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Models predicting disease transmission are vital tools for long-term plan-
ning of malaria reduction efforts, particularly for mitigating impacts of
climate change. We compared temperature-dependent malaria transmission
models when mosquito life-history traits were estimated from a truncated
portion of the lifespan (a common practice) versus traits measured across
the full lifespan. We conducted an experiment on adult female Anopheles
stephensi, the Asian urban malaria mosquito, to generate daily per capita
values for mortality, egg production and biting rate at six constant tempera-
tures. Both temperature and age significantly affected trait values. Further,
we found quantitative and qualitative differences between temperature–
trait relationships estimated from truncated data versus observed lifetime
values. Incorporating these temperature–trait relationships into an expres-
sion governing the thermal suitability of transmission, relative R0(T ),
resulted in minor differences in the breadth of suitable temperatures for
Plasmodium falciparum transmission between the two models constructed
from only An. stephensi trait data. However, we found a substantial increase
in thermal niche breadth compared with a previously published model
consisting of trait data from multiple Anopheles mosquito species. Overall,
this work highlights the importance of considering how mosquito trait
values vary with mosquito age and mosquito species when generating
temperature-based suitability predictions of transmission.
1. Introduction
Despite the progress of global malaria elimination programs in reducing the
incidence of human malaria, particularly Plasmodium falciparum, malaria
remains a leading cause of infectious disease morbidity and mortality [1].
The occurrence of multi-class drug and insecticide resistance [1–3], in addition
to alterations in mosquito behaviour [4], challenge our ability to eradicate
malaria. While numerous factors affect the distribution and prevalence of
mosquito-borne diseases, temperature is one of the most pervasive abiotic fac-
tors affecting both mosquito and pathogen vital rates [5]. Although the
importance of these factors is increasingly recognized, gaps remain in the
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current mechanistic understanding of the relationship
between malaria risk and key environmental variables.
Improving our understanding of the link between tempera-
ture and malaria transmission will be crucial for predicting
how transmission varies geographically, seasonally, and
with climate and land use change [6–9].

Recent research has begun to define the relationship
between temperature and vector and pathogen traits relevant
to transmission across a diversity of vector-borne disease
systems [6,7,10–16]. The net effect of these traits on
temperature-dependent transmission can be described by the
basic reproduction number (R0), defined as the number of sec-
ondary cases arising from a primary case introduced into a
fully susceptible population. Transmission models that define
R0 can be used to generate predictions of disease risk and evalu-
ate the efficacy of various interventions [17–20]. Key biological
insights from previous models are that: (i) some regions of the
world that are currently permissive for transmission may
become less environmentally suitable as the climate warms
past thermal optima and upper limits for malaria transmission;
and (ii) vector control may become more difficult in northern
latitudes as temperatures there become more permissive and
suitable seasons extend [6,11,21].

Despite these advances, insights from previous expressions
for R0 derived frommechanistic models remain constrained by
a lack of entomological and parasite data [10]. Temperature–
trait relationships for key parameters are often indirectly
estimated from a limited number of studies, leading to high
uncertainty around the predicted thermal limits in current
malaria R0 formulations [10,11]. Additionally, the parameteri-
zation of R0 expressions with temperature–trait relationships
aggregated from different mosquito and parasite species
likely introduces error and uncertainty into R0 estimates due
to variation in life history [10,11,22].

Further, evidence from a diversity of invertebrates demon-
strates that organisms experience age-related changes in life-
history traits [23–26]. These changes reflect either senescence,
a decline in general physiological function with age, or a shift
in resource allocation to different life-history tasks as an organ-
ism ages. Limited studies suggest that age modifies mosquito
life history, with some evidence of reproductive senescence
[27], alterations in biting frequency with age [28] and age-
dependent survivorship [25]. Yet, we lack models for malaria
that incorporate the combined effect of temperature and age
on mosquito life-history traits. Often data are collected over a
relatively limited portion of the mosquito lifespan and then
used to estimate lifetime traits in models of mosquito popu-
lation dynamics and disease transmission [6,7,10,11,14,15,29].
If key mosquito life-history traits vary with age, and tempera-
ture influences age-related changes in these traits, then the
timing of when these traits are measured during the lifespan
of the mosquito could impact the predicted relationships
between these traits and temperature as well as the predicted
thermal suitability for malaria transmission.

