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Computational Advancements for Solving Large-scale Inverse Prob-
lems

Taewon Cho

(ABSTRACT)

For many scientific applications, inverse problems have played a key role in solving important

problems by enabling researchers to estimate desired parameters of a system from observed

measurements. For example, large-scale inverse problems arise in many global problems and

medical imaging problems such as greenhouse gas tracking and computational tomography

reconstruction. This dissertation describes advancements in computational tools for solving

large-scale inverse problems and for uncertainty quantification.

Oftentimes, inverse problems are ill-posed and large-scale. Iterative projection methods have

dramatically reduced the computational costs of solving large-scale inverse problems, and

regularization methods have been critical in obtaining stable estimations by applying prior

information of unknowns via Bayesian inference. However, by combining iterative projection

methods and variational regularization methods, hybrid projection approaches, in particular

generalized hybrid methods, create a powerful framework that can maximize the benefits

of each method. In this dissertation, we describe various advancements and extensions of

hybrid projection methods that we developed to address three recent open problems. First,

we develop hybrid projection methods that incorporate mixed Gaussian priors, where we

seek more sophisticated estimations where the unknowns can be treated as random variables

from a mixture of distributions. Second, we describe hybrid projection methods for mean

estimation in a hierarchical Bayesian approach. By including more than one prior covari-

ance matrix (e.g., mixed Gaussian priors) or estimating unknowns and hyper-parameters



simultaneously (e.g., hierarchical Gaussian priors), we show that better estimations can be

obtained. Third, we develop computational tools for a respirometry system that incorporate

various regularization methods for both linear and nonlinear respirometry inversions. For the

nonlinear systems, blind deconvolution methods are developed and prior knowledge of non-

linear parameters are used to reduce the dimension of the nonlinear systems. Simulated and

real-data experiments of the respirometry problems are provided. This dissertation provides

advanced tools for computational inversion and uncertainty quantification.



Computational Advancements for Solving Large-scale Inverse Prob-
lems

Taewon Cho

(GENERAL AUDIENCE ABSTRACT)

For many scientific applications, inverse problems have played a key role in solving important

problems by enabling researchers to estimate desired parameters of a system from observed

measurements. For example, large-scale inverse problems arise in many global problems such

as greenhouse gas tracking where the problem of estimating the amount of added or removed

greenhouse gas at the atmosphere gets more difficult. The number of observations has been

increased with improvements in measurement technologies (e.g., satellite). Therefore, the

inverse problems become large-scale and they are computationally hard to solve. Another

example of an inverse problem arises in tomography, where the goal is to examine materials

deep underground (e.g., to look for gas or oil) or reconstruct an image of the interior of the

human body from exterior measurements (e.g., to look for tumors). For tomography appli-

cations, there are typically fewer measurements than unknowns, which results in non-unique

solutions. In this dissertation, we treat unknowns as random variables with prior probability

distributions in order to compensate for a deficiency in measurements. We consider various

additional assumptions on the prior distribution and develop efficient and robust numerical

methods for solving inverse problems and for performing uncertainty quantification. We ap-

ply our developed methods to many numerical applications such as greenhouse gas tracking,

seismic tomography, spherical tomography problems, and the estimation of CO2 of living

organisms.
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Chapter 1

Introduction

Inverse problems arise in many scientific applications such as medical imaging, geophysics,

biology, and atmospheric science. This dissertation develops computational tools for solving

large-scale inverse problems and for uncertainty quantification. In many applications, solving

linear inverse problems is an important and challenging part of inverse problems. In general,

a linear inverse problem can be written by

d = As + ε (1.1)

where A ∈ Rm×n, s ∈ Rn, and d, ε ∈ Rm. Usually, A represents a forward modeling,

d contains observations or measurements, ε ∼ N (0,R) represents Gaussian random noise

where the covariance matrix R is assumed to be easy to invert and factorize (e.g., diagonal

matrix), and s contains the desired parameters.

1.1 Motivating Examples of Inverse Problems

We begin this dissertation by introducing some examples of inverse problems. First, in

respirometry systems [89, 90], the blurring process can be represented by a mathematical

model of convolution. The goal of this process is to estimate emissions of Carbon Dioxide

(CO2) of living organisms using a flow-through respirometry chamber. Getting a reconstruc-

1
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Figure 1.1: The blurred signal (right) is obtained from convolution between the true signal
(left) and the impulse response function (middle).

tion which is a sharper and sparse signal from the blurred signal as described in Figure 1.1

is a typical inverse problem. For example, in image deblurring, rather than the impulse

response function, there are various types of blurs (e.g., represented using the point spread

function [61]). Since we only have the blurred signal (or image) as an observation, we have

to consider methods to reconstruct or estimate the true signal (or image) with a known or

even an unknown impulse response function.

The second example that we consider is tomography reconstruction, see Figure 1.2. In this

example, we wish to obtain information from inside the human body or deep underground,

but cannot access this information directly due to physical and technical limitations. Instead,

we collect measurements from the surface or from the outside of the object and solve an

inverse problem to reconstruct the interior. For example, in crosswell seismic tomography

[2] the goal is to determine the slowness in a medium where the slowness is the reciprocal

of the seismic velocity. By shooting rays from some sources to receivers, we can observe the

total elapsed time of travel for each ray. From these observations, the goal of the inverse

problem is to estimate the slowness properties of the the mass.

Another example of a tomographic reconstruction problem is spherical tomography [60],

which is described in Figure 1.3. Such models are often used in imaging problems from

photoacoustic or optoacoustic imaging applications [70], and the forward model is based on
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Crosswell Seismic Tomography Observation at Receivers

Figure 1.2: The images show for seismic tomography the true slowness of the mass (left) and
the collected data at each receiver from each source (right). The red filled-in circles denote
the sources and the red stars denote the receivers.

Figure 1.3: The forward process of spherical tomography (left) and the measurement sino-
gram (right).

the spherical Radon transform. This transform integrates the data along circles starting

outside the object. The size of the observation dataset depends on the number of circles and

the range of circle center’s angles.

The last example that we consider is an atmospheric imaging problem where the goal is

to track greenhouse gases using satellites. Estimating CO2 fluxes at the Earth’s surface

is a prime example. As described in Figure 1.4, the true simulated CO2 fluxes consist of
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Figure 1.4: Average CO2 fluxes across North America from late June through July 2015 [1].

temporal and spatial resolutions. With an atmospheric transport model used to represent

the forward modeling process [73, 83], we can access limited observations using satellites

[20, 46, 47, 82, 113]. Then, given statistical models and the observations, we can solve an

underdetermined system to estimate changes in emissions over time.

Problems Input (s) Forward Model (A) Output (d)

Respirometry CO2 emissions Blurring Process CO2 observation

Seismic Tomography Slowness of Mass Ray Tracing Travel Time

Spherical Tomography Pressure Distribution Radon Transform Sinogram

Greenhouse Gas Tracking CO2 Fluxes Atmospheric Transport Satellite Observations

Table 1.1: Linear models from motivations.

In Table 1.1, we provide a summary of these four motivating examples of inverse problems.

Each of these applications can be represented using the linear model (1.1) and require efficient

computational techniques for computing solutions and performing uncertainty quantification.

In general inverse problems have four main components: (i) There are inputs (e.g., the

original signal, the true image, or the slowness of an object) and outputs (e.g., observed data

or measurements). (ii) There is a forward model describing a system that maps the input
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to the output. (iii) The forward problem is to compute the output given knowledge of the

input and the forward system. (iv) The inverse problem is to compute either the input given

the system and the output, or to compute both the input and the system from the given

output.

1.2 Challenges of solving inverse problems

According to Hadamard [57], there are three conditions for a problem to be well-posed: (i)

a solution exists, (ii) the solution is unique, and (iii) the solution must depend continuously

on the data.

If the problem does not satisfy one or more of these conditions, it is called ill-posed. Unfor-

tunately, most inverse problems are ill-posed problems. For some applications, that means

that a solution does not exist. For others that means that there are infinitely many solutions

(i.e., non-uniqueness of a solution). Furthermore, since data are not perfect, which means

that errors are introduced during the measurement process, and since numerical errors can

be introduced during solution computation, the potential propagation of errors during the

solution process must be considered. Note that for a linear problem, a tiny perturbation in

the output data can cause significantly large errors in the reconstruction of the input if the

linear problem is ill-posed. To get a stable estimate of the true or exact solution for a given

problem, we need to impose more conditions or constraints on the solutions. This is often

referred to as regularization.

The general idea of regularization is to enforce some regularity or constraints on the solution

(e.g., a smoothness or sparsity constraint). By including a penalty term with an objective

function (typically the data-fit term) and using a numerical optimization process, we can

suppress the unwanted parts of the computed solution. In addition, some problems may
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need further constraints on the solution quantities (e.g., nonnegativity).

There are various regularization approaches. Common examples are the `2 norm, `1 norm,

total variation (TV), constrained optimization, and iterative regularization. Choosing the

type of regularization method depends on the character of the problem and the desired

parameters. If the desired parameters are sparse (i.e., many parameters should be zero), then

`1-regularization will perform better than others. If the desired parameters should remove

noise and reconstruct edge information, then TV is preferable. If the parameters should

be bounded within a specified range, then constrained optimization techniques should be

considered. For very large-scale problems where the number of observations and unknown

parameters are in the millions or hundreds of millions, iterative methods may be the only

computationally feasible option. For such problems, iterative regularization can be achieved

by early termination of the iterative process, or a hybrid approach can be used.

One of challenging issues for any regularization approach is determining how to choose the

regularization parameters in different scenarios. For example, the `2 norm (or Tikhonov)

regularization parameter can be chosen by filtering methods which is introduced later sec-

tions, and flexible methods can be used to estimate the p-norm regularization (1 < p ≤ 2)

parameter [34]. Many of the other types of regularization methods require the user to choose

the regularization parameter in advance.

To get a good estimation, we use modern mathematical and computational tools to advance

reconstruction methodologies for the inverse problem. For many applications, the ability to

obtain good image or signal reconstructions from observation data requires the inclusion of

a suitable prior. Priors provide a systematic and different means to describe in probabilistic

terms any prior knowledge about the unknowns [7, 22] via a Bayesian formulation. Often-

times prior knowledge will come from a characteristic property or a combination of sources,

and striking a good balance of information is critical. For example, priors may be learned
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from available training data, but bias in the reconstructions can have a significant impact

(e.g., when the number of samples in the training set is not large enough or when the desired

image is very different from the training set) [4, 33, 56]. Thus, a safer approach is to include

a prior that combines learned information with conventional smoothness properties. In other

scenarios (e.g., in seismic tomography [2]), the desired solution may consist of components

with different smoothness properties, and the correct mixture of smoothness priors can be

difficult to know a priori. Using mixed Gaussian priors, where the prior covariance matrix

can be represented as a convex combination of matrices, is a common approach to incorpo-

rate different prior covariance matrices [5]. Another type of prior knowledge may be that

the desired input signal is sparse. For example, in inverse respirometry, reconstructions that

correspond to smooth priors tend to be over-smoothed or contain many unnecessary arti-

facts. By using a sparsity-enforcing prior, the input signal can be reconstructed accurately.

Incorporating a good prior is key to solving ill-posed inverse problems. However, various

computational challenges arise, especially when the number of unknowns is very large or

when the regularization and mixing parameter are not known in advance.

Another challenge of solving inverse problems is that the forward model may not be known

exactly. In this case, unknowns are also present in the impulse response function which mod-

els the forward operation. This is a significantly more challenging problem. One approach

is to incorporate separable priors. Another approach is to treat these sets of parameters

separately.

1.3 Overview of Contributions

The goal of this dissertation is to develop numerical methods to efficiently solve large-scale

inverse problems and to perform uncertainty quantification. In Chapter 2, we provide some



8 Chapter 1. Introduction

background approaches, where our goal is not to provide a comprehensive overview, but

rather to cover relevant material needed to motivate the new computational approaches and

further developments that are described in later sections. The dissertation is divided into

three main parts.

• In Chapter 3, we describe hybrid projection methods for large-scale inverse problems

with mixed Gaussian priors. The main contribution here is developing a mixed Golub-

Kahan process which is an extension of the generalized Golub-Kahan bidiagonalization.

A distinctive feature of the proposed approach is that both the regularization parameter

and the weighting parameter for the covariance matrix can be estimated automatically

during the iterative process. Furthermore, sample covariance matrix and statistically

learned covariance kernels can be easily incorporated. This work is published in [29].

• In Chapter 4, we extend generalized hybrid projection methods to the problem of

mean estimation using a hierarchical Gaussian prior. The main contributions here

are estimating unknowns and a prior mean simultaneously and giving more flexibility

in the definition of the prior mean. Additionally, we describe computational tools

to obtain approximations of the posterior distribution using matrices generated from

generalized hybrid projection methods. This work appears in [30].

• In Chapter 5, we describe computational tools for inversion and uncertainty quantifi-

cation in respirometry applications. The main contributions here are: First, providing

a robust set of computational tools for the linear respirometry problem and the de-

scribed methods can either include different regularizers, accelerate iterate methods

for large-scale problems, automatically select regularization parameters, or provide

quantification of solution uncertainties. Second, using alternating optimization for the

nonlinear respirometry problem with reduced system of separable nonlinear equations
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given prior knowledge. This work appears in [31].

Chapter 6 provides a summary of the dissertation and some ideas for future work.



Chapter 2

Background

In this chapter, we describe some background work on the methods and approaches that

will be used throughout the dissertation. First, Bayesian approaches are explained to show

how to incorporate prior knowledge about the unknowns when those unknowns are treated

as random variables [22, 93]. Second, we describe hybrid iterative projection methods for

large-scale inverse problems. We focus on generalized iterative projection methods since they

can be used to include Gaussian priors where the prior covariance matrix is not explicitly

constructed by access via matrix-vector multiplications [38]. Third, we concisely explain

some common regularization parameter selection methods for Tikhonov regularization [7, 59].

Fourth, we describe some recent work on efficient methods for uncertainty quantification for

cases where the posterior distribution can be described by a Gaussian distribution (e.g.,

the likelihood and the prior are Gaussian). We provide a brief summary of an efficient

approximation of the posterior distribution described in [97].

2.1 Bayesian Inversion and Uncertainty Quantification

Assume that s is a Gaussian random variable with mean µ ∈ Rn and covariance matrix

Q ∈ Rn×n. That means,

s ∼ N (µ, λ−2Q) (2.1)

10
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where λ is a scaling parameter to be determined later. By Bayes’ Theorem, the posterior

probability density function is proportional to multiplication of the likelihood and the prior

functions as

πpost(s|d) ∝ πlike(d|s)πprior(s) (2.2)

where given the above assumptions, the likelihood and the prior can be written as respectively

πlike(d|s) ∝ exp
(
−1

2
(As− d)>R−1(As− d)

)
(2.3)

πprior(s) ∝ exp
(
−λ2

2
(s− µ)>Q−1(s− µ)

)
(2.4)

To maximize a posterior (MAP), we minimize − ln πpost(s|d) and thus

sMAP = arg min
s

1

2
‖As− d‖2R−1 +

λ2

2
‖s− µ‖2Q−1 (2.5)

where ‖x‖2M = x>Mx for symmetric positive definite matrix M. Then, xMAP is equivalent

to the Tikhonov solution where λ has the roles of being a regularization parameter as well

as a solution to normal equation such that

(A>R−1A + λ2Q−1)s = A>R−1d + λ2Q−1µ (2.6)

The MAP estimate, sλ, can be written as a solution of the Tikhonov problem,

min
s

1

2
‖LR(As− d)‖22 +

λ2

2
‖LQ(s− µ)‖22 (2.7)
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where Q−1 = L>
QLQ and R−1 = L>

RLR. And the posterior distribution of s given d is the

Gaussian distribution,

s ∼ N (Γpost(A>R−1d + λ2Q−1µ),Γpost) (2.8)

where Γpost = (A>R−1A + λ2Q−1)−1.

However, it is not computationally feasible to get a correct covariance matrix for a large-

scale Gaussian random variable. We focus on using Gaussian random fields to represent

prior information and summarize some common choices for the (unscaled) prior covariance

matrix Q. Oftentimes, the covariance matrix is generated using a covariance function (also

called a kernel function). Covariance functions are crucial in many fields and encode as-

sumptions about the form of the function that we are modeling. In most cases, the prior

covariance matrix Q is large and dense with entries directly computed as Qij = κ(zi, zj),

where {zi}ni=1 are the spatial points in the domain and κ(·, ·) is a covariance kernel function.

Some commonly used parametric covariance functions [92] are provided in Table 2.1.

covariance kernel function
squared exponential exp

(
− r2

2`2

)
Matérn 1

2ν−1Γ(ν)

(√
2νr
`

)ν
Kν

(√
2νr
`

)
γ−exponential exp

(
−
(
r
`

)γ)
rational quadratic

(
1 + r2

2ν`2

)−ν

sinc sin(νr)
νr

Table 2.1: Summary of commonly-used covariance functions. The covariance functions are
written either as functions of zi and zj, or as a function of r = |zi − zj| and depend on ` or
` and ν. Γ is the Gamma function and Kν(·) is the modified Bessel function of the second
kind of order ν.

For some kernel choices, the precision matrix (i.e., the inverse of the covariance matrix)
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Figure 2.1: Top left shows that 1D Matérn kernel with ν = 0.1, 0.5, and 1.5. The others
describe the realizations of each Matérn kernel functions with 10 samples.

is sparse or structured, so working with Q−1 or its symmetric factorization has obvious

computational advantages.

For example, Matérn kernels and their realization samples can be visualized in 1D (Figure

2.1) and 2D (Figure 2.2) respectively. Smaller values of ν and ` give less relationship (more

independence) between neighbors in realization samples. Larger values of ν and ` increase

the smoothness (strengthen relationship).

In a simple case, the covariance matrix Q is usually an identity matrix I or a symmetric

positive definite matrix from which it is easy to compute LQ or L−1
Q . In general, computing

Q−1 or LQ, is not feasible in many cases. Also, there are iterative methods that require
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Figure 2.2: Left column shows that 2D Matérn kernel functions with ν, ` = 0.1, 0.5, and 1.5.
Right column shows the realization sample of each Matérn kernel function.
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matrix-vector multiplications with Q−1: a linear solve with Q which is expensive for large-

scale problems. Using a change of variables

x = Q−1(s− µ), b = d−Aµ, (2.9)

(2.6) can be re-written as

(A>R−1AQ + λ2I)x = A>R−1b. (2.10)

Then, the MAP estimate becomes sλ = µ+ Qxλ where xλ is solution to

min
x

1

2
‖AQx− b‖2R−1 +

λ2

2
‖x‖2Q. (2.11)

2.2 Generalized Hybrid Methods

We describe generalized hybrid methods, which are hybrid projection methods that build on

an iterative projection method described in [3]. More details about generalized hybrid meth-

ods in the context of inverse problems can be found in [38]. For (2.11), given matrices A, Q,

R, and vector b, with initial setting β1 = ‖b‖R−1 , u1 = b/β1, and α1v1 = A>R−1u1, the kth

iteration of the generalized Golub-Kahan (gen-GK) bidiagonalization procedure constructs

vectors uk+1 and vk+1 such that

βk+1uk+1 = AQvk − αkuk,

αk+1vk+1 = A>R−1uk+1 − βk+1vk,
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where scalars αi, βi ≥ 0 are chosen such that ‖ui‖R−1 = ‖vi‖Q = 1. At the kth iteration, we

get

Bk ≡



α1

β2 α2

β3
. . .
. . . αk

βk+1


, Uk+1 ≡ [u1, . . . ,uk+1], and Vk ≡ [v1, . . . ,vk],

where the following relations hold up to machine precision,

Uk+1β1e1 = b (2.12)

AQVk = Uk+1Bk (2.13)

A>R−1Uk+1 = VkB>
k + αk+1vk+1e>

k+1 . (2.14)

Furthermore, in exact arithmetic, matrices Uk+1 and Vk satisfy the following orthogonality

conditions

U>
k+1R−1Uk+1 = Ik+1 and V>

k QVk = Ik. (2.15)

Algorithm 1 describes the gen-GK bidiagonalization process. A, A>, and Q are not required

to be constructed explicitly at each iteration since they are only involved with matrix-vector

multiplications.

