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ABSTRACT

The objective of this thesis is to address the challenges faced in sustaining efficient, high-

performance and scalable Distributed Software Frameworks (DSFs), such as MapReduce,

Hadoop, Dryad, and Pregel, for supporting data-intensive scientific and enterprise applica-

tions on emerging heterogeneous compute, storage and network infrastructure. Large DSF

deployments in the cloud continue to grow both in size and number, given DSFs are cost-

effective and easy to deploy. DSFs are becoming heterogeneous with the use of advanced

hardware technologies and due to regular upgrades to the system. For instance, low-cost,

power-efficient clusters that employ traditional servers along with specialized resources such

as FPGAs, GPUs, powerPC, MIPS and ARM based embedded devices, and high-end server-

on-chip solutions will drive future DSFs infrastructure. Similarly, high-throughput DSF

storage is trending towards hybrid and tiered approaches that use large in-memory buffers,

SSDs, etc., in addition to disks. However, the schedulers and resource managers of these

DSFs assume the underlying hardware to be similar or homogeneous. Another problem

faced in evolving applications is that they are typically complex workflows comprising of

different kernels. The kernels can be diverse, e.g., compute-intensive processing followed by

data-intensive visualization and each kernel will have a different affinity towards different

hardware. Because of the inability of the DSFs to understand heterogeneity of the un-

derlying hardware architecture and applications, existing resource managers cannot ensure

appropriate resource-application match for better performance and resource usage.

In this dissertation, we design, implement, and evaluate DerbyhatS, an application-

characteristics-aware resource manager for DSFs, which predicts the performance of the

application under different hardware configurations and dynamically manage compute and

storage resources as per the application needs. We adopt a quantitative approach where

we first study the detailed behavior of various Hadoop applications running on different

hardware configurations and propose application-attuned dynamic system management in

order to improve the resource-application match. We re-design the Hadoop Distributed File
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System (HDFS) into a multi-tiered storage system that seamlessly integrates heterogeneous

storage technologies into the HDFS. We also propose data placement and retrieval policies

to improve the utilization of the storage devices based on their characteristics such as I/O

throughput and capacity. DerbyhatS workflow scheduler is an application-attuned workflow

scheduler and is constituted by two components. φSched coupled with ǫSched manages the

compute heterogeneity and DUX coupled with AptStore manages the storage substrate to

exploit heterogeneity. DerbyhatS will help realize the full potential of the emerging infras-

tructure for DSFs, e.g., cloud data centers, by offering many advantages over the state of

the art by ensuring application-attuned, dynamic heterogeneous resource management.
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Chapter 1

Introduction

Large DSF deployments in the cloud continue to grow in both size and number [1–8], given

the DSFs are cost-effective and easy to deploy. In recent years, a broad range of disci-

plines that regularly employ high-performance including Genomics, Astronomy, Business

Informatics, High-Speed Physics, and Meteorology are faced with complex data-intensive

problems that need to be solved at scale. DSFs such as MapReduce [9]/Hadoop [10, 11]

have proved to be promising, regularly supporting such data-intensive applications both in

industry [9,12–22] and academia [23,24]. The MapReduce paradigm also serves as a building

block for a plethora of more complex DSFs such as Pig [25], HBase [26], Hive [27], Pregel [28],

and Cassandra [29]. DSFs such as MapReduce [30] and Hadoop [10] have become the de-

facto framework for large-scale data processing and analytics. This is mainly due to the

ability of the framework to efficiently handle both large batch processing workloads, such

as building search indexes, and short interactive jobs, such as ad hoc data mining queries.

The key component enabling the scalability and performance of big data applications is the

underlying Hadoop Distributed File System (HDFS), which offers desirable scale-out ability

without performance degradation and while ensuring data availability and fault tolerance.

A major challenge faced by researchers and IT practitioners in sustaining Hadoop clusters

is evolving the storage and I/O infrastructure to deal with the exponentially growing data

volumes, and to do so in an economically viable fashion. This is non-trivial, especially as the

network bandwidth provided by the cluster networking infrastructure is growing by an order

of magnitude faster than the I/O bandwidths of hard disk drives (HDDs) [31] . In a typical

large-scale Hadoop deployment, the intra-rack and inter-rack networks have a bandwidth

200× and 400× that of the disk bandwidth [31], respectively.

A promising trend in storage technologies is the emergence of heterogeneous and hybrid

storage systems [32–35] that employ different types of storage devices, e.g., SSDs, ramdisks,

etc. Moreover, the networking infrastructure bandwidth is growing at a pace that is an order

1
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of magnitude higher than the I/O bandwidth improvements in hard disk drives (HDDs) [36].

The impact of SSDs on the performance of MapReduce applications has recently captured

the research community’s attention. These two trends are enabling the realization of dis-

tributed, hierarchical, hybrid and heterogeneous storage solutions that are efficient and cost

effective, e.g., Hystor [34] and ConquestFS [37]. These systems typically integrate HDDs

with fast emerging storage mediums, e.g., ramdisks, SSDs, etc. Faster storage serves as a

buffer for frequently accessed data and yields very high I/O rates, while the HDDs store

the infrequently accessed data and provide cheap high-capacity storage for the large data

volumes. Recent research [38–41] has shown that SSDs are a viable alternative to HDDs for

DSF I/O. However, simply replacing HDDs with SSDs is not practical. Moreover, the hot

data is too large to fit in RAM and the cold data is too large to easily fit entirely in flash

memory [40]. Thus, adding a flash tier can improve overall performance. This approach

is promising, but introduces the challenge of effectively managing the distribution of data

among different tiers and selecting a tier for servicing read/write requests with the goal of

improving application efficiency.

Recent analysis of Hadoop workloads shows that there is significant heterogeneity in I/O

access patterns. GreenHDFS [42] observed a news server like access pattern in job history

logs from Bing, where recent data is accessed more than old data and more than 60% of used

capacity remained untouched for at least one month (period of the analysis). Scarlett [43]

analyzed HDFS audit logs from Yahoo! production clusters and observed that 12% of the

most popular files are accessed over ten times more than the bottom third of the data, while

more than 1.5% of all files have at least 3 concurrent accesses. These trends highlight that

the access pattern based storage policy can not only improve the storage efficiency but also

performance.

Another major obstacle to sustaining DSF at scale is that the energy footprint of the large

clusters and data centers that support DSF is increasing sharply [42] and imposes significant

financial burden [44]. To mitigate this, microserver-based clusters have been proposed as

an alternative [45–47]. Microservers are networked embedded devices designed specifically

for low powered environments. They employ the Server-on-Chip (SoC) approach to have a

CPU, networking, and I/O fully integrated onto a single server chip [45]. Microservers can be

synthesized around numerous embedded architectures such as PowerPc [48], ColdFire [49],

Mips [50] and ARM [51]. These devices are cheaper compared to traditional servers, energy

efficient, and are becoming readily available.

Moreover modern data analysis application workflows are becoming more intricate, and now
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Figure 1.1 DerbyhatS architecture overview – research contribution are indicated in red color.

comprise complex workflows with a large number of iterative jobs, interactive querying, as

well as traditional batch-friendly long running tasks [52]. These multiple independent tasks

exhibit different characteristics during application execution, and this coupled with the het-

erogeneity of underlying infrastructure poses several interesting challenges. DSF computing

substrates such as MapReduce have been designed to run in homogeneous environments for

applications that are typically composed of a single kernel. Thus, existing feature imple-

mentations — such as MapReduce slots and data replica placement — are not capable of

exploiting heterogeneity in both the system architecture (different CPUs, embedded devices,

GPUs, tiered-storage, etc.) and various stages of a workflow. The proposed research will

be able to adapt to such varying application and infrastructure characteristics at runtime to

better drive resource management, consequently achieving high performance and efficiency.

1.1 Challenges of Heterogeneous Resource Manage-

ment in DSFs

A major problem faced in evolving DSFs is to efficiently handle increasing heterogeneity

in the underlying infrastructure. For instance, low-cost, power-efficient clusters that em-

ploy traditional servers along with specialized resources - such as FPGAs [53, 54], GPU

s [55–57], powerPC [58], MIPS [59] and ARM [60, 61] based embedded devices, and high-

end server-on-chip solutions [62] - will drive future DSFs infrastructure [63–66]. Similarly,

high-throughput DSF storage is trending towards hybrid and tiered approaches [67–71] that

use large in-memory buffers, SSDs, etc., in addition to disks. As highlighted in Figure 1.1,

the infrastructure that supports DSFs is becoming increasingly heterogeneous. One reason

for this is that different types of hardware such as CPUs, memory, storage, and network are
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deployed when large clusters typically go through upgrade phases. However, a more crucial

driver for the heterogeneity is the rise of hybrid systems. The compute nodes in modern

large-scale distributed systems often boasts of multi-core processors with tightly coupled

accelerators [72,73]. Numerous current products from major vendors package a few general-

purpose cores (e.g., x86, PowerPC) and several accelerators (e.g., SIMD processors, GPUs,

FPGAs), yielding power-efficient and low-cost compute nodes with performance exceeding

100 Gflops per chip [74–80]. Therefore, specialized embedded devices are also gaining pop-

ularity in DSFs [63–66,81,82]. The net effect of the above trends is that DSF cluster nodes

exhibit orders of magnitude variation in terms of compute power, cluster integration and pro-

grammability. While recent studies [53,54] have shown that use of specialized accelerators for

Hadoop is desirable, sustaining DSFs on such resources is challenging. This is because most

modern DSFs are designed to run on homogeneous clusters and cannot effectively handle

general purpose workloads [54,83] on heterogeneous resources. For instance, current Hadoop

task slots and straggler detection does not support different core types, e.g., one type of CPU

vs a faster one or a GPU. Moreover, simply adding more slots to nodes with more compute

power is not enough, as these nodes would be starved for data distributed uniformly across

all nodes. Hence, powerful nodes would significantly increase network traffic as they run

more map tasks on remote data (by stealing from less powerful nodes). Simply skewing the

data so more of it will be on powerful nodes would compromise reliability, because the failure

of a powerful node would result in the loss of a disproportionately large chunk of the data.

While a few recent DSF designs [55, 57] have incorporated GPUs, these still focus only on

a single type of accelerator and are thus insufficient for handling the above infrastructure

trends.

Similarly, storage systems are increasingly employing hybrid and heterogeneous storage de-

vices such as Solid State Disks (SSD) , Ram Disks and Network Attached Storage (NAS)

to yield very high I/O rates at acceptable costs. However DSF storage, such as Hadoop

Distributed File System (HDFS) [84], is not equipped to handle such emerging storage sys-

tems. This is because all underlying devices are assumed to be comprised of homogeneous

storage blocks irrespective of the different I/O characteristics of the devices. For example,

an I/O request to HDFS may require access to multiple blocks spanning different storage

devices, and the assumption of homogeneity may unpredictably affect performance. The cur-

rent Hadoop implementation assumes that computing nodes in a cluster are homogeneous in

nature and does not account for these specialized architectures. Hadoop scheduling policy

assumes homogeneous clusters and enables scheduling decisions on the assumption that all

nodes in the cluster have the same processing power and capability, so the computation will
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be done at the same rate across all nodes. If a node is slower than the others, it is treated as

a faulty machine. Given the large size of clusters dedicated for data-intensive applications,

it is not always possible or even desirable to have a large cluster consisting of a single type

of machine.

Another problem posed by modern applications is that they typically are complex workflows

comprising multiple different kernels [23, 85]. Data analytics workload kernels can be di-

verse and have heterogeneous resource demands, e.g., some workloads may be CPU-intensive

whereas others are I/O-intensive. Some of them might be able to use special hardware like

GPUs to achieve dramatic performance gains. Hadoop applications are also becoming more

intricate with a large number of iterative jobs, interactive querying, as well as traditional.

batch-friendly, long running tasks [52]. Hadoop assumes homogeneity in workloads. Hadoop

does not account for the difference of workload characteristics between jobs and thus does not

consider the application-resource match while scheduling a job. Hadoop workflows are real-

ized through a variety of high-level tools and languages [86] instead of manual MapReduce

programming. Therefore, systems such as Oozie [87], Nova [88], and Hadoop+Kepler [89]

have been developed to manage and schedule the workflows and provide ease of use. The

main goals of the workflow schedulers are to support high scalability, multi-tenancy, secu-

rity, and interoperability [87]. The extant workflow schedulers are (mostly) oblivious of the

underlying hardware architecture. Thus, in their scheduling decisions, the schedulers do

not consider varying execution characteristics such as CPU, memory, storage, and network

usage of Hadoop applications on heterogeneous computing substrates that are quickly be-

coming the norm. The complexity and growing data requirements of emerging applications,

combined with increasing system heterogeneity and use of specialized resources such as GPU

accelerators [55–57] demand innovation to ensure that next-generation DSFs are efficient and

can sustain these applications. In the following, we highlight research contributions that we

make in this dissertation.

1.2 Research Contributions

The objective of this research is to design, implement, and evaluate an application-

characteristics-aware resource manager for DSFs, which adopt a quantitative approach where

we first study detailed behavior of various Hadoop applications running on different hardware

configurations and propose application-attuned dynamic system management in order to im-
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prove the resourceapplication match. Figure 1.1 shows the overall architecture of DerbyhatS.

hatS is a novel redesign of HDFS into a multi-tiered storage system that seamlessly inte-

grates heterogeneous storagetechnologies into the HDFS. hatS also proposes data placement

and retrieval policies, which improve the utilization of the storage devices based on their

characteristics such as I/O throughput and capacity. DerbyhatS workflow scheduler is an

application-attuned workflow scheduler and is constituted by two components. φSched cou-

pled with ǫSched manages the compute heterogeneity and DUX coupled with AptStore

manages the storage substrate to exploit heterogeneity.

1.2.1 LSN

To address the challenges of exploring heterogeneous storage devices such as SAN/NAS in

Hadoop, we propose consolidating the disks of each sub-racks compute nodes into a shared

Localized Storage Node (LSN) for servicing the sub-rack. An LSN is easier to manage and

provision, provides higher I/O performance by having more disks that can be accessed in

parallel, and can also be more economical as it employs fewer disks overall than the total

used by the sub-racks nodes. We posit that aggregating and sharing resources across a subset

of nodes can produce an efficient resource allocation in an otherwise shared-nothing Hadoop

cluster . To address this, we present a novel enhancement for Hadoop, which divides a tra-

ditional Hadoop rack into several sub-racks, and consolidates the disks attached to each of

the sub-racks compute nodes into a shared LSN for servicing the sub-rack. The scope of a

single LSN can range from serving a few nodes to perhaps a complete Hadoop cluster rack

depending on workload and usage characteristics. An observation that makes the proposed

approach viable is that in typical Hadoop clusters, accesses to disks are often staggered in

time because of the mix of different types of jobs and data skew across nodes. This, cou-

pled with the bursty node workload, implies that contention at the LSN from its associated

nodes is expected to be low. Therefore, by simply re-purposing a sub-racks node-local disks

in an LSN, each node can receive a higher instantaneous I/O throughput provided by the

larger number of disks in the LSN. Conversely, the LSN can service its associated nodes at

the default I/O throughput (experienced by nodes when using their local disks) with fewer

numbers of disks at the LSN. We do not argue for provisioning LSNs in addition to the

node-local disks, rather placing some or all of the disks from a sub-racks nodes at their LSN.

Of course, moving the disks away from a node and into a shared LSN results in loss of data

locality, so achieving higher I/O throughput depends on appropriate provisioning of both
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disks and network bandwidth to the LSN.

1.2.2 hatS

To address the challenges of enabling Hadoop to be aware of the characteristics of the under-

lying storage, we explore the utility of heterogeneous storage devices in Hadoop and address

challenges therein by designing hatS, a heterogeneity-aware tiered storage for Hadoop. hatS

logically groups all storage devices of the same type across the nodes into an associated

“tier.” A deployment has as many tiers as the different types of storage devices used, and a

node with multiple types of devices is part of multiple tiers. For instance, if a deployment

consists of nodes with a SSD and a HDD, all the SSDs across the nodes will become part

of the SSD tier, and similarly all the HDDs will form the HDD tier. By managing the

tiers individually, hatS is able to capture the heterogeneity and exploit it to achieve high

I/O performance. Contrary to HDFS that only considers network-aware data placement

and retrieval policies, hatS proposes additional policies to replicate data across tiers in a

heterogeneity-aware fashion. This enhances the utilization of the high-performance storage

devices by efficiently forwarding a greater number of I/O requests to the faster tier, thus

improving overall I/O performances. To facilitate this, in addition to the standard HDFS

APIs, hatS also provides custom APIs for seamless data transfer across the tiers and man-

agement of stored data in each tier. These features allow hatS to integrate heterogeneous

storage devices into Hadoop to extract high I/O performance.

1.2.3 AptStore

To address the challenges of workload based adaptive storage, we design a tiered storage sys-

tem, AptStore, with two tiers designed to better match the heterogeneous Hadoop I/O access

patterns. We propose using two classes of storage: Primary storage — Direct Attached Stor-

age in Hadoop node for files that require high throughput, and Secondary Storage — NAS

for unpopular files and files with lower Service Level Objectives (SLO). AptStore analyzes

the I/O access patterns and suggests policies to increase the overall read throughput and

the storage efficiency of the system. Our system optimizes for read throughput as typically

MapReduce workloads exhibit write-once read-many characteristics [90]. To achieve this, we

predict the popularity of each file, and then retain the popular files in primary storage and
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move unpopular files to secondary storage. We also adjust the replication factor of files in

primary storage based on their popularity to yield higher read throughput. The replication

factor for files in the secondary storage is set to 1. However, other means such as RAID are

employed in secondary storage to achieve fault tolerance. We have realized AptStore as an

extension to the Unified Storage System (USS) [91, 92], a federated file system for Hadoop,

which allows transparent movement and management of data across different file systems.

1.2.4 DUX

To address the challenges of providing an application-attuned storage management for

Hadoop, we design DUX that employs two tiers designed to better match the heteroge-

neous Hadoop I/O access patterns. The tiers include a fast SSD tier that aggregates the

SSDs provisioned in each node, and a secondary HDD tier comprising of HDDs. We use the

SSD tier as a cache in front of the HDD tier. The main insight behind DUX is that per-

formance gains from using SSDs for either HDFS data or intermediate data are dependent

on an applications I/O access patterns. The key contribution of DUX is that it profiles

application behavior on different storage configurations and proposes an appropriate storage

configuration for scheduling the application in the future. DUX provides a holistic solution

for effectively orchestrating the SSD tier by performing three major functions. (i) employ

AptStore to observe the HDFS I/O access patterns and load popular files into the SSD tier.

