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I. INTRODU:TION 

1.1 Historical Review 

Incomplete block and quasi-factorial designs, as developed by 

Yates, Bose, Nair, Harshbarger, and many others, are applied in situ-

ations where the number of treatments exceeds the number of homogeneous 

experimental units in each block. These designs were first introduced 

in 1936 by Yates [24, 25 ], in order to obtain a gain in precision 

due to the use of smaller blocks, at the expense of loss of informa-

tion on those varietal comparisons which are confounded with blocks. 

In 1939 Bose and Nair [3 ] published a paper on partially 

balanced incomplete block designs. The same year, Bose [1] dis-

cussed the construction of balanced incomplete block designs. During 

the past few years, Bose and his co-workers have investigated the par-

ticular field of partially balanced incomplete block designs with two 

associate classes. Some of these designs were constructed and class-

ified by Bose and Shimamoto [4 J in 1952. This work was extended by 

Bose, Clatworthy, and Shrikhande [2 ], the extensions resulting in 

the production of a set of tables of all known partially balanced in-

complete block designs, with two-associate classes, for which r ~ 10, 

3 ~ k ~ 10, where r is the number of replications and k is the number 

of plots per block and when the efficiency factors, E1 and E2, are not 

too different. 

In 1947 Harshbarger .[_8:J. developed the rectangular lattice de-

sign where the number of varieties is expressible as the product of 
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two consecutive integers. During the next several years Harshbarger 

[9, 10, 11] turther extended the development of rectangular lattices. 

In the original papers by Yates on incomplete block designs, 

attention was uirected to methods for obtaining intra-block estima-

tors of varietal effects by considering comparisons arising within 

blocks. A second estimator may be obtained by taking into account 

comparisons arising among block totals. Denoting these two estima-

tors by t 1 and t 2, Yates [ 21, 22] showed that the "best combined 

estimator" having minimum variance is 

(l.l.l) = 
t 1 (var t 2 ) + t 2(var t 1) 

var t 1 + var t 2 
• 

It can also be shown [ 6 J that the best combined linear esti-

mators or the varietal effects can be obtained by the minimization of 

a weighted sum of squares consisting of two parts. The first part by 

itself yields the usual intra-block estimators while the second part 

yields the inter-block estimators. In practice, the weights are not 

known but can be estimated fairly accurately in large experiments 

from the mean squares in the analysis or variance table. In a recent 

paper by Sprott [20 ], it has been shown that the two methods for ob-

taining the combined estimators are not in general equal; therefore, 

the first method does not of itself yield the best combined estimate. 

Rao .[19] illustrates a method where the combined estimators and 

their variances and covariances can be obtained from the intra-block 

formulae by making su1 table changes • The required changes are seen 
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to follow ensily from a comparison of th~ two sets of normal equa-

tions. 

The use or incomplete block designs in the past has been re-

stricted to ess~ntially varietal trials. In recent years, however, 

the utility of such designs has been greatly increased by incorporat-

ing factorial treatment combinations in them. The first use of a 

factorial in a partially balanced incomplete block design is given by 

Cornish [7 J in 1938. In 1954 Harshbarger Gl] considered a 23 fac-

torial in a latinized rectangular lattice design. In the past year, 

Kramer and Bradley [13, 14., 15] and Zelen (26 J have placed fac-

torials in several classes of' incomplete block designs making possible 

a study of' several factors at a time together with their interactions. 

Kramer and Bradley considered only the intra-block analysis and Zelen 

obtained, in addition, the inter-block analysis f'or certain specific 

designs. 

1.2 ObJectives of this Dissertation 

The main objective of this dissertation is to extend the work 

ot Kramer and Bradley and place factorials in the several suitable 

classes of' two-associate class, partially balanced incomplete block de-

signs that have not at present been considered in the literature. 

Throughout the work on factorials by Kramer and Bradley no attempt was 

made to utilize the recovery of' inter-block information, and a major 

part of this dissertation will be the consideration of' this very im-

portant aspect of the analysis of' experimental designs. 
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The recovery of inter-block inf'::·"7lla.tion is used to gain more 

information on the estimation of treatment differences in situations 

where there may be assumed to exist a random variability bet·ween 

blocks. Additional a.ssU?!'lptions in the mathematical model are mude 

that the block effects nre normally and independently distributed with 

zero means and equal finite variances. 

A study will be made of the varjances of estil'.!la.tors of treat-

ment differences, and then of factorial treetment contrasts, along 

with the efficiencies of the contrasts in various designs relative to 

the corresponding contrasts in completely randomized designs. Teets 

of significance for factorial effects will be derived and single 

degree-of-freedom comparisons will be determined in order to investi-

gate trends and special contrasts among the factorial effects. 

For the balanced incomplete block and the group divisible, par-

tially balanced incomplete block designs, only the combined intra- and 

inter-block analysis will be considered. However, in the case of the 

Latin Square sub-type t 3, partially balanced incomplete block designs, 

both the intra-block analysis and the combined intra- and inter-block 

analysis will be presented. 

1.3 Review of Partially Balanced Designs with Two Associate Classes 

An incomplete block design is said to be partially balanced 

with two associate classes if it satisfies the following requirements. 

(i) The experimental material is divided into b blocks of k 

units each, different treatments being applied to the units in the 

same block. 
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(ii) There e.re v (>k) treatmentf ~sch of -which occurs in r 

blocks. 

(111) There can be est~blished a rel~tion of association be-

tveen a~y tvo treatments satisfying the folloving requirements: • 

(a) Two treatments are either first associates 

or seco~d associates. 

(b) Each treatment has exactly n 1 1th associates 

(i ::: 1, 2). 

(c} Given any two treatments which are 1th 

associates, the number of treatments common 
th to the j associate or the first and the 

th 1 k associate of the second is pjk and is 

independent of the pair of treatments we 
i i start with. Also pjk = pkJ (1, j, k = 11 2). 

(iv) Two treatments which are 1th associates occur together 

in exactly Ai blocks (i = 1, 2). 
For a proper partially balanced incomplete block design 

"if~· If "i = A2 , the design becomes a balanced incomplete block 

design. 

The numbers v, r, k, b, n1, n2, ~, and A2 are called the 
i parameters of the first kind, whereas the numbers pjk (i, j, k = 1, 2) 

are called the parameters of the second kind. 

The following relations between the parameters are known to 

hold: 

(1.3.1) vr =bk, 



(1.3.2) 

(1.;.3) 

(1.3.4) 

(1.3.6) 

(1.3.7) 

(1.;.8) 
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n1 + n2 = v - 11 

The parameters p~k of the second kind can be exhibited as the 

elements of the two symmetric matrices 

1 1 
P11 P12 

p = 1 1 1 ' P21 P22 

and 
2 2 

P11 P12 

p2 = 2 2 
P21 P22 

Bose, Clatworthy, and Shrikhande define the constants 6 1 H, c1, 

c2 by the relations 

(1.3.10) 

(1.3 .11) 

k26 = (o.+>.1 )(a+>..2) + ("'i->..2) [ a(f'-g)+f>..2-g"'i ], 

kH a (2a+"'i+>..2} + (f-g}("'i->..2 ), 



(1.3.12) 

(1.3.13) 

where 

(1.3.14) 

(1.3.16) 
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~l = ~(a+>..2) + (>..l->..2)(f>..2-g~), 

Jmc2 = ~(a+~)+ (>,_->..2)(f>..2-g~), 

a= r(k-1) 1 

1 
f = P121 

Partially balanced incomplete block designs with two associate 

classes are classified into the following types depending upon their 

association schemes: 

(1) Group divisible, 

(2) Simple, 

(;) Triangular, 

(4) Latin Square type, or 

(5) Cyclic. 

The only designs that will be considered in this dissertation 

are those for which the number of treatments is non-prime. This re-

striction is necessary when we consider factorial treatments in in-

complete block designs. 
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II • BALANCED Il':CO!,PLETE BLOCK DESIGNS 

2.1 Combined Intra- and Inter-block Estimators for Factorial 
Treatments 

Suppose we have an incomplete block design consisting of v = mn 

treatments arranged in b blocks containing k plots each, with each 

treatment r~plicated r times. If each pair of treatments occurs to-

gether in exactly ~ blocks, the design will be balanced. We then 

have the following two relations: 

(2.1.1) 

(2.1.2) 

(2.1.3) 

bk= vr, and 

(v-1)~ = (k-l)r. 

To obtain the intra-block estimators, we use the model 

i = 1, ••• ,m; j = 1, ••• ,n; s = 1, ••• ,b, where yijs is the observation 

on the (iJ)th treatment in blocks if that treatment occurs in block 

s, µ is the grand mean, Tij is the (ij)th treatment effect, ~sis the 

effect of blocks, and the €ijs's are independent normal variates 

with zero means and homogeneous variances, a2. 

For the inter-block estimators we use the model 

(2 .1.4) 

where B:j = 1 if the (1J)th treatment occurs in blocks and is zero 

otherwise. Equation (2.l.4) may also be written 

(2.1.j) B = kµ + T + kf3 + € , s • • s s • • s 

where B6 is the total of the observations in blocks, T is the sum 
• •S 
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of the T 1J•s in blocks, and E •• 8 is the sum of the EiJs's in blocks. 

The~ •s are now additionally assumed to be normally and independently 
f:! 

distributed around a mean of zero with equal variances, a~. 

are also assumed to be uncorrelated with the EiJs's. 

The f) •s s 

The estimators for the effects represented by equation (2.1.3) 

are obtained from the method of least squares by minimizing the error 

su.~ of squares. Therefore, we minimize 

(2.J .• 6) 

and obtain the normal equations, yielding the intra-block estimators, 

in the form 

(2.1.7) r(k-1) t 
k iJ 

1'. - -k ~. 3· ti'J' = QiJ 
i '::/i J'r/J 

where 1, i' = 1, ••• ,m; J, J' = 1, ••• ,n, 

(2.1.8) 

T1J is the total of the observations for the (iJ)th treatment, and 

BiJ• is the total of block totals for blocks containing the (iJ)th 

treatment. To obtain determinate solutions of equations (2.1.7), as 

derived by Yates [Z5 ], we impose the condition that fi t 1J = o. 
Then 

t k Q k iJ = {A+rk-r) iJ = v">: QiJ' 

where 1 = 1, ••• ,m and J = 1, ••• ,n. 
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The combined intra- ar.d inter-block estimators of the TiJ's may 

·tie obteined :from equations (2.1.9) by making certain substitutions 

for~, r, and QiJ• The required substitutions follow from a compari-

son of the normal equations for the crnnls1ned intra- and inter-block 

estimators with the intra-block equations (2.1.7). If we define 

W = l/a 2 and W' = 1/( a 2 +ka~, and assume that they a.re known without 

error, Sprott [ 20] shows that the normal equations for the combined 

intra- and inter-block estimators of the T1J•s can be obtained by 

minimizing 

(2.1.10) 
B T w• 

Wtrl: 8 s ( - ~ • T + --=..:!)2 + - I:(B -kµ-T ) 2 
s1J ij Y iJs k iJ k k s s • •s • 

Minimizing (2.1.10) subject to the condition that~ TiJ = o, we ob-

tain the normal equations 

(2.1.11) r [w+w• /(k-1) J <k;1)t 1J - Mw;w• > ~, ~. 5~, J' ti, J' 

i • 1, ••• ,m; J = 1, ••• ,n, where 

(2.1.12) rG 
i bk 

1•,'1 J','J 

t 1J is the combined inter- and intra-block estimator of TiJ• 

It is now obvious that solutions for equations (2.1.11) are the 

same as for those from equations (2.1.7) if we replace 

c~.1.13> 

(2.1.14) r by r [w+w• /(k-1) ], 
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and 

(2.1.15) "- by "-(W -W' ) 

in the first part of equations (2.1.9). Therefore, the combined esti-

mators ror treatment effects are given by 

(2.1.16) 

i = 1, ••• ,m; J = 1, ••• ,n. 

Suppose one has two factors, A and c, at m and n levels, respec-

tively. The (iJ)th treatment is now the factorial treatment combina-
th th tion of the i level of factor A ~1th the J level of factor c. 

Kramer and Bradley (14, 15 ]and Cornish [7]bave shown that the 

factorial treatment combinations can be placed in the incomplete block 

design and analyzed by replacing TiJ in the model by 

(2.1.17) 

where ai, i = 1, ••• ,m, represent the effects of them levels of A, rJ, 

J = 1, ••. ,n, represent the effects of then levels of c, and a1J repre-

sent the interaction effects of the two factors. 

The intra-block model for factorial treatments is given by 

(2.1.8) 

In obtaining unbiased estimators ve impose the restrictions 

(2.1.19) 



- 15 -

In view of equation (2.1.17) and the restrictions given by 

(2.1.19), the combined estimators for the factorial effects, obtained 

from equations (2.1.16) are 

(2.1.20) , 

(2.1.21) 

and 
(2.1.22) 

a•=! r.t• = t• i n j ij 1• 

c' = ! r.t• = t• 
j m i ij •J 

, 

' 

which are easily computed from a two-way table of values of t 1j in the 

same way as described by Kramer and Bradley. 

2.2 Variances and Covariances of the Estimators 

Rao [1S'] has shown that the variances and covariances for the 

combined intra- and inter-block varietal estimators may be obtained 

from the intra-block formulae by making the substitutions (2.1.13), 

(2.1.14), and (2.1.15), and omitting the multiplier a2 • Bose and Uair 

[ 3] have shown that the variances and covariances of the QiJ' s are 

(2.2.1) r(k-l)o 2 
k 

and 

(2.2.2) >,..a2 -- ' k 

respectively. From equations (2.1.9), (2.2.1), and (2.2.2), it follows 

that 

and 

V(t ) = kr(k-l)a 2 

iJ (rk-rt),.) 2 
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(2.2.4) 

The variances of the combined treatment estimators, obtained from equa-

tion (2.2.3) by making the substitutions (2.1.13), (2.1.14), and 

(2.1.15), and omitting a 2, are 

k[r(k-l)W+rW'] 
= 

[ (rk-rt->.)w+ (r->.)W• J 2 

= k(v-l)>J.l+krW' , 
[vw+(r->.)W' ] 2 

i = 1, ••• ,m; J = 1, ••• ,n. Similarly, the covariances of the combined 

treatment estimators are 

(2.2.6) -k>-(W -W I ) 
Cov(t 1J,ti'J') = --------------

fr(k-l)W+rW'+>-(W-W') 12 

IS , 
[v>.w+(r->.)w• ] 2 

-k>-{W-W') 

11 1' = l, ••• ,m; J, J' = l, ••• ,n. From equations (2.2.5) and (2.2.6) 

the variance of the difference between two estimators is 



• 
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= 2k(v-1)~+2krW'+2k>-.(W-W') 
[ v>l,.'+ (r->-.)W' J 2 

2k [ v?-.W+ (r->-.)W' ] =--------
[ v>..w+ (r->-.)W' ] 2 

2k =------ • 
[ v>-.w+ (r->..)W' J 

To estimate the weights, Wand w•, we form the usual auxiliary 

table for inter-block analysis of variance as described by Bose, 

Clatworthy, and Shrikhande [2 J. This method for estimating the 

weights vas first discussed by Yates [22]. If we denote the mean 

square for error by E and for blocks adjusted by B, then the estimates 

of W and W' are 

(2.2.8) 1 w ... - , 
E 

bk-v 
w• = k(b-l)B-(v-k)E • 

Using equations (2.2.5) and (2.2.6), we may derive the vari-

ances and covariances of the combined intra- and inter-block estima-

tors of the factorial effects. For the A-factor we have 
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V{a') = V{t' ) = 1:.. V(tt• ) i i• n2 J iJ 

= ..!.. [!:V(t 14)+ EE Cov (t 1•j,tij')] n2 j " JJ' 
j'/:J 

• _: {n [k(v-l)W+krW'] + n(n-1) 
n 2 C v>J.l+{r->..)W' J 2 

(kv>.-nk>..)W+ (krtnk>..-k>..)W' 
= ----------

n[v~+(r->..)W' J2 
mnk>..(m-l)w+mk(r+n>..->..)W• 

= ---------- • 
mn [ v>J,,T+ ( r->..)W' J ~ 

[-k>.{W-W')] } 
)!>J,1+(r->..)w• J 2 

If we recall that v>.. = rk-r+>.. from equation (2.12), the coefficient of 

w• in (2.2.9) may be written 

(2.2.10) mk(r+n>..->..) = mkr + rk2 - rk + >.k - mk>.. 

= k2r + k(m-l)(r->..). 

Substituting equation (2.2.10) into equation (2.2.9), we obtain the 

result 

(2.2.11) V(ai) = vk>..(m-l)W+ [k2r+k(m-l)(r->..) ] W' 
v[v~+(r->..)w• ] 2 

Similarly, for a C-factor we have 

(2.2.12) V(c,) = vk>,.{n-l)W+ [k2r+k(n-l)(r->..) J w• 
J v [vW+(r->..)W' J2 

• 

• 

The covariances of two combined intra- and inter-block estimators 

for A-factor effects are of the form 
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(2.2.13) 

• __ -k_A....i(i....W_-W_' __ ) __ 
I 

[v»T+(r->..)w• )2 

i j 11 ; 11 i' • 1, ••• ,m, from equation (2.2.6). 

