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I. INTRODUCTION

1,1 Historical Review

Incomplete block and quasi-factorial designs, as developed by
Yates, Bose, Nair, Harshbarger, and many others, are applied in situ-
ations where the number of treatments exceeds the number of homogeneous
experimental units in each block. These designs were first introduced
in 1936 by Yates |:2’4, 25] s in order to obtain a gain in precision
due to the use of smaller blocks, at the expense of loss of informa-
tion on those varietal comparisons which are confounded with blocks.

In 1939 Bose and Nair [ 3 ] published a paper on partially
balanced incomplete block designs. The same year, Bose [1] dis-
cussed the construction of balanced incomplete block designs. During
the past few years, Bose and his co-workers have investigated the par-
ticular field of partially balanced incomplete block designs with two
associate classes. Some of these designs were constructed and class-
ified by Bose and Shimamoto Ehj in 1952. This work was extended by
Bose, Clatworthy, and Shrikhande [[27], the extensions resulting in
the production of a set of tables of all known partially balanced in-
complete block designs, with two-associate classes, for which r < 10,
3 <k €10, vwhere r is the number of replications and k is the number
of plots per block and when the efficiency factors, E, and E2, are not
too different.

In 1947 Harshbarger [_8:[ developed the rectangular lattice de-

sign vhere the number of varieties is expressible as the product of
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two consecutive integers. During the next several years Harshbarger
[9, 10, 11 7] further extended the development of rectangular lattices.

In the original papers by Yates on incomplete block designs,
attention was directed to methods for obtaining intra-block estima-
tors of varietal effects by considering comparisons arising within
blocks. A second estimatﬁr may be obtained by taking into account
comparisons arising among block totals. Denoting these two estima-
tors by t, and t_, Yates [:21, 22:] showed that the "best combined

1 2
estimetor" having minimum variance is

t,(var t.) + t_(var t.)
(lolol) t = i 2 2 1 .

c
var tl + var t2

It can also be shown [ 67] that the best combined linear esti-
mators of the varietal effects can be obtained by the minimization of
a weighted sum of squares consisting of two parts. The first part by
itself yields the usual intra-block estimators while the second part
yields the inter-block estimators. In practice, the weights are not
known but can be estimated fairly accurately in large experiments
from the mean squares in the asnzlysis of variance table. In a recent
paper by Sprott [:20:], it has been shown that the two methods for ob-
taining the combined estimators are not in general equal; therefore,
the first method does not of itself yield the best combined estimate.
Rao [:19:] illustrates a method where the combined estimators and
their variances and covariances cen be obtained from the intra-block

formulae by making suitable changes. The required changes are seen
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to follow easily from a comperison of tho two sets of normal equa-
tions.

The use of incomplete block designs in the past has been re-
stricted to essuntially varietal trials. In recent years, however,
the utility of such designs has been greatly increased by incorporat-
ing factorial treatment combinations in them. The first use of a
factorial in a partially balanced incomplete block design is given by

5 fac-

Cornish [77] in 1938. In 1954 Harshbarger [5_.1] considered a 2
torial in a latinized rectangular lattice design. In the past year,
Kremer and Bradley [[13, 14, 157] and Zelen [ 26 ] have placed fac-
torials in several classes of incomplete block designs making vossible
a study of several factors at a time together with their interactions.
Kramer and Bradley considered only the intra-block analysis and Zelen

obtained, in addition, the inter-block analysis for certain specific

designs.

1.2 ObJectives of this Dissertation

The main obJective of this dissertation is to extend the work
of Kramer arnd Bradley and place factorials in the several suitable
classes of two-associate class, partially balenced incomplete block de-
signs that have not et present been considered in the literature.
Throughout the work on factorials by Kramer and Bradley no attempt was
made to utilize the recovery of inter-block information, and a major
part of this dissertation will be the consideration of this very im-

portant aspect of the analysis of experimental designs.
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The recovery of inter-block inf:-rmation is used to gain more
information on the estimation of treatment differences in situations
where there may be essumed to exist a random variability between
blocks. Additional assumptions in the mathematical model z=re made
that the block effects are normally and independently distributed with
zero means and equel finite vericnces.

A study will be made of the variances of estimators of treat-
ment differences, and then of factorial trectment contrasts, along
with the efficiencies of the contrasts in various designs relative to
the corresponding contrasts in completely randomized designs. Tests
of significance for factorial effects will be derived and single
degree-of -freedom comparisons will be determined in order to investi-
gate trends and special contrasts among the fectoriel effects.

For the balanced incomplete block and the group divisible, par-
tially balanced incomplete block designs, only the combined intra- and
inter-block analysis will be considered. However, in the case of the
Latin Square sub-type L3’ partially bulanced incomplete block designs,
both the intra-block analysis and the combined intra- and inter-block

analysis will be presented.

1.3 Review of Partially Balenced Designs with Two Associate Classes

An incomplete block design is said to be partially balanced
with two associate classes if it satisfies the following requirements.

(i) The experimental material is divided into b blocks of k
units each, different treatments being apolied to the units in the

same block.
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(i1) There ere v (Ok) treztmente 2sch of which occurs in r
blocks.
(111) There cazn be estatlished a relztion of association be-
tween any two treatments satisfying the following requirements: .
(2) Two treatments are either first associates
or secozd associates,
(b) Each treatment has.exactly g ith associates
(1 =1, 2).
(c) Given any two treatments which are T
associates, the number of treatments common
to the J*B associate of the first and the
kth associate of the second is pzk and is
independent of the pair of treatments we
start with. Also pﬁk = pli{'j (i, 3, k=1, 2).
(iv) Two treatments which are ith associates occur together
in exactly xi
For a proper partially balanced incomplete block design

blocks (i = 1, 2).

N # A,+ If A =\, the design becomes & balanced incomplete block

design.

The numbers v, r, k, b, Dyy Op Ll’ and Ae are called the
parameters of the first kind, whereas the numbers p;k (1, J, k=1, 2)
are called the parameters of the second kind.

The following relations between the parameters are known to

hold:

(1.3.1) vr = bk ,



(1.3.2)

(1.3.3)

(1.3.4)

(1.3.5)

(1.3.6)

(1.3.7)

(1.3.8)

(1.3.9)

nlxl + nzx?

L

1 1
Py * Pyp

1, .1
Pyy ¥ Pop

2 o
Pjy ¥+ Pyp =

2 2

Pp) * Ppp =
n 1 =
1P1o

n1=
1P22

L2
oP11?

L2
oP1o°

The parameters p.jik of the second kind can be exhibited as the

elements of the two symmetric matrices

and

Bose, Clatworthy, and Shrikhande define the constants A, H,

s

(1.3.10)

(1.3.11)

by the reletions

1
B

1 1
Py

—

2
P11

2 2
Poy

1
P1o

1
Pop

-

—

2
P1o

2
Pop

-

k2A = (a+xl)(a+x2) + (xl- 2) [:a(f-g)-tfhe—g)».l:],

KE = (234h¢M)) + (£-8)(A M),

Cl,
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(1.3.12) kAc, = Al(a+x2) + (xl-xé)(fo-gxl);
(1.3.13) kic, = Az(a+x1) + (xl—x?)(fkg-gkl),
where

(1.3.1k) a = r(k-1),

(1.3.15) I pie,

(1.3.16) g = pﬁz.

Partially balanced incomplete block designs with two associate
classes are classified into the following types depending upon their
association schemes:

(1) Group divisible,

(2) Simple,

(3) Triangular,

(4) Latin Square type, or
(5) Cyclic.

The only designs that will be considered in this dissertation
are those for which the number of treatments is non-prime. This re-
striction is necessary when we consider factorial treatments in in-

complete block designs.
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II. BALANCED IFCOMPLETE BLOCK DESIGNS

2.1 Combined Intra- and Inter-block Estimators for Factorial

Treatments
Suppose we have an incomplete block design consisting of v = mn

treatments arranged in b blocks containing k plots each, with each
treatment rcplicated r times. If each pair of treatments occurs to-
gether in exactly A blocks, the design will be balanced. We then
have the following two relations:
(2.1.1) bk = vr, and
(2.1.2) (v-1)A = (k-1)r.

To obtain the intra-block estimators, we use the model

(20103) = p,+ T

Yiss 1% Bg ¥ €1390
1 =1,e009m; J=1ye0eyn; 8 =1,..4,b, where yiJs is the observation
on the (13)*® treatment in block s if that treatment occurs in block

s, p is the grand mean, is the (1J)*® treatment effect, p_ 1s the

TiJ
effect of block s, and the eids's are independent normal variates
with zero means and homogeneous variances, o2,

For the inter-block estimators we use the model

s

(2.1.4) o 13€13s?

iJ

= kp + XX B
1]

+ kB + I8

S 8
3157148 13714 iy

where 8:3 = 1 if the (13)th treatment occurs in block s and is zero

otherwise. Equation (2.1.4) may also be written

(2.1.3) By=ku+ T _+kB +e

vhere Bg is the total of the observations in block s, Tees is the sum
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of the TiJ'S in block s, and €ieg is the sum of the ¢ Js's in block s.

i
The Bs's are now additionally assumed to be rormally and independently
distributed around & mean of zero with equal variances, ag. The Bs's

are also assumed to be uncorrelated with the eiJs's'
The estimators for the effects represented by equation (2.1.3)
are obtained from the method of least squares by minimizing the error

sun of squares. Therefore, we minimize

8§ o - 8 e - 2
(2.1.6) §§§ 5iJ€iJS §§§ 51J(yids u TiJ Bs)

and obtain the normal equations, yielding the intra-block estimators,
in the form
k-1) A
2.1. (k1) y LA 2 o1y =
( 7) k 1y x g 3 i3 Qij
191 3'43
where i, it = l’oco,m; J, J' = 1,.oo,n,

(2.1.8) Qq=Tyy - BiJ./k,

T, 1s the total of the observations for the (13)*® treatment, and
B,,, 1s the total of block totals for blocks containing the (13)*8

treatment. To obtain determinate solutions of equations (2.1.7), as

derived by Yates 25:], ve impose the condition that §§ tiJ = 0.
Then
(20109) t = k Q = -E» Q

13 (wrk-r) 13 v M

where 1 = l,.o.,m and J = l,oo.,no
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The combined intra- and inter-block estimators of the TiJ'S may
be obtzined from equations (2.1.9) by making certain substitutions
for N\, r, and QiJ' The required substitutions follow from & compari-
son of the normal equations for the cumbiined intra- and inter-block
estimators with the intra-block eguations (2.1.7). If we define
W=1/02 and W* = 1/(02+k0§), and assume that they are known without
error, Sprott [20] shows that the normal equations for the combined
intra- end inter-block estimators of the v, .'s can be obtained by

iJ
minimizing

B LI W
S.n )2 + — Z(B_-kp-T

2
—— + .
k iJ N k g 8 "s)

(2.1.10) wzzg sij(yijs

Minimizing (2.1.10) subject to the condition that ﬁ: ™ 5= 0, we ob-
tain the normal equations
(2.1.01)  r[wWewt /(k-1) ] (:‘ik‘.'-}-)tid - —’i"%‘ﬂ) r &8

i’ d'
141 3'43

i'J' ilJ'
= WQiJ + W'Q;.J

i= l,...,m; J = l,ooo’n’ where
(2.1.12) RS LA

i 3 is the combined inter- and intra-block estimator of 'r 13°

It is now obvious that solutions for equations (2.1.11) are the

same as for those from equations (2.1.7) if we replace
mne

(2.1.14) r by r[wwe /(k-1) ],
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and
(2.1.15) A by AMW-W')

in the first part of equations (2.1.9). Therefore, the combined esti-

mators for treatment effects are given by

k(WQ, #v'Q!.)
' - 1 iJ
(2.1.16) tid VA (T =AW ’

1= 1,00eym; J = 1yeeeyn.

Suppose one has two factors, A and C, at m and n levels, respec-
tively. The (iJ)th treatment is now the factorial treatment combina-
tion of the 1°" level of factor A with the J'B level of factor C.
Kremer and Bradley [ 14, 15 Jand Cornish [ 7 Jhave shown that the
factorial treatment combinations can be placed in the incomplete block

design and analyzed by replacing T,, in the model by

1
(2.1.17) Tyy = o, + 7J + 514'
where Qy, i=1,.eeym, represent the effects of the m levels of A, 74,

J=1,...yn, represent the effects of the n levels of C, and 8, 4 repre-

J

sent the interaction effects of the two factors.

The intra-block model for factorial treatments is given by

(2.1.8) yiass‘“' o, + 7J+51.1+ B * € 5s°

In obtaining unbiased estimators we impose the restrictions

(2.1.19) %TU = 0, Xy =0, §7J =0, Z3y4= f';'sid“ 0, Zpy= O.
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In view of equation (2.1.17) and the restrictions given by
(2.1.19), the combined estimators for the factorial effects, obtained

from equations (2.1.16) are

1 -
(2'1.20) / ai = 'ﬁ ?ti'j - ti. »

1 -

== ' =t
(2.1.21) cy=a %tid t’J ’
and
o T B Y )

(2.1.22) ajy =ty =%, =T

which are easily computed from a two-way teble of values of t!, in the

13

same way as described by Kramer and Bradley.

2.2 Variances and Covariances of the Estimators

Rao [:18?] has shown that the variances and covariances for the
combined intra- and inter-block varietal estimators may be obtained
from the intra-block formulae by making the substitutions (2.1.13),
(2.1.14), and (2.1.15), and omitting the multiplier 02, Bose and Nair

[5] have shown that the variances and covariances of the Q1 3'8 are

r(k-1)o02
(2.2.1) =
and
2
(20202) - }-E— »

respectively. From equations (2.1.9), (2.2.1), and (2.2.2), it follows

that

kr(k-1)o2

(2.2.3) V(t,,) = (ko n) 2

and
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“kno2
ij’ti' ,J' ) _(I‘km-r*')\) 2

(2.2.4) Cov(t

The variances of the combined treatment estimators, obtained from equa-
tion (2.2.3) by making the substitutions (2.1.13), (2.1.14), and

(2.1.15), and omitting 023, are

k(k-1)r [wew' /(k-1)
Lr(k-1)wrirsrw-w') ]2

(2.2.5) v(t{y) =

k[ r(k-1)werw® 7]
[ (rk-re XY (r-A)we ]2

]

k(v-l)NH+kril!
Cvas (e ]2

i1=1yeeepom; J =1,.0.pyn. Similarly, the covariances of the combined

treatment estimators are

kN(W-W')
[r(x-1)werwren(w-wr) ]2

(2.2.6) cov(tid’ti'é') =

EN(W-W')
Cvais (r-aw ]2

i’ it = l,o.o’m; J’ J' = 1,.0.,1’10 From equations (20205) and (20206)

the variance of the difference between two estimators is
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(2.2.7) V(th-t'

1'J') = V(ti,‘]) + V(¢! ) -2 COV(t'J,ti.J,)

AL i

o Z&(v-1) A 2krW '+ KN (W-W' )
[vM‘«o—(r-X)W' :Ia

) ok [ v (r-2)w 7]
[ v (r-A)we )2

2k
[y (r-A)wt 7]

To estimate the weights, W and W', we form the usual auxiliary
table for inter-block analysis of variance as described by Bose,
Clatworthy, and Shrikhande EE]. This method for estimating the
weights was first discussed by Yates [22]. If ve denote the mean
square for error by E and for blocks adjusted by B, then the estimates

of W and W' are

- bk-v
" k(b-1)B-(v-k)E °

(2.2.8) v o= -;- , W

Using equations (2.2.5) and (2.2.6), we may derive the vari-
ances and covariances of the combined intra- and inter-block estima-

tors of the factorial effects. For the A-factor we have
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(2.2.9)  V(a}) = V(E},) = vzt )

;lé [_‘zaw(t;a)», EE Cov (t],,t1,,) ]

JJ
3'A
e [n Ck(v-1)wrekew 7] | n(n-1) [-knww)]
n2 Cvnr (r-a)ur 2 [P+ (r-A)we 7] 2

. (kvA-nkKA)W+ (krenkA-KA)W?
n[ vNm (r-A)ut ]2

_ mnkA(m-1)W+mk(r+nA-A)W?
mn [ vA+ (r-A)W! )2

If we recall that vA = rk-r+\ from equation (2.12), the coefficient of

W' in (2.2.9) may be written

(2.2.10) mk(r+nh-A) = mkr + rk® - rk + Ak - mkA

= k2r + k(m-1)(r-A).

Substituting equation (2.2.10) into equation (2.2.9), we obtain the

result

(2.2.11)  V(a}) = vEN(m-1 )W+ [ K2k (m-1)(r-A) T W .

v va (r-A)ut ]2

Similarly, for a C-factor we have

vEA(n-1)w+ [ k2r+k(n-1)(r-A) ] !

(2.2.12) v(cB) =
v v (r-Aut 2

The covariances of two combined intra- and inter-block estimators

for A-factor effects are of the form
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(2.2.13) Cov(ai,a;,) = Cov(t .,t ')

l
—s Cov(Zt!
n? (

iJ,J i!J!)