(ii) Predict the impact of the I/O accesses on execution time and choose an appropriate tier

for storing the intermediate data. (iii) For the jobs waiting in the job queue, prefetch the

input data into the SSD tier if it has not been selected by AptStore.

1.2.5 φSched

To address the challenges of improving the application-resource match, we propose to con-

sider applications behavior on specific hardware configurations when scheduling Hadoop

workflows. We assume that a deployment is made of one or more resource clusters, each

with a different hardware configuration, and that the resources within a cluster are simi-

lar/homogeneous. We focus on variations in performance characteristics, where the same

application binaries can be run on the different clusters. However, the techniques presented

here can also be extended to clusters comprising advanced architectures such as GPUs,
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accelerators, and Microservers. We first study characteristics such as CPU, memory, stor-

age, and network usage for a range of representative Hadoop applications on four different

hardware configurations. Next, based on our understanding of the applications, we design

a hardware-heterogeneity-aware workflow scheduler, φSched, which: i) profiles applications

execution on different clusters and performs a statistical analysis to determine a suitable

resource–application match; and ii) effectively utilizes the matching information to schedule

future jobs on clusters that will yield the highest performance. Such profiling is feasible as

recent research [52,93] has shown the workflows to have very predictable characteristics, and

the number of different kinds of jobs to be less than ten. To schedule a job, φSched examines

the current utilization and suitability of of the clusters to support the job based on prior

profiling. Based on these factors, φSched then suggests the best cluster to execute the job.

1.2.6 ǫSched

To address the challenges of improving the energy efficiency of DSFs, we propose to con-

sider applications behavior on specific hardware configurations when scheduling Hadoop

workflows. In ǫSched, we propose to improve the energy efficient scheduler by considering

heterogeneous Hadoop deployments that comprise of one or more homogeneous sub-clusters.

The set of tasks to be executed on the heterogeneous deployment cluster will be sched-

uled to the sub-clusters such that the total energy consumption is minimized, while the

performance goals specified in the Service Level Agreement (SLA) are met. We propose

simple, application characteristic-aware task scheduling in Hadoop to reduce the power con-

sumption or to improve the throughput. We present ǫSched, a heterogeneity-aware and

power-conserving task scheduler for Hadoop. ǫSched extends our own φSched system [94]

– a hardware characteristic-aware scheduler that improves the resource-application match.

We extend Hadoop’s hardware-aware scheduler, which is optimized only for performance,

to be an energy efficient scheduler. We adopt a quantitative approach where we first study

detailed behavior of applications, such as performance and power characteristics, of various

representative Hadoop applications running on four different hardware configurations. Next,

we incorporate the findings of these experiments into φSched.
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1.3 Dissertation Organization

The rest of the dissertation is organized as follows. In chapter 2, we discuss the related

work and background technologies that lay the foundation of the research conducted in this

dissertation. In chapter 3, we study the impact of different storage configurations on Hadoop

application performance using a range of representative applications and configuration pa-

rameters. In chapter 4, we design and implement a novel heterogeneity-aware and tier-based

enhancement for HDFS, hatS. This solution also supports tier-aware data storage and re-

trieval policies to exploit the individual advantages of various types of storage elements.

In Chapter 5, we present AptStore, a dynamic data management scheme for Hadoop for

achieving higher throughput and lower storage cost. We observe that managing all Hadoop

data in a uniform manner results in increased storage overhead or reduced read throughput.

In Chapter 6, we present the design and implementation of DUX, an application-attuned

dynamic data management system for Hadoop. DUX aims to improve overall I/O through-

put of Hadoop via effective use of SSDs as a cache, not for all data, but only for workloads

that are expected to benefit from SSDs. In Chapter 7, we develop a hierarchical scheduler,

φSched, that treats a Hadoop deployment as a collection of multiple heterogeneous clusters.

We also enhance HDFS to manage storage across a multi-cluster deployment, which allows

φSched to handle data locality as well as enable pre-staging of data to appropriate clusters

as needed. In Chapter 8, we design and implement ǫSched, a novel hardware-aware work-

flow scheduler for Hadoop that has different performance and power usage characteristics

under varying cluster configurations, and make workflow managers aware of the underly-

ing configuration to improve the performance and power consumption. We then conclude

the dissertation in Chapter 9 including a discussion of future directions based on our DSF

resource management framework.



Chapter 2

Literature Review

As previously described, this research focuses on heterogeneity in compute and storage sub-

strate in Hadoop. This section summarizes the prior work in heterogeneity in Hadoop, as

well as state-of-the-art work on improving the storage efficiency in Hadoop.

2.1 MapReduce Model

Hadoop offers an open-source implementation of the MapReduce framework that provides

machine-independent programming at scale. A Hadoop cluster node consists of both compute

processors and directly-attached storage. A small number of nodes (typically 12 − 24 [95])

are grouped together and connected with a network switch to form a rack. One or more racks

form the Hadoop cluster. Intra-rack network bandwidth in large deployments is typically

20 GB and the inter-rack is 40 GB [31].

The compute component is managed by the JobTracker component that accepts jobs from

the users and also manages the compute nodes that each run a TaskTracker. Each job con-

sists of several map and reduce functions specified by the programmer. Each TaskTracker

has one or more map and reduce slots, and applications will have tens of hundreds of map

and reduce tasks running on these slots. All data in MapReduce is represented as key-value

pairs [96]. Programmers specify user defined map and reduce functions, which operate on

the key-value pairs. Each TaskTracker has one or more map and reduce slots, and applica-

tions will have tens of hundreds of map and reduce tasks running on these slots. In case of

heterogeneous clusters, the map/reduce tasks executing on the slowest node will determine

the execution time of the application [97]. Although speculative execution [98] can reduce

this dependency, it leads to significant resource wastage due to re-execution of tasks.

11
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The data management for a Hadoop cluster is provided by the Hadoop Distributed File Sys-

tem (HDFS). HDFS manages the persistent data associated with the Hadoop cluster such

as the input and the output of applications. The main functions of HDFS are to ensure that

tasks are provided with the needed data, and to protect against data loss due to failures.

HDFS uses a NameNode component to manage worker components called DataNodes run-

ning on each cluster node. HDFS divides all stored files into fixed-size blocks (chunks) and

distributes them across DataNodes in the cluster. Moreover, the system typically maintains

three replicas of each data block, two placed within the same rack and one on a different

rack. The replica placement policy distributes each data block across multiple racks to en-

sure fault tolerance against node and rack failure. For data retrieval, a list of DataNodes

ordered with respect to network proximity to the application instance is obtained from the

NameNode and the nearest replicas are used.

Hadoop programs typically consist of multiple stages of computation, and involve commu-

nication from each stage to the next. Hadoop generates a large amount of temporary data

that is not stored in HDFS and is commonly referred to as intermediate data. This data is

produced as output from one stage and used as an input for the next stage. For instance,

the output of the map stage serves as input to the next reduce stage. This data is write

once, read only, and is short-lived and used immediately [99]. This intermediate data is

stored locally on the nodes that generate it, and is partitioned and organized into a number

of chunks in the shuffle phase. This shuffle data is used as the input to the reduce phase.

Hadoop I/O can benefit from a node-level cache, particularly for HDFS I/O. Reading the

same block multiple times can benefit from the DataNodes read cache. However, in a produc-

tion cluster, the possibility of benefiting from such caching is much smaller and it is difficult

to guarantee the availability of all the blocks of a needed file in the cache. With a lot of

blocks being read and written, the cache would not be sufficient and essentially generate no

hits.

2.2 Hadoop Storage Systems

In this section we provide an overview of prior work in Hadoop with respect to improving

the of I/O. We focus on extendable frameworks as well as other state of the work on storage

efficiency and performance of HDFS.
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2.2.1 Storage Consolidation in Hadoop

Porter [100] proposes consolidating Hadoop node disks into a SuperDataNode and running

DataNode instances in virtual machines on the SuperDataNode. While we share the concept

of disk consolidation, our work is novel in its observation that resources are not well-utilized

in a bursty workload environment due to Hadoop’s shared-nothing architecture. Moreover,

we examine in detail how consolidating disks can improve the disk utilization, as well as

provide means for improving I/O throughput by increasing LSN disk and interconnect pro-

visioning. TritonSort [101] presents a system for sorting vertically, which optimizes the

hardware configuration to the sorting algorithm. The main idea is to keep components of

the system as balanced as possible, i.e., the utilization of all resources in the system should

be maximized, and any resources that slow down the system are taken out. This work is

complementary to ours, as we share the idea of optimized utilization. Our focus, though, is

on improving the disk utilization of Hadoop applications by consolidating disks into LSNs.

Ganesh et al. [102] argue that neither disk locality nor remote memory access is good enough

in data center computing. The authors propose mechanisms that support memory locality,

so applications achieve high throughput by mostly employing in-memory accesses. Achieving

memory locality is complementary to our work. Although memory locality can make one

single task achieve high performance, not all tasks can achieve memory locality at the same

time, and we believe disk accesses will still be needed to service a dominant portion of data

requests. By consolidating disks into LSNs, we can either support the same throughput with

fewer disks, or support higher throughput with the same number of disks. This allows the

cluster designers to select a configuration most suited to their application needs.

Many systems such as Swift [103], Zebra [104], GPFS [105], Panasas [106], AptStore [107],

and Flat Datacenter Storage [108] try to improve read and write throughput by striping logs,

files, and blocks across file servers. Flat Datacenter Storage [108], a filesystem built on top

of an advanced network topology, and Camdoop [109], that uses a direct-connect network

topology, argue the need for better provisioning and utilization of the disk bandwidth in

the modern Big Data applications. Flast Datacenter Storage utilizes disk-to-disk communi-

cation and targets to make recovery from disk failures extremely fast. On the other hand

Camdoop advocates the need to decrease the traffic instead of increasing the bandwidth.

MixApart [110] is another work to reduce the cost and inefficiencies of shared storage sys-

tems. Contrary to our work, MixApart proposes a scalable data processing framework in

which a single consolidated storage back-end manages enterprise data and services all types

of workloads. Mixapart utilizes exchange of scheduling and location information about task
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and data within two schdulers designed to handle Data-aware and compute-aware tasks.

These works offer valuable insights that we leverage and extend in our LSN-based approach.

Finally, our approach is novel in that it creates control-knobs that can be used to provi-

sion Hadoop disk I/O speed, capacity, and interconnect bandwidth to match the needs of

applications in an economical fashion.

2.2.2 Efficiency in Hadoop storage

There has been extensive previous research in increasing storage and energy efficiency as well

as overall throughput of Hadoop. Research on increasing the storage efficiency in GFS [111]

and HDFS managed clusters [112] propose to asynchronously compress the replicated data

down to RAID-class redundancy when it does not need the performance benefits of repli-

cation. However, these techniques lower MTBF, which results in lower availability and

reliability. Porter [100] proposes consolidating Hadoop node disks into a SuperDataNode

and running DataNode instances in virtual machines on that node. The work decouples

storage from computation, but at the cost of reduced throughput and fault tolerance.

Much of the recent work focuses on energy efficiency in Hadoop storage [113] [114] [115] [116].

Rini et al. [113] propose energy aware date placement, where unpopular data is placed in

a subset of Hadoop cluster nodes, generating significant periods of idleness to operate in a

high-energy-saving mode without affecting nodes containing the hot data. This framework

increases the skewness in popularity as hot data is concentrated on a subset of nodes, re-

sulting in degraded throughput compared to spreading the hot data throughout the entire

cluster. Amur et al. [116] and Leverich et al. [115] propose maintaining a primary replica of

Hadoop on a subset of nodes that are guaranteed to be in active power state, while other

replicas of the data are maintained on secondary set of nodes that are in low power modes.

These energy efficiency approaches are based on an underlying assumption that the cluster

is always over-provisioned in terms of number of nodes, so that the Hadoop jobs are not

affected by the shrinking number of active compute nodes, which may not always be the

case.
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2.2.3 Tiered Storage in Hadoop

Several recent projects [117–121] focus on tiered storage for general purpose enterprise com-

puting, mainly due to its ease of management and business value. These systems typically

employ SSD based tiering and caching, along with data management across tiers, to get

higher I/O rates than just from HDDs. In hatS, we aim to extend such storage solutions

to beyond individual nodes and servers, and into Hadoop’s distributed setting. The recent

HDFS-2832 [122] also calls for enabling support for heterogeneous storage in HDFS. hatS

offers such support as well as provide different storage and data retrieval schemes to exploit

the heterogeneity.

Hybrid HBase [123] explores the feasibility of introducing flash SSDs for HBase, but it only

stores intermediate HBase data on the SSDs. Similarly, Spark [124] aims to avoid expensive

HDD accesses by providing primitives for in-memory MapReduce computing. MixApart [110]

reduces the cost and inefficiencies of shared storage systems by offering a single consolidated

storage back-end for managing enterprise data and servicing all types of workloads. Apt-

Store [107] is a federated file system for Hadoop with a unified view of data from a multitude

of sources, but stores all replicas of a file on one type of device. These works share with hatS

the focus on using tiered storage, but differ in that they do not support storage heterogeneity.

In the distributed setting, Zebra [104], GPFS [105], and Panasas [106], offer techniques to

improve read and write throughput. Similarly, Flat Datacenter Storage [108] that employs

an advanced network topology, and Camdoop [125] that uses a directly-connected network

topology, argue the need for better provisioning and utilization of the disk bandwidth in the

modern big data applications. These works are complementary to our design. Significant

research has been done on network provisioning for Hadoop but incorporating fast storage

technologies along with the traditional disks has not been previously explored.

2.2.4 Storage Optimization in Hadoop

Scarlett [43] proposes a workload based scheme to increase the throughput by replicating

files based on their access patterns. One shortcoming of the proposed approach is that larger

files are given a priority for increased replication over smaller files, and hence popular small

files may still suffer read throughput degradation and popularity skewness. Additionally, a

minimum of three replicas of each file are kept regardless of their popularity, thus reduc-

ing the overall storage efficiency of the cluster. To achieve similar goals Yahoo proposes
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HotROD [126], an on-demand replication scheme, which allows access to the data from some

other HDFS cluster by creating a proxy node, thereby taking advantage of a replica of the

same data from another data source. However, this approach might suffer degraded perfor-

mance if inter-cluster network bandwidth is low. SCADS Director [127] proposes a control

framework that reconfigures the storage system on-the-fly in response to workload challenges

using performance model of the system. LoadAtomizer [128] propose a locality and I/O load

aware task scheduler to achieve high throughput.

2.3 Heterogeneity-aware Scheduling

There has been work [129–131] on hardware-heterogeneity-aware workflow scheduling for

High Performance Computing (HPC) workloads. Heterogeneity-aware scheduling algorithm

have demonstrated improved performance over a heterogeneity-agnostic scheduler, multicore

and many-core processors. However, these have not been extended to the Hadoop ecosys-

tem, and given the inherent differences in HPC and Hadoop cluster architectures, cannot be

simply applied to Hadoop.

Xie et. al. [132] proposed a data placement policy for heterogeneous compute substrate.

Before execution of the jobs, a small portion data is used to run the test to measure the

heterogeneity of computing node. Each node is allocated with a proportional amount of data

map tasks and during the processing phase, which considers how to satisfy the data locality

in the heterogeneous cloud computing environment and propose appropriate placement [133].

Chen et. al. [134] present Ussop, a grid-enabled MapReduce framework. Ussop introduces

two task scheduling algorithms, Variable-Sized Map Scheduling (VSMS) and Locality-Aware

Reduce Scheduling (LARS). VSMS dynamically adjusts the size of map tasks according to

the computing power of grid nodes. While LARS minimizes the data transfer cost of ex-

changing the intermediate data over a wide-area network. LATE [98] is proposed to optimize

the task scheduling based on the performance decreasing problem that generated by the de-

fault scheduling method of Hadoop in heterogeneous environment. For faster computation,

a straggler, a node performing poorly though available, invokes MapReduce to run a spec-

ulative copy of the currently running task on another machine. Google claims that the

speculative execution improves the job response time by 44%.The LATE algorithm actually

aims to address the problem of how to robustly perform speculative execution to maximize

performance under heterogeneous environment.
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There are several log analysis tools [135–139] and runtime analysis tools [140–143], which

can be used for performance prediction of generic distributed systems. Unfortunately, these

tools do not consider MapReduce or other DFS heuristics. Recent research [23,24,144–147]

has explored monitoring, analysis and modeling performance of individual DSF tasks with

emphasis on different components of various DSFs. However, these tools do not influence the

scheduling decisions based on the underlying hardware. There are a large number of software

tools available for simulating distributed environments in general [148–153]. However, few

Hadoop simulators exist in the proposed design space. Hammoud et al. [154] have simu-

lated shared multi-core CPUs, HDD and network traffic with features like memory buffers,

merge parameters, parallel copy and sort parameters. Mumak [155] and Cardona et al. [156]

have implemented a simulator for MapReduce jobs, which focuses on simulating map and

reduce functions as well as HDFS [157] for studying scheduling algorithms. However these

scheduling decisions are not influenced by the underlying hardware.

2.4 Hadoop Workflow Scheduler

Workflows have become an integral part of modern Hadoop applications, and are managed

by workflow managers such as Apache Oozie [87] and Nova [88]. A typical workflow sched-

uler provides a command-line program for submitting a job that is then transformed to a

control dependency Directed Acyclic Graph (DAG). The workflow scheduler is responsible

for co-ordinating the various events/tasks in the DAG and allocating the events within a

workflow to Hadoop. The actual execution of the tasks is done by the Hadoop’s scheduler.

In a multi-cluster setup, current workflow managers schedule jobs based on resource avail-

ability in a cluster as well as on completion of other dependent events or tasks, but the

characteristics of the underlying hardware are not explicitly considered.

Several recent works [158–160] integrate workflow management in Hadoop. Apache Oozie [87]

is a popular workflow scheduler for Hadoop jobs that considers availability of job-specific

data and the completion of dependent events in its scheduling decisions. Cascading [161] sup-

ports a data flow paradigm that transforms the user generated data flow logic into Hadoop

jobs. Similarly, Clustera [162] extends Hadoop to handle a wide variety of job types ranging

from long running compute intensive jobs to complex SQL queries. Nova [88] workflow man-

ager uses Pig Latin to deal with continually arriving data in large batches using disk-based

processing. Kepler+Hadoop [89] is another high-level abstraction built on top of Hadoop,
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which allow users to compose and execute applications in Kepler scientific workflows. Perco-

lator [163] performs transactional updates to data sets, and uses triggers to cascade updates

similar to a workflow. These works are complementary to φSched in that they provide means

for handling different types of workflows. However, φSched is unique in its hardware-aware

application scheduling, which to the best of our knowledge has not been attempted by any

of the existing works for Hadoop workflows. We note that our HDFS enhancements can

co-exist with other Hadoop workflow schedulers as well.