Similarly for C-factor errecto the covariances of the combined 

intra- and inter-block estimators are of the form 

C V( I ' ) -k>..(W-'W') o cJ1c., = , 
J )!>..w+(r->..)w• ] 2 

J 1 J'; J, J' = 1, ••• ,n. The covariance of an A-factor estimator with 

a C-factor estimator is no longer zero as in the intra-block analysis. 

We now find that 

= Cov(! ~t• ,! Et• ) n J iJ m 1 1J 

1 1 l 
• mi V(t 1J) + mi ~ 1 ~. Cov(ti.J' ,t 1, J) + mii ~1Cov(t 1J' ,t 1J) 

i'f1 J'rJ 
k{v-1)).1,l+krW' -fii(m-l)+(n-1) ]k>..(w-w•) ·----------------nm [ v).1,1-(r->..)W • J2 

k2rWt 
= I 

v [ v>M-(r->..)w• ] 2 

by making use of equation (2.1.2). 
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From equations (2.2.5), (?..2.6), (~.2.10), (2.2.11), and (2.2.15) 

we ca.n obtain the variance for the combined intra- and inter-block es-

timator of an AC-effect. We hn.ve 

(2.2.16) 

Now, 

(2.2.17) 

Similarly., 

(2.2.18) 

V(d1J) = V(tij-a 1-cj) 

= V(t1J) + V(a1) + V(cj) - 2Cov(t1j,a 1) 

Therefore, substituting (2.2.17) and (2.2.18) in (2.2.16)., we have 
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- 2(!1~~ + t 1; 1)cov(t 1j,t 1, j') + a!ov(a 1,cj) 

= ~-2m··2n) {rt(v-l)>Jftkl'w' ] 
v [ v>.l-T+(r-)..)W' J2 

• vk(m-1)»·1+ [k2rtk(m-l)(r->..) I 'W +-------------v [ v>J·T+ (r-1'.)W' J2 

+ 

+ 

+ 

vk(n-1)~+ [k 2rt-k(n-l)(r->..) J W' 

V r v°wt (r-)..)W 1 ] 2 

(4:r.n-2m-2n)kh{w-w•) 

V [ v».~ (r->,.)w• J2 

v [v>,;r+(r->,.)w• J2 • 

The coefficient of W sit:lplifies to the form 

(m-l)(n-l)kv>.. , 

and the coefficient of W' becomes 

k2r + k(m-l)(n-l)(r-)..) • 

Therefore, 

(2.2.20) 
kv>..(m-l}(n-l)W+ (k2rtk(m-l)(n-l)(r->..) Jw• 

V(d' ) = ----------------
ij v fr>J.r+ (r->,.)w• ]a • 

The covariances of the combined intra- and inter-block estima-

tors for the interaction effects are easily obtained by using equations 

(2.2.5} and (2.2.6). We have 
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(2.2.21) Cov(d~J'di'J') = Cov(t 1J-t 1.-t!J,ti'J'-t 1,.-t!J,) 

2 V (t' ) (mn-2) C (t• t• ) = mn ar iJ + mn ov iJ' 1'J' 

2k(v-l)>J.1+2krW'-(mn-2)kA(W-W') =------------v [ vw+ (r->..)w • J2 
kv~+ [rka+k(r->..) Jw• 

= --------- I 
V r V>J.I+ (r->..)W1 ] 2 

1 i 11 1 J 1 J'. Similarly, it may easily be shown that 

-kv>..(m-l)W+ [ rk2-k(m-l)(r->..) Jw• 
Cov(d1J,diJ') = -------------

v [ v>J.T+(r->..)W' J2 
for all J f J', and 

-kv>..(n-l)W+ [ rk2 -k(n-l)(r->..) Jw• 
(2.2.23) Cov(d1J,d 1',J) = 

v[v~+(r->..)W' J2 
for all i =I 1'. 

All covariances arising from an estimator of a main effect with 

an estimator of an interaction effect are of the form 

-l V(t' ) (mn-l) C (t• t• ) 
a mll iJ - mn OV 1j 1 i'J 

= 
-[k(v-1)>.w+krW' ]+(mn-l)k>..(W-W') 

V r V'>Ji+ (r->..)W I J2 

=------- I 
v [ vW+(r->..)w• J2 

for all 11 1' = 1, ••• ,m, and J = 1, ••• ,n. 
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From equations (2.2.9) and (2.2.13) the variance of the differ-

ence between estimators of the A-effects is 

(2.2.25) 
2k 

V(a'-a' ) = -------
i i' n[v~+(r->..)W' J 

i 11•. Likewise, the variance of the difference between estimators of 

the c-effects, obtained from equations (2.2.12) and {2.2.14), is 

J :/ j'. 

2k 
V(c•-c• ) • -------

j J' m [ v>.w+ (r->..)W' ] 

2.3 Tests of Significance 

, 

I:f' W and W' are known without error, then Reo [19] has shown 

that a test of the equality o:f' treatment means for the combined intra-

and inter-block analysis is based on the statistic 

which can be used as a x2 -variate with (v-1) degrees of freedom. If 

the·computed value obtained from equation {2.3.1) exceeds the tabled 

value of x2 with (v-1) degrees of freedom at the a level of signifi-

cance, we reject the hypothesis that the treatment means are equal. 

This test may be used as an approximation if Wand W' are estimated 

with a large number of degrees of freedom. From equation (2.1.11) and 

the restrictions {2.1.19), equation {2.3.1) may be put in the form 

~ = [v>.w+{r->..)w• Jut• 2 /k • iJ ij 
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To test the null hypothesis of no A-effects in the intra-block 

analysis, Kramer and Bradley [ 14, 15] used a statistic based on the 

fact that 

X2 l "'"'- Q nv). ~- 2 
A = ~ iji ij = k(12 11 

is a X2 -va.riate with m-1 degrees of freedom. If' ve make the substitu-

tions (2.1.13), (2.1.14), and (2.1.15) in equation (2.3.3), then the 

statistic 

(2.3.4) 

is also a X2 -var1ate with (m-1) degrees of freedom which can be used 

as an approximation to test the null hypothesis of' no A-effects for 

the combined intra- and inter-block analysis. From equation (2.1.11) 

and the restrictions (2.1.19), equation (2.3.4) may likewise be put in 

the form 

(2.3.5) 

or 

(2.3.6) 

x'A2 = ((rk-:rt-).)W+(r-).)W'] ttt• t• /nk ij 1• ij 

= [v».r+ (r-"-)W' J I:t •2 /xu , 1 1. 

xf • ( nv).W+n(r-"-)W' J f-12 flt • 

A similar argument is sufficient to derive X2 -statist1cs to test 

the null hypotheses of no c-ef'f'ects and no interaction effects. To 

test the hypothesis of no c-effects, we use the statistic 
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which is approximately distributed as a x2 -variate with (n-1) degrees 

of freedom. From equation (2.l.11) and the restrictions (2.1.19), 

equation (2.3.7) may be written as 

(2.3.8) 

or 

= [v>.w+(r->.)W' J I:t' 2 /mk, J •j 

To test the hypothesis of no interaction effects we use the statsitic 

(2.3.10) 

which is approximately distributed as a X2 -variate with (m-l)(n-1) de-

grees of freedom. Fron equation (2.1.11) and the restrictions (2.1.19), 

equation (2.3.10) may also be written as 

(2.3.11) 

or 

(2.3.12) 

XA2C • [ (rk-r+>..)W+(r->..)W'] D:(t' -t• -t• )2Jk, iJ ij i• •J 

x2 = [(rk-rf->..)W+(r->..)w•J ru• 2 Jk. 
AC iJ iJ 

We will now show that 

(2.3.13) 

and the degrees of freedom add up to v-1. From equations (2.3.4), 

(2.3.7), and (2.3.10), the right side of equation (2.3.13) is 
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(2.3.14) 

which is equal to the left side of equation (2.3.13) by equation (2.3.1). 

The sum of the degrees of freedom is 

. (m-1) + (n-1) + (m-l)(n-1) = mn - l • v - 11 

which is equal to the total number of degrees of freedom for treatments. 

Cochran's theorem [5 J is sufficient to demonstrate the independence of 

all the x2 -variates. 

To test the significance of the difference between pairs of 

treatment estimators or factorial estimators the t-test may be used as 

an approximation. 

2.4 Individual Compa.risons and Multi.-factor Factorials 

Frequently in experimental work we wish to know the answers to 

certain questions about the treatments which can not be obtained from 

the complete treatment mean square. By an extension ot the analysis 

of variance, we can sub-divide the treatment sum of squares into a num-

ber ot components that are more relevant to the individual questions. 

While orthogonal comparisons are desired to perform tests of signifi-

cance, this is not a necessary restriction. 
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Individual or single-degree-of-freedom comparisons are possible 

for the combined intra- and inter-block analysis in the same way as 

for the intra-block analysis., given by Kramer and Bradley [ 141 15 J. 
Let~ be an (m-1) by m orthogonal matrix, and T} an (n-1) by n ortho-

gonal matrix used to transform the a1•s and cj•s to (m-1) and (n-1) in-

dividual contrasts., respectively., each yielding an adjusted sum of 

squares with one degree of freedom. Contrasts on A-factor effects 

would then be 

(2.4.l) 

and on C-tactor effects 

(2.4.2) 

To test the hypothesis that ft 1u a 1 = 0 against the hypothesis that 

! liuai IO, we use the statistic 

(2.4.3) X2 = [ nv>Jv+n(r->..)W' J (I: f 1 a1• )2 ~ E 21 Iu 1 u i u 

= [nv>.w+n(r->..)w• ](t t 1 t 1• )2 /kE t 21 , 1 u • i u 

which is easily derived from equation (2.4.l) and the multiplier of 

equation (2.3.6). 

Similarly to test the hypothesis that j 11,,Jrj = 0 against the 

hypothesis that j 11,,jrj j 01 we use the statistic 

(2.4.4) X~v = [mv)J{+m(r->..)w• ](~ Tl,,lj)2~ ~j 

= [mv>.w+m(~->..)W' ]Cj 11,,jt~j)2 /kj T}!j 
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which is obtained from equation (2.4.2) and the multiplier of equs.tion 

The edJusted interaction sum of squares may also be partitioned. 

The (m-l)(n-1) orthogonal contrasts for the interaction of Iu and Jv, 

obtained from the matrices~ and~, are 

(2.4.5)· 

= tI: £ n (t' -a•-c•) iJ iu-vJ iJ i J 

since t tiu = l '1vJ = o. To test the hypothesis that ~ £iu'1vf iJ • o, 
we use the statistic 

(2.4.6) 

which is obtained from equations (2.4.5) and the multiplier of equation 

From the manner in which we have constructed the single-degree-

of-freedom contrasts, it is clear that the resulting sums of squares 

add up to the total adJusted sum of squares for treatments, which has 

been shown to be distributed as a x2-variate with (v-1) degrees of 

freedom. Since the degrees of freedom for the individual contrasts add 

up to (v-1), we may conclude by Cochran's theorem [5 J that the cor-

responding sums of squares are independently distributed as x2-variates, 

each with one degree of freedom. 
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Special d,::finition of the m:::.trices, ; and 'Tl, permits the use of' 

special contrasts. For example, rows of ~ and Tl may be defined such 

that contrasts on A-factor and C-factor effects measure trends (linear, 

quadratic, cubic, ••• ) over the factor levels. 

Suppose the A•fnctor has levels which themselves are factorial 

combinations of other factors. Let there be p such factors A1, ••• ,A 1 · 
p p 

with levels m1, ••• ,m I such that m "" 1T mi. Ther. t may be chosen in 
P 1=1 

the obvious way so that the contrasts defined may be grouped to obtain 

main-effect and interaction comparisons for the subfactors of A. The 

correspondicg aciJusted sums of squares, each with one degree of 

freedom, may be grouped together to give adJusted sums of squares for 

the various subfactors of A. These sums of squares will be distributed 

as X2 -variates since we are grouping sums of squares which themselves 

are distributed independently as a X2 -variate. It now will be possible 

to test the hypotheses of no ma.in effects or interaction effects among 

the subf'actors ot A. Similarly, the C-factor may consist of factorial 

combinations of q factors c1, ••• ,c, with levels n1, ••• ,n I such that 
q q q 

n • Trn4 • Appropriate contrasts and adJusted sums of squares may be 
j=l" 

obtained with proper selection of the rows of 'Tl• When t and Tl have been 

defined, the corresponding contrasts for interaction of A-factor and 

C-factor contrasts follow immediately. These in turn yield adjusted 

sums of squares that may be grouped to yield sums of squares f'or the 

various interactions of the subfactors of A with those of c. 
Alternately we could obtain the combined intra- and inter-block 

estimators of all the factorial factors by generalizing equation 
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(2.1.17) so tha~ TiJ is a function of all the main and interaction ef-

fects. Imposing the restrictions that the sums of the various main 

effects are zero and the sv.ms of the interaction effects over any one 

or more subscripts are zero, we could obtain the combined intra- and 

inter-block estimators of the factorial effects by considering a table 

of the t~J•s. 

The use of fractional factorials also is possible in exactly 

the same vay as carried out by Kramer and Bradley [14, 15]. 
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III. GROUP DIVISIBLE DESIGNS 

;.1 Properties of Group Divisible Designs 

Bose, Cla.tvorthy, and Shrikhande [ 2 J 11st the following prop-

erties of group divisible designs vith two associate classes: 

(1) The requirements for partially balanced designs as outlined 

in Section 1.3 are satisfied. 

(11) There are v = mn treatments, and the treatments can be di-

vided into m groups of n each such that any tvo treatments of the same 

group are first associates while two treatments from different groups 

are second associates. 

(iii) Each treatment has exactly n-1 first associates and n(m-1) 

second associates. 

(3.1.1) 

or 

(iv) The design parameters are related so that 

(v) In matrix notation P1 and P2 of Section 1.3 may be written 

p = l O ] and P2 = 
n(m-1) 

1 o cn-1)] 
L<n-1) n(m-2) 

(vi) The inequalities, r ~ Al' rk - A2v ~ o, hold. 

Group divisible designs have been divided into three subclasses: 
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(a) Singular, if r = ~, 

{b) Semi-regular, if r >~and rk - VA2 = 01 

(c) Regular, if r >Aland rk - v~2 > O. 

Let ViJ denote the jth treatment of the 1th group noted in (ii), 

1 = 1, ••. ,m; J = 1, ••. ,n. Then the usual association scheme is given 

by the matrix V with elements ViJ' such that two t~eatments in the 

same group or row (treatments with common first subscripts) are first 

associates and two treatments not in the same row (treatments with dif-

ferent first subscripts) are second associates. 

3.2 Combined Intra- and Inter-block Treatment Estimators 

The intra-block estimators of the treatment effects are obtained 

from equation (2.1.3) by minimizing the error sum of squares given by 

(2.1.6). Equations (2.1.3) and (2.1.6) still hold for group divisible 
s designs; results differ owing to different values of 6 1J as sums are 

taken over treatment and block associations. The resulting normal equa-

tions were shmm by Bose and Shimamoto [ 4] to be of the form 

r(k-1) t 
k ij 

"-1 
k 

where 1 = l, ••• ,m; J = 11 ••• ,n. 

E ti.1' 
J' 

J'IJ 

~ - - Z: E 
k J' 1' 

1 1,'1 

If Wand W' are assumed to be known without error, then, as in 

Chapter_ II, Sprott [20] shows that the combined intra- and inter-block 

estimators of the treatment effects can be obtained by minimizing the 

weighted sum of squares of deviations still symbolically given by 
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(2.1.10), subJect to the condition that~ TiJ = O. Therefore we must 

minimize 

s Bs T .. s W' 2 Wr.D: a. (y - - - T + -)2 + -e- I:(B -kµ-T ) siJ uiJ ijs k 1J k A s s • •s 

where~ is a Lagrange multiplier and symbols have definitions as used 

earlier. Taking the partial derivative with respect toµ in (3.2.2) 

and setting it equal to zero, we obtain 

(3.2.3) I:(B -km-t I ) • o, 
s S ••S 

from which it follows that 

(3.2.4) G m•-
bk 

since l:t' = I:l:t' = O· t' is the combined inter- and intra-block 
S ••S iJ iJ I iJ 

estimator of TiJ as before. 

