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Despite many years of research, a method to precisely and quantitatively determine cancer disease state
remains elusive. Current practice for characterizing solid tumors involves the use of varying systems of tumor
grading and staging and thus leaves diagnosis and clinical staging dependent on the experience and skill of the
physicians involved. Although numerous disease markers have been identified, no combination of them has yet
been found that produces a quantifiable and reliable measure of disease state. Newly developed genomic
markers and other measures based on the developing sciences of complexity offer promise that this situation
may soon be changed for the better. In this paper, we examine the potential of two measures of complexity,
fractal dimension and percolation, for use as components of a yet to be determined “disease time” vector that
more accurately quantifies disease state. The measures are applied to a set of micrographs of progressive rat
hepatoma and analyzed in terms of their correlation with cell differentiation, ratio of tumor weight to rat body
weight and tumor growth time. The results provide some support for the idea that measures of complexity
could be important elements of any future cancer “disease time” vector.
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INTRODUCTION may utilize both aerobic and anaerobic metabolism to pro-

One of the principal characteristics of biological systemsduce energy for cell activities, synthesize unusual or aberrant

is that they are complexl]. This complexity allows an proteins, or may utilize derepressed portions of fetal/
evolving optimal functioning within the environment. This émPryonic genome. Many tumor cells show immaturity of
fact that has been recognized in systems engineering and € cell surface, a higher degree of cell lability and have a
emphasized by the increasing number of engineered nonbiYOPensity for more mutation, all featurgs hot seen In most
logical but biomimetic systems that have appeared over théifferentiated adult cells. Some populations of tumor cells
past few decade@—4]. Although living systems are adaptive resist normal apoptotic signals, and have lengthened lifespan

and evolve over time, the mapping of system evolution td@S & population may be considered immortaihile other
chronological time is most often nonlinef]. That being tumor cells in the same tumor may die rapidly, being unable

the case, additional measures or markers are used to suppF%/"’;)doil?é tgnt\/f}foﬁ?#gri]tgopj %&gﬁg{;ﬁﬂg%ﬁﬁ:gg% tgecélrjlr_nor

ment chronological time, when, for example, the state of . ) 9" ,,
disease progression is assessed. tury of research has sought to identify a “simple” character-

If complexity is one of the hallmarks of living systems, istic possessed by all tumor cells, the result of such inquiry

then its measure might provide a way to more accurately anBas been recognition of the constantly evolving and complex

quantitatively characterize disease progression. For that pug:_haracterkpf all neopllastic cells. . o .
pose, we have applied measures of complexity to a particular !N S€€King to apply measures of complexity to cancer in

type of cancer, rat hepatoma, and looked for signs of correQrder to determine the correlation of those measures with the

lation between disease state and complexity measures disease state, two serious problems exist. First, there are is-

Tumors are considered by many to be more complex tha§U€S in identifying disease state in solid cancer. .
the normal tissues from which they are derived. One measure Tumor grade indicates the Ievel of mallgna_mc_y and is
of complexity is morphologic complexity. Tumor cells, by ~ Pased on the degree of anaplasia (or deformity in behav-
definition, show variations from normal size, shape, and the [0r and form) seen in cancerous cells under the micro-
ratio of nucleus to cytoplasm. Less differentiated, and more SCOPe.. There is still no general clinical agreement on the
malignant tumors, have a higher percentage of cells that are grading [6].”
either larger than normal cells or smaller than normal orSecond, although there are a number of measures of system
both. Such cells may have compound or multiple nucleicomplexity[7], there is also no agreement on any particular
within a single cell cytoplasm, just as one example of vari-one as having general applicability. The implication of this is
ability and complexity. that there is no agreement as to what measure of complexity

The functional evaluation of tumors also shows they ex-should be considered as an independent variatat is the
hibit less predictable behavior than normal cells. Tumor cellsx axis?) while the tumor grading is poorly defingéd/hat are
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FIG. 1. Disease progression vs chronological time. FIG. 2. Disease progression vs “disease time.”

the values on thg axis?). This makes a meaningful analysis ) o )
problematic, but the problem can be overcome to a certaifr"om this assessment, a prediction of future growth is made

extent, as shown below. based on past experience with this tumor morphology.

Cancer is a complex disease process characterized by tA&erapy is not usually based gor monitored by repetitive
uncontrolled proliferation of abnormal cells. Treatment plangreevaluation of tumor morphology, ongoing assessment of
for most cancer patients are based on the interpretation déimor gene expression, or other measures of cancer “disease
diagnostic biopsies and clinical staging of disegmémarily  time.” Increasing the predictive value of the surgical biopsy
by evaluation of primary and distant tumor sites, includingand additional incremental evaluation of cancers may pro-
lymph node$ For practical reasons, treatment plans are forvide better control of cancer growth and better patient out-
mulated on “average” outcomes, derived from the results o€omes through individualizing therapeutic planning and
clinical studies of similar cancers, and not geared to indi-monitoring.
vidual patients. As such, most patients can be expected Pathologists evaluate a variety of microscopic features
(based on epidemiological dat respond in a predictable when analyzing tumor biopsies. Features such as cell size,
manner to therapy. Many will respond, but some will not, nuclear size, nuclear shape, ratio of nuclear to cytoplasmic
since their individual pattern of disease progression does nafize, subcellular organelle occurrence and placement
fit “the average” as shown in Fig. 1. There have been strikingnucleoli, for examplgare commonly evaluated. The orga-
instances in which intensively managedlividual patients  nization of neoplastic cells into tissue architecture such as
attain significantly better disease control than those managedlicts and glands is considered important. The presence or
according to methods based on average outoghgewinner  absence of mitotic figures is typically taken as a measure of
of the 2003 Tour de France bicycle race, Lance Armstrongcell growth fraction and predictive of ongoing cell division.
with metastatic testicular cancer, for exampl®f course, The general shape of the neoplastic cell population and de-
some patients do not do as well as “the average,” have poorgree of invasiveness may be analyzed as additional criteria
response to therapy, and succumb sooner. indicating benign or malignant behavior.