In this study, we conducted a life table experiment on the
urban Indian malaria vector (Anopheles stephensi) at different
constant temperatures. From these data, we calculated key
life-history traits (i.e. lifespan, egg production and biting
rates) in two different ways: first, we directly observed the
trait values over the entire mosquito lifespan (‘observed’);
second, we estimated trait values from a truncated portion
of the mosquito lifespan (as is typically done; ‘estimated’).
We used these trait data to answer the following questions.
(i) How do An. stephensi life-history traits vary across the
full spectrum of biologically relevant temperatures? (ii) Do
life-history traits that drive human malaria transmission
vary with mosquito age? If so, (iii) do age-dependent changes
in life history affect temperature–trait responses and the over-
all temperature suitability for transmission? And (iv) does the
thermal response of transmission suitability change when
traits from a single mosquito and parasite species are used
(here), rather than aggregated from multiple mosquito and
parasite species (previous models)?
2. Material and methods
(a) Life-history experiment
Anopheles stephensi mosquitoes from a long-standing laboratory
colony (approx. 40 years) were reared as described in electronic
supplementary material, Methods. The life-history experiment
was initiated 3 days after adult emergence to permit mating.
After being presented with a blood meal for 15 min via a
water-jacketed membrane feeder, we randomly distributed 30
host-seeking females into individual cages (16 oz. paper cup;
mesh top) to one of six constant temperatures (16°C, 20°C,
24°C, 28°C, 32°C, 36°C ± 0.5°C, 80% ± 5 RH and 12 L : 12D photo-
period). Each individual adult cage contained an oviposition
site: a Petri dish secured to the cage bottom containing cotton
balls to retain liquid, with filter paper for egg removal and count-
ing. Individuals were offered a blood meal for 15 min each day.
Blood meals were scored through visual verification of the
abdomen immediately after feeding. Oviposition sites were rehy-
drated and checked for eggs daily. We followed cohorts of
individual females in each temperature until all mosquitoes
had died or when less than 7% of the starting population
remained. At least two biological replicates were performed at
each temperature (n = 390).

(b) Statistical analyses
We used generalized linear mixed models (GLMM) with R pack-
age lme4::glmer() [30] to estimate the effects of temperature,
mosquito age and their interaction on the proportion of females
that imbibed blood on a given day (i.e. the number of females
that took a blood meal on a given day out of the total number of
females alive on that day for each temperature treatment) and
the mean daily egg production (i.e. the number of eggs laid on a
given day divided by the total number of females alive on that
day in a given temperature treatment) (electronic supplementary
material, Methods). We used a log-rank test with R package
survival::survdiff() [31] on Kaplan–Meier estimates to determine if
survivorship differed with temperature. Lastly, to determine
if the daily survival rate changed across the lifespan of the
mosquito, we fit a variety of survival distributions, which allow
either for a constant (exponential) or variable daily mortality
rate (lognormal, gamma, Gompertz and Weibull) with R package
flexsurv [32] to the Kaplan–Meier estimates (electronic
supplementary material, Methods).

(c) Temperature-dependent transmission potential
(relative R0)

We used a temperature-dependent formulation of relative R0

parameterized from the An. stephensi—P. falciparum system to
(i) evaluate the effect of age-related changes in An. stephensi life
history on the predicted thermal suitability of P. falciparum (i.e.
‘observed’ versus ‘estimated’ trait values), and (ii) compare pre-
dicted thermal suitability for malaria transmission to a previous
expression for relative R0(T ) that aimed to describe the
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An. gambiae—P. falciparum system but consisted of data aggregated
from several different mosquito and parasite species [10]. To evalu-
ate relative R0, we rescaled a common expression for R0 to range
between 0 and 1, which was derived from the Ross–MacDonald
model [18,33], initially expanded on in Parham & Michael [16] to
incorporate the effect of temperature and rainfall on mosquito life
history and thereby mosquito population size, and later modified
in Mordecai et al. [11] to approximate individual lifetime reproduc-
tive values using daily fecundity output and adult daily mortality
rates as a function of temperature without the effect of rainfall on
mosquito abundance. (equation (2.1), electronic supplementary
material, Methods and table S5) [6,7,10–16,33]:

