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Modeling, Approximation, and Control for a Class of Nonlinear Systems

Parag S. Bobade

(ABSTRACT)

This work investigates modeling, approximation, estimation, and control for classes of nonlinear

systems whose state evolves in space Rn ×H, where Rn is a n-dimensional Euclidean space

and H is a infinite dimensional Hilbert space. Specifically, two classes of nonlinear systems

are studied in this dissertation. The first topic develops a novel framework for adaptive

estimation of nonlinear systems using reproducing kernel Hilbert spaces. A nonlinear adaptive

estimation problem is cast as a time-varying estimation problem in Rd × H. In contrast

to most conventional strategies for ODEs, the approach here embeds the estimate of the

unknown nonlinear function appearing in the plant in a reproducing kernel Hilbert space

(RKHS), H. Furthermore, the well-posedness of the framework in the new formulation

is established. We derive the sufficient conditions for existence, uniqueness, and stability

of an infinite dimensional adaptive estimation problem. A condition for persistence of

excitation in a RKHS in terms of an evaluation functional is introduced to establish the

convergence of finite dimensional approximations of the unknown function in RKHS. Lastly,

a numerical validation of this framework is presented, which could have potential applications

in terrain mapping algorithms. The second topic delves into estimation and control of

history dependent differential equations. This study is motivated by the increasing interest

in estimation and control techniques for robotic systems whose governing equations include



history dependent nonlinearities. The governing dynamics are modeled using a specific form

of functional differential equations. The class of history dependent differential equations in

this work is constructed using integral operators that depend on distributed parameters.

Consequently, the resulting estimation and control equations define a distributed parameter

system whose state, and distributed parameters evolve in finite and infinite dimensional

spaces, respectively. The well-posedness of the governing equations is established by deriving

sufficient conditions for existence, uniqueness and stability for the class of functional differential

equations. The error estimates for multiwavelet approximation of such history dependent

operators are derived. These estimates help determine the rate of convergence of finite

dimensional approximations of the online estimation equations to the infinite dimensional

solution of distributed parameter system. At last, we present the adaptive sliding mode

control strategy developed for the history dependent functional differential equations and

numerically validate the results on a simplified pitch-plunge wing model.
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(GENERAL AUDIENCE ABSTRACT)

This dissertation aims to contribute towards our understanding of certain classes of estimation

and control problems that arise in applications where the governing dynamics are modeled

using nonlinear ordinary differential equations and certain functional differential equations.

A common theme throughout this dissertation is to leverage ideas from approximation theory

to extend the conventional adaptive estimation and control frameworks. The first topic

develops a novel framework for adaptive estimation of nonlinear systems using reproducing

kernel Hilbert spaces. The numerical validation of the framework presented has potential

applications in terrain mapping algorithms. The second topic delves into estimation and

control of history dependent differential equations. This study is motivated by the increasing

interest in estimation and control techniques for robotic systems whose governing equations

include history dependent nonlinearities.
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mathematics (at VT) was in a two-semester course on Calculus of Variation and Optimal

Control taught by Dr. Borggaard. I am indebted for his teachings that helped me rekindle the

interest in mathematics. Dr. Ross over the years has helped me expand my understanding

on wide variety of topics in dynamical systems and nonlinear dynamics. I couldn’t be more

glad to have these interactions with him on topics that I thoroughly enjoy learning more

about. I have also always enjoyed the discussions with Dr. Woolsey on topics pertaining to

Geometric Mechanics and Control. I am grateful to Dr. Woolsey for sharing his experience

on various aspects of research and academia.

Special thanks goes to my colleagues and collaborators, Shirin Dadashi and Suprotim Majumdar.

I am grateful for their contributions in numerical validations of the work in this dissertation

and without them this dissertation would have taken another year to see the end zone.

I also want say thank you to my amazing roommates and friends in Blacksburg: Balakrishnan,

Mahesh, Priyal, Anirudh, Shyam, and Srivatsan for all the great times we had together. I

would always be grateful to Saurabh Nath, a dear friend, for introducing me to the wonderful

world of droplet dynamics and other interfacial fluid phenomena during our endless, intense

conversations over coffee.

I am thankful to the all ESM and ME staff, especially Jessica Grimes and Elizabeth Joslin

for their support on various administrative matters.

vii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Road and Terrain Mapping . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Unsteady Aerodynamics and Flapping Flight . . . . . . . . . . . . . . 6

1.2 Literature Review : Adaptive Estimation . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Bayesian and Probabilistic Mapping . . . . . . . . . . . . . . . . . . . 9

1.2.2 Approximation and Learning Theory . . . . . . . . . . . . . . . . . . 10

1.2.3 Learning Theory and Nonlinear Regression . . . . . . . . . . . . . . . 11

1.2.4 Online Adaptive Estimation and Control . . . . . . . . . . . . . . . . 12

1.3 Literature Review : History Dependent Differential Equations . . . . . . . . 16

1.3.1 Hysteresis Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

viii



1.4 Contributions of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Mathematical Background 25

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Banach Fixed Point Theorem . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Semiflow and Semigroups . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.3 Zorn’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Topics in Approximation Theory . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Reproducing Kernel Hilbert Spaces (RKHS) . . . . . . . . . . . . . . 29

2.2.2 Multiscale Kernels Induced by s-Regular Scaling Functions . . . . . . 34

2.2.3 Approximation Spaces Aα2 . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Adaptive Estimation using Reproducing Kernel Hilbert Spaces 41

3.1 Adaptive Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Adaptive Estimation in Rd × Rn . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Adaptive Estimation in Rd ×H . . . . . . . . . . . . . . . . . . . . . 44

3.2 Existence, Uniqueness and Stability . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Finite Dimensional Approximations . . . . . . . . . . . . . . . . . . . . . . . 50

ix



3.3.1 Convergence of Finite Dimensional Approximations . . . . . . . . . . 51

3.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Synthetic Road Profile Data . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Experimental Road Profile Data . . . . . . . . . . . . . . . . . . . . . 58

4 Online Estimation and Control for a Class of History Dependent Systems 63

4.1 A Class of History Dependent Operators . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Approximation of History Dependent Operators . . . . . . . . . . . . 67

4.2 Well-Posedness: Existence and Uniqueness . . . . . . . . . . . . . . . . . . . 73

4.2.1 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Online Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Approximation of the Estimation Equations . . . . . . . . . . . . . . 83

4.4 Adaptive Control Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Operator Approximation Error . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Online Identification for a Wing Model . . . . . . . . . . . . . . . . . 92

5 On Persistency of Excitation 98

x



5.1 Persistency of excitation in RKHS . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 PE condition for History dependent operators . . . . . . . . . . . . . . . . . 101

6 Conclusion 104

6.1 Scope for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Wind Estimation using Micro Aerial Vehicles . . . . . . . . . . . . . 108

6.1.2 Model order reduction for Functional Differential Equations . . . . . 108

Bibliography 111

Appendix A Multiresolution Analysis over the Triangular Domain 122

Appendix B The Projection Operator ΦJ→j 124

Appendix C Gronwall’s Inequality 126

Appendix D Modeling of a Prototypical Wing Section 127

xi



List of Figures

1.1 Vehicle Terrain Measurement System, Virginia Tech . . . . . . . . . . . . . . 5

1.2 Experimental Setup with LMI 3D GO-Locator Lasers . . . . . . . . . . . . . 6

1.3 Hysteresis Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Translated Dilates of Normalized B-Splines . . . . . . . . . . . . . . . . . . . 37

2.2 Regular refinement process for domain ∆ . . . . . . . . . . . . . . . . . . . . 38

2.3 j level refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Lyapunov function, V (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Stability of the equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Experimental setup and definition of basis functions . . . . . . . . . . . . . . 55

3.4 Road surface estimates for n = {10, 20, · · · , 100} . . . . . . . . . . . . . . . . 57

3.5 Convergence rates using Gaussian kernel for synthetic data . . . . . . . . . . 58

xii



3.6 Experimental Data From VTMS. . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Road surface estimates for single lap . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Road surface estimate using first-order B-splines . . . . . . . . . . . . . . . . 60

3.9 Convergence rates for different kernels . . . . . . . . . . . . . . . . . . . . . 61

3.10 Condition Number of Grammian Matrix vs Number of Basis Functions . . . 61

4.1 Elementary hysteresis kernel t → κ(s, t, f) for fixed s = (s1, s2) ∈ R2 and

piecewise continuous f : [0, t)→ R. . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Single Step Error vs Step Size for Example 1 . . . . . . . . . . . . . . . . . . 81

4.3 Single Step Error vs Step Size for Example 2 . . . . . . . . . . . . . . . . . . 82

4.4 Error for different resolution simulations, J = 7 . . . . . . . . . . . . . . . . 91

4.5 C for different level j refinement simulations . . . . . . . . . . . . . . . . . . 91

4.6 Prototypical model for a wing section . . . . . . . . . . . . . . . . . . . . . 92

4.7 Time histories of the states and input signals for ε = 0.01, th = 0.001(sec)

and, k = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8 Time histories of the states and input signals for ε = 0.01, th = 0.0005 (sec)

and, k = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Time histories of the states and input signals for ε = 0.1, th = 0.001 (sec)

and, k = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xiii



B.1 Projection Operator ΦJ→j : VJ → Vj . . . . . . . . . . . . . . . . . . . . . . 124

xiv



List of Tables

3.1 Condition number of Grammian Matrix vs Number of Basis Functions . . . . 62

xv



Chapter 1

Introduction

All models are wrong, but some are useful.—George E. P. Box

The study of dynamical systems has evolved over centuries. It has now progressed to a

multidisciplinary field that spans most areas in science. From fifteenth century celestial

mechanics to the twenty first century systems biology, the underlying complexities have

often been captured using mathematical models to gain deeper insight into understanding the

behavior of a problem. Roughly speaking, a dynamical system models the time evolution of

the state of the system. The law that describes this evolution is called the governing equation

of the dynamical system. Common questions regarding a dynamical system include:

• How accurately does the governing equation capture the behavior of the system?

• Can we predict the behavior if any unmodeled disturbances affect the system ?

1
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• Can we maintain the state or drive the state of the system to desired state ?

All the above questions often come up in engineering applications. The ideas developed

from study of dynamical system theory provide perspicacity to tackle such questions. These

questions and the corresponding answers are the focus of the field of control theory and

control engineering.

Estimation and control problems are ubiquitous in a wide range of engineering applications.

Fundamentally, estimation problems involve the ability to approximate or predict an unknown

or uncertain quantity using the known input data or information. Consequently, having a

reliable estimate of an unknown helps in designing a controller to deal with a possibly

uncertain or worst-case scenario. Hence, often in the past decades, the progress in estimation

theory and control theory has evolved hand-in-hand with each other, and each field has

benefited from advancements in the other. This dissertation aims to contribute towards our

understanding of certain classes of estimation and control problems that arise in applications

where the governing dynamics are modeled using nonlinear ordinary differential equations

and certain functional differential equations. Although these problems are motivated from

real world practical applications, it is important to emphasize that rigorous mathematical

treatment is necessary to understand the nuances of these formulations.

The outline of this dissertation is as follows. Chapter 1 presents the motivation for the

problems studied in this dissertation. This chapter also reviews past literature on topics

pertaining to the problems. The contributions of this dissertation are outlined at the end of
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this chapter. Chapter 2 covers the mathematical preliminaries and the necessary background

for the subsequent chapters. The framework for adaptive estimation in reproducing kernel

Hilbert spaces is developed in chapter 3. Subsequently, numerical validation of the adaptive

estimation is presented. Chapter 4 delves into online estimation and control problem for

history dependent functional differential equations. The class of history dependent operator

is defined and the details regarding their construction are explained. The penultimate

chapter 5 discusses persistence of excitation condition and its ramification for parameter

convergence in adaptive estimation. Lastly we conclude by discussing the key lessons learned

from this study and present future directions for extension of the work in this dissertation.

1.1 Motivation

This section is divided into two parts. The first part in Section 1.1 provides the motivation for

the framework developed in the Chapter 3. The second part presents challenges in modeling

the unsteady aerodynamics of a flapping wing robot that lays the groundwork for methods

described in Chapter 4.

1.1.1 Road and Terrain Mapping

There has been a steep rise of interest in the last decade among researchers in academia

and the commercial sector in autonomous vehicles and self driving cars. Although adaptive

estimation has been studied for some time, applications such as terrain or road mapping
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continue to challenge researchers to further develop the underlying theory and algorithms

in this field. These vehicles are required to sense the environment and navigate surrounding

terrain without any human intervention. The environmental sensing capability of such

vehicles must be able to navigate off-road conditions or to respond to other agents in urban

settings. As a key ingredient to achieve these goals, it can be critical to have a good a

priori knowledge of the surrounding environment as well as the position and orientation of

the vehicle in the environment. To collect this data for the construction of terrain maps,

mobile vehicles equipped with multiple high bandwidth, high resolution imaging sensors are

deployed. The mapping sensors retrieve the terrain data relative to the vehicle and navigation

sensors provide georeferencing relative to a fixed coordinate system. The geospatial data,

which can include the digital terrain maps acquired from these mobile mapping systems,

find applications in emergency response planning and road surface monitoring. Further, to

improve the ride and handling characteristic of an autonomous vehicle, it might be necessary

that these digital terrain maps have accuracy on a sub-centimeter scale.

One of the main areas of improvement in the current state of the art for robotic or autonomous

vehicles is in their localization. Localization is the process of tracking the position of the

vehicle relative to the surrounding environment. Since localization heavily relies on the

quality of GPS/GNSS, IMU data, it is important to come up with novel approaches that

fuse the data from multiple sensors to generate the best possible estimate of the environment.

Contemporary data acquisition systems used to map the environment generate scattered data

sets in time and space. These data sets must be either post-processed or processed online
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for construction of three dimensional terrain maps.

Fig.1.1 and Fig.1.2 depict a map building vehicle and trailer developed by Prof.John Ferris

and his students at Virginia Tech. The system generates experimental observations in

the form of data that is scattered in time and space. These data sets have extremely

high dimensionality. Roughly 180 million scattered data points are collected per minute

of data acquisition, which corresponds to a data file of roughly O(1GB) in size. Current

algorithms and software developed in-house at Virginia Tech post-process the scattered data

to generate road and terrain maps. This offline batch computing problem can take many

days of computing time to complete. It remains a challenging task to derive a theory and

associated algorithms that would enable adaptive or online estimation of terrain maps from

such high dimensional, scattered measurements.

Figure 1.1: Vehicle Terrain Measurement System, Virginia Tech
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Figure 1.2: Experimental Setup with LMI 3D GO-Locator Lasers

1.1.2 Unsteady Aerodynamics and Flapping Flight

Biomimetics and bio-inspired robotics has been generated huge interest among the researchers

in the past few decades. Particularly, understanding and attempting to mimic bird flight

has helped push the boundaries of robotics in various aspects. The ultimate goal is to be

able to mimic the flight abilities of a bird and use the merits of flapping wing to improve the

agility and performance while flying. Due to the inherent nature of unsteady aerodynamics

encountered in flapping wing flights, designing such vehicles becomes challenging task. In

the early days of flapping wing flight research [80], [35] the wings were modeled as single

rigid body without any articulations, to study the aerodynamic effects in flapping/oscillating

rigid plates or membranes. This simplified approach helped researchers understand the effect

of vortex formation and shedding, on drag and lift forces during flapping flight. Later,

with detailed studies in bio-mechanics of bird flight, the new flapping mechanism models

incorporated multi-body articulations to mimic the effect of bones, joints and muscles.

These models aided assessment of flight stability and control. The aerodynamic forces were
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modeled as functions of state variables, with the underlying assumption of quasi-steady

flow. The infinite dimensional coupled problem (Navier Stokes and multi-body dynamics)

was reduced to a set of finite dimensional ordinary differential equations(ODEs). Since

the flapping wing flight is affected by unsteady aerodynamics, these are not represented

in the quasi-steady models of flapping flight mechanisms. Tobak et al. [79] represented

the aerodynamic forces as a functional of state variables, which helped incorporate the

unsteady effects. This emphasizes the fact that aerodynamic forces not only can depend

on instantaneous state but also on the history of the state variables. Numerically intensive

computational fluid dynamics (CFD) presents a precise method to simulate and study the

unsteady lift and drag aerodynamic forces. Generally CFD methods exploit high dimensional

models that incorporate computationally expensive moving boundary techniques for the

Navier-Stokes equations. They are powerful tools to explain detailed characteristics of the

aerodynamic forces. One of the characteristics that has inspired the approach here is the

history dependence of the aerodynamic lift and drag functions. We refer the interested reader

to [15] to study this phenomena in detail. Although CFD methods are advantageous in terms

of their accuracy, they suffer from curse of dimensionality which makes them unfavorable

choice for online control applications.
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1.2 Literature Review : Adaptive Estimation

In chapter 3 we introduce a novel theory and associated algorithms that are amenable to

observations that take the form of scattered data. Although the study of infinite dimensional

distributed parameter systems can be substantially more difficult than the study of ODEs, a

key result developed here is that stability and convergence of the approach can be established

succinctly in many cases. Much of the complexity [6, 8] associated with construction of

Gelfand triples or the analysis of infinitesimal generators and semigroups that define a DPS

can be avoided for many examples of the systems in this dissertation. While our formulation

is motivated by this particular applications, it is a general construction for framing and

generalizing some conventional approaches for online adaptive estimation. This framework

introduces sufficient conditions that guarantee convergence of estimates in spatial domain to

the unknown function f appearing in the governing systems of ODEs. In contrast, nearly all

conventional strategies [58, 40, 71, 34] consider stability and convergence in time alone for

some fixed finite dimensional. The general theory derived in this work has been motivated

in part by the terrain mapping application, but also by recent research in a number of fields

related to estimation of nonlinear functions.

In this subsection we briefly review some of the recent research in probabilistic or Bayesian

mapping methods, nonlinear approximation and learning theory, statistics, and nonlinear

regression.
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1.2.1 Bayesian and Probabilistic Mapping

Many popular known techniques adopt a probabilistic approach towards solving the localization

and mapping problem in robotics. See [25, 78, 32, 4] for an overview of state-of-the-art

in this field. The algorithms used to solve this problem fundamentally rely on Bayesian

estimation techniques such as particle filters, Kalman filters and other variants of these

methods [78, 32, 4]. The computational efforts required to implement these algorithms

can be substantial since they involve constructing and updating maps while simultaneously

tracking the relative locations of agents with respect to the environment. Over the last three

decades significant progress has been made on various frontiers because of high-end sensing

capabilities, faster data processing hardware, and efficient computational algorithms [25, 24].

However, the usual Kalman filter based approaches implemented in these applications often

are required to address the inconsistency problem in estimation that arise from uncertainties

in state estimates [73, 42]. Furthermore, it is well acknowledged among the community

that these methods suffer from a major drawback of ‘closing the loop’. This refers to the

ability to adaptively update the information if it is revisited. Such a capability for updating

information demands huge memory to store the high resolution and high bandwidth data.

Moreover, it is highly nontrivial to guarantee that the uncertainties of functions estimates

would converge to a lower bound at sub optimal rates, since matching these rates and bounds

significantly constrain the evolution of states along infeasible trajectories. While probabilistic

methods, and in particular Bayesian estimation techniques, for the construction of terrain

maps have flourished over the past few decades, relatively few approaches have appeared
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for establishing deterministic theoretical error bounds in the spatial domain of the unknown

function representing the terrain.