L}

Cov(t} J’titjt)

~kA(W-W"')
[vnr (r-A)ut ]2

i#1i'; 1, 1' = 1,...,m, fron equation (2.2.6).
Similarly for C-factor effects the coveriances of the combined
intra- and inter-block estimators are of the form

“KA(W-W')
e (r-a)we )2

(2.2.14) Cov(cJ,c',) =

J# 3 3, ' = 1,.0.yn. The covariance of an A-factor estimator with
& C=-factor estimator is no longer zero as in the intra-block analysis,

We now find that

(2.2.15) Cov(a! ,cJ) = Cov(t' ,t'J)
= Cov(2 z:tu,i1 Zty )
1 1 1
= = v(t! J) + = i. 3‘. Cov(tij,,ti,a) 5; Cov(tm,,tid)
151 43

k(v-1)\+krW ! - [n(m-1 1 (n-1) TJeA(W-W?)
mm [ v -(r-A)W? ]2

kzrwﬂ
v[vm-(r-x)w T2 ’

by making use of equation (2.1.2).
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From equations (2.2.5), (2.2.6), (2.2.10), (2.2.11), z2nd (2.2.15)
we can obtain the variance for the combined intra- and inter-block es-

timator of an AC-effect. We have
) = t at ot
(2.2.16) v(dij) V(tu al cJ)

= V(tid) + V(ai) + v(c3) - ECov(tiJ,ai)

- QCov(t;J,czj) + Z’Cov(ai,cs) .
Now,

(2.2.17)  Cov(t},s}) = Cov(th,;l; gti'j)

1 ' n-1 ' '
= - V(tia) + — Cov(ti,j’tij') .
Similarly,

(2.2.18) Cov(t],e)) = %V(tia) + '—“-;71- Cov(t] otieg) »

Therefore, substituting (2.2.17) and (2.2.18) in (2.2.16), we have
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(2.2.19) v(aj ) = (1 - - - -)V(t A ER(CHE V(cJ)

- 2(‘-—- + E—-}-)Cov(t ) + QCov(ai,c'

13’t1 '3 J
_ (on-2u-2n) E:iv-l))&ﬁkﬂrl' l

v v (-t ]2

vk(n-1)N4+ [k2r+k(m-1)(r-A) T W'
.’-
v vam (A )2

vi(n-1)N4 [kPr+k(n-1)(r-A) T w*

+ v [v%(r-h)w' jE
, (h=n-2o-on)ln(i-u')
v van (r-AW ]2
23y

v v (r-aW 2 )

The coefficient of W simplifies to the form

(m-1)(n-1)kvA ,
and the coefficient of W' becomes
k2r + k(n~-1)(n-1)(r-x) .

Therefore,

kvA(m-1)(n-1)W+ [ k2r+k(m-1)(n-1)(r-A) Jw

(2.2.20) viay J) v (r-At ]2

The covariances of the combined intra- and inter-block estima-
tors for the interaction effects are easily obtained by using equations

(2.2.5) and (2.2.6). We have
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(2.2.21) ov(d 1,3,) ov(tij i, tJ 13' %‘:J,)
s----Var(t"j)+ -(-—-)-Cov(t g’t J')

_ 2k(v-1) N2k - (mn-2) kA (W4 )
v v (r-At )2

kviw+ [rk2ek(r-a) Jw?

v v (e-A ) 2

1i#1i'y, J7 3. Similarly, it may easily be shown that

~kvA(m-1)W+ [ rk2-k(m-1)(r-A) u*

(2.2.22) Cov(d
v vNs (r-AWr )2

id’did')

for all J # J', and
~kvA(n-1)w+ [rka-k(n-l)(r-h) Jw
v v (r-a)ut ]2

(2.2023) COV(d J’di’ J)

for all i H 1°,
All covariances arising from an estimator of & main effect with

an estimator of an interaction effect are of the form

(202-2"') COV(ai’dild) COV(ti ’tilJ ;'! t J)

v(t 1) - Lt 1 Cov(t} ,tl, )

- k(v-1)Ne+krdi* T+ (mo-1)kA(W-H")
v vam (r-a)ut ]2

k2 W
v vas (r-awe )2

for all i, 1' = 1,.eeymy, and J = 1,.0eyn.
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From equations (2.2.9) and (2.2.13) the varience of the differ-
ence between estimators of the A-effects is

2k
a[ v (r-A* 7]

(2.2.25) V(aj-a,) =

1 # 1'. Likewise, the variance of the difference between estimators of

the C-effects, obtained from equations (2.2.12) and (2.2.14), is

2k
m [ v+ (r-AJW* ]

(2.2.26) V(CB’CB.) =

Jq 3.

2.5 Tests of Significance

If W and W' are known without error, then Reo 1?19:] has shown
that a test of the equality of treatment means for the combined intra-

an& inter-block analysis is based on the statistic
2 ' 100
(2.3.1) X = %tm(wqifw Q“),

which can be used as a X2-variate with (v-1) degrees of freedom. If
the' computed value obtained from equation (2.3.1) exceeds the tabled
value of X2 with (v-1) degrees of freedom at the a level of signifi-
cance, we reject the hypothesis that the treatment means are equal.,
This test may be used as an approximation if W and W' are estimated
with a large number of degrees of freedom. From equation (2.1.11) and

the restrictions (2.1.19), equation (2.3.1) may be put in the form

2 t Iy e
(2.3.2) Xp = [ vN(r-A)W Jﬁtiéa
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To test the null hypothesis of no A-effects in the intra-block

analysis, Kramer and Bradley [ 14, 15 ] used a statistic based on the

fact that
2,1 = B g2
(2.3.3) =2 PPyt e 1

is a XP-variate with m-1 degrees of freedom. If we make the substitu-
tions (201013)’ (201.1&‘), and (201015) in equation (2.503), then the

statistic

2 ]
(2.3.4) X3 = %“1("% FAUACH J)

is also a XZ-variate with (m-1) degrees of freedom which can be used
as an aprroximation to test the null hypothesis of no A-effects for
the combined intra- and inter-block analysis. From equation (2.1.11)

and the restrictions (2.1.19), equation (2.3.4) may likewise be put in

the form
2 (]
(2.3.5) X, = [ (rk-re )i+ (r-A)u* 7] Silgti.tid/nk
= v (r-A)' 7] ‘wi:tiff/nk ,
or
(2.3.6) Xg = [ovaien(r-Aw* Zaj2fs .

A similar argument is sufficient to derive X2-statistics to test
the null hypotheses of no C-effects and no interaction effects. To

test the hypothesis of no C-effects, we use the statistic

2 ' 10
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vwhich is approximately distributed as a X2-variate with (n-1) degrees
of freedom. From equation (2.1.11) and the restrictions (2.1.19),

equation (2.3.7) may be written as

(2.3.8) x§ = [ (rk-re N (r-A)W’ gj:t:dtij/nﬂc

= v (r-a' 7] gt:‘-;/mk,

or
(2.3.9) X = [ovawen(r-aw ] )gcse/k.
To test the hypothesis of no interaction effects we use the statsitic
2
] 1m0
(2.3.10) Xae = T340 Wy ),
which is approximately distributed as a X2-variete with (m-1)(n-1) de-

grees of freedom. Fron equation (2.1.11) and the restrictions (2.1.19),

equation (2.3.10) may also be written as

(2.3.11) ":c = [ (rk-re A+ (r-A)u* ] %(ti ;LR 2,
or
(2.3.12) xic = [ (rk-z AW (r-A)W* ] %dﬁ .

We will now show that

2 = y2 2 2
(2.3.13) Xp = Xy + X+ Xgos

and the degrees of freedom 2dd up to v-l. From equations (2.3.h4),

(2.3.7), and (2.3.10), the right side of equation (2.3.13) is
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(2.3.14) z;,?ai(waifw'qh) + )fgb:j(infw’Qi,j)
+ ﬁd;d(waifw'eg J)
= f?(a{+c3+diJ)(wqid+w'QiJ)
= ’E’j"ig("’%f""%)'
which is equal to the left side of equation (2.3.13) by equation (2.3.1).
The sum of the degrees of freedom is

(2.3.15) (m-1) + (n-1) + (m-1)(n-1) =mn -1 =v -1,

which is equzl to the total number of degrees of freedom for treatments.
Cochran's theorem [ 5] is sufficient to demonstrate the independence of
all the X2-variates.

To test the significence of the difference between pairs of
treatment estimators or facéorial estimators the {-test may be used as

an approximation.

2.4 Individual Comperisons and Multi-factor Factorials

Frequently in experimental work we wish to krow the a;swers to
certain questions zbout the treatments which can not be obtained from
the complete treatment mean square. By an extension of the analysis
of variance, we can sub-divide the treatment sum of squares into a num-
ber of components that are more relevent to the individual questions.
While orthogonal comparisons are desired to perform tests of signifi-

cance, this is not a necessary restriction.
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Individual or single-degree-of-freedom comparisons ere possible
for the combined intra- and inter-block analysis in the same way as
for the intra-block analysis, given by Kramer and Bradley ]:lh, 15].
Let & be an (m-1) by m orthogonal matrix, and n an (n-1) by n ortho-
gonal matrix used to transform the aj's and c:"s to (m-1) and (n-1) in-
dividual contrasts, respectively, each yielding an adjusted sum of

squares with one degree of freedom. Contrasts on A-factor effects

would then be

(20hol) Iu = fﬁiu&i, u = l, oo o,m-l,
and on C-factor effects
(2oh02) JV = §nvdc3, v = l,...,n-l.

To test the hypothesis that zi‘,gmai = 0 against the hypothesis that

ZE0 # 0, ve use the statistic

(2.4.3) Xiu = [ovadEn(r-Aw! j(? giuai)e/kzi'. gfu
= [nviWen(r-AW" '_‘]()1: §1u-fi-)2/k§' g';’u,

which is easily derived from equation (2.4.1) and the multiplier of
equation (2.3.6).
Similarly to test the hypothesis that g 1, 37 3 = 0 against the

hypothesis that I’j. a7 # 0, we use the statistic
2
(2.4.1) x"v = [mvmm(r-x)w'](}j anc3)2/k§ "35

= Covsem(e-ait J(E n, 2 )2 A2 o5,
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which is obtained from equation (2.4.2) a2nd the multiplier of equation
(2.3.9).

The adjusted interaction sum of squares may also be partitioned.
The (m-1)(n-1) orthogonal contrasts for the interaction of I, and J,

obtained from the matrices ¢ and 7, are

(2.8.5) (13)y = 3% 8, 4,81

fﬁ Eulyy(t]yei-c))

= §§ giuﬂth:{J’

since % Eiy = g g = 0. To test the hypothesis that fg 51u”v3513 = 0,

we use the statistic

(2:4.6) xRy = T (eaw OB £yt PPAEE )2

which is obtained from equations (2.4.5) and the multiplier of equation
(2.3.12).

From the manner in which we have constructed the single-degree-
of -freedom contrasts, it is clear that the resulting sums of squares
add up to the total adjusted sum of squares for treatments, which has
been shown to be distributed as a X2-variate with (v-1) degrees of
freedom., Since the degrees of freedom for the individual contrasts add
up to (v-1), we may conclude by Ccchran's theorem E5:] that the cor-
responding sums of squares are independently distributed as X2-variates,

each with one degree of freedom.
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Specisl dafinition of the motrices, £ and 1, permits the use of
special contrasts. For example, rows of € and n may be defined such
that contrasts on A-factor and C-factor effects measure trends (linear,
quadratic, cubic,...) over the factor levels,

Suppose the A-factor has levels which themselves are factorial
combinations of other factors. Let there be p such factors Al,...,Ap,-
with levels ml,...,mp, such that m = ji;mi. Ther. ¢ may be chosen in
the obvious way so that the contrasts defined may be grouped to obtain
main-effect and interaction comparisons fer the subfactors of A. The
correspondirg ad justed sums of squares, each with one degree of
freedom, may be grouped together to give adjusted sums of squares for
the various subfactors of A. These sums of squares will be distributed
as X2-variates since we are grouping sums of squares which themselves
are distributed independently as a X2-variate. It now will be possible

to test the hypotheses of no main effects or interaction effects among

the subfactors of A. Similarly, the C-factor may consist of factorial

combinations of q factors Cl,...,Cq, with levels nl,...,nq, such that
q
ns= TThJ. Appropriate contrests and adjusted sums of squares may be

J=1
obtained with proper selection of the rows of n. When & and 1 have been

defined, the corresponding contrasts for interaction of A-factor and
C-factor contrasts follow irmediately. These in turn yield adjusted
sums of squares that may be grouped to yield sums of squares for the
various interactions of the subfactors of A with those of C.
Alternately we could obtain the combined intra- and inter-block

estimators of all the factorial factoré by generalizing equation
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(2.1.17) so thae® 7,, is a functicn of zll the main and interaction ef-

id

fects. Imposing the restrictions that the sums of the various main

effects are zero and the sums of the interzction effects over any one

or more subscripts are zero, we could cbtain the combined intra- and

inter-block estimators of the factorial effects by considering a table
'

of the t 1) S,

The use of fractional factorisls also is possible in exactly

the same way as carried out by Kramer and Bradley Elh, 15___'.
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III. GROUP DIVISIBLE DESIGNS

3.1 Properties of Group Divisible Designs

Bose, Clatvorthy, and Shrikhande [[27] 1ist the following prop-
erties of group divisible designs with two associate classes:

(i) The requirements for partially balanced designs as outlined
in Section 1.3 are satisfied.

(i1) There are v = mn treatments, and the treatments can be di-
vided into m groups of n each such that any two treatments of the same
group are first associates while two treatments from different groups
are second assoclates,

(1i1) Each treatment has exactly n-1 first associates and n(m-1)
second associates.

(iv) The design parameters are related so that

(3.1.1) (n-l)xl + n(m-l)h2 = r(k-1)

or
tk - VN, =T - A+ n(kl- 2).

(v) In matrix notation P, and P, of Section 1.3 may be written

1 2
(n-2) © 0 (n-1)
Pl = and P2 =
o] n(m-1) (n-1) n(m-2)

(vi) The inequalities, r > A,, rk - A_v > 0, hold.

1 2

Group divisible designs have been divided into three subclasses:
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(a) Singular, if r = Mo

(b) Semi-regular, if r > A end rk - VA, = 0,

2

(c) Regular, if r >\, and rk - VA, > 0.
Let V,, denote the ' treatment of the 1%} group noted in (ii)
13 ’

i=1e0.,m; J=1,0e.yn. Then the usual association scheme is given
by the matrix V with elements viJ’ such that two t?eatments in the

same group or row (treatments with common first subscripts) are first
assoclates and two treatments not in the same row (treatments with dif-

ferent first subscripts) are second associates.

3.2 Combined Intra- and Inter-block Treatment Estimators

The intra-block estimators of the treatment effects are obtained
from equation (2.1.3) by minimizing the error sum of squares given by
(2.1.6). Equations (2.1.3) and (2.1.6) still hold for group divisible

designs; results differ owing to differcnt values of 8: as sums are

J

taken over treatment and block associations. The resulting normal equa-

tions were shown by Bose and Shimamoto [h] to be of the form

r(k-1) M A
e ey -5 Tt T xR ey Ty
J'# 1141

vhere 1 = 1l,.00ym; J = 1,00.yne

If W and W' are assumed to be known without error, then, as in
Chapter II, Sprott [:20:1 shows that the combined intra- and inter-block
estimators of the treatment effects can be obtained by minimizing the

veighted sum of squeres of deviations still symbolically given by



- 33 -

= 0, Therefore we must

(2.1.10), subject to the condition that %% Ty
minimize
B T '
s --3. - AT w uo 2
(3.2.2) wg%g BiglVigs T - Tyt E) Y T MBgtkweT.L)
o
+ c\{% TiJ’

where A is a Lagrange multiplier and symbols have definitions as used
earlier. Taking the partial derivative with respect to p in (3.2.2)

and setting it equal to zero, we obtain

(3-205) §(B8.3m-t:03) = 0,

from which it follows that

(3.2.4) m= —

sin&e PR A = X3! = 0; t!, is the combined inter- and intra-block
s **s iJ 1J 13 . ‘

estimator of 71 as before.,

J

Taking the partial derivative with respect to 7 in (3.2.2) and

iJ
setting the resulting expression equal to zero lets us write the equa-
tion
B ’
S --s- - ' [N ¥:1
(3.2.5) wg 5iJ(yijs - tiJ + )
£z £ 8° B ' “ies
"ws T3 5id(y1'3' " - ti'.‘]' + " )
in
s
w! s '
+ '-k‘:'gsid(B "hn"t-os) - ). - 0’
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where aij = 1 if treatment Vi occurs in block s,

J

= 0, otherwise. Therefore, we have

B t

8 .8 _ ' (X ]}
(3.2.6) w>s: am(yms 1;1‘j + )
we s
since
B L
<] .ﬁ - ' N ee8
LE §. 8y3Wegr = = tage + =)
in
8
=L L 85,y -zzzas?.i-zzz
s 1 g LN g g Tk g g
in in in
S 8 8
t!
+ZZ £ >, 228
s 1! §° 813 X
in
8
B t
i 8 eeS
= -k ...l. - % ] + KL e
Bigom B ¥t Y BE Y
= 0.
It follows that
B t!
- i3 _ 2] se8S
(3.2.7) w('r1LJ Ld: rtifisl 5“ — )

w! s .,
+ By, rm-Eoy st ) - A= 0,

i = 1,..',1!1; J = l,ooc,n, Vhere Ti

J

By .