R0(T)estimated ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�ðTÞ2bc(T)e�m�(T)=PDR(T)EFD�(T)pEA(T)MDR(T)

Nrm�(T)3

s
:

ð2:1Þ

R0 is the expected number of new cases generated by a single
infectious person or mosquito introduced into a fully susceptible
population throughout the period within which the person
or mosquito is infectious. R0 components include: egg-to-adult
survival probability ( pEA), mosquito development rate (MDR),
fecundity (EFD; eggs laid per female per day), biting rate (a),
adult mosquito mortality rate (µ), parasite development rate
(PDR), vector competence (bc; the proportion of parasite-exposed
mosquitoes that become infectious), the density of humans (n ) and
the human recovery rate (r), with (T ) indicating parameters that
are dependent on environmental temperature (°C). The host recov-
ery rate (r) and host density (n ) are assumed to be temperature
independent. We label the R0(T ) formulation in equation (2.1) as
‘estimated’ as lifetime traits are commonly parameterized with
indirect estimates (denoted by *) based on daily rates [6,7,10–15].

To reproduce the multi-species estimated R0(T ) model (which
uses ‘estimated’ trait values), we used the thermal relationships
defined in [10] in equation (2.1). To compare the multi-species esti-
mated model to the R0(T ) model parameterized with our
An. stephensi data (An. stephensi estimated) and using the formu-
lation in equation (2.1), we generated trait estimates (denoted by *)
according to methods described in [10,11,34,35] for biting rate (a*),
lifespan (lf* as 1/µ*) and lifetime egg production (B* as EFD*/µ*).
Briefly, the inverse of the duration of the first gonotrophic cycle for
each individualwas used to estimate the biting rate (a*). Exponential
curves were fit to the tail of mosquito survivorship distributions
as described in [11] to estimate the daily mortality rate (µ*) of mos-
quitoes at each temperature treatment, and lifespan was assumed
to equal the inverse of daily mortality rate. Daily egg production
(EFD*) at each temperature was estimated by dividing the number
of eggs laid for each female in her first gonotrophic cycle by the
number of days in that gonotrophic cycle. Additionally, to estimate
An. stephensi mosquito development rate (MDR) and probability of
egg to adult survival (pEA), aswell asP. falciparumdevelopment rate
(PDR) and vector competence (bc), we used data from [36] and [29].
Finally, to incorporate the temperature-dependence of each of the
traits outlined above and below, we fit nonlinear responses using
Bayesian inference as described in Johnson et al. [10] and electronic
supplementary material, Methods.

To determine if R0(T ) for An. stephensi varies when directly
observed lifetime trait values for biting rate (a), lifespan (lf )
and lifetime egg production (B) are incorporated instead of esti-
mates generated from a truncated portion of the lifespan, we
generated the following R0(T ) formulation (equation (2.2),
electronic supplementary material, Methods and table S5).

R0(T)lifetime ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(T)2bc(T)Y(T)B(T)pEA(T)MDR(T)lf (T)2

Nr

s
: ð2:2Þ

Mosquito lifespan (lf ) was defined as the number of days a
mosquito survives after being placed in her temperature
treatment. Individual biting rate (a) was defined as the total
number of blood meals a female imbibes divided by the
number of days in her lifespan (lf ), lifetime egg production (B)
is defined as the total number of eggs laid by a female during
her lifespan (lf ). The directly observed biting rate (a), lifespan
(lf ) and lifetime egg production (B) were substituted for the
indirectly estimated biting rate (a*), lifespan (lf* = 1/µ*) and life-
time egg production (B* = EFD*/µ*) in equation (2.1). The
proportion of mosquitoes surviving the latency period, denoted
as ϒ in equation (2.2), is substituted for exp[−µ/PDR] in equation
(2.1). To estimate ϒ, we fit a Gompertz distribution to survivor-
ship data from each temperature and replicate. We then took the
proportion of mosquitoes alive upon completion of the predicted
extrinsic incubation period (PDR50(T )−1) of P. falciparum at each
temperature. The amount of days to reach 50% of maximum
infectiousness in a mosquito population is represented by
PDR50(T )−1 [29]. This formulation allows us to account for age-
dependent mortality in the proportion of mosquitoes surviving
the latency period (ϒ). We then compared the thermal res-
ponses of lifespan, biting rate and lifetime egg production for
An. stephensi when these traits are directly observed (lf, a, B)
versus estimated (lf*, a*, B*) from the data generated in this
study, as well as if any observed differences alter the predicted
thermal suitability for malaria transmission (R0).

