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(ABSTRACT)

The focus of this thesis is to present the theory and
application of a new form of multiattribute utility
optimization by way of an illustrative example, the optimal
scheduling of classes subject to professors' preferences.
This new form of multiattribute utility optimization is
based on ordinal as opposed to cardinal utility and is
defined from a corresponding integer programming model in
operations research which (1) is solved for ordinal cost
factors and (2) serves as the problem's theoretical starting
point.

It is suggested herein that one start with a

mathematical formulation that if solved in an acceptable
or——preferably--best manner would yield a satisfactory or
possibly best solution to the problem. Then, that

mathematical formulation and its solution technique defines
the multiattribute utility problem and its solution at
issue. This is the reverse of what is usually done; and as
will be shown, doing this can be quite fruitful.
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The illustrative example concerns a mathematical 1

formulation based on operation research's assignment 1

problem. As will be argued, the cost factors must be
ordinal, which essentially corresponds to using ordinal
utility; hence the technique will be framed in the realm of
ordinal utility.

The technique for solving the illustrative example's
mathematical formulation is to achieve a premium mix of
operations research solution properties. From this
perspective, some sticky issues in multiattribute utility
theory when the attributes involve the preferences of
distinct persons are not included in the philosophical base
for the multiattribute utility problem and its solution
thusly defined.
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CHAPTER 1

INTRODUCTION

1.1 Preliminary Statements

The focus of this thesis is to present the theory and
application of a new form of multiattribute utility
optimization by way of an illustrative example, the optimal
scheduling of classes subject to professors' preferences.
This new form of multiattribute utility optimization is
based on ordinal utility as opposed to cardinal utility and
is defined from a corresponding integer programming model in
operations research which (1) is solved for ordinal cost
factors and (2) serves as the problem's theoretical starting
point; to be noted is that these considerations are new to
this thesis.

Section 1.2 will present comments on the proposed
approach. Section 1.3 will then present introductory
remarks on the illustrative example.

1.2 Comments on the Proposed Approach
In multiattribute utility optimization—-particularly

for the additive form which is at the heart of the analysis
in this thesis--the problem at issue is defined and then a
corresponding mathematical formulation is sought through
which standard algorithms can be applied to yield the

1
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desired answer. The mathematical formulation usually lies Tin the area of operations research methodology.
Traditionally, multiattribute utility theory requires

the use of cardinal utility for the problem and its solution
to be well—defined. And without the problem and its
solution being well—defined no mathematical formulation
follows.

However, as a new approach to defining the
multiattribute utility problem and its solution, it is
suggested herein that one start with a mathematical
formulation that if solved in an acceptable or——preferably—-
best manner would yield a satisfactory or possibly best
solution to the problem. In such a case, that mathematical
formulation and its solution technique would define the
multiattribute utility problem and its solution at issue.
It is to be emphasized that this is the reverse of what is
usually done; and as will be shown, doing this can be quite
fruitful.

The illustrative example which is introduced in Section
1.3 concerns a mathematical formulation based on operation
research's assignment problem, which is an integer
programming problem. As will be argued, the cost factors
for that formulation must be ordinal, which essentially
corresponds to using ordinal utility; and hence the
technique will be framed in the realm of ordinal utility.
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The technique for solving the illustrative example's

mathematical formulation is to achieve a premium mix of
operations research solution properties.

With acceptance of the mathematical formulation and
its solution technique, not only is a corresponding
multiattribute utility problem and its solution well-
defined, but it is well-defined for ordinal utility. And
because the approach is developed from the perspective of
achieving a premium mix of operations research solution
properties, some sticky issues in multiattribute utility
theory when the attributes involve the preferences of
distinct persons are not included in the philosophical base
for the multiattribute utility problem and its solution
thusly defined.

1.3 Introductory Comments on the Illustrative Example
Ostensibly, the university schedules classes mainly to

accommodate the needs of its students. For example, for
graduate courses the classes are generally scheduled in the
evening time slots. Furthermore, effort is made so that
schedule conflicts between courses do not occur; i.e.,
classes which students can take simultaneously during a
semester are not scheduled at the same time. The university
must accommodate the students to those extents, and in some
other ways, to remain competitive with other universities
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that also seek to draw the most desirable bodies from the
same pool of talent.

But, for the cream of pickings with respect to the
professors from whom the university can draw to provide the
bulk of its services, the university must also make
accommodations to the professors, and it does this by

granting perquisites to the professors. For example, a long
established perquisite is the allocating of parking spaces
to professors in such a way that the professors park closer
to the university——or in other ways realize a parking
advantage——over the students.

Seen in the above light, the problem of scheduling
classes optimally is a people problem. Both students and
professors need to be accomodated for any sense of

optimality to be achieved. Previously, the needs of

students have been explicitly taken into consideration.
However, in no case of which this researcher is aware are
the preferences of professors explicitly taken into account,
except secretly and almost certainly suboptimally.

A goal of this thesis is to determine an efficient
model (or way) of taking professors' preferences into

account that yields chances of having professors being

maximally happy——as a group--with the time slots to which
classes they teach are assigned, without detracting from the

scheduling concessions the university must make to the
students to be competitive in filling those classes with
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qualified students. The method must not be limited to any
one particular set of concessions the university should or
will make to the students, and in that sense will be very
general.



CHAPTER 2

THE CLASS SCHEDULING PROBLEM AS AN APPLICATIONOF THE ASSIGNMENT PROBLEM IN OPERATIONS RESEARCH

2.1 Introduction

In the Spring 1986 semester at George Mason University
(GMU), a group of students in the OR—743 Applications of
Management Science class taught by Dr. Hoffman performed a
study on class scheduling from the perspective of
professors. Their efforts revolved around an application of
what is termed, in operations research, an assignment
problem. As a part of their efforts, the concept of ordinal
cost factors——i.e., cost factors whose value is determined
largely by their ordinal ranking--was introduced as an
important step in arriving at a solution to the class
scheduling problem.l

The purpose of this chapter is to show (1) a variant
(modification) of the assignment problem formulation is the
best know model for addressing the class scheduling problem,
and (2) the cost factors for that formulation must be
ordinal.1The

concept of using ordinal cost factors in conjunctionsmiththe assignment problem was developed by Edward Hirschman in 1986.
6
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Section 2.2 of this chapter will present the variant of I

the assignment formulation--constituting the class
scheduling model-—proposed by this document.

Section 2.3 will place the variant proposed in Section
2.2 into the context of the general class of problems to
which it belongs and will present an argument why this can
be considered the best model the current state-of-the-art in
operations research has to offer for solving the class
scheduling problem.

Section 2.4 will argue why the cost factors for the
class scheduling model must be ordinal.

Section 2.5 will summarize this chapter.

