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Recovering signals in physiological systems with large datasets

Hodjat Pendar

(ABSTRACT)

In many physiological studies, variables of interest are not directly accessible, requiring

that they be estimated indirectly from noisy measured signals. Here, we introduce two

empirical methods to estimate the true physiological signals from indirectly measured, noisy

data. The first method is an extension of Tikhonov regularization to large-scale problems,

using a sequential update approach. In the second method, we improve the conditioning

of the problem by assuming that the input is uniform over a known time interval, and

then we use a least-squares method to estimate the input. These methods were validated

computationally and experimentally by applying them to flow-through respirometry data.

Specifically, we infused CO2 in a flow-through respirometry chamber in a known pattern,

and used the methods to recover the known input from the recorded data. The results from

these experiments indicate that these methods are capable of sub-second accuracy. We also

applied the methods on respiratory data from a grasshopper to investigate the exact timing

of abdominal pumping, spiracular opening, and CO2 emission. The methods can be used

more generally for input estimation of any linear system.
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(GENERAL AUDIENCE ABSTRACT)

The goal of an inverse problem is to determine some signal or parameter of interest that is not

directly accessible but can be obtained from an observed effect or a processed version that is

measurable. Finding the gas exchange signal in animals is an example of an inverse problem.

One method to noninvasively measure the gas exchange rate of animals is to put them in a

respirometry chamber, flow air through the chamber, and measure the concentration of the

respiratory gasses outside the chamber. However, because the gasses mix in the chamber

and gradually flow through the gas analyzer, the pattern of the measured gas concentration

can be dramatically different than the true pattern of real instantaneous gas exchange of

the animal. In this thesis, we present two methods to recover the true signal from the

recorded data (i.e., for inverse reconstruction), and we evaluate them computationally and

experimentally.
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Chapter 1

Introduction

Real-time measurements of endogenous and exogenous signals in living organisms are widely

important in fields that span biology and medicine. However, the signals of interest are often

not directly accessible, and their effect can only be measured indirectly. Hormone secretion,

the rate of glucose utilization, oxygen consumption, and CO2 production are just a few

examples of such signals that cannot be directly measured [7, 17, 59]. A common approach

to deal with this problem is to sample intermittently and then perform data fitting. For

example, to determine hormone secretion or glucose production rate, blood concentration is

repeatedly measured, and then rates are estimated from the recorded sequence [59]. However,

the uncertainty of these estimates can be high due to the ill-conditioning of the systems. An

ill-conditioned problem is an inherently unstable problem, where small errors in the data can

lead to large errors in the solution, thereby making accurate estimation of the true signal

very challenging [20, 26]. Measuring gas exchange in animals is an important example of

indirect measurement of physiological signals. To determine the gas exchange rate of an

animal using flow-through respirometry, the animal is put in a respirometry chamber and air

is flowed through the chamber. The flowed air continuously replaces the consumed oxygen

by the animal, washes out the CO2 and water vapor produced by the animal, and brings the

gasses to a gas analyzer. The pattern of measured gas concentration in the gas analyzer can

be substantially different than the pattern of real instantaneous gas exchange of the animal,

depending on the washout dynamics of the system [41, 42]. Any short burst of CO2 gradually

1
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Timedelay
t0: duration of the impulse response

(n0 points)

impulse response of the system (output)

impulse in the input

Figure 1.1: Impulse response of the system. When a short pulse of CO2 is injected into
the chamber and the concentration of the gas outside of the chamber is recorded with a gas
analyzer, the shape of the output signal will be different from the input signal. This output
signal is called the impulse response of the respirometry system.

leaves the respirometry system over the duration of a few seconds to several hours (Figure

1.1). During this time interval, the short burst can also be combined with other CO2 bursts.

Therefore, interpretations of physiological function based on raw respiratory data can be

misleading [24], and can become even more problematic if the respiratory signal has to be

synched with another real-time and rapidly changing signal, such as pressure, movement, or

temperature.

Generally, these physiological measurement problems, in addition to many other unrelated

scientific applications such as image de-blurring and 3D tomographic reconstruction, are

referred to as ‘input-estimation’ or ‘inverse problems’ [13, 14, 16, 17]. In an input estimation

problem, the signal of interest, represented by the input signal u(t), is not available, but a

transformation or convolution of u(t), called the output signal y(t), is measurable. Assuming

that the system is linear and time-invariant, the output signal (y(t)) can be written as a

convolution of the input signal (u(t)) and the impulse response of the system [30]:
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y(t) =
ˆ t

0
ĥ(t − τ)u(τ)dτ, (1.1)

where y(t) is the output of the system at time t, which is measured by the gas analyzer.

ĥ(t) is the impulse response of the system, which can be found experimentally (Figure 1.1).

Given the output y(t) and the impulse response function ĥ, we aim to recover u, which is

the true gas exchange signal from the animal. In practice, we consider the discrete form of

the convolution equation (1.1), which is given by:

yk =
k∑

i=0
hk−iui, (1.2)

where yk and uk describe the average of the output and input respectively, when kδt ≤ t ≤

(k + 1)δt, δt is the sampling interval, and h(k) is the integral of ĥ(t) in the sampling period,

i.e.,

hk =
ˆ (k+1)δt

kδt

ĥ(τ)dτ. (1.3)

Using matrix and vector notation, the discrete convolution equation (1.2) can be represented

using the matrix equation:

ȳ = Hu, (1.4)

where ȳ = (y0 y1 . . . yn)T is the output of the system (with no noise), u = (u0 u1 . . . un)T

is the desired, unknown input, and

H =



h0 0 · · · 0

h1 h0 · · · 0
... ... . . . ...

hn hn−1 · · · h0


(1.5)
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is an (n + 1) × (n + 1) lower triangular matrix that models the forward convolution process

underlying respirometry. Notice that solving the inverse problem for respirometry requires

solving a system of linear equations (1.4), so standard techniques from numerical linear alge-

bra could be used. However, solving this system is not trivial due to the ill-posedness of the

underlying problem [46]. This is revealed in the inherent singularity and poor conditioning of

the coefficient matrix H. Furthermore, the solution is very sensitive to noise in the measured

data and computational errors [17]. That is, in practical situations, there is a small amount

of error or noise in the data, and the model is given by

y = Hu + e, (1.6)

where e represents unknown noise or errors in the observed data. Due to ill-posedness, these

small errors in the data can lead to large errors in the solution, and the inverse solution H−1y

is useless. Regularization methods have been proposed to remedy ill-conditioning by solving

a related problem that is both uniquely solvable and robust to noise [20, 26]. Tikhonov

regularization is a well-known and widely used approach to solve such inverse problems [22].

However, efficient implementations for very large datasets, such as when measurements are

taken frequently and/or over long time intervals, are challenging. In this thesis, we propose

two approaches for extending Tikhonov regularization to large datasets. First, we take

advantage of the small duration of the impulse response relative to the size of the dataset to

partition the dataset and apply the Tikhonov method in a sequential manner. Second, we

introduce a dimension reduction approach to regularization that reduces the ill-conditioning

of the system and uses an averaging of least-squares solutions to recover the inputs of the

original system.
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1.1 Tikhonov regularization method

Tikhonov regularization has been used to solve a variety of inverse problems such as image

de-blurring, tomographic reconstruction, and estimation of gas exchange [14, 17, 57, 61]. Al-

though other methods such as trend-identification, Kalman filtering, and Kalman smoothing

can be used for input estimation, the Tikhonov method is often preferred for its better per-

formance in gas exchange problems, for example in studies with whole-room calorimeters

[57]. The Tikhonov solution to the inverse problem (1.6) is given by

û = argminu{∥y − Hu∥2 + γ∥Qu∥2}, (1.7)

where γ > 0 is a regularization parameter and Q is a design or regularization matrix that

enforces smoothness of the solution. The first term on the right side of (1.7) is the data fit

term, which measures how loyal the estimate is to the data, and the second term penalizes

roughness of the solution. The amount of penalization is controlled by the choice of the

regularization parameter γ, and a common choice of the regularization term is where Qu

represents the discrete derivative of u. Therefore, the Tikhonov regularized solution (1.7)

tends to be smooth. One nice feature of Tikhonov regularization is that there exists a

closed-form solution given by

û = My, (1.8)

where

M = (HT H + γQT Q)−1HT . (1.9)