There are several other state-of-the-art projects — such as Flamingo [164], Azkaban [165] and

and Nova [166] — which also provide workflow management for complex applications, and in

that share their objective with our work. However, DerbyhatS offers several key features that

add value and improve the effectiveness of workflow management. First, DerbyhatS seam-

lessly considers heterogeneous as well as specialized resources, and employs affinity-based

job scheduling to match tasks with appropriate components for a plethora of data manage-

ment DSFs. Thus, DerbyhatS is able to go beyond managing of performance variance and

truly handle emerging hybrid CPU/GPU/accelerator/disk resources (e.g., Titan [167]) as

well. Second, while existing managers try to simplify the complex workflow of the modern

applications by treating them as directed acyclic graphs and resolve (mostly statically) the

ordering through job dependencies, DerbyhatS uses dynamic simulation-based predictions

to adjust resource allocation at runtime. This is valuable for emerging DSFs that are not

merely MapReduce tasks, but rather involve iterative processes. Third, DerbyhatS’s ability

to automatically handle heterogeneity will also support emerging hardware such as embed-

ded devices. Overall, DerbyhatS offers a holistic approach that goes beyond just workflow

management by extracting and employing application-specific information through the en-

tire application cycle. DerbyhatS will leverage the outcomes of our three research tasks to

better utilize heterogeneous resources in an application-attuned fashion – features that are

desirable but currently missing from workflow managers.

2.5 Application and Workloads

In this section, we describe the representative applications — chosen from well-known

Hadoop/MapReduce-based works [168–171] — that we have used in our study. We also

synthesize applications based on publicly available aggregate information from production

Hadoop workload traces [172, 173].
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2.5.1 Basic Benchmarks

The applications in this category perform basic operations such as searching and sorting,

and provide means for establishing the viability of our approach.

RandomWriter: is a map-only application where each map task takes as input a name of

a file and writes random keys and values to the file. There is no intermediate output, and

the reduce phase is an identity function.

TeraGen: Generates a large number of random numbers, and is typically used for driving

sorting benchmarks. TeraGen is also a map-only Hadoop application that does not have any

input, but writes a large output consisting of fixed-size records.

WordCount: counts the frequency of all the different words in the input. The map task

simply emits (word, 1) for each word in the input, a local-combiner computes the partial

frequency of each word, and the reduce tasks perform a global combine to generate the final

result.

Sort: performs a sort of the input. A mapper is an identity function and simply directs

input records to the correct reducer. The actual sorting happens thanks to the internal

shuffle and sort phase of MapReduce, thus the reducer is also an identity function.

Grep: Searches for all occurrences of a pattern in a collection of documents. Each mapper

reads in a document, and runs a traditional “grep” function on it. The output size depends

on the number of occurrences and can range from zero to the size of the input. A reducer in

grep is simply an identity function, so in Hadoop’s terminology this is a map-only application.

TeraSort: Performs a scalable MapReduce-based sort of input data. TeraSort first samples

the input data and estimates the distribution of the input by determining r-quantiles of the

sample (r is the number of reducers). The distribution is then used as a partition function to

ensure that each reducer works on a range of data that does not overlap with other reducers.

The sampling-based partitioning of data also provides for an even distribution of input across

reducers. A mapper in TeraSort is an identity function and simply directs input records to

the correct reducer. The actual sorting happens thanks to the internal shuffle and sort phase

of MapReduce, thus the reducer is also an identity function.

NutchIndex: is representative of a large-scale search indexing system. Nutch is a subsys-

tem of the Apache search engine [174], which crawls the web links and converts the link

information into inverted index files.
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PageRank: is a key component of a web search workflow. It iteratively calculates repre-

sentative score for each page, P , by adding the scores of all pages that refer to P . The

process is iterated until all scores converge.

Grep: Searches for all occurrences of a pattern in a collection of documents. Each mapper

reads in a document, and runs a traditional “grep” function on it. The output size depends

on the number of occurrences and can range from zero to the size of the input. A reducer in

grep is simply an identity function, so in Hadoop’s terminology this is a map-only application.

Kmeans: takes a set of points in an N-dimensional space as an input, and groups the points

into a set number of clusters with approximately an equal number of points in each cluster.

Bayes: is a popular classification algorithm for knowledge discovery and data mining and

is a part of Mahout distribution [175]. Bayes implements the training module for the naive

Bayesian knowledge discovery algorithm atop Hadoop.

HiveBench: is representative of analytic querying on Hive [176], a parallel analytical

database built on top of Hadoop. The benchmark performs join and aggregate queries over

structured data.

DFSIOE-Write: is a micro benchmark that uses a specified number of Hadoop tasks to

perform parallel writes to HDFS and reports the measured write throughput.

DFSIOE-Read: is a similar to DFSIOE-Write except that it performs simultaneous reads

to the data generated by DFSIOE-Write.

2.5.2 Application Benchmarks

The applications in this category represent real workloads that are often employed in data

analytics applications running on production Hadoop clusters.

Join: Performs a database join on two tables. The mappers work on rows of the tables,

find a join key field (and other fields as needed), and emit a new key-value pair for each join

key. After the shuffle and sort phases, records with the same join key are forwarded to the

same reducer. The reducers then combine rows from the two input tables, and produce the

results.

Aggregate: Performs an aggregate query on a database table. For example:

SELECT b, sum(a) FROM table GROUP BY b
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The mapper reads in a row, and keeps a partial sum of a for each b, and eventually writes

out b and the corresponding sum of a. A reducer will receive b and a list of partial sums of

a, which it can combine to produce the final result (b, sum(a)).

Inverted Index: Calculates the inverted index of every word that appears in a large set

of documents, and is a critical step in a web search workflow. The input data are a set of

documents, each identified by a docid. The mapper reads in a document, scans through all

the words, and outputs (word, docid) pairs. Shuffling and sorting merges docid’s associated

with the same word into a list, so the reducer is simply an identity function that writes the

output.

PageRank: Iteratively calculates representative score for each page, P , by adding the scores

of all pages that refer to P , and is another key component of a web search workflow. The

mapper reads in a record with a docid of a page X , its current score and docids that X

links to. The mapper then calculates the contribution of X to every page it points to, and

emits (docid, score) pairs, where docid represent different pages and score is the contribution

of X to those pages. The reducer reads in a docid for a page P ′, with contributions to P ′

from all other pages (X ′s), adds them together and produces the new score for P ′. This

process is then applied iteratively until all scores converge. For our tests, we consider only

one PageRank iteration.

2.5.3 Trace-Based Synthesized Benchmarks

The benchmarks in this category are synthesized using models extracted from production

Hadoop traces [172, 173], and help us overcome the lack of available production Hadoop

workload traces for open public use. We use these applications to test our approach under

realistic enterprise workloads.

Small: Emulates Hadoop tasks with an input data size of 100 KB and output limited to

1 MB, lasting for a small duration. These could be maintenance tasks, status probes, or

jobs that tweak output of large applications for specific needs. The motivation behind this

application is the observation that most popular applications on a Hadoop cluster consist of

small jobs [172, 173].

Summary: Summarizes or filters large input data into significantly smaller intermediate

and output results. For instance, the ratio between the input and final output can be as
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high as 7 orders of magnitude. Such jobs are also observed in recent studies [173]. However,

summary consists of both map and reduce phases and in that differs from grep.

Compute: Models the use of MapReduce in supporting large-scale computations, such as

advanced simulations in Physics or Economics. The main property of this application is that

cycles/byte for both mappers and reducers are about two orders of magnitude higher than

the other applications we consider, thus compute is a CPU-bound process that produces very

light I/O activity.

In addition to the above benchmarks, we also use the PigMix [177] benchmark suite for our

real testbed experiments. PigMix is a popular benchmark that consists of a set of 17 queries

performed on the data sets generated by the default PigMix data generator. Each query

has several intermediate phases and evaluates the performance gap between Pig [178]-based

execution and the direct use of Java MapReduce.



Chapter 3

Efficient Integration of Shared
Storage in Hadoop

Hadoop clusters are typically built using commodity machines (nodes), and each Hadoop

node typically serves as both a compute node, executing the assigned application tasks, and

a storage node, storing the associated data on local disks. Any interactions between nodes

occur explicitly and only during the shuffle phase of MapReduce. The application tasks

spend the majority of their time using only node-local resources and consequently the sys-

tem can achieve very-high scalability. This shared-nothing property also provides simplified

overall application semantics; a node failure does not affect other nodes, and the failed node

can be easily replaced by assigning its tasks to a different node [90].

The flip side of isolating resources in Hadoop is that idle resources at one node cannot be used

to serve the needs of another node that may be experiencing a workload spike. This is critical,

as although MapReduce workloads are theoretically distributed equally among participating

nodes, in reality, skew in data/task assignments result in load imbalance [179, 180]. Thus,

the current approach leads to inefficiencies and resource-fragmentation with nodes under- or

over-provisioned and unable to support the assigned workload, even when sufficient resources

may be available in the system.

Given the importance of high-performance I/O in sustaining modern big data applications,

we focus on the storage performance and provisioning in Hadoop clusters. One solution used

in large-scale setups is to equip each node with more disks and stripe data across them to

handle load spikes [95]. However, this not only results in costly over-provisioning, but also

increases node failure recovery times and complicates fault tolerance semantics. Another

solution is to equip each node with an advanced storage device such as an SSD or a PCIe-

based storage device. This approach is promising as even a single device can provide very

high throughput, but the price-point for such devices is impractical especially for large clus-
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ters — currently the cost is $1.8/GB for a SDD [181] and $3/GB for a PCIe-based storage

device [182] compared to $0.11/GB for hard disks, and this price gap is expected to stay

large in the foreseeable future [183]. Both of the above solutions while providing the desired

peak throughput during access bursts, fail to address the underlying problem of low average

resource utilization.

We posit that aggregating and sharing resources across a subset of nodes can produce an

efficient resource allocation in an otherwise shared-nothing Hadoop cluster. To address this,

we present a novel enhancement for Hadoop, which divides a traditional Hadoop rack into

several sub-racks, and consolidates the disks attached to each of the sub-rack’s compute

nodes into a shared Localized Storage Node (LSN) for servicing the sub-rack. The scope of

a single LSN can range from serving a few nodes to perhaps a complete Hadoop cluster rack

depending on workload and usage characteristics.

An observation that makes the proposed approach viable is that in typical Hadoop clusters,

accesses to disks are often staggered in time because of the mix of different types of jobs

and data skew across nodes. This, coupled with the bursty node workload, implies that

contention at the LSN from its associated nodes is expected to be low. Therefore, by simply

re-purposing a sub-rack’s node-local disks in an LSN, each node can receive a higher instan-

taneous I/O throughput provided by the larger number of disks in the LSN. Conversely, the

LSN can service its associated nodes at the default I/O throughput (experienced by nodes

when using their local disks) with fewer number of disks at the LSN. We note that we do not

argue for provisioning LSNs in addition to the node-local disks, rather placing some or all

of the disks from a sub-rack’s nodes at their LSN. Of course, moving the disks away from a

node and into a shared LSN results in loss of data locality, so achieving higher I/O through-

put depends on appropriate provisioning of both disks and network bandwidth to the LSN.

Our design, thus, provides a practical control knob for realizing a desired performance-cost

operating point for a Hadoop cluster.

Another advantage of LSN-based design is that it decouples storage and compute provi-

sioning, and allows for scaling up storage to meet the demands of big data applications by

simply provisioning more disks at the LSN. Consolidating data into fewer high-density nodes

opens the door for a myriad of global decisions and optimizations, such as deduplication,

compression, and snap-shot generation. Standard enterprise fault tolerance techniques, such

as RAID-5 and RAID-6, can also be employed more easily in consolidated storage such as

that envisioned by our LSN-based design.
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3.1 Integrating Shared Storage In Hadoop

In this section, we first motivate our design of grouping several Hadoop nodes into a sub-rack

and consolidating the nodes’ direct attached disks into a local shared storage to service the

sub-rack. Then, we outline several alternative shared-storage designs.

3.1.1 Rationale and Motivation

Application data sets continue to grow at unprecedented rates. To keep up with this trend,

the per-node disk capacity on Hadoop clusters is increasing rapidly, e.g., from two 80 GB

disks in the original MapReduce deployment [111] to four and (even eight) 3 TB disks [95]

in modern Hadoop setups. This raises several issues about the viability of using node-local

storage for all data. First, DAS-based Hadoop architecture has the limitation that the stor-

age capacity is tightly coupled with compute capacity. To add more storage, more compute

nodes need to be added. However, the cost of the extra compute power is unnecessary for

the typically I/O-bound Hadoop applications. Second, simply adding more disks to local

nodes increases the chance of some disks failing, and reduces the already typically low Mean

Time Between Failures (MTBF) of a Hadoop node. Moreover, this option increases the

direct acquisition costs, e.g., more disks and related hardware has to be bought, as well as

the indirect maintenance and operating costs, e.g., more disks would consume more energy.

Third, when using commodity Hadoop hardware, a significant time and bandwidth resources

are spent on recreating replicas after node or disk failures. RAID on local disks can help

mitigate this. However, per-node RAID creates overhead on both capacity and performance.

For instance, assuming a per-node RAID-5 configuration with 4 data and 1 parity disks,

the capacity and parity read/write overhead on write accesses is a very high 20% on every

node in the cluster. A promising solution in this context can be realized by using Enterprise

storage servers that can offer lower MTBF than commodity hardware clusters and ensure

lower failure rate for the data [184,185]. Fourth, provisioning all the storage needs of a node

locally prevents the use of advanced devices, such as SSDs, as current price-points make it

economically impractical to deploy such approaches at all the nodes. Finally, we argue that

following the conventional wisdom of treating data-locality as the only design constraint in

Hadoop clusters, results in a sub-optimal setup, both in terms of performance and efficient

utilization of resources. Factors such as storage utilization can no longer be ignored in the

face of growing data sets.
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Figure 3.1 Hadoop architecture using an LSN.

Consider the following scenario. If a single Hadoop task utilizes a single disk for 5% of its

execution time, ideally 20 tasks would be needed to fully utilize a single disk, given that

tasks are all staggered so they do not compete with each other. Similarly, if a node has four

local disks, it would take 80 tasks running concurrently to fully utilize all disks on the node.

Moreover, if the tasks are not uniformly distributed across nodes, which is typically the

case, there will be a skew in the load with some nodes experiencing I/O bottlenecks, while

others with idle disks. Thus, the imbalance due to the node-local disks serving only their

associated nodes leads to resource fragmentation. We argue that by consolidating disks from

a group of nodes into an associated localized storage node (LSN), the resources unused by

a lightly-loaded node can be used by a heavily-loaded node, consequently avoiding resource

fragmentation and providing for better storage utilization.

The flip side is that by moving disks from nodes to LSN, the approach sacrifices some data

locality. However, it has been observed that the loss of locality can be mitigated to some

extent by better provisioning of the interconnect bandwidth [102, 144]. To this end, we

propose consolidating the disks from a small number of compute nodes into an LSN. This

approach has the potential to offer higher average disk utilization, simplified management

of data, and reduced replica recreation by making it viable to employ RAID and advanced

storage solutions at the consolidated LSNs.

3.1.2 Storage Sharing Scenarios in Hadoop

A consolidated shared storage system can reside at different levels of the Hadoop architec-

ture. In the following, we present three potential alternative scenarios for sharing storage in

Hadoop.
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3.1.2.1 Naive Storage Consolidation

A first cut design is to take all MapReduce related data and move it to a single consolidated

storage outside the entire Hadoop compute cluster, and provision a very high bandwidth

link between the compute nodes and the storage system. Such a setup is often deployed to

connect a cluster file system to a supercomputer [186–188], and has also been proposed for

Hadoop by recent commercial offerings [189–191]. However, in this configuration a typical

large-scale data-intensive Hadoop application would create an almost constant high-volume

I/O flood to the storage system, which would quickly saturate the storage connection link

and become a bottleneck. Moreover, aggregating storage cluster-wide would require a so-

phisticated cluster file system that treats the storage nodes as an integrated unit. This in

turn would entail complexity in managing failures and providing high performance. More-

over, the intermediate data traffic, i.e., during the shuffle phase, can be orders of magnitude

higher than the input and output data. A cluster-wide consolidated storage-to-compute

interconnect can quickly become overwhelmed and lead to unacceptable performance degra-

dation. Consequently, such a design goes against the very spirit of the MapReduce model

that achieves unprecedented scalability by treating the cluster resources as loosely coupled

with locally stored data, which are readily replaceable.

3.1.2.2 Localized Storage Consolidation

The main bottleneck in the previous case is the interconnect between the global shared stor-

age and Hadoop nodes. In our next approach, shown in Figure 3.1, we limit the number of

compute nodes that share a storage system, i.e., a sub-rack whose size range from a fraction

of a rack to perhaps a complete rack. We refer to the shared storage as Localized Storage

Node (LSN). The intuition behind this local consolidation approach is that it avoids the

bandwidth bottlenecks by limiting the sharing to a few nodes instead of the whole cluster.

All the disks from the sub-rack’s compute nodes are consolidated into a corresponding LSN

for the sub-rack. The LSN supports both HDFS and shuffle data for the sub-rack.

In this configuration, map tasks no longer have node-level locality and must retrieve data

from the corresponding LSN in the sub-rack. However, since data is now striped across a

larger number of disks at the LSN than those of a single node, the LSN can provide much

higher I/O throughput, which can mitigate the impact of lost locality. Moreover, since

only a small number of nodes share an LSN, only the inter-rack interconnect is used for
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Figure 3.2 Hadoop architecture using a hybrid storage design comprising of a small node-local
disk for shuffle data and an LSN for supporting HDFS.

accessing data, and multiple sets of nodes (in different racks) can interact with their LSNs

simultaneously, avoiding a global bottleneck.

3.1.2.3 Hybrid Storage Consolidation

A problem faced in the previous design is that each compute node requires at least one

local disk to run its operating system and temporary data, and thus makes it impractical

to remove all disks from a node to its associated LSN. The key insight of our next design,

shown in Figure 3.2, is to buffer shuffle data, which is not replicated and usually consumed

shortly after it is generated, on the node-local disk. Thus, we design a hybrid setup where

the LSN stores HDFS data for a sub-rack of nodes, while a node-local disk buffers shuffle

data and stores OS files required to run the node.