2.2 The Proposed Class Scheduling Model
The class scheduling model proposed by this document

iS:
m nMinimize E E cij xij

i=l j=l

subject to
n

j—1

m
iilxijskj, j=1, 2,..., n (2)

where:
1 if course i is given during period jx..=1] O otherwise
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m is the number of courses in a given semester.
n is the number of time periods available for classes.
k- is the maximum number of classes given during timeperiod j.

cij is the cost factor determined in accordance witheach faculty member's stated preferences.
Constraints (l) require that each course be taught

exactly once during the semester. If two or more sections
of a given course are to be offered, each section is to be
regarded as a distinct course. Constraints (2) limit the
number of courses which can be given during each time period
(this number is not necessarily the same for each time
period). A constraint of type (3) is required for each pair
of courses, i and p, which should gg; be given during
conflicting time periods j and k, where j may or may not
equal k. This last set of constraints reduces or, possibly,
eliminates the probability of schedule conflicts for the
students and professors. The constraints of type (3) used
for the students would typically have j=k. However, j need
not equal k for the constraints of type (3) used to avoid
conflicts for the professors; e.g., j and k could be

neighboring periods (we might not want professors to teach
two classes back-to-back). A fourth type of constraint will
on occasion be added to the above list of three constraint
types, because it will sometimes be necessary for ensuring
that a particular class will, independent of all other
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considerations, not be taught at a particular time; this
constraint takes the form:

Xlqz

Oforwhich course 1 cannot be taught during period q.
The cost coefficients are derived from the faculty's

stated preferences for time periods with regard to specific
courses. Assigning values to the cost coefficients will be
addressed in detail in Chapter 4.

It is mentioned here--so as to minimize future chapter
shock——that the parameter n and indices i and j are used
differently in Chapter 3 from here. One reason for the
difference is that the presentation in Chapter 3 need not be
limited to a variant of the transportation formulation, as
is the case here.

To be noted is that the class scheduling model is the
starting point of all analysis and theory. when solved,
this model and its solution technique will define a
corresponding multiattribute utility optimization problem
and solution.

2.3 A Discussion Regarding the Class Scheduling Model
According to Luenberger (1984: second edition), the

assignment problem is a special case of the transportation
problem, arising for two reasons. The first is that the
application areas are usually quite different from those
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areas for which the more general transportation problem is
utilized. Second, the structure of the problem is of
theoretical importance.

Classically, the assignment problem is concerned with
optimally assigning n workers to n jobs. Should worker i be
assigned to job j, a cost of cij accrues. Each worker is to
be assigned to exactly one job, and each job requires that
one worker be assigned to it.

According to Luenberger (1984: second edition), the
assignment problem's formulation—-as determined by
motivating examples——is to find xij, i=1, 2,..., n; j=1,
2,..., n, to

n nMinimize .2 .2 cijxij
j=l 1=1

subject to
n

.2 xij=1, i=1, 2,..., n
j=l

n.2 xij=1, j=1, 2,..., n
1=1

xijQ{ 0, 1} V1, j.

Other books discussing the assignment problem and
presenting a definition for it include Cooper—Steinberg
(1974), Bazaraa—Jarvis (1977), and Taha (1982: third
edition). That the assignment problem is fundamentally
known and of basic importance to the operations research
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discipline is attested to by the fact that the problem is

addressed by and defined in Bronson (1982) as part of a book

included in Schaum's Outline Series.

To be noted is that the number of workers is assumed to

be equal to the number of jobs.

As presented by Cooper—Steinberg (1974), the general

transportation problem is as follows:

n mMinimize lg UE cijxijj-1 1-1

subject to

xijsai, i=l, 2,•••, m
j=1

m
j=l, 2,•••, I'].

1=1

xijzü i=1, 2,..., m; and j=1, 2,..., n.

According to Taha (1982: third edition), before the

assignment problem model is able to be solved by the

technique used for the transportation problem the problem

must be balanced; i.e., the number of workers must equal the

number of jobs. If such is not the case, then both Taha

(1982: third edition) and Bronson (1982) discuss adding

fictitious workers or jobs as a means of balancing the

problem.

There exist efficient, specialized techniques for

solving the classical assignment problem--such as the
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Hungarian technique [see Luenberger (1984: second
edition)]-—but these techniques also tend to trade-off on
the problem being balanced.

To make the class scheduling problem conform to a
classical assignment problem formulation, both fictitious
time periods and fictitious classes would have to be
created. This has been avoided, and the problem greatly
reduced in size, by slightly modifying the formulation.
Therefore, a decision was made to use generalized integer
programming solution techniques and not techniques peculiar
to efficiently solving the assignment problem, because with
the modifications, the solution effort is expected to be
more efficient for the variant than going through what is
necessary to make the classical assignment problem's
peculiar solution techniques applicable.

By modifying the problem, the analysis is in part
reverted back to the basic transportation formulation.
However, the spirit of the assignment problem is maintained
even though the basic structure is not, because the class
scheduling application area is still typical of the areas
handled by the assignment problem. Indeed, as mentioned
earlier in this section, the class scheduling problem gap be
formulated as a classical assignment problem; unfortunately,
the classical formulation for the class scheduling problem
could be three or four times the size of the variant's
formulation.
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The class scheduling problem has been identified as to
l

the class of problems to which it belongs; and therefore
expectations arise as to what can be done to solve the
problem. The modifications made to the classical assignment
problem formulation are simple and straightforward. And,
with the exception of the cost factors, everything can be
known in exactly the form and manner which is desired. A
model can be better for the class scheduling problem only if
either of two events occur: (1) the formulation is made
simpler (i.e., written more succinctly or employing a more
efficient solution technique), or (2) a better approach to
the use of cost factors is made or the cost factors are done
away with altogether.

with regard to the first event, no simpler formulation
is currently known. In fact, the problem is already so
succinctly written that it is difficult to even imagine how
it could be better written. That a formulation may be found
for a more efficient solution technique is minimized in
importance by the fact that the associated computer program
was successfully run on an IBM PC (with 512K RAM and math
coprocessor) using SUPER-LINDO2—-which was done by the group
of students doing the initial study in the OR-743 Spring

2SUPER—LINDO is a version of LINDO having capability forhandling larger ‘problems than. LINDO can handle. LINDO is acomputer program that solves linear, integer, and quadraticprogramming problems. For more information on LINDO--and hence onSUPER—LINDO—-see Schrage (1986).
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1986 semester class at George Mason University. Hence, with
regard to the first event, the class scheduling model can,
by default, be considered the best formulation according to
the current state-of-the—art in operations research.

with regard to the second event, it must be observed
that the cost factors as used in the initial study (and as
will be used in the currently proposed procedure) reflect
the disutility of assigning a class to a particular time
slot. Some measure of cost is needed; otherwise there could
be no objective function. The problem, as originally
conceptualized in 1986, looked at the professors' utility of
having certain classes assigned to certain time periods.
There is no problem here, because if considering utility is
feasible, a measure of disutility can be constructed from
it. Note, however, that considering utility cannot be
avoided because the purpose of the project is to formulate a
schedule according to the wants and desires of the
professors. wants and desires necessarily involve utility.
Consideration of cost is necessary for obtaining an
objective function, and using utility (or disutility) for
cost is inherently mandated by the problem's goal.

Therefore, a formulation employing one and only one--
and unfortunately unavoidable--weak element is proposed as
being the best model for addressing the class scheduling
problem. It is a simple and straightforward variant of the
assignment problem, arrived at by slightly modifying a
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structure that is capable of being expressed in a classical l

assignment problem formulation. The preponderance of
evidence is that the basic model proposed by this class
scheduling study is the best that operations research's
current state-of—the—art has to offer.

It cannot be emphasized strongly enough that the class
of operations research problems to which the class
scheduling problem belongs is known. From this knowledge,
there arises reasonable expectations on the limitations of
what can be done. That the class scheduling model can be
regarded as the best that can be done in part arises form
taking these expectations into consideration.

2.4 Establishing That the Cost Factors Must Be Ordinal
In Section 2.3, it was forwarded that the best model

for class scheduling that the current state-of—the—art in
operations research has to offer must utilize cost factors
that involve utility. Therein, it was alluded to that the
utility must be those of professors. Herein, that
assumption will be gradually relaxed, and the possible
source for the utility scale to be used for determining cost
factors will include that scale of or assigned by anyone.