As done previously [6,7,10–15], we use relative values of R0, as
opposed to absolute values, to estimate temperature suitability for
malaria transmission across the current distribution of An. stephensi
in Southern Asia because absolute values of R0 depend on a
number of factors that vary by location and time (e.g. mosquito
habitat availability and quality, number of human hosts). By rescal-
ing R0(T ) to a range between 0 and 1, we can easily compare the
thermal optimum and limits for relative R0 across all formulations.
However, when adopting a relative approach, the stable trans-
mission threshold of R0 > 1 is no longer meaningful. Therefore,
a conservative suitability threshold of relative R0(T ) > 0 is
implemented where temperatures outside of this range are
deemed unsuitable for transmission because one or more of
the components in R0(T ) is equal to zero. Using this suitability
threshold, we generated maps depicting the number of months
an area is predicted to be thermally suitable for transmission of
human malaria (P. falciparum) to illustrate the potential impact
differences in the thermal breadth among our relative R0(T )
models have across a relevant landscape (electronic supplemen-
tary material, Methods). Finally, sensitivity and uncertainty
analyses were performed for our An. stephensimodels as described
in [10] and electronic supplementary material, Methods.
3. Results
(a) Temperature and age shape mosquito traits
A cohort life table study evaluated the effect of temperature on
An. stephensi life-history traits as individuals age. We found the
inclusion of higher-order fixed effects for day and temperature
inGLMMmodels forboth theproportionof females that imbibed
blood on a given day and mean daily egg production ranked
higher than GLMM models which assumed only linear effects
of temperature and age (electronic supplementary material,
tables S1 and S2). Both temperature and mosquito age signifi-
cantly affected the proportion of females that imbibed blood on
a given day, mean daily egg production and survivorship
(figure 1, electronic supplementary material, table S3). Further,
the interaction between the nonlinear terms for temperature
and age significantly affected the proportion of females that
imbibed blood on a given day and mean daily egg production
(electronic supplementary material, table S3). The proportion of
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females that imbibed blood on a given daywas generally higher
atwarmer temperatures anddeclinedasmosquitoes approached
the end of their lifespan in all temperature treatments, with this
age-associated decline being most pronounced at 36°C
(figure 1a). Across all temperature treatments, mean daily egg
production increased over time to a peak value before declining
(figure 1b). Peak mean daily egg production varied with temp-
erature: peak values occurred sooner, and persisted for shorter
periods of time at warmer temperatures (28–36°C) compared
with cooler temperatures (16–24°C) (figure 1b). Temperature
also significantly affected survivorship (electronic supplemen-
tary material, table S4). Survival responded unimodally to
temperature, with a peak at 20°C and a decline at higher and
lower temperatures (figure 1c). Finally, at all temperatures, mos-
quito daily probability of survival was not constant with age:
a Gompertz distribution, which allows for a variable daily mor-
tality rate, best fit the survival data at each temperature (figure 1c,
electronic supplementary material, table S4).

(b) Using observed as opposed to estimated lifetime
trait values alters temperature–trait relationships