1.2.2 Approximation and Learning Theory

Approximation theory has a long history, but the subtopics of most relevance to this dissertation

include recent studies in multiresolution analysis (MRA), radial basis function (RBF) approximation

and learning theory. The study of MRA techniques became popular in the late 1980’s

and early 1990’s, and it has flourished since that time. We use only a small part of the

general theory of MRAs here, and we urge the interested reader to consult one of the

excellent treatises on this topic for a full account. References [55, 54, 17, 23] are good

examples of such detailed treatments. We briefly summarize the pertinent aspects of MRA

in Section 2.2.2. Our interest in multiresolution analysis arises since these methods can

be used to develop multiscale kernels for RKHS, as summarized in [62, 61]. We only

consider approximation spaces defined in terms of the scaling functions in this dissertation.

Specifically, with a parameter s ∈ R+ measuring smoothness, we use s−regular MRAs to

define admissible kernels for the reproducing kernels that embody the online and adaptive

estimation strategies. When the MRA bases are smooth enough, the RKHS kernels derived

from a MRA can be shown to be equivalent to a scale of Sobolev spaces having well

documented approximation properties. The B-spline bases in the numerical examples yield

RKHS embeddings with good condition numbers. We briefly summarize the pertinent

aspects of MRA in Section 2.2.2.
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1.2.3 Learning Theory and Nonlinear Regression

The methodology defined for online adaptive estimation can be viewed as similar in philosophy

to the recent efforts that synthesize learning theory and approximation theory. In [22, 46,

11, 77], independent and identically distributed observations of some unknown function

are collected, and they are used to define an estimator of that unknown function. Sharp

estimates of error, guaranteed to hold in probability spaces, are possible using tools familiar

from learning theory and thresholding in approximation spaces. The approximation spaces

are usually defined terms of subspaces of an MRA. However, there are a few key differences

between the these efforts in nonlinear regression and learning theory and this paper. The

learning theory approaches to estimation of the unknown function depend on observations of

the function itself. In contrast, the adaptive online estimation framework here assumes that

observations are made of the estimator states, not directly of the unknown function itself.

The learning theory methods also assume a discrete measurement process, instead of the

continuous measurement process that characterizes online adaptive estimation. On the other

hand, the methods based on learning theory derive sharp function space rates of convergence

of the estimates of the unknown function. Such estimates are not available in conventional

online adaptive estimation methods. Typically, convergence in adaptive estimation strategies

is guaranteed in time in a fixed finite dimensional space. One of the significant contributions

of this dissertation is to construct sharp convergence rates in function spaces, similar to

approaches in learning theory, of the unknown function using online adaptive estimation.
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1.2.4 Online Adaptive Estimation and Control

Since the approach here generalizes a standard strategy in online adaptive estimation and

control theory, we review this class of methods in some detail. This summary will be crucial in

understanding the nuances of the proposed technique and in contrasting the sharp estimates

of error available in the new strategy to those in the conventional approach. Many popular

textbooks study online or adaptive estimation within the context of adaptive control theory

for systems governed by ordinary differential equations [71, 40, 34]. The theory has been

extended in several directions, each with its subtle assumptions and associated analyses.

Adaptive estimation and control theory has been refined for decades, and significant progress

has been made in deriving convergent estimation and stable control strategies that are

robust with respect to some classes of uncertainty. The efforts in [6, 8] are relevant to

this paper, where the authors generalize some of adaptive estimation and model reference

adaptive control (MRAC) strategies for ODEs so that they apply to deterministic infinite

dimensional evolution systems. In addition, [29, 30, 31, 63] also investigate adaptive control

and estimation problems under various assumptions for classes of stochastic and infinite

dimensional systems. Recent developments in L1 control theory as presented in [36], for

example, utilize adaptive estimation and control strategies in obtaining stability and convergence

for systems generated by collections of nonlinear ODEs.

We consider a model problem in which the plant dynamics are generated by the nonlinear
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ordinary differential equations

ẋ(t) = Ax(t) +Bf(x(t)), x(0) = x0 (1.1)

with state x(t) ∈ Rd, the known Hurwitz system matrix A ∈ Rd×d, the known control

influence matrix B ∈ Rd, and the unknown function f : Rd → R. Although this model

problem is an exceedingly simple prototypical example studied in adaptive estimation and

control of ODEs [71, 40, 34], it has proven to be an effective case study in motivating

alternative formulations such as in [36] and will suffice to motivate the current approach.

Of course, much more general plants are treated in standard methods [71, 40, 34, 58] and

can be attacked using the strategy that follows. This structurally simple problem is chosen

so as to clearly illustrate the essential constructions of the RKHS embedding method while

omitting the nuances associated with general plants. A typical adaptive estimation problem

can often be formulated in terms of an estimator equation and a learning law. One of the

simplest estimators for this model problem takes the form

˙̂x(t) = Ax̂(t) +Bf̂(t, x(t)), x̂(0) = x0 (1.2)

where x̂(t) is an estimate of the state x(t) and f̂(t, x(t)) is time varying estimate of the

unknown function f that depends on measurement of the state x(t) of the plant at time t.

When the state error x̃ := x − x̂ and function estimate error f̃ := f − f̂ are defined, the

state error equation is simply

˙̃x(t) = Ax̃(t) +Bf̃(t, x(t)), x̃(0) = x̃0. (1.3)
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The goal of adaptive or online estimation is to determine a learning law that governs the

evolution of the function estimate f̂ and guarantees that the state estimate x̂ converges to

the true state x, x̃(t) = x(t)− x̂(t)→ 0 as t→∞. Perhaps additionally, it is hoped that the

function estimates f̂ converge to the unknown function f , f̃(t) = f(t)− f̂(t)→ 0 as t→∞.

The choice of the learning law for the update of the adaptive estimate f̂ depends intrinsically

on what specific information is available about the unknown function f . It is most often the

case for ODEs that the estimate f̂ depends on a finite set of unknown parameters α̂1, . . . , α̂n.

The learning law is then expressed as an evolution law for the parameters α̂i, i = 1, . . . , n.

The discussion that follows emphasizes that this is a very specific underlying assumption

regarding the information available about unknown function f . Much more general prior

assumptions are possible.

Classes of Uncertainty in Adaptive Estimation

The adaptive estimation task seeks to construct a learning law based on the knowledge that

is available regarding the function f . Different methods for solving this problem have been

developed depending on the type of information available about the unknown function f .

The uncertainty about f is often described as forming a continuum between structured and

unstructured uncertainty. In the most general case, we might know that f lies in some

compact set C of a particular Hilbert space of functions H over a subset Ω ⊆ Rd. This

case, that reflects in some sense the least information regarding the unknown function,

can be expressed as the condition that f ∈ {g ∈ C|C ⊂ H}, for some compact set of
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functions C in a Hilbert space of functions H. In approximation theory, learning theory,

or non-parametric estimation problems this information is sometimes referred to as the

prior, and choices of H are commonly known as the hypothesis space. The selection of the

hypothesis space H and set C often reflect the approximation, smoothness, or compactness

properties of the unknown function [22]. This example may in some sense utilize only

limited or minimal information regarding the unknown function f , and in this case we

may refer to the uncertainty as unstructured. Numerous variants of conventional adaptive

estimation admit additional knowledge about the unknown function. In most conventional

cases the unknown function f is assumed to be given in terms of some fixed set of parameters.

This situation is similar in philosophy to problems of parametric estimation which restrict

approximants to classes of functions that admit representation in terms of a specific set of

parameters. Suppose the finite dimensional basis {φk}k=1,...,n is known for a particular finite

dimensional subspace Hn ⊆ H in which the function lies, and further that the uncertainty is

expressed as the condition that there is a unique set of unknown coefficients {α∗i }i=1,...,n such

that f := f ∗ =
∑

i=1,...,n α
∗
iφi ∈ Hn. Consequently, conventional approaches may restrict the

adaptive estimation technique to construct an estimate with knowledge that f lies in the set

f ∈
{
g ∈ Hn ⊆ H

∣∣∣∣g =
∑

i=1,...,n

αiφi with αi ∈ [ai, bi] ⊂ R for i = 1, . . . , n

}
(1.4)

This is an example where the uncertainty in the estimation problem may be said to be

structured. The unknown function is parameterized by the collection of coefficients {α∗i }i=1,...,n.

In this case the compact set the C is a subset of Hn. As we discuss in sections 2.2, and 3.2,

the RKHS embedding approach can be characterized by the fact that the uncertainty is more
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general and even unstructured, in contrast to conventional methods. In this dissertation we

assume uncertainty to be unstructured.

1.3 Literature Review : History Dependent Differential

Equations

It is typical in texts that introduce the fundamentals of modeling, stability, and control of

robotic systems to assume that the underlying governing equations consist of a set of coupled

nonlinear ordinary differential equations. This is a natural assumption when methods of

analytical mechanics are used to derive the governing equations for systems composed of

rigid bodies connected by ideal joints. A quick perusal of the textbooks [76], [74], or [52],

for example, and the references therein gives a good account of the diverse collection of

approaches that have been derived for this class of robotic system over the past few decades.

These methods have been subsequently refined by numerous authors. Over roughly the same

period, the technical community has shown a continued interest in systems that are governed

by nonlinear, functional differential equations. These methods that helped to define the

direction of initial efforts in the study of well-posedness and stability include [56], [48],[49],

and their subsequent development is expanded in [28], [68], [69]. More recently, specific

control strategies for classes of functional differential equations have appeared in [70], [39],

and [38].
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The research described in some cases above deals with quite general plant models. These

can include classes of delay equations and general history dependent nonlinearities. One rich

collection of history dependent models includes hysteretically nonlinear systems. General

discussions of nonlinear hysteresis models can be found in [81] or [10], and some authors

have studied the convergence and stability of systems with nonlinear hysteresis. For example,

a synthesis of controllers for single-input / single-output functional differential equations is

presented in [70] and [38], and these efforts include a wide class of scalar hysteresis operators.

The success of adaptive control strategies in classical manipulator robotics, as exemplified

by [76], [52], [74], can be attributed to a large degree to the highly structured form of the

governing system of nonlinear ordinary differential equations. As is well-known, much of the

body of work in adaptive control for robotic systems relies on traditional linear-in-parameters

assumptions.

We illustrate the class of models that are considered by outlining a variation on two familiar

problems encountered in robotic manipulator dynamics, estimation, and control. Consider

the task of developing a model and synthesizing a controller for a flapping wing, test robot

that will be used to study flapping aerodynamics in a wind tunnel. See [3] for such a

system that has been developed by researchers at Brown University over the past few years.

Dynamics for a ground based flapping wing robot can be derived using analytical mechanics

in a formulation that is tailored to the structure of a serial kinematic chain [52], [76], [74].
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The equations of motion take the form

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) +
∂V

∂q
= Qa(t, µ) + τ(t) (1.5)

where M(q)(t)∈RN×N is the generalized inertia or mass matrix, C(q(t), q̇(t))∈RN×N is a

nonlinear matrix that represents Coriolis and centripetal contributions, V is the potential

energy, Qa(t, µ)∈RN is a vector of generalized aerodynamic forces, and τ(t)∈RN is the

actuation force or torque vector. The generalized forces Q(t, µ) due to aerodynamic loads are

assumed to be expressed in terms of history dependent operators. For the current discussion,

it suffices to note that the aerodynamic contributions are unknown, nonlinear, unsteady, and

notoriously difficult to characterize.

We consider two specific sets of equations in this paper that are derived from the robotic

Equations 1.5, both of which have similar form. We are interested in online identification

problems in which we seek to find the final state and distributed parameters from observations

of the states of the evolution equation. We are also interested in control synthesis where we

choose the input to drive the system to some desired configuration, or to track a given input

trajectory. To simplify our discussion, and following the standard practice for many control

synthesis problems for robotics, we choose the original control input to be a partial feedback

linearizing control that states the control problem in a standard form. In the case of online

identification,it is conventional to choose the input τ = M(q)(u−G1q̇ −G0q)− (C(q, q̇)q̇ +
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∂V
∂q

(q)) so that the governing equations take the form

d

dt

q(t)
q̇(t)

 =

 0 I

−G0 −G1


q(t)
q̇(t)

+

0

I

 (M−1(q)Qa(t, µ) + u(t)). (1.6)

in terms of a new input u. The goal in the online identification problem is to learn the

parameters µ and limiting values q∞, q̇∞ from knowledge of the inputs and states (u, q, q̇).

We are also interested in tracking control problems. When the desired trajectory is given by

qd, we choose the input

τ = M(q)(u+ q̈d −G1ė−G0e)− (C(q, q̇)q̇ +
∂V

∂q
(q))

and the equations governing the tracking error e := q − qd take the form

d

dt

e(t)
ė(t)

 =

 0 I

−G0 −G1


e(t)
ė(t)

+

0

I

 (M−1(e+ qd)Qa(t, µ) + u(t)) (1.7)

In either of the above two cases, we will show in the next section that the equations can be

written in the general form

Ẋ(t) = AX(t) +B((HX)(t) ◦ µ+ u(t)). (1.8)

where A ∈ Rm×m is the system matrix, B ∈ Rm×q is the control input matrix, u(t) ∈ Rq

is the corresponding input, and (HX)(t) is a history dependent operator that acts on the

distributed parameter µ.
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1.3.1 Hysteresis Models

Hysteresis is seen to occur in several day-to-day phenomena. Such systems to exhibit history

dependent behavior. Hysteresis by definition is rate independent nonlinearity. The unsteady

aerodynamics of a flapping wing mentioned in previous section exhibit hysteresis behavior

for the observed aerodynamic loads as function of angle of attack. Therefore, to approximate

the hysteresis behavior of such unknown aerodynamics loads, simple scalable mathematical

models of hysteresis phenomenon are utilized. Research related to hysteresis models has

been widely studied in past and collection of various models are studied in [37], [81], [10]

and references therein serve as excellent treatise on these topics. The construction of history

dependent operators defined using the generalized play operator is described in Chapter 4.

We review some elementary hysteresis models below.

Backlash Hysteresis

Backlash hysteresis describes the play between two mechanical elements. The input versus

output graph depicts the hysteresis loop corresponding to the play phenomenon. Formally

the backlash operator can be defined as follows- Let y(t) be the output and u(t) the input

at time t. If u̇(t) is positive then the output y(t) corresponds to the loading curve described

by the line with negative y-intercept in Figure 1.3a. On the other hand if u̇(t) is negative

then the output y(t) corresponds to the unloading curve described by the line with positive

y-intercept in Figure 1.3a. If u̇(t) = 0, i.e input remains constant, then the corresponding
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(a) Backlash Hysteresis (b) Relay Hysteresis

Figure 1.3: Hysteresis Models

output remains constant too.

Relay Hysteresis

In the relay hysteresis the relationship between input and output is determined by two input

threshold values a1 < a2. The output y(t) varies on one of two fixed curves ξ1 : [a1,∞)→ R

and ξ2 : (−∞, a2] → R. For an input y(t), depending on which values among a1 or a2 was

last visited, the output corresponds the ordinates of the respective curve ξ1 or ξ2.

The generalized play operator and the corresponding hysteresis kernel described in subsequent

chapters can be intuitively thought of as a suitable combination of rules defined for the above

two hysteresis operators. In this dissertation, we choose a typical kernel to be a special case

of a generalized play operator [81]. For a piecewise linear function on [0, t] and the an output

function is defined by a recursion. Moreover, The recursion above depends on the choice of

the left and right bounding ridge functions. Details are outlined in Chapter 4 in Section 4.1.
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Before we conclude the first chapter, we would like to summarize the contributions of the

dissertation in the next section.

1.4 Contributions of Dissertation

This dissertation contributes to the state-of-the-art understanding of adaptive estimation

and history dependent formulations in following ways:

1. Adaptive Estimation using Reproducing Kernel Hilbert Spaces

(a) We extend the conventional, general framework for online adaptive estimation

problems for systems governed by uncertain nonlinear ordinary differential equations.

The central feature of the theory introduced here represents the unknown function

as a member of a reproducing kernel Hilbert space (RKHS) and defines a distributed

parameter system (DPS) that governs state estimates and estimates of the unknown

function.

(b) We establish the well-posedness of the problem in this formulation. We 1) derive

the sufficient conditions for the existence, uniqueness and stability of the infinite

dimensional online estimation problem, 2) derive the existence and stability of

finite dimensional approximations of the infinite dimensional estimates, and 3)

determine the sufficient conditions that ensure convergence of finite dimensional

approximations to the infinite dimensional online estimates.



Parag S. Bobade Chapter 1. Introduction 23

(c) A new condition for persistency of excitation in a RKHS in terms of evaluation

functionals in an RKHS is introduced that enables the proof of convergence of the

finite dimensional approximations of the unknown function in the RKHS.

(d) We numerically validate the above framework using an example that has applications

in terrain mapping.

2. Online Estimation and Control for History Dependent Differential Equations

(a) We pose the problem of online estimation and adaptive control for a class of

history dependent, functional differential equations that have application to some

common mechanical systems.

(b) The functional differential equations are constructed using integral operators that

depend on distributed parameters.

(c) We establish the well-posedness for the governing equations. That is, we derive

existence and uniqueness results for the class of fully actuated robotic systems

with history dependent forces in their governing equation of motion.

(d) We derive rates of approximation for the class of history dependent operators in

this paper, and provide sufficient conditions to guarantee that finite dimensional

approximations of the online estimation equations converge to the solution of the

infinite dimensional, distributed parameter system.

(e) We develop a adaptive sliding mode control strategy for the history dependent

functional differential equations and numerically implement it on a simplified
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pitch-plunge wing model.

(f) Further, some necessary conditions for convergence of parameter estimates in this

setup are briefly discussed and their ramifications on integral operators and the

hysteresis kernel are elucidated.



Chapter 2

Mathematical Background

This chapter presents the mathematical preliminaries and necessary background for subsequent

chapters. We start with elementary review of preliminary notions in analysis. Later, in

Section 2.2 we review some topics from approximation theory, especially those pertaining

to kernel based approximation methods. In the end the approximation spaces used in

construction of class of history dependent operator are presented.

2.1 Preliminaries

Let us begin by attempting to build an elementary understanding for some common notions

encountered in analysis of several topics presented in the dissertation. Evidently, one might

see that a recurring theme in this dissertation is that of approximation and estimation. To

be able to gauge the how well a certain function is being approximated or estimated, we

25
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need to define a notion to relate the closeness of two functions. The notion is defined using

a metric and the pair that assigns the distance function to the element in that space is

called a metric space. Since we are discussing here a notion of distance it is easy to convince

ourselves that this function has to be non-negative and zero if and only if the two points

are identical. Moreover, the distance function has to be symmetric and satisfy the triangle

inequality, much like the distances in the Euclidean setting. A vector Space is collection of

objects that is closed under vector addition and scalar multiplication. The associated metric

on this space is derived from the norm and this assigns a notion of length to the vector in

the vector space. The complete normed vector space is called as the Banach space. Further,

the notion of an angle between the vectors is defined by an inner product. Again, in the

familiar Euclidean setting it is the dot product between two vectors. The complete inner

product space is called as the Hilbert space. Note that we can derive the norm from a inner

product i.e

‖x‖2 = 〈x, x〉

where ‖ · ‖ is the norm and 〈·, ·〉 is an inner product. A Hilbert space is also a Banach space

but the converse need not be true.