Economists, today, are surprisingly in strong agreement
with regard to cardinal utility-—that is, utility expressed
in units reflecting strength of preference. It does not
exist as a measurable entity. Gisser (1981) writes, simply,
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"utility cannot be measured cardinally. At least no method
has been invented to date." Similar sentiments are echoed
in Hirschleifer (1980: second edition), Maurice-Phillips-
Ferguson (1982: fourth edition), and McCloskey (1982). It
would be an easy effort to find dozens more economics books
taking the same position.

For a strong argument, a tolerant attitude will be
manifest in this section, and though utility will not be
assumed to be measurable cardinally, cardinal utility for a
single individual will be assumed to exist at a point in
time, at least to the extent of being known to that
individual. Furthermore, the numbers the individual states
as being his cardinal utility will be assumed to be able to
be manipulated cardinally, as long as two or more cardinal
sets of utility numbers from two or more individuals are not
blended into a single weighted set of cardinal utility
numbers.

The latter condition is assumed because interpersonal
comparison of utility numbers are currently not possible.
This is seen by observing that while a set of cardinal
utility numbers may be stated by one person, and another set
of cardinal utility numbers be given by another person, to
be cardinally combined the scales underlying both sets must
be related to one another. But there is no known way a
person can express what his cardinal scale is such that it
can be related cardinally to the scale of another.
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According to present knowledge, interpersonal comparison of
utilities is not possible.

As an example of why interpersonal comparison of

utilities is not possible, consider the following. Suppose
an individual states the utility he derives from drinking
one cup of tea by itself is five utils, and one cup of tea
and one doughnut is nine utils--both on his personal

cardinal utility scale. Suppose that another individual--on
his own personal cardinal utility scale-—derives five utils
from one cup of tea and eleven utils from one cup of tea and
one doughnut. gf the second individual's utilities were to
be put on the same cardinal utility scale as that for the
first individual, he might be said to derive seven utils

from one cup of tea and eight utils from one cup of tea and

one doughnut; we cannot know this however. All we can know
is that the first person gave personal cardinal utilities of

five and nine utils, respectively; and the second individual

gave personal cardinal utilities of five and eleven. If
each person had one cup of tea only, on the first person's
cardinal scale the aggregate utility is actually twelve

utils; but how is that to be determined from the cardinal
numbers stated by both individuals? As can be appreciated

from the preceding, there is no way to measure the

underlying scale-—which is what is really meant by cardinal

utility not existing as a measurable entity--and therefore,
the two fives, measured on different and nonmeasurable (with
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respect to an outside observer) scales, cannot be combined
to yield the twelve utils to which they would aggregate in
terms of the first person's scale if the underlying scales
were known.

Now, on the class scheduling project, it will be
assumed that each professor would want "equal" weight given
to his utility preferences with respect to those of his
peers. However, there is more than one professor, and on
the basis that their scales are not cardinally relatable to
one another, any blending of their expressed utilities would
ngt be cardinal or else interpersonal comparison of
utilities would be sanctioned as a possibility, which would
contradict the fact that such has been ruled out.
Therefore, cost factors reflecting utility cannot be
cardinal when the cardinal utilities of two or more
professors are considered simultaneously.

To be contemplated, a way around this dilemma would be
to have the analysts assign cardinal cost factors based on
what the professors' stated preferences are as made known to
the analysts. But where there are two or more analysts,
interpersonal comparison of assigned (or imputed) utilities
would be assumed; and the scale underlying the cardinal
assignment by one analyst cannot be, by any known means,
related to the scale underlying the cardinal assignment by
another analyst. Again, any blending of utilities must be
ordinal.
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To be considered, another way around this dilemma might
be to set up a dictator to impose cardinal cost factors.
This can be a dictator such as the head of the college
department in question (a professor with powers and
authority over and above the professors expressing cardinal
utilities); and this dictator can state what cardinal cost
factors he wants to assign based on what the professors'
stated preferences be. gg, the dictator can be from the
group of analysts, gg anyone else-—but that dictator's cost
factors would be cardinal as his assignment based on what
the professors' stated cardinal preferences be. (Remember,
what the professors' stated cardinal preferences are is what
is driving the whole mechanism.)

There are two problems with the dictator way out.
First, how is the dictator to be chosen? Politics and
maneuvering on choosing a dictator--one whose assignment
schedule is anticipated as part of the process of resolving
who the dictator will be--will in essence mean that the
dictator will have an assignment schedule best satisfying a
group and not that of a single individual. This blending
invokes criticism that an interpersonal comparison of
utilities has been imposed as part of the appointment--if
the assignment is regarded as cardinal. Hence, this chosen
dictator's scale must be considered ordinal, not cardinal.

Second, suppose that there has always been a dictator
to handle such matters as an assignment of cardinal cost
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factors (the dictator is ngt to be chosen). Again problems
are run into. Hirschman (1986) has rigorously proven that
utility-—particularly utility manifest in the marketplace--
is affected by opportunity cost. This dictator will be in a
situation where he will have his assignment affected by
opportunities that are present. For example, if the
dictator were the head of the college department, he would
take into consideration keeping professors under him happy.
If the dictator were head of the team of analysts, that
dictator would want to keep his team happy. Because
opportunities perceived by an individual (the dictator, for
instance) are constantly changing, the assignment of
cardinal cost factors is constantly changing. In
conjunction with this, the fatal blow is finally delivered
by James Buchanan of the Public Choice Center located at
George Mason University. In his work attempting to
rigorously define an individual, he has strongly
substantiated that an individual today is not the same as an
individual tomorrow. Therefore, at two points in time, a
single individual must be regarded as two different,
distinct individuals. Therefore, not only are the cardinal
assignments constantly changing, but the underlying scale is
changing, as well. A dictator over time, with varying
scales, may state what his cardinal assignment is at any
point in time, but that assignment does not have cardinal
content when considered over a nonzero-lengthed period of
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time——or else an interpersonal comparison of utilities (with
regard to the dictator's utility at one point in time being
compared to that dictator's utility at another point in
time) would again be invoked, reaching a contradiction.

All the possibilities have been considered, and even
with a permissive and tolerant set of assumptions the cost
factors must be regarded as being ordinal, ggg cardinal.

2.5 Sumary

In Section 2.2 of this chapter, the class scheduling
model proposed by this thesis for adoption and
implementation was presented.

In Section 2.3, the operations research class
scheduling model was discussed in detail, explaining why
this variant of the assignment problem can be regarded as
the best method that the current state—of—the-art in
operations research has to offer.

In Section 2.4, all possible manners of assigning cost
factors for the class scheduling model were considered, and
even with a permissive and tolerant set of assumptions it
was found that the cost factors must be regarded as being
ordinal, ngt cardinal.
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CHAPTER 3
ORDINAL COST FACTOR THEORY

3.1 Introduction

In this chapter, the properties of ordinal cost factors
will be investigated.

Section 3.2 of this chapter will present a drawback
following from utilizing ordinal cost factors.

Section 3.3 will present what is an accepted way in the

literature of operations research of addressing the drawback
with regard to a similar situation and how the class
scheduling situation can be related to that situation.
Then, the desirable properties that the class scheduling
ordinal cost factors have will be discussed and elaborated
upon.

Section 3.4 will summarize this chapter.