Summing equation (3.2.7) over all treatments, we find A = O and,

therefore,

is the total for treatment Vi

J

is the total of block totals for blocke containing treatment V

and

13°
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B t!
13 S Y
(3.2.8) W(']Q'i"1 - _k.Q_ - rt;--f;s; 51.1 T)

w! S .,
+ —E(Bid.-rlnn-)é ath“s) = 0,

i= 1,ooc’m; J = 1,...,n. Now

8 L] | L}
(3.2.9) gaidtg.s = rtij + N 3:' tm, + A, i‘.' 3:1:1,3,
J'#3 1141

and substitution in equation (3.2.8) gives

1 V/(k-1) ] (e M) z ot
(3.2. 0) rEW‘!'W /( = ):] (T)tid - —T— 40 13
343
xa{w-w')
] = W [TaXl
e (PR LT R P
1044
1i=1,e00pm; J =1,.00yn, where Qij and Qij are defined as by equa-

tions (2.1.8) and (2.1.12), respectively.
It is now clear that the solutions for equations (3.2.10) may

be obtained from the solutions of equations (3.2.1) if we replace

(3.2.12) r by r[ W' /(k-1) ],
and
(3.2.13) A By A (W),

where 1 = 1, 2.

We may also obtain the combined intra- and inter-block treatment



- 36 -

estimators, equivalent to the treatment estimators obtained by Bose,
Clatvorthy, and Shrikhande [[27] but in a different form, by solving
the equations (3.2.10). Applying the condition that %gtia = 0, it
follows that

(5.2.1’4) f‘ §t;.'J = -?tijo
1041

Substituting (3.2.1%) in (3.2.10), we obtain
W(rk-re A 10 (r-A,) (Ww*)(N,-N)
i ( i .+ o™ .,
k 1] k FLl 1J
343

(3.2.15)

= inJ + W'Qié,

i1=1yeeeym; §=1,.0.,n., If we denote the nxn square symmetric matrix

of the coefficients of the tia's in (3.2.15) by K, the diagonal ele-

ments of K are
w(rk-r+x2)+W'(r-A2)

(3.2.16) ”

and the non-diagonal elements are

LR DI

k

(3.2.17)

Therefore in matrix notation we have

(3.2.18) Kt!

= 1
H in + W

1’

where ti
It 09

WQi + W Q1 is the column vector of elements inJ + W QiJ'

is the column vector of elements tiJ (J=1,.0.yn) and
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Once the elements of the inverse of the matrix K are obtained,

the solutions of equation (3.2.16) are given by

(3.2.19) tr = K-1(wq +w'qQ?).
i i i
The inverse of an nxn matrix with a's on the diagonal and b's else-~

where has diagonal elements given by

(3.2.20 X = a+ (n-2)b
a[ e+(n-2)b ]-(n-l)b2

and non-diagonal elements

(3.2.21) y = . ]

a[a+(n-2)b J-(n-1)v2

Substituting (3.2.16) and (3.2.17) for a and b, respectively, in equa-

tions (3.2.20) end (3.2.21), we see that K™ will have diagonal ele-
ments
”" ”rr o
(3.2.22) A"W+B"W ,
C'WAD'WW™E'W'2
where
” = - - -
A" = k(rk-r+h,) + k(n-2)(A,-\)),
B" = k(r-A,) - k(n-2)(A,-7),
C' = r(k-l)[rk-un(xa-xl)fexlj + oM\, - (0-1)03,
D' = 2r2(k-1) + (rkn-erk-ermhr)xl + (2rn-rkn)K2
- ’ -1)22
20 N, + 2(n-1)A3,
and
E* =

r? - nrh, + r(n-2)A + nA A, - (n-l))\f,

and non-diagonal elements
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"k()"z’ l)(W'W' )
(302023) .
C'WAD'WW'+E'W'2

From equation (3.2.19) it follows that

= A"W+B"W! A wiQ!
(3.2.24) t;.J C'"W2D'WW'+E'W 12 ( QiJ * Qid )
k - W-W?'
_ (}‘? )\1)( ) (w T Qi , + wlz Q! ' ) .
cvwa,,ntw;\n*,Euth J' J J' 13

373 34

Equation (3.2.24) mey also be written in the form

- A'W+B'W! At
(5'2.25) tiJ C'W2D'WW +E'W 2 (inJ+w QlJ)

k(A -M ) (W-H')
T CWRAD'WWHEW 2 W?-Qid'w'?ﬁia.),

where

A' = k(rk-r+%2) + k(n—l)hz-xl)

and

B' = k(r-),) - k(n-1)(Ay-N).

The values of the constants, A', B', C', D', and E', may be further

reduced by using equation (3.1.1) so that equation (3.2.25) may be put
in the form

v o AweEW! .
(3.2.26) tia popCm——p— (WQiJ-t»W Q;J)

. k(}"l'xa) (W-W' )

+ CWRF DWW '+ EW 2 (w§9Q13'+w.§in..J' )"
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i= l’co.,m; J = l,-oo,n, vhere

= kvke,

vke(}\l+rk-r) ’

]

A
B
c
D

rk(rk-vhg) - (r-xl)(rk-evxe),
and
E= (r—xl)(rk-vxe).
The intra-block estimators may be easily obtained by setting
W=1and W' = 0 in equation (3.2.26). Therefore

k()‘l')‘z)

k

2. t 2 commmmaem— pi
(>.2.27) 1J A #rker “g* VXQ(Xl+rk-r) 3 Uy

i1i=1,e00ym; J=1,.00yn, which are identical to the results shown by
Kramer and Bradley [ 14 ]. The inter-block estimators may be obtained
by setting W = 0 and W' = 1 in equations (3.2.26). In this case

(W

» k v _ 12 '
(5.2.28) tiJ = mi“)' [Qi.’ (I‘k—Vke) ?'Qid' ] ’

i=1,e00pm; J=1,.e.yn, vhich are equivalent to the results obtained
by Zelen [26 7.

The combined intra- and inter-block estimators of the treatment
| effects given by equations (3.2.26) are equivalent to the estimators
obtained by Bose, Clatworthy, snd Shrikhande [2]bu’c in a more con-
venient form, especially in situations where the required design has

not been catalogued and the constants, A, H, 2T and c,y &s defined in

Chapter I, have not been tabulated.
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To incorporate factorizl treatment combinations in group di-
visible desigrs, consider two factors,l A and C, at m and n levels,

respectively. The treatment Vi has now become the factorial treat-

J
ment combination of the ith level of A with the Jth level of C. Fol-

lowing the procedure of Bradley and Kremer [ 1k, 157, ve take

(3.2.29) Tiy =@yt Tyt By,

vhere a,, 73, and 5, , represent the effects as defined in Chapter II.

i
In view of equation (3.2.29) and the restrictions given by (2.1.19),
the combined intra- and inter-block estimators for the factoriel ef-

fects, obtained from equations (3.2.26), are

G230
1l -

(3.2.31) c3 - = {mh = t:J,

and

(3.2.32) dij = t:'u - ‘q_ - ‘E:J .

The estimators for the factorial effects are most easily obtained

from a two-way table of values of tij's.

3.5 Variances and Covariances of the Treatment Estimators

To facilitate the mathematical computations, it will be con-

venient to write equations (3.2.26) in the form

1 The factorial factors, A and C, never appear in formulas and should
not be confused with the constants, A and C, of formula (3.2.26).
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(5-3-1) t;-d = pPiJ + C ?,Pij".
3£
i=1,0eeym; J=1y00.yn, where
ARHBH R (N -2 Y (W-ue)
(3.3.2) p= >\l }\2 ’
CW24 DWW '+EW ' 2
k(N -\ ) (W-W")
(5.3.3) I
CHEFDWW "+ EW ' 2
and
(3.3.4) Pyg = Wayy+ WQY, .

If it is desirable to use the symbols employed by Bose,

Clatworthy, and Shrikhande [[27], we can write
k-dy

(50305) 0=
r[ww(x-1) ] ’
and
d,-d
(3.3.6) §= —2,
r[wr+w(k-1) 7]
where
( y ciNrkiZ ( )
3.307 d DD et —— 1= l 2
1 mermeres? ’
and
w'
(3.308) Z = W .

For group divisible designs p = 0 and q = ¢.

The variances and the covariances of the P,,'s will be used to

i

. L]
determine the verisances end covariances of the t, ,'s. Bose and Nair

13
[37] bave shown for the intra-block analysis that
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(3.3.9) v(q; ) = e,
and

-xu
(5.3.10) COV(QiJ,Qi'J,)aT

where u = 1 or 2 if QiJ and Qi'J' are first or second associates,
respectively. Therefore, by making the substitutions (3.2.11),

(3.2.12), and (3.2.13), we obtain

(3.3.11) V(Pij) = rEW(k-l}"’w' ] ,
k
A (W)
(5.3.12} Cov(PiJQPiJQ) = "3"'1""}';""""' s J % J's
for first associates and
-xe(w-w')
(3.3.13) Cov(PiJ,Pi,J,) == 141,

~ for second associates.
Bose, Clatworthy, and Shrikhande [[27] have shown for the com-
bined intra- and inter-block analysis that the variance of the differ-

ence between two treatment estimators which are first associates is

(3.3.14) V(ts-tis) = 2(p-a).

Likewise the variance of the difference between two treatments which

are second associates was shown to be

(3.3.15) V(tia-ti,J,) = 2p,

From equation (3.3.1), the covariance of any two treatment estimators

which are second associates is
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(5-5016) COV(tiJ,ti,J,) = COV(pPiJ‘*q §,P1J"ppi'd'+q 3“" P10J")
J'4d J"#d

= COV[ (p'Q)Pifq}j‘Pi,j’(p'Q)Pi'.j'+q§‘.P1'J' J
= (p-q)%OV(PiJ,Pi,J,) + qzcov(gPi,j’?.Pi'J')
- Q(P‘Q)qcov(Pialg'PioJu )

= (p-q)zbov(PiJ)Pi'Jo) + 02Q?cov(PiJ’P1'J|)

- 2n(p-q)quv(PiJ,Pi.J.)

= [p"‘ (n-l)qjecOV(PiJ,Pi. 3 ).

From equation (3.3.13) we have

[p*(n-1)q JPas(u-u*)

(303.17) COV(tiJ’ti.J') =2 - k

If we write equation (3.3.15) in the form

(3.5018) V(tij) - COV(tiJ’tigdg) = Py

and substitute from eguation (3.3.17), we obtain

(3.3.19) V(ti))=p-oc
where

[er(n-1)aJ2n (ww')
(3.3.20 c = - .

Similarly, from equations (3.3.14) and (3.3.19), the covariance of any

tvo treatment estimators which are first associates 1is

(305021) COV(tiJ,tiJ') =2 q -~ Co
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Using equations (3.3.17), (3.3.18), (3.3.20), and (3.3.21),
the variances and covariances of the combined intra- and inter-block
estimators of the factorial effects may be derived. The variance of

an A-factor estimator is given by
(3.3.22) V(aj) = V(] ) = = V(zt iy

= (e 1)+ {2-Deov (e 1ot
= %(p-c) + LIZ-;-l-)-(q«:)

iJl)

- pr(o-1)a _

n
Also

'y = T ,_,_:_L_ ]
(3.3.23) V(cJ) v(t'a) mav(§t13)

= 1v(t J) + ‘E-llCov(t j't
= L(pcy - fm2)e

m

it J)

= = « C,

The covariances of the combined intra- and inter-block estima-

tors for the A-factor are of the form

(3-3’21‘) COV(&i,a |) = COV(t' :t ', )

1 '
= ;;Cov(?tij,§t )

i*J
Cov(tij’ti J)

= -c,
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1 # 1'. For the C-factor estimators we have

(3+3.25) Cov(e},c),) = Cov(t! ,t1,,)

1
#ov(‘;{'tij)itidn )

%Cov(tij)tijn) + S%']—-)cov(tijitio'jo)

- {a-¢) _ (m-1),
m m

q
= .I;l.. - Cy
i #1i', J# J*, and for the covariance of an A-factor estimator with
a C-factor estimator we have
(3.3.26) Cov(ai,ca) = Cov('ﬁi.,?"d)
= JLCov(Zt' It! )
nm J iJ’i 13
= 1 m‘l) (] []
= EV(tiJ) + Ln-l—-Cov(t“,,ti,J)
n-1) . .
+ S‘EEFC°V(t13"t13)

2 pe) | (@) (o)

nm

- 2lal)e g, gy,

nm

The variances of the difference between two main factorial ef-
fects, obtained from equations (3.3.22), (3.3.23), (3.5.24), and

(3.3.25), are
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3.3.27)  V(ej-a},) = 2V(2}) - 2Cov(aj,af,)

_ 2[p+(n-1)a7]

n

141", and

(3.3.28) V(c3-c3.) = 2V(c3) - 2Cov(c3,c3,)
= gigégl y JF 3

The variance of the combined intra- and inter-block estimators

of an interaction effect is given by

(3.3.23) V(did) V(tiJ-ai-c3)

= V(t! J) + v(a ) + V(cJ) - ECov(tiJ,a )

QCov(tiJ,c ) + ECov(ai,cj).

Since

(3.3.30) Cov(tiJ,a') = Cov(t! J,t' )

= Lu(sy) + f2Doov(e

1yt ge)s
J#J', end
(3.3.31) Cov(tij,cd) = Cov(t} ,t'd)

= 2vieyy) + Eheov(ey 0, ),
i #1', it follows from equations (3.3.19), (3.3.22), (3.3.23), and
(3.3.26), that

(3.3.2)  v(ay,) = (-1)(n-1)(p-q) , pr(n-l)a _ .

mn mn
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All covariances between the combined intra- and inter-block
estimators of the'interaction effects which do not appear in the same

row or column of the association matrix are of the form
(3.3.33) Cov(dij’di'J') Cov(t} a"cj’ti'J' -ai, cJ,)
= Cov(t! J’ti J‘) - Cov(tid,ai,) - Cov(tid,cd,)
- Cov(a! ’ti'd') + Cov(a},a} D+ Cov(ai,cJ,)
- Cov(cd,t J') + Cov(c! ,ai,) + Cov(cJ,c W)
1£1', J¢ J'. Since

(3.3.34) Cov(tiJ,ai,) = -Cov(tij,gt' J) Cov(tij’ti'a)’

and

(3.3.35) Cov(t'J,c ) = —Cov(tid, J')

= ZCov(t]st1,,) + S%]L)Cov(th,ti,y),

then by substituting (3.3.34) and (3.3.35) into (3.3.33) and using equa-

tions (3.3.17), (3.3.21), (3.3.24), (3.3.25), and (3.3.26), ve have

(3.3.36) Cov(d} ] [21’*:1:'1)‘1 J._.

it J') =
1#1', §# J§'. By a similar approach we obtain
(3.3.57)  Cov(aj,,ajy.) = - .(._fl'_i%niz’:ﬂ_).., _.,

a~an - Ul\2 - a - ‘.l\l . 1\2 . ‘“\"1-"2”
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Finally, all covariances arising from the estimators of A-

factor effects with the estimators of interaction effects are given by

(3.3.39) Cov(a},di,) = Cov(aj,t],-ai-c)

= Cov(a},t} J) v(a} ) - Cov(a sC

J)
Similarly,
(3.3.0)  Cov(c},afy,) = - prlala,

The weights W and W', associated with p, q, and c, are esti-

mated from the analysis of variance table by the relations (2.2.hk).

3.4 The Efficiency of Group Divisible Designs Relative to Completely

Randomized Designs

In order to obtain the efficiency for contrasts among A-factor
effects of group divisible designs relative to completely randomized
designs, we must find the ratio of the variance of the difference be-
tween two A-factor effects for a completely randomized design to the
variance of the difference between two A-factor effects for a group

divisible cdesign. For a completely randomized design

(3.4.1)  v(aj-aj,) = V[Zx f’iayiasff;‘ Byr Y10 gs I/

Substituting from equation (2.1.18) we have
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(3.&02) V(a'-a") = "-‘—'§ VEXZ 81‘1(8 +€ijs)j
y = v[z= 8%, (B +e )]
r2n2 sJ i'J s i'JS

——-—Cov {EZZ 5 J(B +€iJsj r =¥ i'J(g +€1'Js)]}

[enﬂzn(n'-l)i] oB+2nro2
= n2r2

2n2@), c{"

n2re

o[ (rk-vA,) o% +rc® ]
B | nr?

1 # 1', by using equation (3.1.1).

If, in the equation (3.4.2), we set W = 1/02 and W' l/(oa-kag),
then we obtain
2[(rk-v>\2)(W-W')+rKW' 1

(3.4.3)  V(al-a},) = :

i # 1, for a completely randomized design. The variance of the dif-
ference between two A-factor effects for a group divisible design is
given by equation (3.3.27).

The efficiency for an A-factor contrast is given now by

(3..4) (rk-v)\z)(w-W')«!-rKW'
d.b. E, =
A kr?wW* [ p+(n-1)qa 7]

Substituting for p and q from equations (3.3.2) and (3.3.3) we obtain
C (rk=vA,)(7-1)+rk J(cr®DrE)

2r2y [(rk-r«l-)\l)'ﬂ- (r-)\l)J

(3.4.5) B, =



where vy = WAI"'.
Similarly, to obtain the efficiency for contrasts emong C-factor
effects, we must find the ratio of

2[(!'»).1)0%“'0'2]

mrz

(3.4.6)

to the variance of the difference between C-factor effects for a group

divisible design. From equation (3.3.28) and (3.4.6) we obtain

(r-hl)(w-W')‘b-rkW'
(3:4.7) %~ ke (p-q)

Substituting for p and q from equation (3.3.2) and (3.3.3) we obtain

] L (r-x))(7-1}rk J(Cr*D1E)

E .
¢ K2r2y (VA7 rk-VA,)

(3.4.8)

The efficiencies of group divisible designs relutive to com-
pletely randomized designs are given in Table I for different values

of 7.