Taking the partial derivative with respect to TiJ in (3.2.2) and 

setting the resulting expression equal to zero leu.us write the equa-

tion 
B t' S • •B) - - - t• + -k iJ k 

B t' 
"" "" l: S ( S t• • •S) -w:; 1' J' 8iJ yi'J' -k - i'J' + ~ 

in 
s 

·, 
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s where 8iJ • 1 if treatment ViJ occurs in blocks, 

since 

= o, otherwise. Therefore, we have 

B t• 
WI. 5 13 ( - ....! - t' + ...::! ) 

6 iJ Y 1Js k iJ k 

B t• 
S ( S · • •S) I. I. I. 81J yi'J' - - - t' + -s 1 • J' k 1' J' k 

in 
s 

s = I. I. I. 5 1 ..,Y1 , o 
s i' J' " " in 

s 

t• 

s BS 
- I. I. I. 5 14 - - EE I. B81Jti• 'J' 

s 1• J' " k s 1' J' in in 
s s 

S ••S 
+ I. I. I. 514 -

s 1• J' " k in 
s 

Bi 1. s t• 
B k ~ I. Q. t I + kl: ..:..:! = iJ • - k • s viJ .. s S k 

e O. 

It follows that 

B t• 
W(T - :!J..:. - rt' +l: 8 6 _!.!!) iJ k iJ s iJ k 

w• s + -(BiJ -rkm-I. 8 1Jt' ) - "- • 01 k • S ••8 

i • 1, ••• ,m; J = 1, ••• ,n, where T1J is the total for treatment v1J and 

BiJ• is the total of block totals for blockc containing treatment ViJ• 

Summing equation (}.2.7) over all treatments, we find"-= 0 and, 

therefore, 
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B t• 
ij• S _••S) W(T1J - - - rt• +I: 6 k iJ s 1J k 

1 = l, ••• ,m; J = 1, ••• ,n. Now 

and substitution in equation (3.2.8) gives 

(3.2.10) r [w-Hl' /(k-1) J (~)t' - "'1 (w-w•) 
k iJ k 

l: tti'J' 
i. j 

1 1,'1 

>.. {w-W') 
- 2k ~,Jti'J=WQ1J+W'Qi.J' 

1 1,'1 

i = 1, ••• ,m; j = 11 ••• ,n, where QiJ and QiJ are defined as by equa-

tions (2.1.8) and (2.1.12), respectively. 

It is now clear that the solutions for equations (3.2.10} may 

be obtained from the solutions of equations (3.2.1) if we replace 

(3.2.11) 

(3.2.12) r by r [W+\..T' /(k-1) ], 

and 

(3.2.13) 

where i = 11 2. 

We may also obtain the combined intra- and inter-block treatment 

• 



- 36 -

estimators, equivalent to the treatment estimators obtained by Bose, 

Clatworthy, and Shrikhande [2 J but in a different form, by solving 

the equations (3.2.10). Applying the condition that tJtiJ = o, it 

follows that 

(3.2.14) 

Substituting (3.2.14) in (3.2.10), we obtain 

(3.2.15) t tiJ' 
J' 

J'rJ 

1 = 1, ••• ,m; J = 1, ••. ,n. If we denote the men square symmetric matrix 

of' the coefficients of the t 1J•s in (3.2.15) by K, the diagonal ele-

ments of' Kare 

(3 .2 .16) 
W(rk-rt~)+W' (r-~) 

k 

and the non-diagonal elements are 

(3.2.17) • 

Therefore in matrix notation we have 

Kt' a WQ + W'Q' i i 11 

where t 1 is the column vector of elements t 1J (J = 1, ••• ,n) and 

WQi + W'Ql is the column vector of elements WQiJ + W'QiJ" 
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Once the elements of the inverse of the matrix Kare obtained, 

the solutions of equation (3.2.16) are given by 

The inverse of an nxn matrix with a•s on the diagonal and b's else-

where has diagonal elements given by 

x = a+(n-2)b 
a [ a+(n-2)b ]-(n-l)b 2 

and non-diagonal elements 

(3.2.21) -b y. • 
a [ a+ (n-2)b ]-(n-l)b2 

Substituting (3.2.16) and (3.2.17) for a and b, respectively, in equa-

tions (3.~.20) and (3.2.21), we see that K-l will have diagonal ele-

ments 

where 

and 

A"W+B"W' -------, 
C'W~D'WW'+E'W'2 

A" = k(rk-r+-A 2) + k(n-2)("- 2-~), 

B" = k(r->..2) - k(n-2)(A 2-',_), 

c• = r(k-l)(rk-r+-n(A 2-"-1)+2A1 ] + n~A 2 - (n-1)>{, 

D' = 2r2(k-l) + (rkn-2rk-2rn+4r)~ + (2rn-rkn)A 2 

- 2n>..l "-2 + 2(n-l)"-i, 

E' = r2 - nr"-2 + r(n-2)~ + n~"-2 - (n-1)>..f, 

and non-diagonal elements 



(3.2.23) 
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-k(~ 2-~)(w-w•) 

c•wa+-D1WW'+E'W'2 
• 

From equation (3.2.19) it follows th~t 

k("'2-~ )(w-w•) 

c•wa+-n•w;•+E•w•2 
(W E Qi 41 + W'E Q141 ) 

J' " J' " 
J'rj J'rJ 

Equation (3.2.24) may also be written in the form 

k("'2-~)(w-w•) 
- (WE Q ,+W'.E Q' , ), 

C'W~D'l-M1+E'W'2 J' ij J' ij 

where 

A' = k(rk-rt~) + k(n-1)"'2-~l) 

and 

• 

The values of the consto.nts, A• , B • , C •, D •, and E •, may be further 

reduced by using equation (j.1.1) so that equation (3.2.25) may be put 

in the form 
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i = 1, ••• ,m; J = 1, ••• ,n, where 

A = kv>..2, 

B = k(rk-v~), 

C = v>..2 (>..1+rk-r), 

D = rk(rk-v~) - (r->..1)(rk-2v>..2), 

and 

The intra-block estimators may be easily obtained by setting 

W = 1 and W' = 0 in equation (3.2.26). Therefore 

= k Q + k{~-~) 
ti4 iJ E QiJ' ' " >.. +rk-r v>.. ( >.. +rk-r) o 

1 2 l " 

i = 1, ••• ,m; j = 1, ••• ,n, which are identical to the results shown by 

Kramer and Bradley '[:14:::J. The inter-block estimators may be obtained 

by setting W = 0 and W' = 1 in equations (3.2.26). In this case 

( k_ -"-~) 
t* = k [Q' - ·1. ."2 E Q' ] 
iJ (r->..1 ) 1J (rk-v~) J • iJ' ' 

i = 1, ••• ,m; j = 11 ••• ,n, which are equivalent to the results obtained 

by Zelen [26]. 

The combined intra- and inter-block estimators of the treatment 

effects given by equations (3.2.26) are equivalent to the estimators 

obtained by Bose, Clatworthy 1 and Shri.khande [2]but in a more con-

venient form, especially in situations where the required design has 

not been catalogued and the constants, 6 1 H, c1, and c2, as defined in 

Chapter I, have not been tabulated. 
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To incorporate factorial treatment combinations in group di-
1 visible desigr..s, consider two factors, A and c, at m and n levels, 

res:Pt?ctively. The treatment v1J has now become the factorial treat-

ment combination or the i th level of A with the Jth level of C. Fol-

lowing the procedure of Bradley and Kremer [14, 15 ], we take 

where ai, 1J, and &1J represent the effects as defined in Chapter II. 

In view of equation (3.2.29) and the restrictions given by (2.1.19), 

the combined intra- and inter-block estimators for the factorial ef-

fects, obtained from equations (3.2.26), are 

(3.2.30) at = !. l:tt IS t' 
i n j ij 1•' 

(3.2.31) Ct • .!. I:t t = t' J mi iJ •J' 
and 

The estimators for the factorial effects are most easily obtained 

from a two-way table of values of t 1J•s. 

3.3 Variances and Covariances of the Treatment Estimators 

To facilitate the mathematical computations, it will be con-

venient to write equations (3.2.26) in the form 

1 The factorial factors, A and c, never appear in formulae and should 
not be confused with the constants, A and c, of formula (3.2.26). 
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(3.3.1) tiJ = pPiJ + q_ ~tiJ 11 . 

J'/:J 

i = 1, ••• ,m; j = 1, ••• ,n, where 

(3.3.2) 
AW+BW'+k(>,_-~)(W-W') 

p = --------- , 
CW2+ DWW '+ EW ' 2 

and 

If it is desirable to use the sy:nbols employed by Bose, 

Clatworthy, and Shrikhande [2], we can write 

(3.3.5) g :I 
k-d2 

r [w '+W(k-1) ] 
, 

and 

(3.3.6) ~= 
d1-d2 

r [w•+w(k-1) J 
, 

where 

(3.3.7) di= 
c 16tr). 1z 

(1 = 1,2) 
6trHZ+r 2z2 

and 

(3.3.8) W' z • 'W-'W' • 

For group divisible designs p = Q and q = 4. 
The variances and the covariances of the P1.,•s will be used to 

determine the variances and covariances of the t~j•s. Bose and Nair 

[3 J have shown for the intra-block analysis that 
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V(Q ) = r(k-1) iJ k , 
and 

(3.3.10) 

where u • 1 or 2 if QiJ and Qi'J' are first or second associates, 

respectively. Therefore, by making the substitutions (3.2.11), 

(3.2.12), and (3.2.13), we obtain 

(3.3.11) V(P ) a r [W(k-l)+'t1' ] 
1J k , 

for first associates and 

for second associates. 

Bose, Clatworthy, and Shrikhande [2] have shown for the com-

bined intra- and inter-block analysis that the variance of the differ-

ence between two treatment estimators which are first associates is 

Likewise the variance of the difference between two treatments which 

are second associates was shown to be 

(3.3.15) 

From equation (3.3.1), the covariance of any two treatment estimators 

which are second associates is 
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Cov(t 1J,ti'J') = Cov(pP1/q ~/iJ''pPi'J'+q ~n Pi'J") 

J'~J J"IJ' 

= Cov[ (p-q)P1/qf 1J'(p-q)Pi'J'+q3l1•J•] 

= (p-q)2cov(PiJ'P 1 ,J,) + n2 q2cov(P 1J,Pi'J') 

- 2n(p-q)qCov(P 1J,Pi'J') 

= [I*(n-l)q]2cov(P 1J,Pi'J'). 

From equation (3.3.13) we have 

(3.3.17) 

If we write equation (3.3.15) in the form 

and substitute from equation (3.3.17), we obtain 

(3.3.19) 

where 

C = 
[ I* (n-l)q ] 2 "-2(w-w•) 

k • 

Similarly, from equations (3.3.14) and (3.3.19), the covariance of any 

two treatment estimators which are first associates is 
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Using equations (;.;.17), (;.3.18), (3.3.20) 1 and (3.;.21), 

the variances and covariances of the combined intra- and inter-block 

estimators of the factorial effects may be derived. The variance of 

an A-factor estimator is given by 

(;.;.22) 

Also 

(;.;.2;) 

V(a•) • V(t' ) = J:.. V(tt• ) 1 i• n2 J iJ 

= ~(t 1J) + (n~l)Cov(t 1J,tiJ'} 

= !(p-c) + (n-1) (q-c) 
n n 

= p+(n-l}q 
- C • n 

V(c') = V(t' ) = .1:..v(tt• ) J •J m2 1 1J 

= ~(tiJ) + (m;1>cov(tiJ,ti'J) 

= !(p-c) - (m-l)c m m 

p 
= - - c. m 

The covariances of the combined intra- and inter-block estima-

tors for the A-factor are of the form 

• -c, 
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i "f i'. For the C-factor estimators we have 

=cl (t• t• ) (m-l)c (t' t• ) = m ov 1J' iJ' + m ov iJ' i'J' 

= (q-c) _ (m-l)c 
m m 

q 
= - - c, m 

1 f i', J 1 J', and for the covariance of an A-factor estimator with 

a C-factor estimator we have 

= ~ov(3t1J'tt1J) 

- _!_,,(t' ) (m-l)c (t' t• ) - nm• ij + m ov ij" i. j 

(n-l)c (t' t• ) + nm OV ij 11 ij 

(p-c) (m-1) (n-1)( ) 
::a - C + q-c nm m nm 

= pt(n-l)q _ c, J 1 J'. 
nm 

The variances of the difference between two main factorial ef-

fects, obtained from equations (3.3.22), (3.3.23), (3.3.24), and 

(3.3.25), are 
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a 2 [ pt-(n-l)q] 
n 

• 2(p-q)' J, J'. 
m 

The variance of the combined intra- and inter-block estimators 

of an interaction effect is given by 

Since 

(;.;.;o) 

J j J', and 

V(d 1J) = V(tiJ-a 1-cj) 

= V(t 1J) + V(a1) + V(cj) - 2:ov(t1j 1at) 

- a::ov(t1J,cj) + S::ov(a1,cj)• 

= ~-(t' ) + (n-l)Cov(t' ti ) ~ iJ n iJ' 1 1 J' ' 

Cov(tiJ,cj) • Cov(t 1J,t!J) 

= ~(t 1J) + (m;1>cov(tiJ't1,J)' 

1 I 11 , it follows from equations (;.3.19), (;.3.22), (3.3.23), and 

(3.3.26), that 

(3.3.32) V(d' ) a (m-l)(n-l)(p-q) + pt(n-l)q _ c. 
1J mn nm 
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All covariances between the combined intra- and inter-block 

estimators ot the·interaction etfects which do not appear in the same 

row or column ot the association matrix are ot the form 

= Cov(t 1J,ti'J') - Cov(t 1J,a 1,) - Cov(t 1J,cj,) 

- Cov(a1,t 1,J,) + Cov(a1,a 1,) + Cov(a1,cj,) 

- Cov(cj,t 1,J,) + Cov(cj,a 1,) + Cov(cj,cj,), 

i; 1•, J 1 J'. Since 

and 

=cl (t' t• ) (m-l)c (t' t• ) = m ov iJ' 1J' + m ov iJ' i'J' ' 

then by substituting (3.3.34) and (3.3.35) into (3.3.33) and using equa-

tions (3.3.17), (3.3.21), (3.3.24), (3.3.25), and (3.3.26), we have 

C (d ' d' ) [2i*(n-l)q] ov iJ' i'J' = mn • c, 

i r i', J 1 J'• By a similar approach we obtain 

Cov(d' d' ) = - (n- 2)(p-qi + ~ - c iJ' i j' mn m ' 
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Finally, all covariances arising from the estimators of A-

factor effects vith the estimators of interaction effects are given by 

Similarly, 

Cov(a1,d 1J) = Cov(a1,t 1J-a1-cj) 

= Cov(a1,t 1J) - V(a 1) - Cov(a1,cj) 

= _ pt-(n-l)q+ c. 
mn 

Cov(c' d' ) = - P!(n-l)q + c J' iJ' mn • 

The weights Wand w•, associated with p 1 q1 and c, are esti-

mated from the analysis of variance table by the relations (2.2.4). 

3.4 The Efficiency of Group Divisible Designs Relative to Completely 

Randomized Designs 

In order to obtain the efficiency for contrasts among A-factor 

effects of group divisible designs relative to completely randomized 

designs, we must find the ratio of the variance of the difference be-

tween two A-factor effects for a completely randomized design to the 

variance of the difference between two A-factor effects for a group 

divisible c..esign. For a completely randomized design 

C,.4.1) 

Substituting from equation (2.1.18) we have 



(3.4.2) 

= 

= 
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- r~2Cov { [~ o~j(f3s+£ijs J-' ~~ o~, if3s+;_, js) JJ 
[ 2nl'f-2n{n~l)>-.1 ] ~2nro 2 

n2r2 

2 [ {rk-v>..2)o~ +ra2] 

nr2 

i I 11 1 by using equation (3.1.1). 

If, in the equation (;.4.2) 1 we set W = 1/0 2 and W' 

then we obtain 

(3.4.3) 
2 [ (rk-v~)(W-W' )+rkW' J 

V(a •-a• ) = ----------i 1 1 nkr2ww• 

1 r 11 for a completely randomized design. The variance of the dif-

ference between two A-factor effects for a group divisible design is 

given by equation (3.3.27). 

The efficiency for an A-factor contrast is given now by 

(3.4.4) 
(rk-v~)(w-w• )+r~' 

E =~-~----~---
A ltr2ww• [pt(n-l)q] 

• 

Substituting for p Rod q from equations (3.3.2) and (;.3.3) we obtain 
[ {rk-v>..2) ( r-l)+rk J (c,-2,+D,'+E) 

(3.4.5) EA= , 
k2 r 2 r [ (rk-I't-~ )'1+ (r-~) J 
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where 1 ... 'W /rl'. 
Similarly, to obtain the efficiency for contrasts among C-factor 

effects, we must find the ratio of 

c~.4.6) 
2 [ (r-~ )a~ +ra2J 

mr2 

to the variance of the difference between C-factor effects for a group 

divisible design. From equation (3.3.28) and (;.4.6) we obtain 

(r-"1.) (W-W' )+rkW • 
EC = • kr2ww I (p-q) 

Substituting for p and q from equation (;.;.2) and(;.;.;) Ye obtain 

(3.4.8) • 

The efficiencies of group divisible deaigns relative to com-

pletely randomized designs are given in Table I for different values 

of 1. 