The classic methods to choose a regularization parameters are not practical for large-scale

linear inverse problems. For example, generalized cross validation (GCV) is based on the

SVD of matrix A. To reduce the cost of choosing the regularization parameter, the gen-GK

process is used. This process projects the problem onto smaller subspaces (i.e., a low-
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Algorithm 1 gen-GK process
Require: Matrices A, Q, and R, and vector b.

1: β1u1 = b, where β1 = ‖b‖R−1

2: α1v1 = A>R−1u1

3: for k = 1, 2, . . . do
4: βk+1uk+1 = AQ1vk − αkuk, where βk+1 = ‖AQvk − αkuk‖R−1

5: αk+1vk+1 = A>R−1uk+1 − βk+1vk, where αk+1 =
∥∥A>R−1uk+1 − βk+1vk

∥∥
Q

6: end for

dimensional space) such as

min
xk∈R(Vk)

1

2
‖AQxk − b‖2R−1 +

λ2

2
‖xk‖2Q ⇐⇒ min

yk∈Rk

1

2
‖Bkyk − β1e1‖22 +

λ2

2
‖yk‖22 (2.16)

where xk = Vkyk. Since Bk is (k + 1) × k, it is very easy to apply standard regularization

parameter selection methods to the projected system (2.16).

From these iterative projection methods, we can reduce the problem to a smaller system

where classical methods can be exploited for regularization. We will briefly review how to

choose regularization parameters for a simple linear problem in the next section.

2.3 Choice of Regularization Parameters, λ

For simplicity, we use a simple linear model (1.1) where Q = In, R = σ2Im, and µ = 0 so

that (2.16) holds as well. Consider a Tikhonov regularization problem,

min
s

1

2
‖As− d‖22 +

λ2

2
‖s‖22. (2.17)

There are various techniques to determine λ such as the discrepancy principle (DP), the

L-curve, the generalized cross validation (GCV), and the unbiased predictive risk estimation
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(UPRE) [7, 59]. The closed form of solution to (2.17) is

sλ = A†
λd

where A†
λ = (A>A + λ2In)−1A> for given λ > 0. Then,

• the DP selects λ to make the squared residual approximating mσ2 (i.e., expectation of

‖ε‖22).

‖Asλ − d‖22 ≈ τmσ2

where τ is safety factor and τ is usually 1 or slightly larger than 1 [50, 59].

• the UPRE is derived from the means square error (MSE) and λ is selected by mini-

mizing

U(λ) = ‖Asλ − b‖22 + 2σ2tr(AA†
λ)−mσ2 (2.18)

where tr(·) is used for the trace.

• the GCV is based on a leave-one-out cross validation and GCV is highly commonly

used in inverse problems. λ is selected by minimizing the function,

G(λ) =
n‖Asλ − d‖22

[tr(Im −AA†
λ)]

2
(2.19)

Contrary to the DP and the UPRE, the GCV method does not require a prior estimates

of the noise variance σ2 to determine the regularization parameter λ. This is an advantage

of the GCV method; however, computing the GCV regularization parameter can get costly

especially for large-scale problems [69]. An alternating regularization technique is to use

an iterative method (e.g., Section 2.2) to project a large-scale linear problem onto a small

but growing subspace and to solve the projected problem using standard regularization
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techiniques [85]. These are so-called hybrid methods. In [36], an implementation called

HyBR combines the Golub-Kahan bidiagonalization with a weighted GCV method to solve

problem (2.17). This approach is efficient and can select the regularization parameter λ

automatically. There have been many other investigations of hybrid iterative methods for

Q = I [9, 36, 37, 69, 85]. Various generalized Krylov techniques have been developed to

handle the general form of the Tikhonov problem where Q 6= In [65, 94], and various works

have explored hybrid methods that can efficiently handle Gaussian priors by working directly

with Q [38] or by working with mixed Gaussian priors [29].

Theorem 2.1. Fix λ ≥ 0. Let yk be the exact solution to gen-LSQR to (2.16). Then the kth

iterate, sk = µ + QVkyk, is equivalent to µ + L−1
Q wk where wk is the kth iterate of LSQR

on the following Tikhonov problems,

min
w

∥∥∥∥∥∥∥
LRAL−1

Q

λI

w−

LRb

0


∥∥∥∥∥∥∥
2

2

. (2.20)

Proof. See the proof of Theorem 4.2 in [38].

The convergence of iterative solution with a fixed parameter is described in Chapter 3 for

the mixed Golub-Kahan process.

2.4 Efficient Methods for Uncertainty Quantification

In Bayesian inference (2.2), assuming that likelihood and prior distributions are Gaussian

produce a posterior distribution that is also Gaussian. Thus, these assumptions do not

require us to sample from the posterior density function. In (2.8), the posterior mean can

be computed or approximated by solving MAP. However, calculating exact the posterior
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covariance matrix is challenging problem. To obtain the posterior variance component-wise,

the diagonal entries of the posterior covariance matrix are required. However, since the size

of Q follows the size of the unknowns, computing explicit Q−1 and Γpost in large-scale inverse

problem is not possible. Instead, many approaches use low-rank approximations to estimate

the diagonal entries of Γpost [18, 19, 48, 97, 98, 103]. The references combines low-rank

approximation of A>R−1A with the Woodbury matrix identity. In particular, [97, 98] does

not require a decomposition of Q.

In the recent work [97], we can estimate Γpost of (2.8) very efficiently by exploiting matrices

generated from gen-GK bidiagonalization and relationships (2.13), (2.14), and (2.15).

At the kth iteration, let B>
k Bk = WkΘkW>

k be the eigenvalue decomposition with eigenval-

ues θ1, . . . , θk and let Zk = QVkWk, then we can get the following low-rank approximation

Q(A>R−1A)Q ≈ Q(VkB>
k BkV>

k )Q = ZkΘkZ>
k . (2.21)

Thus, we obtain the following approximation of Γpost with (2.21) and the Woodbury formula,

Qpost =
(
λ2Q−1 + A>R−1A

)−1

= Q(λ2Q + QA>R−1AQ)−1Q

≈ Q(λ2Q + ZkΘkZ>
k )

−1Q

= Q(λ−2Q−1 − λ−2Q−1Zk(λ
2Θ−1

k + Z>
k Q−1Zk)

−1Z>
k Q−1)Q

= λ−2Q− λ−2Zk(λ
2Θ−1

k + Z>
k Q−1Zk)

−1Z>
k

= λ−2Q− Zk∆kZ>
k
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where

∆k ≡ λ−2


θ1

θ1+λ2

. . .
θk

θk+λ2

 ∈ Rk×k

If Q is a structured matrix (e.g., Toeplitz), we can easily obtain the diagonal entries of Q

and thus Qpost. More theoretical results about the accuracy of the approximate posterior

covariance matrix are described in [97].
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Hybrid projection Methods for

Large-scale Inverse Problems with

Mixed Gaussian Priors

As described in Section 1.2, using mixed Gaussian priors, where the prior covariance matrix

can be represented as a convex combination of matrices, is a common approach to incorpo-

rate different prior covariance matrices [5]. However, various computational challenges arise

for problems where the number of unknowns is very large and the regularization and mixing

parameter are not known in advance. We address these challenges by developing hybrid iter-

ative projection methods for the efficient computation of solutions to inverse problems with

mixed Gaussian priors. By exploiting a project-then-regularize framework, we enable statis-

tical optimization tools for selecting the regularization parameter and the mixing parameter

automatically, which would be very costly for the original problem.

We are interested in linear inverse problems of the form (1.1). Regularization is required to

stabilize the inversion process due to ill-posedness. We follow a Bayesian framework, where

we assume a prior for s. That is, we treat s as a Gaussian random variable as (2.1).

In many applications, the choice of Q is pre-determined (e.g., using expert knowledge)

and is chosen to enforce smoothness or regularity conditions on the solution [17, 38, 65].

22
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However, in some cases, there is not enough information to determine Q completely or

expensive procedures are needed to determine an informative subset of covariates from a set

of candidates (e.g., in geophysical imaging [112, 115, 116]). These scenarios motivate us to

consider mixed Gaussian priors, where the covariance matrix can be represented as a convex

combination of matrices. Without loss of generality we consider prior covariance matrices of

the form,

Q = γQ1 + (1− γ)Q2 (3.1)

where Q1 is a symmetric positive definite matrix, Q2 is a symmetric positive semi-definite

matrix, and mixing parameter 0 < γ ≤ 1. We consider the case where computing matrix-

vector products with Q1 is easy, but accessing Q−1
1 or its symmetric factorization (e.g.,

Cholesky or eigenvalue factorization) is not feasible. Such scenarios arise, for example,

when the prior covariance matrix is modeled entry-wise using covariance kernels. In such

cases, the main challenge is that the resulting covariance matrices are large and dense,

and factorizing or inverting them can be computationally prohibitive. However, matrix-

vector multiplications can be done efficiently (e.g., via FFT embedding). A wide range of

kernels, including nonseparable spatio-temporal kernels [38], can be included. We assume

that matrix-vector products with Q2 can be done efficiently.

Covariance matrices of the form (3.1) are becoming more common, especially in modern

imaging applications where data (e.g., in the form of training images) are playing a larger

role in the development of reconstruction algorithms [4]. Suppose we are given a dataset

consisting of N samples, s(i) ∈ Rn, i = 1, 2, . . . , N . Then the training data can be used to

obtain an unbiased estimator of an n× n sample covariance matrix,

Q̂ =
1

N

N∑
i=1

(s(i) − s̄)(s(i) − s̄)>, (3.2)
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where s̄ = 1
N

∑N
i=1 s(i) is the sample mean. Notice that Q̂ = SS>, where the symmetric factor

is defined as S = 1√
N

([
s(1) . . . s(N)

]
− s̄⊗ 1>

)
with 1 ∈ RN denoting the vector whose

elements are all 1. For any vector x ∈ Rn, multiplication with Q̂ can be done efficiently

if N << n, e.g., using the following order of operations S(S>x). However, notice that Q̂

is likely positive semi-definite rather than positive definite, so it is common to use Q̂ + γI

where γ is a nudging term. Such approaches are known as sample based priors [21]. Another

common approach is to use a convex combination, i.e., the prior covariance matrix is given

as

Q = γD + (1− γ)Q̂ (3.3)

where D is chosen to be the identity matrix or a suitably chosen diagonal or correlation

matrix, which ensures that Q is positive definite, and γ ∈ R is called the mixing parameter.

The matrix in (3.3) is called a shrinkage estimator of the covariance matrix [99]. It is worth

noting that covariance matrices of the form (3.3) are also used in hybrid methods for data

assimilation that combine an ensemble Kalman filter system with a variational (e.g., 3D-Var)

system [5]. These methods require careful tuning of the so-called blending parameter γ, and

many of the existing approaches require γ to be fixed in advance. We do not assume this.

Previous works on combining training data with regularization techniques typically follow an

optimal experimental design or empirical Bayes risk minimization framework [33, 56]. More

recently, there has been significant work on using training data in the context of machine

learning to learn regularization functionals (e.g., [72, 100]) or to learn the “invisible” regions

(e.g., [16]). The area of data-driven machine learning is currently a hot topic [4, 76], where

the main goal is to determine new ways to combine physical models with deep learning

techniques. In this work, we incorporate training data in a Bayesian framework and exploit

tools from numerical linear algebra not only to compute solutions efficiently but also to

determine the appropriate weighting of the training data.
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In this chapter we develop a hybrid iterative projection method that is based on a mixed,

generalized Golub-Kahan process to approximate the MAP estimate (2.5), where Q is of

the form (3.1). Our approach can handle a wide range of scenarios, including data-informed

regularization terms that use training or test images to define the prior. We assume that

γ is not known in advance and neither the inverse nor the factorization of Q is available.

The proposed method has two distinctive features. First, we assume that both γ and λ are

unknown a priori and we estimate them during the solution process. For large-scale problems

where γ is fixed and hence Q is fixed in advance, generalized hybrid methods [38] have been

developed where λ can be estimated during the reconstruction process. On the other hand,

previous works have used linear combinations of “simple” covriance matrices and statistical

methods to estimate mixing parameter γ, but the choice of regularization parameter λ is

fixed. To the best of our knowledge, both problems have not been address simultaenously,

and developing a hybrid method where λ and γ can be selected adaptively is not an obvious

extension of existing methods. We develop an iterative hybrid approach where the problem

is projected onto generalized Krylov subspaces of small but increasing dimension and the

regularization parameter and mixing parameter can be simultaneously and automatically

selected. Second, we describe and investigate various scenarios where training data can

be used to define Q1 and Q2, so our approach can be considered a learning approach for

the regularization term. There has been a large emphasis on using training data in the

development of reconstruction techniques for modern imaging problems, but the ability to

balance training data with physical priors remains an open problem. A key feature of the

proposed hybrid methods is the ability to incorporate data-driven covariance matrices while

simultaneously balancing existing priors. In our numerical experiments, we have verified

that such methods can perform better than classical shrinkage algorithms, especially when

the data contain freckles.
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Gaussian Priors

An outline for the section is as follows. In Section 3.1 we provide some background on

Gaussian priors and focus on various data-driven prior covariance matrices. Then in Sec-

tion 3.2, we describe mixed, generalized hybrid projection methods for approximating the

MAP estimate (2.5), where Q is of the form (3.1). The approach consists of two-steps: (1)

Project the problem onto a subspace of small but increasing dimension using an extension of

the generalized Golub-Kahan bidiagonalization approach. (2) Solve the projected problem

where the regularization parameter λ and mixing parameter γ can be selected automatically.

Various regularization paremeter selection techniques will be investigated, and some theo-

retical results will be provided. In Section 3.3 numerical results on various image processing

applications show the potential benefits and flexibility of these methods.

3.1 Mixed Gaussian priors

In this section, we motivate the need for mixed Gaussian priors and draw some connections

to existing works on multi-parameter Tikhonov regularization and shrinkage estimation.

In many applications, the precision matrix is not readily available, and the aim is to develop

computational methods that can work with Q directly and avoid the need for the inverse

or symmetric factorization. Such covariance kernels may arise in dynamic scenarios with

nonseparable, spatio-temporal priors [39, 49, 74] or from spatially-variant priors [44, 114]. It

is worth mentioning that in a truly Bayesian framework, the regularization parameter and

the covariance kernel parameters could be included as hyperparameters and explored using

MCMC methods [7], but the computational costs of this approach would be very high.

One reason to use Gaussian mixtures as prior distributions is that it allows greater flexibility

in the definition of the prior. In this chapter, we consider a mixture of two Gaussians, but one

could consider more general mixtures. From a statistical viewpoint, a general formulation
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with N Gaussian random vectors would correspond to a sum of covariance matrices. That

is, let x1, ...,xN be N mutually independent n × 1 normal random vectors having means

µ1, ...µN and covariance matrices V1, ...VN . Let B1, ...BN be real L× n full rank matrices.

Then the L× 1 random vector

y =
N∑
i=1

Bixi (3.4)

has a normal distribution with mean Ey =
∑N

i=1 Biµi and covariance matrix of the form

Cov(y) =
∑N

i=1 BiViB>
i . Thus, a Gaussian mixture prior corresponds to an assumption that

the desired solution can be represented as a linear combination of Gaussian realizations (e.g.,

with different smoothness properties).

In the context of inverse problems, we point out a connection between mixed Gaussian priors

and multi-parameter Tikhonov regularization. The basic idea of multi-parameter Tikhonov

regularization, see e.g. [10, 51, 75, 107], is to solve a problem of the form,

min
s
‖As− d‖2R−1 +

N∑
i=1

λ2
i ‖Lis‖22 , (3.5)

where λi ∈ R is the regularization parameter corresponding to regularization matrix Li

for i = 1, . . . , N . By including multiple penalty terms, this approach can enforce different

smoothness properties (e.g, at different frequency bands) and avoid difficulties in having

to select just one regularization matrix. In a Bayesian framework, the multi-parameter

Tikhonov solution can be interpreted as a MAP estimate, under the assumption of a Gaussian

prior with mean 0 and covariance matrix
(∑N

i=1 λ
2
i L>

i Li

)−1

. Notice that except for in very

limited scenarios, this is not the same as using mixed Gaussian priors, since here the precision

matrix (not the covariance matrix) is represented as a sum of matrices.
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3.1.1 Data-driven prior covariance matrices

With the increasing data resolution and data dimension in many applications, an important

and challenging task is to determine how to efficiently and effectively incorporate prior

knowledge in the form of training data both in the solution computation process and the

subsequent data analyses. In this section, we describe various examples where training data

can be used to define the prior covariance matrix. For all cases, we assume that training

data is provided and the sample covariance matrix (3.2) has the form Q̂ = SS>.

As described in the introduction, the most common approach is to take Q2 = Q̂ and Q1 = D

where D is easy to invert (e.g., diagonal or identity matrix). In this case, a very popular

approach called shrinkage estimation of covariance matrices, or more general biased esti-

mation, can be used to reduce the variance of the estimator. Typical shrinkage targets are

diagonal matrices (e.g., including the identity matrix), and approaches to estimate the opti-

mal shrinkage intensity γ have been proposed by Ledoit and Wolf, Rao and Blackwell, and

others [5, 28, 71, 99].

Another approach to incorporate training data is to force some structure or functional form

on the prior covariance kernel function as described in Table 2.1. For kernel functions that

depend on a few parameters, the training data can be used to estimate these parameters.

A similar idea was considered in [56] where training data was used to learn parameters

defining the regularization functional. However, that approach requires solving an expensive

constrained optimization problem, and the learned regularization functional is tailored to

the forward operator and the noise level. We consider the case where the training data come

from a prior defined by a covariance kernel function (e.g., for simplicity, we consider Matérn

kernels). We use the training data to learn the parameters defining the prior. This reduces

to an optimization problem where the goal is to learn two parameters ν and ` from the
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training data. Consider the optimization problem,

min
ν>0,`>0

∥∥∥Q(ν, `)− Q̂
∥∥∥2
F
. (3.6)

Let ν̂, ˆ̀ denote the parameters, which can be used to define Q1 = Q(ν̂, ˆ̀). This matrix

can be used directly in generalized hybrid methods, or can be combined with the sample

covariance matrix, i.e., Q as in (3.1) with Q1 = Q(ν̂, ˆ̀) and Q2 = Q̂, and solvers described

in Section 3.2 can be used.