Similar neoplasms grow and progress differently in differ-  Pathologists commonly evaluate the morphology in many
ent individuals. Underlying reasons for this differential pat- different areas of the surgical biopsy to arrive at a definitive
tern of growth include the tyge) of mutations leading to morphologic diagnosis that will be used to define the poten-
initial cancer cell growth, success of cancer cells in developtial future growth of the neoplasm and therapy for the dis-
ing vasculature and support stroma, patient immune and irease. In most cases, the least differentiated and/or most
flammatory response to cancer cells, patient and tumor nutrpoorly organized area of the tumor is taken as being the area
tion, and the ability of the cancer cells to evolve resistanimost predictive of future growth.
forms in response to attack. The rate of growth of neoplasms The experience of the pathologist is the key to arriving at
follows a relatively predictable biological, but not chrono- an accurate diagnosis. This experience is gained from years
logical, pattern in each individual. We identify this predict- of examining surgical biopsies, studying and comparing mor-
able biological growth pattern as the disease state reflectinghologic features, and relating these images to eventual case
different stages in the growth, differentiation, and progres-outcomes. However, even highly experienced pathologists
sion of the cancer and measured by a hypothetical “diseasxamining the same biopsies may disagree on the diagnosis,
time” as shown in Fig. 2. suggesting fundamental differences in perception, visualiza-

Therapy is designed to kill cancer cells while leaving nor-tion, and utilization of their recalled imagé¢8].
mal cells intact. In general, the type, duration and amount of In recent times, as diagnosis and treatment of cancer have
therapy are based on the histologic assessment of tumor typedvanced, there has been much emphasis on the use of quan-
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titative and semiquantitative methods in analyzing cancecomplexity we consider, the fractal dimension of a micro-
micrographs in order to quantify the exhibited morphologicalgraph.
features. However, the tremendous diversity seen both in the The fractal dimensiorjll] is related to the space filling
type as well as in the other characteristics of cancer makesature of an object, with a two dimensional object such as a
this task difficult. In particular, the disease progression ratesquare having fractal dimensi@=2 and a one dimensional
shows wide variation even between experiments done und@bject such as a straight line having fractal dimendionl.
similar circumstance$9]. As a result, the usual statistical Squares and straight lines are not generally considered to be
averaging using chronological time as a parameter cannot bomplex, so one would expect a maximum in complexity to
expected to lead to reliable predictions. It is thus highly de-occur for objects having fractal dimensions somewhere be-
sirable to identify a suitable variable, or set of independentween integral values in analogy to finding maximum com-
variables, which would help to characterize cancer diseasplexity at the critical point at the phase transition between
state accurately in terms of a suitable “disease time” vectowater and ice, i.e., nedd=1.5 for a two-dimensional em-
Many cancer markers have been identified over the yearsedding space.
[10], but no combination of them has yet allowed unambigu- The other complexity measures we use are both related to
ous gquantitative determination of disease state. Recent agercolation. Percolatiofl,12] is a measure of the connectiv-
vances in bioinformatics have uncovered a number of geity of a region of space. If at least one unbroken path exists
nomic markers that are related to specific cancers. Thedeom the bottom to the top of a region in 2 dimensions, the
markers, whose significance is only beginning to be fullyregion is said to percolate. Percolation is often described in
understood, offer great potential for use in the creation of derms of a “forest fire” mode[1]. In this model, a finite
“disease time” vector. lattice is partially populated by “trees” or occupied sites. At
There are other potential markers that can be derived frorfime step 1, all the trees on the bottom row of the lattice are
the evolving sciences of complexity. The study of complexset on “fire.” At the next time step, the trees that were burn-
adaptive systemgwhich includes all living systemstook  ing are replaced by “ash” and adjacent unburned trees are set
root in the second half of the 20th century and has bee®n fire. This process continues until the fire burns out. At that
progressing ever since. As in many new fields, some definitime, .Iattlce sites can either be unoccupied, contain ash or
tions have yet to be agreed upon, and in this case, “compleﬁonta'” an unburned tree. The_ parameters a_lssomated with the
ity itself is one of those. Properties associated with com-Process are the percolation timig, the fractional percola-

plexity include diversity, Shannon entropy, the shortestio™ . and the total percolation timd, In this model, the
ercolation timef,, or the number of time steps required for

algorithm needed to describe the system, the algorlthm th#\e fire to reach the top of the lattice divided by the number
takes the shortest time to describe the system, fractal dimeqz" | " 'ihe lattice, is infinite if no complete path exists