In this dissertation, significant emphasis is put on establishing the well-posedness of a

problem. Particularly, the sufficient conditions for existence, uniqueness and stability are

derived. Often,if these issues are not studied, they can lead to faulty numerical implementations

or dubious results. We briefly summarize the analytical tools that are employed in this

dissertation to investigate well-posedness in subsequent chapters.
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2.1.1 Banach Fixed Point Theorem

Banach Fixed Point Theorem is used in Chapter 4 in the proof of Theorem 7 and 1

Definition 1. Let (X , ‖ · ‖) be normed vector space. Then the transformation T : X → X

is said to be contraction if it is Lipschitz continuous with some Lipschitz constant α < 1.

‖T (x)− T (y)‖ ≤ α‖x− y‖ ∀x, y ∈ X

Theorem 1. If T : X → X is a contraction mapping defined on the Banach space (X , ‖ · ‖)

then T has a unique fixed point x∗. For each point xo in X , the orbit (T n(x0)) is guaranteed

to converge to that fixed point.

In the context of differential equations, T can be considered as the integral operator that

maps continuous functions into continuous functions. The solution of the differential equation

is the desired fixed point to which we would like to converge. The usual approach to prove

existence and uniqueness of solutions is two pronged: 1) first, establish that the integral

operator is indeed a self-mapping over the Banach space X , and 2) then derive the sufficient

condition for T to be contraction mapping in X . These steps will eventually guarantee

sufficient conditions for local existence and uniqueness of solutions over an interval (t0, t0 +δ)

where δ may depend on the Lipschitz constant.
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2.1.2 Semiflow and Semigroups

Definition 2. A family of operators {S(t)|t ∈ R+} (with each S(t) : X → X ) is a continuous

semigroup provided (i) S(0) = Id, (ii) S(t)S(τ) = S(τ + t), ∀t, τ ∈ R+, and lastly (iii) the

mapping : (t, y)→ S(t)y is continuous.

This operator characterizes an autonomous process which is also known as semidynamical

system or semiflow. To illustrate this with an example, let us consider the ordinary differential

equation

ẋ = Ax, x(0) = x0, where x ∈ Rd.

The solution to above equation is given as

x(t) = eAtx0.

It is easy to verify that eAt generates a C0-semigroup in X ∈ Rd since it satisfies all the

properties of the semigroup operator. This notion can be extended to nonlinear ordinary

differential equations that model the evolution of states in the Banach space. This idea is

also used to establish existence and uniqueness of mild solution for the governing equations

formulated in Chapter 3.

2.1.3 Zorn’s Lemma

Definition 3. X is a partially ordered nonempty set in which every totally ordered subset of

X has an upper bound, then X contains at least on maximal element.
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A partial order is formal way of generalizing the notion of arrangements of elements by some

relation over all the elements in the set X. Without going further down the rabbit hole, the

key point is that Zorn’s lemma enables existence of maximal solutions of evolution equations

in Chapters 3 and 4. In context of differential equations the existence and uniqueness of

local solutions derived from fixed point theorem can be extended to the maximal domain.

It is therefore a handy tool that is used in Chapter 3 and 4.

The section presents detailed discussion of various topics in approximation theory. These

results are required in the proof and discussion of Theorems 1 to 11.

2.2 Topics in Approximation Theory

2.2.1 Reproducing Kernel Hilbert Spaces (RKHS)

Estimation techniques for distributed parameter systems have been previously studied in [5],

and further developed to incorporate adaptive estimation of parameters in certain infinite

dimensional systems by [6] and the references therein. These works also present the necessary

conditions required to achieve parameter convergence during online estimation in the general

infinite dimensional setting. But both of these approaches rely on delicate semigroup analysis

of Gelfand triples. The approach herein is much simpler and amenable to a broad class

of applications of interest in classical adaptive or online estimation. It appears to be a

relatively simpler, practical approach to generalize conventional methods for ODEs, without



Parag S. Bobade Chapter 2. Mathematical Background 30

the complexity of using Gelfand triples explicitly. We consider estimation problems that are

cast in terms of the unknown function f : Ω ⊆ Rd → R, and our approximations will assume

that this function is an element of a reproducing kernel Hilbert space.

The key attribute of the approach is that the unknown function representing the terrain is

viewed as an element of a RKHS. The RKHS is constructed in terms of a kernel function

k(·, ·) : Ω × Ω → R where Ω ⊆ Rd is the domain over which scattered measurements are

made. The kernel k can often be used to define a collection of radial basis functions (RBFs)

kx(·) := k(x, ·), each of which is said to be centered at some point x ∈ Ω. For example,

these RBFs might be exponentials, wavelets, or thin plate splines [82]. By embedding the

unknown function that represents the terrain in a RKHS, the new formulation generates a

system that constitutes a distributed parameter system. The unknown function, representing

map terrain, is the infinite dimensional distributed parameter.

The kernel k(·, ·) : Ω× Ω→ R that defines the RKHS provides a natural collection of bases

for approximate estimates of the solution that are based directly on some subset of scattered

measurements {xi}ni=1 ⊂ Rd. It is typical in applications to select the centers {xi}ni=1 that

locate the basis functions from some sub-sample of the locations at which the scattered data

is measured. Thus, while we do not study the nuances of such methods, in this work, the

formulation provides a natural framework to pose so-called “basis adaptive methods” such

as in [26] and the references therein.

One way to define a reproducing kernel Hilbert space relies on demonstrating the boundedness

of evaluation functionals, but we briefly summarize a constructive approach that is helpful
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in applications and in understanding computations such as in our numerical examples.

Let R denote the real numbers, N the positive integers, N0 the non-negative integers, and

Z the integers. We follow the convention that a & b means that there is a constant c,

independent of a or b, such that b ≤ ca. When a & b and b & a, we write a ≈ b. Several

function spaces are used in this paper. The p-integrable Lebesgue spaces are denoted Lp(Ω)

for 1 ≤ p ≤ ∞, and Cs(Ω) is the space of continuous functions on Ω all of whose derivatives

of the order less than or equal to s are continuous. The space Cs
b (Ω) is the normed vector

subspace of Cs(Ω) that consists of all f ∈ Cs(Ω) whose derivatives of order less than or equal

to s are bounded. The space Cs,λ(Ω) ⊆ Cs
b (Ω) ⊆ Cs(Ω) is the collection of functions with

derivatives ∂|α|f
∂x|α|

that are λ-Holder continuous. That is, they satisfy

‖f(x)− f(y)‖ ≤ C‖x− y‖λ.

The Sobolev space of functions in Lp(Ω) that have weak derivatives of the order less than

equal to r that lie in Lp(Ω) is denoted Hr
p(Ω).

A reproducing kernel Hilbert space is constructed in terms of a symmetric, continuous, and

positive definite function k : Ω×Ω→ R, where positive definiteness requires that there is a

fixed positive constant c > 0 such that for any finite collection of points {xi}ni=1 ⊆ Ω

n∑
i,j=1

k(xi, xj)αiαj & c‖α‖2
Rn

for all α = {α1, . . . , αn}T . For each x ∈ Ω, we denote the function kx := kx(·) = k(x, ·)

and refer to kx as the kernel function centered at x. In many typical examples [82], kx can

be interpreted literally as a radial basis function centered at x ∈ Ω. For other definitions
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of kernels, such as those defined in terms of a multiresolution analysis, the center x can be

understood as a representative point in the support of k. For any kernel functions kx and ky

centered at x, y ∈ Ω, we define the inner product (kx, ky)H := k(x, y). The RKHS H is then

defined as the completion of all finite sums extracted from the set {kx|x ∈ Ω}, i.e, it is closed

linear span of {kx}x∈Ω. It is well known that this construction guarantees the boundedness

of the evaluation functionals Ex : H → R. In other words for each x ∈ Ω there is a constant

cx such that

|Exf | = |f(x)| ≤ cx‖f‖H

for all f ∈ H. The reproducing property of the RKHS H plays a crucial role in the analysis

here, and it states that

Exf = f(x) = (kx, f)H

for x ∈ Ω and f ∈ H. We will also require the adjoint operator E∗x : R → H, which can be

calculated directly by noting that

(Exf, α)R = (f, αkx)H = (f, E∗xα)H

for α ∈ R , x ∈ Ω and f ∈ H. Hence, E∗x : α 7→ αkx ∈ H.

Finally, we will have particular interest for case in which it is possible to show that the

RKHS H is a subset of C(Ω), which implies that the associated injection i : H → C(Ω) is

uniformly bounded.
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Example: The Exponential Kernel

A popular example of an RKHS, one that will be used in the numerical examples, is

constructed from the family of exponentials k(x, y) := e−‖x−y‖
2/σ2

where σ > 0. Suppose

that C̃ =
√

supx∈Ω k(x, x) <∞. Smale and Zhou in [75] argue that

|f(x)| = |Ex(f)| = |(kx, f)H | ≤ ‖kx‖H‖f‖H

for all x ∈ Ω and f ∈ H, and since ‖kx‖2 = |k(x, x)| ≤ C̃2, it follows that the embedding

i : H → C(Ω) is bounded,

‖f‖C(Ω) := ‖i(f)‖C(Ω) ≤ C̃‖f‖H .

For the exponential kernel above, C̃ = 1. Let Cs(Ω) denote the space of functions on Ω all

of whose partial derivatives of order less than or equal to s are continuous. The space Cs
b (Ω)

is the subspace Cs(Ω) endowed with the norm

‖f‖Csb (Ω) := max
|α|≤s

∥∥∥∥∂|α|f∂xα

∥∥∥∥
C(Ω)

,

with the summation taken over multi-indices α := {α1, . . . , αd} ∈ Nd, ∂xα := ∂xα1
1 · · · ∂x

αd
d ,

and |α| =
∑

i=1,...,d αi. Observe that the continuous functions in Cs(Ω) need not be bounded

even if Ω is a bounded open domain. The space Cs,λ(Ω) is the subspace of functions f in

Cs(Ω) for which all of the partial derivatives ∂f |α|

∂xα
with |α| ≤ s are λ-Holder continuous. The

norm of Cs,λ(Ω) for is given by

‖f‖Cs,λ(Ω) = ‖f‖Cs(Ω) + max
0≤α≤s

sup
x,y∈Ω
x 6=y

∣∣∣∂|α|f∂x|α|
(x)− ∂|α|f

∂x|α|
(y)
∣∣∣

|x− y|λ
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Also, reference [75] notes that if k(·, ·) ∈ C2s,λ
b (Ω × Ω) with 0 < λ < 2 and Ω is a closed

domain, then the inclusion H → C
s,λ/2
b (Ω) is well defined and continuous. That is the

mapping i : H → C
s,λ/2
b defined via f 7→ i(f) := f satisfies

‖f‖
C
s,λ/2
b (Ω)

. ‖f‖H .

In fact reference [75] shows that

‖f‖Csb (Ω) ≤ 4s‖k‖1/2

C2s
b (Ω×Ω)

‖f‖H .

The overall important conclusion to draw from the summary above is that there are many

conditions that guarantee that the embedding H ↪→ C(Ω) is continuous. This condition

will play a central role in devising simple conditions for existence of solutions of the RKHS

embedding technique.

2.2.2 Multiscale Kernels Induced by s-Regular Scaling Functions

A multiresolution analysis defines a family of nested approximation spaces {Hj}j∈N ⊆ H of

an abstract space H in terms of a single function φ, the scaling function. The approximation

space Hj is defined in terms of bases that are constructed from dilates and translates

{φj,k}k∈Zd with φj,k(x) := 2jd/2φ(2jx − k) for x ∈ Rd of this single function φ. It is for

this reason that these spaces are sometimes referred to as shift invariant spaces. While the

MRA is ordinarily defined only in terms of the scaling functions, the theory provides a rich

set of tools to derive bases {ψj,k}k∈Z, or wavelets, for the complement spaces Wj := Vj+1−Vj.

The multiresolution analysis of L2(Rd) generated by φ ∈ Cs(Rd) is s-regular for s ∈ N0 if
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for each integer p ∈ N and multiindex a = (a1, . . . , ad) ∈ Nd
0 with

∑d
i=1 ai ≤ s, there is a

constant bap > 0 such that

|∂aφ(u)| ≤ bap(1 + ‖u‖)−p

for all u ∈ Rd. It is known [55, 62, 61] that when r < s, the Sobolev space Hr
2(Rd) of

functions that have r weak derivatives in L2(Rd) can be characterized as

Hr
2(Rn) :=

{
f ∈ L2(Rd)

∣∣∣∣ ‖f‖2
Hr

2
<∞

}
with the norm ‖ · ‖Hr

2
defined as

‖ · ‖2
Hr

2
:=
∑
j∈N0

22rj‖(Πj − Πj−1)f‖2
L2(Rd)

where Π−1 = 0 and Πj : L2(Rd)→ Vj is the orthogonal projection of L2(Rd) onto Vj.

The characterization of the norm of the Sobolev space Hr
2 := Hr

2(Rd) has appeared in

many monographs that discuss multiresolution analysis [55, 54, 21]. It is also possible to

define the Sobolev space Hr
2(Rd) as the Hilbert space constructed from a reproducing kernel

k(·, ·) : Rd × Rd → R that is defined in terms of an s-regular scaling function φ of an

multi-resolution analysis (MRA) [55, 21]. For d
2
< r < s, we define the kernel k in this case

as

k(u, v) : =
∞∑
j=0

2j(d−2r)
∑
k∈Zd

φ(2ju− k)φ(2jv − k)

=
∞∑
j=0

2−2rj
∑
k∈Zd

φj,k(u)φj,k(v).

It should be noted that the requirement d/2 < r implies the coefficient 2j(d−2r) above is

decreasing as j →∞ and ensures the summation converges. As discussed in Section 2.2 and
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in reference [62, 61], the RKHS Hr
k(Rd) is constructed as the closure of the finite linear span

of the set of function {ku}u∈Ω with ku(·) := k(u, ·). Under the assumption that d
2
< r < s,

the Sobolev space Hr
2(Rd) can also be related to the Hilbert space Hr

k(Rd) defined as

Hr
k(Rd) :=

{
f : Rd → R | (f, f)

1
2
k,r = ‖f‖k,r <∞

}
with the inner product (·, ·)k,r on Hr

k(Rd) defined as

(f, f)k,r := ‖f‖2
k,r := inf

{ ∞∑
j=0

2j(2r−d)‖fj‖2
Vj

∣∣∣∣fj ∈ Vj, f =
∞∑
j=0

fj

}

with ‖f‖2
Vj

=
∑

k∈Zd c
2
j,k for fj(u) =

∑
k∈Zd cj,kφ(2ju − k) ∈ Vj := spanj∈N0

k∈Zd
φ(2jx− k) and

j ∈ N0. Note that the characterization above of Hr
k(Rd) is expressed only in terms of

the scaling functions φ(2j − k) for j ∈ N0 and k ∈ Zd. The functions φ and ψ need not

define an orthonormal multiresolution analysis in this characterization, and the bases ψj,k

for the complement spaces Wj = Vj −Vj−1 are not used. References [62, 61] show that when

d/2 < r < s, we have the norm equivalence

Hr
k(Rd) ≈ Hr

2(Rd). (2.1)

It is well known that when a bounded domain Ω is well aligned with scaling of functions

φj,k := 2
jd
2 φ(2j − k), the above analysis also holds over the well aligned, bounded domain

Ω. This means that we can construct RKHS spaces over Ω from by the restriction of bases

to Ω of an MRA. From Sobolev’s Embedding Theorem [67], whenever r > d/2 we have the

embedding

Hr
2(Ω) ↪→ C

r−d/2
b (Ω) ⊂ Cr−d/2(Ω)
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In fact, by choosing the s-regular MRA with s and r large enough, we have the embedding

Hr
2(Ω) ↪→ C(Ω) when Ω ⊆ Rd [67].

One of the simplest examples that meet the conditions of this section includes the normalized

B-splines of order r > 0. We denote by N r the normalized B-spline of order r with integer

knots and define its translated dilates by N r
j,k := 2jd/2N r(2jdx − k) for k ∈ Zd and j ∈ N0.

In this case the kernel is written in the form

k(u, v) :=
∞∑
j=0

2−2rj
∑
k∈Zd

N r
j,k(u)N r

j,k(v).

Figure 2.1 depicts the translated dilates of the normalized B-splines of order 1 and 2

respectively.

0 1 2 3 4 5 6 7

N0,1N0,0 N0,4N0,3N0,2 N0,5

1 1 11 1 1

0 1 2 3 4 5 6 7

N0,1N0,0 N0,4N0,3N0,2 N0,5
2 2 22 2 2

0 1 2 3 4 5 6 7

N0,1N0,0 N0,4N0,3N0,2 N0,5

1 1 11 1 1

0 1 2 3 4 5 6 7

N0,1N0,0 N0,4N0,3N0,2 N0,5
2 2 22 2 2

B-splines N1 B-splines N2

Figure 2.1: Translated Dilates of Normalized B-Splines

2.2.3 Approximation Spaces Aα2

The approximation framework in this dissertation is based on a straightforward implementation

of approximation spaces discussed in detail in [23] or [21], and further developed by Dahmen
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Figure 2.2: Regular refinement process for domain ∆

in [16]. We will see that approximation of the class of history dependent operators under

consideration exploit in Chapter 4 a well-known connection between the class of Lipschitz

functions and certain approximation spaces as described in [21]. We consider the regular

refinement shown in Figure 2.3 where ∆i1i2 is the i2 child of ∆i1 . In general ∆i1i2...imim+1 is

the (m+ 1)st child of ∆i1i2...im . The multiscaling function φj,k is defined as

φj,k(x) =
1∆i1i2...ij

(x)√
m(∆i1i2...ij)

where j refers to the level of refinement in the grid and m(·) is Lebesgue measure.

Figure 2.3: j level refinement

Since the history dependent operators (HX)(t) in Chapter 4 act on the infinite dimensional

space P = P1 × · · · × P` of functions µ = (µ1, . . . , µ`), we need approximations of these
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operators for computations and applications. In the discussion that follows we choose each

function µi ∈ Pi := L2(∆) where the domain ∆ ⊂ R2 is defined as

∆ :=

{
(s1, s2) ∈ R2

∣∣∣∣s ≤ s1 ≤ s2 ≤ s

}
.

with s, s > 0. The modification of the construction that follows for different domains ∆i for

the functions µi ∈ L2(∆i) is trivial, but notationally tedious, and we leave the more general

case to the reader. Given the domain ∆ we introduce a regular refinement depicted in Figure

2.3 and disscused in more detail in Appendix A. The set ∆ is subdivided into ∆1,∆2,∆3,∆4

as shown, and each ∆i is subdivided into ∆i1,∆i2,∆i3,∆i4. Further subdivision recursively

introduces the sets ∆i1...ij for ij = 1, . . . , 4 that are the children of ∆i1...ij−1
.