3,5 Tests of Significance

If W and W' are known without error, then Rao E19] has shown
that a test of the equality of treatment means for the combined intra-

and inter-block analysis is based on the statistic

2 =
(3.5.1) = ﬁti.jpid’

which can be used as a XZ-variate with (v-1) degrees of freedom. The

test can be used as an approximation 1f W and W' are estimated with a
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large number of degrees of freedom, as described in Chapter II. From
equation (3.2.15) and the restrictions (2.1.1G), equation (3.5.1) may

be put in the form
(3.5.2) xg = D:(rk~r+xl)+w'(r-xl)] }izgti':‘j’
- (W-u' “"1”‘2’%"3“{ §2 /e

Tests of significance for the factorlal effects are established
in exactly the same way as described in Section 2.3. To test the
null hypothesis of no A-effects for the combined intra- and inter-

block analysis we use the statistic

(50503) Xﬁ = ﬁaiPiJ’

which is approximately distributed as a X2-variate with (n-1) degrees
of freedom. From equation (3.2.15) and the restrictions (2.1.19),

equation (3.5.3) may likewise be put in the form

(3.5.1) Xi = vagm(rk-vxe)W' ] i:ti'_?./nk,
or
(3-505) Xi = Env)\gw-f-n(rk-vka)w’ j i_'aiak.

Similarly, to test the null hypothesis of no C-effects, we use the
statistic

2 5 1
(3.5.6) x§ ‘E’cdpij’

which may be written as

(3.5.7) XZ = [(rk-wxl)w(r-xl)w'] §t:§/mk,
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or

(3.5.8) Xé"-’ = [m(rk-ﬁxl)w-&-m(r-)\l)&l'] §c32/&,

and is apprdximately distributed as a X2-variate with (n-1) degrees
of freedom. Finally, the null nypothesis of no interaction effects

can be tested by the statistic
2 = [
(3'5 '9) XAC %gdidpid’
vhich is approximately distributed as a X2-variate with (m-1)(n-1)

degrees of freedom. From equation (3.2.15) and the restrictions

(2.1.19), equation (3.5.9) may elso be written as

(3.5.10) X2, = [(rk-r&-)\l)w(r-)\l)wjii‘.?(ti J-‘E;.-E: J)"’/k,
or
(3.5.11) "fc = ]:(rk-ﬂhl)m(r-}\l)w])%di’j/x.

Fron equations (3.5.1), (3.5.3), (3.5.6), and (3.5.9), it is
clear that |

(3.5.12) xg = xﬁ + xg + x‘z’c,

and the degrees of freedom add up to (v-1). Cochran's theorenm [5 :]

is sufficient to demonstrate the independence of all the ¥X2-variates.
To test the significance of the difference between pairs of

treatment estimators or factorial estimators, the t-test may be used

as an approximation.
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3,6 Individual Comparisons and Multi-factor Factorials

Individual or single-degree-of-freedom comparisons sre obtained
in the same way as in Section 2.4. Let ¢t be an (m-1) by m orthogonal
matrix, and 1 an (n-1) by n orthogonal matrix used to transform the

a;'s and c''s to (m-1) and (n-1) individual contrasts, respectively,

J

each yielding an adjusted sum of squares with one degree of freedom.

Contrasts on A-factor effects then would be

(506.1) Iu = § giuai’ us= l,aoo,m-l,

and on C-factor effects

(30602) JV = § nVJcs' v = l’ooc,n“lo

To test the hypothesis that ? 51&’1 = 0 against the hypothesis that

§ £, 0; 7 0, ve use the statistic

(3.6.3) x = [nv}\. Wn (ric-va, )W" ](z: LI i.)e/kz g

u

= [vagi (zk-va u j(i E1utig) 2 AL% €10

which follows from equation (3.6.1) and the multiplier of equation
(3:5.5).
Similarly, to test the hypothesis that g nvdyd = 0 against the

hypothesis that § Ny # 0, we use the statistic

(3.6.4) X§ = [m(rk-le)w+m(r—kl)w‘ ](3: nVJ:E:J)a/kfj: nsd
v

= [(I‘k—l‘*‘)\l)W'F(r- )W j( “VJ ij)zk 13 nVJ’
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which follows from equation (3.6.2) and the multiplier of equation
(3.5.8).

The adjusted interaction sum of squares also may be parti-
tioned. The (m-1)(n-1) orthogonal contrasts for the interaction of

Iu and J_, obtained from the matrices £ and n, are
» = )
(3'6’5) (IJ)UV = g giuqv.jtij.

= 0 we use the statistic

To test the hypothesis that fg 51u“v3513

R g (o S N

¢ (g giu%atia)/k%(giunvd)al

which follows from equation (5.6.5) and the multiplier of equation
(3.5.11).

From the manner in which we have constructed the single-degree-
of -freedom contrasts, it is clear that the resulting sums of squares
add up to the total adjusted sum of squares for treatments, which has
been shown to be distributed as a X2-variate with (v-1) degrees of
freedom. Since the degrees of freedom for the individual contrasts
add up to (v-1), ve may conclude by Cochran's theorem [:5j] that the
corresponding sums of squares are independently distributed as X2-

variates, each with one degree of freedom.

Special definition of the matrices, § and 1, as in Section 2.4,
rermits the use of special contrasts for measuring trends over the

factor levels. By taking the A- and C- factors to have levels, which
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themselves are factorial combinations, we can again extend the two-
fector factorial to the case of multi-factor factorials or fractional

factorials as in Section 2.4,
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IV. LATIN SQUARE SUB-TYPE L, PARTIALLY BALANCED INCOMPLETE

2
BLOCK DESIGNS

4.1 Properties of Latin Square Sub-type L, Designs

Bose, Clatworthy, and Shrikhande [ 27] list the following prop-
erties of Latin Square, sub-type L2, designs:

(1) The design is non-group-divisible with n? treatments ar-
ranged in a square array of n rows and n columns.

(i1) Tvo treatments are first essociates if they occur in the
same row or column of the array and are second associates otherwise.

(1i1) Each treatment has exactly 2(n-1l) first associates and
(n-1)2 second associates.

(iv) The relations

n-2 n-1l
P1 = ’
n-1  (n-2)(n-1)
2 2(n-2) ]
P2 = 9
2(n-2) (n-2)2
hold.
(v) The design parameters are related so that
(4.1.1) 2(n-l)x1 + (n-1)2x2 = r(k-1),
or

tk - VA, =T - 2\ + A+ 2n(x1-x2).
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4,2 Combined Intra- aand Inter-block Treatment Estimators

The combined intra- and inter-block estimators of the TiJ'S in

2 model like (2.1.3) are obtained by minimizing the weighted sum of
squares of deviations given by (2.1.10), subject to the condition that

f% TiJ = 0 and the treatment-to-blocks essignments of the L, designs.

2
The resulting normal equations, given by equations like (3.2.8), are

B t!

1Jo s XY
(b.2.1) W(Tyy - 5= - Tt 4D 85 )
+‘-’E'-(B. -rim-Z 87,5t ) = 0,

iJe iy -

i, J=1,.e0yn, and, substituting

s

(4.2.2) Lo t!,g= )\1(2' iy ,3*‘3*,"13')
| 1'#1 3'#3

+ N, Z r 1!
21' J' 'J! ?

141 3'4)
we obtain the equations
(w-w')
(4.2.3) r [ v /(k- 1)](-}5-‘:1)1; :\-1--—-—-- (}: tl, #Zt!,,)
k i'3 3 iJ
1';41 I'A
xa(w-w')
TR L ptivge TRy
141 343

vhere 1, J = 1,...,r, and Pij retains its former definition,

Applying the condition that Zg tiJ = 0, we obtain
. -
(b.2.4) f' z ti,J' = (tij+f,ti',j+§ tia')

141 J'%J 1A 348
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Substituting (4.2.4) in (4.2.3) we obtain

w(rk-r+x2)ﬂa'(r-x2)
k
. (w-w! )("2"1)
k

(4.2.5) t!

J

(F g2 bge) = Pugo

SRS
i, J = 1,.04yn. Equations (4.2.5) can now be written as

w(rk-wehl-xa)'(w' (r-2A1+A?)
A

(4.2.6) . i

- k

(ti.a-tzd) = Pyy

i, § = 1,...yn. The solutions of equations (%4.2.6) were shown by

Bose, Clatworthy, and Shrikhande EE] to be

(4.2.7) tid = °P13 + ¢‘f,P1'J+§,P13')'
1A A

1, 3 = 1,.e.yn, where 0 and ¢ are defined by equations (3.3.5) and
(3.3.6), respectively. It is important that we do not confuse 6 and ¢
with p and q as defined by equations (3.3.2) and (3.3.3). The values
for p and q may be obtained from equations (3.3.5) and (3.3.6) by
using the relation (3.1.1) and, therefore, are only valid for group
divisible designs.,

To incorporate factoriel treatment combinations in the sub-type
L2 designs of the Latin Square type designs, consider two factors, A

and C, both at n levels. The treatment, viJ’ has now become the
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factorial trestment combinction of tre ith level of A with the gth

level of C. As before we tcke
(4.2.8) Tid =a, + 734. Gij’
where a, 73, and GiJ represent the effects as defined in Chapter II,

and the restrictions (2.1.19) ere imposed. The combined estimators

for the factorial effects will be the same as before, that is,

(4.2.9) al =%£tié =%,

1 -
(4.2.10) c3 == ‘I‘tia = t:d ’
and
(%.2.11) diJ= tiy - ¥, - tly

The estimates are most easily obtained from a two-way table of values

¢
of tiJo

b ,3 variances and Covariances of the Treatment Estimators

The variances and covariances of the P, ,'s will be used to de-

id
termine the variances and covariances of the tiJ's. From equation
(3.3.11) we have
r| Wlk-1 W
(4.3.1) v(p,,) = Lw¢ k)" 1.

From equations (3.3.12) and (3.3.13) we have
(ww)

(4.3.2) Cov(Pij,Pid,) = Cov(Pij,pi'J) =,

for first associates, and
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A (")
(k.3.3) COV(Py sPyage) = = ==
i* £1, §* # J, for second associates. The general equations of Chap-
ter III referenced here still apply.
Bose, Clatworthy, and Shrikhande [ 2] have shown for the com-
bined intra- and inter-block analysis that the variance of the dif-
ference between two treatment estimators, when the treatments are

first associates, is

(h'5’h’) v(tid i.d) v(tij-tij') = 2(0-—(’).

Likewise the variance of the difference between two treatments which

are second associates was shown to be

(4.3.5) v(ti,j i'J!) = 20.

From equation (k.2.7) the covariance of any two treatment estimators

which are second associates 1is

(4.3.6) Cov(t! J,t

ij')’ 1 J'

1 J') CovEGPiJ-n-(b(f'P +§.P

1'#1 3'#3
+ ¢(f" Pi"J'+§vtPi'J")]
141t J"#3

= Cc>v[(c>-.2¢)1>i d(zp +zpu) (e- 245)?1,‘1,+c§(z:'pi 3,+z: Py J,)'_']

= (0-2¢)%cov(P 14240 3,) + Q?Cov(EP J,z pi,J.)
+ 2¢2COV(EP13,§’P1'J') + ﬁov(gpij’gtpi"‘)')

+ 2(6-2)cov(p, pEPLg)t 2¢(9-2¢)Cc_>y(1>1. J..grm)
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= (0-20)%0v(, 4Py 5) + BF Cov(Py Py 1) + 22 Z Cov(Py 4Py, 4,)

ifie
+ 2¢2V(Pid) + 2¢2§'COV(PU,P13,) + 2¢2213.Cov(pﬁ,?i,d)
3'#3 1041
+ oz 2 0oL gPyg) ¥ L Cov(Py 4Py 1)
1%L 3'4
+ ¢2§ §'Cov(PiJ,Pi.J,) + 2¢(G-2¢)Cov(PiJ,PiJ,)
I#3
* 2¢(9-2¢)§'COV(P1J,P1‘,J,) + 2¢(0'2¢)C°V(P139P103)
1
1941
+ 20(9'2¢)§'COV(PiJ)Pi'J')
J'#d

= 2¢v(p, J) + (6n¢2+1&9¢-l2¢2)00v(Pi 9Py J,)

+ [(0-20)2 + 2(n-1)¢(20¢+20-50) ] Cov(Py 4,Py451),

1=1', §# §'. From equations (L4.3.1), (4.3.2), and (4.3.3) we have
(4.3.7) Cov(th,ti,a,) = {2¢2r [v(x-1)p+w* T]-(6nd2+bod-12¢2)

« A (W0')-[(0-2)22(n-1)$(2n¢r20-5¢) ] A (W)} /k = 4, say,
1#1', J# §'. If we write equation (4.3.5) in the form
(u‘.}.s) v(tia) - Cov(tilJO) = 9,
and substitute from equation (4.3.7), we obtain
(h0309) V(tia) =0+ 4,

Similarly, from equations (4.3.4) and (4.3.9) the covariance of any
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two treatment estimators which are first assoclates is

(4.3.10) Cov(tid,tm,) Cov(tij,t ,1) ¢+ 4,

1#1% J# 3.

Using equations (%4.3.7), (4.3.9), and (4.3.10), we may derive
the variances and covariances of the combined intra- and inter-block
estimators of the factorial effects. The variance of an A-factor es-
timator is given by

(4.3.11) ‘I(a ) = V(! = L v(rt a)
n

-V(t'd) + i“—-l—-Cov(t 1ptly)

= a8, (n-1)(¢rd)
n

n
= M 4+ d.
Also
(4.3.12) V(cJ) = V(T ) -l v(zt 3)
n2

n-l
= V(t J) + i——— Cov(t! J’ti'.j)

aM-’-d

n

The covariances of the combined intra- and inter-block estima-

tors for the A-factor are of the form
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(4.3.13) Cov(al,al,) = Cov(*‘b‘{.,?i,.)

l | *
= Cov(gtij,gti,J)

1 -1
o fra, (n-1)a
n n
e,
i # 1'. For the C-factor estimators we have
(4.3.14) Cov(c&,cB,) = Cov(?fd,?:a,)
= L cov(st! ,,It!,,)
n2 1 1377719
1 s -12
=3 COV(‘tiJ,tiJ.) + nn cov(ti,j'ti'd')

= g~+ 4,

J # J', and, for the covariance of an A-factor estimator with a C-

factor estimator, we have
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(4.3.15) Cox(a',c') = Cov(ti ,t‘J)
1l
== Cov(Ztid, j)
= - v(t'd) + Ln—}‘ Cov(t!} J’ti'J)
-(-n-}— Cov(t! 1oty + L-- Cov(t] yuti, )
d, 2(n-1)(¢ed) , (n-1)%a
n? n2 n®
- G+2§n-l!Q_+ a
2 L ]

n

The variances of the difference between two main factorial ef-
fects, obtained from equations (4.3.11), (4.3.12), (4.3.13), and
(h-} olh)’ are

(4.3.16) V(aj-al,) = 2v(a}) - acov(af,al,)

- 2[91-(n-2)¢___]

n

i# 1, and

(4.3.17) V(c -c! ,)

2V(c3) - 200v(c3,c3,)

) 2[ ov(n-2)47]

y JF 3.

The variance of the combined intra- and inter-block estimators

of the interaction effect is given by
(4.3.18) v(a! J) V(t -a’-c’)
= V(1 J) + V(ag) + V(c}) - 2ov(ty,,al)

- QCov(tiJ,cJ) + 2Cov(a£,c3).



Since

(4.3.19) Cov(tid,a ) = Cov(tu,t' J)

[}

Tty + L2:2) cov(ey Lgrtign)s

and

(4.3.20) Cov(tij,ca) = COV(tiJ,E:J)

ZV(ty) + 12—1-Cov(t13,t1 s

it follows from equations (4.3.9), (4.3.11), (4.3.12), and (4.3.15),

that
(4.3.21) viay,) = Ln-1)§é9-2¢) . 0+2(n;1)ql+ a

n

All covariances between the combined intra- and inter-block
estimators of the interaction effects, which are second associates,
are of the form

1 _atloet ¢ gl et
(b.3.22) Cov(did,d1 J') COV(tia ai-cysti,yi-al, cJ,)

= Cov(t - Cov(t

1ytinge) - iy°i)
- Cov(t! J’c W) - COV(Bi,t J')
+ COV(a',a )+ COV(a':C ')
Cov(cd,t J') + COV(CJ,ai.)
+ Cov(cJ,cJ.),
1#1'y 3J# J'. Since

(4.3.23) Cov(tia,ai,) Cov(tid,gti J)

= l Cov(t J’t J) + ‘('E—l— COV(t J,ti'd')

and
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(k.3.24) Cov(t Cov(t

iJ’cJ') 139 13')

= —-Cov(t 13_1_ Cov(t

ity * 19800 )s

then by substituting (%.3.23) and (4.2.24) into (4.3.22) and using

equations (%4.3.7), (4.3.10), (4.3.13), (4.3.14), and (%.3.15), we have

o[ e+2(n-1)¢ 5
(4.3.25) cov(d! J,di,J,) L = ] —Ef‘;a, a,

1#1', J# 3'. By a similar epproach we obtain

2[e+2(n-1)47]
(L.3.26) cov(a! J,d'J,) — - g+ 4,

J# 3, and

(4.3.27)  Cov(ay,,ay,,) = 2[%2(2-1)¢J

n

0
“;1"*' d., i%i.o

Finslly, all covariances arising from the estimators of A-factor

effects with the estimators of interaction effects are given by

(4.3.28) Cov(a!,d} J) Cov(a},t} y -cs)

= COV(a ,t' ) - V(& ) - COV(& J)
- 9*.2_1()_2:}_)9 -
Similarly, |
(4.3.29) COV(CB’diJ') = - 0+2$:-1)Q - a.

n

The weights, W ard W', assoclated with ¢, ¢, and 4, are esti-

mated from the analysis of variance table by the relations (2.2.h4).
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In order to obtain the efficiency for contrasts among A-factor
effects of Latlin Square, sub-type L2 designs relative to completely
randomnized designs, we must find the ratio of

2[:r-x1+(n-1)(xl-x2) ] a2 +2ro
2

nr

(4.3.30)

J

the appropriate variance of the difference between two A-factor ef-
fects for the completely randomized design found similarly to (3.4.2),
to the variance of the difference between two A-factor effects in the
incomplete block design. Substituting W = 1/02and W' = 1/(0%1:05)

in (4.3.30) we obtain

(4.3.31) 2[r-apt(n-1) (A -N,) J(Wa* pr2kerit '
nkr 2w

The efficiency for an A-factor contrast, obtained from (4.3.16) and

(4.3.31), is then given by

(4.3.32) o Er-)\1+(n-l)(h1-7x2) Jw-wr yrkrue
” A kr3nit [o+(n-2)¢ ] .