Next, we describe some computationally efficient methods to estimate ν̂ and ˆ̀. Notice that

‖Q(ν, `)− Q̂‖2F = tr(Q(ν, `)− Q̂)>(Q(ν, `)− Q̂) (3.7)

= E(‖(Q(ν, `)− Q̂)ξ‖22) (3.8)

where ξ is a random variable such that Eξ = 0 and E(ξξ>) = I. Although stochastic

optimization methods [101] could be use here, we follow an approximation approach where

we use a Hutchinson trace estimator. That is, we let ξ(i) ∈ Rn for i = 1, 2, . . . ,M be

realizations of a Rademacher distribution (i.e., ξ consists of ±1 with equal probability), and

we consider the approximate optimization problem,

min
ν>0,`>0

1

M

M∑
i=1

‖(Q(ν, `)− Q̂)ξ(i)‖22. (3.9)

We used an inteiror-point method (fmincon.m in MATLAB) to minimize (3.9). We mention

that for problems without training data, semivariogram hyperparameters were investigated

in [15] to estimate Matérn parameters from the data.
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3.2 Hybrid projection methods for mixed Gaussian pri-

ors

In this section, we describe a hybrid projection method to approximate the MAP esti-

mate (2.5). The distinguishing factor of this approach compared to generalized Golub-Kahan

(genGK) hybrid methods [38] is that we address problems where the prior covariance matrix

is of the form (3.1). That is, we consider priors of the form s ∼ N (µ, λ−2(γQ1+(1−γ)Q2)),

and exploit a hybrid projection framework to enable tools for selecting both the regulariza-

tion parameter λ and the mixing parameter γ simultaneously.

Using the following change of variables (2.9), we see that solving (2.5) is equivalent to solving

(2.11). If γ is known in advance, we can directly apply the genGK hybrid method and esti-

mate λ automatically [38]. However, if γ is not known in advance, significant computations

would be required for a different chocie of γ. For this, we develop a variant of the genGK

bidiagonlization which we call a mixed Golub-Kahan (mixGK) process, where both γ and λ

can be estimated during the iterative process. Each iteration of the mixGK process requires

two steps. The first step is to run one iteration of the genGK bidiagonalization process with

Q1. The second step incorporates Q2 so that the regularized problem can be iteratively

projected onto a smaller subspace, and γ and λ can both be selected automatically. Next we

describe the mixGK process in detail.

Given matrices A, R, Q1, and vector b, the genGK bidiagonalization process generates

matrices Bk, Uk+1, and Vk satisfying (2.12), (2.13), (2.14), and (2.15) for Q1. If we let

Ũk+1 = LRUk+1 where R−1 = L>
RLR, then Ũ>

k+1Ũk+1 = Ik+1.

Next, in order to incorporate Q2, we additionally compute m × k matrix LRAQ2Vk. As-

suming that the columns of Ũk+1 and LRAQ2Vk are linearly independent, we can compute
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the skinny QR factorization, (I−Ũk+1Ũ>
k+1)LRAQ2Vk = YkRk where Yk ∈ Rm×k contains

orthonormal columns and Rk ∈ Rk×k is upper triangular. Notice that since column vectors

in Yk and Ũk+1 are orthogonal, we get the skinny QR factorization,

[
Ũk+1 LRAQ2Vk

]
=

[
Ũk+1 Yk

]Ik+1 Ũ>
k+1LRAQ2Vk

0 Rk

 . (3.10)

The mixGK process is summarized in Algorithm 2.

Algorithm 2 mixed Golub-Kahan (mixGK) process
Require: Matrices A, R, Q1 and Q2, and vector b.

1: β1u1 = b, where β1 = ‖b‖R−1

2: α1v1 = A>R−1u1

3: for k = 1, 2, . . . do
4: βk+1uk+1 = AQ1vk − αkuk, where βk+1 = ‖AQ1vk − αkuk‖R−1

5: αk+1vk+1 = A>R−1uk+1 − βk+1vk, where αk+1 =
∥∥A>R−1uk+1 − βk+1vk

∥∥
Q1

6: [Yk,Rk] = qr((I− Ũk+1Ũ>
k+1)LRAQ2Vk, 0);

7: end for

Notice that in addition to the computational cost of the genGK bidiagonalization, which

includes one matrix-vector product with A, one with A>, two with Q1, and two solves with

R, each iteration of the mixGK process requires one matrix-vector product with Q2 and a

QR factorization in step 6. Instead of performing a standard QR factorization on an m-by-k

matrix, an efficient rank-one update strategy can be used to alleviate the computational

cost. More specifically, we will describe it using mathematical induction. Let

(I− ŨkŨ>
k )LRAQ2Vk−1 = Yk−1Rk−1 (3.11)

be the skinny QR factorization, where Y>
k−1Yk−1 = Ik−1 and Rk−1 is an upper triangular
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matrix. Define Ũk+1 =

[
Ũk ũk+1

]
and Vk =

[
Vk−1 vk

]
. Then by (3.11), we have

(I− Ũk+1Ũ>
k+1)LRAQ2Vk =

[
(I− Ũk+1Ũ>

k+1)LRAQ2Vk−1 (I− Ũk+1Ũ>
k+1)LRAQ2vk

]
=

[
(I− ŨkŨ>

k − ũk+1ũ>
k+1)LRAQ2Vk−1 (I− Ũk+1Ũ>

k+1)LRAQ2vk

]
=

[
Yk−1Rk−1 − ũk+1ũ>

k+1Yk−1Rk−1 (I− Ũk+1Ũ>
k+1)LRAQ2vk

]
.

Since the first matrix is a rank-one update of a QR factorization, its QR factorization can

be obtained in O(mk) operations [42]. That is, we have

Yk−1Rk−1 − ũk+1(R>
k−1Y>

k−1ũk+1)
> = Ŷk−1R̂k−1

where Ŷ>
k−1Ŷk−1 = Ik−1 and R̂k−1 is an upper triangular matrix. Finally, let v̂k = (I −

Ũk+1Ũ>
k+1)LRAQ2vk, then one step of the Gram-Schmidt process gives the desired QR

factorization, [
Ŷk−1R̂k−1 v̂k

]
= YkRk.

3.2.1 Solving the projected problem

Using the mixGK process described above, we now describe a hybrid iterative projection

method to solve (2.11). In particular, we consider the projected problem,

min
x∈R(Vk)

1

2
‖AQx− b‖2R−1 +

λ2

2
‖x‖2Q (3.12)
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where R(·) denotes the column space. Let x = Vky where y ∈ Rk. Then using the

relationships from the mixGK process, we obtain the equivalent problems,

min
y

1

2
‖γAQ1Vky + (1− γ)AQ2Vky− b‖2R−1 +

λ2

2
y>V>

k (γQ1 + (1− γ)Q2)Vky (3.13)

min
y

1

2

∥∥∥γŨk+1Bky + (1− γ)LRAQ2Vky− LRb
∥∥∥2
2
+

λ2γ

2
y>y +

λ2(1− γ)

2
y>V>

k Q2Vky

(3.14)

min
y

1

2

∥∥∥∥∥∥∥
[
Ũk+1 LRAQ2Vk

] γBk

(1− γ)Ik

y− LRb

∥∥∥∥∥∥∥
2

2

+
λ2γ

2
‖y‖22 +

λ2(1− γ)

2
y>V>

k Q2Vky.

(3.15)

Using equation (3.10) and the fact that

[
Ũk+1 Yk

]β1e1

0

 = Ũk+1(β1e1) = LRb (3.16)

where
[
Ũk+1 Yk

]
contains orthonormal columns (so it can be taken out of the norm), the

projected, regularized problem becomes

min
y

1

2

∥∥∥∥∥∥∥
Ik+1 Ũ>

k+1LRAQ2Vk

0 Rk


 γBk

(1− γ)Ik

y−

β1e1

0


∥∥∥∥∥∥∥
2

2

+
λ2γ

2
‖y‖22+

λ2(1− γ)

2
y>V>

k Q2Vky.

(3.17)

Note that the solution subspace for x does not depend on γ and λ, but the solution of the

projection problem depends on both γ and λ. Let yk(λ, γ) denote the solution to (3.17),

then the k iterate of the mixGK method is given as

sk(λ, γ) = µ+ (γQ1 + (1− γ)Q2)Vkyk(λ, γ). (3.18)



34
Chapter 3. Hybrid projection Methods for Large-scale Inverse Problems with Mixed

Gaussian Priors

In Section 3.2.2 we describe some techniques for selecting λ and γ at each iteration, but

first we provide a theoretical result. We show that for fixed regularization parameter λ and

fixed mixing parameter γ, the proposed mixGK method converges in exact arithmetic to the

desired regularized solution.

Theorem 3.1. Assume λ > 0 and 0 < γ ≤ 1. Let yk(λ, γ) be the exact solution to projected

problem (3.17). Then the kth iterate of the mixGK approach, written as

sk = µ+ QVkyk(λ, γ) (3.19)

converges to the MAP estimate given by

sMAP = µ+ Q(A>R−1AQ + λ2In)−1A>R−1b. (3.20)

Proof. The proof is provided in Appendix A.1.

3.2.2 Regularization parameter selection methods

In this section, we describe two extensions of existing regularization parameter selection

methods that can be used for selecting γ and λ at each iteration of the mixGK hybrid

method. For all theoretical results, we assume no breakdown of the algorithms. Notice that

the solution at the k-th iteration can be written as

sk(λ, γ) = µ+ (γQ1 + (1− γ)Q2)Vkyk(λ, γ), (3.21)



3.2. Hybrid projection methods for mixed Gaussian priors 35

where

yk(λ, γ) =
(
Dk(γ)

>Dk(γ) + λ2γIk + λ2(1− γ)V>
k Q2Vk

)−1 Dk(γ)
>

β1e1

0


= Ck(γ, λ)

β1e1

0


(3.22)

with

Dk(γ) =

Ik+1 Ũ>
k+1LRAQ2Vk

0 Rk


 γBk

(1− γ)Ik

 =

γBk + (1− γ)Ũ>
k+1LRAQ2Vk

(1− γ)Rk


(3.23)

Ck(γ, λ) =
(
Dk(γ)

>Dk(γ) + λ2γIk + λ2(1− γ)V>
k Q2Vk

)−1 Dk(γ)
>. (3.24)

As with regularization parameter selection methods for standard hybrid methods, there is

not one method that will work for all problems, so it is advised to try various approaches in

practice.

In order to provide a comparison, we provide “optimal” parameters which are computed as

(γopt, λopt) = arg min
0<γ≤1, λ

‖sk(γ, λ)− strue‖22 , (3.25)

where strue is the true solution (that is not available in practice).
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Unbiased predictive risk estimation (UPRE). We can select parameters γ, λ such

that

(γproj
u , λproj

u ) = arg min
0<γ≤1, λ

Uproj(γ, λ) =
1

2k + 1
‖rproj

k (γ, λ)‖22 +
2σ2

2k + 1
tr(Dk(γ)Ck(γ, λ))− σ2

(3.26)

where σ2 is noise level, and

rproj
k (γ, λ) = Dk(γ)yk(γ, λ)−

β1e1

0

 (3.27)

and

tr(Dk(γ)Ck(γ, λ)) = tr(Ck(γ, λ)D(γ))

= tr(
(
(Dk(γ))

>Dk(γ) + λ2γIk + λ2(1− γ)V>
k Q2Vk

)−1
(Dk(γ))

>Dk(γ)).

(3.28)

When the noise level σ2 is not provided, a noise level estimation algorithm (e.g., based on a

wavelet decomposition of the observation) can be utilized [45].

Generalized cross validation (GCV). Without a priori knowledge of the noise level,

another option is to use an extension of the GCV method [52, 59]. The basic idea is to select

parameters,

(γproj
g , λproj

g ) = arg min
0<γ≤1, λ

Gproj(γ, λ) =
‖rproj

k (γ, λ)‖22
(tr(I2k+1 −Dk(γ)Ck(γ, λ)))2

(3.29)

where rproj
k (γ, λ), Dk(γ), and Ck(γ, λ) are same as (3.26).

Notice that rproj
k and tr(Dk(γ)Ck(γ, λ)) are functions of k in both the GCV and UPRE
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functions. In order to prove convergence of the parameters chosen by UPRE and GCV,

we begin with a lemma that shows convergence of the projected residual rproj
k and trace

term tr(Dk(γ)Ck(γ, λ)) to their full counterparts. The derivations of (3.26) and (3.29) are

provided in Appendix A.2.

Lemma 3.2. With (3.27), (3.28), if k = n, then

rproj
k = rfull(γ, λ)

tr(Dk(γ)Ck(γ, λ)) = tr(A(γ, λ))
(3.30)

where
rfull(γ, λ) = LRAQx(γ, λ)− LRb

A(γ, λ) = LRAQ(Q>A>R−1AQ + λ2Q)−1Q>A>L>
R.

(3.31)

and rfull(γ, λ) = rproj
n (γ, λ).

Proof. The proof is provided in Appendix A.3.

Next we provide convergence results for the UPRE and GCV selected parameters that are

similar to results provided in [95] but are extended to the mixed hybrid methods. In particu-

lar, we show in Theorem 3.3 that the UPRE parameters for the projected problem converge

to the UPRE parameters for the full problem. Then, we show that with an additional

weighting parameter, the same result holds for GCV parameters.

Theorem 3.3. From (2.11), the UPRE parameters for the full problem are given by

(γfull
u , λfull

u ) = arg min
0<γ≤1, λ

Ufull(γ, λ) =
1

m
‖rfull(γ, λ)‖22 +

2σ2

m
tr(A(γ, λ))− σ2. (3.32)

For k = n,

(γproj
u , λproj

u ) = (γfull
u , λfull

u ). (3.33)
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Proof. Since when k = n, ‖rproj
k ‖22 = ‖rfull‖22 and tr(Dk(γ)Ck(γ, λ)) = tr(A(γ, λ)) as shown

in Lemma 3.2,

arg min
0<γ≤1, λ

Uproj(γ, λ) = arg min
0<γ≤1, λ

Ufull(γ, λ)

when k = n for the same noise level σ2.

For the full problem, the GCV parameters are given by

(γfull
g , λfull

g ) = arg min
0<γ≤1, λ

Gfull(γ, λ) =
‖rfull(γ, λ)‖22

(tr(Im − A(γ, λ)))2
. (3.34)

In contrast with UPRE, (γproj
g , λproj

g ) does not minimize (3.34) when k = n because the trace

of I2k+1−Dk(γ)Ck(γ, λ) is not equal to the trace of Im−A(γ, λ). To compensate for this, we

define a weighted GCV (WGCV) method by including an additional parameter ω in (3.29),

and computing the WGCV parameters for the projected problem as,

(λproj
w , γproj

w ) = arg min
0<γ≤1, λ

W(γ, λ)proj =
‖rproj

k (γ, λ)‖22
(tr(I2k+1 − ωDk(γ)Ck(γ, λ)))2

(3.35)

where ω = 2k+1
m

. Since

(tr(I2k+1 − ωDk(γ)Ck(γ, λ)))
2 =

2k + 1

m
(tr(Im −Dk(γ)Ck(γ, λ)))

2, (3.36)

Gfull(γ, λ) is minimized by (λproj
w , γproj

w ) when k = n. Similar modified GCV functions were

considered in [36, 95].

Remark 3.4. It is worth mentioning that although optimization problem (2.11) resembles

the widely-studied multi-parameter Tikhonov problem, there are some important distinc-

tions.

For our proposed mixHyBR method, we have Q = γQ1 + (1− γ)Q2. Under the additional
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assumption that Q2 is positive definite, (2.11) can be written as

min
x

1

2
||AQx− b||2R−1 +

λ2γ

2
||x||2Q1

+
λ2(1− γ)

2
||x||2Q2

(3.37)

=min
x

1

2
||AQx− b||2R−1 +

λ̃2
1

2
||L1x||2 +

λ̃2
2

2
||L2x||2, (3.38)

where Q1 = L>
1 L1, Q2 = L>

2 L2, λ̃1 = λ
√
γ and λ̃2 = λ

√
(1− γ). We can see that although

the regularization terms are similar in the multi-parameter Tikhonov problem (3.5) and in

problem (3.38), the problems are very different. In multi-parameter Tikhonov, regularizaton

parameters λ1 and λ2 only control the corresponding regularization terms. For mixHyBR,

from (3.37), we can see that the weighting parameter γ affects both the regularization term

and the data fit term, which is also evident in the projected problem (3.17). Furthermore,

since mixHyBR does not require Q2 to be positive definite, more general covariance matrices

such as data-driven matrices can be included.

3.3 Numerical results

In this section, we provide various numerical results from tomography to investigate our

proposed hybrid method based on the mixGK process, which we denote as ‘mixHyBR’. First,

in Section 3.3.1 we investigate data-driven mixed Gaussian priors where we assume that

training data are available, and we compare various hybrid methods to existing shrinkage

algorithms. Then, we consider a seismic crosswell tomography reconstruction problem in

Section 3.3.2, where we show that using a combination of covariance kernels can result

in improved reconstructions. For selecting the UPRE, GCV, and WGCV regularization

parameters for the mixGK approach, we solve nonlinear constrained optimization problems

(3.26), (3.29), and (3.35) respectively. We use an interior-point method as implemented in
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MATLAB’s fmincon.m function with an initial guess of γ0 = 0.5 and λ0 = 0 at the first

mixGK iteration. Then, for subsequent iterations, we used the computed values of γ and

λ from the previous iteration as an initial guess. In general, the regularization parameter

parameter selection functions may have many minimizers, but we observed that by using

an adaptive strategy, we are able to guide the optimization methods toward appropriate

parameters. For the stopping criteria for mixHyBR, we use a combination of approaches

described in [36, 37, 38], where the iterative process is terminated if either of the following

three criteria is satisfied: (i) a maximum number of iterations is reached, (ii) depending on

the chosen regularization parameter selection method, the function (3.26) for UPRE, (3.29)

for GCV, or (3.35) for WGCV attains a minimum or flattens out, and (iii) tolerances on

residuals are achieved.

3.3.1 Spherical tomography example

For our first example, we use a spherical means tomography reconstruction problem from the

IRTools toolbox [50, 60]. Such models are often used in imaging problems from photoacoustic

or optoacoustic imaging, which is a non-ionizing biomedical imaging modality. The true

image strue consists of 128 × 128 pixels, and the forward model matrix A represents a ray-

tracing operation along semi-circle curves where the angle of centers range from 0◦ to 90◦

at steps of (90/64)◦. The number of circles at each angle is 90. Thus the dimension of A is

5, 760× 16, 384 and the sinogram is 90× 64. The simulated observed sinogram was obtained

as in (1.1), where we have included 3% additive Gaussian white noise, i.e., ‖ε‖
‖Astrue‖ = 0.03.

Other conditions are chosen as the default settings provided by the toolbox; see [50] for

details. In the left panel of Figure 3.1, we provide the true image along with some of the

integration curves.
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Next, we assume that we have a dataset of training images for this problem consisting of

49 images; four of the training images are provided in the right panel of Figure 3.1. All of

the images contain a circular mask to denote the region of interest or region of visibility.

