0.74 17 fig|561276.4.peg.338 Cell division protein FtsI [Peptidoglycan synthetase] (EC 
2.4.1.129)

 2 0.62 16 intergenic region between Multiple sugar ABC transporter proteins 
(fig|561276.4.peg.108 and fig|561276.4.peg.109)

 3 0.60 14 fig|561276.4.peg.338 Cell division protein FtsI [Peptidoglycan synthetase] (EC 
2.4.1.129)

S. pneumoniae, co-trimoxazole

 1 0.66 5 intergenic region immediately downstream of Dihydropteroate synthase (EC 
2.5.1.15) (fig|1313.2194.peg.17)

 2 0.55 2 fig|1313.2194.peg.1876 Dihydrofolate reductase (EC 1.5.1.3)

 3 0.51 6 fig|1313.2194.peg.1874 Glucan-binding domain / Lyzozyme M1 (1,4-beta-N-
acetylmuramidase) (EC 3.2.1.17)

Table 3. A description of the top three k-mers found by AdaBoost and their corresponding regions in 
A. baumannii AB_2008-15-34-7, S. aureus 08-01059, S. pneumoniae ATCC 700669, and SMRU2064. 
Genomes were chosen as examples with exact k-mer matches. The complete list of k-mers is described in the 
supplementary data file. * Occurs next to fig|1221255.3.peg.3517, Metallo-beta-lactamase superfamily protein 
PA0057.
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top match. The three highest-ranking sets of k-mers for the ethionamide classifier do not match the mechanistic 
target for ethionamide, which is an analog of isoniazid. In this case, we would have expected the top k-mers to 
match ethA, inhA or katG66. It is possible that by attempting to decouple isoniazid and ethionamide resistance 
profiles that the signal for ethionamide was lost. The combined multidrug resistance classifier identifies the same 
targets for isoniazid, kanamycin, rifampicin, ofloxacin and ethambutol in the top ten k-mers (Table S6).

Like the classifiers built for A. baumannii, S. aureus, and S. pneumoniae, the classifiers built for M. tubercu-
losis also contain matches to genomic regions with no known relationship to AMR. In the case of A. baumannii 
carbapenem resistance and S. aureus methicillin resistance, nearly all of the resistant genomes contain a match to 
the top ranking k-mers. However, in the case of the other classifiers, additional rounds of boosting are necessary 
for the entire set of resistant genomes to be represented by the classifier (Figures S4–7). Thus, these lower ranking 
targets contribute the accuracy of the classifiers, albeit with lower weights than the main AMR target. These data 

Figure 3. ROC curves for AdaBoost classifiers built for M. tuberculosis antimicrobial resistance. Genome 
sets and classifier statistics are described in Table 3. Classifiers for individual antibiotics were chosen for 
minimal correlation between AMR patterns and up to 250 resistant and susceptible genomes were used. Equal 
numbers of susceptible and resistant genomes were used all experiments. All curves depict cross validation 
experiments and are for ethambutol (red line with square symbols), ethionamide (orange line with diamond 
symbols), isoniazid (green line with triangle symbols), kanamycin (light blue line with circle symbols), ofloxacin 
(dark blue line with square symbols), rifampicin (purple line with diamond symbols) and streptomycin (brown 
line with triangle symbols). The black line with circle plot points depicts the combined multidrug resistance 
classifier described in Tables 3 and Supplementary Tables S4–6.

Available 
Genomes Genomes used per trial* Classifier statistics

Antibiotic RES SUS Test set Training set AUC F1 plot point F1 Score Accuracy at 
F1 point

Accuracy at 
point zero

Ethambutol 250 250 25 225 0.715 0.435 0.704 0.588 0.668

Ethionamide 173 250 17 153 0.812 − 0.136 0.766 0.768 0.771

Isoniazid 250 250 25 225 0.911 − 0.085 0.872 0.880 0.882

Kanamycin 188 250 18 162 0.898 0.137 0.871 0.883 0.872

Ofloxacin 239 250 23 207 0.833 − 0.022 0.761 0.793 0.791

Rifampicin 250 250 25 225 0.932 − 0.410 0.870 0.864 0.858

Streptomycin 250 250 25 225 0.795 − 0.485 0.722 0.642 0.712

Combined Set 83 139 8 72 0.969 − 0.577 0.950 0.950 0.928

Table 4. Characteristics of the cross validation experiments for the Mycobacterium tuberculosis AdaBoost 
classifiers.  * For each round of cross validation the depicted set size was chosen for the susceptible and resistant 
genomes.
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also suggest that in many instances a classifier built from a single target gene, such as rpoB or katG in M. tubercu-
losis, may be insufficient for accurately classifying the phenotypes of these organisms.