An additional advantage of the hybrid approach is that it paves the way for economically

incorporating SSDs in the Hadoop architecture. For instance, the node-local disks can be re-

placed by (low-capacity) SSD devices for holding the OS and serving as a buffer for in-memory

shuffle data. Given the good random I/O (especially read) performance of SSDs [192], han-

dling shuffle data would be a well-matched use-case for them. This is also advocated by

recent work on the importance of memory-locality rather than disk-locality in Hadoop [102].

Based on the above observations, we adopt the hybrid LSN approach in our design. This

would allow for efficiently integrating economical large-capacity enterprise filers, as well as

advanced storage devices such as SSDs into the Hadoop ecosystem. Our approach also helps

to sustain Hadoop storage subsystem in the face of the growing data deluge created by

modern applications.
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Table 3.1 Representative MapReduce (Hadoop) applications used in our study.

Application Map Reduce Number Cost (cycle/byte)
Input Output Output Mapper Reducer Map Reduce

Grep 10 GB 1 MB 1 MB 160 1 40 10
TeraGen 0 KB 10 GB – 40 – 10 –
TeraSort 10 GB 10 GB 10 GB 160 40 40 10

Join 10 GB 1 GB 10 MB 160 40 400 100
Aggregate 10 GB 100 MB 10 MB 160 10 40 20
Inverted Index 1 GB 10 GB 100 MB 40 40 40 10
PageRank 1 GB 10 GB 1 GB 40 40 100 20

Small 100 KB 1 MB 10 KB 4 1 400 100
Summary 10 GB 10 MB 10 KB 160 1 40 10
Compute 1 GB 10 GB 100 MB 40 40 4000 1000

3.2 Evaluation of Shared Storage In Hadoop

In this section, we present the evaluation of the hybrid localized shared storage design in

Hadoop. We compare the baseline Hadoop to our LSN-based implementation using simula-

tions as well as extensive experimentation on a medium-sized cluster. We perform our ex-

periments using representative applications — chosen from well-known Hadoop/MapReduce-

based works [168–171]. We also synthesize applications based on publicly available aggregate

information from production Hadoop workload traces [172,173]. Table 3.1 lists the applica-

tions, and for each also summarizes parameters such as the input and output data size, the

number of mappers and reducers, and the compute-cost of map and reduce tasks, which we

use in our simulations.

3.2.1 Tests Using a Real Cluster

Our first set of tests explore the impact of LSN on Hadoop performance using a real cluster.

Experimental Setup Our testbed consists of a master node and 21 worker nodes serviced

by three LSNs. The nodes have two 2.8 GHz quad-core Intel Xeon processors, 8 GB of RAM,

and one SATA disk. The LSN nodes are identical to the rest of the nodes, but contain five

SATA disks. The disks are Seagate Barracuda ES.2 7200 RPM with 500 GB capacity. The

machines are connected to a dedicated Gigabit switch via 1 Gbps links as well as a dedicated

InfiniBand switch via 10 Gbps links. In the experiments, only one of the network interfaces
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Table 3.2 Specification of networks and disks used in the testbed.

Network Data Storage

Conf N1 N2 D1 D2 D3

Nodes 1 Gbps 10 Gbps 1 disk
LSN 1 Gbps 10 Gbps 1 disk 3 disks 5 disks

Speedup 1 10× 1 3× 5×
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Figure 3.4 Comparison of Hadoop (baseline)
with increasing number of compute nodes.

is used at a time. Each worker node is configured with six map slots and two reduce slots

to ensure that all the available cores on the node are utilized. The considered benchmarks

are mostly map intensive, so there are more number of map slots than the reduce slots.

To realize a localized storage node within Hadoop, we configured TaskTrackers on each

worker node as is done in standard setups, but configured the DataNode to run on the LSN.

Although we did not initialize a TaskTracker on the LSN, our system does not prevent it,

and it is an option we plan to investigate in future work.

We ran the three basic benchmarks : TeraGen with one mapper per compute node, Grep

and TeraSort each with 16 mappers and two reducers per compute node. TeraGen generates

1 GB of data per worker node, which is the input for Grep and TeraGen. The master node

runs both the Hadoop JobTracker and NameNode for all the experiments. The LSN nodes

provide storage for the shared storage experiments. For all studied cases, the shuffle data is

stored on the node-local disks as described in section 3.1.2.3. All cases use a HDFS replica-

tion factor of three. We study several different testbed configurations by varying both the

network provisioning and the number of disks at the LSN. These configurations are shown

in Table 3.2. Finally, the numbers reported represents averages of five different runs, and

little variance was observed between runs.
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Figure 3.6 PigMix benchmark execution times
under Hadoop (baseline) and LSN-based configu-
rations.

LSN Performance For our first experiment, we used 15 of the available worker nodes

to compare the performance of standard Hadoop (baseline) to that of LSN-based Hadoop

using different network and storage provisioning. Figure 3.3 shows the results for six hybrid

configurations with three LSNs, one per five worker nodes, and two standard configurations,

where (Nx, Dy) refers to Nx and Dy in Table 3.2. Consider LSN(N1, D1), which consolidates

all the HDFS storage onto a single remote disk per LSN, without changing the network band-

width. Not surprisingly, going from 15 local disks to three remote disks slowed TeraGen,

grep and TeraSort by 2.45×, 2.55× and 1.50×, respectively, compared to Baseline(N1, D1).

The three disks do not have enough bandwidth to keep up with the 15 compute nodes and

hence become a bottleneck.

Next, we test LSN(N2, D1), which increases the network throughput available to each node,

but still has only one disk per LSN. The higher network bandwidth does not improve the

performance and TeraGen, grep and TeraSort execute 2.55×, 2.37× and 1.42× slower than

Baseline(N2, D1), respectively. Next, we increase the number of disks, but keep the network

bandwidth as the baseline in LSN(N1, D2). We see that the addition of disks improves the

performance over LSN(N1, D1) by 1.5×, 1.6× and 1.2× for TeraGen, grep and TeraSort,

respectively. The LSN(N1, D3) configuration uses even more disks, however, here the net-

work becomes the bottleneck there is little extra benefit observed. Finally, we test better

provisioning of both network and storage, which is the intended deployment of our system.

LSN(N2, D3) sees a performance increase of 24%, 20% and 39% for TeraGen, grep, and

TeraSort, respectively, compared to BaseLine(N2, D1).

These results show that balancing shared disk provisioning with an adequate network

throughput to the LSN can perform better than the shared-nothing baseline Hadoop.
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LSN Scalability In our next experiment, we examine the scalability of the LSN-based

design by varying the number of compute nodes that are serviced by a single LSN. In or-

der to show an accurate performance comparison between the configurations, we keep the

amount of data processed by each compute node constant. Figure 3.4 shows that in stan-

dard Hadoop, as expected, keeping per node data constant does not significantly affect the

execution time with increasing number of nodes.

Figure 3.5 shows that increasing the number of compute nodes serviced by an LSN impacts

the performance significantly as the size of the workload increases proportionally as well.

We see that when three LSN(N2, D3) serve nine compute nodes, they perform better than

the baseline(N2, D1) by 43%, 26% and 50% for TeraGen, grep, and TeraSort, respectively.

In this case the baseline(N2, D1) configurations use nine disks while the LSN(N2, D3) uses

15 disks.

In our next experiment, we provision three LSN(N2, D3) to serve all of the available 21

compute nodes. We see that in spite of disk reduction from 21 in baseline(N2, D1) to 15 in

LSN(N2, D3), the later performs 14% and 23% better in grep and TeraSort, respectively,

while TeraGen performs similarly for both cases. Figure 3.5 also shows performance results

with varying number of compute nodes with a similar pattern. We also see that, when

nodes are provisioned with lower network bandwidth, baseline performs better because of

the network contention at the LSNs.

This test shows that by consolidating disks into LSNs, we can either support the same

throughput with fewer disks, or support higher throughput with the same number of disks.

This allows the cluster designers to select a configuration most suited to their application

needs.

Compute Intensive Workloads TeraGen, grep, and TeraSort spend significant time on

I/O in HDFS. For our next test, we observe the behavior of LSN under shuffle intensive and

compute intensive workloads using the PigMix [177] benchmark suite. Figure 3.6 shows the

performance results under different Hadoop configurations. We see that baseline(N2, D1) and

baseline(N1, D1) perform 8% and 11% slower than LSN(N2, D3), respectively. The variation

in the performance between different queries is due to the variation in I/O intensity of each

query. LSN does not have a significant effect on the performance of compute intensive and

shuffle intensive workloads, but positively influence I/O intensive ones.
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Figure 3.7 Disk I/O throughput observed at one node in baseline. Other nodes exhibit similar
patterns.
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Figure 3.8 Disk I/O throughput observed at the LSN.

Disk Bandwidth Utilization In our next experiment, we examine in detail the disk

bandwidth utilization under baseline and the hybrid LSN. To perform the rest of the exper-

iments, we consider five worker nodes, one master node, and one LSN. We also increase the

overall data generated by each node to 2 GB.

Figure 3.7 shows the disk I/O throughput observed at the local disk on one of the worker

nodes under baseline, when the applications are run in a sequence. We observe that the

access pattern is bursty in nature, achieving disk bandwidth utilization of 45%, 32% and

21% for TeraGen, grep and TeraSort, respectively. The raw read and write I/O bandwidth

observed for the disks are 118 MB/s and 83 MB/s, respectively. In TeraGen and grep, we see

that the disk is under constant load but the bandwidth is not fully utilized. This is because

of the large number of small simultaneous reads and writes in these workloads. In the case

of TeraSort there are fewer read and write accesses with idle periods in between, which cause

under-utilization of the disk bandwidth.

We contrast these results with the average bandwidth utilization of one of the disks in LSN

shown in Figure 3.8. Here, average bandwidth utilization has increased to 32%, as three

disks in this configuration are consolidated to handle the load of the five clients.

Workload Characteristics Next, we examine the read and write accesses from the worker

nodes observed at the LSN. Figure 3.9 shows a snippet of read (TeraSort) and write (Ter-
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Figure 3.9 Snippets showing disk accesses from different nodes observed at the LSN.
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Figure 3.10 MRPerf architecture.

aGen) accesses. We see that workers do not issue their I/Os to the LSN at the same time

even though they are running the same applications. In fact, the average, standard deviation,

and maximum of the sum of instantaneous read and write throughput observed from all the

workers across the applications is 6.5 MB/s, 22.5 MB/s and 64.3 MB/s, respectively. This

behavior confirms our intuition that accesses from multiple nodes arrive at the consolidated

LSN in a staggered manner, thus allowing for the LSN to service multiple nodes efficiently

without being inundated by the combined accesses.

3.2.2 Simulating Hadoop Clusters

To explore the various aspects of our approach in detail we also employ simulations of Hadoop

clusters. There is ample previous research done on modeling and simulation of MapReduce

workloads and setups [144, 193–198], which we leverage. We choose our MRPerf [144] dis-

crete event Hadoop simulator, as it has been previously used to study impact of data locality,

alternative network topologies, and failure [144, 199–201]. The simulator provides us with

means to investigate the performance impact of system features such as node, rack, and
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network configurations, disk parameters and performance, data layout, and application I/O

characteristics — all of which we want to explore in the context of our LSN design.

Figure 3.10 shows the overall architecture of the MRPerf simulator. The simulator takes as

input the topology of a cluster, the parameters of a job, and a data layout, and produces

detailed simulation results about how the job would behave on the specified cluster con-

figuration. The input configuration is provided in a set of files, and processed by different

processing modules (readers), which are also responsible for initializing the simulator. To

model a specified setup, MRPerf creates a number of simulated nodes equipped with mul-

tiple processors and disks, and supports different ways to distribute the resources between

the jobs scheduled for the node. The ns-2 driver module provides the interface for network

simulation. Similarly, the disk module provides modeling for the disk I/O. The simulator

implements MapReduce heuristics that simulate the map and reduce tasks, manage their

associated input and output data, make scheduling decisions, and model disk and processor

load. MRPerf offers fine-grained simulations that can capture the impact of a specific clus-

ter configuration on application behavior at different stages of execution. For example, the

network bandwidth between nodes is not important for a job that produces little interme-

diate output, if the map tasks are scheduled on nodes that hold the input data. However,

for the same application, if the scheduler is not able to place the jobs near the data, the

network bandwidth between the data and compute nodes might become the performance

limiting factor. MRPerf models these interactions to correctly predict application behavior

on a given Hadoop setup [144].

In this work, we extend the simulator to support our application-oriented evaluation, espe-

cially to explore cases that we cannot provision on our real cluster, such as an LSN with

varying number of disks (8−64), varying the network provisioning of the cluster (bandwidth:

4 Gbps− 40 Gbps), and provisioning each local node with a SSD.

3.2.3 Simulation Results

In our next set of tests, we use simulations to study the impact of the LSN-based Hadoop

in detail. The traces used to drive the tests are deterministic and the reported numbers do

not change across multiple runs.

As discussed in section 3.2.2, we use MRPerf [144] for our simulations. We focus on simulat-

ing a single sub-rack and analyze in detail a number of different LSN design choices and their
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Figure 3.11 Performance of baseline Hadoop and LSN with different number of disks in LSN.
Network speed is fixed at 40 Gbps.

impact on performance. We believe that the conclusion we draw will generalize to larger

clusters comprising multiple sub-racks, each with its own LSN. This is true especially when a

better provisioned communication channel is used between nodes and their associated LSNs

to avoid the interconnect contention due to node-LSN traffic of different LSNs.

One LSN Servicing 20 Nodes We consider a topology with 20 nodes serviced by a single

LSN. Each of the 20 nodes has eight cores and four disks and is connected via 1 Gbps links.

In the LSN case, we aggregate up to 64 disks, leaving one disk at each node, and connect

the LSN to the switch via a 40 Gbps link. In some of the cases, we also increase each node’s

interconnect to 2 Gbps links and equip them with SSDs. All experiments are run with eight

map and four reduce slots.

In Figure 3.11, we change the number of disks provisioned at the LSN and report the exe-

cution time of each application normalized to the case of baseline. In this test, the LSN’s

network is set to a maximum throughput of 40 Gbps to make sure it does not become a

bottleneck. The performance numbers of the LSN(N40D16) configuration are within 5.5%

of the respective values for the baseline Hadoop for eight out of ten applications. This il-

lustrates the efficiency of our disk aggregation technique. In this 20-node cluster, we are

able to efficiently utilize 55% fewer disks (20 + 16 = 36 disks in LSN(N40D16 compared to

20∗4 = 80 disks in baseline) to achieve comparable performance for the studied applications.

The two applications, TeraGen and TeraSort, which are very output-heavy see a 55% and

23% slowdown, respectively. In both these cases, the LSN becomes a bottleneck as it is

unable to keep up with the workload.

Next, we investigate the impact of network bandwidth on application performance. For this

experiment, we set the number of disks to 64. The results are plotted in Figure 3.12. We see

that an LSN with 4 Gbps connection is sufficient to yield the same performance as baseline
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Figure 3.12 Performance of baseline Hadoop
and LSN with different network bandwidth to
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and LSN with different number of disks in LSN.
The network speed is fixed at 4 Gbps.

 0

 50

 100

 150

 200

 250

 300

 350

 400

grep
TeraG

en

TeraSort

join
aggregate

InvertedIndex

PageR
ank

sm
all

sum
m

ary

com
putation

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Application

Baseline
LSN 1Gbps
LSN 2Gbps
LSN 3Gbps
LSN 4Gbps

Figure 3.14 Performance of baseline Hadoop
and LSN with different network bandwidth to
LSN. The number of disks at the LSN is fixed
at 6.

 0

 20

 40

 60

 80

 100

 120

grep
TeraG

en

TeraSort

join
aggregate

InvertedIndex

PageR
ank

sm
all

sum
m

ary

com
putation

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Application

LSN 32 disks
LSN 32 disks + 2Gbps

Figure 3.15 LSN performance with Hadoop
nodes equipped 2 Gbps links.

for half of the applications, i.e., the ones that do not generate large amount of data. More-

over, the 20 Gbps link is enough to bring performance of all applications except TeraGen to

within 18.6% of that under baseline.

5-node LSN Simulation In our next test, we set up a simulation topology with five nodes

serviced by a single LSN to simulate a smaller LSN to node ratio, and again study the impact

of different design choices. All nodes are connected through a single switch. The connection

speed for each node and LSN is 1 Gbps and 4 Gbps, respectively. Each of the five nodes

has eight cores and two disks, while the LSN has six disks. We run all the ten applications

outlined in Table 3.1 and record the results. Once again, each node is configured with eight

map slots and four reduce slots.
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Figure 3.16 LSN performance with Hadoop
nodes equipped with SSDs.
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Figure 3.17 baseline Hadoop performance
compared to LSN with nodes equipped with SSDs
and 2 Gbps links.

The test studies performance under varying number of disks provisioned at the LSN. Fig-

ure 3.13 shows the results, and highlight several design trade-offs for LSN. First, LSN with

four disks can match the performance of baseline Hadoop within 3.7%, on average, and there

is almost no benefit of adding more disks. This means that the LSN provides savings of

one disk (9 disks in LSN versus 10 in baseline). Second, output heavy jobs experience a

significant performance boost, 33% for TeraGen, compared to baseline provided mainly by

the reduced number of replicas. Moreover, LSN can provide load balance across multiple

nodes, and achieve high overall performance. Third, read heavy workloads, such as Grep,

Aggregate, and Summary exhibit more uniform access patterns to the local disk (Figure 3.7),

and consequently experience a slowdown, 18.7% on average, when running on the LSN. This

is because aggregating such accesses at the LSN does not provide an additional benefit.

Finally, the performance of the rest of the applications is within 4.6% of that under baseline.

Next, we vary the bandwidth available at the LSN from 1 Gbps to 4 Gbps, and observe

the performance impact. Figure 3.14 summarizes the results. The four applications — In-

vertedIndex, PageRank, Small, and Computation — that do not consume or generate large

amounts of data, but rather are CPU intensive or operate on large amount of intermediate

data, see no benefit from increasing the LSN’s network. In contrast, the rest of the applica-

tions that do heavy input/output, experience a significant slowdown from the baseline under

1 Gbps link at the LSN. Provisioning 3 Gbps at the LSN, however, is enough to handle the

client workload with a performance overhead within 5.7%, on average.

Better Provisioned Local Nodes So far we have examined various provisioning scenar-

ios for the LSN. In the next set of experiments, we explore several design options at the node
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side. To ensure that the LSN is not a bottleneck in these tests, we provision it with 32 disks

and a 20 Gbps network and set the map and reduce slots to four.