The regularization parameter γ plays an important role in the quality of the Tikhonov
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solution and is typically tuned via an experimental calibration. A large value of γ puts more

emphasis on the regularization term and makes the solution smoother, thereby preventing the

solution from being corrupted by inverted noise. On the other hand, a small value of γ puts

less weight on the regularization term, and the solution resembles the noise-contaminated

inverse solution. Various methods have been proposed to choose γ, such as the discrepancy

principle, the L-curve, the unbiased predictive risk estimator, and the generalized cross-

validation method [17, 26, 32]. Some of these methods require prior knowledge about the

noise and the noise level. There is also a variety of choices for the regularization matrix Q

[17, 57]. In this area, the most common choices for Q include the identity matrix (Q = I)

or a discretization of the derivative operator. For example, for respirometry, Q can be a

lower triangular Toeplitz matrix, where the first column is given by (1 − 2 1 0 · · · 0)T

, which penalizes the sum of squared second differences. If penalizing the second difference

causes excessive smoothness (e.g., the estimation loses sharp changes in the input), Q can be

chosen to be a lower triangular Toeplitz matrix, where the first column is (1 −1 0 · · · 0)T ,

corresponding to the first difference of the estimation.

1.2 Overview of Contributions and Outline

In this thesis, we investigate extensions of the Tikhonov regularization method for large-scale

problems arising in respirometry signal reconstruction. Two new methods were developed to

recover physiological signals from large datasets. The methods were evaluated numerically

and experimentally, with both methods showing sub-second accuracy in recovering respi-

ratory signals, and the developed methods were used in real biological studies. Using the

methods we showed that sometimes the respiratory system of locusts acts as a unidirectional

pump. This work is published in [51].
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An overview of this thesis is as follows. In Chapter 2 we describe two new methods for input

estimation. The first method is based on exploiting overlapping regions and the second

method is based on dimension reduction techniques. Numerical and experimental evaluation

of the proposed methods along with a biological case study are provided in Chapter 3, and

a discussion of methods is provided in Chapter 4.



Chapter 2

New methods for input estimation

In this chapter, we introduce two new methods for input estimation for solving the respirom-

etry inverse reconstruction problem.

2.1 Method I - Extension of the Tikhonov method for

large datasets

For very large datasets, computing the Tikhonov solution as in Equations (1.7) and (1.8) may

be computationally infeasible. In particular, because the dimensions of matrix H correspond

to the size of the data vector, constructing and storing H and computations with H may be

burdensome and expensive. Iterative methods may provide an alternative approach for large,

sparse linear systems, but preconditioning may be required for fast convergence. Instead, we

propose to apply the Tikhonov method to smaller fragments or partitions of the data, while

being attentive to the overlapping regions. From the impulse response function, we know that

any input signal, such as a short burst of CO2, will contribute to future output/measurements

for the duration of t0, meaning for n0 data points (Figure 1.1). Therefore, the input between

0 to t (n data points) affects the output from 0 to t + t0 (n + n0 data points). To recover

the input, we propose the following algorithm:

Step 1: Consider the first n0 + n data points and construct corresponding matrices H, Q,

8
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and M = (HT H + γQT Q)−1HT . Notice that these are small matrices of size n + n0, so the

inverse or matrix factorizations (e.g., QR or LU) can be easily computed.

Step 2: Use Equation (1.8) to estimate the n + n0 inputs from the first n + n0 data points

(y). Because the last n0 input points affect the output points that are not included in the

first n + n0 output points, only accept and record the first n inputs or less, and disregard

the rest of the estimated inputs.

Step 3: To deal with overlapping regions, use Equation (1.2) or Equation (1.4) to determine

the corresponding output for the first n estimated inputs, and then subtract it from the data

vector y. Eliminate the first n points of the new y vector and repeat the sequence from step

2 again.

This algorithm does not determine all the inputs at once, but rather estimates n points of

the input at each cycle. The computational advantages of this algorithm are 1) it breaks the

problem into smaller problems, thereby avoiding to solve a very large system of equations,

and 2) for equally spaced partitions, matrix M or an efficient representation of M only needs

to be computed once. The main computational cost per cycle is a simple linear solve, which

is very cheap. We remark that for equally spaced partitions, a matrix factorization of matrix

M can be calculated once and re-used in all subsequent steps for efficient computational

implementation. The regularization parameter γ must be determined experimentally for

each custom setup.

2.2 Method II - Dimension reduction method

Another approach to deal with ill-conditioning or the singularity of H is to use a projection

approach or dimension reduction technique. The basic idea is the assumption that the solu-
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tion lies in a low-dimensional subspace, which has a regularizing effect on the problem (i.e.,

eliminating the singularity and/or significantly improving the conditioning of the problem).

Here, assume that m consecutive points in the input signal are equal:

u(i) = ūj, (m − 1)j ≤ i ≤ mj. (2.1)

If we assume, without loss of generality, that the number of data points N = mn, then the

projected problem has the form,

minū{∥y − HLū∥2}, (2.2)

where u = (ū1 ū2 ... ūn)T is an n»1 vector and L is a N»n matrix with the following elements:

Lij =


1, m(j − 1) + 1 ≤ i ≤ mj;

0, otherwise.

(2.3)

Because of the added constraint on the input vector, the projected problem is better con-

ditioned than the original problem (see Appendix A for details), and Equation (2.1) can

be solved using any least-squares method for over-determined systems of equations, because

HL has full column rank. In summary, the solution in the original space is given by

u = My, (2.4)

where

M = L(LT HT HL)−1LT HT . (2.5)
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Because we have assumed that m consecutive input points are equal, the solution in Equation

(2.4) cannot track input changes within these intervals, and false artifacts such as sharp

jumps between intervals are introduced as a consequence of this assumption. To improve

the accuracy of the solution and to obtain a smoother representation, we slide the interval

m times in increments of 1, each time computing an estimate of the input, and we take the

final solution to be the average of these m solutions. More precisely, let 1 ≤ k ≤ m and

let Pk be a lower shift matrix whose (i, j)th component is: (Pk)ij = δi,j+k−1, where δ is the

Kronecker delta. For example, PkX shifts the components of vector X down by k element

and introduces a zero in the first k elements, whereas PT
k X shifts the components of vector

X up by k element and introduces a zero in the last k elements. Then, for each k, a solution

can be computed as

uk = PT
k MPky, (2.6)

where M is defined in Equation (2.5). By linearity, the average of all m solutions is given

by

û = M̃y, (2.7)

where

M̃ = 1
m

m∑
k=1

PT
k MPk. (2.8)

Thus, each reconstruction matrix is just a shifted submatrix of the original matrix, and

important spectral properties can be shown (see Appendix A for details). For extremely

large data sets, we can combine the dimension reduction approach with the partitioning

approach described in method I. That is, we can apply this method on n + n0 data points,

accept only the first n estimated inputs, find the corresponding output of the n estimated

input points, and subtract it from the vector y. Then, we eliminate the first n points of the

data and repeat the procedure for the next n + n0 data points.



Chapter 3

Evaluation of the methods

The new methods presented in this thesis were evaluated both on simulated and experimental

datasets.

3.0.1 Numerical experiments and validation

A MATLAB code was written to model a flow-through respirometry system using Equation

(1.1). This code determines the output (y) of the respirometry system for any given input

(u) and impulse response (ĥ). We used the impulse responses of a rectangular 28 mL flow-

through respirometry chamber model with inlet flow rates of 250 and 500 mL/min, which

were determined experimentally in a previous study [50]. The input was considered to be

sequences of three rectangular pulses with different frequencies of 0.1, 0.2, 0.5, 1 and 2 Hz

(Figures 3.1 and 3.2). The simulation was repeated by adding 0.01%, 0.1%, 1%, 2%, 5%,

and 10% normally-distributed noise to the output. The sampling rate of the signals was

assumed to be 10 Hz, with the duration of the virtual experiment of one hour (36,000 data

points). Both methods were used to recover the input from the output signal. Because the

size of the dataset was large, we applied both methods to the data points, n + n0 = 1500,

at each iteration (n0 = 720, Figure 1.1). The recovered inputs were compared with the true

input at each frequency and each noise level separately.