sion, pgrcolatlon, emergent behavior and Otﬂgﬂ.s Com- trom the bottom to the top of the lattice. The fractional per-
plexity is one of those things that everyone can identify butcqation, F, is the number of unburned trees divided by the
which is difficult to define. An example is found in the tran- g of unburned and burned trees. Finally, the total percola-
sition between water and ice. Both water and ice appear to bgyn time, T, is the number of time steps required until the
simple, rather than complex systems. At the transition befire goes out divided by the number of rows in the lattice.
tween the two, there will be a diversity of ice masses floatingpercolation for an image can be characterized by these pa-
in water. A maximum in complexity will occur somewhere in rameters if the image is considered to be a two dimensional
the region between the more simple uniform phases. If ongattice in which each pixel location represents a lattice site
considers the irreducible amount of information required toand a site is said to be occupied if its associated pixel is some
describe the water-ice system, the maximum amount of inspecified color. A more detailed description of how the frac-
formation is required for the water pha@mass of a single tal dimension and percolation measures are calculated are
water molecule, as well as position, momentum and spatigbrovided below.
orientation of each water molecule must be specjfiadhile In this paper, we first describe the particular cancer ana-
the minimum amount of information is required for the ice lyzed, rat hepatoma, how the samples were collected, how
phase(total mass, center of mass, total momentum, and latthe slides were prepared and how the images were taken.
tice parameters must be specifieth terms of the informa- Next, the standard parameters used to characterize that data
tion required to describe a system, we hypothesize that: set are discussed. The complexity measures of image mor-
A system is maximally complex when the rate of change gihology are then covered in some detail followed by the
the irreducible amount of information required to de- analysis procedure, i.e., preprocessing of images, conversion
scribe that system with respect to some parameter or paef images to data files, calculation of fractal dimension, frac-
rameter set is an extremum tional percolation, total percolation time and an estimate of
This means that the absolute value of the slope of the amouitie irreducible amount of information needed to describe the
of irreducible information required to describe the systemimages. The results of this analysis are then presented includ-
versus some parameter reaches a maximuvhen the ing a linear correlation matrix relating all pertinent variables.
amount of information is changing from a smaller to a largerFinally, the results are discussed, their implications analyzed
value, e.g., from ice to water, or the information required toand the future direction of this research considered.
describe it is changing from a larger to a smaller value, e.g.,
water to icg@ when the system is maximally complex. We DATA SET
will consider this hypothesis in the light of our results later, Female Buffalo ratg8 weeks olgl were obtained from a
but it also has some relevance to one of the measures ebmmercial vendor(Harlan Laboratory Animals, Dublin,
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FIG. 3. (Color onling Image 1. FIG. 4. (Color onling Image 2.

VA), housed singly in polycarbonate cages, fed a commer-
cial, nutritionally complete rodent digHarlan Rat Chow
and allowed access to public wated libitum Prior to the
initiation of this work, a protocol for experimentation was
submitted and approved by the Institutional Animal Care an
zzz%gg#;zg?g'gggg%gzzglﬁtﬁ f i)i(gsl?nrggr;gar“:;réa:; raphs, indicating further tumor organization. Several small
use of laboratory animals as promul agted by AALAC. Work & <& of necrosigarrows are present in each figure, and

: y AS pr gated by g individual necrotic cells are scattered throughout.
was monitored by the University Veterinarian. Animal use ! ) ; . .

. A Figure 11: well differentiated mature tumor, showing
was consistent with highest acceptable standards of humang . - .

. ; . pSeudoacinar organization and cells arrayed in cords.
care and use in experimentation.
Morris 7777 transplantable hepatomas were raised in tis-

sue culture and then an aliquot of "16ells was injected

aseptically in the subcutis anterior to the left hind leg of Eqr each of the images, there was associated data that is
selected rats. Tumor growth was subsequently monitored Ofp|ated to, but does not completely define, the state of dis-
a daily basis by gentle palpation. Groups of rats were sacrigase. This data was the tumor growth time from incubation
ficed at weekly intervals for 8 weeks, tumors were gently;j, days, the tumor weight and the rat weight in gram weights

exposed, photographed situ, and then collected for further 4t the time the tumor was harvested. Table | shows the incu-
study. Pieces of tumors were fixed in 10% buffered formalin

solution for a minimum of 48 hours, dehydrated after fixa- . . w w

Figures 5-8: tumor maturation is evident with less cel-
lular pleomorphism(size and shape variatipndecreased
number of mitotic indicators, and early formation of cell
(fords typical of differentiated hepatomas.

Figures 9 and 10: cell cords are evident in these micro-

STANDARD PARAMETERS

- . . NV L ETE T TR
tion in a series of graded alcohols and xylene, and then mﬂ & & & @pf % hﬂé 2
filtrated with paraffin polymer. Sections were cut at 3 mi- & . 3 ,:a 0 5 . @ Le® e@
crons, rehydrated, and then batch stained on an automated' & 'y 2 é;, & 9’5.9" &
stainer (Shandon Southern Corpwith hematoxylin-eosin .' o Q ¢ A 7) ®O«, z. & =y
stains. Digital photographs of stained four micrometer tumor’ e,“gi} ﬁ '7‘ A @ . &% q
sections were acquired using a Nikon Eclipse E600 photomi- =~ &% 34 ' &

croscope, DXM 1200 Digital Camera, and processed with & p" 2 Y ga gﬁh’ %4
Nikon ACT-1, version 2 proprietary image capture software. ¥ ,0” 'é' R o @ ). 5‘-‘_“.& ‘JD
All sections were photographed at original magnification B --{‘Q R %’;‘ A @ e{}}. ‘
40X. Images were stored as medium compression jpeg file¢ g’ i‘-‘*‘ : :. ‘;QD.\J V.. . q s
(800x 600 pixels. The data set analyzed consisted of 9 im- g E n Q’A"' ‘% P3G £

B o i 7

ages displaying different degrees of cell differentiation. W ﬁ { .