First, we examine the impact of increased local bandwidth of each node as seen in Fig-

ure 3.15. An increase of 2 Gbps in the link bandwidth results in an average speedup of 4%

across all applications; most noticeable is the 9.9% speedup for Join that benefits from the

extra bandwidth for both its heavy HDFS and shuffle traffic.

Our hybrid LSN approach significantly decreases the number and size of disks needed to

be provisioned on each node, which lets us optimize each node by replacing its hard disk

with an economically viable small capacity SSD. The only workload related data that needs

to be stored at the nodes is shuffle data that tends to be mostly random accesses [168].

The shuffle works in a pull model, where consuming reducers proactively retrieve data from

producing mappers [202]. Hence, the workload is characterized by sequential writes and ran-

dom reads, which is a good match for the excellent random read performance of SSDs. The

results of adding an SSD to each node are shown in Figure 3.16. TeraSort, InvertedIndex,

PageRank, and Computation, all of which process a lot of intermediate data, get a significant

performance boost (25.4% on average).

Finally, we combine the node-side optimizations of using an SSD and a faster link, and

compare the performance to baseline Hadoop. The results are shown in Figure 3.17. The

optimizations together help us reduce the performance gap compared to baseline for even

the most data intensive applications such as TeraGen that shows 39.3% slowdown from

the earlier observed 53.7%. The rest of the benchmarks achieve a 10.7% speedup in gen-

eral and prove that our hybrid localized storage is a viable augmentation of the otherwise

shared-nothing Hadoop architecture.

Equipment Cost Comparison Provisioning an extra LSN machine is cost-efficient com-

pared to equipping all participating nodes with more advanced hardware and software to

handle the increasing number of disks needed to support the growing data. The cost of disks

and network is more crucial for choosing our design.

In the above experiment, our approach uses 20% less disks: 5 × 2 per worker = 10 in baseline

versus 5 × 1 per node + 3 at the master = 8 for LSN(N2, D2), i.e., savings of two disks.

At the same time, we use 62.5% more network ports: 5 × 1 per worker + 1 at the master

= 6 in baseline versus 5 × 1.35 per node + 3 at the master = 9.75 for LSN(N2, D2), i.e.,

3.75 extra ports based on our observed bandwidth given the overhead of port bonding, or
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8 extra ports, otherwise. Assuming an average 500 GB disk costs about $50 and a network

port costs $5 each, this can yield cost savings of 81% (for 3.75 ports case) and 60% (for the

8 port case). This is by no means a thorough price-point analysis, nonetheless it serves as

an indication that LSN-based design can be cost-effective and deliver high performance.

In summary, these results show that our approach of consolidating local disks into an LSN,

and enabling sharing in the shared-nothing Hadoop is able to achieve better disk utilization

without sacrificing performance (by mitigating the locality loss).

3.3 Chapter Summary

In this chapter, we revisit the cluster architecture of Hadoop to better provision per-node

storage resources in the face of growing application datasets. We observe that simply adding

more disks to individual Hadoop nodes that often exhibit bursty workloads is not efficient.

This approach results in low overall disk utilization, increases costs as well as the chances

of node failures, and the large capacity elongates the time it would take to recreate a failed

replica. Also, scaling storage coupled with compute adds extra cost of nonstorage resources

that are not necessarily required for I/Ointensive workloads, and reduces overall system

efficiency. To this end, we study the impact of LSN on Hadoop application performance

using a range of representative applications and configuration parameters. Our evaluation

shows that a single LSN servicing 20 compute nodes can achieve performance within 5.5%

of standard Hadoop on average, for eight out of ten applications studied, while using a little

over half (55%) of the number of disks in the standard setup. Moreover, for a case where

an LSN is used by 5 compute nodes, we observe up to 12% performance improvement while

using 28disks.



Chapter 4

A Heterogeneity-Aware Tiered
Storage for Hadoop

A promising trend in storage technologies is the emergence of heterogeneous and hybrid

storage systems [32–35] that employ different types of storage devices, e.g., SSDs, ramdisks,

etc. Moreover, the networking infrastructure bandwidth is growing at a pace that is an order

of magnitude higher than the I/O bandwidth improvements in hard disk drives (HDDs) [36].

The two trends are enabling realization of distributed, hierarchical, hybrid and heterogeneous

storage solutions that are efficient and cost effective, e.g., Hystor [34] and ConquestFS [37].

These systems typically integrate HDDs with fast emerging storage mediums, e.g., ramdisks,

SSDs, etc. The faster storage serves as a buffer for frequently accessed data and yields very

high I/O rates, while the HDDs store the infrequently accessed data and provide cheap

high-capacity storage for the large data volumes.

Inspite of the above developments, it is a challenge to leverage advanced storage solutions in

the context of Hadoop. This is because the Hadoop Distributed File System (HDFS) [203]

— that serves as the storage substrate for Hadoop clusters — is not designed to handle het-

erogeneous storage. HDFS treats all the underlying storage components to be comprised of

blocks with same I/O characteristics. Thus data is distributed uniformly across all the stor-

age devices, irrespective of their I/O characteristics and capacity, which leads to inefficiencies

and resource wastage.

One way to incorporate emerging storage devices into Hadoop is to equip the nodes with

one type of device only, e.g. SSD of the same type. However, this is impractical as the cost

per GB of such devices is still far from the economical storage offered by HDDs, and this

cost gap is expected to remain high in the near future [204]. Thus cluster deployments are

likely to adapt the hybrid approach of using HDDs along with a variety of storage devices.

Moreover, large clusters typically go trough several upgrade phases [95] during their lifetime,

41
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thus all the nodes can not be expected to have homogeneous storage performance even if

only HDDs are utilized. Yet another source of heterogeneity is the emergence of enterprise

consolidated storage solutions for Hadoop [91, 92, 205, 206], which couple node-local storage

with network-attached central storage to provide ease of data management while sustaining

high I/O rates. Thus there is a need for enhancing the Hadoop storage layer to manage

heterogeneity in the underlying storage systems.

We explore the utility of heterogeneous storage devices in Hadoop and address challenges

therein by designing hatS, a heterogeneity-aware tiered storage for Hadoop. hatS logically

groups all storage devices of the same type across the nodes into an associated “tier.” A

deployment has as many tiers as the different type of storage devices used, and a node with

multiple types of devices is part of multiple tiers. For instance, if a deployment consists of

nodes with a SSD and a HDD, all the SSDs across the nodes will become part of a SSD tier,

and similarly all the HDDs will form the HDD tier. By managing the tiers individually, hatS

is able to capture the heterogeneity and exploit it to achieve high I/O performance.

Contrary to HDFS that only considers network-aware data placement and retrieval poli-

cies, hatS proposes additional policies to replicate data across tiers in a heterogeneity-aware

fashion. This enhances the utilization of the high-performance storage devices by efficiently

forwarding a greater number of I/O requests to the faster tier, thus improving overall I/O

performances. To facilitate this, in addition to the standard HDFS APIs, hatS also provides

custom APIs for seamless data transfer across the tiers and management of stored data in

each tier. These features allow hatS to integrate heterogeneous storage devices into Hadoop

to extract high I/O performance.

4.1 Design of hatS

hatS enhances HDFS for heterogeneous storage devices by creating a storage hierarchy based

on the performance characteristics of the devices, and designing heterogeneity-aware data

placement and retrieval policies that improve overall I/O performance in Hadoop clusters.



4.1 Design of hatS 43

HDFS

Client
NameNode

Secondary

NameNode

Node 1

1

8

3

2

Node 2 Node 3 Node 4 Node 5

ramdisk

SSD

HDD

DataNode

Block

5 3

2

7 21

5 7

4 7 6

3 4 6 8

1 5 8

4 6

Tier-1

Tier-2

Tier-3

Figure 4.1 hatS architecture overview.

4.1.1 System Architecture

Figure 4.1 shows the overall architecture of hatS. An important difference between hatS

and HDFS is the design of the DataNode. In HDFS, each participating node hosts a single

DataNode instance, constituting multiple storage devices, regardless of their characteristics

such as supported I/O rates and capacity. In contrast, each participating node in hatS hosts

multiple DataNode instances, where each instance represents only one type of storage de-

vice. For example, a node with two HDDs and a SSD will have two DataNodes in hatS, one

associated with the HDDs and the other with the SSD.

All devices of the same type and similar I/O characteristics, e.g., all similar HDDs, across

all the participating nodes are logically grouped into a virtual storage “tier.” For example, a

tier of HDD Type X will encompass all DataNode instances in a deployment that are asso-

ciated with Type X HDDs attached to the nodes. This enables hatS to not only capture the

unique characteristics of heterogeneous storage devices but also distinguish between different

storage tiers and utilize them accordingly. To achieve this, we modify the DataNode to also

include a tier identifier as part of its characteristics specification. At the time of cluster

configuration the administrator specifies the tiers for the DataNodes. We also modify the

NameNode to use tier identifiers to group the DataNodes into their associated tiers. Each

node can be part of multiple tiers depending on the devices that are attached to it. Moreover,

a tier typically will have only one kind of device; but multiple kinds, such as HDDs that have

only slightly different I/O characteristics, can also be associated with the same tier at the

administrator’s discretion. The number of DataNodes making up a tier vary based on the

hardware composition of the cluster. In the example shown in Figure 4.1, Node 1 has three

DataNodes belonging to three different tiers and Node 5 has only one DataNode belonging

to Tier-3. Tier-1, Tier-2 and Tier-3 have 2, 3 and 5 DataNodes, respectively.

hatS exploits the tier information to strategize when and where to place replicas of a block.
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Table 4.1 hatS APIs to enhance HDFS.

API Arguments & Return Type Description

boolean createFileTier(...) Creates a replica of a file in the specified tier.
String filename Name of the file to be replicated.
String tier Tier in which the replica will be created.
boolean return value Returns 0 on success, 1 on failure.

boolean deleteFileTier(...) Removes a replica of a file from a tier.
String filename Name of the file whose replica will be deleted.
String tier Tier from which to remove the replica.
boolean return value Returns 0 on success, 1 on failure.

boolean moveTier(...) Moves replicas of a file across tiers.
String filename Name of the file to be moved.
String from tier Source tier from which replica will be removed.
String to tier Destination tier for the new replica.
int number of replicas Number of file replicas to be moved.
boolean return value Returns 0 on success, 1 on failure.

Void setRepPolicy(...) Modifies the replication policy for a file.
String filename Name of the file to be affected.
String policy Storage policy to use.
int number of replicas Number of replicas under the new policy.

We discuss several data placement policies in the subsequent section, however, hatS main-

tains the invariant that a tier contains all blocks belonging to a file. This is to avoid dividing

a file across a slow and a fast tier, where the slow tier devices will become the bottleneck

and negate the benefits of the fast devices. Moreover, a tier can have more than one replica

of a file, and a file can be replicated in multiple tiers as long as each tier contains a complete

copy of the file. This provides for routing accesses to frequently used files to faster tiers, and

relegating the infrequently used files to slower tiers. Note that, this approach still provides

for replicating data within and across racks as in standard HDFS, but imposes the additional

constraint of keeping a complete copy of a file in a given tier. One concern is that the whole

copy invariant may be violated in case of node failures. To overcome this, we introduce a

new monitoring daemon on the NameNode, which ensures that any re-replication is done in

a tier-aware fashion.

4.1.2 hatS Data Management APIs

In addition to the file system APIs provided by HDFS, hatS provides new APIs specified

in Table 4.1 to manage the tiered storage. The main functions of hatS include associating

DataNodes to appropriate administrator-specified tiers, and providing data access based on

different policies. DataNodes are added to the tier during initialization only, and can not be

modified at runtime. This is because the I/O and capacity characteristics that are considered

in our tiers are specific to the devices used and do not change while the system is running.
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Thus, the main runtime APIs allow the system to move files between tiers, create a replica

of an already existing file in a specified tier, delete a file from a specified tier, and create new

replicas based on specified replica management policy. We note that, similarly as in HDFS,

all the APIs modify data placement in the granularity of a file and do not support block

level modification.

4.1.3 Data Placement and Retrieval Policies

A challenge in hatS is to determine when and where the data, i.e., a replica of a file, should

be placed. This is a crucial design decision as naive replication can compromise performance

and reduce the efficacy of our approach. Moreover, since hatS like HDFS is a write-once

read-many file system, provisioning for efficient data retrieval is also crucial for improving

overall system I/O performance, and depends on the placement policy employed. In the

following, we describe several data placement and retrieval policies that we consider.

4.1.3.1 Network-Aware Policy

The first policy that we consider is the default network-aware placement and retrieval used

in HDFS. The placement policy distributes each data block across multiple racks to ensure

fault tolerance against node and rack failure. However, network-aware data placement does

not take into account the performance of underlying storage devices. Under this policy, the

blocks are randomly distributed across DataNodes in a rack, so a file may be replicated

across tiers such that the portion of the file stored in a tier will depend on the number of

DataNodes in that tier. Similarly, for data retrieval a list of DataNodes ordered with respect

to network proximity to the application instance is obtained from the NameNode and the

nearest replicas are used. While this approach reduces network traffic, the nearest replica

can be on a slower device. In contrast, a more distant but faster replica could have provided

higher overall I/O and would have been a better alternative. Network-aware retrieval is

oblivious to this information and hence cannot leverage such heterogeneity-based trade-offs.

Thus, this policy is not a good match for hatS as it crosses tier boundaries and will lead to

performance imbalance when multiple types of devices are involved, e.g., SSDs and HDDs.

Moreover, given that not all tiers are expected to be provisioned with the same amount of

storage, and there will be more DataNodes in HDD tier (given the low $/GB) than tiers
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containing expensive devices such as SSDs and ramdisks, this policy will direct most accesses

to the slower devices even when faster devices are available in the system.

4.1.3.2 Tier-Aware Policy

The next policy we consider is tier-aware placement and retrieval, which takes into account

the storage characteristics of the underlying storage devices and completely replicates a file

in multiple tiers. For clusters having more than one storage tier, we replicate the file to up

to three different tiers. For clusters with more than three tiers, we chose the first replica to

be placed in a fast tier, the second in a slow tier, and the third in a randomly chosen tier

with intermediate performance. Since the first replica is treated as a source for the second

replica [203, 207], storing the first replica on a faster tier will also speedup the replication

process. Tier-aware placement does not consider the underlying network infrastructure as

such, and only ensures that a node stores a single replica even if the node has multiple

DataNodes. This prevents data loss in case of node failure, as the replica can be re-created

from other sources.

For data retrieval, the ideal would be to always access the data from the fastest tier. How-

ever, doing so in Hadoop will result in hotspots where some DataNodes are overloaded, and

will affect the performance of the system. Moreover, given that the capacity and number

of faster tiers is limited, retrieving data only from the fastest available tier will also entail

higher cross-rack network traffic and related overheads. To this end, we associate a weight

to each tier from which a block can be retrieved, and then employ a weighted random func-

tion to determine which DataNode to use for retrieval. The assigned weights of each tier

are determined using storage characteristics, such as IOPS and capacity, of the DataNode.

This approach is effective in distributing the requests to a file among multiple tiers and each

tier will serve varying number of blocks. For example, an SSD with 70k IOPS will be able

to serve at least 10× more request than a HDD with 3.5k IOPS as we show later in the

evaluation (Section 8.2).

While this policy takes into account tier characteristics, all the replicas of a block may be

stored on one rack, and the data may be exposed to rack failures. Moreover, replication

of blocks across racks is desirable for load balancing and providing better data locality for

read operations. To avoid such data placement skewness, network characteristics have to be

considered along with tier information, which we do in our next approach.
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4.1.3.3 Hybrid Policy

Tier-aware data placement and retrieval policy improves the I/O performance by making

replicas in specific tiers, while network-aware placement improves resilience by making repli-

cas across racks. For improving I/O throughput, reducing cross-rack traffic to efficiently use

the network, and fault tolerance, we need to have replicas across tiers as well as across racks.

To this end, we design a hybrid network- and tier-aware data placement policy that works

as follows. The first replica is placed with one of the DataNodes on the local node. The

second replica is placed in a different rack than the one used for the first replica and also

on a different storage tier than that of the first replica. The third replica is placed on a tier

different from the other two replicas, but rack-local to either of the replicas. Moreover, the

tier selection is done similarly as in the tier-aware placement policy. The key advantage of

this policy is that it achieves the same replica distribution as that of standard HDFS, which

is effective in ensuring high I/O with good resilience to failures, while also considering the

heterogeneous storage characteristics.

Similarly, for retrieval we adjust the weights used in our tier-aware policy to also factor in

network proximity and the cost of transferring a block over the network to achieve higher

I/O throughput as well as to reduce cross-rack traffic.

While the hybrid policy has the same expected fault tolerance as in HDFS before a failure

occurs, after a failure occurs special steps have to be taken by hatS in replica regeneration to

ensure that a new replica is stored on an appropriate tier in addition to being on an appro-

priate rack. Moreover, if a DataNode is overloaded with requests or low on capacity, replica

creation or regeneration may not be possible on appropriate tiers. However, we then utilize

the monitoring daemon to detect placement anomalies and move the data to appropriate

tiers.

4.1.4 Discussion on hatS Design

In this section, we discuss the impact of hatS on other cluster components. First, the

Hadoop job scheduler is network-aware and aims to schedule jobs on or near nodes that hold

the needed data. Our hybrid approach preserves the network proximity, thus no change is

required in the scheduler to avail the higher I/O rates offered by hatS.

Second, hatS tries to utilize faster tier resources whenever possible. However, the number
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of such devices is likely to be limited given their high cost. This would mean that the faster

tiers may quickly become full, and the applications needing more data can no longer benefit

from them. We remedy this by using the monitoring daemon along with replica movement

APIs to flush the unused data from the faster to slower tiers.

Third, hatS requires nodes to run multiple DataNode instances instead of just one as in

standard HDFS. This can potentially increase the load on the node and affect performance.

We argue that this additional overhead is distributed across all the nodes and is negligible

because of the following reasons. (i) The different types of devices attached to a node is

expected to be small. (ii) The total number of blocks stored on the node is similar as under

HDFS and is independent of the number of DataNodes. The in-memory data structures

at the NameNode depend on the number of data items and number of replicas, but not on

the number of DataNodes. Since, we do not increase the number of replicas, we expect this

factor to be the same as well, so hatS is not expected to add any significant overhead to the

NameNode. (iii) The overhead associated with accessing a block is also similar to HDFS, as

hatS modifies only the metadata space of these blocks.