Depending on the life-history trait examined, using observed
versus estimated lifetime values to fit temperature–trait
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relationships resulted in shifts in the predicted thermal
minimum (Tmin), maximum (Tmax) and optimum (Topt)
(figure 2a–c; electronic supplementary material, figure S2,
tables S6 and S7). Temperature–trait relationships derived
from estimated lifetime trait values resulted in an overall
decrease in the absolute values for each trait (figure 2a–c).
While peak values of the temperature functions for observed
lifetime biting rate (a) were approximately double (0.51
versus 0.24) that of estimated lifetime biting rate (a*), the temp-
erature at which these peak values occurred (Topt) was 2.6°C
lower for observed lifetime biting rate (figure 2a; electronic sup-
plementary material, table S7). Further, the temperature–trait
relationship for estimated biting rate (a*) had a substantially
warmer predicted thermal minimum (Tmin; +8.4°C) and
moderately higher thermal maximum (Tmax; +1.2°C) than
that for lifetime biting rate (a), resulting in a 7.2°C reduction
in the breadth of temperatures (Tbreadth) permissive for biting
(figure 2a; electronic supplementary material, figure S2a and
table S7). Similarly, the value for observed lifespan (lf) at the
predicted thermal optimum (Topt) was approximately twice
that of estimated lifespan (lf*; 38.4 days versus 16.2 days)
(figure 2b, electronic supplementary material, table S7). How-
ever, in contrast to biting rate, the predicted optimum and
maximum temperatures were similar for observed lifespan
(lf) and estimated lifespan (lf*) with only a slight 0.2°C
difference in the predicted thermal minimum (figure 2b; elec-
tronic supplementary material, figure S2b and table S7). The
temperature–trait relationship for observed lifetime egg pro-
duction (B) was predicted to have a 1.2°C increase in the Topt
as compared with estimated lifetime egg production (B*), with
a minor 0.4°C increase in the predicted thermal minimum
(figure 2c, electronic supplementary material, table S7).
Predictedpeakvalueswerehigher forobserved lifetimeeggpro-
duction (B; 396.1 eggs) than estimated lifetime egg production
(B*; 175.9 eggs). Finally, there was a major shift in the Tmax for
lifetime egg production between approaches, with directly
observed valuesyielding aTmax of 33.2°C and indirect estimates
increased the predicted Tmax (39.8°C) by 6.6°C (figure 2c;
electronic supplementary material, figure S2c and table S7).

Surprisingly, the changes in temperature–trait relationships
that occurred when observed lifetime data are used instead
of estimates did not yield large changes in the predicted
relationship between temperature and relative R0 across the
An. stephensi models. There was a slight decrease in the pre-
dicted Topt from 27.6°C (An. stephensi estimated) to 27°C
(An. stephensi lifetime), a moderate increase in the predicted
Tmax from 33°C (An. stephensi lifetime) to 35.8°C (An. stephensi
estimated), but no difference in the predicted Tmin across
models (figure 2d; and electronic supplementary material,
figure S3, table S8). As the relative R0 expression varied
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between the An. stephensi models, sensitivity and uncertainty
analyses were performed to assess the overall contribution of
each trait to the resulting fit (electronic supplementary
material, Methods). R0(T ) was sensitive to lifespan (lf) and
biting rate (a) in both An. stephensi models; however, the
An. stephensi lifetimemodel exhibited less sensitivity to lifespan
(lf) than the An. stephensi estimated model (electronic sup-
plementary material, Results, figures S4 and S5). Finally, we
found notable differences in the Tmin and Tmax of the estimated
thermal relationship for the proportion ofmosquitoes surviving
the latency period (Y) between An. stephensi models (electronic
supplementary material, figure S6 and table S9).
(c) The relationship between temperature and relative
R0 differs from previous estimates

Integrating temperature–trait relationships from the
An. stephensi–P. falciparum system resulted in a qualitatively
different temperature-relative R0 relationship to a previously
defined multi-species model [10] (figure 2d; electronic
supplementary material, figure S3 and tables S6–S8). The
An. stephensi relative R0(T ) expression parameterized with
equivalent trait calculation methods but different trait data
(An. stephensi estimated) displayed an increase in the breadth
of suitable temperatures over which relative R0 > 0 and
a decrease in the credible intervals around the thermal mini-
mum (Tmin), maximum (Tmax) and optimum (Topt) compared
with the multi-species estimated model, which was used to
describe malaria transmission via An. gambiae (figure 2d;
electronic supplementary material, figure S3 and table S8).
This increase in temperature breadth results from an increase
in Tmax from 32.4°C (multi-species estimated) to 35.8°C
(An. stephensi estimated) and a decrease in Tmin from 19.2°C
(multi-species estimated) to 15.6°C (An. stephensi estimated).
The An. stephensi estimated model also had a predicted
warmer Topt than the previous multi-species estimated
model (Topt; 25.6°C) by 2.0°C (figure 2d; electronic sup-
plementary material, table S8). In addition, the estimated
thermal relationship for the proportion mosquitoes surviving
the latency period between the multi-species estimated
and An. stephensi estimated models differed (electronic
supplementary material, figure S6 and table S9).
(d) Temperature suitability varies geographically across
relative R0 models