These images are shown in Figs. 3-11 as described below.igg s = = 8 ‘é % '5.0’ A o@ -
Figures 3 and 4: disorganized early growth. Tumor cells Q&” i@ S: % @W o "*o E

show marked variation in cell and nuclear size and shape,;. R0 -‘@ "@,3 } & ’ Q:}‘ " YTy |

Note the presence of enlarged nuclei, taken to be indicative
of abortive mitotic events, and nuclear hyperchromasia. 50 pm

Some degenerate tumor ce(lrowg are present and there

is minimal inflammatory cell infiltrate. FIG. 5. (Color onling Image 3.
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FIG. 6. (Color onling Image 4. FIG. 8. (Color onling Image 6.

bation time, tumor weight, rat weight and tumor weight/rat(up to cellular dimensionsimplying that the tumor bound-
weight ratios that correspond to each of the images. ary has afractal nature, and could be characterized by a
fractal dimensiorf15-17 This means that the tumor invades

the available space in a nonuniform way, and has an effective
COMPLEXITY MEASURES OF IMAGE MORPHOLOGY dimension less than the embedding topological dimension
(which is 3 for most tumons Thus, the fractal dimension is a
There is a long history of using image analysis to detervery useful quantity in characterizing the state of growth of
mine the morphology of a system associated with an imagene tumor. In general, the roughness of the interface between
[13]. Recently, techniques based on concepts from the fielehe tumor and nontumor region is an indicator of whether the
of artificial life [13] have been used for image analygid].  tumor is likely to become infiltrative or not. Tumors whose
The measures of complexity that we use involve fractal diinterfaces are very rough are seen to be more aggressive,
mension and percolation. We will consider each of these ifhile ones with relatively smooth boundaries are less likely
turn. to be highly infiltrative. The fractal dimension is closely re-
One factor making determination of the extent of cancelated to the roughness of the interface, which makes it
spread difficult is that the typical malignancy has a very ir-closely correlated to the growth characteristics of the tumor.
regular, nonsmooth boundary. A large number of experimenThere has been a considerable amount of research carried out
tal studies done on different types of cancer have shown thain relating fractal dimension to the presence or absence of
these irregularities are present over a range of length scal@@ncerous tissue and a number of extensive recent review
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FIG. 10. (Color online Image 8. FIG. 11. (Color onling Image 9.

articles are availablgl5-17. Changes in tumor vascular ar- to asself-similarto indicate their scale-invariant structure. In
chitecture have been monitored via determination of the fracsimple terms, the common characteristic of such fractal ob-
tal dimension of the associated imag&8]. There is a grow- jects is that their lengtkif the object is a curve, otherwise it
ing but not universal belief that the fractal dimension ofcould be the area or volumelepends on the length scale
cancer images is an important marker that relates to the distsed to measure it, and the fractal dimension tells us the
ease state: precise nature of this dependence. A rigorous mathematical
“There are strong theoretical reasons for using fractal definition of the fractal dimensiom (also called Haussdorff
geometry in measurements of biological systerh$16]. dimension, of such an object is usually expressed through
“If carefully applied, fractal methods may someday have ahe relation
significant impact on our understanding of challenges in In N(e)
treatment delivery and diagnosis of can¢eil9]. D =i
“...fractal analysis applied on digitized cell shapes is a 00In(1/e)’

reliable method for cell complgxity measurement that CaNyhereD is the fractal dimensior is the length of one side
be used alone or as an additional parameter along Wlthof a hypercube which has the same dimensionas the

morphometrical measurements both in routine work andspace in which an object is embedded aid) is the mini-

researcht. [20]. mum number of hypercubes of dimensionequired to com-

wh-iz:melgglgctﬁgtso;rﬁefr:f:: ?elg]etﬂsé?:glteos(wzigr;ﬁgtSt:gcgsrggletely cover the object. Since one cannot achieve the limit
9 prop f £ going to 0 in numerical calculations, M(e) and In(1/¢)

by Mandelbrot{11]. Although in strict terms, this is a purely .

. . are calculated over a range of scales using hypercubes vary-
mathematical concept, there are many examples in naturi% in size from the smallest single cube required to cover
that closely approximate a fractal object, though only OVEr, g object to cubes at the resoluti%n limit of tﬂe set of points
particular ranges of scale. Such objects are usually referreC osen to represent the objgethen this limit is reached

N(e) equals the number of points and remains constant for
all smaller values ot]. These values are then plotted with
the slope representing an “instantaneous fractal dimension.”
In practice, one would like to find a range of scale of an
order of magnitude or more over which the slope is constant.

1)

TABLE I. Tumor growth times and tumor weight/rat weight
ratios corresponding to each image.

Image No. Growth tim&days Tumor weight/rat weight

1 7 0.000 The object will then be said to have a fractal dimensidn

2 7 0.000 =slope and self-similarity over that range. Depending upon
the range over which the slope is calculat&d,can vary

3 7 0.000 - . . . . :
widely. This technique is called the box counting algorithm

4 14 0.007 (BCA)

5 14 0.002 Most calculations of fractal dimension of digital images

6 14 0.012 simply convert the image to black and white according to

7 21 0.026 some protocol, apply the BCA to the set of pixel positions

8 35 0.021 represented by the black pixel data set, find a range where

9 35 0.044 the slope is constant, and conclude that the image has a frac-

tal dimension equal to the slope within the range where the
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slope is constant. A closer examination of the BCA, howeverdeviate from one another, an@) the BCA curve for the

provides more information about the morphology of the im-

complimentary set of point&he locations of the white pix-

age than this procedure suggests. If an object is representetb and its fractal dimension might be more correlated with
by an array of points embedded in an n dimensional spacéhe tissue morphology than the fractal dimension of set of

then we define
N(e) = (2

whereN(e) is the number of hypercubes of sizeequired to
cover the set of pointd\y(e) is the number of hypercubes of

NO(S) - Naa

points itself. Due to the latter consideration, the fractal di-
mension of both the black pixel set and the white pixel set
was processed for each image.