The characteristic functions 1∆1 , . . . , 1∆4 define a collection of multiscaling functions φ1, . . . , φ4

as defined in [44]. We define the space of piecewise constant functions Vj on grid refinement

level j to be the span of the characteristic functions of the sets ∆i1,...,ij , so that the dimension

of Vj is 4j. We denote by {φj,k}k=1,...,4j the orthonormal basis obtained from these characteristic

functions on a particular grid level, each normalized so that (φj,k, φj,`)L2(∆) = δk,l. Each of

the basis functions φj,k will be proportional to the characteristic function φ`(2jx + d) for

some ` ∈, 1, 2, 3, 4 and displacement vector d. It is straightforward in this case [44] to define

3 piecewise constant multiwavelets ψ1, ψ2, ψ3 that that are used to define functions ψj,m for

m = 1, . . . , 3× 4j that span the complement spaces Wj = span {ψj,m}m=1,...,3·4j := Vj+1 − Vj

. Vj︸︷︷︸
4jfunctions

= Vj−1︸︷︷︸
4j−1functions

⊕
Wj−1︸ ︷︷ ︸

3×4j−1functions

.

It is a straightforward exercise to define L2(∆)−orthonormal wavelets that span Wj for each
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j ∈ N0, but the nomenclature is lengthy. Since we do not use the wavelets specifically,

the details are omitted. Each function ψj,m is proportional to one of the three scaled and

translated multiwavelet functions and satisfies the orthonormality conditions

(ψj,k, ψm,`) = δj,mδk,` for all j, k,m, `,

(ψj,k, φm,`) = 0 for j ≥ m and all k, `.

In the next step, we denote the orthogonal projection onto the span of the piecewise constants

defined on a grid of resolution level j by Πj so that

Πj : P → Vj.

Finally, we define the approximation space Aα2 in terms of the projectors Πj as

Aα2 :=

f ∈ P
∣∣∣∣‖f‖Aα2 :=

(
∞∑
j=0

22αj‖(Πj − Πj−1)f‖2
P

)1/2
 .

Note that this is a special case of the more general analysis in [16]. We define our approximation

method in Chapter 4 in terms of one point quadratures defined over the triangles ∆i1...ij that

constitute the grid of level j that defines Vj. For notational convenience, we collect all

triangles at a fixed level j in the singly indexed set

{∆j,k}k∈Λj
:=
{

∆i1...ij

}
i1,...,ij∈1,2,3,4

where Λj := {k ∈ N |1 ≤ k ≤ 4j}, and the quadrature points are chosen such that ξj,k ∈

∆j,k for k = 1, · · · ,Λj.



Chapter 3

Adaptive Estimation using

Reproducing Kernel Hilbert Spaces

In this chapter we define and elaborate on an extension to conventional online adaptive

estimation problems for systems governed by unknown nonlinear ordinary differential equations.

The central feature of the theory introduced here represents the unknown function as a

element of a reproducing kernel Hilbert space (RKHS) and defines a distributed parameter

system (DPS) that governs state estimates and estimates of the unknown function. In this

chapter, we

1. derive sufficient conditions for the existence and stability of the infinite dimensional

online estimation problem,

2. derive existence and stability of finite dimensional approximations of the infinite dimensional

41
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estimates, and

3. determine sufficient conditions that ensure convergence of finite dimensional approximations

to the infinite dimensional online estimates.

We focus our attention on two choices of the RKHS, those that are generated by exponential

functions and those that are generated by multiscale kernels defined from a multiresolution

analysis. The chapter concludes with an example of an RKHS adaptive estimation problem

for a simple model of map building from vehicles. The numerical example demonstrates

the rate of convergence for finite dimensional models constructed from RBF bases that are

centered at a subset of scattered observations.

3.1 Adaptive Estimation

3.1.1 Adaptive Estimation in Rd × Rn

The development of adaptive estimation strategies when the uncertainty takes the form in

Equation 1.4 represents, in some sense, an iconic approach in the adaptive estimation and

control community. Entire volumes [71, 40, 34, 59] contain numerous variants of strategies

that can be applied to solve adaptive estimation problems in which the uncertainty takes the

form in Equation 1.4. One canonical approach to such an adaptive estimation problem is

governed by three coupled equations: the plant dynamics Equation 3.1, estimator Equation

3.2, and the learning rule. In conventional online estimation, we organize the basis functions
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as φ := [φ1, . . . , φn]T and the true parameters as α∗
T

= [α∗1, . . . , α
∗
n], α̂T = [α̂1, . . . , α̂n]. A

common gradient based learning law yields the governing equations that incorporate the

plant dynamics, estimator equation, and the learning rule, respectively,

ẋ(t) = Ax(t) +Bα∗
T

φ(x(t)), (3.1)

˙̂x(t) = Ax̂(t) +Bα̂T (t)φ(x(t)), (3.2)

˙̂α(t) = Γ−1φBTP (x− x̂), (3.3)

where Γ ∈ Rn×n is symmetric and positive definite. We suppose that A is Hurwitz The

symmetric positive definite matrix P ∈ Rd×d is the unique solution of Lyapunov’s equation

ATP + PA = −Q, for some selected symmetric positive definite Q ∈ Rd×d. Usually the

above equations are summarized in terms the two error equations

˙̃x(t) = Ax̃+BφT (x(t))α̃(t) (3.4)

˙̃α(t) = −Γ−1φ(x(t))BTPx̃. (3.5)

with α̃ := α∗ − α̂ and x̃ := x− x̂. Equations 3.4, 3.5 can also be written as
˙̃x(t)

˙̃α(t)

 =

 A BφT (x(t))

−Γ−1φ(x(t))BTP 0



x̃(t)

α̃(t)

 . (3.6)

This equation defines an evolution on Rd×Rn and has been studied in great detail in [58, 60,

2]. Standard texts such as [71, 40, 34, 59] describes alternatives for the conventional online

adaptive estimation problem using projection, least squares methods and other popular

approaches.
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3.1.2 Adaptive Estimation in Rd ×H

We study the method of RKHS embedding that interprets the unknown function f as an

element of the RKHS H, without any a priori selection of the particular finite dimensional

subspace used for estimation of the unknown function. The counterparts to Equations

3.1, 3.2, 3.3 are the plant, estimator, and learning laws

ẋ(t) = Ax(t) +BEx(t)f, (3.7)

˙̂x(t) = Ax̂(t) +BEx(t)f̂(t), (3.8)

˙̂
f(t) = Γ−1(BEx(t))

∗P (x(t)− x̂(t)), (3.9)

where as before x, x̂ ∈ Rd, but f and f̂(t) ∈ H, Eξ : H → Rd is the evaluation functional

that is given by Eξ : f 7→ f(ξ) for all ξ ∈ Rd and f ∈ H, and Γ ∈ L(H,H) is a self adjoint,

positive definite linear operator. The error equation analogous to Equation 3.6 is then given

by 
˙̃x(t)

˙̃f(t)

 =

 A BEx(t)

−Γ−1(BEx(t))
∗P 0



x̃(t)

f̃(t)

 , (3.10)

which defines an evolution on Rd ×H, instead of on Rd × Rn.

3.2 Existence, Uniqueness and Stability

In the adaptive estimation problem that is cast in terms of a RKHS H, we seek a solution

X = (x̃, f̃) ∈ Rd×H ≡ X that satisfies Equation 3.10. In general X is an infinite dimensional
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state space for this estimation problem, which can in principle substantially complicate the

analysis in comparison to conventional ODE methods. We first establish that the adaptive

estimation problem in Equation 3.10 is well-posed. The result that is derived below is not

the most general possible, but rather has been emphasised because its conditions are simple

and easily verifiable in many applications.

Theorem 2. Suppose that x ∈ C([0, T ];Rd) and that the embedding i : H ↪→ C(Ω) is

uniform in the sense that there is a constant C > 0 such that for any f ∈ H,

‖f‖C(Ω) ≡ ‖if‖C(Ω) ≤ C‖f‖H . (3.11)

For any T > 0 there is a unique mild solution (X̃, f̃) ∈ C([0, T ],X) to Equation 3.10 and

the map X0 ≡ (x̃0, f̃0) 7→ (x̃, f̃) is Lipschitz continuous from X to C([0, T ],X).

Proof. We can split the governing Equation 3.10 into the form
˙̃x(t)

˙̃f(t)

 =

A 0

0 A0



x̃(t)

f̃(t)

+

 0 BEx(t)

−Γ−1(BEx(t))
∗P −A0



x̃(t)

f̃(t)

 , (3.12)

and write it more concisely as

˙̃X = AX̃(t) + F(t, X̃(t)) (3.13)
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where the operator A0 ∈ L(H,H) is arbitrary. Then,∥∥∥∥∥∥∥∥
 0 BEx(t)

−Γ−1(BEx(t))
∗P −A0



x̃(t)

f̃(t)


∥∥∥∥∥∥∥∥

2

X

= ‖BEx(t)f‖2
Rn + ‖(BEx(t))

∗Px− A0f‖2
H

≤ ‖B‖2‖Ex(t)‖2‖f‖2
H + 2‖(BEx(t))

∗Px‖2
H + 2‖A0f‖2

H

≤ ‖B‖2C2
k‖f‖2

H + 2‖B‖2C2
k‖x‖2

H + 2‖A0‖2‖f‖

=
(
‖B‖2C2

k + 2‖A0‖2
)
‖f‖2

H +
(
2‖B‖2C2

k

)
‖x‖2

H .

It is immediately clear that A is the infinitesimal generator of C0 semigroup on X ≡ Rd×H

since A is bounded on X. In addition, we see the following:

1. The function F : R+ × X → X is uniformly globally Lipschitz continuous: there is a

constant L > 0 such that

‖F(t,X)− F(t, Y )‖ ≤ L‖X − Y ‖

for all X, Y ∈ X and t ∈ [0, T ].

2. The map t 7→ F(t,X) is continuous on [0, T ] for each fixed X ∈ X.

By Theorem 1.2, p.184, in reference [65], there is a unique mild solution

X̃ = {x̃, f̃}T ∈ C([0, T ];X) ≡ C([0, T ];Rd ×H).

In fact the map X̃0 7→ X is Lipschitz continuous from X→ C([0, T ];X).

The proof of stability of the equilibrium at the origin of the RKHS Equation 3.10 closely

resembles the Lyapunov analysis of Equation 3.6; the extension to consideration of the infinite
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dimensional state space X is required. It is useful to carry out this analysis in some detail

to see how the adjoint E∗x : R→ H of the evaluation functional Ex : H → R plays a central

and indispensable role in the study of the stability of evolution equations on the RKHS.

Theorem 3. Suppose that the RKHS Equations 3.10 have a unique solution in C([0,∞);H)

for every initial condition X0 in some open ball Br(0) ⊆ X. Then the equilibrium at the origin

is Lyapunov stable. Moreover, the state error x̃(t)→ 0 as t→∞.

Proof. Define the Lyapunov function V : X→ R as

V


x̃

f̃

 =
1

2
x̃TPx̃+

1

2
(Γf̃ , f̃)H .

This function is norm continuous and positive definite on any neighborhood of the origin

since V (X) ≥ ‖X‖2
X for all X ∈ X. For any X, and in particular over the open set Br(0),

the derivative of the Lyapunov function V along trajectories of the system is given as

V̇ =
1

2
( ˙̃xTPx̃+ x̃TP ˙̃x) + (Γf̃ , ˙̃f)H

= −1

2
x̃TQx̃+ (f̃ , E∗xB

∗Px̃+ Γ ˙̃f)H = −1

2
x̃TQx̃,

since (f̃ , E∗xB
∗Px̃+ Γ ˙̃f)H = 0. Let ε be some constant such that 0 < ε < r. Define γ(ε) and

Ωγ according to

γ(ε) = inf
‖X‖X=ε

V (X),

Ωγ = {X ∈ X|V (X) < γ}.

We can picture these quantities as shown in Fig. 3.1 and Fig. 3.2. But Ωγ = {X ∈
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Figure 3.1: Lyapunov function, V (x)

Figure 3.2: Stability of the equilibrium
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X|V (X) < γ} is an open set since it is the inverse image of the open set (−∞, γ) ⊂ R under

the continuous mapping V : X→ R. The set Ωγ therefore contains an open neighborhood of

each of its elements. Let δ > 0 be the radius of such an open ball containing the origin with

Bδ(0) ⊂ Ωγ. Since Ωγ := {X ∈ X|V (X) ≤ γ} is a level set of V and V is non-increasing, it

is a positive invariant set. Given any initial condition x0 ∈ Bδ(0) ⊆ Ωγ, we know that the

trajectory x(t) starting at x0 satisfies x(t) ∈ Ωγ ⊆ Bε(0) ⊆ Br(0) for all t ∈ [0,∞). The

equilibrium at the origin is stable.

The convergence of the state estimation error x̃(t)→ 0 as t→∞ can be based on Barbalat’s

lemma by modifying the conventional arguments for ODE systems. Since d
dt

(V (X(t))) =

−1
2
x̃T (t)Qx̃ ≤ 0, V (X(t)) is non-increasing and bounded below by zero. There is a constant

V∞ := limt→∞ V (X(t)), and we have

V (X0)− V∞ =

∫ ∞
0

x̃T (τ)Qx̃dτ & ‖x̃‖2
L2((0,∞);Rd).

Since V (X(t)) ≤ V (X0), we likewise have ‖x̃‖L∞(0,∞) . V (X0) and ‖f̃‖L∞((0,∞);H) . V (X0).

The equation of motion enables a uniform bound on ˙̃x since

‖ ˙̃x(t)‖Rd ≤ ‖A‖‖x̃(t)‖Rd + ‖B‖‖Ex(t)f̃(t)‖Rd ,

≤ ‖A‖‖x̃(t)‖Rd + C̃‖B‖‖f̃(t)‖H , (3.14)

≤ ‖A‖‖x̃‖L∞((0,∞);Rd) + C̃‖B‖‖f̃‖L∞((0,∞),H).

Since x̃ ∈ L∞((0,∞);Rd))∩L2((0,∞);Rd) and ˙̃x ∈ L∞((0,∞);Rd), we conclude by generalizations

of Barbalat’s lemma [33] that x̃(t)→ 0 as t→∞.

It is evident that Theorem 3 yields results about stability and convergence over the RKHS
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of the state estimate error to zero that are analogous to typical results for conventional ODE

systems. As expected, conclusions for the convergence of the function estimates f̂ to f are

more difficult to generate, and they rely on persistency of excitation conditions that are

suitably extended to the RKHS framework which is discussed in Chapter 5.

3.3 Finite Dimensional Approximations

The governing Equations 3.10 define an evolution on X = Rd×H. A system of approximate

governing equations can be derived using the weak form of the governing equations that seek

(x̃, f̃) ∈ C([0, T ];X) such that

d

dt



x̃(t)

f̃(t)

 ,


y

g




X

=


 A BEx(t)

−Γ−1E∗x(t)B
∗P 0



x̃(t)

f̃(t)

 ,


y

g




X

(3.15)

for all (y, g) ∈ X. We define approximations in term of the finite dimensional subspaces

Hk :=span{φj}kj=1,

Xk :=Rd ×Hk.

The approximate equations in weak form seek (x̃k, f̃k) ∈ C([0, T ];Xk) such that

d

dt
(x̃k(t), y)Rd = (Ax̃k(t), y)Rd + (BEx(t)f̃k(t), y)Rd (3.16)

d

dt
(f̃k(t), g)H = (−ΓE∗x(t)B

∗Px̃k(t), g)H (3.17)
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for all (y, g) ∈ Xk. These two equations can be rewritten using the orthogonal projector

Πk : H → Hk as

d

dt
(x̃k(t), y)Rd = (Ax̃k(t), y)Rd + (BEx(t)Πkf̃k(t), y)Rd

d

dt
(f̃k(t), g)H = (−ΓE∗x(t)B

∗Px̃k(t),Πkg)H︸ ︷︷ ︸
(−ΠkΓE∗

x(t)
B∗P x̃k(t),g)H

for all (y, g) ∈ Xk. The approximate equations can then be written in the condensed form

as 
˙̃xk(t)

˙̃fk(t)

 =

 A BEx(t)Π
∗
n

−ΠnΓ−1E∗x(t)B
∗P 0



x̃k(t)

f̃k(t)

 . (3.18)

If we recall that B : R → Rd, B∗ : Rd → R, Ex(t) : H → R, E∗x(t) : R → H, Πn : H → Hn,

Π∗n : Hn → H, it is then clear that A BEx(t)Π
∗
n

−ΠnΓ−1E∗x(t)B
∗P 0

 : Xn → Xn. (3.19)

3.3.1 Convergence of Finite Dimensional Approximations

The governing system in Equations 3.10 constitute a distributed parameter system since

the functions f̃(t) evolve in the infinite dimensional space H. In practice these equations

must be approximated by some finite dimensional system. Let {Hn}n∈N0 ⊆ H be a nested

sequence of subspaces. Let Πj be a collection of approximation operators Πj : H → Hn such

that limj→∞Πjf = f for all f ∈ H and supj∈N0
‖Πj‖ ≤ C for a constant C > 0. Perhaps the

most evident example of such collection might choose Πj as the H-orthogonal projection for
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a dense collection of subspaces Hn. It is also common to choose Πj as a uniformly bounded

family of quasi-interpolants [21]. We next construct a finite dimensional approximations x̂j

and f̂j of the online estimation equations in

˙̂xj(t) = Ax̂j(t) +BEx(t)Π
∗
j f̂j(t), (3.20)

˙̂
fj(t) = Γ−1

j

(
BEx(t)Π

∗
j

)∗
Px̃j(t) (3.21)

with x̃j := x − x̂j. It is important to note that in the above equation Πj : H → Hn, and

Π∗j : Hn → H.

Theorem 4. Suppose that x ∈ C([0, T ],Rd) and that the embedding i : H → C(Ω) is uniform

in the sense that

‖f‖C(Ω) ≡ ‖if‖C(Ω) ≤ C‖f‖H . (3.22)

Then for any T > 0,

‖x̂− x̂j‖C([0,T ];Rd) → 0,

‖f̂ − f̂j‖C([0,T ];H) → 0,

as j →∞.

Proof. Define the operators Λ(t) := BEx(t) : H → Rd for each t ≥ 0, introduce the measures

of state estimation error xj := x̂− x̂j, and define the function estimation error f j = f̂ − f̂j.