3.5 Tests of Significance 

If Y and W' are known without error, then Rao [19] has shown 

that a test of the equality of treatment means for the combined intra-

and inter-block analysis is based on the statistic 

'X.2 = D:t• p 
T iJ iJ ij 1 

which can be used as a X2 -variate with (v-1) degrees of freedom. The 

test can be used as an approximation 1f Wand W' are estimated with a 
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lnrge number of degrees of freedom, as described in Chapter II. From 

equation (3.2.15) and the restrictions (2.1.19), equation (3.5.1) may 

be put in the form 

x;:: [w(rk-r+~)+W'(r-"1_)] i"lt;_j/k 

- (w-w•)(>-1->-2>f(~t1J>2fk. 

Tests of significance for the factorial effects are established 

in exactly the same way as described in Section 2.3. To test the 

null hypothesis of no A-effects for the combined intra- and inter-

block analysis we use the statistic 

which is approximately distributed as a X2 -variate with (n-1) degrees 

of freedom. From equation (3.2.15) and the restrictions (2.1.19), 

equation (3.5.3) may likewise be put in the form 

(3.5.4) 

or 

Similarly, to test the null hypothesis of no c-effects, we use the 

statistic 

(3 .5 .6) 

which-may be written as 

(3.5.7) x~ • [(rk-r+~)w+(r->. 1)w•] jt:jfink, 
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or 

(3.5.8) 

and is approximately distributed as a 'X2 -variate with (n-1) degrees 

of freedom. Finally, the null hypothesis of no interaction effects 

can be tested by the statistic 

(;.5.9) 

which is approximately distributed as a x2 -variate with (m-l)(n-1) 

degrees of freedom. From equation (3.2.15) and the restrictions 

(2.1.19), equation (3.5.9) may e.lso be written as 

(3.5.10) 
or 

(;.5.11) 

From equations (3.5.1), (3.5.3), (3.5.6), and (3.5.9), it is 

clear that 

(;.5.12) ~. x2 + x2 + x2 
·-ir A C AC' 

and the degrees of freedom add up to (v-1). Cochran's theorem [5 J 
is sufficient to demonstrate the independence of all the x2 -variates. 

To tent the significance of the difference between pairs or 

treatment estimators or factorial estimators, the t-test may be used 

as an approximation. 
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;.6 Individual Comparisons and Multi-factor Factorials 

Individual or single-degree-of-freedom comparisons are obtained 

in the same way as in Section 2.4. Let ~ be an (m-1) by m orthogonal 

matrix, and~ an (n-1) by n orthogonal matrix used to transform the 

a~•s and cj•s to (m-1) and (n-1) individual contrasts, respectively, 

each yielding an adjusted sum of squares with one degree of freedom. 

Contrasts on A-factor effects then would be 

(3.6.1) I a L Ei ai'' u = 1, ••• ,m-l, u i u 

and on C-factor effects 

(3.6.2) 

To test the hypothesis that t fiuai = 0 against the hypothesis that 

t tiuai 1 o, we use the statistic 

X~u a [nv>..2w+n(rk-v>..2 )w• ]Cf Eiut 1.)2 / ~ Efu 
= [v)..2W+(rk-v)..2)w• ]Cij Eiut 1J) 2 /Jtfi Efu, 

which follows from equation (;.6.1) and the multiplier of equation 

Similarly, to test the hypothesis that j 'lvJ'J = 0 against the 

hypothesis that~ 'lvJ'J r 01 we use the statistic 

(;.6.4) X~v = [m(rk-r+~)W+m(r-"-J.l'W' ]Cj 11v.,t:J)2fttj ~J 

a [ (rk-r+>-1 )W+ (r-"-1 )W' ] Cij 'ly J t 1J )2 /Jtfi ~ J' 
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which follows from equation (3.6.2) and the multiplier of equation 

(;.5.8). 

The adjusted interaction sum of squares also may be parti-

tioned. The (m-l)(n-1) orthogonal contrasts for the interaction of 

I and J I obtained from the matrices land~, are 
U V 

To test 

(;.6.6) 

the hypothesis that tJ Eiu~vj8ij = 0 we use the statistic 

x(IJ) = [(rk-r+>-,_)W+(r->..1)w•J 
UV 

which follows from equation (3.6.5) and the multiplier of equation 

(3.5.11). 

From the manner in which we have constructed the single-degree-

of-freedom contrasts, it is clear that the resulting sums of squares 

add up to the total adjusted sum of squares for treatments, which has 

been shown to be distributed as a x.2-variate with (v-1) degrees of 

freedom. Since the degrees of freedom for the individual contrasts 

add up to (v-1), we may conclude by Cochran's theorem [5] that the 

corresponding sums of squares are independently distributed as x.2-
variates, each with one degree of freedom. 

Special definition of the matrices,~ and~, as in Section 2.4, 

permits the use of special contrasts for measuring trends over the 

factor levels. By taking the A- and C- factors to have levels, which 
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themselves are factorial combinations, we can again extend the two-

tactor factorial to the case of multi-factor factorials or fractional 

factorials as in Section 2.4. 
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IV. LATIIi SQUAP.E SUB-TYPE L2 PARTIALLY BALANCED INCOMPLETE 

BLOCK DESIGNS 

4.1 Properties of Latin Square Sub-type t 2 Designs 

Bose, Clat\iorthy, a.nd Shrikhande [2 J list the following prop-

erties of Latin Square, sub-type L2, designs: 

(1) The design is non-group-divisible with n2 treatments ar-

ranged in a square array of n rows and n colum.~s. 

(ii) Two treatments are first associates if they occur in the 

same row or column of the array and are second associates otherwise. 

(iii) Each treatment has exactly 2(n-1) first associates and 

(n-1) 2 second associates. 

(iv) The relations 

[ n-2 n-1 ] pl= 
n-1 (n-2)(n-1) ' 

p = 
2 [ 2(:-2) 

2(n-2) J 
(n-2) 2 

, 

hold. 

(v) The design parameters are related so that 

(4.1.1) 2(n-l)~ + (n-1)2 A2 ~ r(k-1), 
or 
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4.2 Combined Intra- a:id Inter-bloc~ Treatment Estilll.'.ltors 

The combined intra- and inter-block estimators of the T 1J•s 1n 

a model like (2.1.3) are obtained by minimizing the weighted sum of 

squarea or deviations given by (2.1.10), subject to the condition that 

r! TiJ = O and the treatment-to-blocks essign:nents or the L2 designs. 

The resulting normal equations, given by equations like (3.2.8), are 

(4.2.1) 
B t• 

'W(T - .Jl.:. - rt• +I: 85 _:.:!) 
1J k iJ s iJ k 

+ R_k' (B. 4 -rkm-t e,814 t' ) a 01 lv• S v ••S 

11 J = 1, ••• ,n, and, substituting 

(4.2.2) ~ 6~Jt:.s = rtiJ + ~ C~/l•l~,tiJ') 
11,'1 J';'J 

+ ~2 t t ti'J' , 
1' J' 

1•;/i J'=/J 

we obtain the equations 
~ (w-w•) 

- (EtI,.,+ttt.,,) k i' .,. 

~ (W-W') 
2 t 

1•r1 "'"" 
k 

where 11 J = 1, ••• ,c, and Pij retains its former definition. 

Applying the condition that~ t 1J = o, we obtain 

(4.2.4) f, ~. ti'J' = -(ttJ+f,tt,.,+~,t1J'). 
1•1i J'rJ 1•11 .1·=1.1 
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Substituting (4.2.4) in (4.2.3) we obtain 

(4.2.5) 
w(rk-rtX 2)+w' (r-x 2) 

k tiJ 

1, J = 1, ••• ,n. Equations (4.2.5) can now be written as 

(4.2.6) 
W(rk-rt2',_-X2)+w• (r-?.Xl+X2) t• 

k ij 

1, J = 1, ••• ,n. The solutions of equations (4.2.6) were shown by 

Bose, Clatworthy, and Shrikhande [2] to be 

tiJ = gpij + ~(~,Pi' l~. pij' ), 

1•,'1 J','J 

1, J = 1, ••• ,n, where O and 4 are defined by equations (3.3.5) and 

(3.3.6), respectively. It is important that we do not confuse Q and 4 
with p and q as defined by equations (3.3.2) and (3.3.3). The values 

for p and q may be obtained from equations (3.3.5) and (3.3.6) by 

using the relation (3.1.1) and, therefore, are only valid for group 

divisible designs. 

To incorporate factorial treatment combinations in the sub-type 

t 2 designs of the Latin Square type designs, consider two factors, A 

and c, both at n levels. The treatment, ViJ' has now become the 
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factorial treatment combinctio:: of tn.e 1th level of A with the Jth 

level of C • As before we tcl:e 

where ai, 1j, and 8iJ represent the effects as defined in Chapter II, 

and the restrictions (2.1.19) are imposed. The combined estimators 

for the factorial effects will be the same as before, that is, 

1 -a'•-I.t' =t' 1 n j iJ i• I 
(4.2.9) 

(4.2.10) 1 -c'=-I.t• =t' J n 1 1j •J' 
and 

(4.2.11) 

The estimates are most easily obtained from a two-way table of values 

4.3 Variances and Covariances of the Treatment Estimators 

The variances and covariances of the P1J•s will be used to de-

termine the variances and covariances of the t 1J•s. From equation 

(3.3.11) we have 

(4.3.1) ( ) r [w(k-l)Hl'] 
V pij = k • 

From equ~tions (3.3.12) and (3.3.13) we have 

(4.3.2) 

for first associates, and 



- 60 -

(4.3.3) 

11 f 1, J' r J, for second associates. The general equations of Chap-

ter III referenced here still apply. 

Bose, Clatworthy, and Shrikhande [ 2 ] have shown for the com-

bined intra- and inter-block analysis that the variance of the dif-

ference betveen tvo treatment estimators, when the treatments are 

first associates, is 

(4.3.4) 

Likewise the variance of the difference between two treatments which 

are second associates was shown to be 

From equation (4.2.7) the covariance of any two treatment estimators 

which are second associates is 

(4.3.6) Cov(t 1J,ti'J') = Cov[QP1/4C~ 1P1,J +~,PiJ'),gpi'J' 

1•,1 J'rJ 

+ 4(t P1 .. 41 +t P1,.cn)] 
i" " J" " 

1 "::f.1. J"rJ, 

= Cov [ (Q-24)P1/4Cf\/f iJ),(Q-24)P 1, J,+4Cf,P 1, J•+j,P 1, J')] 

a {0-24)2cov(P1J,Pi'J') + 42cov(fPiJ't,Pi'J') 

+ 2~ov(p»iJ'!•P 1,J,) + ~ov(fiJ'!•pi'J') 

+ 2~(Q-24)cov(P1J't ,P1, J') + 2~(9-24)c~v(P 1, J uf 1J) 
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• (0-24)2cov(P1J,Pi'J') + ~f Cov(P1J,PiJ') + ~f ~1Cov(PiJ'Pi'J') 
1,t1 • 

+ 2~(PiJ) + 242 j,Cov(P 1J,PiJ') + 2<ff,Cov(P 1J,Pi'J) 
J'1J 1•,t1 

+ 2~I: t Cov(Pi'J'pi 41 ) + ()2t Cov(P1J,Pi 'J) 
i' J' " J 

i •,1 J .,., 

+ ~~ ~1cov(P1J,Pi'J') + 24(0-24)cov(P1J,PiJ') 

JiJ' 

+ 24(0-2t)i 1Cov(P1J,Pi'J') + 24(0•24)Cov(P1J,Pi'J) 

1•,'1 

+ 24(0-24)~1cov(P1J,P1 ,.,,) 

J •f.1 
= 24v(P1J) + (6n~4o4-124 2 )Cov(P1J,PiJ') 

+ [ (0-24) 2 + 2(n-1)4(2n4"20-5~)] Cov(P1J,Pi, J' ), 

i = 1•, J ,' J'. From equations (4.3.1), (4.3.2), and (4.3.3) we have 

(4.3.7) Cov(t1J,ti'J') = {2()2r[W(k-l)HT' ]-(6n42+4o4-12t2) 

• ~ (W-W' )- [(o-24)~2(n-1)t(2n4t-20-54) J "-2(w-w• )} /k = d, say, 

i ,' 11 1 J ,' J'. If we write equation (4.3.5) in the form 

(4.3.8) 

and substitute from equation (4.3.7), we obtain 

Similarly, from equations (4.3.4) and (4.3.9) the covariance of any 
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two treatment estimators which are first associates is 

(4.3.10) 

i;/1',JrJ'. 

Using equations (4.3.7), (4.3.9), and (4.3.10), we may derive 

the variances and covariances of the combined intra- and inter-block 

estimators of the factorial effects. The variance of an A-factor es-

timator is given by 

(4.3.11) 

Also 

(4.3.12) 

'I (a' ) = V (t' ) = J:.. V (rt• ) i 1• 0 2 J ij 

l V(t• ) (n-l) C (t• t• ) .. ii iJ + n ov 1J' ij • 

• ~ + (n-1)(4':d) 
n n 

• Qt-(n-l)i + d. n 

V ( C I ) cs V (t. ) • .l.. V ( I:t I ) 
J •J n2 i 1J 

l V(t• ) (n-l) C (t• t• ) = n ij + n ov 1J' 1' J 

a 91-{n-l)~ + d. n 

The covariances of the combined intra- and inter-block estima-

tors for the A-factor are of the form 
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l C (t' t' ) (n-l) C (t' t' ) = ii OV 1J 1 1 1 J + n OV 1J 1 1 1 J 1 

= ~ + (n-l)d 
n n 

= i + d, n 

i r 1'. For the C-factor estimators we have 

(4.3.14) Cov(cj,cj,) = Cov(t:J,t~J') 

= ~ Cov(tt 141tt 141) 
n 1 ui" 

l C (t' t• ) (n-l) C (t' t' ) = ii ov iJ' 1J' + n ov 1J 1 1'J' 

• .i + d, n 

J f J', and, for the covariance of an A-factor estimator with a C-

factor estimator, we have 



(4.3.15) 
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Cov(a! c~) = Cov(f' ft ) 
~' J i•' •J 

= ..!-Cov(rt 1•J,tt!j) n2 j i l. 

l V(t' ) (n-l) C (t' t• ) =~ ij + 0 2 ov 1J' i'j 

(n-1) C .(t• t• ) (n-1)2 C (t' t• ) 
+ n2 OV iJ'' ij + n2 OV iJ'' i'j 

a ~ + 2(n-1)(¥d) + (n-1) 2d 
n2 n2 n2 

= Q+2(n-l)~ + 
n2 

d. 

The variances of the difference between two main factorial ef-

fects, obtained from equations (4.3.11), (4.3.12), (4.j.13), und 

(4.3.14), are 

(4.3.16) V(a1-a1,) = 2V(a1) - a::ov(a1,a1,) 
2 [ 91-(n-2)~] =---n---, 

i ::f. i •, and 

(4.3.17) 

2 [ 91-(n-2)~] 
= I j I J'. n 

The variance of the combined intra- and inter-block estimators 

of the interaction effect is given by 

(4.3.18) V(d1J) = V(tiJ-a1-cj) 
= V(t1J) + V(a1) + V(cj) - a::ov(t1j 1a1) 

- a::ov(t1J,cj) + a::ov(a1,cj)• 
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Since 

(4.3.19) 

l V(t• ) (n-l) C (t• t• ) = n 1J + n ov iJ' 1J' ' 
and 

(4.3.20) Cov(t 1J,cj) = Cov(t 1J,t:J) 

l V(t• ) (n-l) C (t' t• ) = ii iJ + n ov iJ' 1 • J ' 

it follows from equations (4.3.9), (4.;.11), (4.;.12), and (4.3.15), 
that 

(4.3.21) V(d' ) :a (n-1) 2 (9-2~) + Gl-2(n-1)4 + d. 
1J n2 n2 

All covariances between the combined intra- and inter-block 

estimators of the interaction effects, which are second associates, 

are of the form 

(4.3.22) Cov(d1J,di'J') • Cov(t 1J-a 1-cj,t 1,J,-a 1,-cj,) 
= Cov(t 1J,ti'J') - Cov(t 1J,a1,) 

- Cov(t 1j,cj,) - Cov(a1,t 1,J,) 
+ Cov(a1,a 1,) + Cov(a1,cj,) 

- Cov(cj,t 1,J,) + Cov(cj,a 1,) 
+ Cov(cj 1cj,), 

i F 1', J / J'. Since 

(4.;.23) 

and 
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Cov(tij'cj,) = i Cov(tij'rtiJ') 

1 C (t' t• ) (:i-l) C (t' t• ) = n OV ij 1 ij' + n OV ij 1 i'J' 1 

then by substituting (4.3.23) and (4.2.24) into (4.3.22) and using 

equations (4.3.7), (4.3.10), (4.3.13), (4.3.14), and (4.3.15), we have 

2[Gt-2{n-l)~] 24 
Cov(di.J'di'J')= n2 • 0 +d, 

i r 1', j f J'. By a similar approach we obtain 

(4.;.26) 

J :/ J', and 

Finally, all covariances arising from the estimators of A-factor 

effects with the estimators of interaction effects are given by 

(4.3.28) 

Similarly, 

(4.3.29) 

= _ 8r2(n-l)~ _ d. 
n2 

The weights, W atd w•, associated with o, 9, and d1 are esti~ 

mated from the analysis of variance table by the relations (2.2.4). 
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In order to obtain the efficiency for contrasts among A-factor 

effects of Latin S~uare, sub-type L2 designs relative to completely 

randomized designs, we must find the ratio of 

2 nr ' 
the appropriate variance of the difference between two A-factor ef-

fects for the completely randomized design found similarly to (3.4.2), 
to the variance of the difference between two A-factor effects in the 

incomplete block design. Substituting W • 1/0 2 and w• = 1/(a~k{) 

in (4.3.30) we obtain 

2[r-~+(n-1)(~ -~2) ](w-w•)+2krW' 
nkr~' 

• 

The efficiency for an A-factor contrast, obtained from (4.3.16) and 

(4.3.31), is then given by 

[r-~+(n-1)(~ -~2 ) ](W-W' )+krW' 
EA• • 

kr1\r,i • [ Qt. (n-2)~ J 
Similarly, the efficiency for a C-factor contrast is shown to be 

(4.3.33) 
[r-~+(n-1)(~-~ 2 ) J(W-W')+krW' 

E =~~~~----------------------------
C kr~' [9t-(n-2)~] 

• 

4.4 Tests of Significance 

If Wand W' are known without error as in Chapter III, a test of 

the equality of treatment means for the combined intra- and inter-block 

analysis is based on the statistic 
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(4.4.1) 

which can be used as a X2 -variate with (v-1) degrees of freedom. The 

test, as described in Section 2.3, can be used as an approximation if 

Wand W' are estimated with a large number of degrees of freedom. 