12
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3.1 Experimental validation

To test the methods experimentally, we used a high-speed valve (MHE2-MS1H-5/2-M7-K,

Festo, NY, USA) to switch between 100 ppm CO2 gas (100 ppm, balanced with N2) and

regular air immediately before a 28 mL (25×25×45 mm3) respirometry chamber similar

to the simulation setup. The experiment was repeated with two inlet flow rates of 250

mL/min and 500 mL/min. Data were recorded for one hour with a sampling rate of 10 Hz.

Both reconstruction methods were applied to the recorded data to recover the original CO2

infusing pattern. The details of the experimental setup are described in [50].

3.2 Case study: abdominal pumping, spiracular con-

trol, and CO2 emission in a grasshopper

In insects, air enters the body through valves called spiracles, and then is directly delivered

to the tissues through a complex network of tracheal tubes. The same system is used to

transport CO2 from the tissues to the surrounding air. Gas transport occurs via mixed

diffusion and advective flows [56]. These flows can be created by compression of the tracheal

system, which can be linked to abdominal pumping and an increase in hemolymph (blood)

pressure [49]. The pattern of airflow can also be affected by the spiracular valve timing.

Thus, studying the coordination of abdominal pumping, hemolymph pressure, the status

of spiracles, and CO2 emission is essential to understanding how insects actively breathe.

However, the recorded data depends on many parameters of the experimental respirometry

system, including flow rate, chamber volume, length of tubing, and internal structure of

the gas analyzer, and emitted CO2 signals are not captured independently and in real time
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[42, 50]. In contrast, hemolymph pressure, the status of the spiracles, and the movement

of the abdomen can be measured or observed directly and in real time. To synchronize

these signals, it is necessary to recover the instantaneous gas exchange from the CO2 record.

Because the dynamics of the hemolymph pressure, abdominal movement, and spiracles can

be fast, the instantaneous gas exchange must be determined with high temporal accuracy

to be synched with other signals. Otherwise, timing patterns may be misinterpreted. As

a demonstration of the effectiveness of our methods on a real system, we measured the

CO2 production rate of a male grasshopper (Schistocerca americana; mass = 1340 mg) in a

flow-through respirometry system at room temperature (22C). For these measurements, the

grasshopper was placed in a 28 mL chamber and CO2–free air was flowed in at rate of 500

mL/min; emitted CO2 was recorded with an infrared gas analyzer (LI 7000 Li-Cor, Nebraska,

USA). The abdominal movements and the movements of the second thoracic spiracle on the

left side of the body were also recorded with a video camera (NEX-VG10, Sony) at 30 frames

per second. A total of 12 minutes were recorded, representing 100 abdominal pumping cycles.

To determine the impulse response of the system, a simple model of the animal was made

with adhesive putty and was placed inside the chamber. A short pulse of 100 ppm CO2

(duration, 200 ms) was injected into the chamber. The output of the gas analyzer was

recorded and normalized to determine the impulse response of the system [50]. Lastly, we

used the impulse response to define the forward model H and used it in both methods

to recover the instantaneous CO2 emission of the animal. The mesothoracic spiracles of

grasshoppers are externally visible, so it was possible to determine the open/closed status of

this spiracle from the video records (Figure 3.5). The lip-like spiracle contains two moving

parts, the atrial lips, which together act as a valve. Using Quicktime software, video of

the thoracic spiracle (movie 1) was analyzed frame-by-frame to determine the open/closed

status of the spiracle. Any frames that indicated a gap between the lips were coded as ‘open’.

Correspondingly, when there was no gap between the lips, the frames were coded as ‘closed’.
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To determine the abdominal movement, we used a custom MATLAB code to track one point

on the ventral cuticle frame by frame in the same movie. To synchronize the video data with

the CO2 data, we first recorded a pulse of light initiated by a voltage pulse from the data

acquisition system, and then aligned the signals post-hoc.

3.3 Results

3.3.1 Numerical experiments and validation

The input signals were recovered using both methods and compared with the true input

signal. The results of both methods are very similar (Figures 3.1 and 3.2 and Tables 3.1 and

3.2). By increasing the input frequency and noise, the accuracy of the methods decreased.

The methods captured pulses with durations down to 0.5 s in the higher flow rate (F = 500

mL/min), but only when the noise was less than 0.1% (Figure 3.1). Both methods recovered

the pulses with durations down to 2 s when the noise level was up to 5%, which is a very

high value. In the higher flow rate, the 2 s pulses were recovered even with a high noise

level of 10% (Figures 3.1 and 3.2; see Appendix C for more detail). In general, by decreasing

the tuning parameters (γ in Tikhonov method and m in dimension reduction method), it is

possible to recover even higher frequency inputs; however, the results become noisier. The

Pearson correlation coefficient of the recovered signals and the true signals varied by noise

level (Table 3.1 and 3.2), and these numbers further indicate that both methods perform

very closely.



16 Chapter 3. Evaluation of the methods

C
O

2 c
on

ce
nt

ra
tio

n 
(p

pm
)

Time (s) 20 sTrue input Recorded data Recovered input

0

100

0

100

0

100

0

100

Noise: 0.1%

Noise: 0.1%

Noise: 10%

Noise: 10%

Tikhonov

DR

Tikhonov

DR

Recovery
 method Flow rate = 500 mL/min

Figure 3.1: Simulation results (flow rate: 500 ml/min). Both Tikhonov and dimension
reduction (DR) methods were able to recover fast changes in the input (1 Hz or 0.5 s pulses)
when the noise level is low. With extremely noisy data (10%), the methods were able to
recover pulses with duration of 2 s.

3.3.2 Experimental validation

The noise level of the respirometry system was measured to be 0.014%, determined by

recording the CO2 concentration using the same methodology, but with an empty chamber.

The estimations of instantaneous gas exchange rate from both methods are very similar

(Figures 3.3 and 3.4). The Pearson correlation coefficients between the recovered signal

and the true signal for different input frequencies, different flow rates, and signal recovery

methods were calculated separately (Tables 3.1 and 3.2). The difference between the Pearson
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Figure 3.2: Simulation results ( flow rate: 250 ml/min). When the noise level was
low, the methods recovered the inputs with the frequency of 0.5 Hz ( pulse duration of 1
s). With extremely noisy data (10%) the methods recovered 0.1 Hz (pulse duration of 5 s)
input signals.

correlation coefficients for the two methods is 0.02% on average. Both methods were able to

recover pulses with duration of 0.5 s in both flow rates; however, both were more accurate

with the higher flow rate of 500 mL/min (Figures 3.3 and 3.4 and Table 3.3).
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Table 3.1: Pearson correlation coefficient between the true and the recovered input using the
Tikhonov method (simulation study)

3.3.3 Case study: abdominal pumping, spiracular control, and

CO2 emission in grasshopper (Schistocerca americana)

The duration of the abdominal pumps and CO2 bursts of the grasshopper were 1.9±0.4 s and

1.1±0.3 s, respectively. Most abdominal pumps (67.4%) were followed by the opening of the

thoracic spiracle. All openings of the thoracic spiracle started when the abdomen began to

relax at the end of the abdominal pump. In contrast, the spiracle was closed during the start

of the pump cycle. The duration of the spiracle’s open phase was 0.5±0.1 s (mean ± SD).