Note that x̃j := x− x̂j = x− x̂+ x̂− x̂j = x̃+ xj. The time derivative of the error induced
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by approximation of the estimates can be expanded as follows:

1

2

d

dt

(
(xj, xj)Rd + (f j, f j)H

)
= (ẋj, xj)Rd + (ḟ j, f j)H

= (Axj + Λf j, xj)Rd +
((

Γ−1 − Π∗jΓ
−1
j Πj

)
Λ∗Px̃, f j

)
H
−
(
Π∗jΓ

−1
j ΠjΛ

∗Pxj, f j
)
H

≤ CA‖xj‖2
Rd + ‖Λ‖‖f j‖H‖xj‖Rd + ‖Γ−1(I − ΓΠ∗jΓ

−1
j Πj)Λ

∗Px̃‖H‖f j‖H

+
∥∥Π∗jΓ

−1
j ΠjΛ

∗P
∥∥ ‖xj‖‖f j‖

≤ CA‖xj‖2
Rd +

1

2
‖Λ‖

(
‖f j‖2

H + ‖xj‖2
Rd
)

+
1

2
‖Π∗jΓ−1

j Πj‖‖Λ∗‖‖P‖
(
‖xj‖2

Rd + ‖f j‖H
)

+
1

2

(
Γ−1(I − ΓΠ∗jΓ

−1
j Πj)Λ

∗Px̃‖H + ‖f j‖2
H

)
≤ 1

2
‖Γ−1‖‖Λ∗‖‖P‖‖I − ΓΠ∗jΓ

−1
j Πj‖2‖x̃‖2

Rd +

(
CA +

1

2
‖Λ‖+

1

2
CB‖Λ∗‖‖P‖

)
‖xj‖2

Rd+

+
1

2

(
‖Λ‖+ 1 +

1

2
CB‖Λ∗‖‖P‖

)
‖f j‖2

H

We know that ‖Λ(t)‖ = ‖Λ∗(t)‖ is bounded uniformly in time from the assumption that H

is uniformly embedded in C(Ω). We next consider the operator error that manifests in the

term (Γ−1 − Π∗jΓ
−1
j Πj). For any g ∈ H we have

‖(Γ−1 − Π∗jΓ
−1
j Πj)g‖H = ‖Γ−1(I − ΓΠ∗jΓ

−1
j Πj)g‖H

≤ ‖Γ−1‖‖ (Πj + (I − Πj)) (I − ΓΠ∗jΓ
−1
j Πj)g‖H

. ‖I − Πj‖‖g‖H .

This final inequality follows since Πj(I−ΓΠ∗jΓ
−1
j Πj) = 0 and ΓΠ∗jΓ

−1
j Πj ≡ ΓΠ∗j

(
ΠjΓΠ∗j

)−1
Πj

is uniformly bounded. We then can write

d

dt

(
‖xj‖2

Rd + ‖f j‖2
H

)
≤ C1‖I − ΓΠ∗jΓ

−1
j Πj‖2 + C2

(
‖xj‖2

Rd + ‖f j‖2
H

)
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where C1, C2 > 0. We integrate this inequality over the interval [0, T ] and obtain

‖xj(t)‖2
Rd + ‖f j(t)‖2

H ≤ ‖xj(0)‖2
Rd + ‖f j(0)‖2

H

+ C1T‖I − ΓΠ∗jΓ
−1
j Πj‖2 + C2

∫ T

0

(
‖xj(τ)‖2

Rd + ‖f j(τ)‖2
H

)
dτ

We can always choose x̂(0) = x̂j(0), so that xj(0) = 0. If we choose f̂j(0) := Πj f̂(0) then,

‖f j(0)‖ = ‖f̂(0)− Πj f̂(0)‖H ,

≤ ‖I − Πj‖H‖f̂(0)‖H .

The non-decreasing term can be rewritten as C1T‖I − ΓΠ∗jΓ
−1
j Πj‖2 ≤ C3‖I − Πj‖2

H .

‖xj(t)‖2
Rd + ‖f j(t)‖2

H ≤ C4‖I − Πj‖2
H + C2

∫ T

0

(
‖xj(τ)‖2

Rd + ‖f j(τ)‖2
H

)
dτ (3.23)

Let α(t) := C4‖I − Πj‖2
H and applying Gronwall’s inequality to Equation 3.23, we get

‖xj(t)‖2
Rd + ‖f j(t)‖2

H ≤ α(t)eC2T (3.24)

As j → ∞ we get α(t) → 0, this implies xj(t) → 0 and f j(t) → 0. Therefore the finite

dimensional approximation converges to the infinite dimensional states in Rd ×H.

Lastly, the finite dimensional matrix form of the learning law is given by

α̇i = G−1
ij φj(x(t))BTPx̃.

where Gij = (φi, φj)H is the Grammian matrix.
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Figure 3.3: Experimental setup and definition of basis functions

3.4 Numerical Simulations

A schematic representation of a quarter car model consisting of a chassis, suspension and

road measuring device is shown in Figure 3.3. In this simple model the displacement of the

car suspension and chassis are denoted x1 and x2, respectively. The arc length s measures

the distance along the track that vehicle follows. The equation of motion for the two DOF

model has the form

Mẍ(t) + Cẋ(t) +Kx(t) = Bf(s(t)) (3.25)

with the mass matrix M ∈ R2×2, the stiffness matrix K ∈ R2×2, the damping matrix

C ∈ R2×2, the control influence vector b ∈ R2×1 in this example. The road profile is denoted

by the unknown function f : R→ R. For simulation purposes, the car is assumed to traverse

a circular path of radius R, so that we restrict attention to periodic profiles f : [0, R]→ R.

To illustrate the methodology, we first assume that the unknown function, f is restricted to
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the class of uncertainty mentioned in Equation 1.4 and therefore can be approximated as

f(·) =
n∑
i=1

α∗i kxi(·) (3.26)

with n as the number of basis functions, α∗i are the true unknown coefficients to be estimated,

and kxi(·) are basis functions over the circular domain. Hence the state space equation can

be written in the form

ẋ(t) = Ax(t) +B
n∑
i=1

α∗i kxi(s(t)). (3.27)

where the state vector x = [ẋ1, x1, ẋ2, x2], the system matrix A ∈ R4×4, and control influence

matrix B ∈ R4×1. For the quarter car model shown in Figure 3.3 we derive the matrices,

A =



−c2
m1

−(k1+k2)
m1

c2
m1

k2
m1

1 0 0 0

−c2
m2

(k2)
m2

−c2
m2

−k2
m2

0 0 1 0


and B =



k1
m1

0

0

0


.

Note that if we augment the state to be {x1, x2, x3, x4, s} and append an ODE that specifies

ṡ(t) for t ∈ R+ the Equations 3.27 can be written in the form of Equations 1.1. Then the

finite dimensional set of coupled ODE’s for the adaptive estimation problem can be written

in terms of the plant dynamics, estimator equation, and the learning law which are of the

form shown in Equations 3.1, 3.2, and 3.3 respectively.
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3.4.1 Synthetic Road Profile Data

The constants in the equation are initialized as follows: m1 = 0.5 kg, m2 = 0.5 kg, k1 = 50000

N/m, k2 = 30000 N/m, c2 = 200 Ns/m, and Γ = 0.001. The radius of the path traversed is

R = 4 m, the road profile to be estimated is assumed to have the shape f(·) = κ sin(2πν(·))

with ν = 0.04 Hz and κ = 2. Adaptive estimation problem is formulated for a synthetic road

profile in the RKHS H = {kx(·)|x ∈ Ω} with kx(·) = e
−‖x−·‖2

2σ2 . The radial basis functions,

each with standard deviation of σ = 50, span over the range of 25o with their centers si evenly

separated along the arc length. It is important to note that we have chosen a scattered basis

that can be located at any collection of centers {si}ni=1 ⊆ Ω but the uniformly spaced centers

are selected to illustrate the convergence rates. Figure 3.4 shows the finite dimensional
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Figure 3.4: Road surface estimates for n = {10, 20, · · · , 100}

estimates f̂ of the road and the true road surface f for different number of basis kernels

ranging from n = {10, 20, · · · , 100}. The plots in Figure 3.5 show the rate of convergence

of the L2 error and the C(Ω) error with respect to the number of basis functions. The log

along the axes in the figures refer to the natural logarithm unless explicitly specified.
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Figure 3.5: Convergence rates using Gaussian kernel for synthetic data

3.4.2 Experimental Road Profile Data

The road profile to be estimated in this subsection is based on the experimental data obtained

from the Vehicle Terrain Measurement System shown in Figure 3.6. The constants in the

estimation problem are initialized to the same numerical values as in previous subsection.

In this section we first study the adaptive estimation problem is formulated in the RKHS

H = kx(·)|x ∈ Ω} with kx(·) = e
−‖x−·‖2

2σ2 . The radial basis functions, each with standard

deviation of σ = 50, span over the range of with a collection of centers located at {si}ni=1 ⊆ Ω,

evenly separated along the arclength which is measured in meters. This is repeated for kernels

defined using B-splines of first order and second order respectively. Figure 3.7 shows the

finite dimensional estimates of the road and the true road surface f for a data representing

a single lap around the circular track. The finite dimensional estimates f̂n are plotted for

different number of basis kernels ranging from n = {35, 50, · · · , 140} the simulations employ
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Figure 3.6: Experimental Data From VTMS.

the Gaussian kernel as well as the second order B-splines. The x-axes plots the arclength

measured in meters while the y-axes plots the corresponding elevation in the road profile

measured in meters. The finite dimensional estimates f̂n of the road profile and the true road

profile f for data collected representing multiple laps around the circular track is plotted for

the first order B-splines as shown in Figure 3.8. The plots in Figure 3.9 show the rate of

convergence of the L2 error and the C(Ω) error with respect to number of basis functions. It is

seen that the rate of convergence for 2nd order B-Spline is better as compared to other kernels

used to estimate in these examples. This corroborates the fact that smoother kernels are

expected to have better convergence rates. Also, the condition number of the Grammian

matrix varies with n, as illustrated in Table 3.1 and Figure 3.10. This is an important factor

to consider when choosing a specific kernel for the RKHS embedding technique since it is well

known that the error in numerical estimates of solutions to linear systems is bounded above

by the condition number. The implementation of the RKHS embedding method requires
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Figure 3.7: Road surface estimates for single lap
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Figure 3.8: Road surface estimate using first-order B-splines

such a solution that depends on the Grammian matrix of the kernel bases at each time step.

We see that the condition number of Grammian matrices for exponential basis is O(1016)

greater than the corresponding condition numbers for splines. Since the sensitivity of the

solutions of linear equations is bounded by the condition numbers, it is expected that the use

of exponentials could suffer from a severe loss of accuracy as the dimensionality increases.

The development of preconditioning techniques for Grammian matrices constructed from
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Figure 3.9: Convergence rates for different kernels

radial basis functions to address this problem is an area of active research [60].
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Figure 3.10: Condition Number of Grammian Matrix vs Number of Basis Functions
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No. of Basis

Functions

Condition

No. (First

order

B-Splines)

×103

Condition

No.(Second

order

B-Splines)

×104

Condition

No.(Gaussian

Kernels)

×1020

10 0.6646 0.3882 0.0001

20 1.0396 0.9336 0.0017

30 1.4077 1.5045 0.0029

40 1.7737 2.0784 0.0074

50 2.1388 2.6535 0.0167

60 2.5035 3.2293 0.0102

70 2.8678 3.8054 0.0542

80 3.2321 4.3818 0.0571

90 3.5962 4.9583 0.7624

100 3.9602 5.5350 1.3630

Table 3.1: Condition number of Grammian Matrix vs Number of Basis Functions



Chapter 4

Online Estimation and Control for a

Class of History Dependent Systems

This chapter presents sufficient conditions for the convergence of online estimation methods,

and the stability of adaptive control strategies for a class of history dependent, functional

differential equations. The functional differential equations are constructed using integral

operators that depend on distributed parameters. As a consequence, the resulting estimation

and control equations are examples of distributed parameter systems whose states and

distributed parameters evolve in finite and infinite dimensional spaces, respectively. Existence,

and uniqueness are discussed for a class that includes fully actuated robotic systems with

history dependent forces in their governing equation of motion. The rates of approximation

for the class of history dependent operators are subsequently derived and sufficient conditions

to guarantee that finite dimensional approximations of the online estimation equations

63
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converge to the solution of the infinite dimensional, distributed parameter system are presented.

The convergence and stability of a sliding mode adaptive control strategy for the history

dependent, functional differential equations is established using Barbalat’s lemma.

4.1 A Class of History Dependent Operators

Methods for modeling history dependent nonlinearities can be formulated using a wide

array of approaches. Analytical methods for the study of such systems can be based

on ordinary or partial differential equations, differential inclusions, functional differential

equations, delay differential equations, or operator theoretic approaches. See references

[47],[81],[76]. This paper treats evolution equations that are constructed using a specific class

of history dependent operators H that are defined in terms of integral operators constructed

from history dependent kernels. These operators are studied in general in [47] and [81]. The

history dependent operators in this dissertation are mappings

H : C([0, T ),Rm)→C([0, T ), P ∗)

where the T is the final time of an interval under consideration, m is the number of

input functions, q is the number of output functions, P is a Hilbert space of distributed

parameters, and its topological dual space is P ∗. We limit our consideration to input−output

relationships that take the form

y(t) = (HX)(t)◦µ (4.1)
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for each t ∈ [0, T ) where y(t) ∈ Rq, (HX)(t) ∈ P ∗, and µ ∈ P . More specifically, we have

y(t) =


y1(t)

...

yq(t)

 =


(H1X)(t) ◦ µ

...

(HqX)(t) ◦ µ


where for t ∈ [0, T ), each entry is given by yi(t) = (HiX)(t) ◦ µ with µ ∈ P and (HiX)(t) ∈

P ∗.

The definition of H is carried out in several steps. All of our history dependent operators

H are defined by a superposition or weighting of elementary hysteresis kernels κi that are

continuous as mappings κi : ∆× [0, T )×C[0, T )→ C[0, T ) for i = 1, . . . , `. First, define the

operator hi : C[0, T )→ C([0, T ), P ∗)

(hif)(t) ◦ µi :=

∫∫
∆

κi(s, t, f)µi(s)ds (4.2)

for µi ∈ Pi and P = P1 × · · · × P`. When we consider problems such as in our motivating

examples and numerical case studies, we must construct arrays H of history dependent

operators where we define the diagonal matrix

(HX)(t) :=


h1(a(X))(t) 0

. . .

0 h`(a(X))(t)


for each t ∈ [0, T ) where a : Rm → R is some nonlinear smooth map. Finally, our applications

to robotics require that we consider

(HX)(t) = b(X(t))(HX)(t), (4.3)
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where b : Rm → Rq×` is some nonlinear, smooth map. In terms of our entrywise definitions

of the input–output mappings, we have

yi(t) :=
l∑

j=1

bij(X(t))[hj(a(X))](t) ◦ µj (4.4)

for i = 1, · · · , q.

In the following discussion, let κ be a generic representation of any of the kernels κi for

i = 1, . . . , `. We choose a typical kernel κ(s, t, f) to be a special case of a generalized

play operator [81]. We suppose that f is a piecewise linear function on [0, t] with N + 1

breakpoints numbered 0 = t0 < t1 < · · · < tN = t. The output function t 7→ κ(s, t, f), for a

fixed s = (s1, s2) ∈ ∆ ⊂ R2 and piecewise linear f : [0, t] → R, is defined by the recursion

where κn−1 := κ(s, tn−1, f) and for t ∈ [tn−1, tn] we have

κ(s, t, f) :=


max {κn−1, γs2(f(t))} f increasing on [tn−1, tn],

min {κn−1, γs1(f(t))} f decreasing on [tn−1, tn].

The recursion above depends on the choice of the left and right bounding functions γs1 , γs2

that are depicted in Figure 4.1. These are given in terms of a single ridge function γ : R→ R

with

γs2(·) := γ(· − s2),

γs1(·) := γ(· − s1). (4.5)

As noted in [81], the definition of κ is extended for any f ∈ C[0, T ) by a continuity and

density argument.
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Figure 4.1: Elementary hysteresis kernel t → κ(s, t, f) for fixed s = (s1, s2) ∈ R2 and

piecewise continuous f : [0, t)→ R.

4.1.1 Approximation of History Dependent Operators

The integral operator introduced in Equation 4.2 allows for the representation of complex

hysteretic response via the superposition or weighting of fundamental kernels κi. These

fundamental kernels, each of which has simple input-output relationships, play the role

of building blocks for modeling much more complex response characteristics. See [51] for

studies of history dependent active materials, [15] for applications that represent nonlinear

aerodynamic loading, or Section 4.5 to see an example of richness of this class of models.

In this section we emphasize another important feature of this particular class of history

dependent operators. We show that relatively simple approximation methods yields bounds

on the error in approximation of the history dependent operator that are uniform in time
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and over the class of functions µ ∈ P . We now can state our principle approximation result

for the class of history dependent operators.

Theorem 5. Suppose that the function γ that defines the history dependent kernel in Equation

4.5 is a bounded function in Cα(R), and define the approximation hj associated with the grid

level j of the history dependent operator h to be

(hjf)(t) ◦ µ :=

∫∫
∆

∑
`∈Γj

1∆j,`
(s)κ(ξj,`, t, f)

µ(s)ds.

Then there is a constant C > 0 such that

|(hjf)(t) ◦ µ− (hf)(t) ◦ µ| ≤ C2−(α+1)j (4.6)

for all f ∈ C[0, T ], t ∈ [0, T ], and µ ∈ P . If in addition µ ∈ Aα+1
2 , there is a constant C̃ > 0

such that

|(hjf)(t) ◦ Πjµ− (hf)(t) ◦ µ| ≤ C̃2−(α+1)j (4.7)

for all f ∈ C[0, T ] and t ∈ [0, T ].

Proof. We first prove the inequality in Equation 4.6. By definition of the operator h, we can

write

|(hjf)(t) ◦ µ− (hf)(t) ◦ µ| ≤
∫∫

∆

∣∣∣∣∣∣
∑
k∈Λj

1∆j,k
(s)κ(ξj,k, t, f)− κ(s, t, f)

µ(s)

∣∣∣∣∣∣ ds
≤
∫∫

∆

∣∣∣∣∣∣
∑
k∈Λj

1∆j,k
(s) (κ(ξj,k, t, f)− κ(s, t, f))

∣∣∣∣∣∣ |µ(s)| ds

Since the ridge function γ is a bounded function in Cα(R), the output mapping s 7→ κ(s, t, f)

is also a bounded function in Cα(∆) where the Lipschitz constant is independent of t ∈ [0, T ]
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and f ∈ C[0, T ]. Using Proposition 2.5 of [81], we have

|(hjf)(t) ◦ µ− (hf)(t) ◦ µ|

≤
∫∫

∆

∣∣∣∣∣∣
∑
k∈Λj

1∆j,k
(s)L‖ξj,k − s‖α

∣∣∣∣∣∣ |µ(s)| ds

≤ L
∑
k∈Λj

(
m(∆j,k)

(√
2(s− s)

2j

)α)∫∫
∆j,k

|µ(s)|ds

≤ L
∑
k∈Λj

(
m(∆j,k)

(√
2(s− s)

2j

)α)
m1/2(∆j,k)‖µ‖P

≤ L22j

(
1

2

(s− s)2

22j

(√
2(s− s)

2j

)α)(
1

2

(s− s)2

22j

)1/2

‖µ‖P

= C2−(α+1)j‖µ‖P

Since we have

|(hjf)(t) ◦ Πjµ− (hf)(t) ◦ µ| ≤ |(hjf)(t) ◦ Πjµ− (hjf)(t) ◦ µ|+ |(hjf)(t) ◦ µ− (hf)(t) ◦ µ| ,

the second inequality in Equation 4.7 follows from the first Equation 4.6 provided we can

show that

|(hjf)(t) ◦ (µ− Πjµ)| ≤ C2−(α+1)j

for some constant C. But it is a standard feature of the approximation spaces that if

µ ∈ Aα+1
2 , then ‖µ−Πjµ‖P ≤ 2−(α+1)j‖µ‖Aα+1

2
. To see why this is so, suppose that µ ∈ Aα+1

2 .
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We have

‖µ− Πjµ‖2
P =

∞∑
k=j+1

‖(Πk − Πk−1)µ‖2
P

≤
∞∑

k=j+1

2−2(α+1)k22(α+1)k‖(Πk − Πk−1)µ‖2
P

≤ 2−2(α+1)j

∞∑
k=j+1

22(α+1)k‖(Πk − Πk−1)µ‖2
P ≤ 2−2(α+1)j‖µ‖2

Aα+1
2
.