3.2 A Drawback Following From Utilizing Ordinal Cost
Factors

To make the problem of considering the properties of
ordinal cost factors more tractable, a restriction will be
imposed on the type of problem to be considered (it will be
restricted to being a zero-one integer programming problem)

and a restriction will be imposed upon the set of feasible
solutions (all feasible solutions will have the same

l

(
)22 )
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cardinality; that is, all feasible solutions have a

constant, specified number of ones). without question, the

class scheduling problem satisfies both restrictions.

For ease of exposition, the following notation will be

introduced:

Cl C2 ••••••• Cn

X11 Xzl ••••••• Xnl

XlzX22For

the above, (xij, x2j,..., xnj) is a specific feasible
solution for the complete set of n variables; and we

consider only two feasible solutions. Xij are assigned only

the numbers O or 1. The subscript i is used to denote the

ith variable--from the complete set of n variables. The

subscript j is used to differentiate between feasible

solutions; and in what follows, only two feasible solutions

are considered--meaning j=l or 2. A value of zero for xij

means the variable i does not occur "as a happening" in the

jth feasible solution. A value of one for xij means the
variable i does occur "as a happening" in the jth feasible

solution. Occurring "as a happening" for a variable means

that the event represented by the variable takes place

(e.g., the class is taught in that particular time slot).

For simplicity, the event associated with xkj is at least as

preferred to (is as desirable as) the event associated with

xij if i>k. In that case, the ordinal number associated
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with xij——ci-—will be greater than or equal to the ordinal
number associated with xkj--ck; that is, cizck. If xij and
xkj are equally preferred events, they are grouped as
immediate neighbors into a cluster of events indifferently
ranked and ci=ck. The value of the objective function for
feasible solution (xlj, x2j,..., xuj) is

iäl cixij.
Now, with the matter of notation taken care of, the

substance of this section will be addressed.
Consider the problem:

C1 C2
O l

l O
where the two feasible solutions depicted above are the only
two feasible solutions admissible to the problem.

Because cä, by convention, is always greater than or
equal to cl, IE cixil is always greater than or equal to
_§ cixiz. Theäegore, as long as the ordinal ranking is
priserved, here is a case where any ordinal set of numbers
will give the same result as the unique cardinal set of
numbers which is the desired set.

That result can be shown to be true even for more
complex problems, such as:

Cl C2 C3 CA C5

l O O l l
l l O O l
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where the two feasible solutions depicted above are the only
two feasible solutions admissible to the problem.

In the immediately above problem, it is noted that the
one in question (i.e., the one associated with ch) "travels"
in only one direction (towards being the one associated with
C2)•

That many ones may travel in only one direction and the
solution arrived at for any order preserving set of ordinal
numbers be the same as the desired set of cardinal numbers
is next revealed through the following example:

C1 C2 C3 C4 Cs
1 O 0 1 1
1 1 1 O O

It would seem reasonable, therefore, to conclude that
if each feasible solution can be related to all other
feasible solutions in the set such that the ones "travel" in
only one direction when comparing one feasible solution to
another, it would be largely demonstrated that all the
advantages of working with cardinal numbers would be
preserved when working with order preserving ordinal
numbers. That hope, however, is dashed when the following
example is considered:

C1 C2 C3 C4
1 O O 1

O 1 1 O
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To get from the feasible solution associated with j=1
to the feasible solution associated with j=2, it is found
that the ones must travel in an opposing, ngt the same,
direction.

To see what the possible impact of this could be,
various values for the ci’s

were tried. For example,
consider:

1 2 8 12

1 O O 1

O 1 1 O

4 4Here, iElcixil=13 and i§lcixi2=1O. Therefore, the first
feasible solution yields a higher objective function value
than the second feasible solution.

Now, consider the following problem, where only the
cost factors have been changed from the immediately
preceding problem:

1 2 3.5 4

1 O O 1

O 1 1 O

4 4Here, iElcixil=5 and iElcixi2=5.5. Therefore the second
feasible solution yields a higher objective function value
than the first feasible solution.

Only the cost factors have changed, yet an alternative
feasible solution has been selected as yielding a higher (or
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ordinal numbers that are assigned as cost factors will
determine what the optimal solution will be. Therefore,
there can be competing optimal solutions, ggg they ppp be
substitutes for one another.

An alert reader will now realize why an effort was made
to show that the model suggested by this thesis and
associated ordinal cost factors are the best that can be
done for the class scheduling problem--at least, the best
that can be done in accordance with the current state—of—
the-art in operations research. The reason for that effort
is that it becomes apparent that there is pp conventional
operations research solution possible for the class
scheduling problem. New criteria of arriving at and for
accepting an optimal solution must be established.

3.3 Desirable Properties That the Class Scheduling Ordinal
Cost Factors Have

While the drawback cited in Section 3.2 of this chapter
is severe, all is not lost. Resorting to decision theory,
that body of operations research occasionally uses what is
known as the "principle of insufficient reason" in analysis.

That principle is named the Laplace Criterion. (See Taha,
1982: third edition; pp. 434-5.) While the situation to
which the Laplace Criterion is classically applied is not
exactly comparable to the situation of the class scheduling
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problem, striking similarities do exist. Taha (1982: third
edition) writes: "Since the probabilities associated with
the occurrence of [states] 61, 62,..., and 6n are unknown,
we do not have enough information to conclude that these
probabilities [associated with those states] will be
different.... [Because] of insufficient reason to believe
otherwise, the states 61, 62,..., and 6u are [regarded as]
equally likely to occur." with that precedent to fall back
upon, similar reasoning applied here would have cost factors
selected such that no cost factor is weighted greater than
any other cost factor. To do this would require equal
spacing between all adjoining cost factors for which a
difference in preference is to be registered, and identical
values for adjoining cost factors for which there is no
difference in preference.

But two questions immediately come to mind: (1) does
the starting value (that is, the value assigned to the
smallest cost factor) affect which feasible solution is
selected as optimal, and (2) does the size or length of the
space between adjoining distinct cost factors affect which
feasible solution is selected as optimal? As the reader
shall see, the questions are not moot. However, for a

suitably restricted problem the answer is, fortunately, "no"
for both questions, and therefore the considered adaption of
the Laplace Criterion is feasible, reasonable, and effective
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for the class scheduling problem. A "suitably restricted

ä

problem" is herein regarded as one that is both (1) a zero-
one integer programming problem and (2) a problem for which
all feasible solutions have a constant cardinality (that is,
they all have the same number of ones).

First to be considered is whether the lowest value for
cost factors affects which feasible solution is selected as
optimal. It is to be recalled that the spacing between all
adjoining cost factors is equal and nonzero if there is a
difference in preference rankings for the two events (and
the cost factor values are identical for cost factors when
there is an associated indifference in preference); and for
the analysis here the length of the space is held constant
under translation (shifting). Therefore, if the starting
value is shifted 5 units to the left (made smaller by 5
units), all the cost factors are made smaller by 5 units.
Each feasible solution has the same number of ones; and for
each 1, the objective value is reduced by 5. If, for
instance, there are three ones in each feasible solution,
then the overall objective value will be reduced by a
constant 3*5=15 for each and every feasible solution.
Clearly, the feasible solution selected as optimal will not
change, because the rankings of objective function values
associated with the feasible solutions will not change.