The raw data of the CO2 emission show a continuous pattern of gas exchange. However,

the corrected CO2 emission signal reveals that the animal was exhibiting discontinuous gas

exchange (Figure 3.5) with periods of thoracic spiracular closure, followed by bursts of CO2

release. All CO2 bursts coincided with abdominal pumps on a one-to-one basis. The corre-

lation coefficient of the abdominal movement and the raw CO2 signal was 0.376; however,

after recovering the true CO2 signal, this value increased to 0.73. There were also some

abdominal pumps and CO2 bursts observed that were not followed by the opening of the

spiracle (28.4%). Based on the raw CO2 signal, only 44.7% of the CO2 was emitted during
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Table 3.2: Pearson correlation coefficient between the true and the recovered input using the
dimension reduction method (simulation study)

abdominal pumping; however, the corrected CO2 signal shows that 76.5% of the CO2 was

released during abdominal pumping. There was only a small amount of CO2 emitted during

the opening phase of the thoracic spiracle (8.6%), and most of the CO2 was released when

the spiracle was closed.
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Figure 3.3: Experimental results (flow rate: 500 ml/min). Both Tikhonov and di-
mension reduction (DR) methods were able to recover fast changes in the input with the
frequency of 1 Hz or pulse duration of 0.5 s.
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Figure 3.4: Experimental results (flow rate: 250 ml/min). Even in this lower flow
rate, both Tikhonov and dimension reduction (DR) methods successfully recovered the fast
changes in the input (frequency of 1 Hz).
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Table 3.3: Pearson correlation coefficient between the true and the recovered input using the
Tikhonov and dimension reduction method for experimental data
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Figure 3.5: Unidirectional airflow in grasshoppers. (A) In this experiment, abdominal
pumping, spiracular state, and CO2 emission in a grasshopper were recorded and synchro-
nized together. (B,C) The raw CO2 signal shows a cyclic pattern of respiration. However,
the corrected CO2 signals shows discontinuous gas exchange, indicated by periods of CO2
release. (D) The recovered CO2 signal (corrected using the Tikhonov method) shows that
abdominal pumping was concurrent with the CO2 emission, but almost all the CO2 burst
happened when the thoracic spiracle was closed. The spiracles open when the abdomen
starts to relax. The recovered CO2 signal corrected using the Z-transform method did not
reveal these details.
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Chapter 4

Discussion

Here, we extended the well-known Tikhonov method for large-scale problems using a parti-

tioning approach, and also presented a new dimension reduction method that reduces a large

ill-conditioned problem to a set of smaller, better-conditioned problems. Both methods were

tested computationally and experimentally on a flow-through respirometry system. Based

on our computational and experimental evaluations, these methods exhibit nearly identical

performance. Although the accuracy of both methods in recovering the true signal were

similar, the dimension reduction method is computationally more efficient. In both meth-

ods, we compute the inverse matrix in (Equation (1.8) and Equation (2.5)), although for

computational efficiency and stability, more sophisticated tools can be used.

In the Tikhonov method, we need to solve a system with coefficient matrix HT H + γQT Q.

Although computing the inverse matrix M is the typical approach in many biological applica-

tions, this is not recommended, especially for large datasets, due to the fact that the process

is computationally expensive and numerically unstable. A better approach is to compute a

matrix factorization such as an LU or QR decomposition [10] of the coefficient matrix once,

and then for each subsequent solve, use the computed matrix factorization to efficiently solve

the system. For an n × n system, a general linear solve requires O(n3) floating-point opera-

tions [23], which could be a big number for large datasets. In addition, for problems where

constructing the matrix is not desired, iterative methods are widely studied in the numer-

ical linear algebra community for solving linear systems and linear least-squares problems.

24
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Iterative approaches such as the Conjugate Gradient for Least Squares (CGLS) method or

the LSQR method [13, 14] are typically fast in that they often produce good solutions in a

few iterations. However, for the respirometry reconstruction problem, these methods require

additional preconditioning to accelerate convergence. This is a topic of current research and

is beyond the scope of this work. In respiratory problems the H matrix could be large. How-

ever, it is a spare matrix and it is constructed form the impulse response vector h, which has

a much smaller size compared to the number of data points. In this research we showed that

the inverse problem could be solved after calculating the inverse of a much smaller matrix

M, which is in the order of the length of h and not the number of data points.

In the dimension reduction method, a linear system including the matrix LT HT HL must be

solved (Equation (2.5)), and its size is m times smaller than the size of the data that we con-

sider at each cycle. The factor m will be different integers for different experimental setups.

In our work, after experimentally tuning m, this number fell between 4 and 30 for different

experiments and simulations with a variety of noise levels. Therefore, in these experiments

and simulations, the size of the matrix was 4 to 30 times smaller, in comparison to that of

the matrix for the modified, which can decrease the computational cost, particularly when

the size of the impulse response (and consequently the size of the H matrix) is large.

Previously, it has been shown that the Tikhonov method exhibits much better performance in

comparison with other methods such as trend identification, Kalman filtering, and Kalman

smoothing [57]. However, applying the Tikhonov method requires calculating the inverse

of a large matrix, with a size equal to the length of the data, or many iterations of a

numerical optimization scheme. In contrast, the extension of the Tikhonov method and the

dimension reduction methods that we provide in this study are applicable to large datasets

of any size. The methods are reasonably straightforward and have only one parameter to be

tuned. This feature makes them less complicated to use than the generalized Z-transform
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(GZT) method, recently introduced by our group [50], which requires the use of multiple

parameters that must be determined experimentally. Therefore, tuning of the Tikhonov

method is simpler. Both of the new methods introduced here rely on a single parameter

that should be tuned for best results: γ in the Tikhonov method, and m in the dimension

reduction method. By increasing the tuning parameter, each method becomes less sensitive

to noise in the data, but this comes at the cost of losing fidelity to the true input signal. In

particular, these methods lose accuracy in estimating sharp changes of the input. Conversely,

by decreasing the tuning parameter, the methods become better in capturing fast changes

in the input, but this comes at the cost of becoming more sensitive to noise and errors

(Figure 3.6). For standard Tikhonov regularization, many parameter-selection methods have

been developed and investigated for automatically choosing the parameter; this includes the

discrepancy principle and generalized cross-validation [15, 20, 58]. In practice, however,

it is often desirable to tune the parameter via trial and error, based on the goals of the

experiment. For instance, if determining fast changes in the input is crucial and some small

amount of noise in the solution can be tolerated, a researcher can use a smaller γ in the

Tikhonov method or m in the dimension reduction method. For the dimension reduction

approach, we have not developed a method that can be used to determine the optimal

value of m, and this remains a target for future study. In our simulations and experiments,

we chose it by trial and error. One of the possible problems in the dimension reduction

method is that the matrix LT HT HL in Equation (2.5) becomes singular or nearly singular,

making the inversion unstable. By the nature of their design, flow-through respirometry

systems have a delay between the signal input and the measured output (τ in Figure 1.1)

[42]. This phenomenon appears as n0 zeroes at the beginning of the impulse response (h)

and results in n0 rows of zeroes in the matrix H. This can cause a singularity in HT H

and LT HT HL in Equation (2.1) and Equation (2.7). In the Tikhonov method (Equation

(1.8)), the regularization term γQT Q is able to deal with the singularity. For the dimension



27

reduction method (Equation (2.7)), we propose two methods to prevent singularity, even if

the n0 elements of the impulse response are forced to be zero:

1- We eliminate the delay and therefore the singularity by eliminating the n0 zeros from the

beginning of the impulse response, and eliminate the first n0 data points from the output.

After eliminating these points, the H matrix should be constructed based on the new impulse

response, and the new output vector (y) should be used in Equation (2.7). Applying this

modification will not change the solution.

2- Similar to the Tikhonov method, we can add a regularization term (γQT Q) to the pro-

jected problem. In this way, Equation (2.7) changes to M = L(LT HT HL+γQT Q)−1LT HT .