Availability. Antibiotic resistance phenotype prediction and genomic feature identification for the genomes 
and antibiotics described in this study (excluding ethambutol and ethionamide in M. tuberculosis) has been made 
available as an option in the RASTtk workflow36, from the RAST website (http://rast.nmpdr.org/), and in the 
PATRIC annotation service32 (http://patricbrc.org/). The analysis is performed when a user provides a genome 
with a species name that matches a species for which we have built classifiers. The classification output includes 
the weighted AdaBoost vote for the genome, which is a measure of confidence in the prediction, as well as infor-
mation about each classifier and the genomic regions, which are annotated as features and can be browsed in 
a compare regions context. The classification output is recorded in the genome object, feature file and annota-
tion history for the genome. AMR-related regions predicted by the classifiers for a newly annotated genome can 
be browsed on both the PATRIC and RAST websites. As the number of genomes with panel data increases in 
PATRIC, we plan to expand the number of classifiers. We also plan to expand upon the set of machine-learning 
algorithms that are used to build the classifiers.

Rank α-value

k-mers 
with an 

identical 
pattern Corresponding genes PATRIC annotation

Ethambutol

 1 0.267 1 fig|1397854.3.peg.744 DNA-directed RNA polymerase beta 
subunit (EC 2.7.7.6)

 2 0.208 29 fig|1400933.3.peg.3985 Integral membrane indolylacetylinositol 
arabinosyltransferase EmbB (EC 2.4.2.-)

 3 0.240 1 fig|1397854.3.peg.3144 FIG00820705: hypothetical protein

Ethionamide

 1 0.467 31 fig|1295720.3.rna.14 Small Subunit Ribosomal RNA

 2 0.292 13 fig|1295720.3.peg.4188 Partial REP13E12 repeat protein

 3 0.257 8 intergenic region
Between fig|1295720.3.peg.3517 LSU 
ribosomal protein L2p (L8e) and 
fig|1295720.3.peg.3518 LSU ribosomal 
protein L23p (L23Ae)

Isoniazid

 1 0.982 1 fig|1397854.3.peg.2114 Catalase (EC 1.11.1.6)/Peroxidase (EC 
1.11.1.7)

 2 0.517 3 fig|1400933.3.peg.1961 PE-PGRS family protein

 3 0.244 2 fig|1397854.3.peg.2292 Polyketide synthase

Kanamycin

 1 0.995 31 fig|1397854.3.rna.19 Small Subunit Ribosomal RNA

 2 0.494 27 intergenic region
Between fig|1397854.3.peg.2690, RNA 3′ 
-terminal phosphate cyclase (EC 6.5.1.4) 
and fig|1397854.3.peg.2691, CBS domain 
protein

 3 0.264 2 fig|1397854.3.peg.9 DNA gyrase subunit A (EC 5.99.1.3)

Ofloxacin

 1 0.471 2 fig|1397854.3.peg.9 DNA gyrase subunit A (EC 5.99.1.3)

 2 0.373 18 fig|1397854.3.peg.3738 PPE family protein

 3 0.236 10 fig|1397854.3.peg.9 DNA gyrase subunit A (EC 5.99.1.3)

Rifampicin

 1 0.610 1 fig|1397854.3.peg.744 DNA-directed RNA polymerase beta 
subunit (EC 2.7.7.6)

 2 0.785 2 fig|1397854.3.peg.294 Nitrate/nitrite transporter

 3 0.518 1 fig|1397854.3.peg.2114 Catalase (EC 1.11.1.6)/Peroxidase (EC 
1.11.1.7)

Streptomycin

 1 0.386 31 fig|1448395.3.peg.756 SSU ribosomal protein S12p (S23e)

 2 0.342 3 fig|1448395.3.peg.6 DNA gyrase subunit A (EC 5.99.1.3)

 3 0.200 8 fig|1448395.3.peg.1615 PE-PGRS family proteinCOX10-CtaB

Table 5. A description of the top three k-mers found by AdaBoost and their corresponding genomic 
regions in M. tuberculosis TKK_02_0002, KT-0099, TKK_02_0004 and TKK_03_0024. Genomes were 
chosen as examples with exact k-mer matches. The complete list of k-mers is described in the supplementary 
data file.