Similarly, the efficiency for a C-factor contrast is shown to be

(4.3.33) Lo Drapa) 0 0) o0 i
e C krayw! Eg‘_(n_2)¢]

L,k Tests of Significance

If W and W' are known without error as in Chapter III, a test of
the equality of treatment means for the combined intra- and inter-block

analysis is based on the statistic
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(b.1.1) X2 = 26 Py

which can be used as a X2-variate with (v-1) degrees of freedom. The
test, as described in Section 2.3, can be used as an approximation if
W and W' are estimated with & large number of degrees of freedom.

From equation (4.2.6) and the restrictions (2.1.19), equation (4.4.1)

may be put in the form
(3.5.2) X2 = [wW(rk-rean A (r-2A ) ] %t;’j
- (w—w')(xl-xe)(gtﬁgtzg’)/k-

Tests of significance for the factorial effects are established
in exactly the same way as described in Section 2.5. To test the
null hypothesis of no A-effects for the combined intra- and inter-

block analysis we use the statistic

2 -
(4.1.3) x5 gaip“,

vhich is approximately distributed as a X2-variste with (n-1) degrees
of freedom. From equation (4.2.6) and the restrictions (2.1.19),

equation (4.4.3) may likewise be put in the form

(b .40) X2 = {[v;zm(xl- 2)](W-W')+rkW'} £612 ok,

or

(4.4.5) Xi = { [nvk2+n2(xl-x2) J(ww* Yenriw* } )i:aia/k_

Similarly, to test the null hypothesis of no C-effects we use the sta-

tistic

(4.4.6) xg = ‘;‘ﬁc:ipia’
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which may be written as

(4.%.7) xg = {[""a*n("l”‘a) j(w-w')+rkw'} gﬁt’.g/nk,
or

(4.4.8) xg = { [:nvx2+n2(kl-ke) ](W-W')+anW'} ?cﬁa/k’

and is approximately distributed es a X2-variate with (n-l) degrees
of freedom. Finally, the null hypbthesis of no interaction effects
can be tested by the statistic

(4.4.9) X3 = %diJPiJ’

which is approximately distributed as a X2-variate with (n-1)2 de-
grees of freedom. From equation (4.2.6) and the restrictions (2.1.19),
equation (4.4.9) may also be written as

2 = - Ut ' v Ty T )2
(4.4.10) X2 {[:vxe«o-en().l xe)](w W' HrkW }%(tid tl. t.J) /k,
or

(bb11) X3, = {E”‘g"‘?"(ﬁ"‘e) ](w.w-yrkw.}%;dﬁ

From equations (L4.k.1), (4.%.3), (4.4.6), and (4.4.9) it is
clear that

(4.5.12) X2 = X2+ XT X,

and the degrees of freedom add up to (v-1). Cochran's theorem [5 ]

is sufficient to demonstrate the independence of all the X2-variates.
To test the significance of the difference between pairs of

treatment estimators or factorial estimators the t-test may be used

a8 an aprroximation.
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4.5 Individual Comparisons and Multi-factor Factorials

Individual or single-degree-of-freedom comparisons are obtained
in the seme way as in Section 2.4. Let & and 1 be two (n-1l) by n
orthogonal matrices used to transform the a;'s and cB'

to individual contrasts, each yielding an adjusted sum of squares

s, respectively,

with one degree of freedom. Contrasts on A-Tactor effects would then

be

(hosol) Iu = f giuuj'.’ u = l, .Qt’n‘l,
and on C-factor effects
(k.5.2) J, = 32 "vac.'j’ V = 1,...,n-1,

To test the hypothesis that F &, 0, = 0 against the hypothesis that

f £,,0 7 O ve use the statistic
(%.5.3) x’IBu = {[nvxzmz(xl-xz) ](w-w'ynrkw}(:is ¢ m?i-)z/kf e3,
= {E""e*“(ﬁ"‘e) j(w-w')+rkw'} (ﬁ: giuti,j)a/kf’j 62

vhich follows from equation (4.5.1) and the multiplier of equation
(b.1.5).

Similarly, to test the hypothesis that § nvij = 0 against the

hypothesis that % vy # O we use the statistic
(4.5.4) xﬁv = {[nv>~2+n2(’~l->~2)j(w-w'»nrkw'}(32 nvdi':a)e/kg ”3.1
= {Cvrgrn(h -2y) Jou-we perii ] (2% ny 5t PEAEE T

which follows from equation (4.5.2) and the multiplier of equation
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(4.4.8).
The adjusted interaction sum of squares may also be partitioned.
The (n-1)2 orthogonal contrasts for the interaction of Iu and Jy? ob-

tained from the matrices { and 1, ere

=

(4.5.5) (19),, = :;JJ: Erayitly -

To test the hypothesis that %% 51u“v3513 = 0 we use the statistic
° 2 = x P - <! ]
(4.5.6) X(IJ)uv {]‘_’v 2+°n(xl xe)j(w WY M+ rkw }

- (2 §1u“v4tid)2/k§§‘§1u“v )%

which follows from equation (4.5.5) and the multiplier of equation
(b.bo11).

From the manner in which we have constructed the single-degree-
of -freedom contrasts, it is clear that the resulting sums of squares
add up to the total adjusted sum of squares for treatments, which has
been shown to be distributed as a X2-variste with (v-1) degrees of
freedom. Since the degrees of freedom for the individual contrasts
add up to (v-1), we may conclude by Cochran's theorem [ 5] that the
corresponding sums of squares are independently distributed as X2-
variates, each with one degree of freedom.

Special definition of the matrices, t and n, as in section 2.k,
permits the use of special contrasts for measuring trends over the
factor levels, By taking the A- and C-factors to have levels, which
themselves are factorial combinations, we can again extend the two-

factor factorial to the case of multi-factor factorials or fractional
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factorials as in Section 2.h.
The results of Section 4.4 and 4.5 reduce to the intra-block
formulas, obtained by Kramer in an unpublished paper, if we set

W=1and W' =0,
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V. LATIN SQUARE SUB-TYPE L3 PARTIALLY BALANCED

INCOMPLETE BLOCK DESIGNS

5.1 Properties of Latin SquareASub-type L3 Designs

Bose, Clatworthy, and Shrikhande [27] 1ist the following prop-

erties of Latin Square sub-type L, designs:

3

(1) The designs are non-group-divisible with n?2 treatments ar-
ranged in a square array of n rows and n columns, and upon this array
is imposed a Latin Square with letters.,

(i1) Any two treatments are first associates if they occur in
the same row or column of the array or correspond to the same letter,
and are second associates otherwise.

(ii1i) Each treatment has exactly 3(n-1) first associates and

(n-1)(n-2) second associates.,

(iv) The relations
~ -

n 2(n-2)
Pl = ’
| 2(n-2) (n-3)(n-2)
[ 6 3(n-3) |
3(n-3) n2-6n+qu.
hold.
(v) The design parzmeters are related so that
(5.1.1) j(n-l)k.1 + (n-l)(n-Q)XQ = r(k-1)
or

rk - vA2 =r - 3xl + 2%2‘+ 3n(h1-X2).
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Let viJ denote the treatments in the association scheme given
by the matrix V. Therefore, any two treatments are first associates
if corresponding subscripts are the same (in the same row or column)
or if they correspond to the same letter, and are second associates

othervise,

5.2 PFactorial Treatment Estimators

The model assumed for the sub-type L, designs is

3

(5.2.1) Yyge =W+ Tygt Byt €y yp0

1, J=1lyeeeyn; 8 = 1,.0.,b, where yijs is the observation on treat-

ment Vi in block s if that treatment occurs in block s, u is the grand

J
1 iJs

is the usual normal random error with mean zero and variance 02, the

mean, T,, is the effect of viJ’ Bs is the effect of block s, ard e

various e s's being independent. The estimators, m, tiJ’ and bs’ of

i)
the parameters, u, TiJ, and BS, are found by minimizing

s e . V2 _
(5.2.2) ifg BiJ(yiJs M-Ty 38) Qkfg Ty 2P§Bs,

where A and I' are Lagrange multipliers associated with the usual re-

straints on the parameters, namely

(50203) {‘g TiJ = 0,
and
(5.2.4) Lp, =0,
)
and 5ij = ] if ViJ is in block s and zero otherwise. After partially

differentiating (5.2.2) and evaluating the Lagrange multipliers, we
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obtain the equations

G
(5.2.5) n = o%’

Bs t-os
(5.2.6) bs =5 -0 -5
and
(5.2.7) TiJ -rm - rtiJ - biJ- = 0,

's in block s,

where t..s is the sum of the ti is the sum of the

b
J 1.
bs's for blocks containing viJ’ These equations were obtained by
Kramer and Bradley [ 14, 15 ] and are completely general for all in-
complete block designs. Summing equation (5.2.6) over blocks contain-

ing viJ’ we obtain

t
-Im - 258 """—"""..s’

=3
(5.2.8) b ¥ Bij. Y

where BiJo is the total of block totals for blocks containing treatment

ViJ. Now

8
(5.2.9) ﬁ 513t--s = rtiJ + xlsl(tij) + xesa(tij),

where sl(tij) is the sum of the tiJ'B of all the first associates of

treatment viJ’ and SQ(tiJ) is the sum of the t,,'s of all the second

13
associates of treatment viJ’ Also, since %g tij = 0, then
Therefore

8
(502011) g Sidt..s = (r'kl)tij + (Xe-hl)sa(tid),

and substituting (5.2.8) and (5.2.11) in (5.2.7), we obtain
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(rk-r+xl) (xg- l)
(5.2.12) — tiJ -k Se(tij) = QiJ'
Equation (5.2.12) may be written in the form
(rk-r+),) (M -N)
2 2
i, J = 1,ee0yn, vhere Qij = TiJ - BiJ-/k‘ Solutions of egquations

(5.2.13) were shown by Bose, Clatworthy, and Shrikhande [27] to be

k-c2 (cl-c2
(5.2.14) tiJ = ;_-(E_—l-)' Qi,j + r—(m'y‘ sl(Qi,j)’

i, 3 = 1,...,n, vhere c, and c, have been defined by equations (1.3.12)

and (1.3.13), and Sl(QiJ) represents the sum of the adJjusted yields

13° Values of cl and c2

are tabled with catalogued designs; they may also be obtained from

for all the first associates of treatment V

(1.3.12) and (1.3.13). Occasionally, explicit formulas will be help-
ful, and we note them as follows:

kN, (rk-e A k(N -A,) [2(n-:>)x2-3(n-5)x1 ]
€, ° (rk-r+x1)(rk-r+x2)+(xl- 2)I}rk-r)(5-n)+2(n-2)x2-5(n-3)xl:]

rh, (rk-r+h Wk(A) -7,) EQ(n-Q)Xe-B(n—3)xlj
Co = (rk-r+ A ) (rk-r A} (A -A,) [ (rk-r) (5-n)+2(n-2)1y-3(n-3), ]

To incorporate factoriels in Latin Square sub-type L, designs

3
consider factors A and C both with n levels providing v = n2 treatment

combinations associated with the Vi so thet

J

(5.2.15) Ty Tyt Vgt By

with the restrictions (2.1.19) imposed. The change to factorial
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parameters may be regsrded simply as a orne-to-one transformation in

the parameter space. It follows that

(5,2.16) tyy=aytegt a4

Frem equation (5.2.16) ve note that

1 =

(5,2.17) & * % ? tid tio
1 -

(5.2.18) CJ ;%tid t.J’

and

(5.2.19) d,=t,,-%t, -%

The combined intra- and inter-block estimators of the treatment
effects can be obtained by minimizing the weighted sum of squares of
deviations given in the form (2.1.10), suoject to the condition that
Z§ Tij 0. The resulting normal equations, as given by equations
(3.2.8), are

B14 t! s
5 - —l ' i
().2.23) W(TiJ & rt i3 + Z 5 J % )

wt 8 ., -
+ 7?(513-'rkm-§ Sth..s) o,

i, J = 1,...yn. Replacing tid by tij in equation (5.2.11) and sub-
stituting in (5.2.20), we obtain the equations

'W(rk-r+xl)+w'(r-x1)*' WU Op-A)
X i3 ° K —S,(t4) = Pyy

(5.2.21)

i, § = 1,.44yn. Equations (5.2.21) can be written also as

w(rk»r+h2)+W'(r-12) (w:w')(xg-xl)
K tig?t 5 (tf,) =

(5.2.22)

i, J = 1,...,1’1.
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Bose, Clatworthy, and Shrikhande [ 2] have obtained the solu-—
tion of equations (5.2.22) for the combined intra- and inter-block

treatment estimators in the form

(5.2.23) tig = Pyt ¢Sl(PiJ),

i, J = 1,...,n, where O and § are defined by equations (3.3.5) and

(3.3.6), and Sl(PiJ) represents the sum of the P, ,'s for all the first

1

asgsociates of treatment V, ..

iJ
By considering equation (5.2.15) and imposing the restrictions

(2.1.19), we obtain

o2 SR
(5.2.25) c3=%§th:?:,
and

(5:2.26) TR TR

all of which are easily obtained from a two-way table of values of
| I ]
tiJ S
If W and W' are known without error, then Reo [ 19 ] has shown
that a test of the equalit& of treatment means for the combined intra-

and inter-block analysis is based on the statistic

(5.2.27) X5 = 5ty

which can be used as a X2-variate with (v-1) degrees of freedom. The
test, as described in Chapter 1I, can be used as an approximation if
W and W' are estimated with a large number of degrees of freedom.

From equation (5.2.21) and the restrictions (2.1.19), equation
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(5.2.27) may be put in the form

. W(rk-r+A1)+W'(r-xl) o

(5.2.28) £ = tig
(W"W' ) (KQ-K],)
- T §§ tigse(tij)‘

The adjusted treatment sum of squares for the intra-block
analysis, obtained by setting W' = 0 and W = 1 in equation (5.2.28),

is given by

(rk-r+n,) (A =\)
(50202?) SST(&dJ.) = -—-——E-il— % tfd - Qk)‘l

f? £y 4S,(ty ).

The unadjusted sum of squares for blocks is computed in the usual way.

Each block total depends on k observations, and we have

2
(5.2.30) sSB(unadJ.) = ¢ I 82 - .

The error sum of squares, obtained by subtraction, is given by

(5.2.31) Error SS = Total SS - SST(adJj.) - SSB(unadj.),

vhere

(5.2.32) Total 88 = IXE 8° 32, - %o
(] e siJ 1JB L]

iJ v

The analysis of variance in Table 1 can now be set up and the

F-test carried out as indicated.



Intra-block Analysis of Variance

Table 1.
for the General Model
Source d.f. S.S. M.S. F
. (rk-r+k1) (Ag-xl) - oo
Treatments v-l k %g 3" T I tids2(tij) 8% sT/bE
(adJc)
2
Blocks b-1 iy BZ - g-\-;
(unadJ.) k g
Intra-block [ [v(r-1)-b+1] By Subtraction sp
error
Total rv-1 Iz 8% y2, - G2
sig 137iJs rv

-0Q -



Tests of significunce for the factorial effects are not pos-
sible in the same way es described in Section 2.3. It is now impos-
sible to partition the total adjusted treatment sum of squares into
inderendent sums of squares corresponding to the various factors.

In situations where it is impossible to partition the total treatment
sum of squares, we can always use the variances and covariances of
Section 5.3 to make tests on comparisons smong the factorial esti-

mators.

5.3 Variances and Covariances of the Treatment Estimators

To facilitate the mathematical computations it will be con-

venient to write equations (5.2.1%4) in the form

(5.3.1) tyy =0+ £5(Q ),

i, J = 1,...yn, vhere

k-c2
(5.3.2) o= &Iy ?
and

(ey-¢,)

(5.3.3) B = m)- .

To obtain the variances and covariances of the intra-block
estimators, we shall make use of equations (3.3.9) and (3.3.10).
Bose, Clatworthy, and Shrikhande | 2 ]Jhave shown that the variance
of the difference between two treatment estimators which are first

assoclates are
(5.3.4) V(g styage) = 2(a-p)o2

Likewise, the variance of the difference between two treatments
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wvhich are second associstes was shown to be

(5-305) v(tid-ti'd') = axge.