In implementing the BCA in a computer algorithm, we
followed a recently reported innovative technique that mini-

size e required to completely fill the smallest single hyper- mizes memory requiremen{21]. In addition, each set of

cube that can completely contain all the points, Ahds the

number of hypercubes of size(in the smallest single hy-
percube that can completely contain all the poirtkgt are

empty.

data points was scaled so that each point was replaced by
(0.98 times its valug(the maximumx-axis value in the set
+0.01. The algorithm was validated on data sets representing
a linear objectsine curve, a two-dimensional objecfilled

If Vy is the volume of the smallest single hypercube thatin squar¢ and a complex objedtHenon Map.

can completely contain the set of points ands the volume
of all the voids within the object of dimensian or larger,
then in an approximate sense

N(e) = Vyle" =V, /e" = Vy(1le) (1 = V./V) (3)

and

In N(g) = In(Vp) + nin(1/e) + In(1 = V,/V,). (4)

An examination of Eq(4) indicates that if there are no
voids in an object with dimension smaller than some given
then the first and third terms on the right-hand side of (By.
are constant for values efsmaller than this and the slope of
the curve generated by the BCA for scakesand smaller

For the percolation measurements, a computer program
was developed that implemented the commonly utilized for-
est fire mode[1]. In this program, pixels were considered to
be adjacent on the square lattice if they were nearest neigh-
bors or nearest diagonal neighb@8spossible total adjacent
locationg. In previous work devoted to stochastic modeling
of molecular self-assemblj22], it was found that fractional
percolation and total percolation time were sensitive indica-
tors of structural phase transitions in the model films, and
might provide an indication of the same sort of transitions, if
they exist, as in disease progression.

The computer algorithms were written in the FutureBasic
programming language and run on a Macintosh G5 computer

should be close to the dimension of the space in which th&ising the OS 10.2 operating sysem.

set of points is embedded. Deviations of the slope from the
dimension of the embedding space at a given scale are re-
lated to the distribution of voids at that scale. This leads to
the interesting speculation that: The rat hematoma images were preprocessed using Adobe

The curve produced by the BCA for a set of points isPhotoshop 7.0 image processing software. The processing

related to the distribution of voids within that set of points proceeded in the following way.

with the corollary that the curve produced by the BCAon (1) In order to reduce computation times, the color jpeg

the complimentary set of points should be related the disimages were rescaled from an original size of 800

tribution of points themselves X 600 pixels to a reduced size of 48851 pixels using

Our simple analysis of the BCA has two implications for bicubic pixel interpolation. This reduction resulted in image
the analysis of cancer micrographd) the scale at which degradation at the highest resolution and limited the range
morphological differences between images occur might b@ver which meaningful calculations could take place. The
evident from the scale at which the BCA curves for imagesphysical distance captured by each image from left to right

ANALYSIS PROCEDURE AND RESULTS
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TABLE II. Values of calculated parameters for the 9 rat 1.70 T T T T T T T T T

hepatoma images. + pathologist |
o . o

Image No. Dy Dy, Fo Fuw Ty Tw  Imin (kKb) 165 L o pathologist4 | |

1 1.664 1.776 0.105 0.984 0.211 1.114 269.2 £ o o N ; ’: f ; o

2 1.631 1.804 0.091 0.995 0.162 1.051 241.8 2 o 2

3 1.611 1.822 0.166 0.970 0.601 1.154 272.0 1.60 . o ° x

4 1.626 1.811 0.094 0.964 0.205 1.125 280.1

5 1.600 1.823 0.190 0.987 0.368 1.088 260.3

6 1.625 1.804 0.069 0.986 0.182 1.040 260.5 B e T,

7 1.617 1.812 0.023 0.983 0.083 1.142 256.1 image order

8 1.635 1.793 0.216 0.988 0.550 1.083 246.1 ) ) ) ]

9 1634 1.799 0.091 0956 0.285 1259 226.6 FIG. 13. Fractal dimension of the black pixel sets vs image

order for the 4 pathologists.

was 0.400 mm, so that the distance between the centers ofirves. The values of the slopes of the curves in that region
individual pixels was 0.854m. were identified as the fractal dimensions and complimentary
(2) The color jpeg images were converted to gray scale.fractal dimensions of their associated images.
(3) The gray scale images were converted to black and The black pixel and white pixel data sets were used as
white using a threshold level of ®&maximum intensity. input to the percolation analysis computer program and the
(4) The black and white images were filtered to removefractional percolationF, and the total percolation timd,,
stray pixel “noise” using the “dust removal option” with a were calculated. The calculated values for each of the 9 im-
2 pixel radius. ages are given in Table II.
(5 The black and white images were then converted to The fractal dimensior), percolation parameteBandT
two data sets containing the locations of the black pixels andnd the irreducible amount of informatioh,,,, needed to
white pixels, respectively. describe the images were considered to be independent vari-
(6) The original color jpeg images were compressed usables in this analysis. The other independent variable is of
ing the standard gzip algorithm and the files sidgg, were  course the tumor growth time, In order to determine the
recorded as an indication of the irreducible amount of infor-correlation of the independent variables to disease state, they
mation required to describe those images. needed to be compared with dependent variables that are
This process is shown in Fig. 12. commonly used in the assessment of disease state, cell dif-
Once the data sets had been obtained, the BCA was uséerentiation,d, and ratio of tumor weight to rat weighR.
to generate IMN(e) versus lit1/e) curves for both the black Two of the variables have already been presented in Table |,
pixel and white pixel data sets for each of the 9 images. Thée., the tumor growth time and the tumor weight to rat
starting value wase=1 and the ending value was  weight ratio. The second dependent variable is the degree of
=0.0015 so that ranged over almost 3 orders of magnitude. cell differentiation in the images. In order to get a quantifi-
The step reduction factor for thes was 0.81. It was found able measure of this variable, 4 pathologists were asked to
that the curves were linedr?=0.999 in the region 0.003 independently arrange the images from the lowest dediee
<e=<0.052(14 points,~ one order of magnituddor all 18  of cell differentiation(undifferentiateglito the highest degree