When we apply this to our problem, the upper bound follows immediately

|(hjf)(t) ◦ (µ− Πjµ)| ≤ sup
t∈[0,T ]

‖(hjf)(t)‖P ∗ ‖µ− Πjµ‖P

≤ C2−(α+1)j,

since the boundedness of the ridge function γ implies the uniform boundedness of the history

dependent operators (hjf)(t) over [0, T ].

Theorem 1 can now be used to establish error bounds for input-output maps that have the

form in Equation 4.4.

Theorem 6. Suppose that the hypotheses of Theorem 1 hold. Then we have

‖(HX)(t)− (HjX)(t)Πj‖ . 2−(α+1)j.

Where H is defined in Equations 4.1,4.4, and Hj is defined in Equations 4.8, 4.9 and 4.10

below.

Proof. Recall that for i = 1 . . . q we had

yi(t) =
∑
`=1...l

bi`(X(t))(h`(a(X))(t) ◦ µ`.
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In matrix form this equation can be expressed as
y1(t)

...

yq(t)

 =


b11(X(t)) . . . b1`(X(t))

...
. . .

...

bq1(X(t)) . . . bq`(X(t))


︸ ︷︷ ︸

Rq×l


h1(a(X))(t) ◦ µ1

...

h`(a(X))(t) ◦ µ`


︸ ︷︷ ︸

(HX)(t) ◦ µ

.

It follows that,

y(t) = (HX)(t) ◦ µ︸ ︷︷ ︸
∈ Rq

= b(X(t))︸ ︷︷ ︸
∈Rq×`

(HX)(t) ◦ µ︸ ︷︷ ︸
R`

.

By assumption X ∈ C([0, T ],Rm). The construction of H and H guarantees that (HX)(t) ∈

L(P,Rl),

H : C ([0, T ],Rm) → C
(
[0, T ],L(P,Rl)

)
, and H : C([0, T ],Rm) → C([0, T ],Rq). In this

proof we denote by (Rl, ‖.‖u) the norm vector space that endows Rl with the lm norm

‖v‖u :=
(∑l

i=1 |vi|u
) 1
u

for 1 ≤ u ≤ ∞. The normed vector space (Rq×l, ‖.‖s,u) denotes the

induced operator norm on matrices that map (Rl, ‖.‖u) into (Rq, ‖.‖s). Now we define an

approximation on the mesh level j of H to be

(HjX)(t) = b(X(t)((HjX)(t)Πj, (4.8)

(HjX)(t) =



h1,j(a(X))(t) 0 · · · 0

0 h2,j(a(X))(t) 0
...

... · · · . . . 0

0 · · · 0 hl,j(a(X))(t)


(4.9)

and

hi,j(t) ◦ ν =

∫∫
∆

∑
k∈Λj

1∆k,j
(s)κ(ξj,k, t, f)ν(s)ds (4.10)
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for i = 1 . . . ` and νi ∈ Pi. To simplify the derivation or an error bound for approximation

of HX(t) ◦ µ, let (HX)(t) ◦ µ be denoted by g(t). We have assumed that X → b(X) and

t→ X(t) are continuous mappings. Therefore t 7→ b(X(t)) is continuous and on a compact

set [0, T ], and b(X(·)) ∈ C([0, T ],Rq×l). We therefore by definition have

‖b(X(t))‖(Rq×l,‖·‖s,u) ≤ sup
τ∈[0,T ]

‖b(X(τ))‖(Rq×l,‖·‖s,u),

= ‖b(X(·))‖C([0,T ],(Rq×l,‖·‖s,u)),

‖b(X(t))g(t)‖(Rq ,‖·‖q) ≤ ‖b(X(·))‖C([0,T ],(Rq×l,‖·‖s,u))‖g(t)‖(Rl,‖·‖u).

with the norms explicitly denoted in the subscript. For t ∈ [0, T ], and applying these

definitions,

‖b(X(t)) ((HX)(t)− (HjX)(t)Πj)µ‖(Rq ,‖·‖s)

≤ ‖b(X(t))‖(Rq×l,‖·‖s,u)‖((HX)(t)− (HjX)(t)Πj) ◦ µ‖(Rl,‖·‖u)

≤ ‖b(X(·))‖(C([0,T ],(Rq×l,‖·‖s,u))‖((HX)(t)− (HjX)(t)Πj) ◦ µ‖(Rl,‖·‖u)

with

‖((HX)(t)− (HjX)(t)Πj) ◦ µ‖(Rl,‖·‖u) =∥∥∥∥∥∥
 h1,j(a(X))(t)−h1,j(a(X))(t)Πj 0

h2,j(a(X))(t)−h2,j(a(X))(t)Πj

...
0 hl,j(a(X))(t)−hl,j(a(X))(t)Πj

[ µ1µ2...
µl

]∥∥∥∥∥∥
(Rl,‖·‖u)

.

Therefore we can now write

‖((HX)(t)− (HjX)(t)Πj) ◦ µ‖(Rl,‖·‖u) ≤ ‖((HX)(t)− (HjX)(t)Πj)‖(L(P,(Rl,‖·‖u)))‖µ‖P .
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Hence, recalling Theorem 1 we can now derive the convergence rate

‖((HX)(t)− (HjX)(t)Πj)‖(L(P,(Rl,‖·‖u))) = sup
‖µ‖<1

‖ ((HX) (t)− (HjX) (t)Πj) ◦ µ‖(Rl,‖·‖u)

≤ sup
‖µ‖<1

|((hi,j(a(X)))(t)− (hi,j(a(X)))(t)Πj) ◦ µ|

≤ Ĉ2−(α+1)j.

Therefore we obtain the final bound

‖(HX)(t)− (HjX)(t)Πj)‖(Rl,‖·‖u) . 2−(α+1)j (4.11)

for all t ∈ [0, T ].

4.2 Well-Posedness: Existence and Uniqueness

The history dependent governing equations studied here are a special case of the more general

class of abstract Volterra equations or functional differential equations. A general treatise on

abstract Volterra equations can be found in [12], while various generalizations of the theory

for the existence and uniqueness of functional differential equations have been given in [28],

[69], [39]. The general form of the governing equations we consider have the form

Ẋ(t) = AX(t) +B((HX)(t) ◦ µ+ u(t)) (4.12)

where the state vector X(t) ∈ Rm, the control inputs u(t) ∈ Rq, A ∈ Rm×m = R2n×2n

is a Hurwitz matrix, and B ∈ Rm×q is the control input matrix. We make the following

assumptions about the history dependent operators H:
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H1) H : C([0,∞),Rm) 7→ C([0,∞), P ∗)

H2) H is causal in the sense that for all x, y ∈ C([0,∞);Rm),

x(·) ≡ y(·) on [0, τ ] =⇒ (Hx)(t) = (Hy)(t) ∀ t ∈ [0, τ ].

H3) Define the closed set consisting of all continuous functions f that remain within radius

r of the initial condition X0 over the closed interval [t, t+ h],

B[t,t+h],r(X0) :

{
f ∈ C([0, h),Rm)

∣∣∣∣f(0) = X0 and ‖f(s)−X0‖Rm ≤ r for s ∈ [t, t+ h]

}
for a fixed X0 ∈ Rm. For each t ≥ 0, we assume that there exist h, r, L > 0 such that

‖(HX)(s)− (HY )(s)‖P ∗ ≤ L‖X − Y ‖[t,t+h] s ∈ [t, t+ h] (4.13)

for all X, Y ∈ B[t,t+h],r(X0).

Our first result guarantees the existence and uniqueness of a local solution to Equation

1.8, and also describes an important case when such local solutions can be extended to

[0,∞). This theorem can be proven via the existence and uniqueness Theorem 2.3 in [39]

for functional delay-differential equations. However, since we are not interested in delay

differential equations in this paper, but rather on a highly structured class of integral

hysteresis operators, the proof can be much simplified.

Theorem 7. Suppose that the history dependent operator H satisfies the hypotheses (H1),

(H2), and (H3). Then there is a δ > 0 such that Equation 4.12 has a solution X ∈

C([0, δ),Rm). Suppose the interval [0, δ) is extended to the maximal interval [0, ω) ⊂ [0, δ)

over which such a solution exists. If the solution is bounded, then [0, ω) = [0,∞).
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Corollary 1. Suppose that the history dependent operator H in Equation 4.12 is defined as

in Equation 4.3 and 4.4 in terms of a globally Lipschitz, bounded continuous ridge function

γ : R → R in Equation 4.5. Then Equation 4.12 has a unique solution X ∈ C([0,∞),Rm)

for each µ ∈ P .

Proof. For completeness, we outline a simplified version the proof of Theorem 7 for our

class of history and parameter dependent equations. As a point of comparison, the reader is

urged to compare the proof below to the conventional proof for systems of nonlinear ordinary

differential equations, such as in [45]. If we integrate the equations of motion in time, we

can define an operator T : C([0, h),Rm)→ C([0, h),Rm) from

X(t) = X0 +

∫ t

0

AX(τ) +B((HX)(τ) ◦ µ+ u(τ))dτ,

X(t) = (TX)(t),

for all t ∈ [0, h]. As introduced in hypothesis (H3), we select h, r > 0 and define

B[0,h],r(X0) :=
{
X ∈ C([0, h),Rm)

∣∣∣∣X(0) = X0, ‖X0 −X‖[0,δ] ≤ r
}
.

such that the local Lipschitz condition in Equation 4.13 holds. Now we consider restricting

the equation to a subinterval [0, δ] ⊆ [0, h], and investigate conditions on T that enable the

application of the contraction mapping theorem. We first study what conditions on δ > 0
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are sufficient to guarantee that T : B[0,δ],r(X0)→ B[0,δ],r(X0). We have

‖TX(t)−X0‖Rm ≤
∫ t

0
‖AX(s) +B((HX(s) ◦ µ+ u(s))‖Rmds

≤
∫ t

0

(
‖A‖‖X(s)−X0‖Rm + ‖AX0‖Rm︸ ︷︷ ︸

≤‖A‖‖X0‖=MA

+‖B‖ (‖(HX)(s)− (HX0)(s)‖P ∗︸ ︷︷ ︸
≤ L‖X −X0‖[0,δ]

‖µ‖P︸ ︷︷ ︸
Mµ

+ ‖(HX0)(s)‖P ∗︸ ︷︷ ︸
≤MH = ‖HX0‖C([0,δ],P∗)

+ ‖u‖C([0,h),Rp)︸ ︷︷ ︸
≤Mu = ‖u‖C([0,δ],Rq)

)

)
ds

≤ ((‖A‖+ ‖B‖MµL)r +MA + ‖B‖MT )t

≤ ((‖A‖+ ‖B‖MµL)r +MA + ‖B‖MT )δ

where MT = MH +Mu. Now we restrict δ so that

(
(‖A‖+ ‖B‖MµL)r +MA + ‖B‖MT

)
δ ≤ r,

which implies

δ <
r

(‖A‖+ ‖B‖MµL)r +MA + ‖B‖MT )
.

We thereby conclude that

‖TX(t)−X0‖C([0,h),Rp) ≤ r for t ∈ [0, δ],

and it follows that T : B[0,δ],r → B[0,δ],r. Next we study conditions on δ that guarantee that

T : B[0,δ],r → B[0,δ],r is a contraction. We compute directly a bound on the difference of the

output as

‖(TX)(t)− (TY )(t)‖Rm ≤
∫ t

0

‖AX(s)− AY (s) +B((HX)(s)− (HY (s)) ◦ µ)‖Rmds

≤ (‖A‖+ ‖B‖MµLµ)‖X − Y ‖Rmδ.



Parag S. Bobade Chapter 4. History Dependent Systems: Estimation & Control 77

If we choose

δ < min

{
h,

r

(‖A‖+ ‖B‖MµL)r +MA + ‖B‖MT )
,

1

‖A‖+ ‖B‖MµL

}
,

it is apparent that T is a contraction that maps the closed set B[0,δ],r into itself. There is a

unique solution in B[0,δ],r on [0, δ].

4.2.1 Numerical Integration

When we seek to control the error in the approximation of our history dependent equation of

motion, two distinct types of errors can arise. First, since the history dependent contribution

to the equations of motion often cannot be calculated in closed form, some approximation of

the history dependent operators must be used. We refer to this as operator approximation

error. Even if the history dependent terms are expressed exactly and without error, the

resulting equations are a collection of functional differential equations. The usual collection of

time stepping integration rules for ordinary differential equations are not directly applicable

to such functional differential equations. We employ the strategy first proposed in [53] for

numerical time integration of functional differential equations. These techniques assume that

the functional differential equations have the form

η′(t) = F (η, t), t ∈ [tb, tc]

η(t) = ηa(t), t ∈ [ta, tb]

where ηa ∈ C[ta, tb] is the initial condition and the functional F : [a, c] × [a, c] → Rn. A

linear multistep method for functional differential equations constructs the recursion for the
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solution ηh on a grid having time step h via the formula

akηh(ti+k−1 + rh) + ak−1(r)yk(ti+k−1) + · · ·

+ a0(r)ηh(ti)− h[bk(r)Fh(yh, ti+k) + · · ·

+ b0(r)Fh(yh, ti)] = 0

(4.14)

where r ∈ [0, 1], i = 0, 1, · · · , N −k,and h = (b−a)/N0. Three observations should be noted

about these approximation scheme:

• solution of this equation yields an extrapolation of the solution ηh on [ti+k−1, ti+k−1 +

rh] = [ti+k−1, ti+k] since r ∈ [0, 1].

• The discrete equation depends on the history of the discrete approximation through

the history dependent functionals Fh(yh, ti+k) and Fh(yh, ti).

• The term Fh(yh, ti+k) gives rise to implicit methods in that yh must be defined on

[ti+k−1, ti+k] which is not known at time ti.

The last observation, in particular, means that the solution of Equation 4.14 involves in

general an implicit nonlinear solver over the future history of the solution during the next

time step. We generalize the strategy in [53] to employ a predictor-corrector structure.

In the predictor phase, we choose the constant ak and bk so that bk(r) ≡ 0. Hence the

nonlinear dependence on the future solution does not appear. Subsequently, we choose a

corresponding corrector in which bk(r) 6= 0. In the correction step we calculate Fh(y
p
h, ti+k)

in terms of the predictor solution yph. It is defined on the entire future interval. Numerical
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examples demonstrate that this approach is computationally efficient and accurate. The

constants ak and bk are selected as described in section 4 of [53] based on conventional linear

multistep predictor-corrector integrator schemes.

Integration Error

As discussed in the previous section we use specialized integration schemes to approximate

discrete solutions to Volterra Functional Differential Equations [53]. The Adam Bashforth

(explicit) Predictor and Adam Moulton (implicit) Corrector is used to numerically solve the

functional differential equation. The predictor step computes the approximate value and

the corrector step refines the approximation to improve accuracy. The order of accuracy

quantifies the rate of convergence for the approximation, The numerical solution is said to

be pth order accurate if the error E is proportional to pth power of step size h, i.e E = Chp.

The local truncation error given by τn = yn − yn−1 is of the order O(h)p+1. The rate of

convergence for the numerical solutions for two examples are presented below. Example 1

involves history dependent nonlinearity, while Example 2 is a standard integro-differential

equation from used to benchmark to validate the numerical solution against the analytical

solution.
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Example 1 As a first example, we choose to modify the usual harmonic oscillator equation

with an additional history dependent term,ẏ1(t)

ẏ2(t)

 =

 0 1

−1 +H 0


y1(t)

y2(t)

 , (4.15)

where H is the history dependent term and its numerical value depends on the entire history

of y1. For simplicity we choose H = κ(s, t, f) in this example. The kernel constructed using

methods described in previous section, takes the history of y1 until current time step as

input and gives the value of H as output. We numerically integrate the above equation using

predictor-corrector methods. Since we do not have means to derive a closed form solution,

we usually rely on the smallest step size numerical solution as a best approximation of the

true value. We compare this with solutions having larger step size. In practice h is atleast an

order of magnitude greater than the finest step size. The order of accuracy of the numerical

solution depends on the smoothness of H and hence the kernel that outputs H. The single

step error τ shown in Figure 4.2 is plotted against the step size h on a log-log scale. The

slope in the figure corresponds to the order of accuracy and is approximately equal to p+ 1

where p is the order of the integrator. The rate of convergence for the second order predictor

corrector from plot is seen to be 2.974 and for the fourth order predictor corrector the rate

is 4.9. We compare these results with the rate of convergence in Example 2.
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Example 2 To illustrate the utility of predictor corrector algorithm, the following integro-differential

equation was numerically solved and compared to its analytical solution.

u′(x) + 2u(x) + 5

∫ x

0

u(t)dt =


1 x ≥ 0

0 x < 0

where u(0) = 0. It can be verified that the closed form solution for the above problem is

u(x) =
1

2
e−x sin 2x.

The rate of convergence for the second order predictor-corrector is 3.045 and for the fourth

order predictor-corrector is 5.119, which validates the expected rate of convergence p+ 1 for

a given pth order numerical integrator.

step-size
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Figure 4.2: Single Step Error vs Step Size for Example 1

4.3 Online Identification

A substantial literature has emerged that treats online estimation problems for linear or

nonlinear plants governed by systems of ordinary differential equations. Approaches for
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Figure 4.3: Single Step Error vs Step Size for Example 2

these finite dimensional systems that are based on variants of Lyapunov’s direct method can

be found in any of a number of good texts including, for instance, [58], [71], or [40]. The

general strategies that have proven fruitful for such finite dimensional systems have often

been extended to classes of systems whose dynamics evolve in an infinite dimensional space:

distributed parameter systems. A discussion of the general considerations for identification

of distributed parameter systems can be found in [5], for example, while studies that are

specifically relevant include [18], [19], [20], and [6].

In this section we adapt the framework introduced in [6] to our class of history dependent,

functional differential equations. The approach in [6] assumes that the state equations for

the distributed parameter system have first order form, and they are cast in terms of a

nonlinear, parametrically dependent bilinear form that is coercive. The resulting equations

that govern the error in state and in distributed parameter estimates is a nonlinear function

of the state trajectory of the plant. In contrast, a similar strategy yields error equations that

depend nonlinearly on the history of the state trajectory.
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The general online estimation problem discussed in this section assumes that we observe the

value of the state X(t) ∈ Rm at each time t ≥ 0 that depends on some unknown distributed

parameter µ ∈ P , and subsequently use the observed state to construct estimates X̂ of the

states and µ̂ of the distributed parameters. We construct online estimates that evolve on the

state space Rm × P according to the time-varying, distributed parameter system equations

˙̂
X(t) = AX̂(t) +B ((HX) (t) ◦ µ̂(t) + u(t)) ,

˙̂µ(t) = − (B(HX)(t))∗ X̂(t), (4.16)

for t ≥ 0 where the initial conditions are X̂0 := X0, µ̂(0) := µ0. In these equations, we

denote the adjoint operator L∗ for any bounded linear operator L. These equations can be

understood as incorporating a natural choice of a parameter update law. The learning

law above can be interpreted as generalization of the conventional gradient update law

that features prominently in approaches for finite dimensional systems [40] and that has

been extended to distributed parameter systems in [6]. It is immediate that the error in

estimation of the states X̃ := X − X̂ and in the distributed parameters µ̃ := µ − µ̂ satisfy

the homogeneous system of equations
˙̃X(t)

˙̃µ(t)

 =

 A B(HX)(t)

− (B(HX)(t))∗ 0



X̃(t)

µ̃(t)

 .