The inner regions of the images are generated using a linear combination of sine-squared

functions, where the coefficients are random numbers uniformly distributed between 0.5 and

1, and the random numbers in sine-squared functions are uniformly distributed between 0

and 128. Furthermore, each image is contaminated by at most 8 “freckles” generated as

white disks, where 5 of them have radius 3 and the rest have radius 4. The freckles are

randomly placed, where the origins of the freckles are uniformly distributed. Notice that the

freckles do not appear in the true image.

Given the training dataset {s(1), . . . , s(49)}, we first compute the (vectorized) mean image s̄

and the sample covariance matrix Q̂ is defined as in (3.2). Next, assuming that the prior

covariance matrix represents a Matérn kernel, we solve optimization problem (3.9) to obtain

“learned” Matérn parameters ν̌ and ˇ̀ and consider the covariance matrix Qlearn = Q(ν̌, ˇ̀).

Figure 3.1: Spherical tomography example. On the left, the true image is provided, along
with a few of the integration curves whose centers are located at 45◦. Four sample images
from the training dataset are provided on the right.
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To obtain (ν̌, ˇ̀), we used ν0 = 1 and `0 = 1 as initial guess.

We consider four hybrid iterative reconstruction methods, all with initial vector s̄. Given the

training data, we run the genHyBR algorithm with Q = Qlearn which we denote as ‘genHyBR-

data-driven’. We also provide results for ‘mixHyBR’ where Q = γQlearn + (1 − γ)Q̂ where

γ and λ are selected during the iterative process. For comparison, we provide results for

genHyBR with Q = γI+ (1− γ)Q̂ where γ was pre-selected using the Rao-Blackwell Ledoit

and Wolf estimator (rblw) [27, 28, 71]. We also provide results for HyBR where Q = I, but

remark that this approach only uses the training data for the initial (sample mean) vector.
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Figure 3.2: Comparison of relative reconstruction error norms for various iterative hybrid
approaches for spherical tomography reconstruction. The top left plot corresponds to using
the optimal regularization parameters. Other plots correspond to different methods to choose
the regularization parameters, including UPRE, GCV, and WGCV.
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Note that for all considered methods, the regularization parameter λ must be selected, and

we investigate various approaches to do this.

In Figure 3.2, we provide relative reconstruction error norms computed as ‖sk − strue‖2 / ‖strue‖2 ,

where sk is the reconstruction at the kth iteration. Each plot corresponds to a different

method for selecting the regularization parameters. For comparison, we provide in the top

left plot results corresponding to the optimal regularization parameter, although these pa-

rameters cannot be computed in practice. We observe that both genHyBR-data-driven and

mixHyBR result in small error norms and that even with the optimal regularization parame-

ter λ, the rblw approach performs poorly because of the poorly-estimated mixing parameter

γ. We remark that we also compared these results to a shrinkage algorithm based on the ora-

cle approximating shrinkage (OAS) estimator [27, 28] for obtaining γ. However, we observed

very similar results as rblw, so we do not include them here.

For the automatic parameter selection methods, we observe that mixHyBR reconstructions

with GCV and WGCV and genHyBR-data-driven reconstructions with UPRE have the

smallest relative reconstruction error norms per iteration, compared to the other methods.

Thus, we observe that including a data-driven covariance matrix, if done properly, can be

beneficial. The black dots denote the (automatically-selected) stopping iteration for mix-

HyBR. Although one may wish to tweak the stopping criteria, all of the examples with

mixHyBR resulted in a good reconstruction with the described stopping criteria. For a

better comparison of the different parameter selection methods, we provide all relative re-

construction errors for mixHyBR in Figure 3.3, where it is evident that relative errors for

WGCV are very close to those for the optimal regularization parameter for this example.

Absolute error images, computed as |sk − strue|, reshaped as an image, and displayed in

inverted colormap, are provided in Figure 3.4. For better comparison, all error images have

been put on the same scale, and dark regions corresponds to larger absolute errors. Rel-
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Figure 3.3: Relative reconstruction error norms per iteration of mixHyBR, for various regu-
larization parameter choice methods. Black dots denote the automatically computed stop-
ping iteration.
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Figure 3.4: Absolute error images (in inverted colormap), with relative reconstruction error
norms provided in the titles. The top row compares reconstructions using optimal regular-
ization parameters, and the bottom row compares mixHyBR reconstructions with different
parameter choice methods.

ative reconstruction error norms are provided in the titles. In the top row, we compare

reconstructions at iteration 140 using the optimal regularization parameter. Absolute error
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images in the bottom row correspond to mixHyBR reconstructions with automatic regu-

larization parameter selection and correspond to the iteration determined by the stopping

criteria. We notice that even with the optimal regularization parameter, the HyBR-optimal

reconstruction suffers from the lack of sufficient prior information and the rblw-optimal re-

construction contains large errors due to the poor choice of γ and disruptions due to freckles

in the training data. Notice that the rblw-optimal reconstruction has a slight streak along

the diagonal of the image, which is a result of the covariance matrix depending heavily on

the training data. The mixHyBR and genHyBR-data-driven reconstructions have overall

smaller absolute errors in the image. Moreover, we see that by including a combination of

covariance matrices and allowing the observed data to inform the choice of γ, mixHyBR

methods can reduce the deleterious effects from corruptions in the training data. For this

example, all parameter selection methods combined with the stopping iteration performed

reasonably well.

3.3.2 Seismic tomography example

In this experiment, we consider a linear inversion problem from crosswell tomography [2].

Crosswell tomography is used to image the seismic wave speed in some region of interest,

given data collected from multiple source-receiver pairs. The sources send out a seismic wave,

and the receivers measure the travel time taken by the seismic wave to hit the receiver. The

goal of the inverse problem is to image the acoustic slowness (reciprocal wave velocity)

of the medium in the domain. We consider an example from Continuous Active Source

Seismic Monitoring (CASSM) [41], where the goal is to monitor the spatial development of

a small scale injection of CO2 into a high quality reservoir. We consider reconstruction at

a single time point and investigate the impact of including mixed Gaussian priors on the

reconstruction.
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The inverse problem can be represented as (1.1) where the goal is to reconstruct the slowness

s ∈ Rn×1 of the medium from the measured travel times d ∈ Rm×1 which are assumed to

be corrupted by Gaussian white noise ε ∈ Rm×1. In our problem setup, the true slowness

field was discretized into n = 188, 356 cells, where the slowness within each cell is assumed

to be constant. The true image (normalized between 0 and 1) is of size 434 × 434 and was

obtained from [40]. For the observations, there were ms = 20 sources and mr = 50 receivers,

so a total of m = mrms measurements. Each row of the forward model matrix A ∈ Rm×n

corresponds to a source-receiver pair. Since the wave travels along a straight line from source

to receiver, only the cells lying on the straight line contribute to the non-zero entries. Hence,

A is very sparse with O(
√
mn) non-zero entries. The true image along with a schematic of

the source-detector pairs are given in the left panel of Figure 3.5. The observations, which

contain 1% noise, are provided in the right panel of Figure 3.5.

Next we investigate the impact of different choices of Q on the reconstruction. First, we

Sources Receivers

Figure 3.5: CASSM example. In the left panel, we provide the true slowness field image,
along with some of the locations of the sources and the detectors. Seven of the source-
receiver pairs are highlighted in the figure. In the right panel, we provide the observations
corresponding to 20 sources and 50 receivers.
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Figure 3.7: Reconstructions with zoomed subimages for CASSM example. All of the recon-
structions use the optimal regularization parameter and relative reconstruction errors are
provided in the titles.
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consider the genHyBR method with three different prior covariance matrices Q1,Q2, and Q3

defined by a Matérn kernel with ν = 1 and ` = 0.2, a rational quadratic with ν = 2 and ` =

0.1, and the identity matrix I, respectively. These approaches are denoted by ‘genHyBR1’,

‘genHyBR2’, and ‘HyBR’ respectively. Then we consider two mixHyBR approaches that

include mixed Gaussian priors, where mixHyBR(Q1,Q2) uses covariance matrix Q = γQ1+

(1 − γ)Q2 and mixHyBR(Q1, I) uses covariance matrix Q = γQ1 + (1 − γ)I, where the

mixing parameter γ is selected during the reconstruction process. For the optimally selected

regularization parameters, we provide in Figure 3.6 the relative reconstruction error norms

per iteration.

We observe that if a good covariance matrix (in this case, Q1) is known in advance, stand-

mixHyBR(Q1,Q2)-gcv, iter=69 (0.40457) mixHyBR(Q1,Q2)-upre, iter=69 (0.40506) mixHyBR(Q1,Q2)-wgcv, iter=69 (0.40512)

mixHyBR(Q1,I)-gcv, iter=64 (0.37608) mixHyBR(Q1,I)-upre, iter=64 (0.37647) mixHyBR(Q1,I)-wgcv, iter=64 (0.37643)
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Figure 3.8: Reconstructions of mixHyBR(Q1,Q2) (top row) and mixHyBR(Q1, I) (bottom
row) for different parameter choice methods. The automatically detected stopping iteration
(iter) and corresponding relative reconstruction error norm are provided in the titles.
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alone genHyBR can perform well and result in small relative reconstruction errors. Other-

wise, the relative reconstruction errors may remain large, and multiple solves with different

covariance matrices would be needed to determine a good prior. In this case, the mixHyBR

approach can prove beneficial. The mixHyBR approaches produce reconstructions with over-

all smaller relative reconstruction errors than genHyBR with each covariance matrix alone.

Image reconstructions, including a zoomed subregion, are provided in Figure 3.7. Notice

that the mixed Gaussian priors are better able to resolve some details of the true image.

While the reconstructions of genHyBR1 and genHyBR2 are too smooth, mixHyBR(Q1,Q2)

and mixHyBR(Q1, I) reconstructions reveal multiple layered regions that are present in the

true field. Thus, incorporating mixed Gaussian priors can lead to improved reconstructions.

Next we investigate the performance of different regularization parameter selection meth-

ods within the mixHyBR methods. Reconstructions corresponding to GCV, WGCV, and

UPRE parameter choices are provided in Figure 3.8, with stopping iterations and relative

reconstruction errors provided in the titles. For the stopping criteria, we used a tolerance of

10−6 for the residual norm. Although the relative reconstruction error norms are larger than

those for the optimal regularization parameter, which is likely due to the increased errors

in the surrounding flat regions, the reconstructed images can all distinguish the two yellow

layers.



Chapter 4

Hybrid Projection Methods for

Large-scale Inverse Problems with

Mean Estimation in Hierarchical

Gaussian Prior

Satellites and ground based sensors observe greenhouse gas (GHG) concentrations in the

atmosphere, and inverse problems must be solved to generate detailed maps of surface emis-

sions using these observations of atmospheric mixing ratios [14, 78, 79, 81, 105, 109]. The

goal of inverse modeling is to estimate spatiotemporal GHG fluxes at the Earth’s surface

using observations of these gases in the atmosphere. Similar to many other important sci-

entific applications, this is a large-scale inverse problem and there are many computational

challenges for solving the resulting optimization problems accurately and effectively. For

example, atmospheric monitoring of carbon dioxide (CO2) has increased the number of situ

observation sites [54, 102], aircraft-based observations [77, 91], and CO2 observing satellites

[20, 46, 47, 82, 113]. Being able to handle these enormous datasets is one of the compu-

tational challenges for solving the inverse problem to track gas emissions. In a classical

Bayesian inversion, various computational challenges arise for large-scale inverse problems,

and in current approaches, it is assumed that a regularization parameter is known in ad-

50
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vance. Furthermore, researchers assume a Gaussian prior distribution for use with Bayes’

theorem, where the prior mean vector and covariance matrix are required. These parameters

are usually assumed to be known and are estimated using expert knowledge. In this chapter,

we argue that these parameters may be inappropriate choices for abnormal or extreme cir-

cumstances. We propose to use a hierarchical Gaussian model, and we develop optimization

tools for reconstructing a desired parameter and its prior mean simultaneously and selecting

a regularization parameter automatically.

4.1 Problem set up

We are interested in inverse problems of the form (1.1). Since ill-posedness occurs in inverse

problems, small errors in the data can lead to huge errors in the reconstructed estimation

s. To estimate a stable reconstruction s in the inversion process, we treat s as a Gaussian

random variable as described in (2.1). The reconstruction quality of (1.1) depends crucially

on choosing appropriate hyperparameters that govern the prior and the noise distribution.

For example, previous experiments in [39] for seismic tomography applications assumed the

prior mean to be a zero vector or a constant vector in numerical experiments. In this chapter,

s contains spatial or spatiotemporal parameters to be estimated. That means that using a

simplified prior mean vector (e.g., where every entry has the same real value) is not necessar-

ily appropriate. We seek an approach that incorporates some expert or physical knowledge.

A better assumption is to use a spatial or temporal pattern in the prior mean. Geostatis-

tical inverse modeling (GIM) has been a common approach to estimating spatiotemporal

unknowns. Hence, a hierarchical Gaussian approach for modeling prior information that

uses covariates (i.e., auxiliary variables) [80, 98] is considered. In this setting, we develop

efficient Krylov subspace projection methods for solving inverse problems and quantifying



52
Chapter 4. Hybrid Projection Methods for Large-scale Inverse Problems with Mean

Estimation in Hierarchical Gaussian Prior

uncertainty with unknown mean. We represent the prior information in the form of the

hierarchical model

s|β ∼ N (Xβ, λ−2Q), β ∼ N (µβ, λ
−2
β Qβ). (4.1)

Here X ∈ Rn×p is given and deterministic, Q ∈ Rn×n is the prior covariance matrix that we

assume known up to a constant, and λ is a scaling parameter. We assume that matrix Q is

defined by a covariance kernel, which may model spatial or spatiotemporal prior knowledge.

The unknowns here are contained in the vector β ∈ Rp and are assumed to follow a Gaussian

distribution with given mean µβ ∈ Rp, covariance matrix Qβ ∈ Rp×p, and λβ is a scaling

parameter. We assume λβ = γλ with a constant γ > 0 and γ is predetermined. Previous

works [80, 98] assume that β is uniform (i.e., p(β) ∝ 1). The novelty of (4.1) is treating β as

a random variable of Gaussian distribution. Hence, this assumption allows more flexibility

in the definition of β.

4.2 Generalized hybrid approaches to solve the GIM

and associated challenges for large datasets and

mean estimation

Since the prior covariance matrix tends to be dense and its size follows the desired parameter

vector, it is infeasible to compute and store the inverse of Q. In this section, we avoid

the inverse of the prior covariance matrix by exploiting a change of variables [38]. Thus,

we can consider covariance matrices Q that are defined by some kernel function which is

determined by a few kernel parameters [93]. We use a kernel based covariance matrix which

means that we do not need to explicitly construct the full matrix Q. Instead, we provide
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functions to perform efficient matrix-vector multiplications with Q. Likewise, Qβ can also

be parameterized for efficient implementation.

4.2.1 Hierarchical Gaussian priors: Reformulation for mean esti-

mation

Given the assumptions in (1.1) and (4.1), from Bayes’ theorem the posterior probability

density function can be written as

π(s,β|d) ∝ exp
(
−1

2
‖As− d‖2R−1 −

λ2

2
‖s−Xβ‖2Q−1 −

λ2
β

2
‖β − µβ‖2Q−1

β

)
, (4.2)

where ‖x‖2M = x>Mx and M is a symmetric positive definite matrix. The maximum a

posterior (MAP) estimate can be written as the solution of the optimization problem,

(sMAP,βMAP) = arg min
s,β

f(s,β) = 1

2
‖As−d‖2R−1 +

λ2

2
‖s−Xβ‖2Q−1 +

λ2
β

2
‖β−µβ‖2Q−1

β
(4.3)

If symmetric decompositions of the inverses of the covariance matrices are available,

R−1 = L>
RLR, Q−1 = L>

QLQ, and, Q−1
β = L>

β Lβ,

then the optimization problem can be rewritten in least squares form as,

(sMAP,βMAP) = arg min
s,β

f(s,β) = 1

2

∥∥∥∥∥∥∥∥∥∥


LRA 0

λLQ −λLQX

0 λβLβ


s

β

−


LRd

0

λβLββ


∥∥∥∥∥∥∥∥∥∥

2

2

.

Although LR and Lβ are typically easy to compute, obtaining LQ is computationally in-
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feasible for the problems of interest. Here, we propose a change of variables to apply the

genHyBR method,

p← s−Xµβ, q← β − µβ, y← d−AXµβ, (4.4)

Consider the composite vector p̃ =

p

q

 ∈ Rn+p and a composite matrix Ã =

[
A 0

]
∈

Rm×(n+p). The optimization problem (4.3) can be written as follows,

min
p̃∈Rn+p

1

2
‖Ãp̃− y‖2R−1 +

λ2

2
‖p̃‖2Q̃−1 . (4.5)

where

Q̃−1 =

 Q−1 −Q−1X

−X>Q−1 X>Q−1X + γ2Q−1
β

 =

 I

−X>

Q−1

[
I −X

]
+ γ2

0 0

0 Q−1
β

 , (4.6)

Q̃ =

Q + 1
γ2 XQβX> 1

γ2 XQβ

1
γ2 QβX 1

γ2 Qβ

 =

Q 0

0 0

+
1

γ2

X

I

Qβ

[
X> I

]
. (4.7)

Details of the derivations are provided in Appendix B.1 and B.2.

Note that we do not explicitly construct Q̃. Instead, we provide a function that performs

an efficient matrix-vector multiplication with Q̃. Therefore, we can write the MAP estimate

as the solution of (4.5) as the required form of the optimization problem in [38]. Then, we

apply the generalized hybrid projection method and recover s and β from the solution of

(4.5) by

s = p + Xµβ and β = q + µβ. (4.8)
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In particular, if µβ = 0, then p̃ =

s

β

 and y = d. Likewise, the prior condition (2.1) can

lead to a similar optimization problem as follow,

min
s∈Rn

1

2
‖As− d‖2R−1 −

λ2

2
‖s− µ‖2Q−1 (4.9)

where µ is fixed.

4.2.2 Generalized hybrid projection methods for computing esti-

mates and uncertainties

Given matrices Ã, R, Q̃ and vector y from (4.5), the genGK bidiagonalization process

generates matrices Bk, Uk+1, and Vk satisfying (2.12), (2.13), (2.14), and (2.15). Then, at

the kth iteration,

min
xk∈Rk

1

2
‖Bkxk − β1e1‖22 +

λ2

2
‖xk‖22 (4.10)

is the projected optimization problem. The regularization parameter λ is selected by methods

described in Section 2.3. The solution to (4.5) is recovered as p̃k = Q̃Vkxk.

The posterior covariance matrix is the inverse of the Hessian matrix of (4.3) with respect to

s,β given d. Hence, it is given by

Qpost :=

λ2Q−1 + A>R−1A −λ2Q−1X

−λ2X>Q−1 λ2
βQ−1

β + λ2X>Q−1X


−1

(4.11)

Our goal is to approximate the posterior covariance of s and β given d, but because its

dimension is (n + p)-by-(n + p), it is infeasible to construct explicitly. Hence, low-rank

approximation methods provide a computationally reasonable alternative. Note that the
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change of variables in (4.4) just shifts s and β into p and q respectively, and thus the

posterior covariance matrix of p̃ given y is equivalent to (4.11). Therefore, from (4.6) and

(4.11), we get the following expression for the posterior covariance matrix,

Qpost =
(
λ2Q̃−1 + Ã>R−1Ã

)−1

. (4.12)

Now, we can approximate Qpost as described in Section 2.4 with matrices generated from

the genGK bidiaognalization process with Q̃, Ã, and R.