TABLE Ill. Cell differentiation (1=undifferentiated; 9=highly differentiatgtnage orders. Pathologist 1:
Dr. John L. Robertson, Center for Comparative Oncology. Pathologist 2: Dr. Robert Maronpot, National
Institute of Environmental Health Science. Pathologist 3: Dr. Gerry Long, Eli Lilly Inc. Pathologist 4: Dr.
Kurt Zimmerman, Virginia-Maryland Regional College of Veterinary Medicine.

Image No. Pathologist 1 Pathologist 2 Pathologist 3 Pathologist 4 Pathologist
average
1 1 1 2 1 1.25
2 2 2 1 2 1.75
3 3 7 7 3 5.00
4 4 8 6 8 6.50
5 5 9 8 7 7.25
6 6 3 5 4 4.50
7 7 4 3 5 4.75
8 8 5 4 6 5.75
9 9 6 9 9 8.25
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TABLE 1V. Linear correlation matrix of relevant parameters. 0.10 T T T T T
Dy=fractal dimension of the black pixel se3,,=fractal dimension
of the white pixel setsk-,=fractional percolation of the black pixel se,
sets. F,,=fractional percolation of the white pixel set$,=total A 0.05 | * L
percolation time of the black pixel set§,=total percolation time & *ytee ot
of the white pixel setsl,,,=irreducible amount of information to E ¢8s°°°s $3s. s
describe the imagel=cell differentiation from the average image V000 lesssosscosns "} (] ! ;' s H «®e oo
rankings of the 4 pathologistdR=tumor weight/rat weight.t ) ' % Sececgt?
=tumor growth time. Z ' e *%¢_ge°°’
£.0.05 | : I i
: €=25um , . .
Db Dw Fo Fu To Tw lmn d Rt \. e
)
Db 1 0.97 0.18 0.03 0.24 0.05 0.11 0.54 0.06 0.04 _gjp 1 | : ) ! \
D, 097 1 0.0 0.14 0.20 0.02 0.21 0.48 0.14 0.18 0.0 1.0 2.0 3.0 4.0 5.0 6.0
F, 0.18 0.10 1 0.12 0.88 0.14 0.04 0.26 0.27 0.15 In(1/€)

Fy 003 014 012 1 014 085 001 062 048 031 FIG. 15. Deviation of all white pixel BCA curves from their
T, 024 020 088 014 1 0.12 0.05 0.31 0.11 0.19 ayerage.

T, 0.05 0.02 0.14 085 0.12 1 0.30 052 0.65 0.45

Imin 0.11 0.21 0.04 0.01 005 030 1 0.20 0.68 0.65time, t. An r value for 2 parameters of 0.585 for 9 points
d 054 048 0.26 0.62 031 052 020 1 0.57 0.63means there is only a 10% chance that two variables are
R 0.06 0.14 0.27 0.48 0.11 0.65 0.68 0.57 1 0.88unrelated while am value of 0.670 means there is only a 5%
t 0.04 0.18 0.15 031 019 045 065 0.63 0.88 1 chance they are unrelat¢l3]. The linear correlation matrix
is given in Table IV. Figures 14 and 15 show the deviation of
the BCA generated curves for the black and white pixel sets
(9) of cell differentiation (well differentiated. The image from their averages. In Figs. 16 and 17, cell differentiation
ordering by the individual pathologists and the average ordeYersus fractal dimension of the black pixel data sets and
of the images is given in Table IIl. The fractal dimensions ofWhite pixel data sets are presented with linear and quadratic
the images versus image order for all 4 pathologists is showfits. respectively. Figure 18 shows the first derivative of the
in Fig. 13, where no obvious correlation can be observedirreducible information required to describe the original im-
However, the measure of degree of the cell differentiation oRges(as estimated by their compressed file size using the
each of the images was chosen to be its average image ord@#p differentiation.
position and this was used in the subsequent analysis.

The final step in the analysis was to calculate the linear  symMARY, DISCUSSION, AND CONCLUSIONS
correlation matrix(r valueg for all of the variables deter-
mined, i.e., fractal dimension of black pixel data séds, In carrying out this research, our primary goal was to
fractal dimension of white pixel data se,, fractional per-  investigate whether measures of complexity had the potential
colation of black pixel data setB,, fractional percolation of t0 be used as components of a hypothetical cancer “disease
white pixel data setd;,,, total percolation time of black pixel time” vector (multiple markey that would provide an accu-
data setsT,, total percolation time of white pixel data sets, rate quantifiable measure of disease state. This is a difficult
and the irreducible amount of informatioh,, needed to Problem, since disease statemor grading for solid tumoys
describe the images' degree of cell differentiatidnthe ra- consists of broad categories, and physician skill and experi-
tio of tumor weight to rat weightR, and the tumor growth

1.85

T T L T
0.10 T T T T T o T R
180 L B e edS 02 enenearenes ) i
............. &
o \
A 0.05 .o o] 175 L D=1.7897+0.0030375d r=0482
W .« . . D
z L] . ‘ [ - Db'
L ] ) W
£ . ';.i,“"gi‘:i D 170 |
Y 0.00 »ocoooooooo.oz'! $,.3 * g0, 4 D=1.6480-0.0041902d r=0.542
)
® ie o, se s’ L] ) .
= ' I | e o 1.65 L _
=} : et e o . . .
= 005F e=45um . - o
' LR 1.60 |- o =
1
: e %000
-0.10 ! (] 1 1 1 1.55 1 1 1 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 20 4.0 6.0 8.0 10.0
In(1/€) differentiation, d

FIG. 14. Deviation of all black pixel BCA curves from their FIG. 16. Fractal dimension vs cell differentiation for black and
average. white pixel sets with Linear fits.