The importance of the methods in physiological studies: In some studies, precisely determining

the true timing of the gas exchange signal is crucial. In general, it becomes more important

if we want to synchronize the gas exchange data with another fast dynamical event, such

as a change in body temperature [6], body movement [47, 49], tracheal deformation [56], or

even heartbeat [62]. To demonstrate the effectiveness of the methods on a real physiological

system, we synchronized the CO2 signal of a grasshopper with its abdominal and spiracular

movements, both of which include relatively fast dynamics, with durations of the second or

sub-second timescale. Therefore, the true CO2 signal must be recovered with sub-second

accuracy if we are to understand the relationship amongst the signals. Grasshoppers possess

10 pairs of spiracles, with two pairs on the thorax and eight pairs on the abdomen. The timing

and pattern of spiracular opening and closing can vary wildly, depending on the metabolic

needs of the animal [27, 28, 44]. Resting but alert grasshoppers normally exhibit abdominal

pumping, driven by dorsoventral expiratory muscles [33]. If some of the spiracles are open,

the contraction of the abdomen causes some parts of the tracheal system to compress [28],

forcing the air out of the system. During exhalation, the first four posterior pairs of spiracles

close, and expiration occurs through the last six pairs [33, 39]. When the abdomen relaxes,
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spiracles 5-10 close and spiracles 1-4 open, and an increase in the volume of the tracheal

system causes bulk flow of air into the body through the anterior spiracles [21, 44]. This

spiracular timing during abdominal pumping helps to produce a unidirectional flow of air

from anterior to posterior within the tracheal system [44]. A unidirectional flow of air is

not unique to grasshoppers, and has been reported in beetles, bees, and cockroaches as

well [5, 18, 29]. However, the determination of unidirectionality has been based on the

observation of average air movement from the thorax to the abdomen side over a long period

[5, 18, 21]. In these studies, an animal was put in a chamber with a barrier to separate the

external air from the abdominal and thoracic sides. Over the course of minutes to hours, it is

observed that the air gradually moves from the thorax to the abdomen side. Miller [44] also

measured the abdominal movement and status of four spiracles simultaneously to infer the

direction of flow. In his experiments, CO2 was not measured, and expiration and inspiration

were interpreted from the abdominal movement. However, we now know that abdominal

pumping can be decoupled from respiration [25, 49], so this inference can be wrong. In

our experiment, we simultaneously measured abdominal movement, spiracle movement, and

CO2 emission. The CO2 signal recovery methods enabled the true respiratory signal to be

discerned with sub-second resolution, which in turn enabled their synchronization with two

other real-time signals. This helped us to directly observe, for the first time, the relationship

between the true individual CO2 expiration bursts, abdominal pumping, and the status of

a spiracle in a grasshopper. Knowing the timing of the spiracles and how they coordinate

with abdominal pumping, tracheal deformation, gas exchange, and other respiratory relevant

signals is of fundamental importance to understanding the underlying mechanistic basis of

active ventilation in insect respiration. However, measuring these events simultaneously can

be difficult. Our data (Figure 3.5) show that when the grasshopper pumps its abdomen, it

closes the thoracic spiracle and releases CO2, which indicates that some of the other spiracles

must be open within this duration. When the insect relaxes the abdomen, it opens the
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thoracic spiracle, but there is almost no CO2 emitted in this period, which suggests that the

grasshopper is drawing the air in during this period. These observations are congruent with

previous observations about active ventilation [25] and the unidirectionality of the airflow in

grasshoppers [43, 60].

The Z-transform method, also known as the Bartholomew method, has perhaps been most

widely used to correct gas exchange signals, but the temporal resolution of this method is

not always sufficient to study fast changes in respiratory signals [50]. We compared the re-

sults of the grasshopper experiment using our new methods with those using the Z-transform

method (Figure 3.5). As interpreted, the corrected CO2 signal using the Z-transform method

(Figure 3.5) would indicate the presence of CO2 emission during all spiracular open phases,

qualitatively different interpretation than what was obtained with our new methods. Using

the Z-transform method, we would not have been able to clearly identify the evidence for

unidirectional flow, demonstrating the power of the new methods. In any respirometry sys-

tem, the washout problem reduces the accuracy of the recorded respiratory data, obscuring

details of gas exchange. The issue becomes more problematic when we want to find the re-

lationship between gas exchange and other fast dynamical events. Our demonstration with

the grasshopper was only one example to show the importance of finding the true respiratory

signal with fast dynamics, but the methods are broadly applicable for other types of respi-

ratory studies. For example, they could be usefully applied in studies of the discontinuous

gas exchange cycle (DGC), a topic of heavy debate [12, 42, 52, 53, 54]. DGC involves three

phases: 1) the closed phase, in which the insect keeps the spiracles closed and consumes

oxygen from the air sealed inside the tracheal system, with CO2 buffered in the hemolymph;

2) the flutter phase, in which the spiracles open slightly and then close rapidly in sequence;

and 3) the open phase, in which the insect keeps the spiracles open and releases CO2. In

many studies, the open phase is reported to last for several minutes to hours [12, 31]. But,
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to the best of our knowledge, there is no explanation for the long duration of the open phase.

The hygric [9], chthonic [40], and oxidative damage [31] hypotheses are the main proposed

explanations for DGC, explaining that insects keep their spiracles closed for a long time to

decrease water loss, to maximize the partial pressure gradient between the tracheal system

and environment, or to keep the oxygen level down inside the tracheal system to minimize

tissue damage, respectively. None of these hypotheses can explain why insects keep their

spiracles open for a long time during the open phase. Keeping the spiracles open for a long

duration can be detrimental for multiple reasons: it could lead to considerable water loss,

decrease the partial pressure gradient, and/or expose the tissues to high levels of oxygen for

a long time. However, our results from the grasshopper trial suggest that it might be possi-

ble that, during the so-called open phase, the spiracles are not actually open continuously.

Instead, the spiracles may in fact close intermittently, but because of the washout issue and

insufficient input estimation, the CO2 signal wrongly indicates a continuous CO2 emission,

a point that has been previously suggested [24]. This behavior is congruent with discon-

tinuous gas exchange of cockroaches, which have been observed to exhibit multiple opening

and closing of spiracles in the open phase [35]. Based on our observations in this study, we

also suggest that any interpretation from the raw CO2 signal, or even the Z-transformed sig-

nal, could be misleading without using an accurate recovery method, such as the presented

methods in this work.

4.1 Conclusions and Future Work

We have developed two new methods for accurately estimating the input signal in any

physiological system. Our test case with a grasshopper demonstrates that these methods can

be used to extract high temporal information for the original signal, which can dramatically
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change the interpretation of the underlying physiological processes. Although the Tikhonov

method is widely used for signal processing applications across fields, few researchers have

employed it input estimation of physiological systems. The novelty of our modification of the

Tikhonov method is that this extension makes it possible to apply the method to datasets of

any size, including very large datasets. Furthermore, our new dimension reduction method

can produce quality solutions that are similar to Tikhonov solutions, but in a slightly more

efficient manner. This method has the potential to be beneficial in other applications such

as image processing. To assist a researcher in implementing these methods for their own

studies and to encourage further development of the methods, we have provided detailed

instructions and the code as open source resources [48]. Overall, these improvements in

input estimation have the potential to change the way physiologists view indirectly recorded

data, most particularly for studies of gas exchange.
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Appendix A

Regularizing Properties of the

Dimension Reduction Method

In this appendix, our goal is to provide justification and insight for the dimension reduc-

tion method. We first interpret the method as a projection approach, which is a form of

regularization [26]. Let H be an N»N convolution matrix of the form in Equation (1.5),

and L be an N»n matrix with entries given in Equation (2.3). By construction, columns

of L are orthogonal, and a simple scaling by 1/
√

m makes them orthonormal. Because the

columns of L form an orthonormal basis, the projected problem seeks an approximation to

the solution that lies in a low-dimensional subspace of RN . That is, Equation (2.1) con-

strains the solution to a low-dimensional subspace, which has a regularizing effect on the

solution. Other common projection approaches are based on Krylov subspace methods [26].

The improved conditioning of the projected system, compared to the original system, can

be explained by comparing matrices H and HL. First, notice that columns of HL represent

averages of neighboring columns in the Toeplitz matrix H. Thus, if the columns of H are

nearly linearly dependent, the columns of HL will be linearly independent. This is revealed

in the rank of a matrix, which corresponds to the number of linearly independent columns.