4.3.1 Approximation of the Estimation Equations

The governing system in Equations 4.16 constitute a distributed parameter system since the

functions µ̂(t) evolve in the infinite dimensional space P . In practice these equations must be
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approximated by some finite dimensional system. We define X̃j = X̂ − X̂j and µ̃j = µ̂− µ̂j

where X̃j and µ̃j express approximation errors due to projection of solutions in Rm × P to

a finite dimensional approximation space. We construct a finite dimensional approximation

of the the online estimation equations using the results of Section 4.1.1 and obtain

˙̂
Xj(t) = AX̂j(t) +B ((HjX)(t)Πj ◦ µ̂j(t) + u(t)) , (4.17)

˙̂µj(t) = − (B(HjX)(t)Πj)
∗X(t). (4.18)

Theorem 8. Suppose that the history dependent operator H in Equation 4.12 is defined as

in Equations 4.3 and 4.4 in terms of a globally Lipschitz, bounded continuous ridge function

γ : R→ R in Equation 4.5. Then for any T > 0, we have

‖X̂ − X̂j‖C([0,T ],Rm) → 0,

‖µ̂− µ̂j‖C([0,T ],P ) → 0,

as j →∞.

Proof. Define the operators G(t) : P → Rm and Gj(t) : P → Rm for each t ≥ 0 as

G(t) := B(HX)(t),

Gj(t) := B(HjX)(t)Πj.
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The time derivative of the error in approximation can be expanded as follows:

1

2

d

dt

(
(X̃j, X̃j)Rm + (µ̃j, µ̃j)P

)
= ( ˙̃Xj, X̃j)Rm + ( ˙̃µj, µ̃j)P

= (AX̃j +Gµ̂−Gjµ̂j, X̃j)Rm + (−(G−Gj)
∗X, µ̃j)P

= (AX̃j, X̃j)Rm +
(

(G−Gj)µ̂, X̃j

)
Rm

+
(
Gj(µ̂− µ̂j), X̃j

)
Rm

− ((G−Gj)µ̃j, X)Rm

≤ c(X̃j, X̃j)Rm + ‖(G−Gj)µ̂‖Rm‖X̃j‖Rm

+ ‖Gj‖L(P,Rm)‖µ̃j‖P‖X̃j‖Rm + ‖G−Gj‖L(P,Rm)‖µ̃j‖P‖X‖Rm .

We will next use a common inequality that can be derived from two applications of the

triangle inequality. We have

(a+ b, a+ b) = (a, a) + 2(a, b) + (b, b) ≥ 0,

(a− b, a− b) = (a, a)− 2(a, b) + (b, b) ≥ 0.

We conclude from this pair of inequalities that

|(a, b)| ≤ 1

2

(
‖a‖2 + ‖b‖2

)
.

The specific form that we apply this theorem is written as

|(a, b)| = |(
√
εa,

1√
ε
b)| ≤ ε

‖a‖2

2
+

1

ε

‖b‖2

2
. (4.19)

We apply the inequality in Equation 4.19 to each term in which µ̃j and X̃j appear in a
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product.

1

2

d

dt

(
‖X̃j‖2

Rm + ‖µ̃j‖2
P )

)
≤ c‖X̃j‖2

Rm +
1

2a
‖(G−Gj)µ̂‖2

Rm +
a

2
‖X̃j‖2

Rm

+
1

2b
‖Gjµ̃j‖2

Rm +
b

2
‖X̃j‖2

Rm +
1

2c
‖µ̃j‖2

P

+
c

2
‖G−Gj‖2

L(P,Rm)‖X‖2
Rm .

We will employ the integral form of Gronwall’s Inequality to obtain our final convergence

result. Many forms of Gronwall’s Inequality exist, and we will use a particularly simple

version. See Section 3.3.4 in [40]. If the piecewise continuous function f satisfies the

inequality

f(t) ≤ α(t) +

∫ t

0

β(s)f(s)ds

with some piecewise continuous functions α, β where α is nondecreasing, then

f(t) ≤ α(t)e
∫ t
0 β(s)ds.

Then

d

dt

(
‖X̃j‖2

Rm + ‖µ̃j‖2
P

)
≤ c‖G−Gj‖2

L(P,Rm)‖X‖2
Rm + (2c+ a+ b)‖X̃j‖2

Rm

+

(
1

c
+

1

b
‖G∗jGj‖

)
‖µ̃j‖2

P +
1

a
‖G−Gj‖2

L(P,Rm)‖µ̂‖2
P .

We integrate this inequality in time from 0 to t to obtain

‖X̃j(t)‖2Rm + ‖µ̃j(t)‖2P ≤ ‖X̃j(0)‖2Rm + ‖µ̃j(0)‖2P

+

∫ t

0
c‖G(s)−Gj(s)‖2L(P,Rm)‖X(s)‖2Rmds

+

∫ t

0

{
(2c+ a+ b)‖X̃(s)‖2Rm +

(
1

c
+

1

b
‖G∗j (s)Gj(s)‖

)
‖µ̃j‖2P

}
ds

+

∫ t

0

1

a
‖G(s)−Gj(s)‖2L(P,Rm)‖µ̂‖

2
Pds.
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Choose a, b > 0 large enough so that (2c+ a+ b) > 0 and set γ > 1. If we define

γ := max

(
2c+ a+ b,

1

c
+
η

b
sup
s∈[0,T ]

‖G∗(s)G(s)‖, 1

)
,

λj(t) := ‖(I − Πj)µ̂(0)‖P +

∫ t

0

‖G(s)−Gj(s)‖2
L(P,Rm)

(
c‖X‖2

Rm +
1

a
‖µ̂‖2

P

)
ds,

then the inequality can be written as

‖X̃j(t)‖2
Rm + ‖µ̃j(t)‖2

P ≤ λj(t) + γ

∫ t

0

(
‖X̃j(s)‖2

Rm + ‖µ̃j(s)‖2
P

)
ds.

Gronwall’s Inequality now completes the proof of the theorem.

we further investigate λj(t) to derive the convergence rate for the approximate states and

parameters evolving associated with level j resolution. According to the convergence results

obtained in Theorem 1 we have ‖G(s) − Gj(s)‖L(P,Rm) = ‖B(HX)(t) − B(HjX)(t)Πj‖ ≤

C22−(α+1)j. Therefore, ‖G(s)−Gj(s)‖2 ≤ C2
22−(α+1)2j. It then follows that

λj(t) = ‖(I − Πj)µ̂(0)‖P +

∫ t

0

2−(α+1)2j

(
c‖X‖2

Rm +
1

a
‖µ̂‖2

P

)
ds

≤ ‖(I − Πj)‖‖µ̂(0)‖P + 2−(α+1)2j

(
c‖X‖2

Rm +
1

a
‖µ̂‖2

P

)
t.

then we can conclude that λj(t) < O(2−(α+1)j) for t ∈ [0, C32(α+1)j].

4.4 Adaptive Control Synthesis

In order to estimate the function µ that weighs the contribution of history dependent kernels

to the equations of motion, we first map it to an n-dimensional subspace of square integrable
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functions using a projection operator Πn : P 7→ P n. Let

Ẋ = AX +B((HX) ◦ (µ− µ̂) + v) (4.20)

be the governing equation of a robotic system after applying a feedback linearization control

signal as mentioned in Equation 1.7 with u = v−(HX)◦µ̂. We substitute µ = Πnµ+(I−Πn)µ

and write

Ẋ = AX +B((HX) ◦ (Πnµ− µ̂) + v) +B((HX) ◦ (I − Πn)µ). (4.21)

Finally, by replacing d = {(HX)(I − Πn) ◦ µ} we obtain

Ẋ = AX +B((HX) ◦ (Πnµ̃) + v + d(t)), (4.22)

where

˙̃µ = −((HX)Πn)∗BTPX. (4.23)

Theorem 9. Suppose the state equations have the form of Equation 1.7 and the matrix P

is a symmetric positive definite solution of the Lyapunov equation ATP + PA = −Q where

Q > 0. Then by employing the update law ˙̃µ = −((HX)Πn)∗BTPX, the control signal

v(t) =


−k BTPX

‖BTPX‖ , if ‖BTPX‖ ≥ ε

−k
ε
BTPX, if ‖BTPX‖ < ε

(4.24)

with k > ‖d‖ drives the tracking error dynamics of the closed loop system so that it is

uniformly ultimately bounded and its norm is eventually O(ε).

Proof. We choose the Lyapunov function

V =
1

2
XTPX +

1

2
(µ̃, µ̃)P (4.25)
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where P is the solution of the Lyapunov equation ATP + PA = −Q. The derivative of the

Lyapunov function V along the closed loop system trajectory is

V̇ =
1

2
(ẊTPX +XTPẊ) +

(
˙̃µ, µ̃
)
p

=
1

2

(
AX +B((HX) ◦ (Πnµ̃) + v + d)

)TPX +XTP(AX +B((HX) ◦ (Πnµ̃) + v + d)
)

+
(

˙̃µ, µ
)
P

=
1

2
XT (ATP + PA)X +XTPB(v + d) +XTPB

(
(HX) ◦ (Πnµ̃)

)
+
(

˙̃µ, µ
)
P

= −1

2
XTQX +XTPB(v + d) +

(
˙̃µ+ ((HX)Πn)∗BTPX, µ̃

)
P

= −1

2
XTQX +XTPB(v + d).

Therefore we have

V̇ ≤ −1

2
XTQX +XTPB(v + d),

≤ −1

2
XTQX +


XTPB

(
−k BTPX

‖BTPX‖ + d
)

if ‖BTPX‖ ≥ ε

XTPB
(
−k

ε
BTPX + d

)
if ‖BTPX‖ ≤ ε

,

≤ −1

2
XTQX +


− (k − ‖d‖) ‖BTPX‖ if ‖BTPX‖ ≥ ε

εk if ‖BTPX‖ ≤ ε

≤ −1

2
XTQX + εk.

By Theorem 4.18 in [45] we conclude that there is a T̄ > 0 and t > 0 such that ‖X(t)‖ ≤ C̄ε

for all t ≥ T̄ .
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4.5 Numerical Simulations

In this section, first the operator approximation error bound presented in Theorem 1 is

validated. Then a single wing section with a leading and trailing edge flaps is modeled and

the proposed sliding mode adaptive controller presented in Theorem 4 is implemented on this

model. The stability of the closed loop system and convergence of the closed-loop system

trajectories to the equilibrium point is illustrated.

4.5.1 Operator Approximation Error

In order to show that Equation 4.7 holds, start by choosing a function µ(s) over ∆ and then

calculate (hjf)(t) ◦µj for different levels of refinement. Since the computation of (hf)(t) ◦µ

exactly is numerically infeasible, J � j is chosen as the finest level of refinement in our

simulation. According to Theorem 1,

|(hJf)(t) ◦ µJ − (hf)(t) ◦ µ| ≤ CJ2−(α+1)J ,

and for j � J it is seen that

|(hjf)(t) ◦ µj − (hf)(t) ◦ µ| ≤ Cj2
−(α+1)j.

Assuming C = max{Cj, CJ} and using the triangle inequality,

|(hJf)(t) ◦ µJ − (hjf)(t) ◦ µj|

≤ C(2−(α+1)J + 2−(α+1)j)

(4.26)



Parag S. Bobade Chapter 4. History Dependent Systems: Estimation & Control 91

Therefore, given the weights µJ for the finest level of refinement J , we can evaluate µj = ΠjµJ

and numerically verify Equation 4.26. Figure 4.4 shows the simulation results for J = 7 and
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Figure 4.4: Error for different resolution simulations, J = 7

j = 2, 3, 4, 5. The error term attenuates with increasing j. In order to investigate the rate of

attenuation, we evaluate constant C for different levels of refinements. As shown in figure 4.5,

C is approximately constant with respect to j which agrees with the result from Equation

4.26.
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4.5.2 Online Identification for a Wing Model

The reformatted governing equations of the system take the form of Equation 1.6 where

Qa(t, µ) is the vector of generalized history dependent aerodynamic loads. The dynamic

equation of the system can be written in the form of Equation 1.8, where the history

dependent termM−1(q)Qa(t, µ) is rewritten in terms of a history dependent operator (HX)(t)

acting on the distributed parameter function µ. The history dependent operator includes

a family of fixed history dependent kernels and the distributed parameters µ act as a

weighting vector that determines the contribution of a specific history dependent kernel

to the overall history dependent operator. We perform an offline identification based on
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Figure 4.6: Prototypical model for a wing section

a set of experimental data collected from a wind tunnel experiments or CFD simulations.

These define a nominal model for the history dependent aerodynamic loads that appear in the

governing equations of the system. We can exploit the model in the numerical simulations to
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perform an online estimation for the history dependent aerodynamics and adaptive control of

a simple wing model. The details of offline identification of history dependent aerodynamics

follow the steps explained in [15].

The model developed in Figure 4.6 is chosen to validate our proposed adaptive sliding

mode controller where w is the velocity of wind, kh is spring constant in plunge, kθ is a

spring constant in pitch, θ is the pitch angle, h is the plunge displacement, cθ and ch are

viscous damping coefficients, m and Iθ are the mass and moment of inertia and, xθ is the

non-dimensionalized distance between center of mass and the elastic axis. Finally, L and

M are lift and moment generated by the leading and trailing edge flaps. The angles β1 and

β2 define the rotation of the trailing edge and leading edge flaps respectively. The dynamic

equations of the wing model is derived in the Appendix C as m mxθ

mxθ mx2
θ + Iθ



ḧ

θ̈

+

ch 0

0 cθ



ḣ

θ̇

+

kh 0

0 kθ



h

θ

 =


L

0

+


f1(β1, β2)

f2(β1, β2)

 . (4.27)

It is assumed the aerodynamic moment M to be zero and the distance xa between the

aerodynamic center A and support hinge point to be negligible to simplify the simulation.

The unsteady aerodynamic lift is L = Qa(t, µ) where Qa(t, µ) = (HX)◦µ reflects the history

dependent nature of aerodynamic loads. We rewrite Equation 4.27 to achieve the standard

form presented in Equation 1.6.

The adaptive controller presented in Theorem 4 is composed of two parts. The first part

compensates for the flutter generated by the history dependent aerodynamic forces through

online identification of the aerodynamics. The second part employs an sliding mode controller
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to compensate for modeling errors. It is important to note that numerical time integration

of the evolution equations must accommodate history dependent terms. Since the dynamics

of such systems are given via functional differential equations, the ordinary integration rules

are not directly applicable. Figure 4.7 shows the simulation results for the case where

ε = 0.01 and th = 0.001. The system response eventually enters in a ε neighborhood of

the sliding manifold. However, as depicted in the figure, a chattering behavior occurs in

the control signal and system trajectories. We trace this behavior back to the integration

error induced by the size of time step. When we increase ε or reduce the integration time

step, the control signal and system trajectories become smooth. The simulation results for

ε = 0.01 and th = 0.0005 are depicted in Figure 4.8. The system trajectories converge to a

O(ε)neighborhood of zero when the control signals are relatively smooth. Also, Figure 4.9

shows the case when ε = 0.1 and th = 0.001. The convergence rate of the signals to an

O(ε) neighborhood of zero is slower but the results do not show any chattering. Therefore,

the proposed smooth sliding mode adaptive controller proves to be effective to identify and

compensate for the unknown history dependent aerodynamic forces.
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Figure 4.7: Time histories of the states and input signals for ε = 0.01, th = 0.001(sec) and,

k = 20
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Figure 4.8: Time histories of the states and input signals for ε = 0.01, th = 0.0005 (sec) and,

k = 20
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Figure 4.9: Time histories of the states and input signals for ε = 0.1, th = 0.001 (sec) and,

k = 20



Chapter 5

On Persistency of Excitation

A plethora of approaches exist for the construction of adaptive estimation and control

strategies for nonlinear, uncertain systems. See [34, 36, 40, 58, 60, 71] for treatises on

popular techniques for uncertain, nonlinear, ordinary differential equations (ODEs). Also

of particular pertinence to this chapter are [6, 8, 18, 19, 20, 43], that are representative

of methods applicable to classes of uncertain, distributed parameter systems (DPS). The

notion of persistently exciting input signals has been extensively studied for wide variety

of problems in [72, 83, 50, 9] and references therein. Variants of sufficient conditions for

adaptive identification of distributed parameter systems are studied in [6, 8, 19, 20]. The

key intuition behind the conventional PE condition is that the input signal needs to have

sufficient “energy or richness” in each channel of a finite dimensional system to drive the

adaptive estimates of parameters to their true value. A vector u : R+ → Rn is said to

98
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persistently exciting if there exists γ1, γ2, ∆ > 0 such that

γ2‖v‖2
Rn ≥

∫ t+∆

t

vTu(τ)uT (τ)vdτ ≥ γ1‖v‖2
Rn (5.1)

for all v ∈ Rn and for any t sufficiently large. The PE condition requires that the integral

of the matrix u(τ)uT (τ) is uniformly positive definite over the interval t, t + ∆. Various

definitions for PE condition can be found in the texts [40, 71, 58].

5.1 Persistency of excitation in RKHS

Definition 4. In this section we introduce the definition of persistency of excitation in a

RKHS that suffices to prove parameter convergence in this setting. We say that the plant

in the RKHS Equation 3.8 is strongly persistently exciting if there exist constants ∆, γ >

0, and T such that for f ∈ H with ‖f‖H = 1 and t > T sufficiently large,∫ t+∆

t

(
E∗x(τ)Ex(τ)f, f

)
H
dτ & γ.

As in the consideration of ODE systems, persistency of excitation above in a RKHS is the

key ingredient to prove convergence of the function parameter estimates to the true function.

Theorem 10. Suppose that the plant in Equation 3.8 is strongly persistently exciting and

that either (i) the function k(x(.), x(.)) ∈ L1((0,∞);R), or (ii) the matrix −A is coercive in

the sense that (−Av, v) ≥ c‖v‖2 ∀ v ∈ Rd and Γ = P = Id. Then the parameter function

error f̃ converges strongly to zero,

lim
t→∞
‖f − f̂(t)‖H = 0.
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Proof. We begin by assuming (i) holds. In the proof of Theorem 3 it is shown that V is

bounded below and non-increasing, and therefore approaches a limit

lim
t→∞

V (t) = V∞ <∞.

Since x̃(t)→ 0 as t→∞, we can conclude that the limit

lim
t→∞
‖f̃(t)‖H . V∞.

Suppose that V∞ 6= 0. Then there exists a positive, increasing sequence of times {tk}k∈N with

limk→∞ tk =∞ and some constant δ > 0 such that

‖f̃(tk)‖2
H ≥ δ

for all k ∈ N. Since the RKHS is persistently exciting, we can write∫ tk+∆

tk

(
E∗x(τ)Ex(τ)f̃(tk), f̃(tk)

)
H
dτ & γ‖f̃(tk)‖2

H ≥ γδ

for each k ∈ N. By the reproducing property of the RKHS, we can then see that

0 < γδ ≤ γ‖f̃(tk)‖2
H .