I1f, in equation (5.3.1), we denote the sum of all QiJ's falling on
the same letter, p, in the assoclation scheme as QiJ by Qijp’
p =Ay) By Cy essy the covariance of any two treatment estimators

which are second associates is

(5.3.6) Cov(tid,ti,'j,) = Cov EaQiJ-kle(QiJ),aQi,J,
+ BS)(Qg040) ]

= Cov Ba-%)QiJ“‘ﬁ(Q.J‘*Qi ’+Qijp)’(a-3B)Q1'J'
+ ﬁ(Q.Jv+Qio °+Q1'J'p) ]

= 6%(q; ) + [12(a-3p)pr2kns-182 Jcov(q, 4,0, 44)
+ T (@-38)23(n-2) ]
» [B(3n-2p2(a-3p) Jeov(Q, 45Q;4 54)

From equations (3.3.9) and (3.3.10), we have
(5:3.7) Cov(ty ystyeq0) = (687r(k-1)-(120p+2hnp2-546% )N
- [(a-38)338(n-2) (3np+20-88) ] A, }02/k = eo?,

say, vwhere tij and ti'J' are second assoclates., I we write equation

(5.3.5) in the form

(5.3.8) v(tij) - c°v(t13’t1'a') = 002,

and substitute from equation (5.3.7), we obtain

(5:3.9) V(t,,) = (ave)o?
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Similarly, from equations (5.3.4t) and (5.3.9), the covariance of any

two treatment estimators which are first associates 1s
(503010) COV(tiJ’ti'J') = (S*e)oao

Using equations (5.3.7), (5.3.8), and (5.3.10), we may derive
the variances and covariances of the intra-block estimators of the

factorial effects. The variance of an A-factor estimator is given by

- 1
(505-11) V(ai) = v(ti.) = ;'; v(g tid)

1 (n-1)
== v(tij) + = cov(tid’tij')

- {52) o2 L2 (preod
= [0”'-———--—----(’;’l)a +e ] o2,

Also

(5.3.12) V(e

fl

- 1
gV = F V)

% V(e )+ 1—-—-";1) Cov(t, st

(218, o o2

gry)

[}

The covariances of the intra-block estimators for the A-factor

are of the form
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(5.3.13) Cov(ai,ai,) = Cov('Ei.,'Ei,.)

1
= ;;5 COV(:;: tiJ’§ t

)

(n-2)

% Cov(t Cov(t

iJ’ti'J) + 1j’ti',j')

- Qgerle! o2+ (n-ﬁ!e 02

['_-2;?-4- e’ ] 03,

i1 # 1'. Similarly, for C-factor estimators, we have

(5+3.14) COV(CJ,CJ') = E-Qn?_+ ej°2’

J ;‘ J'. For the covariance of an A-factor estimator with a C-factor

estimator, we have

(5.3.15) Cov(ai,c ) = Cov(t::l ,t J) = COV(Z tij’{‘ tiJ)

= = V(tia) + ?—(-:-‘1-;-1-)- Cov(ty 1»ty4y)

+ -(ﬁllilgﬂ Cov(tm,ti,d,)

- ]: B(n-l)(&&e) (n-lr)l;n-E)e:' 02

n2

= I:(}!“‘—-—(---————Bng‘”l)B + e] 2 .

The variance of the difference between two main factorial ef-
fects, obtained from equations (5.3.11), (5.3.12), (5.3.13), and

(5 o3 ol"") N is

(5.3.16) V(ai-ai,) = 2V(ai) - 2Cov(ai,ai,)
- a[m(z-B)Bj o2,
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i#1', and

(5.3.17) V(cJ-cJ,) = 2V(cJ) - ECov(cJ,cJ,)
_ 2[e+(n-3)87] .2
n

J# S
The veriance of the intra-block estimators of the interaction

effects is given by

(5.3.18) V(e = V(t

137217C;
= v(tij) + V(ai) + v(cJ) - 2Cov(t

13)

13’31)
- ZCov(tiJ,cJ) + ECov(ai,cJ).

Since

(5.3.19) Cov(tij,ai) a Cov(tij,fi.)

1)

=2 V(t Cov(t

Ne-
ia) + n 1J’tiJ|)

and

(5.3.20) Cov(tia,cd) = Cov(tij,ai),

it follows from equations (5.3.9), (5.3.11), (5.3.12), and (5.3.15),
that

(5.3.21) v(d,,) = [n(a-%)-e(a-ha) 2(a-38) , e] o2

n ne@
All the covariances between the intra-block estimators of the

interaction effects, which are first associates, are of the form
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(5.3.22) Cov(dij’dij') = Cov(tij'ai'cj’tij"ai'cj')
= cov(tij’tij') - Cov(tid,ai)
- Cov(tid,cS) - Cov(ai’tid')
+ V(ai) + Cov(ai,ca,) - Cov(cj,tid,)
+ Cov(cd,ai) + Cov(cJ,cJ,).
Since

(5.3.23) Cov(ai,tid,) = % Cov(g tiJ’tiJ')

= % V(tiju) + n;1 Cov(tij’tij')
and
(5.3.24) Cov(tid,cj,) = % Cov(tij,§ tij')
= %Cov(t“,tid,)
+ n;2 Cov(tia’ti'J')’

then by substituting (5.3.23) and (5.3.24) into (5.3.22) and using

equations (5.3.7), (5.3.10), (5.3.11), (5.3.14), and (5.3.15), we have
-6 -
(5.3.25) Cov(did,d“') = E&%g__)_s_ - cnl +e] o2,

J# J'. This result holds for all first associates. By a similar

approach, we obtain

2042 (n-—
(5.3.26)  Cov(d, ydy.y,) = [___.;(_2_}_)2 +e] o2

for second associates.
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Finally, 2ll coveriances arising from the estimators of A-factor

effects with the estimators of interaction effects are given by

(5.3.27) cov(ai’dij) = COV(ai,tIJ-ai-cJ)
= Cov(ai,tij) - V(ai) - Cov(ai,cd)

= -I:Qiéi%:ll§.+ et] 02,
n

Similarly
(5.3.28) Cov(cJ,diJ,) = -[§3t2135519-+ e] 02,

Corresponding formulas for the variances and covariances of the
combined intra- and inter-block estimators of the factorial effects
may be obtained by replacing & and £ by @ and b, respectively, in the
above eguations, where O and § are defined by (3.3.5) and (3.3.6)
and omitting 02 The weights, W and W', associated with 0, ¢, and e,
are estimated from the analysis of variance table by the relations
(2.2.8).

In order to obtain the efficiency for contrasts among A-factor
effects of Latin Square sub-type L3 designs relative to completely
randomized designs, using the recovery of inter-block information,
ve must find the ratio of

2[r->\l+ (n-2) (A -7,) 7] 0§+?_r0‘2

nr

(5+3.29)

the variance of the difference between two A-factor effects for the
completely randomized design found similarly to (3.4.2), to the vari-

ance of the difference between two A-fector effects in the incomplete
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block design. Substituting W = 1/02and W' = 1/(c2+ko§) in (5.3.29),
we obtain

2 [r-k1+(n-2)(7\l-k2) Jw-we prokryt
(5.3.30) —ar .

The efficiency for an A-factor contrast, obtained from (5.3.16), with
o and B replaced by © and b, and (5.3.30), is then given by
[r—kf (n-2) (7 -\,) Jw-w ke

eJed1
(5.3.31) E, e [or 0300 ]

Similarly, the efficiency for a C-fector contrast is shown to be

(5.3.32) E [r-ap+(n-2) (A -1,) (w0t prierwre
h i krdii* [+ (n-3)9 ]

The efficiencies of Latin Square type designs relative to com-
pletely randomized designs are given in Table II for different values

of 7, vhere y = WA"'.,

5.4 Analysis of a Particular Design with n = 4

For the special cases of factorials or fractional factorials
consisting of sixteen treatment combinations, it is possible to par-
tition the treatment sum of squares into independent sums of squares
corresponding to the various factors and perform the usual tests of
significance provided that we arrange the treatment combinations in
the association scheme so as to preserve orthogonality. This may be
done if we use a set of three orthogonal 4 x 4 Latin Squares super-
imposed. The levels of the one factor ere represented by the elements

of one square and the levels of the other factor are represented by
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the elements of the second square. The third square is used to des-

ignate the association scheme, The three squares may be written as

follows:
1 1I 111
1234 1234 [12 3]
2 1 L4 3 b3 o201 34 1 2
3 4 1 2 2 1 4 3 4y 3 2 1
b3 21 3 4 1 2 2 1 4 3|

Replacing the numbers of the first Latin Square by the letters, A,
B, C, and D, and superimposing the three squares, we obtain the com-

pletely orthogonalized square

A1 By Cy5 Dy,
Bys A5, Dy Cyy

(5.k.1)
Cop, Dyz Ay By

30 Cuy By Ag| -

Let us consider a basic two-factor factorial consisting of
factors A and C at four levels each. Denote the levels of A and C
by the numbers of the second and third Latin Squares, respectively.
The sixteen treatment combinations, vid(i’ J = 1,.0.,4), are then

obtained from (5.4.1) and may be displayed by the array
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2

A design using the above association scheme and having the
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VA VB
VB Vg
Vol Yy
ViD  VC

V55p thﬁj
V21D V. €
thA V315
vlhB V25A .

= 6, has the plan shown below,

<3

11 Vo1 V31

11 V21 Yin
1 V12 V13
1 V12 Vi
11 V13 Vi
1 V51 Yy

o0 Vo1 Vou

< < < <<€ < <« < <
T - - T -

22 Vo1 Vo3

General details on the construction of partially balanced, in-

Using the above association scheme we can write the last part

PLAN
Voo Via Vip | V33 V13 Vo3
Voo V12 V3p | V33 V33 Vsp
Voo Vau Vo3 | Vi Vi3 Vo
Voo Vo Vaz | Vuy Viz Vi
Vs Vi3 Vi3 | Vi Vau Vo
Vi3 Vi3 Vo3 | Vi, Vi Vi
Vas Vi Vay | Vu Vou Vi
Vs Vi Vap | Vi Vip Vi

of equation (5.2.12) in the form

represents the treatment combination consisting of

the fourth level of factor A and the second level of factor C.

parameters,xl=o,x2=2,r=6,k=3,v=16,b=32,n1=9,

Vi3 V13 Vo3
Vs Vo Vi
Vau Vo Viu
Vs V31 V3p
Vo1 Vou Vo3
Vo1 V31 Vi
Viz V13 Vi
v

12 Vo V3o

complete block designs are given by Bose and Nair [ 37].
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-2t.

(5.4.2) )i:z} ty45,(t 13)

13) = {_)j tiJ(ti."'t-J

=zt2 + I t2, - 21F t2
1e 7 573 i3 iJ °

Therefore, using the design parameters, we have

= g 2 _ 2 _ 2
(5.4.3) SST(adJ.) 3(8)1:3: tiJ 2 szt .1) ,
and substituting from (5.2.16) for the tiJ's ve obtain
22 ¢ 2,32 2 2
(5.4.4) SST(adJ.) 5 Lef+ 52 Z et -3- ﬁ' oz, .

From general regression theory we find, in a manner similar to

that of Kramer and Bradley, that

(5‘1"'5) SSA(adJ ) = zf": aiQiJ ?
(5.4.6) ssC(adj.) = ﬁ: CJQL) ’
and

(5.4.7) ss(aC)(adj.) = }i:? diJQi,j .

From equation (5.2.12), it then follows that

32

(5.4.8) SSA(adj.) = 5 i: af ’
(5.4.9) ssC(adj.) = -53% S: c’s’ ’

and

(5.4.10) ss(aC)(adj.) = 3-z:z:c12

with three, three, and nine degrees of freedom, respectively. The
complete analysis of variance for the two-factor factorial is given

in Table 2,
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Table 2. Analysis of Variance for the Basic

Two-factor Factorial

Source of Degrees of Sun of
Variation Freedonm Squares
— ———
Treatments 15 5(82:): tf J-}: t2 -z t2 J)
(edjusted)
A-factor 3 %; z af
(adJusted) i
C-factor 3 %g z cg
(ad Justed) J
16 >
AC-~interaction 9 = Iz diJ
(adJusted) iJ
2
Blocks 31 % 5 B2 - 99-5
(unad justed) 8
Error Lo By Subtraction

Using the methods of Section 4.5 it is possible to obtain in-
dividual or single-degree-of-freedom comparisons. Let & and 7 be two
3 x 4 matrices used to transform A- and C-factor effects, respectively.
Contrasts on A-factor effects for the intra-block analysis would then
be

(50!‘.11) Iu = f giuai’ u = 1, 2, 3’

and on C-factor effects

(5.’4.12) Jv = § TleCJ, v = l’ 2, 3.

To test the hypothesis that f gid@i = 0 we use the adjusted sum of

squares given by
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(5.5.13) Adj. 85(1,) = 32(Z €4, %, )2/ 3,

which follows from equation (5.4.11) and the multiplier of equation
(5.4.8).
Similarly, to test the hypothesis that § “v373 = 0, ve use

the adjusted sum of squares given by
= oT 2 2
(5.4.14) AdJ. ss(a&) 32(% "vgt-g) /3§ ngye

which follows from equation (5.4.12) and the multiplier of equation
(5.4.9).

The adjusted interaction sum of squares may also be par-
titioned. The nine orthogonal contrasts for the interaction of Iu

and J&, obtained from the matrices & and n, are
(5.4.15) (xJ)uv = f? giu”vgtia'

To test the hypothesis that §§ giunvjaij = 0 we use the adjusted

sum of squares given by
(5:4.26)  Adg. 8S(19)y, = T6(ZZ by ny gty gV2/5ER( 1, 4%

vhich follows from equation (5.4.15) and the multiplier of equation
(5.4.10).

Cochran's theorem [ 5] is sufficient to demonstrate the in-
dependence of all adjusted sums of squares, each with one degree of
freedom. All F-tests are effected using the error mean square of

Table 2.
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Corresponding results for the combined intra-~ and inter-block
analysis are obtained in exactly the same way as described in Chapter
IV. Suitable X2-statistics for testing the hypotheses of no main
faétorial effects and no interaction effects for the basic two-factor

factorial are then given by

(5.!&.17) 'xi = (jgw..ll;w!){‘ 352/5’
(5.4.18) xg = (3gw_1uw')§ c32/3,
and

(5.4.19) X2, = (16w+2w')§3: diﬁfj’

with three, three, and nine degrees of freedom, respectively.
To test hypotheses on linear contrasts among the effects we

use the statistics

(5.4.20) xfu = (G- ) (T gy 71 )25T 68,
2 = - ' T 2 2
(5.4.21) x5 (3 -1t )(3: n5Ety) /3§ "2,
and
(5'h'22) . X?IJ)uv = (lm"a’”)(f’? §iuantiJ)2/5§§(§iunvd)2J

which follow from equations (L4.5.1), (4.5.2), (4.5.5), and the mul-
tipliers of equations (5.%.17), (5.4.18), and (5.4.19), respectively.
Special definition of the matrices ¢ and 1, as in Section 2.k,
permits the use of special contrasts for measuring trends over the
factor levels. By taking the A- and C-factors to have levels, which

themselves are factorial combinations, we can again extend the two-
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factor factorial to the case of multi-factor factorials or fractional

factorials as in Section 2.h4.

5.5 Discussion

In Sections 5.1, 5.2, and 5.3 ve have discussed the Lj-type
designs with a basic two-factor factorial assigned to the treatments
so that factor levels correspond with rows and columns of the Latin

Square association scheme., There V,, is the treatment in the 1th row

1J
and Jth column of the Latin Syuare, and no cognizance is taken of the
letters of the lLatin Square in assigning factoriael treatments through
taking V

= AiC This basically seems awkward and the association

13 7Oy
of factorials with treatments of Section 5.4 was tried.

In Section 5.4 the use of three orthogonal 4 x 4 Latin Squares
led to a simpler partition of the adjusted treatment sum of squares
into components for A-factor, C-factor, and AC-interaction effects.
In that section ViJ had subscripts corresponding to elements in two
of the three orthogonal Latin Squares, a different association of
subscripts from that of the earlier sections of this chapter. In de-
veloping this new association of factorials to treatments it was

hoped that a general scheme for use of factorials in L_-type designs

3
would result . It turned out that the new scheme did produce a sat-
isfactory analysis in the 4 x b case but did not result in any im-

provements or simplifications in general over the assignment of fac-

torials used in Sections 5.1 to 5.k.
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VIi. NUMERICAL EXAMPLES

6.1 A Group Divisible Design

We shall illustrate the results developed in Chapter III by
considering the plan for the design R2T as catalogued by Bose,

Clatworthy, and Shrikhande [:2:]. The association scheme is given

by
Vi, Vip  Vi5]
Var Voo Vg3
(6.1.1) Vi Vip o Vi ,
i Yue Vs
Y51 Ys2 Vs

from which the treatment combinations for a 5 x 3 factorial may be

obtained and designated by

(A)C, A, AC 3—

ALy ALy AL
(6.1.2) AL, AL, ALy .

MC) AL, ACs

LAscl AL, AL 5

The values A (1 = 1,...,5) and CJ(J = 1,,..53), represent the levels
of factors, A and'C, respectively. The design parameters are v = 15,
r=h,k=h,b=l§,m=5,n=5,K1=0,and)\2=l.

The block plan and yields are given and analyzed by Bose,

Clatworthy, and Shrikhande [2] for varietal trials. Assuming that
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their thatments actually came from factorizl treetment combinations
as given by (6.1.2), we can use many of their computations to illus-
trate our theory.

We tabulate the combined intra- and inter-block estimates of
the treatment effects, as computed by Bose, Clatworthy, and Shrikhande,
and the corresponding row and column totals, in Table 3.

The values of w and w', obtained from equations (2.2.8) by
Bose, Clatworthy, and Shrikhande, are 10,7411 and 3.6350, respectively.