The reader is asked to note that constant cardinality
for all elements of the set of feasible solutions is
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important in the immediately preceding argument. He/she
will now note that if, for instance, one feasible solution
has three ones and another feasible solution has four ones
and furthermore that these are the only two feasible
solutions to the problem, the aforementioned result need not
hold. The demonstration is as follows: For a specified
lowest value of the cost factors, let the feasible solution
with three ones have higher objective function value than
the feasible solution with four ones; and suppose the
difference is y units. Now, translate the cost factors to
the right by y+l; that is, make each of the cost factors
larger by y+l. The feasible solution with four ones will

‘

have objective function value increase by 4y+4, but the
feasible solution with only three ones will have objective
function value increase by only 3y+3. Therefore, the
feasible solution with four ones will now have a higher
objective function value than the feasible solution with
three ones (and the difference will be one unit).
Therefore, a different feasible solution can be selected as
being optimal from the set if the feasible solutions do not
have constant cardinality over the entire set of feasible
solutions and the cost factors are translated similarly as
indicated above.

Second to be considered is whether the size of the
spacing between adjoining cost factors affects which
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feasible solution is selected as optimal in a suitably
restricted problem.

Using the notation of Section 2 of this chapter,
consider the problem:

Cl C2 • • • • Cn

X11 X21 ···· xnl
Xlz X22 • • •

•withequal spacing between adjoining ci's having an
associated difference in preference ranking (and adjoining
ci's are identical if there is indifference associated in
preference ranking); this will hereinafter be referred to as
uniform spacing.

More specifically with regard to uniform spacing (and
utilizing the notation in Section 3.2), for all adjoining
events for which it is kggwg or assumed those events are
equally preferred to one another, have those events all have
the same cost factor. There is no uncertainty involved
herein and therefore there should be no detectable
difference in the value assigned to these cost factors.

This will lead to clusters of events, one cluster strictly
preferred to another, and there be uncertainty how the

clusters actually relate to one another in magnitude. Here,
we want to have cost factors associated with clusters be

equally spaced; i.e., equal spacing between all adjoining
distinct cost factors. An example of this
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might be:

gl 2dl 3dl 3dl 4dl 5dl 5dl 5dl 6dl
X11 X21 x3l X41 X51 X61 x7l X8l x9l
X12 X22 x32 X42 X52 X62 x72 x82 x92

Wh,€I'€
X3l"'XAl,X6l“X7l”X8l,
andNow,consider two distinct spacings: dl and dz. The

property that the suitably restricted problem can be
translated without affecting which feasible solution will be
selected as optimal leads us to consider the following two
problems which shall be compared:

Bzdl ßgdl • • • • • • • • • • ßnal

X11 X21 X3l • • • • • • • • • • Xml fOI°mU.latiOn
#1

X12 X22 X32••••••••••and

• • • • • • • • • • Bnal

xll xzl x3l .......... xnl formulation
#2X12 X22 X32••••••••••where

dl and dz are two distinct spacings, ßl=l and for
i=2,...n:

Bi_l, if event xi’l is equally preferredwitheventB-=
1

ßi_l+l, if event xi’l is strictly preferredto event xi_lJn

p The reader is asked to note that any suitably
restricted problem with uniform spacing equal to al can be
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translated to formulation #1 above where both the

translation and any original set of ci's will yield the same

feasible solution as being optimal. Furthermore, any

suitably restricted problem with uniform spacing equal to dz

can be translated to formulation #2 above where both the
translation and any original set of ci's will yield the same

feasible solution as being optimal.

Now, note that there exists a z such dz = z*di.
Therefore, formulation #2 can be rewritten as

formulation #3 below:

z*Bici z*B2di z*B3di .......... z*B¤gi

xil xzi xgi .......... xni iärmulation

Xlz X22 X32 •••••••••• Xnz

where dl and Bi are defined as for formulations #1 and #2,

and where z is defined such that dz = z*di.
From formulations #1 and #3, it is readily seen that

all feasible solutions with ci's having spacing di here have

objective function value ig cixii, whereas all feasible
solutions with ci's having_;pacing dz here have objective

function value 2*.; cixii, where ci is defined the same for
both formulationsl#l and #3. Therefore, as long as z is

greater than zero, formulations #1 and #3 will lead to the

same feasible solution selected as being optimal. (The

concept of length requires that z be nonnegative.)
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The reader should now take stock of what is done
regarding uniform spacing of the ci's. First, any suitably
restricted problem with uniform cost factor spacing cl is to
be considered. The problem is then to be translated to
formulation #1. Then formulation #1 is to be compared to
formulation #3 (which is identical to formulation #2). Then
formulation #2 is to be translated to any suitably
restricted problem with uniform cost factor spacing a2. At
all pairwise comparable steps, the same feasible solution is
selected as being optimal for both elements of the
intersystem pair. Therefore, under the suitable
restrictions, all positive uniform spacings between the cost
factors yield the same feasible solution as being optimal.

The reader is asked to note that the use of
translations was important to proving the property

associated with regard to spacing. In those situations
where the desirable properties for translations do not hold,
nothing has been said with regard to how changing the
spacing affects selection of the optimal solution from the
set of feasible solutions.

3.4 Summary

In Section 3.2 of this chapter, it was shown that the
ordinal numbers that are assigned as cost factors will
determine what the optimal solution will be. Therefore,

1
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there can be competing optimal solutions, and they not be
substitutes for one another.

In Section 3.3, it was pointed out that while the
drawback cited in the immediately preceding section is
severe, all is not lost. Resorting to decision theory, that
body of operations research occasionally uses what is known
as the "principle of insufficient reason" in analysis,
otherwise known as the Laplace Criterion. With that
precedent to fall back upon, similar reasoning applied here
has cost factors selected such that no cost factor is
weighted greater than any other cost factor. To do that
requires equal spacing between all adjoining cost factors
for which there is a difference in preference, and no
spacing between adjoining cost factors for which there is no
difference in preference; this is when the corresponding
events are ranked in ascending order of preference, for
example--or, alternatively, in descending order of
preference.

But two questions immediately came to mind: (l) does
the starting value (that is, the value assigned to the
smallest cost factor) affect which feasible solution is
selected as optimal, and (2) does the size or length of the
space between adjoining cost factors affect which feasible
solution is selected as optimal? As the reader saw, the

questions were not moot. However, for a suitably restricted
problem the answer was, fortunately, "no" for both
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questions, and therefore the considered adaption of the
Laplace Criterion is feasible, reasonable, and effective for
the class scheduling problem. A "suitably restricted
problem" is herein regarded as one that is both (1) a zero-
one integer programming problem and (2) a problem for which
all feasible solutions have a constant cardinality (that is,
they all have the same number of ones).
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CHAPTER 4

PROCEDURE TO ASSIGN THE ORDINAL COST FACTORS

4.1 Preliminary Statements

In this section, the discussion will be general and
abstract. In the next section of this chapter, the
discussion will deal more concretely with the class
scheduling problem which is the focus of this thesis.

In assigning ordinal cost factors to events, all events
first must be assembled into an overall array of ascending
or descending preference. In this array, collections of
events which are indifferent to one another by assumption
are then grouped into clusters (of events) for which
neighboring clusters depict adjoining, nonzero—differenced
levels of preference.

Next, starting with the most (or least) preferred
cluster, assign that cluster a "1" as the ordinal cost
factor for the events of which it is comprised. Then, a "2"
is assigned to the next most (or least) preferred cluster as
the ordinal cost factor for the events of which it is
comprised. Continuing down the array, then assign a "3,"
"4," and so on until all clusters have been assigned a cost
factor for the events of which they are comprised.

In Table 1, an array of clusters with associated
ordinal cost factors assigned to them is portrayed.