∫ tk+∆

tk

(
kx(τ), f̃(tk)

)2

H
dτ

≤ ‖f̃(tk)‖2
H

∫ tk+∆

tk

‖kx(τ)‖2
Hdτ

= ‖f̃(tk)‖2
H

∫ tk+∆

tk

(
kx(τ), κx(τ)

)
H
dτ

= ‖f̃(tk)‖2
H

∫ tk+∆

tk

k(x(τ), x(τ))dτ.

Since k(x(.), x(.)) ∈ L1((0,∞);R) by assumption, when we take the limit as k → ∞, we

obtain the contradiction 0 < γδ ≤ 0. We conclude therefore that V∞ = 0 and limt→∞ ‖f̃(t)‖H =

0.
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We outline the proof when (ii) holds, which is based on slight modifications of arguments

that appear in [18, 6, 19, 20, 8, 43] that treat a different class of infinite dimensional nonlinear

systems whose state space is cast in terms of a Gelfand triple. Perhaps the simplest analysis

follows from [6] for this case. Our hypothesis that Γ = P = Id reduces Equations 3.10 to the

form of Equations 2.20 in [6]. The assumption that −A is coercive in our theorem implies

the coercivity assumption (A4) in [6] holds. If we define X = Y := Rn ×H, then it is clear

that the imbeddings Y → X → Y are continuous and dense, so that they define a Gelfand

triple. Because of the trivial form of the Gelfand triple in this case, it is immediate that the

Garding inequality holds in Equation 2.17 in [6]. We identify BEx(t) as the control influence

operator B∗(u(t)) in [6]. Under these conditions, Theorem 10 follows from Theorem 3.4 in

[6] as a special case.

5.2 PE condition for History dependent operators

We proceed with our analysis in similar style as described in previous section.

Definition 5. The Equation 4.18 is strongly PE if there exists constants ∆, γ > 0 and T

such that for µ ∈ P with ‖µ‖P = 1 and t > T sufficiently large, we have

∫ t+∆

t

(G∗(τ)G(τ)µ, µ)P dτ ≥ γ. (5.2)



Parag S. Bobade Chapter 5. On Persistency of Excitation 102

We recall the infinite dimensional governing equations can be written in the form ˙̃x(t)

˙̃µ(t)

 =

 A G(t)

−G∗(t) 0


x̃(t)

µ̃(t)

 (5.3)

with G(t) = B(HX)(t) and G(t) : P → Rm

Theorem 11. Suppose the Equation 5.3 is strongly persistently exciting and either (i) the

mapping τ 7→ G∗(τ)G(τ) is in L1([0,∞);L(P )) or (ii) matrix −A is coercive in the sense

that (−Av, v) ≥ c‖v‖2 ∀ v ∈ Rd and Γ = P = Id. Then the parameter function error µ̃

converges strongly to zero,

lim
t→∞
‖µ− µ̂(t)‖P = 0.

Proof. We begin by assuming (i) holds, it seen that V is bounded below and non-increasing,

and therefore approaches a limit

lim
t→∞

V (t) = V∞ <∞.

Since x̃(t)→ 0 as t→∞, we can conclude that the limit

lim
t→∞
‖µ̃(t)‖H . V∞.

Suppose that V∞ 6= 0 then there exists a positive, increasing sequence of times {tk}k∈N with

limk→∞ tk =∞ and some constant δ > 0 such that

‖µ̃(tk)‖2
H ≥ δ
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for all k ∈ N.

∫ tk+∆

tk

(G∗(τ)G(τ)µ̃(tk), µ̃(tk))P dτ ≤
∫ tk+∆

tk

‖(G∗(τ)G(τ)‖L(P )‖µ̃(tk)‖2
Pdτ

≤ ‖µ̃(tk)‖2
P

∫ tk+∆

tk

‖(G∗(τ)G(τ)‖L(P )dτ

Since the equations are assumed to be strongly persistently exciting for all k ∈ N,

∫ tk+∆

tk

(G∗(τ)G(τ)µ̃(tk), µ̃(tk))P dτ & γ‖µ̃(tk)‖2
P ≥ γδ

Since we assumed that the map τ 7→ G∗(τ)G(τ) is in L1([0,∞);L(P )) then taking the limit

as k →∞, we have
∫ tk+∆

tk
(G∗(τ)G(τ)µ̃(tk), µ̃(tk))P dτ → 0. This is a contradiction since we

get 0 < γδ ≤ 0. Therefore we can conclude that V∞ = 0 and limt→∞ ‖µ̃(t)‖P = 0.

Recall that already the µ was assumed to be in space of square integrable functions P .

Therefore we can infer that the assumption in Definiton 5 implicitly constrains the the

properties of the history dependent operator H. This difficult problem may be source of

future research.



Chapter 6

Conclusion

In the first part, a novel framework is introduced based on the use of RKHS embedding

to study online adaptive estimation problems. The applicability of this framework to solve

estimation problems that involve high dimensional scattered data approximation provides

much of the motivation for the theory and algorithms is described for online and adaptive

estimation. A quick overview of the background theory on RKHS enables rigorous derivation

of the results in Sections 3.2 and 3.3. We derive (1) sufficient conditions for the existence and

uniqueness of solutions to the RKHS embedding problem, (2) the stability and convergence

of the state estimation error, and (3) the convergence of the finite dimensional approximate

solutions to the solution of the infinite dimensional state space equations. To illustrate the

utility of this approach, a simplified numerical example of adaptive estimation of a road

profile is studied and the results are critically analyzed.
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In the second part, online adaptive estimation and control methods for class of history

dependent differential equation are presented. The class of history dependent operators in

this work are constructed using elementary hysteresis kernels, particularly the generalized

play operator. Further, we derive an explicit bound for the error of multiwavelet approximation

for these operators that are used in construction of FDE’s arising in robotics application.

The corresponding rate of convergence for finite dimensional approximation of the infinite

dimensional solution is determined as a function of resolution level and smoothness parameter

of the ridge functions used to construct the kernels. We then proceed to establish the

well-posedness for this formulation and further develop an adaptive control strategy that

uses sliding mode to identify and compensate the unknown history dependent dynamics.

This approach is simulated numerically for a simple pitch-plunge model of wing in a wind

tunnel.

While the adaptive control and estimation strategies guarantee convergence of state estimates,

an additional condition is needed to guarantee convergence of parameters to the unknown

function. Given the possibility of potential application for the framework, it is important to

have the convergence in parameters as well. Therefore, a persistence of excitation condition

in the RKHS setting is investigated and the understanding of its implications are analyzed.

Similarly, an analogous approach is carried out for the history dependent functional differential

equations in this dissertation. Conditions on the class of history dependent operators to

guarantee persistently exciting input signals is much harder to verify analytically in this

case. The satisfaction of these conditions are coupled to the choice of Volterra kernels
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used to formulate the functional differential equation. Nonetheless, this study stimulates

further investigation in adaptive estimation techniques that are suited to governing equations

modeled using history dependent functional differential equations.

A common theme throughout this dissertation is to be able to leverage ideas from approximation

theory to extend the conventional adaptive estimation and control frameworks. The governing

equations for both areas studied are described by evolution in product of finite dimensional

Euclidean space and an infinite dimensional Hilbert space. The infinite dimensional states

must be approximated. Therefore it has proven to be important to choose approximation

methods that are tailored to the estimation problem. The wisdom here is to meticulously

examine the applications sought for the mathematical model and then wisely choose your

approximation method.

Before we conclude the discussion in this final chapter, we will briefly summarize possible

future directions of research based on methods presented in the dissertation. The last section

discusses scope of the proposed future work with a two pronged approach: 1) we would

like to further probe the theoretical understanding 2) and then identify some challenging

applications.

6.1 Scope for future work

The first part of the dissertation extended the adaptive estimation framework in a RKHS

and was motivated from an important structural assumption. The ansatz assumed that the
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unknown function describing the uncertainty belonged to a compact set of a particular

Hilbert space of functions. The choice of the hypotheses space and the corresponding

priors is ordinarily based on assumptions about the smoothness, compactness, approximation

properties of the function. Naturally the question arises: under the additional assumptions

about the smoothness properties in the hypotheses space, is it possible to extend and establish

the well-posedness of the same framework corresponding to the generated stronger topology?

or, can we guarantee the strong convergence of results in this subspace? Moreover, is possible

to leverage the smoothness of the unknown function to generate faster convergence rates of

the estimates in other spaces? The answers to all the above questions is of interest and has

practical implications. Accordingly, to achieve the desired convergence rates for functions in a

scale of Sobolev spaces, having additional assumptions on continuity and differentiability, we

might need to dive deeper in approximation theory. Of the many generalizations in classical

wavelet theory, the multiwavelets seem to be a likely candidate to explore to attain better

properties in these estimation algorithms. Typically, multiwavelets have short compact

support and arbitrary smoothness order. These features could potentially be exploited to

deduce estimators according to prior smoothness assumptions of the unknown function. It

would likewise be important to extend this framework to adaptively generate bases over the

state space, an topic that has been studied in the literature, but not analyzed in the context

of the RKHS embedding technique.
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6.1.1 Wind Estimation using Micro Aerial Vehicles

The application of the new adaptive estimation framework in terrain mapping is illustrated in

Chapter 3. The key idea has been to estimate the terrain by sensing only the vehicle dynamics

and without explicitly measuring the road profile. This approach could be potentially

extended to wind estimation problems in various applications. The applications could

span areas like wind energy harvesting, wake estimation for ships, determining coherent

structures in flows and wind patterns in atmosphere. The underlying fundamentals remain

the same, wherein we only measure the dynamics of the aerial vehicle to infer the wind

speed distribution over a geographical area. The added spatial dimensions of the unknown

wind-force field interacting with the aerial vehicle poses new challenges in extending this new

adaptive estimation framework. Likewise the unknown function representing the spatial

distribution could have different compactness and smoothness properties in each spatial

variable. These challenges open up new avenues towards developing suitable estimation

algorithms. These novel wind estimation techniques may also have decisive impact on

various industries including wind energy, ship design, or even help advance the prediction

and tracking of natural calamities like hurricanes, tornadoes, and tsunamis.

6.1.2 Model order reduction for Functional Differential Equations

It is evident throughout the dissertation that the adaptive estimation of governing equations

can be achieved using distributed parameter systems. The approximation of these distributed
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parameter systems can have large number of degrees of freedom. Their have massive

dimensionality can make them computationally expensive to solve. The computational cost

is proportional to the number of first order ODEs generated. These are numerically solved

simultaneously to approximate the DPS. Moreover, for the history dependent FDE problem

formulated in Chapter 4, to achieve the convergence rates in approximation, it is seen that the

entire history of the states is required by the time-stepping numerical method. This also can

result in further computational costs and inefficiencies. The real-time implementations for

the applications that motivated the dissertation faster algorithms and efficient computational

methods. Hence, the dimensionality reduction for the approximated evolution equations

prompts several intriguing research directions. In the past, several techniques have been

extensively studied to generate reduced order models for partial differential equations, but

not much has been explored in this domain for functional differential equations. To get

the ball rolling in the context of this dissertation we need to start by asking, 1) what

does it mean to have a low dimensional approximation of an infinite dimensional history

dependent equation? 2) can we extract some kind coherent structure from the solutions of

infinite dimensional history dependent equations? 3) If we do, then how do we use the finite

dimensional approximations of a FDE to span the solution manifold? In particular, the

hysteretic behavior of aerodynamics loads changes with variation in boundary conditions

and operating parameters such as wind speed, flapping frequency, angle of attack. Is it

then possible to capture this transition in behavior in the corresponding reduced order

models? Of late, some data-driven methods have been added to the repertoire of model
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reduction techniques. Likewise again, it would be very promising to probe the understanding

of FDE’s through the lens of data-driven methods. All of these are intriguing directions

that can certainly deepen the understanding of dynamical systems modeled using functional

differential equations.
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Appendix A

Multiresolution Analysis over the

Triangular Domain

We define the multiscaling functions

φj,k(x) = 1∆i1,i2,...,ij
(x)/
√
m(∆i1,i2,...,ij)

in which

1∆s(x) =


1 x ∈ ∆s

0 otherwise

and m(∆i1,i2,...,ij) is the area of a triangle in the level j refinement. We have defined (hf)(t)◦

µ =
∫∫

∆
κ(s, t, f)µ(s)ds. The approximation (hjf)(t) ◦ µ of this operator is given by

(hjf)(t) ◦ µ =

∫∫
∆

∑
l∈Γj

1∆j,l
(s)κ(ξj,l, t, f)µ(s)ds,
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where ξj,l is the quadrature point of number l triangle of grid level j. We approximate

µ(s) ≈
∑

m∈Γj
µj,mφj,m(s). Therefore,

(hjf)(t) ◦ µj

=

∫∫
S

∑
l∈Γj

1∆j,l
(s)κ(ξj,l, t, f)

∑
m∈Γj

µj,mφj,m(s)

 ds

=
∑
l∈Γj

∑
m∈Γj

κ(ξj,l, t, f)

(∫∫
S

1∆j,l
(s)φj,m(s)ds

)
µj,m

=
∑
l∈Γj

κ(ξj,l, t, f)
√
m(∆j,l)µj,l.

For an orthonormal basis {φk}∞k=1 of the separable Hilbert space P , we define the finite

dimensional spaces for constructing approximations as Pn := span {φk}nk=1. The approximation

error En of Pn is given by

En(f) := inf
g∈Pn
‖f − g‖P .

The approximation space Aα2 of order α is defined as the collection of functions in P such

that

Aα2 :=

{
f ∈ P

∣∣∣∣|f |Aα2 :=

{
∞∑
n=1

(nαEn(f))2 1

n

}1/2

<∞
}
.

For our purposes, the approximation spaces are easy to characterize: they consist of all

functions f ∈ P whose generalized Fourier coefficients decay sufficiently fast. That is,

f ∈ Aα2 if and only if
∞∑
k=1

k2α|(f, φk)|2 ≤ C

for some constant C.



Appendix B

The Projection Operator ΦJ→j

The orthogonal projection operator ΦJ→j : VJ → Vj maps a distributed parameter µJ to µj

i.e. ΦJ→j : µJ 7→ µj. By exploiting the orthogonality property of the operator we have

	
  

𝜇!	
  𝜇! 	
  𝑉! 	
  
𝑉!	
  

Figure B.1: Projection Operator ΦJ→j : VJ → Vj

∫∫
∆

∑
m∈Γj

µj,mφj,m(s)−
∑
l∈ΓJ

µJ,lφJ,l(s)

φj,n(s)ds = 0.

Therefore, we can write

∑
m∈Γj

(∫∫
∆

φj,m(s)φj,n(s)ds

)
µj,m =

∑
l∈ΓJ

(∫∫
∆

φJ,l(s)φj,n(s)ds

)
µJ,l.
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Since orthogonality implies
∫∫

∆
φj,m(s)φj,n(s)ds = δm,n, we conclude that

µj,n =
∑
l∈Γj

(∫∫
∆

φj,n(s)φJ,l(s)ds

)
µJ,l.

From Theorem 1 we have

|(hjf)(t) ◦ Πjµ− (hf)(t) ◦ µ| ≤ C̃2−αj,

with

(hf)(t) ◦ µ =

∫∫
∆

k(s, t, f)µ(s)ds,

(hjf)(t) ◦ µ =

∫∫
∆

∑
1∆j ,l(s)k(ζj,l, t, f)µ(s)ds,

where µ ∈ P = L2(∆) and we approximate µ(s) ≈
∑

l∈ΓJ
µJ,lφJ,l(s) ∈ VJ . To implement

this for the finest grid J , we compute

(hJf)(t) ◦ µJ = (hjf)(t) ◦ ΠJµJ ,

=

∫∫ (∑
1∆J ,l(s)k(ζJ,l, t, f)

∑
m∈ΓJ

µJ,mφJ,m(s)

)
ds,

=
∑
l∈ΓJ

∑
m∈ΓJ

k(ζJ,l, t, f)

(∫∫
1∆J ,l(s)φJ,m(s)ds

)
µJ,m,

=
∑
l∈ΓJ

k(ζJ,l, t, f)µJ,l(√
m(∆J,l)

) ,

when
√
m(∆J,l) is the area of the corresponding triangle ∆J,l in the grid having resolution

level J .



Appendix C

Gronwall’s Inequality

We employ the integral form of Gronwall’s Inequality to obtain our final convergence result.

Many forms of Gronwall’s Inequality exist, and we will use a particularly simple version. See

Section 3.3.4 in [40]. If the piecewise continuous function f satisfies the inequality

f(t) ≤ α(t) +

∫ t

0

β(s)f(s)ds

with some piecewise continuous functions α, β where α is nondecreasing, then

f(t) ≤ α(t)e
∫ t
0 β(s)ds.
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Appendix D

Modeling of a Prototypical Wing

Section

Figure 4.6 shows a simplified model of the wing. In the figure we denote the center of mass

by c.m., A is the aerodynamic center, and O is the elastic axis of the wing. The constants

Kh and Kθ are the linear and torsional stiffness, and h is the distance from origin to point

O in the fixed reference frame. We denote by xθ the distance between point O and center of

mass, whereas xa is the distance between O and A. Point O is the origin for the body fixed

reference frame.

We employ the Euler-Lagrange technique to derive the equation of motion for the depicted

wing model. The function L(θ, θ̇) is the history dependent lift force acting at the aerodynamic

center, and M(θ, θ̇) is the history dependent aerodynamic moment about point A. The
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variables Lβ1 and Lβ2 are the actuating forces acting at point D, and β1, β2 are the angles

between the mid chord of the wing and the trailing edge and leading edge flaps, respectively.

The position vector of the mass center is given as

rc.m. = hn̂1 − xθb̂2,

and therefore the corresponding velocity of point C is

ṙc.m. = ḣn̂1 + xθθ̇b̂1.

The rotation matrix for transformation between inertial frame of reference to body fixed

frame of reference is b̂1

b̂2

 =

 cos θ sin θ

− sin θ cos θ


n̂1

n̂2

 .
The kinetic energy is computed to be

T =
1

2
m(rc.m..rc.m.) +

1

2
Iθθ̇

2,

T =
1

2
m(ḣ2 + x2

θθ̇
2 + 2xθḣθ̇ cos θ) +

1

2
Iθθ̇

2,

and the corresponding potential energy is

V =
1

2
Khh

2 +
1

2
Kθθ

2.

therefore we can write Lagrangian as L = T − V . We apply Euler-Lagrange equations to

write the equation of motion as follows
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 m mxθ cos θ

mxθ cos θ mx2
θ + J


ḧ
θ̈

+

0 −mxθθ̇ sin θ

0 0


ḣ
θ̇

+

Kh 0

0 Kθ


h
θ



=

 L(θ, θ̇) cos θ

M(θ, θ̇) + xaL(θ, θ̇)

+

 −Lβ1 cos (θ + β1)− Lβ2 cos (θ + β2)

−Lβ1(e1 + d1 cos β1) + Lβ2(e2 + d2 cos β2).

 (D.1)

The above equation is written in the form of a standard robotic equations of motionM(q(t))q̈(t)+

C(q(t), q̇(t))q̇(t) +K(q(t)) = Qa(t) + τ(t), where q = [h θ]T .