To visualize differences in model predictions, we created
maps illustrating geographical variation in seasonal thermal
suitability for P. falciparum transmission for each R0(T )
model along with spatial descriptors of the maps across the
range of An. stephensi (figure 3a–c; electronic supplementary
material, table S10). Comparisons are drawn to the multi-
species estimated model to illustrate how thermal suitability
predictions may vary across disease systems. The mapped
overlay of year-round (12-months) thermal suitability for
malaria transmission highlights the broader geographical
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extent of temperature suitability in our An. stephensi–
P. falciparum models, extending northward into India and on
the Arabian Peninsula as compared with the previous multi-
species estimated R0(T ) model (figure 3d; electronic sup-
plementary material, table S10). For example, the multi-
species estimated model predicts India to contain 710 046 km2

of temperature-suitable area for transmission year-round and
103 645 km2 in Oman, whereas our two An. stephensi models
are predicted to contain at minimum approximately double
the year-round thermally suitable area based on temperature
(electronic supplementary material, table S10). By contrast,
the predicted year-round thermally suitable area in Sri Lanka
remained largely unaltered among model predictions. Further,
Qatar was predicted to be unsuitable for year-round malaria
transmission in the multi-species estimated model and
An. stephensi lifetime model but contained a modest area of
year-round temperature suitability (11 210 km2) with our
An. stephensi estimated model. Lastly, we found a notable
increase in temperature suitability in the central regions of
India and on the Arabian Peninsula with the An. stephensi
estimated model (India; 2 372 906 km2) compared with the
An. stephensi lifetime model (India; 1 352 222 km2) (figure 3;
electronic supplementary material, table S10).
4. Discussion
Understanding the relative contributions of abiotic and biotic
factors to transmission potential is crucial for the prediction
and management of infectious diseases. This study character-
ized how mosquito life-history traits of an urban Indian
malaria vector, An. stephensi, were jointly modified by temp-
erature and age to affect the temperature suitability for
malaria transmission. We found that in addition to tempera-
ture, mosquito age altered the daily proportion of females
imbibing a bloodmeal, daily egg production and daily prob-
ability of survival. These results suggest that estimates of
these life-history traits characterized during a finite portion
of a mosquito’s lifespan may be imprecise [6,10,11]. This
study also evaluated how predictions of thermal suitability
for malaria transmission are influenced using direct obser-
vations for lifespan, lifetime egg production and biting rate
instead of common proxies currently used in the literature
to estimate these traits. Importantly, we found large quanti-
tative differences in observed lifetime trait values relative to
estimates that suggest absolute transmission potential could
differ with mosquito age. A failure to include the effects of
mosquito age structure could have implications for modelling
approaches that predict malaria transmission dynamics.
Finally, we determined that the inclusion of An. stephensi–
P. falciparum specific data from either observed lifetime
values or commonly used estimates from a truncated portion
of the lifespan resulted in qualitatively different temperature–
transmission suitability relationships compared with a
previous relative R0(T ) model that used thermal responses
from An. gambiae and other Anopheles and Aedes species, ulti-
mately affecting predictions of regional thermal suitability for
malaria transmission [10,11].

Research across a diversity of ectotherms demonstrates
that age and temperature both affect multiple facets of life
history [23–25,37–47]. In this study, we observed a decrease
in the proportion of females imbibing a blood meal and
daily egg production in older An. stephensi. For both the
proportion of females imbibing blood and survival, the rate
of decline occurred faster at increasingly warmer tempera-
tures. Previous work with An. gambiae showed an increase
in the daily biting rate with age [28], which is in contrast to
our findings, yet a separate study found An. gambiae biting
rates to decrease with gonotrophic cycle and temperature,
which is aligned with our results [48]. It remains unclear
whether this outcome is due to differences in senescence,
allocation of resources or nutritional conditions.