37
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Table 1
An Array of Clusters with Associated Ordinal Cost Factors

The Ordinal Cost Factor
to Assign to Events in
the Respective Cluster The Respective Cluster

1 Cluster #1
2 Cluster #2
3 Cluster #3 F

n Cluster #n

Where, for a minimization problem, Cluster #i)> Cluster #j
when i < j. For a maximization problem, Cluster #1}
Cluster #j when i > j. A cluster may be comprised of one or
more events.
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4.2 A Concrete Discussion Regarding Assignment of the CostFactors

Let a particular class being taught at a particular
time be a specific event. These events will be assigned a
level of preference according to the satisfaction--in
ordinal terms-—that the professor derives from the teaching
that class in the time period during the semester in
question.

For each class in the test of the model described in
the next chapter, the professor assigned to teach that class
will state the time period he would most prefer to teach
that class for the particular semester which is involved;
then the second most preferred time period; and so forth
until the five most preferred time periods for that class
for that professor for the particular semester which is
involved have been stated and ranked.3 Note that the
stating and ranking of the five most preferred time periods
is arbitrary, and any number could be satisfactory.

Once the professors have each stated and ranked the
five most preferred time periods according to their personal
preferences, these may be assembled into clusters. An
example of an appropriate collection of clusters is:

Cluster #1: the set comprising the most preferred
choice of time slot for a professor, over all professors.

3Assignment of values to ordinal cost factors based upon suchrankings was first done by Larry Haynes, now*an Operations Researchand Management Science, M.S. graduate of GMU.
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Cluster #2: the set comprising the second most
preferred choice of time slot for a professor, over all
professors.

Cluster #3: the set comprising the third most
preferred choice of time slot for a professor, over all
professors.

Cluster #4: the set comprising the fourth most
preferred choice of time slot for a professor, over all
professors.

Cluster #5: the set comprising the fifth most
preferred choice of time slot for a professor, over all
professors.

The n-th cluster-—here, Cluster #6--is the set
comprising the sixth through last choice of time slot for a
professor, over all professors; this is because it does not
matter which of these possibilities occur--they are all
equally undesirable as far as the problem considered in this
thesis is concerned. Also included in the n-th cluster are
all time periods associated with classes having no
designated teacher or associated with a teacher who does not
state his/her preferences; this is because no preferential
treatment is to be accorded to any of these events, and
preferential treatment of some sort would be accorded if
they were not included in the n—th (and least preferred)
cluster.
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In Cluster #5, the following is an event:
Event #i: the fifth most preferred choice of time slot

for a professor (i.e., for the course in question, this is
the fifth most preferred time period in which to teach that
class that that professor desires); a separate event exists
for each professor for each course he/she teaches.

Each event included in Cluster #5 will have a cost
factor of 5 in the test of the model described in the
remainder of this thesis. More specifically, for the
variable associated with the fifth most preferred choice of
time slot for a particular professor, that variable would
have a cost of "5" appearing as its coefficient in the
objective function. The variable itself could be a zero—one
variable representing whether, for example, the course in
question is taught from 4:3OP.M.-7:1OP.M. on Tuesdays. (In
general, each event included in Cluster #i will have a cost
factor of i in the test of the model described in the
remainder of this thesis.)
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CHAPTER 5

COMPUTER IMPLEMENTATION OF SOLUTION TO THE CLASS
SCHEDULING PROBLEM AND A TEST CASE

5.1 Preliminary Statements

The computerization of the model as done for the test
case in this chapter and the next is via SUPER-LINDO. That
is the most appropriate package of which this researcher is

j
aware for a problem of this nature and size.

For those who wish to replicate the experiment or
duplicate the test, a "trick" employed for computerization
via the SUPER—LINDO computer package is discussed in Section
5.2.

For data to test the class scheduling model, professors
in (1) the Operations Research and Applied Statistics
Department and (2) the Systems Engineering Department at GMU
were polled regarding the five most preferred times--with
ranking——each professor would have wanted with regard to the
graduate level course(s) they were named as teaching by the
Schedule of Classes for the semester involved in the test.
The Schedule of Classes was published before the professors
were polled.

The basic framework for the test case is addressed, and
the data is given, in Section 5.3.

42
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5.2 On the Use of SUPER-LINDO

SUPER-LINDO can handle linear and integer programming
problems involving 800 variables and 2,000 constraints on an
IBM PC or an IBM clone that has at least 512K RAM and a math
coprocessor.

Because SUPER-LINDO does not have subscript capability,
the variable names are to be changed from xij to Aj, Bj, Cj,
etc. Thus, xl’1 becomes Al; x3,A becomes C4; and so on.

5.3 The Basic Framework and the Data Surrounding the TestEäää
The courses involved in the test case are all the

graduate courses at the 500 and 600 level offered by (l) the
Operations Research and Applied Statistics Department and
(2) the Systems Engineering Department at GMU-—except one--
listed in the Schedule of Classes published by George Mason
University in the semester immediately prior to the semester
involved in this test. The information in this schedule was
known to this researcher and all professors involved in the
test before any polling took place.

A decision was made to not include an introductory
course--OR—540--as part of the test because that course does
not apply towards any degree offered by the Department of
Operations Research and Applied Statistics or the Department
of Systems Engineering and therefore when it is to be
scheduled is independent of considerations driving the study
at hand.
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Between the time the Schedule of Classes was published
and the schedule was actually implemented in the involved
semester, several basic changes took place: two professors
did not teach the course they were listed to teach (but
these two courses were taught) and one course was cancelled.
For the test case, however, those changes were ignored. The
idea was to test against the original schedule utilizing
only information that was or could have been available at
the time that schedule was initially formulated and
presented for publication.

Polling of the professors took place via a
questionnaire which consisted of an instruction page and a
page containing a grid similar to that in Figure l, which
was requested to be filled in. Some additional information
was requested on the page containing the grid. An example
of a filled in grid was provided on the instruction page,
and a facsimile of that example presented to the professors
is presented in Figure 2.

On the instruction sheet given to the professors

concerning filling in the grid was the information:
For the course listed on the attached page, you are toput a "l" in the box corresponding to the time periodin which you would most like (most prefer) to teach
that particular course this semester. Then put a "2"in the box corresponding to the second most preferredtime period in which you would most like to teach thatparticular course this semester. Then put a "3" in thebox corresponding to the third most preferred time
period; and so on for the first five (5) most preferred
time periods. Please, do NOT enter numbers six througheight, as these higher numbers will not be used.
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Monda Tuesda W Th d
4:3OP.M.-
7:10P.M.

(1630-1910)

7:20P.M.-
l0:00P.M.

(1920-2200)

Figure 1

Monday Tuesda Wednesda Thursda
4:3OP.M.-
7:l0P.M.

1 3(1630-1910)
(

7:20P.M.-
10:O0P.M. 4 2 5
(1920-2200)

Figure 2 (
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The reason "this semester" was used in the instructions is
that the semester involved in the test case was in progress
at the time the polling took place.

In the example presented in Figure 2, Tuesday at
4:3OP.M.—7:lOP.M. is the most preferred time slot in which
to teach the course in question for the semester in
question.

To additionally clarify the nature of the information
gathered from the questionnaire and its grid, the numbers
under the headings 4:3OP.M.—7:lOP.M. and 7:2OP.M.—lO:OOP.M.
for the indicated day of the week depict the ordinal ranking
of preferences for teaching the course in question during
the time period in question. A "l" indicates that that is
the most preferred time period. A "2" indicates that that
is the second most preferred time period. And so forth. No
number under the time period indicated that the preference
is ranked somewhere between sixth through eighth,
inclusively.