By properties of rank of a matrix, we have rank(HL)≤min(rank(H), rank(L))

Typically, the rank of H is large (close to N) and L has full rank by construction, so we

can assume that for sufficiently large m, HL is full rank (with rank n). A least-squares
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problem with an overdetermined full rank system has a unique solution that satisfies the

normal equations [4], which is used in our approach. In the context of inverse problems,

the above interpretation of the dimension reduction method as a constraint on the solution

makes sense in terms of regularization. It is worth noting that matrix L and its transpose

strongly resemble prolongation and restriction operators used in the multigrid literature [8],

but our approach is not a multigrid approach.



Appendix B

Deriving Equation (2.7) and Spectral

Relationships

In Appendix B, we will derive Equation (2.7), and discuss spectral relationships among

the reconstruction matrices. The dimension reduction method initially assumes that m

consecutive inputs are equal, leading to the projected problem in Equation (2.1) and the

computed solution in Equation (2.4). However, with this assumption, the solution cannot

recover input changes during the intervals, so we improve the method by incrementally sliding

the intervals m times and taking the final solution to be an average of the m solutions. Let

Pk be a lower shift matrix whose (i, j)th component is: (Pk)ij = δi,j+k−1 , where δ is the

Kronecker delta. For example, P2x shifts the components of vector x down by 1 element

and introduces a zero in the first element, whereas PT
2 x shifts the components of vector x

up by 1 element and introduces a zero in the last element.

Thus to determine the kth solution (1 ≤ k ≤ m), we first shift the output vector down by

k − 1 elements, which can be represented by matrix multiplication, Pky. Here, we assume

all outputs before time zero are zero (yj = 0 if j < k − 1). Then, we use the dimension

reduction approach to compute a solution, MPky. Finally, we shift the solution back up by

k − 1 elements, giving the kth solution, PT
k MPky.

Although this solution is not precise for last k entries of the input vector, we eliminate

the last n0 estimated inputs, so the lack of precision is inconsequential. Due to linearity
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of matrix multiplication, the average of all estimations is given as û = M̃y, where M̃ =
1
m

∑m
k=1 PT

k MPk. Notice that since the Pk are shift matrices, PT
k MPk can be obtained by

shifting rows of M up k−1 times and columns of M left k−1 times, and filling the remaining

entries with zero. This is computationally easy to perform.



Appendix C

Recovering the true signal from a

noisy data; simulation results

The Tikhonov method and Dimension Reduction method were computationally evaluated.

In a simulation we used the methods to recover various rectangular input pulses with different

frequencies. The frequency of the input signals are 0.1, 0.2, 0.5, 1 and 2 Hz. In order to

examine the sensitivity of the methods on the data noise the simulation was repeated by

adding 0.01%, 0.1%, 1%, 2%, 5%, and 10% normally-distributed noise to the output. We

considered n + n0 = 1500, at each iteration (n0 = 720, Figure 1.1). The recovered inputs

were compared with the true input at each frequency and each noise level separately. The

regularization parameters γ and m for each experiment are reported in 3.1 and 3.2.
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Appendix C. Recovering the true signal from a noisy data; simulation

results
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Appendix C. Recovering the true signal from a noisy data; simulation

results



41



Appendix D

Dynamics of flexible fins using vortex

sheet

Understanding the principles of swimming and flying in animals can assist in developing

underwater manoeuvres and micro-air vehicles. The fluid-structure interaction problem of

flying and swimming is vastly studied by many scientists with the simplified models of a

plate immersed in an inviscid fluid flow [1, 2, 11, 19, 34, 38, 63]. Since for most swimmers

the fluid-fin mass ratio is large, fin mass is neglected in this model. The effect of wing and

fin flexibility on the thrust magnitude and propulsive efficiency have been explored in many

studies [2, 3, 38]. In this study we present a dynamical model for flexible fins with a negligible

mass. In previous models the final equations are implicit, which makes them numerically

inefficient. The presented model in this study provides an explicit set of equations.

D.1 Method

Here, we model the caudal fin of the fish as an inextensible elastic sheet in two dimensional

incompressible inviscid flow with the length of 2L. A prescribed motion is directly imparted

to the leading edge of the fin in the form of an arbitrary pitch θ0(t) and displacement ξ0(t)

(Figure D.1). This could, for example, represent the motion of the rest of the fish body. The

fin is considered a one dimensional Euler-Bernoulli beam with arbitrary and varying stiffness
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Figure D.1: A schematic of the flexible fin. The position and pitch angle θo of the
leading edge s = −1 is assumed to be prescribed functions.

along its length. A pressure distribution is also considered along the length of the fin that

is time varying due to the coupled fluid-structure interaction. Using thin airfoil theory, we

identify the fin with a bound vortex sheet accounting for the infinitesimal attached boundary

layers on either sides of it. The strength of the bound vortex sheet evolves with the movement

of the fin. The free vortex sheet that develops in the wake is represented as a collection of

discrete point vortices shedding from the trailing edge of the filament. Kelvin’s theorem will

be used to ensure that the circulation in the fluid domain remains constant and use this

phenomenon to determine the intensity of the latest released vortex element. According the

the Helmholtz laws the strength of each free vortex element remains constant after being

released from the trailing edge. Modeling the fin with a bound vortex sheet and the wake

behind it with free vortex elements let us determine the flow field using the Biot-Savart law

as the superposition of contributions from all vortex elements and the vortex sheet.

The caudal fin in most fish has negligible mass compared to the rest of the body. Further-

more, as shown in the results of this study, hydrodynamical forces dominate the dynamics
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of the fin. Therefore, we neglect the mass of the fin in our model. This assumption leads

to an important simplification in the model, which makes it computationally efficient. We

also assume that there is no vortex shedding from the leading edge, since the leading edge

is connected to the streamlined fish body and the angle of attack usually remains small.

In this model, five main unknown parameters are: 1) the shape of the fin, 2) strength of

the bound vortex-sheet, 3) the pressure distribution on the fin, 4-5) strength and location

of the free vortex elements. In the following sections, sets of equations are derived to find

these unknowns. In short, these sets of equations are the outcomes of Newton’s Second Law,

boundary condition of the fin, the unsteady Bernoulli equation, no penetration boundary

condition, Kelvin’s circulation theorem, and the Biot-Savart law. We set up a series of

explicit and linear equations to find the shape evolution and vortex strength evolution of the

fin and the location of the free vortex elements.

D.1.1 Dynamics of the fin

The dynamic model of the massless fin is governed by Euler-Bernoulli beam theory, and can

be represented using Newton’s Second Law as:

∂

∂s
(T ês) − R

∂

∂s
( ∂

∂s
(κB)ên) − [p] ên = 0, (D.1)

where T is the tension force, [p] is the pressure jump across the fin, κ is the curvature,

and B is the nondimensionalized rigidity of the beam, which could vary along the beam.

s is arclength (−1 ⩽ s ⩽ 1) that is used as a Lagrangian coordinate in the equations. ês

and ên are the tangential and normal unit vectors at s. The constant R = Bo

ρf L5( ω
2π )2 is the

dimensionless rigidity of the fin, where Bo is the rigidity of the fin near the leading-edge.

Here, L is used as the length scale, 2π/ω as the time scale , and ρfL3
(

ω
2π

)2
as the force scale
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to nondimensionalize the equations.

The location of any point on the beam can be written using complex variables as ξ(s, t) =

x(s, t) + iy(s, t). The tangential and normal unit vectors can be determined from the fin

shape as: ês = ξs = eiθ(s,t) and ên = ieiθ(s,t) respectively, where θ(s, t) = tan−1( ys(s,t)
xs(s,t)) is

the local tangent angle at any point ξ(s, t) . The curvature at any point depends on the fin

shape as κ(s, t) = θs(s, t).