Fourth, hatS proposes to utilize SSDs in the Hadoop storage tier. There is a concern that

such devices have limited erase cycles, and may affect the MTTF. We argue that incor-

porating SSDs in Hadoop is not unique to our approach, and other state-of-the-art works

have also purported the same. Moreover, numerous SSD optimization approaches are avail-

able [208, 209] to remedy this. Thus, SSD endurance is orthogonal to our design; is useful

even in when no SSDs are used but different kinds of HDDs are employed.

In summary, hatS provides a variant of HDFS, which considers the characteristics of the un-

derlying storage devices and network infrastructure for its data access policies, thus yielding

improved I/O performance.

4.2 Implementation of hatS

We have implemented hatS as described in Section 4.1. In total, we modified or added about

1800 lines of Java code in Hadoop 0.20.1 to add the features of tiering and heterogeneity

awareness and to enable the APIs of Table 4.1.
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4.2.1 Tier identification

We modify the hadoop-daemon.sh script to enable a Hadoop node to have multiple logical

DataNodes, and to coalesce DataNodes with similar storage characteristics into respec-

tive tiers. We introduce a new parameter dfs.tier.id in the Hadoop configuration file

(hdfs-site.xml), which the cluster administrator can use to identify the tiers for the dif-

ferent storage devices. Next, we modify HDFS’s DataNodeDescriptor data structure to

incorporate the tier information as an additional global characteristic of each DataNode.

The extended descriptor can then be used by the HDFS’s DataNodeRegistration process for

registering the tier-based DataNode with the NameNode.

4.2.2 Data placement

To support data placement policies based on storage device characteristics, we modify the

NameNode’s ReplicationTargetChooser component to implement different data placement

schemes. A list of nodes is chosen from the NetworkTopology structure that provides infor-

mation about various racks and tiers in the cluster (clusterMap). To ensure that a DataNode

is not used to store multiple replicas of the same block, we re-purpose the block-specific ex-

cludenode list by adding the already chosen DataNode as well as the other DataNodes on

the same node to the list. This results in a node having only one copy of a block as desired.

After a DataNode is chosen to store a block, the block and its corresponding INodeFile struc-

ture are associated with the DataNode’s tier. This is to enable re-replication of the block

in the same tier in case of a failure. A background daemon periodically runs to ensure that

the blocks are associated with the appropriate tier, and if not, the daemon initiates our

moveTier API to move the replicas to the appropriate tiers.

4.2.3 Data retrieval

Data retrieval in HDFS uses weighted random approach to select a replica from the list

of DataNodes that store the data. To support our different retrieval policies, we imple-

mented weighted random methods in NetworkTopology. The weights can be re-adjusted for

this selection based on the policy, i.e., network-aware, tier-aware or hybrid. For instance,

network-aware scheme will assign weights to a DataNode based on its proximity to the client,
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Figure 4.5 The breakdown of reads based on
tier and network proximity. The y-axis is normal-
ized to the total read accesses in each run.

tier-aware scheme will assign weights based on the characteristics of the storage device that

the DataNode supports, and hybrid scheme will consider both the factors. In our current

implementation, we have used fixed hard-wired values for the weights as our testbed char-

acteristics are known to us a-priori, but in a real setup, the administrator can specify the

weights in a configuration file.

4.3 Evaluation of hatS

In this section, we present the evaluation of hatS using both a real deployment on a medium-

scale cluster and simulations. We compare the effectiveness of different data placement and

retrieval policies, and their impact on the I/O performance of Hadoop jobs. For comparison,

we also consider a random data placement and retrieval policy, which is oblivious of both

tier and network information.
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Table 4.2 Specifications of different storage devices used in the HDFS test.

Device Type Write BW MB/s Read BW MB/s IOPS # of devices

PCIe SSD 245 533 70k 3
SATA SSD 139 191 25k 9
HDD 46 61 3.5k 27

4.3.1 Experimental Setup

Our testbed consists of a master node and 27 worker nodes configured in three racks of nine

nodes each. The nodes have two 2.8 GHz quad-core Intel Xeon processors, 8 GB of RAM,

and one SATA HDD. The HDDs are 500 GB 7200 RPM Seagate Barracuda ES.2 drives. In

addition to HDDs, three of the worker nodes in each rack are provisioned with an Intel 520

series 128 GB SATA SSD and one worker node in each rack is provisioned with an additional

OCZ RevoDrive series PCIe 128 GB SSD. Table 4.2 shows the performance specifications of

these storage devices. In our setup, Tier-1, Tier-2, and Tier-3 contain all the DataNodes that

are equipped with the PCIe SSDs, the SATA SSDs, and the HDDs, respectively. Moreover,

a node is associated with at most two tiers. The nodes are connected using both a dedicated

1 Gbps Ethernet switch as well as a dedicated 10 Gbps InfiniBand switch. We use InfiniBand

as our default interconnect, using the slower connection only where specified in the following

discussion. Each worker node is configured with six map slots and two reduce slots so as

to use all of the available cores on the node. The considered benchmarks are mostly map

intensive, so there are more map slots than reduce slots.

The master node runs both the Hadoop JobTracker and NameNode for all the experiments,

and all the worker nodes contribute to both TaskTracker and DataNode. Worker nodes with

more than one type of storage devices have multiple DataNodes, thus our testbed has 39

DataNodes co-existing with 27 TaskTrackers. As the focus of our experiments is to study

the impact of HDFS I/O operations, the intermediate shuffle data is stored on the HDDs

local to the TaskTracker. The replication factor is fixed at the default three, and the block

size used is 64 MB.

4.3.2 Performance Under Different Policies

We analyze the read and write performance of hatS under different data placement and re-

trieval policies using the HDFS benchmark TestDFSIO. Each worker node writes a 1024 MB

file (16 blocks) during the write test and reads a file of the same size during the read test.
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served for the different storage devices.

Figure 4.2 shows the results for the write accesses. We measure the overall I/O throughput

for each of the map tasks and calculate the average I/O rate across all map tasks. We ob-

serve that the network-aware and hybrid policies behave similarly. This is because the write

operation succeeds after it writes to the OS buffer cache and does not wait for the data to

be synced to the storage device. We see a reduction in the throughput and average I/O rate

for the tier-aware and random policies, which is expected as they do not consider network

proximity and associated overhead.

Figure 4.3 shows the TestDFSIO results for the read test. As the hybrid policy considers

network proximity and tier information, it offers significantly higher I/O rates than the other

studied policies. Similarly as in the write test, the network-aware and the tier-aware policies

perform better than the random policy. An interesting observation here is that the network-

aware policy has a higher throughput than the tier-aware policy, whereas the average I/O

rate of the tier-aware policy is better than that of the network-aware policy. The tier-aware

policy is network oblivious, thus the probability of using a local fast tier for an access is

similar to that of using a remote slow tier, which is seen as a high standard deviation in

the average I/O rates in the Figure. Moreover, the tier-aware policy aggressively tries to

utilize the storage devices in the fast tier without considering the network constraints. This

sometimes results in network contention, causing the I/O rate to be quite low for some map

tasks. We also observe that the hybrid policy offers 32.6% better I/O throughput and 36%

better average I/O rate compared to that of the default network-aware policy.

4.3.3 Impact of Placement Policy

In our next experiment, we used TeraGen to generate a 27 GB file consisting of 432 blocks.

By default, TeraGen uses only two mappers to generate all of its data, so each TaskTracker
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 20

 40

 60

 80

 100

 120

 10  20  30  40  50  60  70  80

I/
O

 T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Time (s)

(c) DataNode with PCIe SSD.

Figure 4.8 Disk usage under the network-aware policy.
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Figure 4.9 Disk usage under the hybrid policy.

generated 13.5 GB. In the network-aware and hybrid placements, while storing the local

replica of the data, all the blocks of the 13.5 GB file will be skewed to one DataNode (corre-

sponding to the TaskTracker generating the data). To avoid this, TeraGen uses one mapper

per TaskTracker, with each mapper generating a 1024 MB (16 blocks) file.

Figure 4.4 shows the distribution of files across racks and tiers. To obtain this informa-

tion, we parse and analyze HDFS’s block map that stores information about all the blocks

associated with a DataNode.

For the network-aware policy, we find that more replicas of a file are placed in Tier-3 than in

Tier-1 and Tier-2. This is because there are a fewer number of Tier-1 and Tier-2 DataNodes

in comparison to Tier-3. In this policy, the distribution of replicas across the tier is directly

proportional to the number of DataNodes contained in the tier. The results for the tier-aware

and hybrid policies reveal replication of a block across all tiers. Since all the racks have the

same number of nodes, even the network oblivious policies – random and tier-aware – have

equal number of replicas across racks. The difference between these and the network-aware

policy is that, in the later, each block is replicated across multiple racks to achieve resilience

against rack failures. For the case of network oblivious policies, we see that 12% of the blocks

are replicated only within one rack and will be exposed to data loss in case of a rack failure.
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Figure 4.10 Network usage under the network-aware policy.
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Figure 4.11 Network usage under the hybrid policy.

4.3.4 Impact of Retrieval Policy

In the next set of experiments, we study the role of the retrieval policies of hatS. We used

Grep to read the data generated by TeraGen using six mappers per TaskTracker. Figure 4.5

shows the results. We observe that the random and the network-aware retrieval policies do

not read a large number of files from the faster Tier-1 or Tier-2. This is mainly due to the

fast tiers having a fewer number of blocks. Moreover, the probability that an access to a

replica will be sent to a specific tier depends on the number of DataNodes in that tier, thus

a tier with fewer blocks have fewer accesses. We find that the network-aware policy has 22%

and 33% less remote requests than the random and tier-aware policies, respectively.

As expected, the tier-aware and hybrid policies access more requests from the fast tiers

compared to the slow tiers. We observe that the hybrid policy results in 4× more accesses

to the Tier-1 than the network-aware policy, and only 13% more remote accesses than the

network-aware policy. Further examination reveals that the hybrid policy results in 30%

more accesses to Tier-1 and Tier-2, though at the cost of 15% increase in non-node-local

(rack-local and remote) accesses. This trade-off between tier and network awareness offers

an effective control knob that can be modified based on the infrastructure provisioning of a

cluster to maximize performance.
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4.3.5 Impact of Network Speed on hatS Performance

In the next set of experiments, we compare the average I/O rate of the studied data man-

agement policies under our two testbed interconnects: 1 Gbps Ethernet and InfiniBand. In

Figure 4.6, we see that the average I/O rate under InfiniBand is better than that achieved

under the 1 Gbps Ethernet. While expected, this result serves as a sanity check that our

enhancements do not have unintended side-effects. Moreover, in the 1 Gbps Ethernet setup,

we find that the network-aware policy performs better than other policies. We observe no

additional advantages of the tier-aware policies with 1 Gbps Ethernet. In case of the random

policy, the performance is better than the tier-aware policy. This is because of the network

contention for the fast tier DataNodes as more requests are routed to them. From this test,

we observe that better network provisioning is necessary to avail the benefits of hatS. How-

ever, this is not a limitation, as better interconnects are typical in enterprise data center

deployments.

4.3.6 Network and Disk Utilization in hatS DataNodes

Next, we compare the network and disk usage of hatS for the read operation under two

policies: network-aware and hybrid. For this purpose, we repeated the test described in

section 4.3.4 and used SAR [210] to collect detailed disk and network usage statistics for the

DataNodes. Figures 4.8, 4.9, 4.10, and 4.11 show the behavior of one DataNode in each tier;

similar patterns were observed for other DataNodes in the respective tiers.

As shown in Figure 4.8, under the network-aware policy, the HDD utilization is 40% higher

than the combined utilization of the SATA SSD and the PCIe SSD. This highlights the

disadvantage that the network-aware policy does not effectively utilize the expensive high

performance storage devices. In contrast, Figure 4.9 shows the disk usage statistics under

the hybrid policy. In this case, the number of requests to the DataNodes contained in Tier-3

are minimized. The SATA and PCIe SSDs together service 36% more read accesses than

HDDs, and effectively utilize their high I/O bandwidth. Under hybrid policy, the utiliza-

tion of PCIe SSDs has increased by 91%, and its maximum I/O throughput is 10× of that

achieved under the network-aware policy. This shows the advantages of hatS over standard

HDFS in better managing the heterogeneous storage devices.

Similarly, Figure 4.10 and Figure 4.11 show the network throughput of DataNodes belong-

ing to different tiers under the network-aware and hybrid policies. The network utilization
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Figure 4.12 Comparison of the average I/O rate, network usage, and execution time under the
studied policies normalized to case of the network-aware policy.

is observed to be almost the same for DataNodes with the HDD and SATA SSD, whereas

for DataNodes with the PCIe SSD the maximum bandwidth throughput is very high. This

is because, under hybrid policy, three PCIe SSDs serve 28% more requests than under the

network-aware policy, resulting in an increase in remote accesses.

4.3.7 Impact of Storage Characteristics on Hadoop Performance

In out next experiment, we study the impact of different storage devices on Hadoop. For this

test, we provision HDFS to service all the requests from only one type of device for its stor-

age. Our testbed contains only three PCIe SSDs but 27 HDDs, so as to ensure fairness and

avoid performance bottleneck due to network contention for the SSD DataNodes, we reduce

the number of worker nodes for this experiment to five nodes per rack. Each rack contains

one PCIe SSD, three SATA SSDs and five HDDs. Figure 4.7 compares the execution time

of TeraGen and Grep for three cases: HDFS with three PCIe SSDs, with six SATA SSDs,

and 15 HDDs. TeraGen, which is a write-intensive application, performs better with HDDs

and SATA SSDs than with PCIe SSDs. This is similar to our observation in section 4.3.2

for TestDFSIO-write.

After each benchmark, we clear the contents of the DataNodes’ buffer caches to prevent

cross-benchmark pollution. For Grep, which involves a significant amount of read opera-

tions, we find that even though there is a small number of the PCIe SSDs, they perform

significantly better than the SATA SSDs and HDDs. The three PCIe SSDs perform 20%

faster than the 15 disks. We repeated the experiment with 21 worker nodes and found that

the read performance of the three PCIe SSDs was similar to that of 21 HDDs.
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4.3.8 Simulation-Based Experiments

For our next set of experiments, we developed an accurate simulator for hatS to observe

the behavior of the considered data management policies on a large cluster setup. Our fine-

grained simulator takes into account details such as the effect of intermediate shuffle data,

network and storage infrastructure, and application I/O patterns. We simulated a 500-node

cluster, with each node equipped with six 1 TB disks and one 256 GB PCIe SSD. These

nodes are interconnected using two 10 Gbps InfiniBand links. We use the publicly available

synthetic Facebook production traces [211] for driving the simulation. We replay the traces

using HiBench [212] applications to process 70 TB of input data, generate 17 GB of inter-

mediate shuffle data and 13 GB of output data spanning over three weeks. To make room

for newly generated data, we use Least recently used (LRU) policy to evict the data.

Figure 4.12 compares the average I/O rate (the higher the better), network usage and trace

execution time for the studied policies normalized to the case of the network-aware policy.

We observe that the hybrid policy yields a 37% higher I/O rate as compared to the network-

aware policy, and at the cost of 9% increase in the network usage (the lower the better). The

tier-aware policy results in the highest network usage, i.e., 23% more than the network-aware

policy. Data placement and retrieval behavior observed in the simulations is similar to that

observed for the real testbed experiments. We see that overall SSD usage was improved

by 68% with over 52% of the data accessed from the PCIe SSD. Finally, we also study the

execution time (the lower the better) of the benchmarks under different policies. Our hybrid

policy offers the best execution time, which is 26% better than the extant network-aware

policy.

In summary, our evaluation of hatS reveals that it offers a viable solution to enhancing

HDFS to incorporate heterogeneous storage, and does so efficiently. Our hybrid data man-

agement policy captures both tier awareness and network awareness to offer higher I/O

rates and reduced execution time. These features are key to sustaining Hadoop for emerging

architectures and applications.

4.4 Chapter Summary

In this chapter, we presented a dynamic data management scheme for Hadoop for achieving

higher throughput and lower storage cost. We observe that managing all Hadoop data in a
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uniform manner results in increased storage overhead or reduced read throughput. For pop-

ular files, default replication is insufficient and leads to decreased throughput. For unpopular

files, default replication results in storage inefficiency. We proposed AptStore, a system that

exploits the heterogeneity in access patterns to achieve overall reduction in storage cost and

increase in read throughput. We identify various factors that affect the throughput of the

system and propose PPA to predict the popularity associated with each file, and use the

information to adjust the replication and data placement strategy of the files. Using exten-

sive simulations and a real deployment, we demonstrated that AptStore data management

scheme increases the read throughput by 23.7%, reduces overall storage utilization by 43.4%,

and results in speeding up the studied jobs by as much as 21.3%.



Chapter 5

Dynamic Storage Management for
Hadoop

Hadoop Distributed File System (HDFS) [90] provides a robust storage for managing massive

amounts of data in a scalable manner by aggregating the direct attached storage (DAS) of

Hadoop cluster nodes [10]. The off-the-shelf machines that make up typical Hadoop clusters

and the scale of the system imply that failures are the norm. To prevent data loss, HDFS

relies on replication [90]. Replication also increases the read throughput, not only because it

reduces access contentions that can arise when accessing popular data, but also by increasing

the probability of finding the data on a local DAS.

While DAS with replication offers significant throughput benefits in Hadoop, the default

three replicas also incur a 200% storage overhead. Not only does this overhead add to the

direct cost of the storage, it has indirect maintenance costs of energy consumption and ad-

ministration, which can be significant [213]. Another limitation of the DAS-based Hadoop

architecture is that storage capacity is tightly coupled with compute capacity; to add more

storage, more compute nodes need to be added. Thus increasing storage capacity in standard

DAS-based Hadoop also incurs the cost for compute components, which may be unnecessary

for typically I/O-bound Hadoop applications. Adding a whole node for just using the extra

storage exacerbates energy efficiency as well, as typically, storage accounts for only a fraction

of a Hadoop node’s energy consumption [214].

To this end, Network Attached Storage (NAS) can offer an alternate storage solution for

Hadoop, especially enterprise NAS is attractive due to its lower failure rates. To add to

this, the per GB storage cost in enterprise storage solutions [92] is only a fraction of that

in a commodity Hadoop node DAS. However, the challenge is that naively adding NAS to

Hadoop clusters may entail a large number of data accesses over the network, resulting in

reduced I/O throughput. A promising trend observed in recent analysis is that there is

59
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significant heterogeneity in I/O access patterns. GreenHDFS [113] observed a news server

like access pattern in HDFS audit logs from Yahoo, where recent data is accessed more than

the old data and more than 60% of used capacity remains untouched for at least one month

(period of the analysis). Scarlett [43] analyzed job history logs from Bing production clusters

and observed that 12% of the most popular files are accessed over ten times more than the

bottom third of the data.