From equation (4.2.6) and the restrictions (2.1.19), equation (4.4.1) 

may be put in the form 

(4.4.2) 
t 

~ = [w(rk-r+2>,_-"- 2)+W' (r-2"- 1+"-2) J !Jtij/k 

- (w-w•)(>...._-"-)(rt•a+rt•2)/k. 
·-i 2 i 1 • J •J 

Tests of significance for the factorial effects are established 

in exactly the same way as described in Section 2.3. To test the 

null hypothesis of no A-effects for the combined intra- and inter-

block analysis we use the statistic 

(4.4.3) 

which is approximately distributed as a x2 -variate with (n-1) degrees 

of freedom. From equation (4.2.6) and the restrictions (2.1.19), 

equation (4.4.3) may likewise be put in the form 

(4.4.4) 

or 

(4.4.5) 

Similarly, to test the null hypothesis of' no C-eff'ects we use the sta-

tistic 

(4.4.6) X~ = ~jPiJ' 
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which may be written as 

(4.4.7) 

or 

(4.4.8) 

and is approximately distributed as a x2-variate with (n-1) degrees 

of freedom. Finally, the null hypothesis of no interaction effects 

can be tested by the statistic 

(4.4.9) 

which is approximately distributed as a x2-variate with (n-1) 2 de-

grees of freedom. From equation (4.2.6) and the restrictions (2.1.19), 

equation (4.4.9) may also be written as 

(4.4.10) 

or 

(4.4.ll) 

From equations (4.4.1) 1 (4.4.3), (4.4.6), and (4.4.9) it is 

clear that 

(4.4.12) ~ = x: + ~ + Xfc I 

and the degrees of freedom add up to (v-1). Cochran's theorem [5] 
is sufficient to demonstrate the independence of all the x2-variates. 

To test the significance ot the difference between pairs of 

treatment estimators or factorial estimators the t-test may be used 

as an approximation. 
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4.5 Individual Comparisons and Multi-factor Factorials 

Individual or single-degree-of-freedom comparisons are obtained 

in the same way as in Section 2.4. Let f and T} be two (n-1) by n 

• • orthogonal matrices used to transform the a 1•s and cJ's, respectively, 

to individual contrasts, each yielding an adjusted sum of squares 

with one degree of freedom. Contrasts on A-factor effects ~ould then 

be 

I = ~ ~i ui•, u = 1, ••• ,n-l, u i u 

and on C-factor effects 

(4.5.2) 

To test the hypothesis that t tiuai = 0 against the hypothesis that 

f tiuai IO we use the statistic 

(4.5.3) Xiu = {[nvX2+n2(~->..2) ](W-W' )+nrkw:J-(r ~iuti.)2,Jkt tfu 

= {[v>..ln(~->,.2) ](w-w•)+rkW'} CfJ t1utij)2/ktJ ffu, 

which follows from equation (4.5.1) and the multiplier of equation 

(4.4.5). 

Similarly, to teat the hypothesis that J Tlvj7j = 0 against the 

hypothesis that J Tlvj7J IO we use the statistic 
. 

( 4.5 .4) x2 = { [ nv>.. +n2(X -"- ) J (W-W' )+nrkW'} (I: Tl t• )2 /kI: n2 JV 2 1 2 J ~J •J J ~J 

= {[v>-+n("- -"- )](w-w•)+rkW'} en: T) t• )2ferr r:2 , 2 1 2 iJ V j ij ij 'v J 

which follows from equation (4.5.2) and the multiplier of equation 
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(4.4.8). 
The adjusted interaction sum of squares may also be partitioned. 

The (n-1) 2 orthogonal contrasts for the interaction of I and J, ob-u V 

tained from the matrices t and ri, a.re 

To test the hypothesis that tJ Eiu1'lvj8iJ = 0 we use the 

x(IJ)uv = { [ VA2+2n("-1-"-2> J (W-W' )+rkW'} 

· (fj tiuT}vJtiJ) 2 tkfiCtiu\rj) 2 , 

statistic 

which follows from equation (4.5.5) and the multiplier of equation 

(4.J.i..11). 

From the manner in which we have constructed the single-degree-

of-freedom cont:-asts, it is clear that the resulting sums of squares 

add up to the total adjusted sum of squares for treatments, which has 

been shown to be distributed as a X2 -variate with (v-1) degrees of 

freedom. Since the degrees of freedom for the individual contrasts 

add up to (v-1) 1 we may conclude by Cochran's theorem [5] that the 

corresponding sums of squares are independently distributed as x2-

variates, each with one degree of freedom. 

Special definition of the ma.trices,~ and TJ, as in section 2.4, 

permits the use of special contrasts for measuring trends over the 

factor levels. By taking the A- and C-factors to have levels, which 

themselves are factorial combinations, we can again extend the two-

factor factorial to the case of multi-factor factorials or fractional 
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factorials as in Section 2.4. 

The results of Section 4.4 and 4.5 reduce to the intra-block 

formulas, obtained by Kr~mer in an unpublished paper, if we set 

W a 1 and W' = O. 
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V. LATIN SQUARE SUB-TYPE L3 PARTIALLY BALANCED 

INCOMPLETE BLOCK DESIGNS 

5.1 Properties of Latin Square Sub-type L3 Designs 

Bose, Clatvorthy, and Shrikhande (2 J list the following prop-

erties of' Latin Square sub-type t 3 designs: 

(1) The designs are non-group-divisible with n 2 treatments ar-

ranged in a square array of' n rows and n columns, and upon this array 

is imposed a Latin Square with letters. 

(ii} Any two treatments are first associates if they occur in 

the same row or column of the array or correspond to the same letter, 

and are second associates otherwise. 

(111) Each treatment has exactly 3(n-l} first associates and 

(n-l}(n-2) second associates. 

hold. 

(iv) The relations 

p = 1 

p = 
2 

[ 2(:-2) 

[3(:-3) 

2(n-2) J 
(n-3}(n-2} 

3(n-3) J 
n 2 -6n+l0 . 

(v) The design parameters are relat@d so that 

(5.1.1) 3(n-l}~ + (n-l)(n-2)~ 2 = r(k-1) 

or 

' 

' 
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Let ViJ denote the treatments in the association scheme given 

by the matrix v. Therefore, any two treatments are first associates 

if corresponding subscripts are the same (in the same row or column) 

or if they correspond to the same letter, and are second associates 

otherwise. 

5.2 Factorial Treatment Estimators 

The model assumed for the sub-type 13 designs is 

(5.2.1) 

11 J = l, ••• ,n; s = l, ••• 1b 1 where yiJs is the observation on treat-

ment ViJ in blocks if that treatment occurs in blocks,µ is the grand 

mean, TiJ is the effect of Vij' i,s is the effect of blocks, and £ijs 

is the usual normal random error with mean zero and variance a2 , the 

various £ijs's being independent. The estimators, m, tiJ' and bs' of 

the para.meters, µ1 Tij' and "s' are found by minimizing 

where~ and rare Lagrange multipliers associated with the usual re-

straints on the parameters, namely 

and 

I: " = o, s s 

6 and a1J = 1 if v1j is in blocks and zero otherwise. After partially 

differentiating (5.2.2) and evaluating the Lagrange multipliers, we 
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G 
m = bk' 

Bs t •• s 
b = - - m - -, s k k 

where t ••S is the sum of the tiJ's in blocks, biJ• is the sum of the 

bs's for blocks containing ViJ• These equations were obtained by 

Kramer and Bradley [ 14, 15] and are completely general for all in-

complete block designs. Summing equation (5.2.6) over blocks contain-

ing v1J, we obtain 

(5.2.8) 

where BiJ• is the total of block totals for blocks containi~g treatment 

v1J. Now 

where s1(tiJ) is the sum of the tiJ's of all the first associates of 

treatment ViJ' and s2 (t 1J) is the sum of the t 1J•s of all the second 

associates of treatment v1J. Also, since tJ tiJ = o, then 

(5.2.10) 
Therefore 

(5.2.11) s 
~ 61Jt••s = (r-~)tiJ + <~2-~1>s2(tiJ)' 

and substituting (5.2.8) and (5.2.11) in (5.2.7), we obtain .,., .... : ' 
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(5.2.12) 

Equation (5.2.12) may be written in the form 

(5.2.13) 

i, j = 1, ••• ,n, where Qij = Tij - Bij•;k. Solutions of equations 

(5.2.13) were sho-wn by Bose, Clatworthy, and Shrikhande [2] to be 

k-c 2 (c 1-c 2) 
tij = r(k-1) Qij + r(k-1) 81(Qij), 

i, j = 1, ••• ,n, where c1 and c2 have been defined by equations (1.3.12) 

and (1.3.13), and s1(Qij) represents the sum of the adjusted yields 

for all the first associates of treatment Vij• Values o:f' c1 and c2 

are tabled with catalogued designs; they may also be obtained from 

(1.3.12) and (1.3.13). Occasionally, explicit formulas will be help-

ful, and we note them as follows: 

To incorporate :factorials in Latin Square sub-type 13 designs 

consider factors A and C both with n levels providing v = n2 treatment 

combinations associated with the v1j so thE..t 

(5.2.15) 

with the restrictions (2.1.19) imposed. The change to factorial 
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parametero r1ay be regarded simply as a one-to-one transformation in 

the p~rameter space. It follows that 

From equation (5.2.16) ve note that 

l 
a. = - I: ti~ = t , 

i n J u i• 

(5.2.18) 

and 

(5.2.19) 

The combined intra- and inter-block estitll3.tors of the treatment 

effects can be obtained by minimizing the weighted sum of squares of 

deviations given in the form (2.1.10), suoject to the condition that 

!! Tij a O. The resulting normal equations, as given by equations 
iJ 
(3.2.8), are 

Bi~ t' 
( ,J. • I: i::. s. __::_!) W Tij - -k- - rtij + s vlj k 

11 J • l, ••• ,n. Replacing tij by t 1j in equation (5.2.11) and sub-

stituting in (5.2.20), we obtain the equations 

(5.2.21) 

11 J = 11 ••• ,n. Equations (5.2.21) can be written also as 

(5.2.22) 

1, J = 1, ••• ,n. 
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Bose, Clatworthy, and Shrikhande [2] have obtained the solu-

tion ot equations (5.2.22) tor the combined intra- and inter-block 

treatment estimators in the form 

(5.2.23) 

1, J = 1, ••• ,n, where Q and ta.re defined by equations (3.3.5) and 

(3.3.6), and s1(P1J) represents the sum of the P1J•s for all the first 

associates of treatment v1J. 

By considering equation (5.2.15) and imposing the restrictions 

(2.1.19), we obtain 

(5.2.24) a• 1 =.!tt• 
n J iJ = t' i • , 

(5.2.25) c' 1 • t• = - I: t• J n 1 1J •J, 
and 

(5.2.26) diJ = tiJ - t• 1• - t' •J, 
all of which are easily obtained from a two-way table of values of 

If W and w• are known without error, then Rao [19] has shown 

that a test of the equality of treatment means for the combined intra-

and inter-block analysis is based on the statistic 

(5.2.27) 

which can be used as a x2 -var1ate with (v-1) degrees of freedom. The 

test, as described in Chapter II, can be used as an approximation if 

Wand W' are estimated with a large number of degrees of freedom. 

From equation (5.2.21) and the restrictions (2.1.19), equation 
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(5.2.27) may be put in the form 

W(rk•rt"i )+w• (r-"1.) 
~. k n:: t•2 ·--r iJ iJ 

The adJusted treatment sum of squares for the intra-block 

analysis, obtained by setting W' • 0 and W • 1 in equation (5.2.28), 

is given by 

The unadJusted sum of squares for blocks is computed in the usual way. 

Each block total depends on k observations, and we have 

1 G2 
SSB(unadJ.) • -k I B2 - -. s a rv 

The error sum of squares, obtained by subtraction, is given by 

Error SS • Total SS - SST(adJ.) - SSB(unadJ.), 

where 
02 --. rv 

The analysis of variance in Table 1 can now be set up and the 

F-test carried out as indicated. 



Source 

Treatments 
(adJ.) 

Blocks 
(unadJ.) 

Intra-block 
error 

Total 

Table l. Intra-block Analysis or Variance 

for the General Model 

d.t. s.s. 

- (rk-rt-~) (~2->..l) 
v-1 k ~ t~J - k 1°l t1JS2(tiJ) 

b-1 
l 02 - r. B2 - -k 8 s rv 

[v(r-1)-b+l J By Subtraction 

rv-1 In: 88 ·2 02 
s1J iJyiJs - rv 

M.S. 

s2 
T 

2 SE 

F 

e2/s2 
T E 

O'.> 
0 
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Tests of significance for the factorial effects are not pos-

sible in the same way as described in Section 2.3. It is now impos-

sible to partition the total adjusted treatment sum of squares into 

independent sums or squares corresponding to the various factors. 

In situations where it is impossible to partition the total treatment 

sum of squares, we can always use the variances and covariances of 

Section 5.3 to make tests on comparisons among the factorial esti-

mators. 

5.3 Variances and Covariances of the Treatment Estimators 

To facilitate the mathematical computations it will be con-

venient to write equ3tions (5.2.14) in the form 

(5.3.1) 

11 J = 1, ••• ,n, where 

(5.3.2) 
and 

k-c 2 
a= r(k-l}' 

To obtain the variances and covariances of the intra-block 

estimators, we shall make use of equations (3.3.9) and (3.3.10). 

Bose, Clatworthy 1 and Shrikhande J:2]have shown that the variance 

of the difference between two treattient estimators which are first 

associates are 

(5.3.4) 

Likewise, the variance of the difference between two treatments 
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which are second nssoc1~tes vas shown to be 

(5.3.5) 

If, 1n equation (5.3.1), we denote the sum of all Q1J•s falling on 

the same letter, p, in the association scheme as QiJ by QiJp' 

p = A, B, c, ••• , the covariance of any two treatment estimators 

which are second associates is 

(5.3.6) Cov(t 1J,t 1, J') = Cov [aQi_,+t3S1 (QiJ),aQi, J' 

+ f3Sl(Qi'J')] 

= Cov lJa-3!3 )Q1tt3(Q. /Qi .+QiJp), (a-3'3 )Qi, J, 

+ NQ.J,+Qi' .+Qi'J'p> J 

:s ~~(QiJ) + [12(a-3f3)f3+24nt32 -l8(32 ]cov(QiJ'QiJ') 

+ I (a-~)2+3t3(n-2) J 
• '[t3(3n-2)+2(a-3f3) Jcov(QiJ'Qi, j,) • 

From equations (3.3.9) and (3.3.10), we have 

Cov(tiJ'ti'J') = (~ 2r(k-l)-(lale+24nt32-54!>2)~ 1 

- [(a-3t3)~3t3(n-2)0ne+a:x-8t,)J ~ }a2ftt = ea 2, 

say, where t 1J and ti'J' are second associates. I~ we write equation 

(5.3.5) in the form 
• 

(5.3.8) 

and substitute from equation (5.3.7), we obtain 
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Similarly, from equations (5.3.4) and (5.;.9), the covariance ot any 

two treatment estimators which are first associates is 

(5.;.10) Cov(t 1J,ti'J') = (r;+e)aa. 