The boundary conditions at the free trailing-edge (s = 1) are given by prescribed functions:

T = κ = κs = 0 (D.2)

and the position and orientation of the leading-edge (s = −1) that is driven by the fish body

are given by :

θ|s=−1 = θ0(t); ξ|s=−1 = ξ0(t). (D.3)

Integrating the tangential component of equation (D.1) from the trailing edge to any arbi-

trary point on the fin yields the tension force:

T = R

ˆ 1

s

κ(κB)′ds′, (D.4)

which satisfies the boundary condition (D.2). The normal component of equation (D.1)

yields the pressure jump across the fin in terms of the tension force:

[p] = κT − R(κB)′′. (D.5)

There is no pressure jump across the free vortex sheet. Therefore, to impose the unsteady
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Kutta condition while ensuring the continuity of the fluid pressure on either side of the

vortex sheet, the pressure jump has to vanish at the trailing-edge; i.e. [p] |s=1 = 0, which is

implemented in equation (D.5).

Equation (D.5) shows that the pressure distribution on the fin is a function of the shape,

which is a consequence of neglecting the fin mass. Inclusion of fin mass in the model couples

the fin accelerations with the pressure distribution (see [2] for example). This coupling leads

to implicit solutions that are computationally expensive and require the iterative solution of

a linear system at each time step. In cases where inertia is not very important to the physics

of the problem, e.g., when the density of the filament is significantly less than the density of

the surrounding fluid, we can incorporate the ‘negligible-mass’ model to obtain an explicit

solution.

D.1.2 Evolution of the fin shape

To satisfy the no-penetration boundary condition on the fin surface, the fluid velocity must

be equal to the fin velocity in the normal direction. To impose this condition we need to find

the fluid velocity near the fin. The Biot–Savart equation provides the complex conjugate of

fluid velocity at any arbitrary point, except on the vortex sheet, in terms of the attached

vortex strength and free vortex elements;

w̄ = ux − iuy = uo + 1
2πi

ˆ 1

−1

γ(s′, t)
z − ξ(s′, t)

ds′ + 1
2πi

N∑
k=1

Γk

z − zk(t)
, (D.6)

where ux and uy are the velocity components of the fluid, γ(s, t) is the vortex strength at

point s on the fin, ξ(s, t) is the shape function of the fin, and zk and Γk are the location and

the strength of the kth free vortex element, assuming there are N free vortex elements in the

fluid at the moment. The average flow velocity near any point on the vortex sheet can be
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found by replacing z with ξ(s, t):

w̄ = uo + 1
2πi

 1

−1

γ(s′, t)
ξ(s, t) − ξ(s′, t)

ds′ + 1
2πi

N∑
k=1

Γk

ξ(s, t) − zk(t)
. (D.7)

Equation (D.7) provides the average fluid velocity on either side of the fin. It is known that

the bound vortex sheet strength γ(s, t) has an inverse-square-root singularity near both the

leading and trailing edges [45], and can be replaced by ν(s,t)√
1−s2 , where ν is the bounded part

of γ.

w̄ = uo + 1
2πi

 1

−1

ν(s′, t)√
1 − s′2(ξ(s, t) − ξ(s′, t))

ds′ + 1
2πi

N∑
k=1

Γk

ξ − zk

. (D.8)

The position of the points on the fin can be written as ξ(s, t) = ξ0 +
´ s

−1 ês(s′, t)ds′, where

ξ0 is the prescribed position of the leading-edge. Taking a derivative of this equation yields

the velocity of the points on the fin as:

ξ̇ = ξ̇0 +
ˆ s

−1
θ̇ênds′. (D.9)

Fluid cannot penetrate into the fin. Therefore the normal component of the fluid velocity

adjacent to the fin must be equal to the normal component of the fin velocity:

ξ̇ · ên = w · ên. (D.10)

It is well known that in the vortex sheet method it is not possible to satisfy the no-penetration

constraint on all points of the fin, and it can only be satisfied in a limited number of points.

Therefore, the constraint equation (D.10) will be imposed on n collocation points, such as

s1, s2, .., sn.
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D.1.3 Vortex evolution

The unsteady Bernoulli equation shows that the strength of the fin vortex sheet evolves as:

γ̇ + ∂

∂s
(vrelγ) = ∂

∂s
[p] , (D.11)

where vrel is the relative velocity between the fluid and fin in the tangential direction

vrel(s, t) = (w(s, t) − ξ̇(s, t))· ês. In this equation the unknowns are the evolution rate of

the beam shape ξ̇, and the evolution rate of the bound vortex strength γ̇. Meanwhile, the

pressure jump is a function of the fin shape (D.5). After determining the pressure jump from

(D.5) we substitute it here in equation (D.11). The unsteady Bernoulli equation can be used

in the format of (D.11), or the integral of equation (D.11):

ˆ s

1
γ̇(s′, t)ds′ = [p] − vrelγ + vrelγ|s=1, (D.12)

in which the right side is known and γ̇ and vrel on the left side are unknown. The integral

form of the unsteady Bernoulli equation looks to be more complicated than the differential

form (D.11). However, as we show in the numerical method section, the integral of γ̇ has a

simple form, and the singularity in γ̇ can be eliminated.

D.2 Numerical Method

Equations (D.10)-(D.12) are nonlinear coupled singular integro-differential equations. Previ-

ously, implicit numerical methods have been developed to solve the equations of a flexible fin

[2, 19, 55]. Here we show that for fins of negligible mass, it is possible to obtain an explicit

numerical solution. The negligible mass assumption helps to find a closed form solution for
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the pressure distribution equation (D.5). Therefore, knowing the shape of the fin at each

time step, the value of the pressure is known, which is not the case in previous models that

include the fin mass. Taking into account the fin mass in the model couples the pressure

distribution and fin body acceleration. Thus, the pressure distribution and the fin body

accelerations in Newton’s equation, and the fin velocity ξ̇ and vortex sheet strength γ in the

unsteady-Bernoulli equation (D.12) all must be determined simultaneously. This complica-

tion leads to implicit solutions, which are inherently computationally expensive and require

the solution of a nonlinear system at each time step.

The pressure jump [p] is a function of the fin shape equations (D.3). Therefore it will be

known at each time step of the numerical solution. The remaining unknowns are the rate

of change of the fin shape ξ̇(s, t), and evolution of the vortex strength γ̇(s, t), strength of

the newly released vortex element ΓN+1, and velocity of the free vortex elements żk. After

determining ξ̇, γ̇, and żk, they will be integrated over time to find the fin shape, attached

vortex strength, and the new location of the free vortex elements. Consequently, the fluid

velocity field and pressure distribution in the next time step will be determined. In order

to find these functions we consider their Chebyshev expansion, and substitute them in the

equations to find the coefficients of the expansion as:

γ(s, t) = ν(s, t)√
1 − s2

= 1√
1 − s2

m1∑
k=0

ak(t)Tk(s), (D.13)

θ(s, t) = θo(t) +
m2∑
k=0

bk(t)Tk(s), (D.14)

where Tk(s) is the kth Chebyshev polynomial of the first kind. The expansion of γ and

θ equations (D.13) – (D.14) should satisfy the trailing edge boundary condition (D.2),

leading-edge boundary condition (D.3), no-penetration condition (D.10), and the unsteady-
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Bernoulli equation (D.12). The boundary conditions at the leading and trailing edges are

κ|s=1 = θs|s=1 = 0, κs|s=1 = θss|s=1 = 0, and θ|s=−1 = θo. By substitution of the polynomial

form of θ from (D.14) into these boundary conditions, we obtain the following constraints

on bk’s:

m2∑
k=0

k2bk(t) = 0, (D.15)

m2∑
k=0

1
3

k2(k2 − 1)bk(t) = 0, (D.16)

m2∑
k=0

(−1)kbk(t) = 0. (D.17)

Before substituting the expansions of γ and θ in the no penetration condition, equation

(D.10), we eliminate the integrals from this equation. We can separate the singular part

inside the integral in equation (D.7) using Taylor expansion [2]:

1
ξ(s, t) − ξ(s′, t)

= 1
ξs(s − s′)

+ K(s, s′), (D.18)

where K(s, s′) is the smooth part and can be found numerically at each iteration from the

above equation if s ̸= s′. Using ξs = eθ and θs = κ, we can show that K|s=s′ = iκ(s)
2ξs