We design a tiered storage system, AptStore, with two tiers designed to better match the

heterogeneous Hadoop I/O access patterns. The tiers include: Primary storage — DAS

in Hadoop node for files that require high throughput; and Secondary Storage — NAS for

unpopular files and files with lower Service Level Objectives (SLO). AptStore analyzes the

I/O access patterns and suggests data placement policies across the tiers to increase the

performance and efficiency of the storage system. Our system optimizes for read through-

put as typically MapReduce workloads exhibit write-once read-many characteristics [90]. To

achieve this, we predict the popularity of each file, and then retain the popular files in pri-

mary storage and move unpopular files to secondary storage. We also adjust the replication

factor of files in primary storage based on their popularity. The replication factor for files

in the secondary storage is set to 1, and other means such as RAID are employed to achieve

fault tolerance. We have realized AptStore as an extension to the Unified Storage System

(USS) [91, 92], a federated file system for Hadoop, which allows transparent movement and

management of data across different file systems.

5.1 Factors Affecting Hadoop Storage Performance

In the following, we discuss the key factors that impact the performance and efficiency of

the storage system in Hadoop.

5.1.1 Understanding Read Throughput

There are two key factors that affect read throughput in HDFS: data locality and number of

concurrent accesses. Local accesses result when a job and its associated data reside on the

same node, thus reducing the number of remote I/O requests and yielding higher through-

put. On the other hand, many concurrent accesses to the same file increase contention, thus

decreasing read throughput.
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5.1.1.1 Locality

HDFS divides the data into equal sized blocks and distributes data to multiple nodes,

which distributes the read request throughout the cluster, thereby achieving better aggregate

throughput. Block size is an important tunable parameter in the system. Bigger block sizes

decrease the overall number of blocks per file and hence the number of nodes that hold data.

This decreases probability of the job scheduler assigning tasks that are local to the data.

However, decreasing the block size too much is also undesirable as it can result in memory

contention in the NameNode. With constant block size, file size has a direct effect on the

distribution of the data; larger files are distributed throughout the cluster, while the smaller

files are restricted to a small set of nodes.

Replication also affects locality and in turn the read throughput in a Hadoop cluster [90].

Higher replication factor increases the distribution of the data in the cluster, thereby increas-

ing the probability of JobTracker finding a local or rack local slot for a task. This results in

reduced network and disk contention, particularly when multiple jobs access the same data

concurrently. Thus, a small file with more replicas can have the same distribution as that of

a larger file.

5.1.1.2 Concurrent Access

Concurrent jobs accessing a single block, or blocks from a single machine, not only affect the

disk bandwidth available per access, but also the network bandwidth. In Hadoop clusters,

concurrent access to popular data are common [43]. In such cases, when the number of tasks

accessing the data exceeds the number of replicas, read throughput of the tasks is affected

because of slot contention and hardware resource contention [102].

Large number of concurrent tasks reading data from a node decrease the probability of

scheduling a task local to the data, and as a result read throughput includes network over-

head. Since concurrent requests share the disk bandwidth and network bandwidth, the

number of concurrent accesses is inversely proportional to the read throughput. The scenario

is typical in production clusters, especially on machines storing popular data. Scarlett’s [43]

analysis of Bing production cluster indicates that more than 50% of read requests were di-

rected to less than 17% of the cluster. The decrease in read throughput because of increased

concurrent accesses can be reduced by increasing the replication of the file and distributing

the requests across the cluster.
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5.1.2 Fault Tolerance

Since Hadoop clusters are built using commodity machines, the hardware failure rate is

non-negligible. The typical Mean Time Between Failures (MTBF) is 3 years [184], so for a

thousand node Hadoop cluster, the probability of failure of a single machine in the cluster is

close to one. Data loss prevention using RAID is not a feasible solution because equipping

each Hadoop node with a RAID controller is expensive and software RAID on unreliable

machines incurs high performance overhead. Since availability is proportional to MTBF,

reducing the replication factor to 1 and using parity to prevent data loss might result in

reduced availability. Moreover the low reliability of the hardware implies periodic loss of

data resulting in reconstruction from the parity. Such generation and reconstruction will

adversely affect the performance of the in-progress Hadoop jobs.

In contrast, a more feasible RAID based solution can be used by employing consolidated NAS

if high I/O throughput is not a concern. Enterprise storage solutions typically utilize RAID

and have lower MTBF [215]. These devices ensure the same reliability of data with signifi-

cantly less storage overhead. Moreover these devices are self managed and reconstruction of

parity would not affect the in-progress Hadoop jobs, unless the jobs are trying to access the

files under recreation. Thus, incorporating NAS into Hadoop architecture is promising and

can support low-cost fault-tolerant storage.

5.1.3 Storage Cost

The use of replication increases the capacity needed to be provisioned and thereby exacer-

bates the cost associated with the storage. While DAS offers better performance at higher

cost, enterprise filers offer degraded performance at lower cost. Thus, it would be beneficial

to utilize the different kinds of storage in realizing an efficient Hadoop storage architecture,

provided the performance requirements for the data items can be determined or predicted.

Typically, a Hadoop node with a maximum of 24 TB of data storage uses up to 200 W [216]

at idle state. The energy cost of adding a Hadoop node for storage scalability would result

in 8.33 W/TB. Along with the 200% storage overhead the energy cost of storing data in

DAS is 25 W/TB. This is very high when compared to the 0.78 W/TB in enterprise storage

solutions [217]. Thus, from the energy consumption perspective, use of NAS in Hadoop is

very favorable.
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Figure 5.1 AptStore architecture overview.

5.2 Design of AptStore

In this section, we describe the design of AptStore, including its decision engine, the Popu-

larity Prediction Algorithm (PPA), as well as how AptStore is realized within an available

enterprise NAS implementation.

5.2.1 AptStore

AptStore is designed as an extension to the Unified Storage System (USS) [91, 92] 1, a

federated file system for Hadoop, which allows tiered storage across different file systems.

As access rate and number of accesses varies for each file, AptStore improves the overall

read throughput and storage efficiency of the system by designing access-pattern-based data

placement and replication. Figure 5.1 illustrates the components of AptStore and their in-

teractions. The PPA periodically analyzes the usage patterns of the file system and the

Decision Engine (DE) suggests appropriate data placement strategy.

In designing AptStore, we make the following four design choices. First, we consider replica-

tion at file granularity because Hadoop jobs access files as a whole [43]. Making replication

decisions at the block level is unnecessary, as the read cost of a file will be dependent on

the block with the lowest replication factor. Second, we assume that typical production

clusters are heavily used and have very large working sets. Thus, any effects of file system

level caching is negligible, and the majority of reads are serviced from disk. Third, all the

files in the system are assumed to have the same block size, which is standard in Hadoop

deployments. Finally, AptStore is designed for the extant Hadoop deployments where all

nodes contribute storage and computation.

1Note that techniques developed in AptStore are not USS-specific and can be easily implemented and
integrated with other NAS solutions.
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5.2.2 Unified Storage System

The Hadoop framework works best when used in conjunction with HDFS. The Hadoop com-

mand line (FsShell) and file system API are supported only by HDFS and its variants [100].

Jobs involving data from other sources are processed by first loading the needed data into

HDFS, typically by using tools such as cron, scp, and distcp. Another solution to multi-

source data access is to use viewFS [218] or add data sources directly using Uniform resource

identifiers (URI). However, adding enterprise storage devices through these approaches lead

to load imbalance and decreased read throughput, mainly because the devices would likely

not be available centrally/equidistant across the cluster.

To address such issues, USS implements a federated file system that provides a unified view

using a single namespace that encompass a multitude of data sources. USS supports trans-

parent, zero-copy access of data from various data sources. It also maintains a mapping of

all HDFS files to their actual locations in the respective file systems. We leverage and extend

this feature in AptStore to transparently move data between primary and secondary storage

as needed.

5.2.3 Popularity Prediction Algorithm

We design a Popularity Prediction Algorithm (PPA) using file access information to deter-

mine when and where to store the files. At every RT , the PPA analyzes the access pattern

for each file and predicts a expected popularity value for it for the next RT . The popularity

value Pi+1(f) of a file f varies with each access i+ 1 to the file. Pi+1(f) is defined as:

Pi+1(f) = Pi(f) +
c

a(f) ∗ l ∗ b(f) ∗ Pi(f)
, (5.1)

where c is the popularity constant, a(f) is a function of the access interval of file f , l is

the load in the cluster and b(f) is a function of number of blocks in the file f . Observe

that we designed our popularity measure to recursively depend on the file popularity during

the previous time interval. This causes the number of replicas to remain stable even in the

presence of a bursty access patterns between successive intervals, yet adapt to changes that

are longer lasting. Additionally, this allows the system to adapt effectively to access patterns

of periodic jobs or ones that are scheduled at intervals wider than RT .

Equation 5.1 also ensures that the popularity of file f increases not only with the number



5.2 Design of AptStore 65

of accesses but also if it is accessed concurrently by many clients. The access frequency is

inversely proportional to the time between the previous access, i, and the current access,

i + 1. During any RT , files with the same number of accesses may have different access

frequencies. For example, a file can have one access every five minutes for a total of 12

accesses in an hour, whereas another file may have 12 concurrent (non-repeating) accesses.

Reads with higher access frequency require more replicas of the accessed files than those

exhibiting lower accesses frequencies, even if the total number of reads within a RT are

the same. This is because frequent reads cause contention both at the disk and network,

resulting in degraded read throughput.

The required replication factor also depends on the cluster load, l, computed using the over-

all popularity of all files in the system. Many concurrent requests for multiple files can

compound and result in an increase in contention for both the disk and the network band-

width. Although increasing the cluster infrastructure to handle a higher load is one possible

solution, it is not always feasible. Our solution is to aggressively replicate popular data, be-

cause it would better distribute the requests across the cluster and increase the probability

of accessing the data locally. Conversely, we reduce the number of replicas for unpopular

data.

As we assume a constant block size, larger files have more blocks. Consequently, larger files

are better distributed throughout the cluster, so they require fewer number of replicas than

smaller files. To capture this aspect, we update the popularity of the file after each access

by an increment that is inversely proportional to the file size.

During the creation of a file, the popularity of the file P1(f) is initialized to average file

popularity observed in the system, AV G(P ). Initialization based on observations such as

the type of jobs accessing the file or popularity of other data created by the same user are

also promising, but we leave that for future work. Similarly, whenever a file is deleted, it

will result in popularity of other files being modified when the values are updated at the end

of RT . When a popular file is deleted, the popularity of other files in the system increases.

Conversely, when an unpopular file is deleted, the popularity of other files decreases. We

do fix the minimum, PMin, and maximum, PMax, threshold on the popularity of a file to

make sure that there are bounds on the number of file replicas in the system. The mini-

mum threshold ensures data reliability and compliance with system SLAs, while maximum

threshold captures space constraints in primary storage.

After the accesses of all files in the reference time RT are processed the popularity value
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Input : USS file System Audit Logs
Output: Predicted popularity Ppredicted.
F is the set of files in the file system;
foreach access i+ 1 to the file f ∈ F in RT do

if i==0 then
Pi+1(f)← AV G(P );

end
else

Pi+1(f)← Pi(f) +
c

a(f)∗l∗b(f)∗Pi(f)
;

end
if Pi(f) < PMinP then Pi(f)← PMin;
;
else if Pi(f) > PMax then Pi(f)← PMax;
;
IP = IP + Pi+1(f)− Pi(f);

end
foreach deletion of the file f in F do

IP = IP + AV G(P )− P (f);
end

MIP ← IP
size(F )

;

foreach file f in F do
Pi(f)← Pi(f)−

MIP
s

;
where i is the most recent access to the file f .
Ppredicted(f)← Pi(f) + (P (f)− Pi(f));
P (f)← Pi(f);

end
Algorithm 1: Popularity Prediction Algorithm.

Pi(f) of a file f for the most recent access i is modified as follows:

Pi(f) = Pi(f)−
MIP

s
, (5.2)

where MIP is the mean increase in the popularity of the file f during reference time RT ,

AV G(P ) is the average popularity of all the files in the cluster, s is the scalability constant.

Equation 5.2 ensures that the popularity of the file P (f) does not grow arbitrarily. The

mean increase in popularity is a fraction of increase in popularity, IP during RT over F ,

the set of all files in the system. The scalability constant s, is used to contract or expand

the amount of data stored in primary storage. For a value of s greater than one, more data

is pushed to primary, while a positive value of s, less than one, creates more space in the

primary storage.



5.2 Design of AptStore 67

The choice of RT is critical. A very large RT can miss opportunities to change the file

replication factor to adapt to a change in the access pattern as the workload varies. How-

ever, setting RT too small can result in excessive thrashing as PPA state is rapidly updated.

The appropriate value of RT depends on the usage pattern of the cluster and the cluster

infrastructure. Previous work [43] suggest an RT between 12 and 24 hours is sufficient

to capture varying patterns in the workload, while minimizing overheads associated with

managing extra replicas.

Finally, AptStore adopts a proactive prediction scheme. The predicted popularity,

Ppredicted(f), for the the next RT is computed using a linear extrapolation. We assume

that the rate of change of popularity for the next RT will be same as the rate of change

of the current RT . By choosing an appropriate size of RT , the accuracy of the predicted

popularity can be made high.

5.2.4 AptStore’s Decision Engine

At every reference time RT , the decision system suggests the replication and data placement

strategy for a file f based on Ppredicted(f), the predicted popularity of the file for the next

RT . Files with higher popularity are replicated based on the function Ppredicted(f) and are

placed in the primary storage. Files with lower popularity are moved to secondary storage

and the replication factor is reduced to 1. Files with average popularity are maintained in

the primary storage with default replication levels.

The system also considers cron jobs or jobs that are scheduled for later execution and pre-

dicts the appropriate storage strategy, thereby improving the read throughput. Finally, the

system considers the SLA requirement irrespective of the popularity. For example, an un-

popular files, although accessed rarely, may have significant SLA restriction, so it may be

always replicated and stored in the primary storage.

5.2.5 Replication and Inter-tier Data Movement

Hadoop performance is sensitive to network bandwidth. Replication or data movement

across tiers during such network intensive phase may adversely affect the performance of the

Hadoop jobs in progress. To balance the bandwidth consumption, HDFS employs multi-

location replication [43], where the data to be replicated are read from multiple sources
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concurrent reads.
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thereby spreading the replication traffic across multiple nodes. File movement between pri-

mary and secondary storage as well as change in replication factor is realized by a low priority

background process.

System performance may further increase with a rack-level dedicated link from primary

storage to secondary storage. Furthermore, significant work is done to improve the network

utilization and storage utilization in Hadoop by compressing the data [219], which can be

leveraged. For replica deletion, lazy deletion [43] of data, i.e., waiting for it to be overwritten

by another block, may significantly reduce the cost of deletion.
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5.2.6 AptStore Computation Overhead

AptStore requires calculation of each file’s popularity at the end of every RT . This compu-

tational overhead is negligible, because popularity is computed by linearly processing the file

system audit logs, which the NameNode already generates. Hence, from the point of view

of the TaskTrackers, our system produces negligible overhead for typical cluster sizes. For

small clusters, PPA algorithm can run on the same node as the NameNode. However, for

a very large cluster where popularity computation may incur some overhead, the algorithm

can be offloaded to a separate machine.

The design of AptStore aims to monitor file I/O and utilize the PPA to determine the pop-

ularity of individual files. Our system extends USS to use the popularity information to

move the files between primary and secondary storage tiers, thus providing high replication

and high throughput for popular data, and low-overhead high-volume cheaper storage for

unpopular data. Moreover, the use of PPA ensures that the AptStore is able to adapt to the

changing characteristics of the Hadoop workloads.

5.3 Evaluation of AptStore

In this section, we present a detailed evaluation of factors that affect read performance in

Hadoop and evaluate the performance of AptStore.
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5.3.1 Experimental Setup

We use a 28 node cluster for our experiments. The master nodes have 3.33 GHz 2×Intel

Xeon X5680 6-core CPUs with hyper-threading, 64 GB of RAM, and up to 3 SATA disks.

The worker nodes have 3.33 GHz 2×Intel Xeon X5680 6-core CPUs with hyper-threading,

48 GB of RAM, and 12∗600, 15 K RPM disks. The master and workers are equipped with

four and two network ports, respectively, and are interconnected using 10 Gbps link. There

are two master nodes, one running a dedicated NameNode and the other the JobTracker

and the SecondaryNameNode. Moreover, there are 26 worker nodes, each with an instance

of TaskTracker and DataNode. The default HDFS block size is 512 MB and the version of

Hadoop we employ is GPHD 1.2.

5.3.2 Impact of Design Parameters

In the first set of experiments, we analyze how various factors impact read throughput of

Hadoop, and quantify the impact under different test conditions. To compute the read cost

and eliminate any computation cost, we run a map-only job that reads a block of data. We

execute this job with varying number of concurrent reads and on data sets of same size with

varying replication factor. To minimize the effect of caching, we flush the file system caches

on all disks contributing to HDFS between test runs.

5.3.3 Read Bandwidth Comparison

We observe the read bandwidth by varying the replication factor and the number of con-

current reads. Figure 5.2 shows the results. We find that 3 replicas provide sufficient for

workloads with up to 8 concurrent reads and adding an more replicas produces marginal

improvement in read throughput. As we increase the number of concurrent reads and thus

the contention, more replicas are required to sustain the read bandwidth. For a workload

with 80 concurrent accesses, any replication below 9 suffers significant loss in throughput.

Conversely, in a workload with up to 32 concurrent accesses, increasing the number of repli-

cas beyond 9 produces no performance benefit, thus wasting storage space used by the extra

replicas. The results show that using a uniform replication factor is problematic in terms

of both meeting throughput demands for popular files, and conserving space for unpopular

files.
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5.3.4 Impact of Access Locality

Next, we repeat the previous experiment but study the percentage of read requests that are

served locally versus remotely. The results are shown in Figure 5.3. The percentage of local

accesses increases with the replication factor. While the dataset with a replication factor of

12 achieves more than 40% of local accesses in all of the concurrent reads, using a replication

factor of 3 achieves only a maximum of 14% local accesses.