Similar to a previous study, we found daily egg pro-
duction to decline with age [27]. Further, our data supports
that optimal egg laying occurs at moderate temperatures
[48]. We found the variation in ages associated with egg
laying decreased at higher temperatures where mortality
occurred most rapidly (figure 1b); however, a previous
study observed a negative effect of egg viability at warmer
temperatures [48]. Together these data suggest that egg viabi-
lity is a critical component to be included in temperature-
dependent models aimed at predicting population abun-
dances. The temperature-sensitive age-dependent mortality
rates for mosquito populations are concordant with previous
work in the laboratory and limited field studies [24,49,50].
While there is some evidence that long-lived An. gambiae
cohorts can occur in the field, it is generally assumed that
mosquitoes have shorter lifespans in the field than typically
observed in controlled laboratory settings [51,52], and the
same may be true for An. stephensi.

Finally, there is strong evidence that immune systems
senesce in mosquitoes [38] as well as in other organisms
[53,54], and that there are age-related changes in mosquito
susceptibility to infection [47]. This research suggests the sus-
ceptibility of mosquitoes to vector-borne pathogens could
change with mosquito age. We did not account for how
vector competence and the extrinsic incubation period influ-
ence the proportion of the mosquito population that is
alive, infectious and biting in our lifetime model, or how
these effects scale with the environmental temperature.
Thus, whether mosquitoes experience senescence in the
field remains an open and critical question [24].

Using direct measurements of an individual’s biting rate,
lifetime fecundity and lifespan instead of common
approaches to estimate these traits from truncated portions
of a mosquito’s life (e.g. first gonotrophic cycle only) yielded
quantitatively, and in some cases qualitatively, different temp-
erature–trait relationships. Our results suggest that previous
approaches used to estimate these life-history traits in the lit-
erature underestimate values for these traits across most
temperatures. This could have important ramifications for
predicting mosquito population dynamics including the
effect of mosquito control interventions where thermal con-
ditions vary if mosquitoes do experience senescence in the
field. Further, imprecise estimates of lifespan can have a com-
pounding effect on predictions of population dynamics and
pathogen transmission because lifespan impacts total repro-
ductive output and the amount of time a mosquito is
infectious [24,25,55]. More effort (e.g. mark–recapture studies
and age-grading technologies) is needed in measuring life-
span and age-associated changes in life history under field
settings.

With the relative R0 approach, absolute differences in pre-
dicted temperature–trait relationships are masked. Thus, we
cannot account for variation in the intensity of malaria trans-
mission with temperature among modelling approaches.
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These results suggest that predictions of seasonal prevalence
could be improved in a modelling framework that incorpor-
ates the age-structure of mosquito populations. By using a
relative R0(T ) model we were able to explore how model
parameterization of trait data (estimated versus observed)
influenced the temperature suitability for P. falciparum trans-
mission. While there were substantial quantitative differences
between directly observed versus estimated lifetime trait
values along with qualitative differences in the shape of the
temperature-dependent functions for biting rate and lifetime
egg production, we observed minor differences in the ther-
mal response of relative R0 between the An. stephensi
estimated and An. stephensi lifetime models (figure 2d ).

The subtle shift in theTmax betweenAn. stephensi relativeR0

models resulted in meaningful differences in the predicted
thermal suitability of malaria transmission across the known
range of the An. stephensi vector (figure 3). However, it
should be noted that the credible intervals for the An. stephensi
observed model overlap with both the An. stephensi estimated
model and the multi-species model at the Tmax, although the
density function of the posterior samples at Tmax suggests
these are likely distinct (figure 2d; electronic supplementary
material, figure S3, tables S6 and S7). In this framework, the
limits of predicted thermal suitability are ultimately dictated
by which trait has the warmest Tmin and the coolest Tmax. On
the cool end, the probability of egg to adult survival (pEA),
with thewarmest Tmin, constrained both the estimated and life-
time An. stephensimodels (figure 2d; electronic supplementary
material, figures S6, S7 and tables S6, S7). By contrast, the traits
with the coolest Tmax values that constrained the predicted
temperature-relative R0 relationship differed across An. ste-
phensi models (B: lifetime model; pEA: estimated model).
Further, these traits also dictated thewidth of credible intervals
around relative R0(T ) near the Tmax, resulting in large and
small credible intervals associated with the An. stephensi life-
time and estimated model, respectively (figure 2d; electronic
supplementary material, figures S3, S6, S7 and tables S6, S7).