= −ξss

2ξ2 ,

which will be numerically calculated at each point. We then substitute ν and θ from equations

(D.13) and (D.14) in the singular integral in equation (D.7):

1
2πi

 1

−1

ν(s′, t)√
1 − s′2(ξ(s, t) − ξ(s′, t))

ds′ = 1
2πiξs

ˆ 1

−1

∑m2
k=0 akTk(s′)√

1 − s′2(s − s′)
ds′+

1
2πi

ˆ 1

−1

ν(s′, t)K(s, s′, t)√
1 − s′2

ds′. (D.19)
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The first integral on the right hand side can be determined in terms of the Chebyshev

polynomials of the second kind and the second integral can be determined numerically using

change of variable s = cosϕ:

1
2πi

 1

−1

ν(s′, t)√
1 − s′2(ξ(s, t) − ξ(s′, t))

ds′ = i

2ξs

m1∑
k=1

akUk−1(s)+

1
2πi

ˆ π

0
ν(ϕ′, t)K(ϕ, ϕ′, t)dϕ′, (D.20)

where Uk(s) is the kth Chebyshev polynomial of the second kind. The right hand side of this

equation does not contain any singularities and the integral part can be easily computed

numerically. Therefore the conjugate average fluid velocity at the fin can be written as:

w̄ = uo + i

2ξs

m1∑
k=1

akUk−1(s) + 1
2πi

ˆ π

0
ν(ϕ′, t)K(ϕ, ϕ′, t)dϕ′ + 1

2πi

N∑
k=1

Γk

ξ(s, t) − zk(t)
. (D.21)

At each time iteration w can be found from the above equation and be replaced on the right

side of the no-penetration constraint equation (D.10).

The normal and tangential components of ξ̇ show up in the no-penetration and unsteady-

Bernoulli equations respectively and they contain ḃk coefficients, which are unknown. To

simplify these equations, we split ξ̇ into tangential and normal components:

ξ̇ = (τ s
0 +

m2∑
k=0

ḃkσs
k)ês + (τn

0 +
m2∑
k=0

ḃkσn
k )ên, (D.22)

where

τ
s/n
0 (s) = ês/n · (ξ̇o + θ̇o

ˆ s

−1
ên(s′)ds′), (D.23)

σ
s/n
k (s) = ês/n ·

ˆ s

−1
Tk(s′)ên(s′)ds′, (D.24)
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which can be calculated numerically at each iteration. By substitution of w from equation

(D.21) and ξ̇ from equations (D.22)-(D.24), the no penetration constraint, equation (D.10),

can be written as:
m2∑
k=0

σn
k ḃk = w · ên − τn

o , (D.25)

which must be satisfied in all the n collocation points (s1, s2, ..sn). Because equation (D.21)

provides w̄ instead of w, to calculate the right hand side of equation (D.25) we use w · ên =

Re{w̄ên}. By combining equations (D.25) and (D.15)-(D.17), we obtain a system of linear

equations that gives us ḃk’s. To match the number of unknowns and equations m2 must be

equal to n + 2. Lastly, we substitute the Chebyshev expansions of θ and γ in the Bernoulli

equation (D.12) to construct a system of equations to find ȧk’s. The integral on the left hand

side of equation (D.12) can be simplified as

ˆ s

1
γ̇(s′, t)ds′ =

m1∑
k=0

ˆ s

1

Tk(s′)ds′
√

1 − s′2
=

m1∑
k=0

δk(s)ȧk, (D.26)

where using the change of variable s = cos ϕ in the integral δk(s) =
´ s

−1
Tk(s′)√
1−s′2 ds′ =

´ cos−1(s)
π

− cos(kϕ)dϕ, which yields:

δk(s) =


π − cos−1(s), k = 0;
−1
k

sin(k cos−1(s)), k ⩾ 1.
(D.27)

The relative velocity vrel in the Bernoulli equation (D.12) is the difference between tangential

velocities of the fluid and fin:

vrel = (w − ξ̇) · ês = w · ês − (τ s
0 +

m2∑
k=0

ḃkσs
k). (D.28)

Because ḃk’s are determined in the previous step, vrel can be computed here and substituting



D.2. Numerical Method 53

it in the Bernoulli equation results in a system of linear equations for ȧk’s:

m1∑
k=0

δk(s)ȧk = [p] − vrelγ + vrelγ|s=1. (D.29)

This equation should be satisfied in m1+1 points (number of ak’s). For simplicity, we assume

m1 = n − 1 and use the same collocation points as in equation (D.25). The quantities ȧ and

ḃ can be found from equations (D.15)-(D.17), (D.25) and (D.29) and then integrated over

time to find a and b’s for the next time step.

To satisfy Kelvin’s Theorem, conservation of circulation in the flow, at each time step a new

vortex element will be shed from the trailing edge. Here we assume the total circulation in

the fluid is zero at the beginning of the simulation. Therefore the strength of the newly shed

vortex is:

ΓN+1 = −
ˆ 1

−1
γ(s)ds −

N∑
k=1

Γk. (D.30)

The position of the newly shed vortex element (ΓN+1) is assumed to be at the trailing edge.

The location of the free vortex elements is updated by calculating the velocity of them using

the Birkhoff–Rott equation:

˙̄zj = uo + 1
2πi

ˆ 1

−1

ν(s′, t)√
1 − s′2(zj − ξ(s′, t))

ds′ + 1
2πi

N+1∑
k=1,k ̸=j

Γk

zj − zk

. (D.31)

After finding the velocity of the free vortex elements, we integrate them to update their

location. Since the location of the newly released vortex is the trailing edge, the integral in

the equation (D.31) becomes singular. To solve this problem we add a small desingularization

parameter δ [36, 37] in the integral part:

˙̄zj = uo + 1
2πi

ˆ 1

−1

ν(s′, t)(zj − ξ(s′, t))√
1 − s′2[(zj − ξ(s′, t))2 + δ2]

ds′ + 1
2πi

N+1∑
k=1,k ̸=j

Γk

zj − zk

, (D.32)
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or

˙̄zj = uo + 1
2πi

ˆ π

0

ν(ϕ′, t)(zj − ξ(ϕ′, t))dϕ′

(zj − ξ(ϕ′, t))2 + δ2 + 1
2πi

N+1∑
k=1,k ̸=j

Γk

zj − zk

. (D.33)

The core objective in computationally simulating the fin is to find the ȧ and ḃ at each time

and integrate them to update the shape of the fin ξ and the bound vortex strength γ(s, t).

The rest of the unknowns, i.e., pressure jump distribution, thrust, and flow velocity field, are

functions of ξ and γ. We summarize this procedure in the following numerical algorithm:

step 0: Find δk(s) from equation (D.27) for s = s1, . . . , sn and k = 1, . . . , m1. The value of

δk(s) depends only on s. Therefore, these values remains constant.

step 1: Update a and b coefficients in equations (D.13) and (D.14) to find ν(s, t) and θ(s, t)

at the current time step. The unit vectors ên and ês, the shape of the fin ξ, curvature κ,

τ
s/n
0 (s) and σ

s/n
k (s) in equations (D.23) and (D.24) can be found using the updated θ.

step 2: Find the tension using equation (D.4) and substitute it in equation (D.5) to find

the pressure jump distribution, [p](s, t).

step 3: Use equation (D.18) to find the value of K(s, s′) for any (s, s′) = (sj, sk), when

1 ≤ j, k ≤ n (combination of collocation point).

step 4: Find the velocity of fluid at the collocation points using equation (D.21).

step 5: Find ḃk’s from equations (D.15)-(D.17) and (D.25).

step 6: Find the velocity of the fin from equation (D.22) and vrel from equation (D.28).

step 7: Find ȧk’s from equation (D.29).

step 8: Integrate ȧk and ḃk’s to update ak and bk’s.

step 9: Find the strength of the newly released vortex element using Kelvin’s Theorem,

equation (D.30).
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step 10: Find the velocity of the free vortex elements using equation (D.31) and (D.33),

then integrate them to update the position of them.

step 11: Replace N with N + 1 and then go back to step 1.
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