Therefore, from (3.5.2),
X2 = [W(rk-rex Bt (r-a)) :]% 13
- G (A )2

and substitution of the design parameters and values in Table 3
yields

Xg = 21.0345.
Also, using (3.5.4) and (3.5.7), we find
xf = [VKQW‘P(I‘R-V)\Q)W' ]i: tﬁ' [k

= h.E’#SO,

and
X8 = [(rk-ren Yo (r-2) W jat v13
= 2.1523,

with four and two degrees of freedom, respectively, both of which are

insignificant at the five per cent level.
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Table 3. Values of tiJ

(Combined Intra- and Inter-block Estimates)

th He 4 4.
0.0898 0.1754 0.1660 0.k312
t21 t22 23 t2.
-0.3785 0.0570 0.3225 0.0010
¥ Yo | % .
-0.2806 0.04k41 -0,1213 -0.3578
tha tio ths the
0.0547 0.1527 -0.2376 -0,0302
B % | % | %
0.0689 -0.2366 0.1241 -0.0436
th t, tls
-0.4457 0.1926 0.2537

By subtraction, or (3.5.10), we have

xﬁé = 14.5332
with eight degrees of freedom, which 1s also insignificant at the
five per cent level.

To estimete the variance of the difference between two fac-
torial effects, we require p and q in (3.3.2) and (3.3.3) based on
A, B, C, D, and E following (3.2.26). We find

p = 0.0291,
and
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q = -0.0012.

Referring back to (3.3.27) and (3.3.28) we now have

V(ai'_-a{,) = 2[1’*(2'1)(1] = 0,0178,

and

V(ca-cs,) a 2&%:21 = 0.0303.

Variance and covariances of the factorial estimators themselves may

be easily obtained, if needed, from the definitions in Chapter III.

6.2 A Latin Square Sub-type L, Design

We shall illustrate the results of Chapter IV by considering
the design LS12 as catalogued by Bose, Clatworthy, and Shrikhande
EQ]. It was necessary to make up the observations in order to in-
dicate how the theory applies. For this reason no importance should
be placed on the results of the analysis which may or may not indi-
cate what would happen in an actual experiment.

The design LS12, with parameters v = 16, r = 7, k = 4, b = 28,

n, = 6, n, =9, M =2, and A, = 1, has the folloving scheme:

Vi Ve VsV
‘a Y2 Va3 Va|
Var Ve V33 Vg
i Y2 Yz Vi

Recall that treatments in the same row or column are now first as-

sociates and are second associates otherwise., If we consider two
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Field Plan

Table b,
Block
Block | Treatments and yields totals
Dot Vo | Vo | Vs | Vi
33 | 38 | 36 | L8 155
2 1 V| Vo | Voo | Vae
36 | W7 |35 | 4T | 165
> iV V3| Va |
31 |42 |30 |3 | 1%
b Vio vh} Vip | Vo2
M |46 | b6 | 8 | 177
500 Vs | Vur | Yus | Vou
so |47 [% |3 | 11
6 1 Vss | Vau | Va2 | Via
b2 | 35 | 46 | 51 | 17
T V15 V12 vh} vh2
b3 | oy | | 81| 172
8 Vao | V33 | V31 | Vs
b5 | 43 | 32 | k2 | 162
9 | Va3 | Vmn | Vua | Vo3
Lo 48 Lo | 169
10| Voo | Voz | Vi | sz
57 | 38 | 33 | ko | 148
B V| iz | Va3 | Vi3
bo | e |4 |4 | 1m
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Teble b - continued

Block | Treatments and yields E;:;ﬁs

120 Vo | Vg | Vou | Vi

b1 | %9 | 371 |50 | 177
13 Va1 | Va2 Vah Vio

30 L6 25 L1 152
W] Vo | Vo | Vo3 | Y

33 230 38 27 128
15 | Vis | Yoy | Vo3 Vis

b5 | 37 | 40 | 39 161

ho | 33 | 33 |32 | 138
ol Ve | Y| Va1 | Vi

L8 35 29 b5 157
18 | Vi | Vo th Vo

b3 | 38 | 48 | 3 160
19 V21 V22 Veh v32

33 37 35 L8 153
20| Vo | V| V35|

32 | 271 | 39 | b5 143
2L | Vig| Vo | Vo | V3

4 | 39 | b0 | 39 163

48 L1 40 Lo 171
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Tahle b - continued

adm o o Block
Bleock | Treatments and ylelds totals
2 | Vas | Vo | Voo | Vo
39 33 33 33 143
A1V | Vi3 | Vo3 | V33
48 45 Lo Ll 177
2 Vi | You | V33 | Vi
37 35 Ls Lh 161
26 | Vyp | Vo | Vo | Vi3
18 35 31 39 151
2T | Viz | Vs | V3 | Vi
bo | 38 |27 | M9 156
28 Vi | Vo3 | Voo | Vin
ho ho L5 L5 172
Table 5., Values of Tid and Bij-
T11 | Tia | T13 | Ty B13. | Bia. | Byz. | By
2k2 | 332 | 306 | 279 1083 | 1170 | 1146 | 11h7
Tor | Too | Toz | Tou Bor. | Boa. | Bos. | Bo.
223 | 266 | 278 | 248 1024 | 1113 | 1098 | 1100
Ts1 | T2 | T33 | Tay B51. | Bsa. | Bss. | Bay.
204 | 321 | 298 | 241 1036 | 1150 | 1136 | 1081
Tuy | Tuz | Tus | Tuy 1. | Buoe | Bus. | B,
314 | 290 | 291 | 344 1130 | 1162 | 1166 | 1166
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factors, A arnd C, at four levels each, then again the treatment V

1J
of the association scheme represents the treatment combination of
th

the i level of factor A and the Jth level of factor C.

The field plan, Table L, shows the block numbers, treatments
occurring in the blocks and their yields, and the block totals. To
evaluate the estimators tiJ’ and then tiJ’ it will be convenient to

set up Table 5 giving treatment totals T,, and values of Bij" the

iJ
total of block totals for blocks containing viJ’
From Table 5 we calculate Qij = TiJ - Bido/k‘ Values of Qid
are given in Table §. The intra-block estimators of the 713'8 are
then obtained from the results of Bose, Clatworthy, and Shrikhande

[2], by the formula
ty " [22Qid+sl(Qia)]/120.

These values, along with their row and column totals, are given in

Table 6.
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Table 6. Values of tiJ (Intra-block Estimates)

i Yo s Yy .
-5.3146 T7.2729 3,717 -1,2000 4 ,5000
to1 22 t23 ®ay %2,

-6.783% -2.1125 0.3146 -5.1688 -13,7500

ta 32 t33 ts), ts5.
-10.1833 5.7792 | 2.3313 | -5.2771 -7.3499
41 Y2 |t ), ty.
5.2313 1,110% 0.9125 9.3&58 16.6000
et e et
t. t t t.)

-17.0499 12.0500 T+.3001 -2.35001

Setting W = 1 and W' = O in formulas (4.4.2), (4.4.4), and

(4.4.7), we obtain the intra-block analysis:

=31 2 .5t2 _£t2) =
ssT(add.) H(ehﬁ t2,-2 12 z t2,) = 2509.1539,

sSA(edJ.) = £ £ 2, = 673.6169,

and

ssc(add.) = 2 z t2, = 618.104k.

By subtraction
ss(ac)(adj.) = 1217.k326.
In the usual way, ve have

& .

) 1152.1696,

e
SsB(unedy.) = I BE -

and
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& 3796.9196.

= 2 -
Total SS §§§ Sigy?as 115

We summarize these results in Table 7.

Table 7. Intra-block Analysis of Variance

(Design LS12)

Degrees of Sum of Mean
Source of Variation Freedom Squares Square
Treatments 15 2509.1539 167.2769
A-factor (adJ.) 3 673.6169 224.5389
C-factor (adj.) 3 618.104  206.0348
AC-interaction (adj.) 9 1217.4326 135.2703
Blocks (unadj.) 27 1152.1696
Error 69 135.5961 1.9652
Total 111 3796 .9196

To estimate the weights w and w' we must form the auxiliary

table for inter-block analysis of variance. Therefore, we need the

unad justed sum of squares for treatments which is given by
g2

y° 13T 3438,9196.

SST(unadj.) = % . T2

Using the error and total sum of squares from Table 7 we obtain, by
subtraction, the sum of squares for blocks adjusted. The results

are listed in Table 8.
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Table 8. Auxiliary Table for Inter-block
Analysis of Variance

(Design 1S512)

Source of Variastion D;fzggiméf siﬁ:rzz Sﬁizge
Treatments (unadj.) 15 3&38.9196
Blocks (adj.) 27 222,4039 B=8.2372
Error 69 135.5961 E=1.9652
Total 111 3796.9196

We now f£ind that

W 3%3 005089

and
bk-v

= k(b-l)B’(V'k)-E- = 0.1108-

w‘

Using w and w' as estimates of W and W' in formula (3.3.7) we then

have
(VA" 3 o W/
dl = __l_._fi._ = 0.2518
AtTHZA 222

c. Ar\.Z
d? = _-L—-k—]-'—— = 0.1668
© A+rHZ4r2z2

and

vwhere Z, A, H, c., and ¢, are defined in (3.3.8), (1.3.10), (1.3.11),

1 2
(1.3.12), and (1.3.13), respectively.
To obtain the combined intra- and inter-block treatment esti-

mates, we use (4.2.7), which reduces, for this design, to the form
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tid = 0.551;!41?13 + 0.00742( f'Pi'f 32'?13,),
1A 343

where PiJ = inJ + W'Qid, and Qid = Bijo/k - rG/bk. Table 9 gives

the estimated values for Q{J’ P , end Sl(P vhere

iJ’ tia ia))

sl(P“)s ii:'Pi,J«» ?.Pid'
1'#1 J'Ad
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Table 9. Combined Intra- and Inter-block Estimates
of the Treatment Effects

(Design LS12)

Treatment Q4 Qiy Pyy 81(Ps ) tiy
Vi, -28.7500 | -9.0625 |-15.6350 | -L4.4030 | -5.2610
Vin 39.5000 | 12.6875 | 21.5073 | b4.2766 | 7.2238
Vi3 19.5000 | 6.6875 | 10.6645 | 12,5186 | 3.6591
Vi) =7.7500 | 6.9375 | -3.1753 | 14.3306 | -0.9555
Vo -33.0000 |-23.8125 |-19.4321 |-49.0906 | -6.8623
Voo -12.2500 | -1.5625 | -6.4072 | 17.8238 | -2.0845
Vo3 3.5000 | -5.3125 | 1.1925 |-16.0492 | 0.2797
Vo -27.0000 | -4.8125 |-14.2735 |-15.7548 | -L4.8900
Vi) -55.0000 |-20.8125 |-30.2955 | -9.1954 |-10.1990
Vi, 33,5000 | T7.6875 | 17.8999 |-22.6220 | 5.8179
Vs 14,0000 | 4.1875 | 17.5886 |-15.4430 | 2.4230
Vs, -29.2500 | -9.5625 |-15.9449 | 5.7564 | -5.2893
Vi 31.5000 | 2.6875 | 16.3281 |-35.3802 | 5.1976
Vio -0.5000 | 10.6875 | 0.9297 | 78.3808 | 0.8925
Vs | -0.5000 | 11.6875 | 1.005 | 64.7156 | 0.8281
Vi 52.5000 | 11.6875 | 28.0122 |-15.0954 | 9.2553

The values of the t!, (s, along with their row and column

i
totals, are given in Table 10.
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Values of t!

1

(Combined Intra- and Inter-block Estimates)

t11 ts 3 b1 .
-5.2610 7.2238 | 3.6591 | -0.9555 L4 .6664
t2 tée té5 ) tay tl,
-6.8623 | -2.0845 | 0.2797 | -4.8900 -13.55T1
31 32 t33 34 t3.
-10.1990 5.8179 | 2.4230 | -5.2893 -7.247h
th tho i3 Yy .
5.1976 0.8925 | 0.8281 9.2553 16.1735

t tl, t:5 t!

Using equations (4.4.2), (4.h.k), (4.4.7), and (4.4.10) we

obtain
X% = 1340.7979,
X2 = 359.3568,
Xé = 53800729’
and

2
X2, = 643.3682,

with fifteen, three, three, and nine degrees of freedom, respectively,

all of which are highly significant.
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The variances of the various estimetors may be determined from
the proper formulas of Chapter IV, if required.

Suppose we take the A-factor to be a quantitative one and in-
vestigate the linear, quadratic, and cubic trends. The trend coef-
ficients together with the sums of squares of the coefficients are

given in Table 11.

Table 11. Trend Coefficients for Subdivision of Xﬁ

Coefficients for Sums of
Contrasts Ti‘ = t), = .=t = Squared

1.1666 -3.3893 -1.8119 L4.0434| Coefficients

Linear A -3 -1 +1 +3 20
Quadratic A +1 -1 -1 +1 L
Cubic A -1 +3 =3 +1 20

It now follows from equation (4.5.3)

X2(Linear ) = 22IC T (-3)(1.666) + .uv + (3)(4.0034) T

= 57,6451,
Similarly
X2(Quad. A) = 299.8261
and

X2(Cubic A) = 2.2490.
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If we assume the 4 x 4 factorial is now a 4 x 22 factorial by
taking the levels of A to be made up of two levels of a factor N and
two levels of a factor P, we can carry out the analysis in exactly

the same way as described in Section 2.kh.

6.3 A Latin Square Sub-type L3 Design

Suppose we consider the design and block plan described in Sec-
tion 5.4, The sixteen treatment combinations for the two factorial
factors are given by the association scheme in Section 5.4. Once these
treatment combinations have been properly assigned to the blocks ac-
cording to the field plan the analysis is carried out in exactly the
same way as for the previous exemple., To make the computations as
simple as possible it is important for the design of Section 5.4 that
the treatment estimates be arranged as in Tables 6 and 10 and not ac-
cording to the association scheme.

Appropriate formulas of Chapter V yleld the variances of the
estimators. The extension to multi-factor factorials and the con-
sideration of individual contrasts is carried out in the same manner
as for the previous example.

For all other types of L3 designs we obtain the factorial
estimates from the formulas of Section 5.2 and make tests on compari-
sons among the factorial estimates by using the variances and covari-

ances of Section 5.3.
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VII. SUMMARY

The work of Xramer and Bradley has been extended to permit
both the intra-block and combined intrs- and inter-block analysis of
factorials in balanced incomplete block designs and several classes
of partially balanced incomplete block designs. In particular, we
have obtained a combined intra- and inter-block analysis for fac-
torials in balanced incomplete block designs, group divisible designs,
and Latin Square type of partially balanced, incomplete block designs,
For the class of Latin Sjuare cub-type L3 designs, both the intra-
block and combined intra- and inter-block analyses have been con-
sidered. The only partially balanced incomplete blcck designs, cata-
logued by Bose, Clatworthy, and Shrikhande [27], that have not been
considered in this dissertation are those whose treatment numbers are
prime, such as the group of cyclic designs and those which must be
treated individually rather than as a complete class.

Except for the special cases of 4 x U4 Latin Square sub-type
L3 designs, factorial treatment combinations were assigned to the
association schemes by permitting the rows to represent the levels of
one factor and the columns to represent the levels of a second factor.
The extension to multi-factor factorials was then carried out by sub=-
dividing the levels of the basic two-factor factorial, the sub-
divisions representing the levels of the additional factors. This
is possible only if the number of levels for the basic two-factor

factorial is non-prime.
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Estimators for the factorial effects have been obtained along
with their varisnces and covariances. Sums of sguares in terms of
the factorial estimators have been derived aad can be used to carry
out tests of significance, fhese sums of squares were shown, for the
combined intra- and inter-tlock analysis, to be independently distri-
buted as X2-variates with the appropriate number of degrees of freedom.
Suitable sums of squares for tests of significance on the factorial
effects are not possible in general for the Latin Square sub-type L3
designs. 1In situations such as these, we can only consider contrasts
among the estimates and use their variarnces to perform tests of sig-
nificance.

For the special cases of 4 x 4 Latin Square sub-type Ly de-
signs, a complete analysis ylelding the adjusted sums of squares, for
the factorial effects, is possible if the factorial treatments are
applied to the association schemz in a different manner. Using three
orthogonal Latin Squares we obtained a satisfactory analysis by letting
the levels of one factor be represented by the elements of one square
and the levels of the second factor by the elements of the second
square. The third square desigrates the association scheme.

Single-degree-of -freedom contrasts are obtained in much the
usual way as in complete block designs. Main effects may be divided
into trend contrests and also interaction sum of squares may be par-
titioned. These partitions may be effected by using row and column
averages or other appropriate functions of the original treatment

estimators. The appropriate sums of squares for main effects and



- 11k -

interactions of a multi-factor factorial are obtzined either as func-
tions of the original estimctors or as functions of the row end column
averages of the original treatment estimators. The method of incor-
porating a fractional replicate of a fectorial is also considered.,
Numerical examples hzve been worked in detail for & group di-
visible design and a Latin Square sub-type L5 design. Using these
two examples 28 a guide we can perform a combined intra- and inter-
block analysis for factorials in balanced incomplete block designs.
These examples also serve as guides for the specicl analysis of a
. design once the estimates of the t

3
are obtained and properly arranged in & two-way table so that row

4 x 4 Latin Square sub-type L 13'5
and column totals represent sums over first and second subscripts,
respectively.