Using equations (5.3.7), (5.3.8), and (5.;.10), we may derive 

the variances and covariances of the intra-block estimators of the 

factorial effects. The variance of an A-factor estimator is given by 

(5.;.11) 

= (a+e) a2+ (n-1) (r;+e)a2 
n n 

Also 

(5.3.12) 

= [at-(:-1)~ + e J a2 • 

The covariances of the intra-block estimators for the A-factor 

are of the form 
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= 2(e+e) 0 2 + (n-2)e O 2 
n n 

1 r} 1 •. Similarly, f'or C-factor estimators, we have 

J f J'• For the covariance of an A-factor estimator with a C-factor 

estimator, we have 

(5.3.15) Co~(a1,c J) = Cov(t 1 .,t •J) = ~ Cov(J tiJ't t 1J) 

1 ( ) 3(n-l) ( ) 
• 02 V tiJ + n2 Cov t 1J,ti, J 

(n-l)(n-2) ( ) 
+ n2 Cov tiJ'ti'J' 

:a [~ + 3(n-l)(e+E:} + (n-l)(n-2)e] 0 2 
n2 n2 n2 

= [a+ 3(~-l)t3 + e J 0 2 •. 
n 

The variance or the difference between two ma.in factorial ef-

fects, obtained from equations (5.:;.11), (5.3.12), (5.3.13), and 

(5.:;.14), is 

(5.:;.16)' V(a1-ai,) = 2V(ai) - 2Cov(ai,ai,) 

= 2[a+(n-3)t3 J -=---~----a2 I n 
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V(cJ-cJ,) = 2V(cJ) - 8'.:ov(cj,cj,) 

= 2[at(n-3)f3] ~'---~c,2 
n 

The variance of the intra-block estimators of the interaction 

effects is given by 

Since 

(5.3.19) 

and 

V(dij) = V(tiJ-ai -c J) 

a V(tiJ) + V(a1) + V(cj) - 2Cov(tiJ'a 1) 

- 2Cov(t 1J,cJ) + 2Cov(a1,cJ). 

it follows from equations (5.3.9), (5.3.11), (5.3.12), and (5.3.15), 

that 

(5.:;.21) 

' 

V(d ) ... [n(a-2(3)-2(o:-4f3) 
iJ n 

All the covariances between the intra-block estimators of the 

interaction effects, which are first associates, are of the form 
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Cov(d1J,diJ') = Cov(t 1J-a 1-cJ,tiJ'-a 1-cJ,) 

= Cov(t 1J,tiJ') - Cov(t 1J,a 1) 

- Cov(t 1J,cj) - Cov(a1,t 1J,) 

+ V(a1 ) + Cov(ai'cJ,) - Cov(cJ,tiJ') 

+ Cov(cJ,ai) + Cov(cJ,cJ,). 

l Cov(t 1J,cJ,) a ii Cov(t 1J't t 1J,) 

2 
= nCov(tiJ'tiJ') 

then by substituting (5.3.23) and (5.3.24) into (5.3.22) end using 

equations (5.3.7), (5.3.10), (5.3.11), (5.3.14), and (5.3.15), we have 

J r J'. This result holds for all first associates. By a similar 

approach, we obtain 

C Cd d ) [ 20t2(n-J)l3 + e J a2 
ov iJ' i'J' • n2 

for second associates. 



- 87 -

Finally, all covariances arising from the estimators of A-factor 

effects with the estimato~s of interaction effects are given by 

(5.3.27) Cov(ai,diJ) ~ Cov(ei,tiJ-ai-cJ) 

= Cov(a 1,tij) - V(a1) - Cov(a1,cJ) 

= _ [a+ 3(n-l)t3 + e J 0 2 • 
n2 

Similarly 

Corresponding formulas for the variances and covariances of the 

combined intra- and inter-block estimators of the factorial effects 

may be obtained by replacing a and~ by Q and~. respectively, in the 

above equations, where Q and~ are defined by (3.3.5) and (3.3.6) 

and omitting a 2• The weights, 'W and W', associated with 91 t, and e, 

are estimated from the analysis of variance table by the relations 

(2.2.8). 

In order to obtain the efficiency for contrasts among A-factor 

effects of Latin Square sub-type L3 designs relative to completely 

randomized designs, using the recovery of inter-block information, 

we must find the ratio of 

2[r-A 1+(n-2)0·1.-~) J {+2ra2 
2 ' nr 

the variance of the difference between two A-factor effects for the 

completely randomized design found similarly to (3.4.2), to the vari-

ance of the difference between two A-factor effects in the incomplete 
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block design. Substituting W = l/a 2 and W' = 1/(Aka~ 1n (5.3.29), 

(5.;.30) 
2 [r->-i+(n-2)(~ ->..2) ](w-w• )+2.ltrW' 

nkr~' • 

The efficiency for an A-factor contrast, obtained from (5.3.16), with 

a and~ replaced by Q and t, and (5.3.30), is then given by 

E = A 

[ r-~+(n-2)(>-i->.. 2) ](w-w• )+krW' 

kr2ww• [ Qf-(n-3)~ J • 

Similarly, the efficiency for a C-factor contrast is shown to be 

(5.3.32) E = C 

[ r->-i+(n-2)(~ ->..2) ](W-\.1' }+krW' 

kraww• [Ot-(n-3)t] 
• 

The efficiencies of Latin Square type designs relative to com-

pletely randomized designs are given in Table II for different values 

of ., , where 1 • W fe 1 • 

5.4 Analysis of a Particular Design with n = 4 

For the special cases of factorials or fractional factorials 

consisting of sixteen treatment combinations, it is possible to par-

tition the treatment sum of squares into independent sums of squares 

corresponding to the various factors and perform the usual tests of 

significance provided that we arrange the treatment combinations in 

the association scheme so as to preserve orthogonality. This may be 

done if we use a set of three orthogonal 4 x 4 Latin Squares super-

imposed. The levels of the one t&ctor are represented by the elements 

of one square and the levels of the other factor are represented by 
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the elements of the second square. The third square is used to des-

ignate the association scheme. The three squares may be written as 

follows: 

I II III 

1 2 , 4 1 2 3 4 1 2 3 4 

2 1 4 3 4 3 2'1 3 4 1 2 

3 4 l 2 2 1 4 3 4 3 2 1 

4 3 2 1 3 4 1 2 2 1 4 3 • 

Replacing the numbers of the first La.tin Square by the letters, A, 

B, c, and D, and superimposing the three squares, we obtain the com-

pletely orthogonalized square 

All B22 C33 D44 

B43 A34 D21 c12 
(5.4.1) 

c24 D13 A42 B31 

D32 C4l Bl4 A23 . 

Let us consider a basic two-factor factorial consisting of 

factors A and Cat four levels each. Denote the levels of A and C 

by the numbers of the second and third Latin Squares, respectively. 

The sixteen treatment combinations, v1J(i, j = 1, ••• ,4), are then 

obtained from (5.4.1) and may be displayed by the array 
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VllA V22B' V3f V44D 

V43B V34A V21D Vlf 

V24C Vl3D V4,} V31B 

V3,}) V4lC Vl4B V23A • 

For example, v42 represents the treatment combination consisting of 

the fourth level of factor A and the second level of factor c. 
A design using the above association scheme and having the 

parameters,~= o, ~ = 2, r = 6, k = 3, v = 16, b = 32, n1 = 9, 

and n2 = 6, has the plan shown below. 

PLAN 

v11 v21 v31 v22 v12 V42 v33 v13 v23 V43 v13 v23 

v11 v21 V41 v22 v12 V32 v33 v,1 v32 V43 V42 V4l 

v11 v12 v13 v22 v24 v23 V44 V43 V42 V34 v24 v14 

v11 v12 v14 v22 V42 v32 V44 V43 V41 V34 v31 v32 

v11 v13 v14 V33 V43 Vl3 V44 V34 V24 v21 v24 v23 

Vll V31 V4l V33 V43 V23 V44 V34 Vl4 V21 V31 V4l 

v22 v21 v24 V33 V34 V31 V44 v24 v14 v12 v1, v14 

v22 v21 v2, V33 V34 V32 V44 V42 V4l v12 V42 V32 

General details on the construction of partially balanced, in-

complete block designs are given by Bose and Nair [ 3 J. 
Using the above association scheme we can write the last pa.rt 

of equation (5.2.12) in the form 
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(5.4.2) 

= I: t2i + r. t2J - 2D: t2iJ • i • J • iJ 

Therefore, using the design parameters, we have 

(5.4.3) SST(adJ.) = _g3(8r.I: t 21J-E t 21 -I: t 2 J) , iJ i • J • 

and substituting from (5.2.16) for the t 1J•s we obtain 

32 ~ 2 32 ~ 2 16 ~~ d2 (5.4.4) SST(adJ.)= 31 a1 +-y-JcJ+jiJ iJ" 

From general regression theory we find, in a manner similar to 

that of Kramer and Bradley, that 

(5.4.5) SSA(adJ.) = f'j a 1QiJ, 

(5.4.6) SSC(adJ.) = ~ cJQiJ, 

and 

(5.4.7) SS(AC)(adJ.) = i~ diJQiJ • 

From equation (5.2.12), it then follows 

(5.4.8) 

(5.4.9) 
and 

(5.4.10) 

SSA(adJ.) s ~ f af, 
SSC(adJ.) a¥ J cj, 

16 SS(AC)(adJ.) = "'J" r.I: diJ 
iJ 

that 

with three, three, and nine degrees of freedom, respectively. The 

complete analysis of variance for the two-factor factorial is given 

in Table 2. 
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Table 2. Analysis of Variance for the Basic 

Two-factor Factorial 

Source of Degrees of Sum of 
Variation Freedom Squares 

Treatments 15 ~(8r.I t 2 -t t2 -E t2) 
(adJusted) 3 ij ij i i• j •j 

A-factor 3 32 .t a2 
(adjusted) 3 i i 

C-factor 32 t c2 
(adjusted) 3 J j 

AC-interaction 9 16 r.I d2 
(adjusted) ) ij iJ 

1 02 Blocks 31 - I: B2 - gt; 
(unadjusted) 3 s s 9 

Error 49 By Subtraction 

Using the methods of Section 4.5 it is possible to obtain in-

dividual or single-degree-of-freedom comparisons. Lett and~ be two 

3 x 4 matrices used to transform A- and C-factor effects, respectively. 

Contrasts on A-factor effects for the intra-block analysis would then 

be 

(5.4.11) I = I: ti a 1, u = 1, 2, 3, u i u 

and on C-factor effects 

(5.4.12) 

To test the hypothesis that f tiuai = 0 we use the adjusted sum of 

squares given by 
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which follows from equation (5.4.11) and the multiplier of equation 

(5.4.8). 

Similarly, to test the hypothesis that l 'rlvJ1J = o, we use 

the adJusted sum of squares given by 

(5.4.14) 

which follows from equation (5.4.12) and the multiplier of equation 

The adJusted interaction sum of squares may also be par-

titioned. The nine orthogonal contrasts for the interaction of Iu 

and Jv, obtained from the ma.trices£ and~, are 

(5.4.15) 

To test the hypothesis that i'J tiur'vJ8iJ = 0 we use the adJusted 

sum of squares given by 

(5.4.16) 

which follows from equation (5.4.15) and the multiplier of equation 

(5.4.10). 

Cochran's theorem [5 J is sufficient to demonstrate the in-

dependence of' all adJusted sums of squares, each with one degree of' 

freedom. All F-tests are effected using the error mean square of' 

Table 2. 
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Corresponding results for the combined intra- and inter-block 

analysis are obtained in exactly the same way as described in Chapter 

IV. Suitable X2 -statistics for testing the hypotheses of no main 

factorial effects and no interaction effects for the basic two-factor 

factorial are then given by 

(5.4.17) 

(5.4.18) 

and 

(5.4.19) x2 = (16w+2W')tt d' 2 /3 AC ij ij 1 

with three, three, and nine degrees of freedom, respectively. 

To test hypotheses on linear contrasts among the effects we 

use the statistics 

(5.4.20) 

(5.4.21) 
and 

(5.4.22) 

which follow from equations (4.5.1), (4.5.2), (4.5.5), and the mul-

tipliers of equations (5.4.17), (5.4.18), and (5.4.19), respectively. 

Special definition of the matrices~ and~, as in Section 2.4, 

permits the use of special contrasts for measuring trends over the 

factor levels. By taking the A- and C-factors to have levels, which 

themselves are factorial combinations, we can again extend the two-
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factor factorial to the case of multi-factor factorials or fractional 

factorials as in Section 2.4. 

5.5 Discussion 

In Sections 5.1, 5.2, and 5.3 we have discussed the t 3-type 

designs with a basic two-factor factorial assigned to the treatments 

so that factor levels correspond with rows and columns of the Latin 
th Square association scheme. There ViJ is the treatment in the i row 

th and J column of the Latin Siuare, and no cognizance is taken of the 

letters of the Latin Square in assigning factorial treatments through 

taking ViJ • AiCJ. This basically seems awkward and the association 

of factorials with treatments of Section 5.4 was tried. 

In Section 5.4 the use of three orthogonal 4 x 4 Latin Squares 

led to a simpler partition of the adjusted treatment sum of squares 

into components for A-factor, C-factor, and AC-interaction effects. 

In that section v1J had subscripts corresponding to elements in two 

of the three orthogonal Latin Squares, a different association of 

subscripts from that of the earlier sections of this chapter. In de-

veloping this new association of factorials to treatments it was 

hoped that a general scheme for use of factorials in L3-type designs 

would result • It turned out that the new scheme did produce a sat-

isfactory analysis in the 4 x 4 case but did not result in any im-

provements or simplifications in general over the assignment of fac-

torials used in Sections 5.1 to 5.4. 
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VI. NUMERICAL EXAMPLES 

6.1 A Group Divisible Design 

We shall illustrate the results developed in Chapter III by 

considering the plan for the design R27 as catalogued by Bose, 

C 1n. t-worthy, and Shrikhande [ 2 ] • The association scheme is given 

by 

vll v12 v13 

v21 v22 v23 
(6.1.1) v31 v.52 V33 , 

V4l V42 V43 

v51 v52 V53 

from which the treatment combinations for a 5 x 3 factorial may be 

obtained and designated by 

Afl Af2 Af3 

A2Cl Af2 Af3 
(6.1.2) Afl Af2 Af3 • 

A4Cl A4C2 A4C3 

Af1 A5C2 A5C3 

The values Ai(i = 1, ••• ,5) and CJ(J = 1, ••• ,3), represent the levels 

of factors, A and c, respectively. The design para.meters are v • 15, 

r = 4, k = 4, b = 15, m = 5, n = 3, >-i. = o, and ~2 = 1. 
The block plan and yields are given and analyzed by Bose, 

Clatvorthy, and Shrikhande [ 2 J for varietal trials. Assuming that 
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their treatments actually came from factorial treatment combinations 

as given by (6.1.2),·we can use many of their computations to illus-

trate our theory. 

We tabulate the combined intra- and inter-block estimates of 

the treatment effects, as computed by Bose, Clatworthy, e.nd Shrikhande, 

and the corresponding row and column totals, in Table 3. 

The values of wand w', obtained from equations (2.2.8) by 

Bose, Clatworthy, and Shrikhande, are 10.7411 and 3.6350, respectively. 

Therefore, from (3.5.2), 

~ = [w(rk-r+~)+w• (r-~) ]fl t 1jtk 

- (W-'W' )(~ -A2)f<j tij )2 flt 

and substitution of the design parameters and values in Table 3 

yields 

Also, using (3.5.4) and (3.5.7), we find 

and 

x: = [vA 2W+(rk-vA2 )W' ]f t 1~/nk 

= 4.3490, 

X8 = [(rk-r+~)W+(r-~)W' ]j t!jfink 

= 2.1523, 

with four and two degrees of freedom, respectively, both of which are 

insignificant at the five per cent level. 
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Table 3. Values of tij 
(Combined Intra- and Inter-block Estimates) 

th ti2 ti3 t• l• 
o.o898 0.1754 0.1660 o.4312 

t21 t22 t23 t' 2• 

-0.3785 0.0570 0.3225 0.0010 

t31 t32 t33 t• 3• 
-0.28o6 0.0441 -0.1213 -0.3578 

t41 t42 t43 t' 4. 

0.0547 0.1527 -0.2376 -0.0302 

t~h t52 t53 t• 5• 
0.0689 -0.2366 0.1241 -o.o436 

t• •l t• 
•2 

t• .3 
-o.4457 0.1926 0.2537 

By subtraction, or (3.5.10), we have 

with eight degrees of freedom, which is also insignificant at the 

five per cent level. 

To estimate the variance of the difference between two fac-

torial effects, we require p and q in (3.3.2) and (3.3.3) based on 

A, B, c, D, and E following (3.2.26). We find 

p = 0.0291., 
a.nd 
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q = -0.0012. 

Referring back to (;.;.27) and (;.;.28) we now have 

V(a•-a• ) = 2 [pt(n-l)q] = 0.0178, 
i 1' n 

and 

Variance and covariances of the factorial estimators themselves may 

be easily obtained, if needed, from the definitions in Chapter III. 