While our An. stephensi estimated model was sensitive to
lifespan, ourAn. stephensi lifetimemodel was less so (electronic
supplementary material, Results, figures S4 and S5). Thus, the
shift in the predicted thermal optimum for relative R0 to cooler
temperatures in our An. stephensi lifetime model relative to the
An. stephensi estimated model is largely driven by the qualitat-
ive differences in the temperature–trait relationship between
observed and estimated biting rate and the proportion of mos-
quitoes surviving the latency period (figure 2; electronic
supplementary material, Results and figure S6). Differences
in the temperature–trait relationship for the proportion of mos-
quitoes surviving the latency period likely arise between
models as the An. stephensi lifetime model accounts for mor-
tality rates that vary with age, whereas the An. stephensi
estimated model assumes a constant mortality rate.

Using An. stephensi data dramatically changed the pre-
dicted relationship between the thermal suitability of
malaria transmission and temperature relative to the pre-
viously published multi-species estimated model [10],
potentially suggesting that the thermal limits and optima of
relative R0(T ) models varies across disease systems [5,7].
We demonstrate a 4.3°C decrease in the predicted thermal
minimum and 2.6°C increase in the thermal maximum for
our An. stephensi estimated model, as compared with the
multi-species estimated model that used trait responses
from multiple Anopheles and an Aedes species (figure 2d;
electronic supplementary material, table S7) [11]. The increase
in thermal suitability at warmer temperatures could be due to
differences in physiological constraints of the mosquito
vectors investigated. An. stephensi may be selected for
higher temperature tolerance, as it is found in urban areas
in Asia. Thus, due to its geographical location and the
urban ‘heat-island effect,’ this species inhabits warmer areas
on average than that of the more rural An. gambiae [56].
Further, differences in Plasmodium species and the method
of calculating EIP could drive differences between models
[57]. However, this would not explain the increased suit-
ability at cooler temperatures, which instead suggests a
vector or parasite with a higher plasticity in temperature
tolerance. Finally, incorporating life-history data for
An. stephensi and P. falciparum reduced the credible intervals
for all of the predicted thermal thresholds for the tempera-
ture-relative R0 relationship relative to the multi-species
estimated model, except for the Tmax associated with the
An. stephensi lifetime model (figure 2d; electronic supplemen-
tary material, table S7) [10]. To further refine temperature
suitability predictions for effective use in vector control and
to optimally inform public health strategies there is a strong
need for additional research on temperature effects on the
basic biology of disease vectors.

Accurately predicting malaria transmission ultimately
depends on additional variation in other abiotic, biotic and
socioeconomic factors that determine human exposure to mos-
quitoes that our relative R0 approach does not capture. For
example, it is currently unknown if mosquitoes behaviourally
modify their response to temperature in the field. Further, R0

here is static and does not incorporate the effect of temporal
variation in daily or seasonal temperatures or fluctuations in
vector and host abundances or disease states (i.e. susceptible,
exposed, infectious, recovered).Differences inmosquito rearing
conditions among laboratories in which the data were gener-
ated probably also exist, which could explain some of the
differences observed across our two models. Additional study
limitations are presented in electronic supplementary material,
Discussion.However, this is a fundamental first step in assessing
the effect of mosquito age on predicted thermal suitability for
malaria transmission, aswell as the abilityof aprevious tempera-
ture-dependent model to predict thermal suitability in another
relevant mosquito–human malaria system.

In this study, we illustrate that the predicted temperature-
relative R0 relationship and land area of thermal suitability
were affected by using common approaches to estimate
mosquito lifetime traits versus directly measuring them.
Further, differences in the overall magnitude of these traits—
as opposed to the shapes of their thermal responses—could
affect transmission in ways not captured using the relative
R0(T ) approach. Lastly, substituting thermal responses with
data from An. stephensi compared with a previous model
which used responses from multiple mosquito species,
resulted in substantially more land area predicted to be
thermally suitable for year-round malaria transmission in
Southeast Asia. This work highlights the importance of careful
consideration for how trait values are measured and
aggregated into transmission models, and underscores the
need for more basic research in the field to improve the
accuracy of transmission models.
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