4.3 Numerical results

For the numerical experiments in this section, we use the following to denote the different

considered iterative methods,

• genHyBRs refers to solving (1.1) with a Gaussian prior (2.1) via the optimization prob-

lem (4.9).

• genHyBRmean refers to solving (1.1) with the hierarchical Gaussian prior (4.1) via the

optimization problem (4.5).

4.3.1 Experiment 1: Simulation Study

We demonstrate the potential of our proposed approach using a simulated example from the

NOAA institute GHG monitoring network for the western US. This is a spatial reconstruction

for a problem with small noise level. The main goal of this experiment is to show that

genHyBRmean gives a better reconstruction than genHyBRs.



4.3. Numerical results 57

For simplicity we integrate over the time component and only consider a spatial reconstruc-

tion. For this example, the “true” emissions in s represent a resolution of 0.1◦ latitude by 0.1◦

longitude (see Fig. 4.1), matrix A is 1, 215×16, 829 and represents an atmospheric transport

model. Using simulated observations with 4% Gaussian noise (i.e., ‖ε‖2
‖Astrue‖2 = 0.04), we com-

pare reconstructions obtained by generalized LSQR (LSQR is a standard and widely used

least-squares solver [86, 87]), genHyBRs, and genHyBRmean. We denote Generalized LSQR

by genHyBRs-none/genHyBRmean-none because the generalized LSQR methods use a regu-

larization parameter of 0 although the prior covariance matrix is not just a scaled identity

matrix. genHyBRs/genHyBRmean-opt use gen-GK with the optimal regularization parame-

ter. genHyBRs/genHyBRmean-dp use gen-GK with the DP and genHyBRs/genHyBRmean-wgcv

use gen-GK with the WGCV method as decribed in Section 2.3. The UPRE method was

also tested since it did not provide meaningful results for both genHyBRs and genHyBRmean,

we omit these results. However, we remark that one observation from the UPRE function in

the projected problem is that the residual term tends to dominate the UPRE function. Since

the residual term rapidly increases as λ increases, the UPRE function achieves its minimum

value near zero which corresponds to no regularization.

In Fig. 4.2, the relative reconstruction errors are only computed on land (i.e., reconstructed

values over the ocean are ignored) and are computed as ‖sk−strue‖
‖strue‖ , where strue contains the

true emissions and sk is the reconstruction at the kth iteration. We observe that this problem

is severely underdetermined, so the choices of prior and regularization parameter are very

important. Here, Q is constructed using a Matérn kernel with ν = 2.5 and ` = 0.1 as de-

scribed in [93]. For genHyBRmean, X is a vector of ones and Qβ = 1, and we simultaneously

solve for the image and the mean constant. For genHyBRmean methods, three different γ are

tested and results are presented in Table 4.1. The reconstructions Fig. 4.1 and the relative

errors Fig. 4.2 are computed for γ = 1. In addition to having smaller reconstruction errors



58
Chapter 4. Hybrid Projection Methods for Large-scale Inverse Problems with Mean

Estimation in Hierarchical Gaussian Prior

Figure 4.1: For each method, the relative errors are only on land without ocean.

than genHyBRs-opt, genHyBRmean reconstructions appear to have desirable nonnegative en-

tries. Although this was not explicitly enforced, it can be attributed to the mean estimation

which shifts the solution to the appropriate value. We observe that genHyBRmean tends to

force over-smoothing on computed reconstructions, although the relative errors are smaller

than genHyBRs.

We also provide an approximation of the solution uncertainties for β. βtrue = 3 and the

computed means are shown in Table 4.1. For small γ where λβ = γλ, βMAP is close to 3.

The approximation of σpost has no significant impact for different γ values.

4.3.2 Experiment 2: 6 week case study

This is an example of an atmospheric reconstruction example where the goal is to reonstruct

spatiotemporal CO2 fluxes. This example is described in [80], and is a very large and

challenging problem. The goal of this experiment is investigate the use of generalized hybrid
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Figure 4.2: The plot shows the relative errors
only on land without ocean for each iterative
method.

Methods(γ =
√
0.1) βMAP σpost

β

genHyBRmean-opt 2.8522 0.2325
genHyBRmean-dp 2.8634 0.0949

genHyBRmean-wgcv 2.8532 0.0471
Methods(γ = 1) βMAP σpost

β

genHyBRmean-opt 2.7012 0.2358
genHyBRmean-dp 2.6816 0.0948

genHyBRmean-wgcv 2.6392 0.0466
Methods(γ =

√
10) βMAP σpost

β

genHyBRmean-opt 1.7746 0.2417
genHyBRmean-dp 1.6932 0.0904

genHyBRmean-wgcv 1.5939 0.0488

Table 4.1: The table shows the computed β
and approximation of its posterior standard
deviation for each iterative method.

methods for solving spatiotemporal CO2 flux problems and to compare the results with

automatic parameter selection to the results obtained using a direct method and and iterative

method which has no selection methods for the regularization parameter. Here, we consider

the use of the DP to select the regularization parameter, and we compare to problems with

different noise levels.

We applied the hierarchical prior model (4.1) to genHyBR using the case study based on CO2

observations from NASA’s Orbiting Carbon Observatory 2 (OCO-2) satellite [47, 80]. We

estimate 6 weeks of CO2 fluxes over North America from late June through July 2015. There

are 1.92× 104 synthetic observations and the size of the unknown CO2 fluxes is 1.06× 106.

Each flux represents a 3-hours temporal resolution and a 1◦×1◦ latitude-longitude resolution.

The synthetic observations were generated by the atmospheric transport model from NOAA’s

CarbonTracker-Lagrange program [66]. The matrices A1, . . . ,A328 ∈ R19,156×3,222 were gen-

erated using the Weather Research and Forecasting (WRF) Stochastic Time-Inverted La-

grangian Transport Model (STILT) modeling system [73, 83]. Since the matrix A is con-
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structed by stacking block matrices A1, . . . ,A328 horizontally as

A =

[
A1 . . . A328

]
∈ R19,156×328·3,222 (4.13)

and it is too large to use as a single matrix, each matrix Ai is loaded when the matrix-vector

multiplication is necessary. The matrix-vector multiplication operations with A and A> are

implemented using object oriented programming.

The unknown CO2 fluxes are contained in vector

s =


s1
...

s328

 ∈ R328·3222 (4.14)

After obtaining observations or outputs from this atmospheric transport model, we added

some noise to represent measurement error, as in (1.1).

For the hierarchical model (4.1), we use a matrix Xsub stacking vertically 41 times (for 6

weeks) to construct X such as

X = 141 ⊗Xsub =


Xsub

...

Xsub

 ∈ R3222·8·41×8 (4.15)

where for one day,

Xsub = I8 ⊗ 13222 =


13222

. . .

13222

 ∈ R3222·8×8 (4.16)
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with 13222 ∈ R3222 is column of ones. We set the mean vector µβ to be zero. For the

prior covariance matrix of unknown fluxes, Q = Qt ⊗Qs where Qt represents the temporal

covariance and Qs represents the spatial covariance in the fluxes.

Figure 4.3: Prior covariance matrices for temporal and spatial priors.

These covariance matrices are provided in Figure 4.3, and they are defined by kernel functions

kt(dt; θt) =

 1− 3
2

(
dt
θt

)
+ 1

2

(
dt
θt

)3
if dt ≤ θt,

0 if dt > θt,
(4.17)

ks(ds; θs) =

 1− 3
2

(
ds
θs

)
+ 1

2

(
ds
θs

)3
if ds ≤ θs,

0 if ds > θs,
(4.18)

where dt is the day difference between two unknowns, ds is the spherical distance between

two unknowns, and θt, θs are kernel parameters. In this setting, we set θt = 9.854 and

θs = 555.42. The covariance matrix Qβ is the identity matrix. The covariance matrix R is a

diagonal matrix whose diagonal entries are all σ2. In [80], σ = 2 was the standard deviation

of the noise. Since σ = 2 leads to very large noise in the observations, in this experiment, we

tested different σ values as shown in Table 4.2. More specifically, for n ∼ N (0, I) the noise



62
Chapter 4. Hybrid Projection Methods for Large-scale Inverse Problems with Mean

Estimation in Hierarchical Gaussian Prior

50 100 150 200 250 300

0.8

0.85

0.9

0.95

R
e
la

ti
v
e
 E

rr
o
r

genHyBRmean,  = 0.061213 (5%)

optimal

dp

upre

LSQR

wgcv

50 100 150 200 250 300

10
-10

10
-5

10
0

R
e
g
. 
P

a
ra

m
e
te

r 

optimal

dp

upre

wgcv

20 40 60 80 100 120 140

0.8

0.85

0.9

0.95

genHyBRmean,  = 0.12243 (10%)

optimal

dp

upre

LSQR

wgcv

20 40 60 80 100 120 140

10
-10

10
-5

10
0

optimal

dp

upre

wgcv

10 20 30 40 50

0.85

0.9

0.95

genHyBRmean,  = 0.61213 (50%)

optimal

dp

upre

LSQR

wgcv

10 20 30 40 50

10
-10

10
-5

10
0

optimal

dp

upre

wgcv

Figure 4.4: Error analysis of hybrid projection methods. Experiments of 5%, 10%, 50%
noise level are corresponding to the first, second, and third columns respectively. The first
row shows relative errors of genHyBRmean with different regularization parameter selection
methods. The relative errors of Direct solutions are not included because they are over 100%
relative error. The second row shows computed regularization parameter λ at each iteration.

level (nlevel) of the observation corresponds to adding ε = σn where σ = nlevel · ‖z‖2
‖n‖2 .

nlevel σ
5% 0.0612
10% 0.1224
50% 0.6121
163% 2.0000

Table 4.2: Noise level and corresponding σ.

For each noise level, genHyBRs and genHyBRmean are tested. In the first row of Figure 4.4, the

relative errors of hybrid methods are presented for different noise levels. genHyBRmean-none,

genHyBRmean-upre, and genHyBRmean-wgcv show semi-convergence behavior (e.g., initial

convergence and later divergence) while genHyBRmean-dp stabilizes and does not diverge

from the optimal case. The behavior of the λ values is provided in the second row of Figure
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Figure 4.5: Compare relative errors of genHyBRs and genHyBRmean methods with 5%, 10%,
and 50% noise levels.
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Figure 4.6: Reconstructions of average over 2-6 weeks. Since genHyBRmean-upre has a
similar relative error with genHyBRmean-none, its reconstruction is omitted.

4.4. Corresponding to the relative errors, computed λ values of genHyBRmean-dp are close to

the optimal λ values of genHyBRmean-opt. Since λ values of genHyBRmean-upre are close to

zero, the corresponding relative errors follow genHyBRmean-none. Figure 4.5 compares the

relative errors between genHyBRs and genHyBRmean. For the converged cases, genHyBRmean

attains smaller errors as the noise gets larger.

Figure 4.6 plots reconstructions of the true solution, the direct solution (i.e., obtained using
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a current state-of-the art method), and the genHyBRmean solution. Since the direct method

uses a regularization parameter that was tuned for σ = 2 as was done in previous work, the

reconstructions are not very close to the true average map. However, the DP estimate of the

average map is close to the genHyBRmean-opt. For genHyBRmean-wgcv and genHyBRmean-

none, we provide the best reconstructions, but we can expect their estimations to be worse

with additional iterations because of the semi-convergence behaviors that are showed in

Figure 4.4.

In Figure 4.7, we provide approximations of the posterior standard deviation values for the

average maps. Figure 4.8 shows the approximate posterior distribution of β ∈ R8 with 95%

credibility bounds.

-180 -123 -67 -10

80

57

33

10

genHyBRmean-opt (average)

9.8

10

10.2

10.4

10.6

-180 -123 -67 -10

80

57

33

10

genHyBRmean-dp (average)

7.8

8

8.2

Figure 4.7: Posterior standard deviation of average over 2-6 weeks.

Figure 4.8: The elementwise 95% credibility bounds and MAPs computed from different
regularization methods in 50% noise level. Each number in subtitle means the relative errors
of β.



Chapter 5

Computational Tools for Inversion

and Uncertainty Estimation in

Respirometry

The goal of this chapter is to develop practical mathematical and computational tools to

advance reconstruction methodologies for the inverse problem of recovering signals in phys-

iological systems from flow-through respirometry chambers. In many areas of biology and

biomechanics, signals of interest cannot be measured directly, but instead must be esti-

mated from indirect, noisy observations. For example, rates of oxygen consumption and

CO2 production are important for measuring energy expenditure associated with physiologi-

cal phenomena and can promote understandings of energy regulation systems, but recovering

such information generally requires indirect calorimetry using respiration chambers.

In flow-through respirometry systems, the goal is to determine the pattern of real instan-

taneous gas exchange of an animal that is put in a chamber. Air is pumped through the

chamber and continuously mixes with the CO2 and water vapor produced by the animal.

Then, air that flows out of the chamber is brought to a gas analyzer that measures patterns

of gas concentration. However, during this process the metabolic signals get distorted due to

the washout kinetics. The recorded signal in the gas analyzer is a convolution of the true/in-

stantaneous signal and the impulse response of the system which contains all characteristics

65
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of the respirometry system. The instantaneous signals of interest can only be obtained by

solving so-called “input estimation” or “inverse” problems [8, 43, 106]. This problem like any

other deconvolution or input estimation problem is inherently ill-posed. Finding the instan-

taneous signal is particularly important if we study the synchrony between the metabolic

signals and other physiological measurements such as locomotion, food or drug consumption,

or circadian rhythms.

For problems where the impulse response function of the system is known, the inverse

respirometry reconstruction problem can be formulated as a (1.1) that resembles the widely-

studied problem of deconvolution. Some previous works that use Tikhonov regularization

to solve the linear respirometry reconstruction problem include [43, 89, 90], among others.

Since the forward model used in these regularized deconvolution methods is defined by the

choice of the impulse response function, using an inaccurate impulse response function (e.g.,

one that is estimated experimentally) can result in significant degradation of the reconstruc-

tion accuracy. In flow through respirometry systems the pattern of the impulse response

depends on the volume of the chamber, flow rate, size of the tubes between the chamber

and gas analyzer, and even the size and location of the specimen in the chamber. Thus, it is

important to consider methods that can either reconstruct the impulse response function or

improve on a given impulse response function, while simultaneously reconstructing the de-

sired signal. This problem is highly nonlinear and thus significantly more challenging to solve

due to non-uniqueness of the solution. Indeed, joint reconstruction of the impulse response

function and the physiological signal remains an open problem in the field of respirometry

[23, 68].

In this chapter, we consider computational methods for both the linear and nonlinear

respirometry reconstruction problems, with a particular emphasis on large-scale problems.

We begin by describing the underlying mathematical model. Let h ∈ Rn define the impulse
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response function and let s ∈ Rn contain the desired signal. Let z =

s

h

 ∈ R2n, then the

observed signal contained in d ∈ Rn can be modeled as,

d = f(z) + ε with f(z) = A(h)s, (5.1)

where A(·) : Rn → Rn×n models the forward evolution process, and ε ∈ Rn represents

noise or measurement errors. A common assumption is that the noise is independent and

identically distributed from a Gaussian distribution with zero mean and variance σ−2, i.e.,

ε ∼ N (0, σ−2I). For a given h, the respirometry forward model can be represented with

matrix A(h), which is highly structured. Specific details regarding h and A will be provided

(see Section 5.1). Given d and A(·), the goal of the nonlinear (blind) respirometry problem is

to reconstruct z (i.e., both h and s). Oftentimes, (5.1) is referred to as a separable nonlinear

inverse problem. Notice that if h is fixed, then we have a linear inverse problem.

There are many computational challenges to solving respirometry problems. First, due to ill-

posedness, an appropriate choice of regularization should be incorporated for stable solution

computation, and this goes hand-in-hand with the challenging task of selecting a suitable

regularization parameter. More specifically, for classic variational regularization of the linear

respirometry problem, solution approximations are obtained by solving optimization prob-

lems of the form,

min
s

1

2
‖As− d‖22 +

λp

2
Ω(s) (5.2)

where λp > 0 is a regularization parameter and Ω(·) : Rn → R is a regularization functional

determined by the choice of the prior. Previous studies on respirometry reconstruction

employ standard Tikhonov regularization where Ω(s) = ‖s‖22, and practitioners manually

tune the regularization parameter λp. Selecting a suitable regularization parameter involves
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finding a good balance between introducing bias in the solution and preserving fidelity to

the system and the observed data. This can be an expensive and time consuming task that

requires multiple solves for various parameter choices [43, 89, 90]. Second, iterative methods

provide an efficient approach to handle very large problems (e.g., large signals with many

unknown parameters), but preconditioning techniques are needed to accelerate convergence

and these preconditioners need to be tailored to the structure of matrix A. Third, it may

be desirable to go beyond obtaining reconstructions to also provide uncertainty estimates

for reconstructions, but this process often requires many expensive solves. The fourth, and

most difficult, challenge is that methods need to be developed to handle nonlinearity in the

problem (e.g., when the impulse response function contains errors or uncertainty). Due to

difficulties of the nonlinear problem, previous respirometry studies do not formally consider

this scenario. We describe various approaches to address these challenges.

We begin with a description of the mathematical set-up for the respirometry problem. We

describe a Bayesian formulation of the linear respirometry problem and describe various

tools for regularization and uncertainty quantification. We propose preconditioners for ac-

celerating iterative methods. Then, we describe nonlinear optimization methods that can

be used for nonlinear respirometry reconstruction. Numerical results for simulated and real

respirometry data are provided to demonstrate the performance and potential of our pro-

posed approaches.

5.1 Mathematical Problem Set-up

We begin with a mathematical description of the forward model underlying respirometry.

In a continuous input estimation scenario, we assume that the system is linear and time-

invariant, such that the output signal can be written as a convolution of the instantaneous
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input signal and the impulse response function of the system. More precisely, the output of

the system at time t is given by

d(t) =

∫ t

0

h(t− τ)s(τ)dτ

where s(τ) describes the state of the system at time τ and h is the impulse response function.

In a discrete formulation, we take observations at uniform time points 0 = t0 < t1 < . . . <

tn <∞ denoted as

dk =
k−1∑
i=0

h(tk − ti)siδt+ εk, for k = 1, . . . , n

where dk and sk describe the output and input signals respectively at time tk, δt = tk+1− tk

is the sampling interval, and εk ∼ N (0, σ−2) represent errors in the data. In matrix notation,

we have the discrete respirometry problem,

d = As + ε, (5.3)

where

d =



d1

d2
...

dn


, s =



s0

s1
...

sn−1


, ε =



ε1

ε2
...

εn


, and A = δt



h(δt) 0 · · · 0

h(2δt) h(δt)
. . . ...