The problem of snalyzing factoricls in various types of
lattice designs 1is being investigated at the present time. However,
there are certain types of lattice desigus which cen be classgified
with the partially balarced incomplete block designs discussed in this
dissertation. For example, the near balance rectangular lattices and
the Latinized rectangular lattices belong to a subclass of the group
divisible designs. Also, simple lattices may be classified es Latin

Square sub-type L, designs while triple lattices belong to the sub-

2
type L5 class of Latin Square, partially balanced, incomplete block

designs.
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IX. APPENDIX

Table I. Efficiencies of Group Divisible Designs Relative

to Completely Randonized Designsl’2
Ep
y=up
Design
No. 1 2 3 5 T 10

Sl 100 109 125 160 196 252
s2 100 109 125 160 196 252
s3 100 109 125 160 196 252
sk 100 109 125 160 196 252
S5 100 109 125 160 196 252
86 100 111 130 171 214 280
s7 100 105 113 132 151 180
s8 100 111 130 171 214 280
SS 100 105 113 132 151 180
S10 | 100 111 130 171 214 280
s11 | 100 105 113 132 151 180
sl2 | 100 109 125 160 196 252
813 (100 109 125 160 196 252
S14 {100 109 125 160 196 252
S15 | 100 109 125 160 196 252
S16 | 100 109 125 160 196 252
S17 {100 112 131 175 220 290
s18 | 100 103 108 119 130 1b7
819 | 100 107 119 144 171 213
820 {100 112 131 175 220 290
S21 (100 103 108 119 130 147
22 | 100 109 125 160 156 252
$23 | 100 111 130 171 21k 280
sok | 100 105 113 132 151 180
§25 | 100 109 125 160 196 252
S26 | 100 112 132 177 223 294
s27 100 108 121 151 182 230
s28 | 100 102 105 112 120 131
S29 | 100 111 130 171 214 280
830 | 100 109 125 160 196 252
§31 | 100 105 113 132 151 180
8§32 | 100 109 125 160 196 252
33 | 100 111 130 171 21k 280
s34 | 100 105 113 132 151 180
835 | 100 112 132 177 223 294
36 |100 108 121 151 182 230
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Table I - continued

Ep
y =gUM'
Design
Ho 1 2 3 5 7 10
S37 100 109 125 160 166 252
S38 100 105 112 129 146 173
S39 100 102 105 112 120 131
sko 100 109 123 155 189 240
skl 100 105 115 135 156 189
sho 100 112 132 178 225 297
sh3 100 109 123 155 189 240
shh 100 105 115 135 156 189
sks 100 109 123 155 189 240
ské 100 109 125 160 196 252
sh7 100 112 131 175 220 290
sk8 100 109 125 160 196 252
slg 100 107 119 144 171 213
550 1C0 109 125 160 196 252
s51 100 112 131 175 220 290
852 100 109 125 160 166 252
853 100 1 125 160 196 252
S54 100 111 130 171 214 280
S55 100 111 130 171 21k 280
856 100 112 133 178 226 298
857 100 106 116 139 163 199
858 100 111 130 171 214 280
859 100 109 125 160 196 252
S60 | 100 112 132 177 223 294
sé1 100 108 121 151 182 230
s62 100 112 133 179 227 299
563 100 109 125 160 166 252
sés 100 107 118 142 168 207
s65 100 112 132 177 223 294
s66 100 108 121 151 182 230
s67 100 105 112 129 146 173
s68 100 111 130 171 214k 280
s69 100 112 131 175 220 290
S70 100 107 119 144 171 213
STl 100 111 130 171 214 280
sT2 100 112 131 175 220 290
873 100 112 133 179 227 300
STh 100 110 126 161 199 256
S75 100 111 130 171 214 280
s76 100 105 ‘113 132 151 180
ST7 1 109 123 155 189 240
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Table I - continued

Ep
Desi 7 = WA
esign
No. 1 2 3 5 7 10
s78 100 112 132 178 225 297
ST9 100 109 123 155 189 240
s80 100 109 123 155 189 240
s81 100 105 114 134 154 186
s82 100 112 133 179 227 300
s83 100 105 114 134 154 186
s8kL 100 112 132 177 223 294
s85 100 112 133 178 226 298
586 100 112 132 177 223 294
s87 100 112 131 175 220 290
s88 100 112 131 175 220 290
589 100 108 120 149 178 223
S90 100 110 127 164 203 263
S91 100 108 120 1k9 178 223
S92 100 109 125 160 196 252
893 100 112 133 179 227 299
sGL 100 109 125 160 196 252
S95 100 112 132 178 225 297
596 100 112 132 177 223 294
s97 100 110 127 165 205 265
s98 100 112 133 179 227 300
S99 100 110 126 161 199 256
S100| 100 112 132 177 2235 294
S101| 100 108 121 151 182 230
S102| 100 112 133 178 226 298
S103| 100 108 121 151 182 230
S104| 100 112 133 179 227 300
S105| 100 112 132 178 225 297
S106| 100 112 133 179 227 299
S107| 100 110 128 167 207 269
S108| 100 110 127 164 203 263
S109| 100 112 133 178 226 298
S110| 110 112 133 179 227 300
S111| 100 107 118 143 169 209
sll2| 100 111 128 167 208 270
S113| 100 107 118 143 169 209
S11k| 100 112 133 179 227 300
S115| 100 110 127 165 205 265
S116| 100 112 133 179 227 299
S117( 100 107 119 144 171 213
S118( 100 109 123 155 183 238
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Table I - continued

Ep

y =W
1 2 3 5 7 10

Design
No.

S119 100 112 133 179 227 300
8120 100 112 133 179 227 300
s121 100 109 123 155 189 240
5122 100 110 128 167 207 269
S123 100 111 128 167 208 270
s12k 100 107 120 147 176 220

1 Note, that for the singular subclass of group divisible designs,

EC = 1 for all 7.
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Table I - continued

Eq
== y = /W

esign =

o 1 2 3 5 7 10
SR1 100 111 1%0 171 214 280
SR2 100 111 130 171 214 280
SR3 100 111 130 171 214 280
SR4 100 105 115 1% 156 189
SR5 100 111 130 171 214 280
SR6 100 111 130 171 214 280
SRT 100 100 125 160 196 252
SR8 100 109 125 160 196 252
SR9 100 107 119 144 171 213
SR10 100 109 125 160 1¢6 252
SR11 100 109 125 160 196 252
SR12 100 111 130 171 214 280
SR13 100 111 130 171 214 280
SR14 100 10% 110 124 139 162
SR15 100 111 130 171 214 280
SR16 100 108 121 151 182 230
SR1T 100 108 121 151 182 230
SR18 100 108 121 151 182 230
SR19 100 108 121 151 182 230
SR20 100 109 125 160 196 252
SR21 | 100 111 130 171 214 280
SR22 100 107 119 14k 171 213
SR23 100 109 125 160 196 252
SR24 100 107 119 144 171 213
SR25 100 105 113 132 151 180
SR26 100 103 108 119 130 147
SR27 100 111 130 171 214 280
SR28 100 107 119 144 171 213
SR29 100 109 125 160 196 252
SR30 100 107 119 14k 171 213
SR31 | 100 105 112 129 146 173
SR32 100 106 116 139 163 199
SR33 100 106 116 139 163 199
SR34 100 106 116 139 163 199
SR35 100 106 116 139 163 199
SR36 100 111 130 171 21k 280
SR37 100 108 121 151 182 230
SR38 100 108 121 151 182 230
SR3%9 100 111 130 171 214 280
SR4O 100 109 125 160 196 252
SRW1 100 105 115 135 156 189
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Table I - continued

Eg
7 = W
Dezig“ 1 2 3 5 7 10
NO o
SRk2 100 109 125 160 196 252
SRU43 100 105 115 135 156 189
SRLL 100 105 115 135 156 189
SR4S 100 111 130 171 214 280
SRL6 100 107 119 144 171 213
SRA4T 100 105 113 132 151 180
SRL8 100 105 113 132 151 180
SRL49 100 107 119 144 171 213
SR50 100 105 113 132 151 180
SR51 100 108 121 151 182 230
SR52 100 109 125 160 196 252
SR53 100 105 112 129 146 173
SR54 100 108 121 151 182 230
SR55 100 105 112 129 1k6 173
SR56 100 109 125 160 166 252
SR57 100 105 112 129 146 173
SR58 100 106 116 139 163 199
SR59 100 111 130 171 21% 280
SR60 100 106 116 139 163 199
SR61 100 111 130 171 214 280
SR62 100 107 119 144 171 213
SR63 100 105 115 135 156 189
SR64 100 108 121 151 182 2%
SR65 100 108 121 151 182 230
SR66 100 111 130 171 214 280
SR67 100 105 113 132 151 180
SR68 100 109 125 160 196 252
SR69 100 106 116 139 163 199
SR70 100 107 119 144 171 213
SRT1 100 105 112 129 146 173
SR72 100 107 119 144 171 213
SR73 100 111 130 171 214 280
SRTY4 100 109 125 160 196 252
SRT5 100 105 115 135 156 189
SR76 100 108 121 151 182 23%0
SRT7 100 105 113 132 151 180
SRT78 100 109 125 160 196 252
SR79 100 108 121 151 182 2%
SR80 100 107 119 14k 171 213
SRO1 100 108 121 151 182 230
SR82 100 107 119 14 171 213
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Table I - continued

E
7 = W/

Design
No. 1 2 3 5 T 10

SR83 100 106 116 139 163 159
SR8 100 107 119 144 171 215
SR55 100 105 115 135 156 189
SrR86 100 106 116 139 165 199
SR87 100 106 116 139 163 199
SrR88 1C0 105 115 13 156 189
SR89 100 105 113 132 151 180
SR90 100 105 115 135 156 189
SRI1 100 105 113 132 151 180

2 For the semi-regular subclass of group divisible designs,

EA = 1 for all 7.
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Table I - continued

Ep Eo
y = WM y = W/wW
De§i§“ 1 2 3 5 7 10|l 1 2 35 5 7 10
Rl 100 111 130 171 214 280 100 105 113 132 151 180
R2 100 109 125 160 196 252 100 103 108 119 130 147
R3 100 111 130 171 214 280 100 107 119 144 171 212
R4 100 103 108 119 130 147 100 105 115 135 156 189
R5 100 105 113 132 151 180 100 111 130 171 214 280
R6 100 105 113 132 151 180 100 111 130 171 214 280
RT 100 105 113 132 151 180 100 110 126 161 199 256
R8 100 112 133 179 227 299 100 103 108 119 130 147
R9 100 112 132 177 223 294 100 108 121 151 182 230
R10 100 112 133 180 229 302 100 107 119 14k 171 212
R11l 100 106 116 139 163 199 100 110 127 165 205 265
R12 100 111 130 171 214 280 100 109 123 155 189 240
R13 100 104 112 129 146 173 100 110 128 167 208 270
R14 100 103 108 119 130 147 100 109 125 160 196 252
R15 100 109 125 160 196 252 100 105 115 135 156 189
R16 100 108 121 151 182 230 100 111 130 171 214 280
R1T 100 111 130 171 21k 280 100 109 123 155 189 240
R18 100 112 133 178 226 298 100 109 124 158 193 247
R19 100 112 133 180 229 302 100 109 125 160 196 252
R20 100 105 113 132 151 180 100 111 130 171 214 280
R21 100 108 121 151 182 230 100 111 130 171 214 280
R22 100 108 121 151 182 230 100 110 128 167 208 270
R23 100 104 112 129 146 173 100 108 121 151 182 230
R24 100 105 115 135 156 189 100 109 125 160 196 252
R25 100 109 123 155 189 240 100 111 130 171 214 280
R26 100 105 115 135 156 189 100 109 125 160 196 252
R27 100 103 108 119 130 147 100 109 125 160 196 252
R28 100 107 119 1k 171 212 100 111 130 171 214 280
R29 100 112 131 175 221 290 100 109 125 160 196 252
R30 100 103 108 119 130 147 100 109 125 160 196 252
R31 100 103 108 119 130 147 100 109 123 155 188 238
R32 100 112 133 179 227 300 100 110 126 161 199 256
R33 100 112 133 179 227 300 100 109 123 155 189 240
R34 100 104 112 129 146 173 100 107 118 143 169 209
R35 100 105 113 132 151 180 100 111 130 171 21k 280
R36 100 111 130 171 214 280 100 107 119 144 171 212
R37 100 112 133 178 226 298 100 106 116 139 163 199
R38 100 112 132 177 224 296 100 110 126 161 199 256
R39 100 105 113 132 151 180 100 109 123 155 189 240
RLO 100 109 125 160 196 252 100 111 130 171 214 280
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Teble I - continued

Ep Ee
Yy =W/ 7 =uM
De;ég“ 1 2 3 5 7 10| 1 2 3 5 7 10
R41 100 111 130 171 214 280 100 110 126 161 199 256
RL2 100 110 126 161 199 256 100 111 130 171 214 280
RL43 100 112 133 179 227 300 100 107 119 1kk 171 212
RLL 100 109 123 155 189 240 100 111 130 171 214 280
R4S 100 102 105 112 120 131 100 108 121 151 182 230
R46 100 106 116 1%9 163 199 100 109 125 160 196 252
R4T7 100 105 113 132 151 180 100 111 130 171 214 280
R4S 100 108 121 151 182 230 | 100 111 130 171 214 280
R49 100 112 132 177 223 2694 100 108 121 151 182 230
RS0 100 102 105 112 120 131 100 108 121 151 182 230
R51 100 110 127 165 205 265 100 106 116 139 163 199
R52 100 112 131 175 221 260 100 105 115 135 156 189
R53 100 108 120 149 178 223 100 109 125 160 196 252
R54 100 107 118 142 168 207 100 109 125 160 196 252
R55 100 105 115 135 156 189 100 109 125 160 196 252
R56 100 110 128 167 208 270 | 100 108 121 151 182 230
R57 100 109 125 160 196 252 100 108 121 151 182 230
R58 100 111 129 170 213 278 100 105 112 129 147 174
R59 100 110 128 167 208 270 100 107 118 143 169 209
R60 | 100 109 123 155 188 239 100 107 118 143 169 209
R61 100 105 113 132 151 180 | 100 108 121 151 182 230
RE2 100 104 112 129 146 173 100 108 121 151 182 230
R63 100 101 103 106 110 116 100 106 116 139 163 199
R6L4 100 109 123 155 189 240 100 105 113 132 151 180
R65 100 110 128 167 208 270 100 104 112 129 146 173
R66 100 101 102 105 108 112 100 105 115 135 156 189
R67 100 108 121 151 182 230 | 100 104 112 129 146 173
R6S 100 101 102 104 106 110 | 100 105 213 132 151 180
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Table IXI. Efficlencies of Latin Square Type Designs

Relative to Completely Randomized Designs

Ep = Eg
7y = Wu!
1 2 3 5 7 10

Design
No.

Lsl 100 103 107 119 130 147
LS2 100 103 107 119 130 1h7
LS3 100 107 119 144 171 213
LSk 100 105 115 175 156 189
LS5 100 108 121 151 182 230
Lsé 100 112 133 180 229 302
LST 100 112 133 180 229 302
1.s8 100 105 115 135 156 189
189 100 105 115 135 156 189
Ls10| 100 102 105 112 120 131
LSll| 100 102 105 112 120 131
LSl2| 100 110 127 165 205 265
LS13| 100 111 130 171 21k 280
Lslk | 100 105 113 132 151 180
LS15 | 1C0 109 125 160 196 252
LS16| 100 114 135 183 231 305
LS17T| 100 102 105 112 120 131
Ls18| 100 101 104 108 11k 122
LS19 | 1C0 101 103 106 110 116
LS20| 100 101 102 104 106 110
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The work of Kramer and Bradley on the use of factorials in incom-
plete block designs has been extended to permit both the intra-block
and combined intra- and inter-block analyses of factorials in balanced
and partially balanced incomplete block designs. In particular, we
have obtained a combined intra- eand inter-block analysis for fac-
torials in balanced incomplete block designs, group divisible designs,
and Latin Square types of partially balanced, incomplete block de-
signs. For the class of Latin Square sub-type L5 designs both the
intra-block and combined intra- and inter-block analyses have been
developed.

In general, factorial treatment combinations were assigned to
the association schemes by permitting the rows of the association
schemes to represent the levels of one factor and the columns to
represent the levels of a second factor. The extension to multi-
factor factorials was then carried out by sub-dividing the levels of
the basic two-factor factorial, the levels in the sub-divisions rep-
resenting the levels of the multi-factor factorials.

Estimators for the factorial effects have been obtained along
with their variances and covariances. Sums of squares in terms of
the factoriel estimators have been derived and can be used to carry
out tests of significance. These sums of squares were shown, for
the combined intra- and inter-block analyses, to be independently dis-
tributed as Xe-variates with the appropriate numbers of degrees of

freedom.
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Suitable sums of squares for tests of significance are not pos-
sible in general for Latin Square sub-type L3 designs, In situa-
tions such as these, we can only consider contrasts among the esti-
mators and use their variances to perform tests of significance.
However, for the special cases of factorials in the 4 x L Latin
Sjuare sub-type L3 design, a complete analysis ylelding the adjusted
sums of squares for the factorial effects is possible if the fac-
torial treatments ere applied to the association scheme In a dif-
ferent manner,

Single-degree-of -freedom contrasts are obtained in much the
usual way as for factorials in complete block designs. The method
of incorporating a fractional replicate of a factorial into incom-
plete block designs is also considered.

Numerical examples have been worked in detail for a group di-
visible design and a Latin Square sub-type L2 design. The procedure

for aralyzing a Latin Square sub-type L, design is also discussed.
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