http://rast.nmpdr.org/
http://patricbrc.org/
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Discussion
As the number of effective antibiotics dwindles, it becomes increasingly important to rapidly identify AMR in 
bacterial genomes. In order to advance the state of detection and AMR classification, we have provided FTP 
access to the AMR metadata for the genomes that are available at PATRIC. We have also used these data sets to 
build classifiers of antibiotic resistance in order to provide a reliable AMR classification capability in the RAST 
and PATRIC genome annotation pipelines. Given the current data sets available at PATRIC, we built AdaBoost 
classifiers for A. baumannii, S. aureus, S. pneumoniae and M. tuberculosis. In the cases of A. baumannii (carbap-
enems), S. aureus (methicillin) and S. pneumoniae (beta-lactams and co-trimoxazole), the classifiers were highly 
accurate and performed classifications based on k-mers that corresponded to regions in the genome that are 
known to confer AMR. In the case of M. tuberculosis, we built a classifier for pan-resistance to seven antibiotics 
that was 93% accurate. Since the AMR profiles from the panel data for each antibiotic were similar, we selected 
subsets of genomes with AMR profiles that were less correlated between antibiotics in order to identify AMR 
determinants that were specific to each antibiotic. This was an effective strategy, yielding accurate classifiers with 
top ranking k-mers in known AMR-conferring regions for five of the seven antibiotics (isoniazid, kanamycin, 
ofloxacin, rifampicin and streptomycin). In the case of the remaining two antibiotics (ethambutol and ethion-
amide), we predict that better classifiers can be built if we can obtain more susceptible and resistant genomes with 
AMR profiles that are unrelated to the other antibiotics.

There are caveats to building classifiers and providing predictions that are based upon them. In all cases, the 
accuracy of a prediction is contingent upon the set of genomes that was used to train the classifier. For instance, if 
a strain is resistant because of variation that was not originally sampled in the training set genomes, such as novel 
SNPs or a horizontally acquired element, the genome will receive an incorrect classification. Likewise, having a 
limited or biased training set can result in high ranking k-mers that are the result of overfitting rather than true 
AMR-related variation. We were able to construct classifiers that have top-ranking k-mers linked to well known 
AMR mechanisms; however, it is unclear if the lower ranking k-mers have a role in AMR, are lineage-related var-
iation rather than AMR-related variation, or are noise due to overfitting. Maintaining these lower ranking k-mers 
represents a tradeoff in our ability to find relevant but poorly understood AMR-related features, and poten-
tially classifying based on noise or lineage-related variation. As the number and diversity of available genomes 
increases, it may be possible to improve upon this initial set of classifiers by exploring methods for maximizing 
genetic diversity in the training sets.

Being able to build classifiers with a balanced number of susceptible and resistant genomes is also impor-
tant for building accurate classifiers, but is currently a major limitation. In most cases, the number of available 
genomes with AMR panel data is skewed toward genomes that are resistant because these are the genomes that 
are of clinical importance to hospitals and epidemiologists. For instance, at the time of writing there are currently 
over 100 resistant genomes for five additional antibiotics for M. tuberculosis, four antibiotics for Pseudomonas 
aeruginosa and three antibiotics for S. pneumoniae in PATRIC, but an insufficient number of known susceptible 
genomes to build these classifiers. In our opinion, emphasis should be given to sequencing diverse susceptible 
genomes in order to advance the ability to predict phenotypes. Despite these limitations, the ability to classify 
based upon the current data is an important capability that will improve over time.

GWAS studies are able to detect significant regions of variation by comparing genomes that are binned by 
phenotype against a reference genome. In principle, machine learning approaches could be used to do the same 
analysis without requiring alignment against a reference genome—a property that would be useful for bacterial 
comparisons since they can differ extensively across strains. In this study, the k-mers relating beta-lactam resist-
ance in S. pneumoniae that were identified by AdaBoost corresponded with the pbp2x gene that was also identified 
in a previous GWAS study17. In that study, Chewapreecha and colleagues also found significant variations relating 
to resistance in the pbp1a and pbp2a penicillin binding proteins, which were not identified in this study using 
AdaBoost. This could be the result of AdaBoost selecting the most highly ranked k-mers, or it could be the result 
of the all-versus-all comparison that was performed by AdaBoost rather than mapping against a single reference 
genome. Either way, this study suggests that machine learning algorithms can complement a traditional GWAS 
study, but potentially using them as a replacement for GWAS is an area that requires more research.

The RAST and PATRIC annotation systems currently project functions from the annotated proteins in the 
SEED database37. They also offer BLAST matches to the AMR-related proteins that have been curated at ARDB 
(the Antibiotic Resistance genes Database) and CARD (Comprehensive Antibiotic Resistance Database)36,46,47. In 
addition to being the first phenotype assertion offered by these services, the use of classifiers offers a complemen-
tary approach to identifying AMR-related features within the genome. This is advantageous because the classifiers 
can identify entire regions, such as the mecA containing region in S. aureus, as well as SNP-level variations, such 
as the kanamycin resistance in M. tuberculosis that was the result of mutations in the 16S rRNA gene. The ability 
to catalog variants, particularly those found in intergenic regions and within genes, provides a more detailed level 
of resolution for these annotation systems.
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