... . . . . . . 0

h(nδt) · · · h(2δt) h(δt)


.
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Notice that if we let h = δt


h(δt)

...

h(nδt)

 ∈ Rn be the discretized impulse response function,

then A = A(h) is a lower-triangular Toeplitz matrix with h as the first column and we get

a problem of the form (5.1).

For most respirometry problems, the impulse response function is not known in advance, but

must be estimated experimentally. In practice, a CO2 pulse is injected into an empty chamber

for a short time (e.g., 0.5 seconds) and the normalized recorded output serves as the impulse

response function. Due to various experimental errors and imperfections, this process may

result in an imprecise estimate of the impulse response function. Nevertheless, this is the

standard process used in practice. One could consider using blind deconvolution methods

to solve for h and s simultaneously given d, but this is a severely ill-posed problem where

the main challenge is the existence of many local minimizers. Furthermore, the number of

unknown variables doubles (i.e., 2n total unknowns in s and h). We will assume that partial

information about the impulse response function is available and consider the so-called semi-

blind deconvolution problem. More specifically, we assume that the delay and the support

of the impulse response function are known. That is, let s ∈ Z+ denote the support and

d ∈ Z+ represent the delay, then we assume that h has the form

h = [ 0 · · · 0︸ ︷︷ ︸
d

h̄> 0 · · · 0︸ ︷︷ ︸
n−d−s

]> where h̄ = δt[ hd+1 · · · hd+s ]
> ∈ Rs

has nonzero elements and hk = h(kδt). With these minor assumptions on the impulse

response function, the nonlinear problem (5.1) reduces to smaller system given by,

d̄ = Ā(h̄)s̄ + ε̄ (5.4)
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where d = [ ¯̄d>︸︷︷︸
d

d̄> ]> and s = [s̄> ¯̄s︸︷︷︸
d

]> ∈ Rn−d with d̄, s̄, ε̄ ∈ Rn−d, Ā(·) : Rs →

R(n−d)×(n−d) with Ā(h̄) being a lower-triangular Toeplitz matrix with [h̄> 0 · · · 0︸ ︷︷ ︸
n−d−s

]> as the

first column. Note that ¯̄d and ¯̄s represent the clipped elements of d and s respectively in Fig

5.1. The time response of a chamber is roughly about V /F , where F is the air inflow rate

and V is the volume of the chamber [8, 89]. If there is no information about the support,

we can assume it to be approximately 3 to 5 times the time response.

Figure 5.1: Illustration of the delay and support of the impulse response function h(t) used
in respirometry. The middle and right plots demonstrate the change in structure from the
original system in (5.1) to the reduced system in (5.4) that occurs due to the inclusion of
delay and support assumptions.

An example of the delay and support of an impulse response function used in respirometry is

provided in Fig 5.1, along with an illustration of the impact on the resulting system due to

the delay and support. Notice that since s is replaced by s̄ in the reduced system, the tail of s

is not being reconstructed. However, this is not a significant loss since it is common practice

to ignore the final points of the reconstruction even in the non-blind case. The physical

reason is that the released CO2 from the animal at the end of the experiment does not

completely show up in our observed measurements since we have stopped recording before

those CO2 particles leave the chamber and reach the gas analyzer.

We close this section with a few remarks. First of all, regarding our assumption of knowl-
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edge of the delay and support of the impulse response function, we can typically obtain

good estimates of these values from the experimental impulse response function or from

the respirometry problem set-up. Second, contrary to previous respirometry reconstruction

methods, we do not assume any functional form for h̄. Third, we will describe various tech-

niques to solve the reduced nonlinear system, and numerical results show that reconstructions

are not sensitive to the choice of these parameters.

5.2 Respirometry with Known Impulse Response Func-

tion

In this section, we assume that h is fixed and focus on efficient computational tools for

solving the linear respirometry reconstruction problem (5.3) and for performing subsequent

uncertainty quantification. Since the linear reconstruction problem is ill-posed, some form of

regularization must be included. We employ a Bayesian framework, which is a statistically

robust way to include prior knowledge by treating s as a random variable. Furthermore, the

Bayesian approach provides a natural framework for performing uncertainty quantification.

Good overviews on Bayesian inverse problems, statistical inverse problems, and computa-

tional uncertainty quantification can be found here [7, 22, 67].

Regularization and uncertainty quantification

Consider the stochastic extension of (5.3),

D = HS + E
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where S, D and E are random variables and H is deterministic. We assume that S and E are

mutually independent and that the prior density function of S is given by πprior(s) and the

conditional density function of D given S is given by πlike(d | s). Using Bayes’ Theorem, the

posterior probability density function can be written as (2.2) assuming the marginal density

function π(d) 6= 0.

A key component of the Bayesian formulation is the choice of the prior distribution function

πprior(s), which incorporates any knowledge about the solution s prior to data being collected.

We consider two priors: a Gaussian prior and a Laplace prior. In both cases, we assume that

the observation error can be modeled as ε ∼ N (0, σ−2I), and thus the likelihood function

can be written as

πlike(d|s) ∝ exp
(
−σ2

2
‖As− d‖22

)
.

We will see that a nice connection between the Bayesian and classical formulations for inverse

problems is that various point estimators in the Bayesian framework coincide with classic

regularized solutions that are obtained by solving optimization problems of the form (5.2).

2-norm regularization. Gaussian priors are commonly used, and these priors are defined

by a known mean vector µ ∈ Rn and known symmetric positive definite covariance matrix

Q, i.e., s ∼ N (µ, λ−2Q). This case is a particular case of (2.2). Hence, the posterior density

function πpost is a Gaussian distribution as (2.8) where R = σ−2I.

Let Q−1 = L>
QLQ be a symmetric factorization (e.g., a Cholesky or eigenvalue decomposi-

tion), then the MAP estimate is the solution to the following optimization problem,

sMAP = arg min
s

σ2

2
‖As− d‖22 +

λ2

2
‖LQ(s− µ)‖22 (5.5)

= arg min
s

1

2
‖As− d‖22 +

λ2
2

2
‖LQ(s− µ)‖22 (5.6)
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which is commonly known as Tikhonov regularization where λ2 = λ
σ
. Thus, the Tikhonov

regularized solution is the point estimate that corresponds to the maximum value of the pos-

terior density function, or equivalently the minimizer of its negative log. Since the posterior

density function is Gaussian, variance estimates for the solution can be obtained by comput-

ing the diagonal entries of Γpost. Furthermore, samples from the posterior can be obtained

using efficient Krylov subspace methods [19] and approximation methods were described in

Section 2.4.

Note that in the inverse problems community, LQ is often referred to as the regularization

matrix and is chosen to force smoothness of the desired solution. There are many choices for

the regularization matrix LQ. In respirometry common choices for LQ include the identity

matrix LQ = I or a discretization of the derivative operator where LQ is a lower triangular

Toeplitz matrix with [1 − 2 1 0 . . . 0]> as the first column or [1 − 1 0 . . . 0]> as the first

column [89]. The parameter selection methods of 2-norm regularization were described in

Section 2.3.

1-norm regularization. An alternative assumption to a Gaussian prior is a Laplace prior,

where the signal is independent and identically Laplace distributed,

si ∼ Laplace(0, δ−1), i = 1, 2, . . . , n (5.7)

where the probability density function for a Laplace distribution is given by π(s) = δ
2

exp(−δ|s|)

for δ > 0. Thus, using the assumption of independence, the prior corresponding to assump-

tion (5.7) can be written as

πprior(s) ∝ exp(−δ‖s‖1),
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where ‖ · ‖1 is the 1-norm of a vector. The posterior density function πpost is given by

πpost(s | d) ∝ exp
(
−σ2

2
‖As− d‖22 − δ‖s‖1

)
. (5.8)

Notice that the posterior is no longer Gaussian; however, we can use various tools to explore

the posterior. The MAP estimate corresponds to the mode of the posterior distribution and

is given by

xMAP = argmaxsπpost(s | d) (5.9)

= arg min
s

σ2

2
‖As− d‖22 + δ‖s‖1 (5.10)

= arg min
s

1

2
‖As− d‖22 +

λ1

2
‖s‖1, (5.11)

which is an `1 regularized problem (5.2) with Ω(·) = ‖ · ‖1 and λ1 =
2δ
σ2 .

It is common to use regularization terms of the form Ω(s) = ‖s‖1 in signal and imaging

processing, since these regularizers enforce sparsity in the desired parameters. The main

computational difficulty with these regularizers is the absolute value, which has a discon-

tinuous first derivative at zero, causing challenges for optimization algorithms. For small to

medium size problems, it is well known that the problem can be reformulated as a quadratic

programming problem, and standard optimization software packages can be used. However,

the number of unknowns in the reformulated problem doubles, making this approach un-

realistic for large-scale problems. A more computationally appealing approach is to solve

`1 regularized problems using the proximal gradient. That is, methods such as the Fast

Iterative Shrinkage-Thresholding Algorithm (FISTA) [11] use iterative techniques to solve

sλ1 = arg min
s

1

2
‖As− d‖22 +

λ1

2
‖s‖1. (5.12)
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A summary of FISTA with a constant step size is provided in Algorithm 3.

Algorithm 3 FISTA with constant stepsize
Choose λ1.
Compute L, a Lipschitz constant of 1

2
‖As− d‖22.

Set y1 = s0 = 0 ∈ Rn and t1 = 1.
for k = 1, 2, . . . do

sk = arg min
s

L

2

∥∥∥∥s−
(

yk −
1

L
A>(Ayk − d)

)∥∥∥∥2
2

+ λ1‖s‖1,

tk+1 =
1 +

√
1 + 4t2k
2

,

yk+1 = sk +
(
tk − 1

tk+1

)
(sk − sk−1).

end for

In addition to the choice of the regularization parameter λ1 that must be selected in advance,

the Lipschitz constant L that depends on the maximum eigenvalue of A>A must be esti-

mated. It can be difficult to compute L when n is large, but an approach using backtracking

was described in [11]. Similar to FISTA, the Sparse Reconstruction by Separable Approx-

imation (SpaRSA) method [111] is an iterative method that can be used to solve (5.12),

which uses a sequence of smooth approximations of the 1-norm. Although more general reg-

ularization terms can be included, SpaRSA requires more user-defined input parameters so

we do not consider it here. Another class of methods for solving the `p regularized problem is

based on flexible Krylov methods that use iterative techniques with flexible preconditioning

within a hybrid framework to improve the solution subspace. Methods such as FLSQR-R

can be used to solve `p-regularized problems where 1 ≤ p < 2, see [34].

Various methods for solving the `1-regularized problem can be used to approximate the

MAP estimate, but subsequent uncertainty quantification for this case is significantly more

challenging. Although the posterior (5.8) is not Gaussian, we can approximate the posterior

with a Gaussian at the maximum a posterior (MAP) estimate using a linearization approach
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[18]. Another approach to efficiently obtain samples from the posterior in this case is to use

a change of variables or transformation to turn a non-Gaussian distribution into a Gaussian

one, as described in [108]. More specifically, the transformation is defined by

s = g(w) :=

[
g1D(w1) · · · g1D(wn)

]>
(5.13)

where

g1D(w) = L−1G(w) (5.14)

with L being the cumulative density function (cdf) of the Laplace distribution and G being

the cdf of a Gaussian distribution. With this definition, w ∼ N (0, I) and the transformation

w = g−1(s) generates

p(w) = p(g(w))|Jg(w)| (5.15)

where

Jg(w) = diag(g′1D(w1), . . . , g
′
1D(wn)). (5.16)

From these transformations and from (5.8), we obtain

p(w|d) ∝ exp

−1

2

∥∥∥∥∥∥∥
A(g(w))
√
λ1w

−
d

0


∥∥∥∥∥∥∥
2

2

 (5.17)

Hence, we can generate samples from w and transform these samples to get samples of p(s|d)

via s = g(w). Although there are some known challenges with this approach, we found that

it worked well for the respirometry reconstruction problem.

By following a Bayesian framework for inversion, we have established a natural framework

not only for incorporating prior knowledge but also for quantifying solution uncertainties.

In terms of software, IRTools [50] is a comprehensive package that contains many iterative
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regularization routines for solving inverse problems along with various test problems. To the

best of our knowledge there is no unified software package for performing UQ for inverse

problems. We point the interested reader to the following book and associated codes [7].

Accelerating Iterative Methods for Signal Reconstruction

In the previous section, we considered various regularization techniques for solving the linear

respirometry reconstruction problem. Next, we focus on Tikhonov regularization, and we

investigate efficient methods to accelerate the convergence of iterative methods when used

to compute a solution,

sTik = arg min
s

1

2
‖As− d‖22 +

λ2
2

2
‖LQ(s− µ)‖22 (5.18)

=
(
A>A + λ2

2Q−1
)−1

(A>d + λ2
2Q−1µ), (5.19)

where (5.19) comes from setting the gradient of the function in (5.18) equal to zero. For small

problems, constructing the matrix and the solution in (5.19) is computationally feasible, and

many of the previous works in respirometry reconstruction follow this approach. For exam-

ple, Tikhonov methods described in [90] could be used here. However, more sophisticated

iterative techniques should be used for large-scale problems.

Iterative methods, in particular Krylov subspace methods, are computationally attractive

because each iteration only requires one matrix-vector-multiplication with A and perhaps

A> [53, 96]. Thus, the matrix representing the respirometry forward model never needs to be

constructed, but instead can be accessed via operations or function evaluations. However, it

is widely known, especially in the numerical linear algebra community, that preconditioning

is a very important tool for accelerating convergence and improving the robustness of Krylov

methods [12]. The basic idea of preconditioning is to modify the problem by improving the
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spectrum of the problem (so that eigenvalues or singular values of the preconditioned system

are clustered around one and bounded away from zero), thereby accelerating the convergence

of iterative methods.

For simplicity of presentation, we describe preconditioning techniques for the unregularized

problem (i.e., λ2 = 0) and focus on developing a good preconditioner for the respirometry

matrix A that can exploit the special structure of these matrices. We first describe the

general idea underlying preconditioning and then describe how to apply preconditioning to

the regularized problem.

Assume that we have a preconditioner M ∈ Rn×n such that M−1 ≈ A−1 and solving systems

involving M can be done easily and quickly. Then rather than solve (5.18), consider solving

the right-preconditioned problem,

min
y

∥∥AM−1y− b
∥∥2
2

where y = Ms,

or the left-preconditioned problem,

min
s

∥∥M−1Ax−M−1b
∥∥2
2

using an iterative method such as the conjugate gradient for least-squares (CGLS) method

[13]. Notice that each iteration requires one matrix-vector multiplication with M−1A and its

transpose. Typical choices for M are based on incomplete matrix factorizations or multigrid

methods [12]. However, for the respirometry problem, these approaches are not ideal for

two main reasons. First, matrix A is large and construction of A is not possible. Instead,

we access it via function evaluations. Second, A is severely ill-conditioned, so we would

like to approximate a regularized pseudoinverse of A rather than A−1. Obtaining a good

approximation of A−1 would result in very fast convergence to the undesired inverse solution.
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For respirometry reconstruction problems, we propose various preconditioners that can be

used to accelerate the convergence of iterative methods. Recall that A is a Toeplitz matrix

with h as the first column. For large-scale problems, we have constructed an object class

in MATLAB called convMatrix.m, where matrix-vector and matrix-transpose-vector opera-

tions with A are treated as function evaluations. In particular, convMatrix calls MATLAB’s

conv function to do convolution and then extracts the appropriate signal length.

Next, we describe how to exploit the Toeplitz structure of A to build a good preconditioner

for the respirometry problem. Since circulant matrices provide good approximations to

Toeplitz matrices [24, 25, 26, 58] and circulant matrices are diagonalized by the discrete

Fourier transform, we propose to use a circulant matrix M such that the lower triangular

part of M matches the lower triangular part of A. Then since M can be diagonalized by the

discrete Fourier transform, we can write

M = F∗ΘF (5.20)

where F represents the Fourier transform and Θ is a diagonal matrix with eigenvalues com-

puted as

theta = fft(h);

where h contains the impulse response function scaled by the sampling rate (i.e., this cor-

responds to the first column of A). Thus, we can apply the preconditioner to any vector y

as

M−1y = F∗Θ−1Fy,

which corresponds to the following commands in MATLAB

ifft(fft(y)./theta);.
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Notice that since M is likely ill-conditioned, Θ has very small values on the diagonal which

can result in erroneous computations. A small modification to the preconditioner can be

done, where Θ is replaced with a diagonal matrix Θ̂ with better spectral properties (i.e.,

removing small eigenvalues of Θ). For simplicity, we can use a TSVD-like preconditioner

where M = F∗Θ̂F with diagonal entries of Θ̂ being

θ̂i =


θi, if |θi| ≥ τ

1, else
(5.21)

for some predetermined tolerance parameter τ . Because the preconditioner inherently in-

cludes regularization, we avoid the danger of the preconditioner inadvertently magnifying the

noise before a solution can be computed. Similar to the previous discussion about avoiding

the construction of A, we remark that construction of the preconditioner is also not advised.

We have written an object class called precMatrix.m that can work with the preconditioner

implicitly. The preconditioner for respirometry can be accessed using the MATLAB com-

mand: M = precMatrix(h,tau); where h contains the impulse response function without

delay and τ is the tolerance parameter. We also describe an automatic approach to esti-

mate τ . Consider the approximate problem Ms = d. Since the diagonalization of M is

computable, we can use the GCV method to efficiently compute a regularization parame-

ter or truncation tolerance for TSVD [59]. This truncation tolerance can be used to define

the preconditioner. Furthermore, we remark that M corresponds to convolution with the

same impulse response function, where periodic boundary conditions are assumed. Thus, if

H corresponds to periodic boundary conditions and τ is the smallest singular value, then

M = A.

For a small respirometry example, we provide in Fig 5.2 the spectrum of A along with the

spectrum of the preconditioned system M−1A for τ = 1.7× 10−3, 1.7× 10−2, and 1.7× 10−1.
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The GCV selected parameter for this example was 9.0×10−2. Notice that the singular values

for the preconditioned systems are clustered around 1. This is a very desirable property

for the fast convergence of Krylov subspace methods [96]. However, the spectrum of the

preconditioned system relies heavily on the choice of τ. For small values of τ, M clusters too

many of the small singular values so that the preconditioned system will be very ill-posed.

On the other hand, for larger values of τ, only a few singular values are clustered so more

iterations would be required. If τ is greater than or equal to the largest singular value of A,

then M = I and we have no preconditioning.

Figure 5.2: Spectrum of the unpreconditioned and preconditioned respirometry matrices for
various choices of τ . Note the desirable clustering of the larger eigenvalues, which results in
fast convergence of iterative methods.

Thus far, we have focused on developing preconditioners that exploit the structure of A and

described how to use these preconditioners to accelerate iterative methods. If one wishes

to use these preconditioners for solving regularized problems (e.g.(5.18)), then a simple

extension can be made. That is, one can solve preconditioned problem,

min
y

∥∥AM−1y− d
∥∥2
2
+ λ2

2

∥∥LQ(M−1y− µ)
∥∥2
2

where y = Ms,
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or

min
s

∥∥M−1As−M−1d
∥∥2
2
+ λ2

2 ‖LQ(s− µ)‖22 .

In general, proper preconditioning can be a very important, albeit delicate, task especially

for inverse problems.