6.2 A Latin Square Sub-type t 2 Design 

We shall illustrate the results of Chapter IV by considering 

the design LS12 as catalogued by Bose, Clatworthy, and Shrikhande 

[2]. It was necessary to make up the observations in order to in-

dicate how the theory applies. For this reason no importance should 

be placed on the results of the analysis which may or may not indi-

cate what would happen in an actual experiment. 

The design LS121 with parameters V"" 161 r = 7, k = 4, b = 28, 

nl = 6, n2 = 9, "1 • 2, and },.2 = 1, has the following scheme: 

v11 v12 v1; v14 

v21 v22 v23 v24 
• 

V3l v32 V33 V34 

V4l V42 V43 V44 

Recall that treatments in the same row or column are now first as-

sociates and are second associates otherwise. If we consider two 
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Table 4. Field Plan 

Block Treatments and yields Block 
totals 

1 v11 v14 V34 V44 

33 38 36 48 155 

2 v11 v12 v22 V32 
36 47 35 47 165 

3 v11 v13 v21 V4l 
31 !i2 30 43 11i6 

4 V42 V43 V4l v22 
44 46 46 41 177 

5 V44 V4l V43 v24 
50 47 43 35 175 

6 V33 V34 v32 V44 
42 35 46 51 174 

7 v13 v12 V43 V42 
4; 44 44 41 172 

8 V32 V33 V3l V43 
45 43 32 42 162 

9 V43 V44 V42 v23 
40 48 40 41 169 

10 v22 v23 v21 V33 
37 38 33 40 148 

11 v14 v13 V33 V43 
40 44 45 42 171 
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T1:.ble 4 - co:c.tinued 

Block Treatments and yields Block 
totals 

12 v14 v12 v24 V44 
41 49 37 50 177 

-· 
13 v,1 v,2 V34 V42 

30 46 35 41 152 
-

14 v24 v21 v23 v,1 

33 30 38 27 128 

15 v13 v11 v2; V43 
45 37 40 39 161 

16 v14 v11 v21 V31 
40 33 33 32 138 

17 v12 v11 V31 V4l 
48 35 29 45 157 

18 V4l V42 V44 v21 
43 38 48 31 160 

19 v21 v22 v24 V32 
33 37 35 48 153 

20 V34 v31 v,3 V4l 
32 27 39 45 143 

21 v13 v14 v24 V34 
45 39 40 39 163 

22 v12 v14 v22 V42 
48 41 40 42 171 
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T-'.lble 4 - co:.1tinuel 

Block T~e~t~er.ts c~d yields Block 
totals ··-

23 v23 v24 V 22 V34 

39 33 38 33 143 

24 v12 v13 v23 V33 
48 l+5 40 41~ 177 

25 v11 v24 V-3 ) V42 

37 35 45 44 ~61 

:,6 v12 v21 V34 V1~3 
l.;,8 33 31 39 151 

27 v13 V ,..,,, v31 V44 c .• ,_ 

1~2 38 27 l.;,9 156 

28 v14 v23 V32 V41 
40 l.;,2 45 !.i.5 172 

Table 5. Values of Tij and Bij• 

Tll Tl2 Tl3 Tl4 Bll• B12• B13• B14• 
242 332 3o6 279 lo83 1170 1146 1147 

T21 T22 T23 T24 B2l• B22• B~3• B?.4• 
223 266 278 248 1024 1113 1098 1100 

T31 T32 T33 T34 B31• B32• B33. B34. 
2o4 321 298 241 1036 1150 1136 lo81 

T41 T42 T43 T44 B41. B42. B43. B44. 
314 290 291 344 1130 1162 1166 1166 
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factors, A and c, at four levels each, then again the treatment Vij 

of the association scheme represents the treatment combination of 
th th the i level of factor A and the j level of factor c. 

The field plan, Table 4, shows the block numbers, treatments 

occurring 1n the blocks and their yields, and the block totals. To 

evaluate the estimators tij' and then t 1j, it will be convenient to 

set up Table 5 giving treatment totals T1j and values of Bij•' the 

total of block totals for blocks containing v1J. 

From Table 5 we calculate Qij = T1J - Bij·fit· Values of Q1J 

are given in Table 9. The intra-block estimators of the TiJ's are 

then obtained from the results of Bose, Clatworthy 1 and Shrikhande 

[ 2 ], by the formula 

These values, along with their row and column totals, are given in 

Table 6. 
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Table 6. Values of t 1 j (Intra-block Estimates) 

tll tl2 tl3 tl4 tl• 

-5.3146 7.2729 3.7417 -1.2000 4.5000 

t2l t22 t23 t24 \~. 
-6.7833 -2.1125 0.3146 -5.1688 -13.7500 

t3l + "'32 t33 t34 t3. 
-10.1833 5.7792 2.3313 -5.2771 -1.3499 

t41 t42 t43 t44 t4. 

5.2313 1.1104 0.9125 9.3458 16.6000 

t •l t.2 t.3 t.4 

-17.0499 12.0500 7.3001 -2.3001 

Setting W = 1 and w• = 0 in formulas (4.4.2), (4.4.4), and 

(4.4.7), we obtain the intra-block analysis: 

and 

By subtraction 

SST(adJ.) = ;(24.tt t 214 -L t 2i -L t 2 4 ) = 2509.1539, 
... ij " 1 • j • ., 

SSA(adj.) =ff tf. = 673.6169, 

SSC(adj.) = i J t:j = 618.1044. 

SS(AC)(adj.) = 1217.4326. 

In the usual way, -we have 

and 
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We summarize these results in Table 7. 

Table 7. Intra-block Analysis of Variance 
(Design LS12) 

Degrees of Sum of Mean 
Source of Variation Freedom Squares Square 

Treatments 15 2509.1539 167.2769 

A-factor (adj.) 3 673.6169 224.5389 

C-f'actor (adj.) 3 618.1o44 2o6.0348 

AC-interaction (adJ.) 9 1217.4326 135.2703 

Blocks (unadJ.) 27 1152.1696 

Error 69 135.5961 1.9652 

Total 111 3796.9196 

To estimate the weights wand w• we must form the auxiliary 

table for inter-block analysis of variance. Therefore, we need the 

unadJusted sum of squares for treatments which is given by 

1 . G2 
SST(unadJ.) = 7 tJ TfJ - ll2 = 3438.9196. 

Using the error and total sum of squares from Table 7 we obtain, by 

subtraction, the sum of squares for blocks adjusted. The results 

are listed in Table 8. 
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To.ble 8. Auxilhry Table for Inter-block 

Analysis of Variance 

(Design LS12) 

Degrees of Sum of 
Source of Variation Freedom Squares 

Treatments (unadJ.) 15 3438.9196 

Blocks (adj.) 27 222.4039 

Mean 
Square 

B=8.2372 

Error 69 135.5961 E=l.9652 

Total 111 3796.9196 

We now find that 

l v = E = 0.5089 

bk-v o8 
w' = k(b-l)B-(v-k)E = O.ll • 

Using wand w' as estimates of Wand W' in formula (3.3.7) we then 

have 

and 
C 1 f:st-r "1_ Z 

d = = 0.1668 
2 l:rt-rHZ+r2z2 

where z, A, H, c1, and c2 are defined in (3.3.8), (1.3.10), (1.3.11), 

(1.3.12), and.(1.3.13), respectively. 

To obtain the combined intra- and inter-block treatment esti-

mates, we use (4.2.7), which reduces, for this design, to the form 
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r P. 'J+ L P 1J'), 
1' l. J' 

i'/,i J','J 

where PiJ = WQiJ + W'QiJ' and Qi.J • Bij•/k - rG;bk. Table 9 gives 

the estims.ted values for QiJ' PiJ' t 1j, and s1(P1j), where 
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Table 9. Combined Intra- and Inter-block Estimates 

of the Treatment Effects 

{Design LS12) 

Treatment Qij Qi.1 pij S1(Pij) t{j 

v11 -28.7500 .9.0625 -15.6350 -4.4030 .5.2610 

v12 39.5000 12.6875 21.5073 4.2766 7.2238 

v13 19.5000 6.6875 10.6645 12.5186 3.6591 

v14 -7.7500 6.9375 -3.1753 14.33o6 -0.9555 

v21 -33.0000 -23.8125 -19.4321 -49.09o6 -6.8623 

v22 -12.2500 -1.5625 -6.4072 7.8238 -2.0845 

v23 3.5000 -5 .3125 1.1925 -16.0492 0.2797 

v24 -27.0000 -4.8125 -14.2735 -15.7548 -4.8900 

V31 .55.0000 -20.8125 -30.2955 -9.1954 -10.1990 

v32 33.5000 7.6875 17.8999 -22.6220 5.8179 

V33 14.0000 4.1875 7.5886 -15.4430 2.4230 

V34 -29.2500 .9.5625 -15.9449 5.7564 -5.2893 

V4l 31.5000 2.6875 16.3281 -35.3802 5.1976 

V42 -0.5000 10.6875 0.9297 78.38o8 0.8925 

V43 -0.5000 11.6875 l.o405 64.7156 0.8281 

V44 52.5000 11.6875 28.0122 -15.0954 9.2553 

The values of the t 1j•s, along with their row and column 

totals, are given in Table 10. 
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Table 10. Values of t 1J 

(Combined Intra- and Inter-block Estimates) 

ti1 ti2 ti; ti4 t' l• 
-5.2610 7.~38 3.6591 -0.9555 4.6664 

t21 t' 22 t23 . t24 t' 2• 

-6.8623 -2.0845 0.2797 -4.8900 -13.5571 

t31 t32 t33 t34 t' 3. 
-10.1990 5.8179 2.4230 -5.2893 -1.2474 

t41 t42 t43 t44 t' 4. 
5.1976 0.8925 0.8281 9.2553 16.1735 

t' •l t• 
·2 t' •3 t!4 

-11.1247 11.8497 7.1899 -1.8795 

Using equations (4.4.2) 1 (4.4.4), (4.4.7), and (4.4.10) we 

obtain 

~ = 1340.7979, 

and 

with fifteen, three, three, and nine degrees of freedom, respectively, 

all of which are highly significant. 
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The variances of the various estimators may be determined from 

the proper formulas of Chapter IV1 if required. 

Suppose we take the A-factor to be a quantitative one and in-

vestigate the linear, quadratic, and cubic trends. The trend coef-

ficients together with the sums of squares of the coefficients are 

given in Table 11. 

Table 11. Trend Coefficients for Subdivision of X! 

Coefficients tor Sums of 
Contrasts t' = t' • t). = t4. - Squared l• 2• 

1.1666 -3.3893 -1.8119 4.o434 Coefficients 

Linear A -3 -1 +l +3 20 

Quadratic A +l -1 -1 +l 4 

Cubic A -1 +3 -3 +l 20 

It now follows from equation (4.5.3) 

X2 (Linear A) = 4kc~-¥ [ (-3)(1.666) + ... + (3)(4.0434) ] 2 

""57.6451. 

Similarly 

x2 (Quad. A) = 299.8261 

and 
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If we assume the 4 x 4 factorial is now a 4 x 22 factorial by 

taking the levels of A to be made up of two levels of a factor N and 

two levels of a factor P, we can carry out the analysis in exactly 

the same way as described in Section 2.4. 

6.3 A Latin Square Sub-type L; Design 

Suppose we consider the design and block plan described in Sec-

tion 5.4. The sixteen treatment combinations for the two factorial 

factors are given by the association scheme in Section 5.4. Once these 

treatment combinations have been properly assigned to the blocks ac-

cording to the field plan the analysis is carried out in exactly the 

same way as tor the previous example. To make the computations as 

simple as possible it is important for the design of Section 5.4 that 

the treatment estimates be arranged as in Tables 6 and 10 and not ac-

cording to the association scheme. 

Appropriate formulas of Chapter V yield the variances of the 

estimators. The extension to multi-factor factorials and the con-

sideration of individual contrasts is carried out in the same manner 

as for the previous example. 

For all other types of L3 designs we obtain the factorial 

estimates from the formulas of Section 5.2 and make tests on compari-

sons among the factorial estimates by using the variances and covari-

ances of Section 5.3. 
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VII • SUM?Jr.ARY 

The work of Kramer and Bradley has been extended to permit 

both the intra-block and combined intra- and inter-block analysis of 

factorials in balanced incomplete block designs and several classes 

of partially balanced incomplete block designs. In particular, we 

have obtained a combined intra- and inter-block analysis for fac-

torials in balanced incomplete block designs, group divisible designs, 

and La.tin Square type of partially balanced, incomplete block designs. 

For the class of Latin S~uare sub-type L3 designs, both the intra-

block and combined intra- and inter-block analyses have been con-

sidered. The only partially balanced incomplete block designs, cata-

logued by Bose, Clatworthy, and Shrikhande [2 ], that have not been 

considered in this dissertation are those whose treatment numbers are 

prime, such as the group of cyclic designs and those which must be 

treated individually rather than as a complete class. 

Except for the special cases of 4 x 4 Latin Square sub-type 

t 3 designs, factorial treatment combinations were assigned to the 

association schemes by permitting the rows to represent the levels of 

one factor and the columns to represent the levels of a second factor. 

The extension to multi-factor factorials was then carried out by sub-

dividing the levels of the basic two-factor factorial, the sub-

divisions representing the levels of the additional factors. This 

is possible only if the number of levels for the basic two-factor 

factorial is non-prime. 
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Estimators for the factorial effects h.1ve been obtained along 

with their variances and covariances. Sums of ngu~res in terms of 

the factorial estim:ltors have been derived and can be used to carry 

out tests of significance. These sums of squares were sho~n, for the 

combined intra- and inter-block an9.lysis, to be independently distri-

buted as x2 -variates with the appropriate number of degrees of freedom. 

Suitable sums of squares for tests of significance on the factorial 

effects are not possible in general for the Latin Square sub-type t 3 

designs. In situations such as these, we can only consider contrasts 

among the estimates and use their variances to perform tests of sig-

nificance. 

For the special cases of 4 x 4 Latin S~uare sub-type t 3 de-

signs, a complete analysis yielding the adjusted sums of squares, for 

the factorial effects, is possible if the factorial treatments are 

applied to the association scheme in a different manner. Using three 

orthogonal Latin Squares we obtained a satisfactory analysis by letting 

the levels of one factor be represented by the elements of one square 

and the levels of the second factor by the elements of the second 

square. The third squ1re designates the association scheme. 

Single-degree-of-freedom contrasts are obtained in much the 

usual way as in complete block designs. Main effects may be divided 

into trend contrasts and also interaction sum of squares may be par-

titioned. These partitions may be effected by using row and column 

averages or other appropriate functions of the original treatment 

estimators. The appropriate sums of squares for main effects and 
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interactions of n ~ulti-factor factori~l a~e obtained either as func-

tions of the original estim:.tors or HS functio:1:::; of the row and column 

averages of the original treatment estinators. The method of ~ncor-

porating a fractional replicate of a factorial is ulso considered. 

Numerical examples h~ve been workee in detail for u group di-

visible design and a Latin Square sub-type L3 design. Using these 

two examples as a guide ,re can perform a combined intra- and inter-

block analysis for factorials in balanced incomplete block designs. 

These examples also oerve as guides for the speci~l analysis of a 

4 x 4 Latin Square sub-type t 5 design or1ce the estimates of the· t 1j 's 

are obtained and properly arranged in a two-way table so that row 

and column totals represent Sl.XlS over first and second subscripts, 

respectively. 

The problem of analyzir.g f~ctori~ls in various types of 

lattice designs is being investigated at the present time. However, 

there are certain types of lattice designs ~hich can be clascified 

with the partially belacced incomplete block designs discussed in this 

dissertation. For example, the near balance rectangular lattices and 

the Latinized rectanV,tlar latt!ces belong to a subclass of the group 

divisible designs. Also, si~ple latticez may be classified es Latin 

Square sub-type 1 2 designs ·while triple latticeG belong to the sub-

type 13 class of Latin Square, partially bAlanced, incomplete block 

designs. 
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IX. APPE)TDIX 

Table I. Efficiencies of Group Divisible Designs·Relative 

to Completely Rnndooized Designs 1, 2 

EA 
7 = W/w' Design l 2 3 5 7 10 No. 