061911-9



SPILLMAN et al. PHYSICAL REVIEW E 70, 061911(2004)

1.85 . T T T the curves generated by the BCA, allowing the scale at
. - which significant features might differ between images to be
180 | e determined. A mathematical analysis of the BCA also sug-
\ gested that its application to the white pixel location data set
175 = D =1.7698 + 0.01452 d - 0.00126 d = 0.653 would provide information about the black pixel location
- data set and vice versa, with the implication that the fractal
D 170 L D L6738 - 0.01909 d+0.00163 4% r=0715 ] dimension measures of the white pixel data set would corre-
~ . / late better with the dependent disease state variables than the
l6s b St 3 fractal dimension measures of the black pixel location data
s e PR S set. For that reason, for each ima@e,F, andT were deter-
1.60 | * . - mined for both data sets. A final supposition was that maxi-
mum complexity in terms of fractal dimension would occur
155 L 5k = = 0 o somewhere in the middle region betweBrs1 andD=2,

i.e., a line and a filled in two-dimensional object such as a
rectangle. We will examine each of these suppositions in turn
while noting that the linear correlation coefficient between
FIG. 17. Fractal dimension vs cell differentiation for black and tumor growth time and tumor weight/rat weight was
white pixel sets with quadratic fits. =0.88, and the linear correlation coefficient between tumor
growth time and cell differentiation was=0.64. These re-
sults indicate thatl) correlations between the independent
ence play a large role in determining the accuracy of theeomplexity based variables and the dependent variables
grade to which any given tumor is assigned. If one is atshould be greater than 0.6 to be of significance, @)dve
tempting to do correlations, this results in an ill-defingd “ can have some measure of confidence in our approximate
axis” is ill-defined. In our case, we examined 2 dependentneasure of cell differentiation.
variables that are usually associated with disease state in The differences between the BCA curves and their aver-
solid tumors, tumor cell differentiatiord, and the ratio of ages are shown in Fig. 14 for the black pixel location data
tumor weight to animal weightR. Of the two, the most sets and in Fig. 15 for the white pixel location data sets. As
uncertain is cell differentiation, which is a somewhat quali-can be seen, there are reasonably clearly defined scales at
tative measure of tumor morphology utilizing broad catego-which the curves suddenly diverge. This indicates that at
ries. When asked to arrange the 9 tumor micrographs in osmaller scales, the number of boxes required to completely
der of cell differentiation, 4 experienced pathologists camecontain the individual pixel sets becomes different for the 9
up with 4 different orderings. This illustrates the difficulty in images and implies that analysis of the images at larger
quantifying cell differentiation as indicated in Table Il and scales would probably not produce useful results. In the case
shown in Fig. 13. Our measure of the cell differentiation forof the black pixel location BCA curves, this deviation occurs
each image was chosen as the average place in the order~45 wm, while for the white pixel locations, the deviation
considering all 4 pathologists. Although approximate, thisoccurs at~25 um. If the BCA curves for the white pixel
allowed us to determine the amount of correlation betweetocation data sets contain information about the cell mor-
the dependent variabled,andR, and the independent vari- phology and the BCA curves for the black pixel location data
ables: tumor growth timet, and measures of complexity sets contain information about the morphology of the spaces
fractal dimensionD, fractional percolationf, and total per- between the cells, this implies that deviations in the images
colation time,T. from each other in terms of the dimensions of the spaces
A number of hypotheses were tested in this researchbetween the cells begin to occur at a larger scale than devia-
First, in a consideration of the box counting algorithmtions in the images from each other in terms of the dimen-
(BCA), analysis suggested that differences in morphologysions of the cells themselves. In effect, the analytical process
between images might be manifested as differences betweén able to quantify complexityfractal) measures of benign

differentiation, d
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and malignant morphology. The data indicate significant dif-tary data set might have more correlation with disease state
ferences in white pixe{cell morphology and black pixel than the primary data set3) the relationship between dis-

(intercellular space organizatiprdata. This is not unex- ease state and measures of complexity is likely to be nonlin-
pected, since tumor cell “packing” varies widely if tumors €ar, (4) there are indications that the this complex disease
are attempting to replicate tissue architectitat is, to be- ~ system passes through a state of maximum complexity as it
come more orderly and therefore less complexfail to do ~ Progresses, and, finally5) the data is not inconsistent with

so(are more malignant and undifferentiate@he real value the hypothesis that maximum complexity occurs when an

of these measures is that they provide a quantifiable attribuf@Xtrémum occurs in the rate of change of the irreducible
of cell organization or disorganization, something that is dif-2mount of information required to describe a system with
ficult for pathologists to do. respect to some parameter. Thus the data provides some sup-

Differences between the black pixel location data sets anBOrt for the idea that measures of con:p_lexny cc_JuId” be im-
portant elements of any future cancer “disease time” vector.