5.3 Respirometry with Unknown Impulse Response Func-

tion

Thus far, we have focused on the linear respirometry problem where the impulse response

function is assumed known. However, this is not true in realistic experiments, where the

impulse response function must be estimated. Given measured respirometry data, estimat-

ing both the impulse response function and the unknown signal simultaneously is a very

challenging problem. Nevertheless, there are various reasons why we may want to consider a

joint estimation approach. First, the estimated impulse response function which is obtained

using a short burst of CO2 in an empty chamber will likely contain errors. Second, although

the respirometry systems is calibrated at construction, parameters may change over time

and these changes are not accounted for without a full recalibration of the machine. Third,

the impulse response depends on the size and location of the animal, which could change

across experiments. For these and other reasons, we are interested in methods that can solve

the nonlinear respirometry reconstruction problem. It is worth mentioning that we tried

some off-the-shelf blind deconvolution methods such as MATLAB’s deconvblind function,

but found that reconstructions were very poor; thus motivating us to consider alternative

approaches.

The impulse response function, which models the reaction of the system to a very short unit
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impulse in a linear time-invariant system, is a key component of respirometry reconstruc-

tion. Conventional methods such as the Z-transform method described in [8] use an impulse

response function defined by an exponential function, e.g., h(t) = αe−βt where α and β are

parameters defined by the flow rate and chamber volume. In [89], the authors experimen-

tally showed that for many chambers and flow rates, the impulse response has the form

h(t) = αtme−βt where α, m, and β are parameters of the system. Although the parameters

for the impulse response function must be estimated, numerical experiments showed that

this function performed better than the exponential function. For the methods described in

this section, we do not enforce a functional form for the impulse response function. Instead

we impose other less restrictive constraints on the impulse response function, and develop

computational methods for nonlinear respirometry reconstruction, where both the signal s

and the impulse response function h can be estimated simultaneously from the data. The

goal is to solve nonlinear optimization problem,

min
s,h
‖A(h)s− d‖22 + λpΩ(s) + λh‖h‖22 s.t. h ≥ 0 and

n∑
i=1

hiδt = 1 (5.22)

where λh is a regularization parameter for h. Compared to problem (5.3), we have a non-

linear model represented by A(h), and we have various additional constraints on h. These

constraints include an additional Tikhonov regularization term for h to enforce smoothness,

a nonnegativity constraint, and a mass preserving constraint to force the computed impulse

response function to sum to 1. This last constraint corresponds to forcing the integral of the

impulse response function to be 1 in the continuous framework.

Before we describe computational methods to solve nonlinear constrained optimization prob-

lem (5.22), we provide an example to illustrate why solving the nonlinear blind reconstruction

problem is significantly more difficult. The main concern is the existence of multiple mini-

mizers. That is, without additional constraints, there are multiple solution pairs (s,h) that
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give small values of the data fit term in the objective function. The plots in Fig 5.3 show

that under the convolution operation, two very different pairs (s,h) can result in nearly

the same observation. Thus, methods for numerical optimization can easily get trapped in

local minimizers. Including additional constraints can help with this problem. We observed

that the choice of regularization for s, i.e., the choice of Ω(s), was important. In particular,

reconstructions obtained using Tikhonov regularization in the nonlinear framework resulted

in significantly smaller residual error norms, which negatively impacted the convergence.

However, using Ω(s) = ‖s‖1 resulted in faster convergence and better reconstructions.
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Figure 5.3: Illustration of the non-uniqueness problem in blind respirometry reconstruction.
Both sets of parameters in s and h result in similar observed measurements in d. The result
in the second row corresponds to using Tikhonov regularization for s and solving h using
alternating optimization.

Next we describe a computationally efficient method to solve (5.22). First, following the

model described in (5.4), we assume that the delay and support of h are known and refor-
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mulate problem (5.22) as

min
s̄,h̄
‖Ā(h̄)s̄− d̄‖22 + λ1‖s̄‖1 + λh̄‖h̄‖22 s.t. h̄ ≥ 0 and

d+s∑
i=d+1

hiδt = 1 (5.23)

where λ1, λh̄ are regularization parameters for s̄, h̄ respectively. For large scale problems,

matrix-vector multiplications Ā(h̄)s̄ are done via function evaluations so that Ā is never

constructed explicitly. Also note that h̄ and s̄ are exchangeable since

Ā(h̄)s̄ = Âs(s̄)h̄ (5.24)

where Âs(s̄) ∈ R(n−d)×s contains the first s columns of a lower-triangular Toeplitz matrix

with s̄ as its first column. We will exploit this property in the described alternating opti-

mization method.

Various nonlinear optimization methods can be used to solve problem (5.23) [62, 84]. A fully

coupled approach would update all variables simultaneously, e.g., an inexact Newton method

to solve for z̄ =

 s̄

h̄

. The main caveats of this approach are that derivatives are required

and convergence can be slow. On the other hand, an alternating approach can be used to

exploit the separability of the parameters in s̄ and h̄. That is, we alternate between fixing

h̄ and optimizing over s̄, and fixing s̄ and optimizing over h̄. An alternating optimization

method to solve (5.23) is provided in Algorithm 4. Notice that a key computational benefit

of the alternating optimization approach for this problem is that by exploiting property

(5.24), each optimization problem corresponding to solving a linear inverse problem.

In summary, we reformulated the blind respirometry reconstruction problem as a constrained

nonlinear optimization problem, where the additional constraints are modest and reasonable.

We assume that the delay and the support of the impulse response function are known,
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Algorithm 4 Alternating Optimization for Blind Respirometry
choose initial h̄0, tolerance tolh and tolr
for k = 0, 1, 2, . . . do

x̄k = arg min
s̄

∥∥Ā(h̄k)s̄− d̄
∥∥2
2
+ λ1‖s̄‖1

h̄k+1 = arg min
h̄

∥∥∥Âs(s̄k)h̄− d̄
∥∥∥2
2
+ λh̄‖h̄‖22 s.t. h̄ ≥ 0 and

d+s∑
i=d+1

hiδt = 1

r̄k = Ā(h̄k)s̄k − d̄
if ‖h̄k+1 − h̄k‖2 < tolh or ‖r̄k − r̄k−1‖2 < tolr then

stop
end if

end for

and we describe an alternating optimization method to estimate both the impulse response

function and the instantaneous signal. In general, alternating optimization methods can be

slow to converge but can have fast convergence if the initial guess is close to a minimizer. By

exploiting structure in the problem, we have reduced the overall computational costs. We

remark that for problems where the impulse response function can be parameterized using

a few variables, a variable projection method may be used [35], but including additional

constraints is not straightforward.

5.4 Numerical Results

In this section, we compare numerical optimization methods for different regularization

functions and demonstrate the performance of the proposed preconditioners for the linear

respirometry problem. We provide numerical results for uncertainty quantification for both

Tikhonov and 1-norm regularizers. Then, we present results for a nonlinear respirometry

reconstruction problem, where robustness of the proposed nonlinear optimization method is

investigated. For the simulated dataset, we generate the measurements as in (5.1), where

strue, h and d are provided in Fig 5.4 where the noise level is 0.5% and n = 512. We remark
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that real metabolic signals usually have slowly varying patterns. However, some species

exhibit discontinuous cycles of ventilation with periods of little to no CO2 release [32, 88].

Here, to test the methods we choose strue to be a series of rectangular pulses with various

durations and frequencies. The rectangular pulses contain high frequency elements and re-

covering these signals is more challenging comparing to smooth patterns. For the linear

respirometry results, we assume that we are given h and d, and we seek reconstructions

of strue. For the nonlinear respirometry results, we assume that we are given b as well as

the delay and support of h, and we seek reconstructions of strue and h. In addition to the

simulated studies, we provide a case study for experimental validation on real data for both

the linear and nonlinear respirometry problems.

Figure 5.4: Simulated problem setup. The true signal and simulated observation with noise
level 0.5% are provided in the top plot, and the impulse response function and its support
are provided in the bottom plot.
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Linear Respirometry Reconstruction

For the linear respirometry problem, we investigate reconstructions using a 2-norm and a

1-norm regularization term. We consider two Tikhonov regularized solutions. Tikhonov-Q

incorporates a regularization matrix LQ, which is a lower triangular Toeplitz matrix with

[1 − 1 0 . . . 0]> as the first column [90], and HyBR-I corresponds to a hybrid iterative

projection method with regularization matrix Q = I. For the 1-norm penalty, we investigate

a flexible hybrid iterative method called FLSQR-R [34] and FISTA as described in Algorithm

3.

For the regularization parameter λ, we use the optimal regularization parameter for Tikhonov-Q,

which corresponds to minimizing the relative error between the reconstruction and the true

signal. Both hybrid methods HyBR-I and FLSQR-R determine the regularization parameter

automatically at each inner iteration using the weighted GCV method [34, 36]. For FISTA,

the regularization parameter must be fixed in advance, and we set λ1 = 0.002.

From the reconstructions in Fig 5.5, we observe that FLSQR-R and FISTA enforce sparsity

in the reconstructions, and thus there are fewer artifacts. The FISTA reconstruction had

the smallest relative reconstruction error norm among the considered methods, but this

approach requires a good choice of the regularization parameter a priori, which requires time

and careful tuning.

Next we provide credibility bounds for reconstructions of the linear respirometry problem.

In Fig 5.6 we provide the Tikhonov-Q reconstruction from Fig 5.5 with λ2 = 0.0114 along

with the 95% credibility bounds. These 95% credibility bounds are computed from (2.8).

Performing uncertainty quantification for Laplace priors (corresponding to the 1-norm) is a

bit more difficult. We use the transformation described in [108] for Markov Chain Monte

Carlo sampling. More specifically, we compute 1000 samples from the posterior distribution,
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Figure 5.5: Reconstructions for linear respirometry reconstruction. Tikhonov-Q and HyBR-I
reconstructions correspond to `2 regularization, and FLSQR-R and FISTA reconstructions
correspond to `1 regularization. The true signal is provided in the blue line and the re-
constructions are provided in red. Relative reconstruction error norms computed using the
2-norm are provided in the titles.
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using the approach described in the Matlab code OneDBlurHarr.m from Section 6.4 of [7].

Due to computational difficulties for large-scale problems, we reduce the signal size to n =

128. As expected, we observe larger variances at the tail of the signal due to the delay in h.

Figure 5.6: Uncertainty quantification for linear respirometry. The top plot contains the
Tikhonov-Q solution with the 95% credibility bounds, and the bottom plot contains the
sample median and 95% credibility bounds with 1000 samples corresponding to the Laplace
prior.

For Tikhonov regularization, we investigate the proposed preconditioners. We provide rela-

tive reconstruction error norms per iteration in Fig 5.7 for two noise levels 0.5% and 1%. In

practice the noise level is usually much lower. We show that both left and right precondi-
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tioning result in faster convergence than unpreconditioned iterative methods. Furthermore

although the preconditioned methods show semi-convergence behavior, whereby the error

norms increase with later iterations, we can include appropriate regularization and compute

a regularized solution. Thus, if one wishes to solve a large-scale nonlinear problem, precon-

ditioned iterative methods can be used in an inner iteration to improve the overall efficiency

of the algorithm.

Figure 5.7: Results for preconditioned iterative methods. Relative reconstruction errors for
preconditioned versus unpreconditioned iterative methods for Tikhonov regularization.

Nonlinear Respirometry Reconstruction

For the blind respirometry reconstruction problem where we assume the impulse response

function is unknown, we investigate the performance of the described alternating optimiza-

tion approach. For Algorithm 4, we need an initial guess of the impulse response function.

For this we take a uniform function on the support of the impulse response function (see
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Fig 5.4) where the value is selected so that the impulse response function sums to 1. We

found that our approaches can work for various choices of the initial guess of the impulse

response function; however, it can be difficult to assess sensitivity for large-scale, nonlin-

ear inverse problems. Our observation is motivated by our numerical experience in testing

different initializations.

Recall that one of the nice features of the alternating optimization approach described in

Algorithm 4 is that we split the main computational costs. Given an estimate of h̄, existing

solvers can be used to compute a reconstruction s̄, and given an estimate of s̄, gradient-based

constrained optimization methods can be used to efficiently estimate h̄. As we illustrated

in Fig 5.3, the main challenge of the blind respirometry problem is the existence of multiple

minimizers. In the experiments, we observe that using a 2-norm regularizer for s̄ resulted

in overall smaller relative reconstruction error norms but much slower convergence. On

the other hand, using a 1-norm regularizer for s̄ with FISTA was effective in avoiding the

problem of getting stuck in undesirable local minimizers, especially at early iterations, but

we needed to tune the regularization parameter. Here we use λ1 = 0.002. For estimating h̄,

we use MATLAB’s lsqlin function to perform constrained optimization, where we enforce

nonnegativity and summation to 1. For the choice of regularization parameter for h̄, we

selected λh̄ = 0.01. We tried a range of values from 0.2 to 0.005, and as expected, the

reconstructed impulse response function was smoother for larger values of λh̄.

In Fig 5.8, we provide reconstructions of the impulse response function h̄ at various iterations

of the alternating optimization method. Notice that the reconstructed function is shifted

a few time units but is close to the support of the true impulse response function with

small errors at the tails. Even though the initial guess is not close to true impulse response

function, we obtain good reconstructions for the nonlinear respirometry problem.

After obtaining a good reconstruction of h̄, we test various reconstruction methods to com-
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Figure 5.8: Reconstructed impulse response functions h̄ for the nonlinear respirometry prob-
lem at various iterations of the alternating optimization method. The subfigure in the right
plot is a zoom of the peak of the reconstruction.

pute s̄. These results are provided in Fig 5.9 and show that FISTA and FLSQR-R are more

sensitive than other methods when the reconstructed h has small errors at the tails. The

regularization parameter was determined automatically in HyBR-I and FLSQR-R, while the

optimal regularization parameter was used for Tikhonov-Q. Since the reconstructed h̄ is

shifted, the relative errors are not small. However, we can observe that the shape of the

reconstructed s̄ is close to the true s̄. Next, we investigate robustness of the proposed al-

gorithm to an inexact delay. For real experiments, it is hard to know the exact delay of

the impulse response function, and thus we must estimate it. As shown in Fig 5.10, our

nonlinear optimization approach can still reconstruct an impulse response function whose

shape is similar to the true function.

Experimental Validation

Finally, we test the described methods using real data from a flow-through respirometry

chamber. First, we consider a linear reconstruction problem where we perfuse CO2 with

an arbitrary pattern into a respirometry chamber and record the output concentration of

CO2 with a gas analyzer. Then we applied the regularization methods (see Materials and

Methods) to reconstruct the exact CO2 injection pattern (i.e., the input signal) from the

collected CO2 observations. For this example, we use a fixed experimental impulse response
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Figure 5.9: Reconstructed signals s̄ using different regularization techniques. All reconstruc-
tions correspond to h̄ in Fig 5.8.

function and an empty chamber. Then to demonstrate the effectiveness of the nonlinear

reconstruction methods on a real biological system, we include an insect in the chamber and
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Figure 5.10: Investigation into the impact of selecting a different delay of the impulse re-
sponse function in the nonlinear respirometry problem. Reconstructed impulse response
functions h̄ are provided for different delays.

use Algorithm 4 to obtain a joint reconstruction of the impulse response function and CO2

signal from the recorded CO2 observations. We compare the reconstructed instantaneous sig-

nal with abdominal movements of the living organism. From these two experiments, we show

the performance of the proposed method in experimental respirometry inverse problems.

Linear case study

To validate the described methods, we designed an experimental setup to perfuse CO2 with

a controlled pattern into a 28 ml (25×25×45 mm3) respirometry chamber. We used a high-

speed valve (MHE2- MS1H-5/2-M7-K, Festo, NY, USA) to switch between dry air and CO2

gas (100 ppm, balanced with N2) immediately before the chamber. The inlet flow rate into

the chamber was 250 ml/min. The outlet of the chamber was connected to an infrared gas

analyzer (LI 7000 Li-Cor, Nebraska, USA). To test the accuracy of the methods, CO2 pulses

with various width and frequencies were injected into the chamber and the concentration

of the CO2 in the outlet was recorded with a sampling rate of 10 Hz. To determine the

impulse response of the respirometry chamber, a short pulse of CO2 with the duration of
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0.2s was injected into the chamber and the data were recorded for 5 minutes. The details

of the experimental setup are described in Pendar et al [89, 90]. The output, observed

CO2 signal and the experimental impulse response are provided in Fig 5.11. The size of

the input and observed signal is 13, 413. For the linear reconstruction problem, we evaluate

the following methods: HyBR-I, FLSQR-R, and FISTA. For HyBR-I and FLSQR-R, the

regularization parameter is computed automatically using weighted GCV, and for FISTA,

we use λ1 = 0.002. Reconstructions (including a zoomed image) are provided in Fig 5.12,

along with the true signal and observation for comparison. Since the experimental impulse

response function is well estimated in this case, all of the considered methods are able to

nicely reconstruct the input signal. Notice that FISTA reconstructions are better able to

resolve the peaks, especially when they are close together, as well as the flat regions (where

no input is made).
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Figure 5.11: Experimental set-up for linear case study. CO2 observations from manipulated
input CO2 signals to the empty chamber (left) and experimental impulse response function
(right).

Nonlinear case study: Abdominal pumping and CO2 emission in a darkling beetle

Next, we include a breathing insect in the flow-through respirometry chamber and investi-

gate the performance of the blind respirometry reconstruction methods for simultaneously
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Figure 5.12: Experimental results for linear case study. Reconstruction of input CO2 signal
using different reconstruction methods. A zoomed plot is provided in the bottom plot.

estimating the impulse response function and the CO2 instantaneous signal. A complicated

network of tubes, called tracheae, run through an insect’s body to deliver oxygen to the

tissues and return CO2 from the cells to the ambient air. The tube network is open to the

outside air through valves which are called spiracles. Gas transport inside the tracheae occurs

via diffusion and in larger insects via active ventilation, which is the result of compression of

the tracheal tubes [110]. For larger and more active insects with higher metabolic rates, the

diffusion is not sufficient to deliver enough oxygen to their tissues. They require an active

ventilation to augment diffusive gas exchange. Active ventilation is known to be generated by

abdominal pumping, a dorsoventral or anteroposterior compression of the abdomen [63, 64,

88]. However, some studies have shown that not all abdominal compressions are correlated



5.4. Numerical Results 99

Figure 5.13: Experimental results for nonlinear case study. In this experiment, abdominal
pumping and CO2 emission of a breathing insect are recorded and synchronized. (a) A
darkling beetle is breathing in the respirometry chamber. (b) Abdominal movements of a
darkling beetle (red dots) are recorded. (c) The abdominal movement (red) signal samples.
The recorded CO2 emission samples (grey) from the chamber. The reconstructed CO2 signals
(blue) with Algorithm 4 from a flat initial guess of the impulse response function, delay of
21.3 sec, and support of 18.4 sec. The recovered CO2 signal is concurrent with the abdominal
movement of the insect.

with gas exchange, particularly in pupae and sub-adults [55, 88, 104]. In this study we used

an adult tenebrionid beetle, Zophobas morio Fabricius, 1776 (Coleoptera: Tenebrionidae), to

investigate the correlation between abdominal pumping and CO2 emission. Before putting

the beetle inside the respirometry chamber, the beetle was cold-anesthetized at 3◦C. Then

its legs, head, and antennae were secured using adhesive putty (Scotch adhesive putty, 3M,

Minnesota, USA) to prevent body movements during the recording. To see the abdominal

movement the elytra and the soft wings were pinned to the sides.