One professor taught two classes in the involved
semester. He was given two questionnaires——each carefully
labeled as to the course it concerned-—for him to complete.
He was advised that he did not have to give the same
preference rankings for both courses; the explanation given
to him for this instruction was that his preference rankings
may, among other things, be dependent upon the course
involved.
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In Table 2, a tabulation of the professors' preferences
as stated by them on the grid concerning the respective
course is presented.

With respect to the xij mentioned in Section 5.2, the
"i" is listed under heading "Course Index Number i" in Table
2; and in that table, the j's associated with the respective
time periods and as used for the xij mentioned in Section
5.2 are specifically given.

In Table 3, the courses and the time slots published in
the Schedule of Classes as allocated to them are presented.
This correspondence is considered to be the allocation of
time periods to the courses which is "actually observed."

In Table 4, the course pairs that cannot-—or should
not-—be taught concurrently (i.e., should not be taught at
the same time) are associated with a "l"; and the course
pairs that ggg be taught concurrently are associated with a

"O." To get a "worst-case" test for the case study being
undertaken here, more pairs of courses were listed in Table
4 as "should not be taught concurrently" than might
otherwise be desirable. Table 4 circumscribes constraints
designed to accommodate the needs of the students. Other
constraints of a similar nature may be imposed on the
problem to accommodate the needs of the professors; and in

the current test, Course #3 and Course #8 were taught by the
same professor and hence were required to not be taught on
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Table 2
A Tabulation of Professors‘ Preferences

Course 4:3OP.M.-7:lOP.M. 7:2OP.M.—lO:0OP.M.ägjggrw ww w
1 5:1 5:2 5:6 5:4 *:6 5:6 5:7 5:61
---

3 u 3 2 12 3" 1 1 2 3 ·3 u 2 ~ 3 1
-

3 -—all 2 1 1
---

13 3 1 2 E-- 3
-·

Z-- 1 2 1 -I- 11 4 1 1 2
---

3ul] 2 1 1
-

1 -—1 1 3 2 1 1
__;

lO‘l<2—3·53ll

-
4
-

3 3 2 — 112 1 2
-

3 -]I- 313
-------;

14 H- 1 2 6
-

3 —
15
-

1 3 2 -]I3163
Q--

1 2 3 H

AFor course #13, no professor was listed as teachingthat course in the Schedule of Classes published for the
semester involved in this test.
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Table 3
Course Time Slots as Published in the Schedule of Classes

Course Index Published Time Slot for CourseT Number Day Time Period

4:3op.M.—7:1op.M.—
wadhasda ‘ 7:202.14.-10;001>.M.h

4;30p.1v1.-7:10p.M.
4:3OP.M.—7:lOP.M.

Wednesday

4:3OP.M.—7:lOP.M.
Wednesday 4:3OP.M.—7:lOP.M.
Tuesday 4:3OP.M.—7:lOP.M. I

7:20p.M.—10;001>.M.
7;20p.M.—10;00p.1v1.Wednesday I 4:3OP.M.-7:lOP.M..
7:2OP.M.—lO:OOP.M.

Wednesday
Thursday 4;3op.M.—7;10p.M.

7;20p.M.-10:00p.M.
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Table 4

O •—| N F') W I.!) LO•—4 N F") W lf') kO !\ r—| •-I r—·| ¤—·| r-I r-4ät -— ät -- ät ·— ät: ·— ·- ·— ät ät ät · ät ·OJ • Q) Q) G) G) Q) (D 0) Q) Q) G) CD Q) G)U) U) U) U) U) U) U) U) U) U) U) U) U) U) U)$-1 $4 $-1 $-1 $-1 $-1 $-1 $-1 $-1 #1 $-1 $-1 $-1 $-1 L1D 5 'J Z3 5 D 5 D 5 S D D I3 5 IJO O O O O O O O • O O O O O O OU U U U U U U U U U U U U U

Course #1 .

Course #2 1

Course #3 1 1

Course #4 1 1 1

###### ## EEE 1
###### ## EEE 1 1
###### ## EEE 1 1 1
###### ## EEE1111
###### ## EEEEENEE1 1 EEEEEE1 1 1 1 EE
Course#l2 1 1 1 1 1
Course #13 1 1

EEEEEEEEEEEEE1 1 EEEEEE EEE 1¤##### 1 1 EEEEEE EEE 1
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the same day so that he would not teach both classes at the

same time or back-to-back. (To be noted is that for

constraints of the type xij+xpk$l-—see Section 2.2-—only the

restrictions of classes not to be taught concurrently as

specified in Table 4 and the restriction that Course #3 and

Course #8 were not to be taught on the same day created

constraints of this nature for the test case, and where

allowed such constraints were created.)

A condition imposed in the test was that at most two

I
courses would be taught in the same time slot. Since there

were sixteen courses and eight time slots, that meant each

time slot had two classes being taught in it. It is to be

noted that with the extensive designation of course pairs

which should not be taught concurrently, in actual practice

allowance probably would be made for three or four courses

being permissible to be taught in the same time slot so that

the professors would be more likely to get their first or

second choice for time period in which to teach the course

they will be teaching. Again, however, the objective here

is to put as many and the strongest restrictions on the

problem as might ever be used so that a "worst—case" test is

performed and evaluated. Furthermore, a reason for having

at most two courses taught per time slot is so that the

courses are distributed over the time periods as widely as

possible in order to accommodate the exceptional student who



52

might desire to take a course pair concurrently when such

normally would not be desirable; e.g., one course is the

prerequisite for the other (such a circumstance might arise

when a student already has expertise in the subject area and

is merely trying to amass credits to apply towards a

degree).

Considered were 128 events each comprising a distinct

xij (sixteen courses times eight time slots equals 128

events). A distinct xij constitutes a distinct Course i
coupled with a distinct time slot j. The coefficients of

the xij for the objective function are determined from Table

2 in agreement with the example instructions in Section 4.2.

In addition to the objective function, there were 392

"subject to" constraints involved in the test case. There

were 128 zero-one variables xij as described in the
immediately preceding paragraph.

The results of the test case are presented in Chapter

6.
8



1
I

CHAPTER 6
EVALUATION OF THE CLASS SCHEDULING PROBLEM'S MODEL

6.1 Preliminary Statements

The class scheduling model forwarded in Section 2.2 was
loaded and run via SUPER-LINDO utilizing a Leading Edge
Model D micro computer with 64OK RAM and a math coprocessor.

The test case revolved around polling the professors in
(1) the Operations Research and Applied Statistics
Department and (2) the Systems Engineering Department at GMU
regarding the five most preferred times-—with ranking--each
professor would have wanted with regard to the graduate
level course(s) they taught during the semester involved in
the test. Then, in conjunction with other restrictions on
the problem imposed by this analyst, the model was run.

Section 6.2 will present the results of the run, which
will be examined against the schedule published by GMU for
the semester involved in the test.

Section 6.3 will present the man—hours and computer
time involved in the test.

Section 6.4 will then present concluding remarks for
this thesis.
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6.2 Results of the Test

The optimal class schedule determined from the run--
hereinafter referred to as the optimal schedule--is
presented in Table 5. The objective function value is 37.

Table 6 presents a course—by—course comparison of how
the schedule forwarded in the Schedule of Classes for the
semester involved in the test (referred to in Table 6 as
"Preference Rank Actually Observed") stacks up against the
optimal schedule contained in Table 5. The numbers given
under the respective schedule depict the level of
preference, according to the course's professor designated
in the Schedule of Classes, that the course's time slot
allocation achieves in the respective schedule; i.e., a "l"
indicates that the time slot allocated to the course in that
schedule is the professor's most preferred, a "2" indicates
that the time slot allocated to the course in that schedule
is the professor's second most preferred, and so on. The
professors' preferences are taken from Table 2. Note that
Course #13 is missing from Table 6; this is because no
professor was assigned to it at the time the Schedule of
Classes for the semester involved in the test was published.