the white pixel location data sets were found when examin? From a practical standpoint, variations in staining inten-

ing the linear c.orrelatio.n d.a}ta presented in Table IV but thes(§ity and types of stains used would be expected to affect the
were not consistent. Significant correlations between the dep'rocessing and interpretation of images, particularly in

pendent variables and independent complexity varialiles cqosing the threshold value for the conversion from gray-
>0.6) occurred in four cases:, versusd (r=0.62, Ty ver-  gcale to black and white images. For example, more intense
SUSR (r=0.69, Iy, versusR (r=0.68, and |y, versust (r  nuclear stainingi.e., longer exposure to hematoxylin pro-
=0.65. Four other correlations approached the 0.6 valye: cessing reagentsmight cause smaller segments of nuclei
versusd (r=0.54, T,, versusd (r=0.52, D,, versusd (r (tangential cuts or partial nuclefo be displayed and there-
=0.49, andF,, versusR (r=0.48. fore increase the number of discrete items present for analy-
The correlations calculated in Table IV were linear, butSis. Likewise, the use of other stains that highlight other cell
there is no reason to suppose that the functional dependeffatures(unique proteins or organellesould provide addi-
cies between the variables should be linear. IfBgeandD,,  tional information for analysis. In fact, one approach to de-
versusd data are fit to linear, quadratic and cubic functions,scr'b'ng tumor growth characte(lstlcs W't.h morphqloglc mea-
ther values for the black pixel data are 0.54, 0.71, and 0.75UréS is to  use multiple  histochemical ~and

while ther values for the white pixel data are 0.48, 0.65 andlmmunohistochemical stains on the same tumor sections as a

0.66, respectively. The fact that thevalues do not ,increa,lse me?ns of assessing tumor pleomorphism, differentiation, and
T L g ._replicative state.

between the quadratic and cubic fits suggests that there is a There is, however, clearly a need to standardize staining

quadrgtip relaf[ionship between fractal di”_‘er!SiO” and cell dif'techniques to insure uniformity of image analysis between
ferentiation, since jche values for quadratic fits for both the ,ors In this study, all tumors were cut to the same thick-
black and white pixel data are greater than 0.6. The blackess, batch stained on an automated stainer at the same time,
pixel quadratic fit reaches a minimum at a value of differen-ang examined on the same opticallimage capture equipment.
tiation equal to 5.9 while the white pixel data fit reaches aThese standard procedures minimized variation, at least in
maximum at a value of differentiation equal to 5.6. Since thethis data set.
the black pixel data comes closest to a fractal dimension We have noted, during measurement, that the analytic
value of 1.5 at its minimum, it suggests that the physicalmethods we have used are highly suited to quantifying vari-
structure of progressive rat hepatoma becomes maximallgibility in different areas of the same tumor biopsy. Human
complex at a value of differentiation between 5 and 6. pathologists attempt to perform an evaluation of cytologic
In order to examine the hypothesis put forward previouslyvariation during biopsy evaluation, but clearly do not quan-
that maximum complexity occurs when an extremum occurgify absolute variability nor ascertain if variation is key to
in the rate of change of the irreducible amount of informa-prognosis. For example, it may be very important to deter-
tion required to describe a system with respect to some pamine the organization and cellular characteristics of the tu-
rameter, the rate of change &f;, with respect tod was  mor margin cells, since they are most likely to represent the
calculated. This is shown in Fig. 18. As can be seen, amnvasive interface with normal tissue. We are actively inves-
extremum occurs at a value d&4.9, which is close to the tigating the relationship between tumor behavior and vari-
value ofd suggesting maximum complexity from the fractal ability of fractal measures within individual biopsies.
dimension data. An additional calculation assuming that Perhaps the most significant aspect of this work is that
could be represented by maximum jpeg compression watkhere is a potential to develop a coherent suite of mathemati-
also performed. The results were found to be essentially theal tools for defining benign tumor characteristics and malig-
same as those obtained using gzip compression with the egant tumor characteristics. Not only might this analytical
tremum occurring at the same value of cell differentiation,process quantify “typical” morphologic measur@suclear
d=4.9. The limited number of data points in this study doessize, shape and so fojtfibut could also provide a way to
not allow us to claim strong support for the hypothesis, butmathematically evaluate tumor organization. An added ben-
the data is not inconsistent with it. efit could be the application of a computational intensive
Analysis of the data suggests thélt) consideration of the environment to augment tumor analysis without inherent pa-
entire BCA curve can provide useful information above andthologist bias created by experience and affected by both
beyond allowing for a single measure of fractal dimensionknowledge base and human ergometric factors.
i.e., scales of interest where differences in image morphol- This study was carried out on a very limited number of
ogy occur,(2) there was no indication that the complimen- images and for that reason, the analysis is suggestive, not
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definitive and a much larger study is indicated to test thdymphoma and perform a comparison between fractal char-

implications of this preliminary analysis. The images pro-acteristics and WHO classification of lymphoma morphol-

cessed for analysis in the research presented in this papegy. This study is ongoing and its results will be reported in

were in the standard format used by the pathologists in outhe future. We will extend the present analytical techniques

laboratory. Although high resolution information is lost when to include filtering of the images based on the color of stain

jpeg compression is utilized, we felt that there was sufficienused as well as “tuning” the threshold for conversion of gray-

accurate data at the scales of interest to pathologists to allogcale to black and white images through critical value perco-

our calculations to be meaningful. We appreciate that futuréation analysis.

studies should include parallel analysis of jpeg images with

the same image_s; in TIFF or o_ther formats th_at do not degra_de ACKNOWLEDGMENTS

the high resolution data originally present in the images in
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