After putting the secured beetle shown in Fig 5.13 (a) inside the respirometry chamber and
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letting the beetle rest for an hour, we recorded CO2 emission and abdominal movement

simultaneously. Recorded CO2 observations can be found in Fig 5.13 (c). We also recorded

the movement of the abdomen from the side with a video camera (NEX-VG10, Sony) at 30

frames per second. A flashing LED light was used to synchronize the video with the CO2

data. To process the recorded video we used a custom MATLAB code to track 120 equally

spaced points along the mid-tergites (see the red points in Fig 5.13 (b)) and considered the

average displacement of these point as the dorso-ventral displacement of the abdomen.
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Figure 5.14: Impulse response function reconstruction for nonlinear case study. Initial guess
for the unknown impulse response function (left) and reconstructed impulse response func-
tions using a nonlinear respirometry reconstruction algorithm (right).

Then we used Algorithm 4 with the same regularization parameters used for the simulated

experiments to simultaneously reconstruct the instantaneous CO2 signal from the obser-

vations and the impulse response function. We tested different initial guesses for the im-

pulse response function h̄0, where the support is 18.4 sec and the delay is 21.3 sec. First,

following the work in [90], we considered density functions of Gamma distributions (e.g.,

f(x) = βα

Γ(α)
xα−1 exp−βx) for different choices of α and β. Gamma1 corresponds to an initial-

ization with α = 4 and β = 3, and Gamma2 corresponds to an initialization with α = 2 and

β = 0.5. The initializations of the impulse response functions are provided in Fig 5.14

To investigate the sensitivity of our approach with respect to the initialization of h̄0, we
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also considered an initial guesses where h̄0 is a constant function. For each of the very

different initial impulse response functions, the blind respirometry reconstruction method

converges to an impulse response function with a similar shape and to similar reconstructed

CO2 signals. The reconstructed impulse response functions are provided in the right panel of

Fig 5.14. Notice that all functions must satisfy two conditions: nonnegativity and the area

under the curve over the support is 1. The reconstructed CO2 signal (corresponding to an

initialization of the flat line impulse response function) is provided in Fig 5.13 (c). Since this

is a real data experiment, we do not have the true signal to compare to. Thus, we verify our

results by comparing the reconstructed CO2 signal to the recorded abdominal movement.

In Fig 5.13 (c), we provide a superposition of signals in order to show a correlation between

abdominal movement and CO2 release. MATLAB code and data can be found at the website:

https://github.com/T-Cho-vt/respirometry.
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Conclusions

This dissertation focuses on computational tools for solving inverse problems with numeri-

cal examples from various scientific applications. For linear inverse problems, we developed

a hybrid projection method to handle mixed Gaussian priors and we described a problem

reformulation to enable generalized hybrid projection methods for problems with a hierarchi-

cal Gaussian prior. Efficient preconditioning methods to accelerate iterative methods were

introduced for linear problems where a given forward operator matrix is a lower triangular

Toeplitz matrix. For nonlinear inverse problems, we developed computational tools for si-

multaneous estimation of the desired signal and the unknown impulse response function. We

implemented different regularization methods to handle various prior distributions (or prior

knowledge), and we considered efficient algorithms to solve the corresponding problems. Re-

sults for real-data experiments show the impact of this work in different areas ranging from

geostatistical imaging to biology.

To summarize, in Chapter 3 we describe a hybrid iterative projection method, dubbed mix-

HyBR, that is based on an extension of the generalized Golub-Kahan bidiagonalization and

that can be used for solving inverse problems (i.e., computing MAP estimates) with mixed

Gaussian priors. The main advantage of this approach is that the mixing or blending pa-

rameter does not need to be known a priori, but rather can be estimated during the iterative

process along with the regularization parameter. Various methods for selecting these param-

eters were considered and evaluated. Furthermore, mixHyBR methods can easily incorporate

102
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data-driven priors where training data are used to define the prior covariance matrix itself

(e.g., sample based priors) or to learn parameters for the covariance kernel function. Com-

parisons to widely-used shrinkage algorithms reveal that the mixed hybrid approaches are

more robust under the presence of noise or freckles in the data and enable greater flex-

ibility when selecting suitable priors. Numerical results from both spherical and seismic

tomography show the potential of these methods.

In Chapter 4, we applied a hierarchical Gaussian priors to genHyBR and approximation of

a posterior covariance matrix. This approach can estimate spatiotemporal unknowns and

prior means simultaneously. Comparison to current existence methods for GHG tracking

problems reduces computational cost by selecting regularization parameter automatically in

the iterative process. Furthermore, the approximation of the posterior covariance matrix

is almost free because we reused matrices generated from gen-GK process. Hence, large-

scale inverse problems (e.g., the 6 week case study) are solved very efficiently with fast

convergence.

In Chapter 5, we developed and investigated various computational tools for accurately and

efficiently estimating the input signal, as well as the impulse response function, in any physi-

ological system. By reformulating the linear respirometry problem in a Bayesian framework,

we enabled tools for uncertainty quantification for both 2-norm and 1-norm regularization.

Then, to accelerate the linear solve within iterative optimization methods (e.g., alternating

optimization or Gauss-Newton methods), we developed preconditioners that are tailored to

the respirometry forward model and demonstrated the excellent performance of these pre-

conditioners for accelerating iterative reconstruction methods. Furthermore, by combining

various constraints on both the impulse response function and the signal reconstruction,

we developed sophisticated numerical optimization methods to tackle the very challenging

problem of blind respirometry. Simulated and real-data results with a breathing insect
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demonstrate that these methods can be used to extract high temporal information for the

original signal. Overall, these improvements in input estimation have the potential to change

the way physiologists view indirectly recorded data, most particularly for studies of gas ex-

change, and can change the interpretation of the underlying physiological processes. Future

work will be to develop efficient methods for uncertainty quantification that can exploit

the separable nonlinear structure of the respirometry problem. Furthermore, we addressed

efficient computation of variance estimates, but sampling methods for both the Gaussian

approximation and the fully nonlinear problem are still open problems, especially for very

large problems.

In this disseration, we developed various extensions of generalized hybrid projection meth-

ods and blind deconvolution methods, and we have applied these techniques to a wide range

of applications. However, there are still many interesting future works. For the mixHyBR

method, one prior covariance matrix was learned from samples with a small number of pa-

rameters. We may extend this to non-kernel based covariance matrices. Furthermore, in

this framework we can consider perturbations of kernels to see how the errors in the kernel

function affect the reconstructions. For the hierarchical Gaussian prior assumptions, more

investigations are needed on proper regularization parameter selection methods, especially

for dataset with very high noise. Although DP worked well for selecting a regularization

parameter, we were not able to get an appropriate regularization parameter using UPRE

or GCV since the residual norm dominates the UPRE and the GCV functions. By an-

alyzing the balance among terms in the UPRE and the GCV functions, we may be able

to get reconstructions without the standard deviation of the white noise distribution. For

the respirometry problems, future work remains to exploit parameterization of the impulse

response function and to explore the posterior distribution for the nonlinear deconvolution

problem.
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Appendix A

Appendix for Section 3

A.1 Proof of Theorem 3.1

Proof. Based on (3.22) and (3.23),

yk(λ, γ) = Ck(γ, λ)

β1e1

0

 (A.1)

With k = n, by (2.12), (2.13), (2.14), and (A.9),

sn = µ+ QVnyn

= µ+ QVnCn(γ, λ)

β1e1

0


= µ+ QVn(V>

n Q>A>L>
RLRAQVn + λ2V>

n QVn)
−1V>

n QA>R−1b

= µ+ Q(Q>A>L>
RLRAQ + λ2Q)−1QA>R−1b

= µ+ Q(A>R−1AQ + λ2In)−1A>R−1b

= sMAP.

Therefore, the solution for (3.26) converges to the solution for (3.32) and the solution for

(3.29) converges to the solution for (3.34) as k increases.
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A.2 Derivation of regularization parameter selection

methods for mixHyBR

The derivations for both UPRE and GCV follow derivations for the Tikhonov case, see

e.g. [7]. For UPRE for mixHyBR, the goal is to select parameters λ and γ that minimize

the predictive risk,

E‖Dk(γ)y(γ,λ)
k −Dk(γ)yk(γ, λ)‖22 (A.2)

where y(γ,λ)
k is the solution to (3.17) with fixed γ and λ, δ =

βe1

0

, y(γ,λ)
k = Ck(γ, λ)δ, and

Dk(γ) and Ck(γ, λ) are defined in (3.23) and (3.24) respectively. For the projected problem

(3.17), the vector δ consists of a deterministic and a stochastic part as described in [95], so

δ = Dk(γ)yk(γ, λ) + η where η ∼ N (0, σ2I) and η ∈ R2k+1. Then, (A.2) can be written as

E ‖Dk(γ)Ck(γ, λ)δ −Dk(γ)yk(γ, λ)‖22

= E ‖(Dk(γ)Ck(γ, λ)− I2k+1)Dk(γ)yk(γ, λ) + Dk(γ)Ck(γ, λ)η‖22

= ‖(Dk(γ)Ck(γ, λ)− I2k+1)Dk(γ)yk(γ, λ)‖22 + Eη>(Dk(γ)Ck(γ, λ))
2η

= ‖(Dk(γ)Ck(γ, λ)− I2k+1)Dk(γ)yk(γ, λ)‖22 + σ2tr((Dk(γ)Ck(γ, λ))
2).

(A.3)
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Next the expectation of the projected residual can be written as

E‖Dk(γ)y(γ,λ)
k − δ‖22

= E ‖Dk(γ)Ck(γ, λ)δ − δ‖22

= E ‖(Dk(γ)Ck(γ, λ)− I2k+1) δ‖22

= E ‖(Dk(γ)Ck(γ, λ)− I2k+1)Dk(γ)yk(γ, λ) + (Dk(γ)Ck(γ, λ)− I2k+1)η‖22

= ‖(Dk(γ)Ck(γ, λ)− I2k+1)Dk(γ)yk(γ, λ)‖22 + E(η> (Dk(γ)Ck(γ, λ)− I2k+1)
2 η)

= ‖(Dk(γ)Ck(γ, λ)− I2k+1)Dk(γ)yk(γ, λ)‖22 + σ2tr((Dk(γ)Ck(γ, λ))
2)

−2σ2tr(Dk(γ)Ck(γ, λ)) + σ2(2k + 1).

(A.4)

By combining (A.3) and (A.4), we get

E‖Dk(γ)y(γ,λ)
k −Dk(γ)yk(γ, λ)‖22 = E

∥∥∥Dk(γ)y(γ,λ)
k − δ

∥∥∥2
2
+ 2σ2tr(Dk(γ)Ck(γ, λ))− σ2(2k + 1)

≈
∥∥∥Dk(γ)y(γ,λ)

k − δ
∥∥∥2
2
+ 2σ2tr(Dk(γ)Ck(γ, λ))− σ2(2k + 1).

(A.5)

By dividing the function in (A.5) by 2k+ 1, we get the following UPRE function at the kth

iteration of the mixHyBR method,

Uproj(γ, λ) =
1

2k + 1
‖rproj

k (γ, λ)‖22 +
2σ2

2k + 1
tr(Dk(γ),Ck(γ, λ))− σ2 (A.6)

where rproj
k (γ, λ) = Dk(γ)y(γ,λ)

k − δ.

The GCV method for selecting a regularization parameter is an approximation of a leave-

one-out cross validation (LOOCV) method. However, for large-scale problems, the direct

application of LOOCV and GCV for parameter selection is not feasible. Following the
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derivation from [6], we get

V (γ, λ) =
1

2k + 1

2k+1∑
i=1

(
[Dk(γ)y(γ,λ)

k ]i − [δ]i
1− [Dk(γ)Ck(γ, λ)]ii

)2

. (A.7)

where [·]i represents the ith component of a vector and [·]ij represents the ith row and jth

column component of a matrix. Next, since computing diagonal entries of Dk(γ)Ck(γ, λ)

can be expensive, the entries are replaced by the average of diagonal entries such that we

get tje GCV function for the mixHyBR method,

G(γ, λ) =
(2k + 1)‖Dk(γ)y(γ,λ)

k − δ‖22
(tr(I2k+1 −Dk(γ)Ck(γ, λ)))2

. (A.8)

Notice that this is a scalar multiple of the GCV function (with constant 2k + 1) as given in

(3.29).



124 Appendix A. Appendix for Section 3

A.3 Proof of Lemma 3.2

Proof. For the projected residual for xk,

∥∥∥rproj
k (γ, λ)

∥∥∥2
2

=

∥∥∥∥∥∥∥D(γ)yk(γ, λ)−

β1e1

0


∥∥∥∥∥∥∥
2

2

= ‖(γLRAQ1Vk + (1− γ)LRAQ2Vk)yk(γ, λ)− LRb‖22

=

∥∥∥∥∥∥∥
Ik+1 Ũk+1AQ2Vk

0 Rk


 γBk

(1− γ)Ik

yk(γ, λ)−

β1e1

0


∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥
[
Ũk+1 LRAQ2Vk

] γBk

(1− γ)Ik

yk(γ, λ)− LRb

∥∥∥∥∥∥∥
2

2

=
∥∥∥(γŨk+1Bk + (1− γ)LRAQ2Vk)yk(γ, λ)− LRb

∥∥∥2
2

= ‖(γLRAQ1Vk + (1− γ)LRAQ2Vk)yk(γ, λ)− LRb‖22
= ‖LRAQxk(γ, λ)− LRb‖22

and as k = n,

‖LRAQxk(γ, λ)− LRb‖22 → ‖LRAQxn(γ, λ)− LRb‖22 .

Since ‖LRAQxn(γ, λ)− LRb‖22 =
∥∥rfull(γ, λ)

∥∥2
2
, when k = n we have

∥∥∥rproj
k (γ, λ)

∥∥∥2
2
=
∥∥rfull(γ, λ)

∥∥2
2
.
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For kth iteration in the projected problem (3.22),

Dk(γ)
>Dk(γ) =

γBk + (1− γ)Ũ>
k+1LRAQ2Vk

(1− γ)Rk


> γBk + (1− γ)Ũ>

k+1LRAQ2Vk

(1− γ)Rk


= γ2B>

k Bk + 2γ(1− γ)B>
k U>

k+1L>
RLRAQ2Vk

+(1− γ)2V>
k Q>

2 A>L>
RLRUk+1U>

k+1L>
RLRAQ2Vk + (1− γ)2R>

k Rk

= γ2V>
k Q>

1 A>L>
RLRAQ1Vk + 2γ(1− γ)V>

k Q>
1 A>L>

RLRAQ2Vk

+(1− γ)2V>
k Q>

2 A>L>
RLRUk+1U>

k+1L>
RLRAQ2Vk

+(1− γ)2V>
k Q>

2 A>L>
R(Ik+1 − LRUk+1U>

k+1L>
R)LRAQ2Vk

= γ2V>
k Q>

1 A>L>
RLRAQ1Vk + 2γ(1− γ)V>

k Q>
1 A>L>

RLRAQ2Vk

+(1− γ)2V>
k Q>

2 A>L>
RLRAQ2Vk

= (LRAQVk)
>LRAQVk

Therefore,

tr(Dk(γ)Ck(γ, λ)) = tr(Dk(γ)(Dk(γ)
>Dk(γ) + λ2γIk + λ2(1− γ)V>

k Q2Vk)
−1Dk(γ)

>)

= tr((Dk(γ)
>Dk(γ) + λ2γIk + λ2(1− γ)V>

k Q2Vk)
−1Dk(γ)

>Dk(γ))

= tr(((LRAQVk)
>LRAQVk + λ2V>

k QVk)
−1(LRAQVk)

>(LRAQVk))

= tr((LRAQVk)((LRAQVk)
>LRAQVk + λ2V>

k QVk)
−1(LRAQVk)

>)

→ tr((LRAQVn)((LRAQVn)
>LRAQVn + λ2V>

n QVn)
−1(LRAQVn)

>)

= tr((LRAQVn)V−1
n ((LRAQ)>LRAQ + λ2Q)−1V−>

n (LRAQVn)
>)

= tr((LRAQ)((LRAQ)>LRAQ + λ2Q)−1(LRAQ)>)

= tr(A(γ, λ))
(A.9)

with the invertible Vn since V>
n Q1Vn = In and Vn ∈ Rn×n is square matrix.
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Appendix for Section 4

B.1 Reformulation to augmented variables

This is derivation from (4.3) to (4.9). For the data fit term,

1

2
‖As− d‖2R−1 =

1

2

∥∥∥∥∥∥∥
[
A 0

]s

β

− d

∥∥∥∥∥∥∥
2

R−1

=
1

2

∥∥∥∥∥∥∥
[
A 0

]p + Xµβ

q + µβ

− d

∥∥∥∥∥∥∥
2

R−1

=
1

2

∥∥∥∥∥∥∥
[
A 0

]p

q

+ AXµβ − d

∥∥∥∥∥∥∥
2

R−1

=
1

2

∥∥∥∥∥∥∥
[
A 0

]p

q

− y

∥∥∥∥∥∥∥
2

R−1
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and for the regularization terms in (4.3), and we have

λ2

2
‖s−Xβ‖2Q−1 +

λ2
β

2
‖β − µβ‖2Q−1

β

=
λ2

2
‖p−Xq‖2Q−1 +

λ2
β

2
‖q‖2Q−1

β

=
1

2
(λ2p>Q−1p− 2λ2p>Q−1Xq + q>(λ2X>Q−1X + λ2

βQ−1
β )q)

=
1

2
(λ2p>Q−1p− 2λ2p>Q−1Xq + q>(λ2X>Q−1X + (γλ)2Q−1

β )q)

=
1

2

[
p> q>

] λ2Q−1 −λ2Q−1X

−λ2X>Q−1 λ2X>Q−1X + (γλ)2Q−1
β


p

q


=

λ2

2

∥∥∥∥∥∥∥
p

q


∥∥∥∥∥∥∥
2

Q̃−1

.

B.2 Derivation of the augmented prior covariance ma-

trix

This is derivation of (4.7). Since we need Q̃ and not Q̃−1 in genHyBR, we use the formula

for the inverse of 2× 2 block matrix,

E F

G H


−1

=

 (E− FH−1G)−1 −(E− FH−1G)−1FH−1

−H−1G(E− FH−1G)−1 H−1G(E− FH−1G)−1FH−1 + H−1


if H and E− FH−1G are invertible. From this formula, we get

Q + 1
γ2 XQβX> 1

γ2 XQβ

1
γ2 QβX> 1

γ2 Qβ


−1

=

 Q−1 −Q−1X

−X>Q−1 X>Q−1X + γ2Q−1
β
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so that

Q̃ =

Q + 1
γ2 XQβX> 1

γ2 XQβ

1
γ2 QβX 1

γ2 Qβ

 =

Q 0

0 0

+
1

γ2

X

I

Qβ

[
X> I

]
.
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