Sl 100 l()() 125 160 196 252 
S2 100 109 125 160 196 252 
S3 100 l()(J 125 160 196 252 
s4 100 109 125 160 196 252 
S5 100 109 125 160 196 252 
s6 100 111 130 171 214 ?.80 
S7 100 105 113 132 151 180 
S8 100 lll 130 171 214 280 
S9 100 105 113 132 151 180 
S10 100 111 130 171 214 280 
Sll 100 105 113 132 151 180 
S12 100 109 125 160 196 25~ 
S13 100 109 125 160 196 252 
S14 100 109 125 160 196 252 
S15 100 109 125 160 196 252 
S16 100 1()() 125 160 196 252 
S17 100 112 131 175 220 290 
S18 100 103 108 119 130 147 
S19 100 107 119 144 171 213 
S20 100 112 131 175 220 290 
S21 100 103 108 119 130 147 
S22 100 109 125 160 196 252 
S23 100 111 130 171 214 280 
S24 100 105 113 132 151 180 
S25 100 109 125 160 196 ~52 
s26 100 112 132 177 ~3 294 
S27 100 108 121 151 182 230 
S28 100 102 105 112 120 131 
S29 100 lll 130 171 214 280 
S30 100 109 125 160 196 252 
S31 100 105 113 132 151 180 
S32 100 109 125 160 196 252 
S33 100 111 130 171 214 28o 
S34 100 105 113 132 151 180 
S35 100 112 132 177 223 294 
S36 100 108 121 151 182 230 
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Table I - conti~ued 

EA 
'1 = w fa' 

Desig!l 1 2 3 5 7 10 no. 
S37 100 109 125 160 106 ,; 252 
S38 100 l~ 112 129 146 173 
S39 100 102 105 112 120 1;1 
S40 100 109 123 155 189 240 
S41 100 105 115 135 156 189 
S42 100 112 132 178 225 297 
s4; 100 109 123 155 189 240 
s44 100 105 115 135 156 189 
s45 100 109 123 155 189 240 
s46 100 109 125 160 196 252 
s47 100 112 131 175 220 290 
s48 100 109 125 160 196 252 
s49 100 107 119 144 171 213 
S50 100 109 125 160 196 252 
S51 100 112 131 175 220 290 
S52 100 109 125 160 196 252 
053 100 109 125 160 196 252 
s54 100 111 130 171 214 280 
S55 100 111 130 171 214 280 
s56 100 112 133 178 226 298 
S57 100 106 116 139 163 199 
s58 100 111 130 171 214 280 
S59 100 109 125 160 196 252 
s6o 100 112 132 177 223 294 
s61 100 108 121 151 182 230 
s62 100 112 133 179 227 299 
s63 100 109 125 160 196 252 
s64 100 107 118 142 168 207 
s65 100 112 132 177 223 294 
s66 100 108 121 151 182 230 
s67 100 105 112 129 146 173 
s68 100 111 130 171 214 280 
s69 100 112 131 175 220 290 
S70 100 107 119 144 171 213 
S7l 100 111 130 171 214 280 
S72 100 112 131 175 220 290 
S73 100 112 133 179 227 300 
S74 100 110 126 161 199 256 
S75 100 111 130 171 214 280 
576 100 105 ·113 132 151 180 
S77 100 109 123 155 189 240 
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Table I - continued 

EA 
., = w fe• 

Design l 2 3 5 7 10 No. 

578 100 112 132 178 225 297 
S79 100 109 123 155 189 240 
sao 100 109 123 155 189 240 
S81 100 105 114 134 154 186 
s82 100 112 133 179 227 300 
S83 100 105 114 134 154 186 
s84 100 112 132 177 223 294 
s85 100 112 133 178 226 298 
586 100 112 132 177 223 294 
s87 100 112 131 175 220 290 
s88 100 112 131 175 220 290 
s89 100 108 120 149 178 223 
S90 100 110 127 164 203 263 
591 100 108 120 149 178 223 
S92 100 109 125 160 196 252 
593 100 112 133 179 227 299 
S94 100 109 125 160 196 252 
S95 100 112 132 178 225 297 
s96 100 112 132 177 223 294 
S97 100 110 127 165 205 265 
s98 100 112 133 179 227 300 
599 100 110 126 161 199 256 
5100 100 112 132 177 223 294 
S101 100 108 121 151 182 230 
S102 100 112 133 178 226 298 
5103 100 108 121 151 182 230 
S1o4 100 112 133 179 227 300 
S105 100 112 132 178 225 297 
Slo6 100 112 133 179 227 299 
S107 100 110 128 167 207 269 
S108 100 110 127 164 203 263 
S109 100 112 133 178 226 298 
Sl10 110 112 133 179 227 300 
Sill 100 107 118 143 169 209 
Sl12 100 111 128 167 208 270 
5113 100 107 118 143 169 209 
S114 100 112 133 179 227 300 
S115 100 110 127 165 205 265 
s116 100 112 133 179 227 299 
S1l7 100 107 119 144 171 213 
S118 100 109 123 155 188 238 
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Table I - continued 

EA 
'1 = W/w' Design 1 2 3 5 7 10 No. 

Sll9 100 112 133 179 227 300 
S120 100 112 133 179 227 300 
S121 100 109 123 155 189 240 
S122 100 110 128 167 207 269 
S123 100 111 128 167 2o8 270 
Sl24 100 107 120 147 176 220 

1 Note, that for the singular subclass of group divisible designs, 
EC= l for all 7. 
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Table I - continued 

Ee: . 
7 = W/W' 

Design l 2 3 5 7 10 No. 

SRl 100 111 130 171 214 280 
SR2 100 111 130 171 214 280 
SR3 100 lll 130 171 214 280 
SR4 100 105 115 135 156 189 
SR5 100 111 130 171 214 280 
SR6 100 111 130 171 214 280 
SR? 100 l~ 125 160 196 252 
SR8 100 109 125 160 196 252 
SR9 100 107 119 144 171 213 
SRlO 100 109 125 160 196 252 
SRll 100 109 125 160 196 252 
SR12 100 111 130 171 214 280 
SR13 100 111 130 171 214 280 
SR14 100 lo4 110 124 139 162 
SR15 100 111 130 171 214 280 
SR16 100 lo8 121 151 182 230 
SR17 100 1o8 121 151 182 230 
SR18 100 lo8 121 151 182 230 
SR19 100 1o8 121 151 182 230 
SR20 100 109 125 160 196 252 
SR21· 100 111 130 171 214 280 
SR22 100 107 119 144 171 213 
SR23 100 109 125 160 196 252 
SR24 100 107 119 144 171 213 
SR25 100 105 113 132 151 180 
SR26 100 103 lo8 119 130 147 
SR27 100 111 130 171 214 280 
SR28 100 107 119 144 171 213 
SR29 100 109 125 160 196 252 
SR30 100 107 119 144 171 213 
SR31 100 105 112 129 146 173 
SR32 100 106 116 139 163 199 
SR33 100 lo6 116 139 163 199 
SR34 100 1o6 116 139 163 199 
SR35 100 106 116 139 163 199 
SR36 100 111 130 171 214 280 
SR37 100 lo8 121 151 182 230 
SR38 100 lo8 121 151 182 230 
SR39 100 111 130 171 214 280 
SR40 100 109 125 160 196 252 
SR41 100 105 115 135 156 189 
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Table I - continued 

Ee 
7 = Wfil' 

Design 1 2 3 5 7 10 No. 

SR42 100 109 125 160 196 252 
SR43 100 105 115 135 156 189 
SR44 100 105 115 135 156 189 
SR45 100 111 130 171 214 280 
SR46 100 107 119 144 171 213 
SR47 100 105 113 132 151 180 
SR48 100 105 113 132 151 180 
SR49 100 107 119 144 171 213 
SR50 100 105 113 132 151 180 
SR51 100 108 121 151 182 230 
SR52 100 109 125 160 196 252 
SR53 100 105 112 129 146 173 
SR54 100 108 121 151 182 230 
SR55 100 105 112 129 146 173 
SR56 100 109 125 160 196 252 
SR57 100 105 112 129 146 173 
SR58 100 lo6 116 139 163 199 
SR59 100 111 130 171 214 280 
SR60 100 106 116 139 163 199 
SR61 100 111 130 171 214 280 
SR62 100 107 119 144 171 213 
SR63 100 105 115 135 156 189 
SR64 100 108 121 151 182 230 
SR65 100 108 121 151 182 230 
SR66 100 111 130 171 214 280 
SR67 100 105 113 132 151 180 
SR68 100 109 125 160 196 252 
SR69 100 1o6 116 139 163 199 
SR70 100 107 119 144 171 213 
SR71 100 105 112 129 146 173 
SR72 100 107 119 144 171 213 
SR73 100 111 130 171 214 280 
SR74 100 109 125 160 196 252 
SR75 100 105 115 135 156 189 
SR76 100 108 121 151 182 230 
SR77 100 105 113 132 151 180 
SR78 100 109 125 160 196 252 
SR79 100 108 121 151 182 230 
SR80 100 107 119 144 171 213 
SR81 100 108 121 151 182 230 
SR82 100 107 119 144 171 213 
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Table I - continued 

~ 
., = w/w • 

Design 1 2 3 5 7 10 No. 

SR83 100 106 116 139 163 199 
SR84 100 107 119 144 171 213 
SR85 100 1(1) 115 135 156 189 
SR86 100 106 116 139 163 199 
SR87 100 lo6 116 139 163 199 
SR88 100 1(1) 115 135 156 189 
SR89 100 105 113 132 151 180 
SR90 100 105 115 135 156 189 
SR91 100 105 113 132 151 180 

2 For the semi-regular subclass of group divisible designs, 
EA= 1 for all r. 



Design 
No. 

Rl 
R2 
R3 
R4 
R5 
R6 
R7 
RB 
R9 
RlO 
Rll 
Rl2 
Rl3 
Rl4 
Rl5 
Rl6 
Rl7 
Rl8 
Rl9 
R20 
R21 
R22 
R23 
R24 
R25 
R26 
R27 
R28 
R29 
R30 
R31 
R32 
R33 
R34 
R35 
R36 
R37 
R38 
R39 
R40 
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Table I - continued 

7 = W/W' 
1 2 3 5 7 10 

100 111130 171 214 280 
100 109 125 160 196 252 
100 111130 171 214 280 
100 103 lo8 119 130 147 
100 105 113 132 151180 
100 105 113 132 151180 
100 105 113 132 151180 
100 112 133 179 227 299 
100 112 132 177 223 294 
100 112 133 180 229 302 
100 1o6 116 139 163 199 
100 111130 171 214 280 
100 lo4 112 129 146 173 
100 103 lo8 119 130 147 
100 109 125 160 196 252 
100 lo8 121151182 230 
100 111130 171 214 280 
100 112 133 178 226 298 
100 112 133 180 229 302 
100 105 113 132 151180 
100 lo8 121151182 230 
100 lo8 121151182 230 
100 lo4 112 129 146 173 
100 105 115 135 156 189 
100 1()() 123 155 189 240 
100 105 115 135 156 189 
100 103 lo8 119 130 147 
100 107 119 144 171 212 
100 112 131175 221 290 
100 103 lo8 119 130 147 
100 103.lo8 119 130 147 
100 112 133 179 227 300 
100 112 133 179 227 300 
100 lo4 112 129 146 173 
100 105 113 132 151180 
100 111130 171 214 280 
100 112 133 178 226 298 
100 112 132 177 224 296 
100 105 113 132 151180 
100 109 125 160 196 252 

., = w/w• 
1 2 3 5 7 10 

100 105 113 132 151180 
100 103 lo8 119 130 147 
100 107 119 144 171 212 
100 105 115 135 156 189 
100 111130 171 214 280 
100 111130 171 214 280 
100 110 126 161199 256 
100 103 lo8 119 130 147 
100 lo8 121151182 230 
100 107 119 144 171 212 
100 110 127 165 205 265 
100 109 123 155 189 240 
100 110 128 167 2o8 270 
100 109 125 160 196 252 
100 105 115 135 156 189 
100 111130171 214 280 
100 109 123 155 189 240 
100 109 124 158 193 247 
100 109 125 160 196 252 
100 111130 171 214 280 
100 111130 171 214 280 
100 110 128 167 2o8 270 
100 lo8 121151182 230 
100 109 125 160 196 252 
100 111130171 214 280 
100 109 125 160 196 252 
100 109 125 160 196 252 
100 111130171 214 280 
100 109 125 160 196 252 
100 109 125 16o 196 252 
100 109 123 155 188 238 
100 110 126 161199 256 
100 109 123 155 189 240 
100 107 118 143 169 209 
100 111130 171 214 280 
100 107 119 144 171 212 
100 106 116 139 163 199 
100 110 126 161199 256 
100 109 123 155 189 240 
100 111130 171 214 280 



- 126 -

Table I - continued 

Design 
No. 

1 = W/W' 
1 2 3 5 7 10 

R4l 100 111130 171 214 280 
R42 100 110 126 161199 256 
R43 100 112 133 179 227 300 
R44 100 109 123 155 189 240 
R45 100 102 105 112 120 131 
R46 100 106 116 139 163 199 
R47 100 105 113 132 151180 
R48 100 lo8 121151182 230 
R49 100 112 132 177 223 294 
R50 100 102 105 112 120 131 
R5l 100 110 127 165 205 265 
R52 100 112 131175 221 290 
R53 100 lo8 120 149 178 223 
R54 100 107 118 142 168 207 
R55 100 105 115 135 156 189 
R56 100 110 128 167 2o8 270 
R57 100 109 125 160 196 252 
R58 100 111129 170 213 278 
R59 100 110 128 167 2c8 270 
R60 100 109 123 155 188 239 
R61 100 105 113 132 151180 
R62 100 104 112 129 146 173 
R63 100 101103 106 110 116 
R64 100 109 123 155 189 240 
R65 100 110 128 167 2o8 270 
R66 100 101102 105 lo8 112 
R67 100 lo8 121151182 230 
R68 100 101102 104 106 110 

1 = WfW' 
1 2 3 5 7 10 

100 110 126 161199 256 
100 111130 171 214 280 
100 107 119 144 171 212 
100 111130171 214 280 
100 1o8 121151182 230 
100 109 125 160 196 252 
100 111130 171 214 280 
100 111130 171 214 280 
100 lc8 121151182 230 
100 lo8 121151182 230 
100 106 116 139 163 199 
100 105 115 135 156 189 
100 109 125 160 196 252 
100 109 125 160 196 252 
100 109 125 16o 196 252 
100 108 121151182 230 
100 1c8 121151182 230 
100 105 112 129 147 174 
100 107 118 143 169 209 
100 107 118 143 169 209 
100 1o8 121151182 230 
100 lo8 121151182 230 
100 106 116 139 163 199 
100 105 113 132 151180 
100 lo4 112 129 146 173 
100 105 115 135 156 189 
100 104 112 129 146 173 
100 105 113 132 151180 
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Table II. Efticie:icles of Latin Square Type Designs 

Relative to Completely Randomized Designs 

EA= E',c 
1 = WfW' 

Design l 2 3 5 7 10 No. 

LS1 100 103 107 119 130 147 
LS2 100 103 107 119 130 147 
LS3 100 107 119 144 171 213 
LS4 100 105 115 135 156 189 
LS5 100 lo8 121 151 182 230 
ts6 100 112 133 180 229 302 
LS7 100 112 133 180 229 302 
LS8 100 105 115 135 156 189 
LS9 100 105 115 135 156 189 
LS10 100 102 105 112 120 131 
LS11 100 102 105 112 120 131 
LS12 100 110 127 165 205 265 
LS13 100 111 130 171 214 280 
LS14 100 105 113 132 151 180 
LS15 100 109 125 160 196 252 
LS16 100 114 135 183 231 305 
LS17 100 102 105 112 120 131 
LS18 100 101 lo4 lo8 114 122 
LS19 100 101 103 lc6 110 116 
LS20 100 101 102 lo4 106 110 
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The work of Kramer and Bradley on the use of factorials in incom-

plete block designs bas been extended to permit both the intra-block 

and combined intra- and inter-block analyses of factorials in balanced 

and partially balanced incomplete block designs. In particular, we 

have obtained a combined intra- and inter-block analysis for fac-

torials in balanced incomplete block designs, group divisible designs, 

and Latin Square types of partially balanced, incomplete block de-

signs. For the class of Latin Square sub-type L; designs both the 

intra-block and combined intra- and inter-block analyses have been 

developed. 

In general, factorial treatment combinations were assigned to 

the association schemes by permitting the rows of the association 

schemes to represent the levels of one factor and the columns to 

represent the levels of a second factor. The extension to multi-

factor factorials was then carried out by sub-dividing the levels of 

the basic two-factor factorial, the levels in the sub-divisions rep-

resenting the levels of the multi-factor factorials. 

Estimators for the factorial effects have been obtained along 

with their variances and covariances. Sums of s~uares in terms of 

the factorial estimators have been derived and can be used to carry 

out tests of significance. These sums of squares were shown, for 

the combined intra- and inter-block analyses, to be independently dis-

tributed as x2-variates with the appropriate numbers of degrees of 

freedom. 
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Suitable sums of squares for tests of significance are not pos-

sible in general for Latin Square sub-type L3 designs. In situa-

tions such as these, we can only consider contrasts among the esti-

mators and use their variances to perform tests of significance. 

However, for the special cases of factorials in the 4 x 4 Latin 

S~uare sub-type 13 design, a complete analysis yielding the adjusted 

sums of squares for the factorial effects is possible if the fac-

torial treatments are applied to the association scheme in a dif-

ferent manner. 

Single-degree-of-freedom contrasts are obtained in much the 

usual way as for factorials in complete block designs. The method 

of incorporating a fractional replicate of a factorial into incom-

plete block designs is also considered. 

Numerical examples have been worked in detail for a group di-

visible design and a Latin Square sub-type L2 design. The procedure 

for analyzing a Latin Square sub-type L; design is also discussed, 
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