In comparing the optimal schedule to the published
schedule cited as "actually observed," first noted is that
the objective function value is 37 for the optimal schedule
and a comparable value would be 45 for the published
schedule. Therefore, the optimal schedule represents
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Table 5
Optimal Class Schedule

(
Monda Tuesda Wednesda Thursda

4:30P.M.— Course #3 Course #7 Course #5 Course #4
7:lOP°M° Course #12 Course #9 Course #10 Course #15
(1630-1910)

7:20P.M.— Course #13 Course #2 Course #6 Course #1
lO:OOP°M° Course #16 Course #8 Course #14 Course #11
(1920-2200)
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6

Course Preference Rank Preference Rank
Index for Actually
Number Optimal Schedule Observed

1 1 >5

2 2 31 I 1
Ä 1 1

6 2 31
7 1 1

Ä 1 1
Ä 1 1

lO 2 6
ll 1 1
12 1 >5

14 3 3
15 2 2
16 1 2
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approximately a twenty percent decrease in objective

function value.

More meaningful statistics are as follows: in the

published schedule cited as "actually observed" there are

two professors who were assigned a time slot in their sixth-

through—eighth ranking region. There were six professors

receiving their most preferred time period, and two

professors receiving their second most preferred time

period.

In contrast, however, in the optimal schedule there

were no professors who were assigned a time slot in their

sixth-through—eighth ranking region. There were seven

professors receiving their most preferred time period, and

four professors receiving their second most preferred time

period.

In going from the published schedule to the optimal

schedule six professors were made better off, six remained

equally satisfied, and three were made worse off. Of those

made worse off, two were moved from their most preferred

time period to their fourth most preferred time period, and

one was moved from his third most preferred time period to

his fifth most preferred time period. Counterbalancing

this, two professors were moved from the sixth-through-

eighth most preferred time period region to the most

preferred time period, and one was moved from his fifth most

preferred time period to his second most preferred time
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period; at the risk of involving interpersonal comparison of
utilities, an argument could be made that these three
professors more than offset the losses of the three
professors who were made worse off-—and then there is a net
gain of three other professors who were made better off.

It should be emphasized that in the optimal schedule,
ee professor receives a time slot ranked in the sixth-
through—eighth most preferred time period region; in the
published schedule, however, there were twe professors in
this region.

The optimal schedule could have satisfied the
professors' preferences even more fully had the large number
of constraints protecting the students' needs and the
organizational and institutional requirements been relaxed.
Indeed, many of the constraints imposed in determining the
optimal schedule were not upheld in the published schedule.
For example, in the published schedule there were tttee
classes taught in the time period comprised of 4:3OP.M.-
7:lOP.M. on Thursday whereas the problem formulation for the
optimal schedule required only two classes be taught during
each time period. Had the optimal schedule been determined
when allowing three classes to be taught during a time
period, an improvement in the optimal schedule almost
certainly would have been noted. Then, there were instances
of pairs of courses being taught at the same time in the
published schedule that were not allowed to be taught at the
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same time in the constraints that yielded the optimal
schedule; by relaxing these constraints imposed on

determining the optimal schedule to the extent that they
were relaxed in determining the published schedule, again
there almost certainly would be the result of an optimal
schedule which even more would have been superior to the
published schedule.

It is to be noted that even with imposing as many and
the strongest constraints as might ever be necessary to

support students' needs and the organizational and
institutional requirements——constraints which were partially
violated in the published schedule--a superior result was
achieved by using the operations research class scheduling
model recommended in Chapter 2.

6.3 Man—hours and Computer Time Involved in the Test
Part of the feasibility of a method lies not only in

achieving superior results, but in doing so using an
efficient level of resources. This section lists the
resources employed in running the test upon which evaluation
of the class scheduling method proposed by this thesis is
based.

First, the questionnaires were initially distributed on
October 22. Approximately half of them were returned within
the ten days immediately following October 22. Most of the
rest straggled in over the two week period following the end
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of the first ten days; and the last questionnaire was not
returned until N¤vémber 19. Preparing the questionnaire
required about three man-hours; but in any event, once the
technique has been implemented and established, preparing an
appropriate questionnaire would not be a recurring
expenditure of time. Regardless, getting the professors to
fill out the questionnaires is another matter, and with
follow-ups a total of about four man-hours was expended in
getting the professors to fill out the questionnaires.

Determining the constraints to utilize in the problem
. specification phase took approximately four hours.

Loading the program comprising the test, checking what
was input to be sure it was correct, and making the run
consumed approximately six man—hours.

As far as the computer time goes, once the program was
fully loaded the run took approximately sixteen minutes
total time of a Leading Edge Model D computer having 640K
RAM and math coprocessor——during which time a hard—copy
printout of the run was made on an Epson LQ—800 printer.

Therefore, fourteen man-hours were required to fully
execute the test if the time for preparing an appropriate

questionnaire is not included, and seventeen man-hours were

required if it is. Computer time was negligible.



6l6.4Concluding Remarks

Section 2.2 proposed a mathematical model that defines
a multiattribute utility optimization problem. As a
digression, Section 2.3 argued that the mathematical model
had a strong and valid connection with the application
receiving primary focus of attention in this thesis-—optimal
class scheduling subject to professors' preferences. From
the intended application, we then saw that we were
interested in solving the mathematical model for ordinal
cost factors.

In Chapters 2 through 4, the mathematical model and its
application were presented and developed simultaneously.
That was done to promote visibility of underlying
motivations and to cut down on the extreme amount of
"dryness" that otherwise would be present. However, the
power of the philosophical base for the multiattribute
utility method espoused by this thesis is derived from first
developing the mathematical model in its bare essentials and
then applying the mathematical model to a multiattribute
utility problem which the mathematical model defines.

According to the theoretical thrust of this thesis, the
starting point of all analysis in this thesis is in the
putting forth of the mathematical model for study and
declarinq that that model is to be solved for ordinal cost
factors. This mathematical model and its solution technique
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subsequently well-defines a multiattribute utility problem

and its solution.

Once the mathematical model/multiattribute utility

optimization problem pair is established, then an

application area for the pair is sought to ensure that the

pair is useful. And for the pair established in this

thesis, the optimal scheduling of classes subject to

professors' preferences is such an application area.

The assignment model is the best model that current

state-of-the-art operations research methodology has to

offer for addressing the problem of optimal class scheduling

subject to professors' preferences. And as shown in the

test performed in Chapter 5 and evaluated in this chapter,

using a variant of the assignment problem in conjunction

with ordinal cost factor theory yields a superior result to

methods currently used, and did so utilizing a reasonable

amount of labor and capital resources.

By employing the theoretical thrust of this thesis,

multiattribute utility theory has been expanded and aspects

of it are better understood. Now, not only can ordinal

utility be soundly used to solve multiattribute utility

optimization problems, but is seen that the nature and

significance of all utility manipulations underlying

multiattribute utility optimization is more easily and fully

evaluated by placing emphasis on the mathematical model--

symbolizing what can be done--than on the problem——what is
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desired to be done. As always, science is better rooted cn
the grcund-—e.g., its mathematics—-than in the clcuds—-the
"science fiction" of a billion pipe-dreamers.
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