Bandwidth of local, rack local, and remote access are compared in Figure 5.4. We find that

the local access use similar bandwidth across varying concurrent number of reads. With

increasing concurrent accesses, there is a difference between bandwidth for the rack local

and remote rack accesses. For higher number of concurrent reads, files with lower replication

factor shows low bandwidth. When remote requests are serviced, the network bandwidth is

shared among the requests. With fewer number of replicas and high concurrent access, the

contention for network resource of the nodes containing the replica is high, leading to low

available bandwidth per access.

5.3.5 Impact of Access Variation

Not all replicas of a file are accessed equally. Whenever a client requests the NameNode for

accessing a block, the NameNode returns the location of all the replicas of the block. The

location list is ordered by its proximity from the requesting client. The client checks the

availability of a local replica and if it fails to find one, it looks for a rack local, and then a

remote rack occurrence of the block. If there are many more concurrent accesses than num-

ber of replicas, the scheduler is unable to balance the load to all replicas, because Hadoop

performs scheduling on a best effort basis. Figure 5.7 shows the standard deviation in the

number of accesses to a block of data with varying number of requests to the data and with

varying replication factor. A workload with 3 replicas and 80 concurrent accesses produces

very high variance, while increasing the replication produces a more uniform access pattern

and thus lower variance. Such uniform access increases the overall throughput because the

load in the system is more balanced and the contention for hardware resources is reduced.
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(a) 5 GB file with replication factors 1 and 6.
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(b) 10 GB file with replication factors 1 and 6.

Figure 5.5 Data distribution in Hadoop with increasing file size and increasing replication factor.
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Figure 5.6 Percentage of local tasks scheduled, with increasing file size and increasing replication
factor.

5.3.6 Impact of Replication and File Size

Locality increases with the distribution of data in the cluster. Figure 5.5 shows that, as

with increasing replication, increasing file size increases the data distribution among the

cluster nodes, resulting in reduced contention and increased locality. Figure 5.5(a) shows

that data with a replication factor of 1 is available only in one rack, but as the replication

increases to 6 we find that data is more evenly distributed among racks. Figure 5.6 shows

that with increasing file size and with increasing replication more and more local tasks are

scheduled. Previous studies has shown similar behavior with MapReduce benchmarks such

as TeraSort [113]. These results are promising as our PPA takes into account such behavior

to provide accurate predictions.
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Figure 5.7 Standard deviation in the number of accesses to a block of data while increasing the
replication factor and the number of concurrent reads.
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Store.

5.3.7 Fault Tolerance in Hadoop

To study the effect of replication on overall fault tolerance in Hadoop, we first choose an ap-

propriate failure model. We base our probability of data loss model on a previous study [220]

and define Pdata−loss as:

Pdata−loss = 1−

n
∑

f=0

Pfailure(n, f) ∗ Pno−loss(n, b, r, f), (5.3)

Pfailure(n, f) =

(

n

f

)

∗ pf ∗ (1− p)(n−f), (5.4)

Pno−loss(n, b, r, f) = (1−

(

f

r

)

/

(

n

r

)

)b (5.5)

where p is the probability of failure of a single machine, n is the number of machines in the
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Figure 5.9 Comparison of storage requirement between Hadoop, Scarlett, AptStore-perf and
AptStore.

 0

 50

 100

 150

 200

 250

 300

3 4 5 6 7

N
u
m

b
e
r 

o
f 
fi
le

s

Replications

RT1
RT2
RT3
RT4

Figure 5.10 Number of files with different number of replicas.

cluster, r is the replication factor of a block, Pfailure(n, f) is the probability that there are

exactly f failures in the cluster and Pno−loss(n, b, r, f) is the probability that there is no data

loss in the cluster [220]. Moreover, the probability of losing a node in time T , is 1−R, where

R is the reliability of a node or the probability that the node will not fail over the time T .

R is defined as:
R = e−

T

MTBF (5.6)

The MTBF of a Hadoop node and an enterprise storage server is three and six years respec-

tively [184, 221]. Based on these values, Table 5.1 compares the probability of data loss per

day in HDFS and NAS filers using Equations 5.3. We compare the HDFS cluster with 1000

nodes to a filer with 100 nodes assuming that they can offer the same storage capacity. This

is valid assumption given recent trends in storage capacity. Enterprise systems can easily

support more than 240 TB of storage [126], while a typical Hadoop node has 12 TB to 24 TB

of storage.
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Table 5.1 Probability of data loss per day.

File System Replication
Factor

Number of
nodes

Pdata−loss per
day

HDFS 3 1000 6.44 ∗ 10−2

HDFS 3 100 1.1 ∗ 10−4

HDFS 2 1000 0.23
HDFS 2 100 3.86 ∗ 10−3

HDFS 1 1000 0.59
HDFS 1 100 8.7 ∗ 10−2

Filer 3 1000 1 ∗ 10−2

Filer 3 100 1.42 ∗ 10−5

Filer 2 1000 7 ∗ 10−2

Filer 2 100 9.7 ∗ 10−4

Filer 1 1000 0.36
Filer 1 100 4.4 ∗ 10−2

Filers can offer probability of data loss with one replica of 4.4 ∗ 10−2, compared to HDFS

with 3 replicas, which has a 6.44 ∗ 10−2 probability of data loss. Given the high number

of disks in a single enterprise storage node, fault tolerance is handled by a RAID controller

with a probability of data loss of 4.4∗10−3, and hence in this case we decrease the replication

factor to 1. Disks are arranged in, for example, a (10, 2) RAID array, which protects from a

simultaneous loss of two disks with ten-fold decrease in storage overhead when compared to

two replicas. Thus, the use of filers as secondary storage is promising in AptStore and offer

a most cost-efficient yet robust solution.

5.3.8 Performance Analysis of AptStore

In the next set of experiments, we evaluate AptStore both in a real system as well as using

whole-system simulation.

5.3.8.1 Experiments Using Trace Driven Simulation

For our simulation, we replay Facebook-like traces synthetically generated by sampling his-

torical MapReduce cluster traces. The traces provided by Chen et. al. [34] are one day in

duration and contain 24 historical trace samples each 1 hour long.

We use these traces to compare the performance of AptStore with the default Hadoop and
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an emulated version of Scarlett [43]. Scarlett is a budget-based Hadoop system that in-

creases throughput by replicating files based on their access patterns. For every file, Scarlett

computes the maximum number of concurrent accesses (cf) in a learning window of length

TL. Once in every rearrangement period, TR, Scarlett computes desired replication factors

for each file as max(cf + δ, 3), where δ is the cushion factor against under estimation. In

our simulation there were 24 rearrangement periods, i.e., rearrangement happens once every

hour and our learning window is the same as that of the rearrangement period. We simulate

various factors including the impact of replication, contentions while accessing popular data,

and advantages of distribution of data.

The comparisons are made with two variants of our system. The first version, AptStore-perf

stores file only in HDFS and the minimum replication factor of both popular and unpopular

data is 3, while the maximum factor varies based on the popularity of the data. The second

version, AptStore, uses two underlying file systems. The popular files reside in HDFS with

varying replication and the unpopular files are pushed to a lower-throughput reliable stor-

age with only one replica. AptStore-perf isolates and measures the performance gains of our

techniques, while AptStore provides insight into both the performance and storage efficiency.

Similar to Scarlett, our simulation of AptStore rearranges the data once every hour.

Figure 5.8 shows the comparison in the read throughput normalized to default Hadoop.

Scarlett produce a 19.57% improvement in performance while AptStore-perf and AptStore

produce 23.74% and 18.64% improvement over default Hadoop, respectively. It is important

to note that in AptStore, where the popular files are fetched from primary storage and the

unpopular files are fetched from secondary storage, only 2.6% of accesses are served by the

secondary storage.

In the next experiment, we compare the storage requirement, shown in Figure 5.9, where

the required storage is normalized to the case of default Hadoop. Scarlett requires 13%

additional storage while AptStore-perf uses only 10% additional storage to achieve the same

performance. AptStore achieves the same performance using only 57% of the storage required

under standard Hadoop. The replication required for unpopular files in the secondary storage

is considerably low when compared to the 200% storage overhead of the primary distributed

file system. Figure 5.9 also compares the performance to storage ratio, normalized to default

Hadoop and AptStore achieves a significant 2× improvement over default Hadoop. Over

the default Hadoop, Scarlett shows a 5% improvement in the ratio and AptStore-perf shows

12.5% improvement.
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5.3.8.2 Experiments on a Real Testbed

We implemented AptStore on top of USS [91,92]. Since all file system requests are handled

by USS, the USS audit logs record all the access to the underlying file systems. The Hadoop

master node communicates with AptStore, which provides it with a data management and

replication strategy. Note that for very large clusters our system can run on a cluster of

machines to compute the data placement strategy. AptStore accesses the logs and the PPA

assigns a popularity to each file at the end of every reference time. The decision system

gives hints to the USS for the appropriate replication policy for the file. Migration is per-

formed through POSIX-like USS file system API, while replication of files in HDFS uses the

setrep file system API in Hadoop. Our workload is generated from traces mentioned in

section 6.3.4.1. We replace the jobs in the trace with sort, grep and wordcount [222]. We

believe this approximation is reasonable as the advantage of AptStore is mainly because of

read access in the map phase. For our implementation, we adjust the length of the trace

and the size of the files to match the size of our test cluster. We did not have access to

an enterprise filer, so we used HDFS for all the data, irrespective of their popularity. Our

implementation shows that AptStore reduces the execution time of the trace by 21.9% over

default Hadoop, with 11.9% increase in storage. Figure 5.9 compares the number of files

with different number of replicas. We observe that increasing the replication of 19% of files,

results in a performance improvement of 21.9% over default Hadoop. The increase in the

replication factor of certain files does not pertain to one single factor, it is based on the

combination of factors described in section 5.2.3.

Our evaluations show the analysis of various factors affecting the read throughput and fault

tolerance in HDFS and enterprise storage solution. We also show the impact of these fac-

tors on the design of AptStore, by comparing the performance of AptStore to Hadoop and

Scarlett.

5.3.8.3 Chapter Summary

In this chapter, we presented a dynamic data management scheme for Hadoop for achieving

higher throughput and lower storage cost. We observe that managing all Hadoop data in a

uniform manner results in increased storage overhead or reduced read throughput. For pop-

ular files, default replication is insufficient and leads to decreased throughput. For unpopular

files, default replication results in storage inefficiency. We proposed AptStore, a system that
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exploits the heterogeneity in access patterns to achieve overall reduction in storage cost and

increase in read throughput. We identify various factors that affect the throughput of the

system and propose PPA to predict the popularity associated with each file, and use the

information to adjust the replication and data placement strategy of the files. Using exten-

sive simulations and a real deployment, we demonstrated that AptStore data management

scheme increases the read throughput by 23.7%, reduces overall storage utilization by 43.4%,

and results in speeding up the studied jobs by as much as 21.3%.



Chapter 6

Maximizing the Benefits of
Hierarchical Storage in Hadoop

One of the major challenges in Hadoop is to design and adapt the storage and I/O infras-

tructure to incorporate the exponentially growing data volumes in an economical fashion.

This is non-trivial, especially as the bandwidth provided by the cluster networking infras-

tructure is growing an order of magnitude faster than the I/O bandwidths of hard disk

drives (HDDs) [31]. In a typical large-scale Hadoop deployment, the intra-rack and inter-

rack network has a bandwidth 200× and 400× that of the disk bandwidth [31], respectively,

underscoring the bottleneck due to the bandwidth of the storage devices. Solid-state drives

(SSDs) can help mitigate this performance gap but at a higher cost for the storage capacity.

A Hadoop job involves two types of I/O: (i) the data that resides in HDFS and serves as the

input and the output of a Hadoop program; and (ii) the intermediate data that is generated

during application execution and resides in the local file system of the node on which it is

created. Placing the HDFS data and/or the intermediate data in SSDs can improve Hadoop

jobs performance [40,41]. Recent efforts [38,39] have shown that SSDs are a viable alterna-

tive to HDDs for Hadoop I/O. However, replacing all HDDs in a Hadoop deployment with

SSDs is not economically viable.

A promising trend observed in recent analysis [42,43] is the significant heterogeneity in HDFS

I/O access patterns, which enables classification of data as ‘hot’ and ‘cold’ [223] based on

its usage characteristics. Recent research has shown that adding an SSD tier to store the

hot HDFS data can improve I/O performance [43,224,225]. While our analysis of synthetic

Facebook logs [211] reveal that 30% of the total I/O is that of intermediate data, not much

research is done into studying the impact of improving the intermediate I/O performance of

an application. We also observe that improving the latency of HDFS or intermediate I/O

may not result in an increase in the execution time for every application. Storing selected
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data that impacts execution time in the SSD tier can improve the performance of the overall

system at an affordable cost. This approach is promising, but introduces the challenge of

identifying the appropriate data to be placed in the SSD tier, effectively managing the dis-

tribution of data among different tiers and selecting a tier for servicing I/O requests with the

goal of improving application’s execution time. In this paper, we address this challenge and

explore the design space of incorporating a flash tier that will benefit both the intermediate

I/O and the HDFS I/O in Hadoop.

To study the impact of storage technology on overall application execution time, we ran four

Hadoop/MapReduce applications1, namely NuthchIndex, Kmeans, PageRank, and Sort, on

a eight-node test cluster2. Figure 6.1 shows the observed variation in disk access patterns

for the studied applications. For NuthchIndex and PageRank, more than 85% of the data

accesses are for intermediate data. Conversely, for Kmeans and Sort, more than 90% of the

data accesses are for HDFS. Similarly, the impact of the underlying storage technology on

the total job execution time varies from application to application. Figure 6.2 shows the

observed variation in application execution time due to the use of SSDs and HDDs to store

and retrieve both HDFS and intermediate data. We observe that for NutchIndex and Sort,

SSDs can contribute a performance gain in the execution time of up to 26.5% and 21.1%,

respectively, while for Kmeans and PageRank, the performance gain is less than 3%. Both

NutchIndex and PageRank access approximately 14 GB of intermediate data and total I/O

accesses of 15 GB and 17 GB, respectively, but the benefits of using SSDs are different;

the former shows 26.5% performance gain, while the later shows only 0.5%. This experi-

1We selected these applications to highlight the variation in access patterns.
2Each node consists of two 2.8 GHz quad-core Intel Xeon processors, 8 GB of RAM, one PCIe SSD and

one SATA HDD.
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ment shows that I/O access patterns can vary widely across applications and the impact of

storage technology on application execution time is not constant. This reinforces the need

for an application-attuned storage management system for Hadoop. Identifying applications

that will benefit from accessing HDFS and/or intermediate data from the SSD tier and ef-

ficiently managing the storage tiers can improve the performance while potentially reducing

the number of required SSDs and therefore minimize the cost of using SSDs in Hadoop.

We design DUX, a system that reduces the overall I/O latency and execution time of appli-

cations by introducing application-attuned storage management in Hadoop. DUX employs

a tiered storage system with two tiers designed to better match the heterogeneous Hadoop

I/O access patterns. The first tier is a fast SSD tier3 that aggregates the SSDs provisioned

in each node, and serves as a cache for a secondary HDD tier comprising of HDDs. The ob-

servation driving DUX design is that performance gains from using SSDs for either HDFS

data or intermediate data are dependent on an application’s I/O access patterns. Hence, in

a heterogeneous environment where each node has both SSDs and HDDs, the choice between

serving HDFS data, intermediate data or both from the SSD should be based on the appli-

cation’s I/O profile. To this end, the key contribution of DUX is that it profiles application

I/O behavior on different storage configurations and proposes an appropriate storage con-

figuration for future application execution. DUX provides a holistic solution for effectively

orchestrating the SSD tier by performing three major functions: (i) it provides a platform

that enables the SSD tier to be shared by the popular HDFS and intermediate files; (ii) it

predicts the impact of I/O accesses on execution time and chooses an appropriate tier for

storing the intermediate data; and (iii) it prefetches the input data into the SSD tier for jobs

waiting in the job queue, if the data has not been selected for prefetching by the popularity

predictor.

A concern in employing SSDs as a cache is that they have limited erase cycles, and may

affect the MTTF. We stress that incorporating SSDs to form a caching tier is not unique to

our approach, and state-of-the-art works [228,229] have also purported the same. Moreover,

numerous SSD optimization approaches are available [208, 209] to remedy this, which can

be leveraged in DUX. SSD endurance is orthogonal to our design and DUX is useful even

when no SSDs are used but different kinds of storage technologies, such as, RAM-based file

system (ramfs) [230] and SCM [231], are employed as cache.

Specifically, DUX makes the following contributions:

3This tier can be replaced by any fast storage technology, such as, RAMDisk [226, 227]
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• We present a detailed quantitative study of factors that affect the I/O of Hadoop ap-

plications, the impact of improving the access latency of HDFS and intermediate data

on execution time, the resulting I/O access patterns, and the rate of intermediate data

generation with respect to the application.

• We realize enhancements for HDFS to support the proposed SSD caching tier and data

prefetching between the proposed tiers.

• We design and implement DUX to track, record and analyze application behavior

on different storage configurations, and use the knowledge to dynamically propose

appropriate storage tiers for HDFS and intermediate data for the submitted jobs.

• We validate DUX design and techniques therein using in-depth simulations and a real

Hadoop deployment.

6.1 Design of DUX

In this section, we present the design of DUX and how we address the challenges faced

therein.

6.1.1 DUX Overview

The design of DUX is inspired by three factors. First, the access rate and the number

of accesses vary for each file in HDFS [43], leading to popularity skewness over a smaller

subset of files. Second, the I/O characteristics of applications vary, i.e., the size of HDFS

data accesses, and the intermediate data generated, will vary across applications. Third,

application execution time and I/O latency of HDFS and intermediate data is correlated in

a similar fashion for all applications. Considering these factors, the goal of DUX is to im-

prove the overall read throughput and storage efficiency of Hadoop clusters. This is achieved

by exploiting the heterogeneity in access patterns and application behavior for effectively

using the SSD tier. To this end, we foresee Hadoop clusters comprising nodes that have

attached SSDs. DUX divides different storage types into tiers, i.e., HDD tier and SSD tier,

and enables effective utilization of the SSD tier by using it as a cache. We propose three key

optimizations in DUX:
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Figure 6.3 DUX architecture overview.

• Access pattern based input data placement;

• Application characteristics based intermediate data placement; and

• Prefetching (of input data) from the HDD tier to the fast SSD tier as needed.

Figure 6.3 illustrates the main components of DUX and their interactions. The first compo-

nent is the Application profiler, which profiles applications that are deployed on the target

Hadoop clusters. It test runs the representative applications on all possible storage configu-

rations of a cluster. A storage configuration is a per-job property that specifies which part

of application data is placed on a particular tier, e.g., input data on HDD and intermediate

data on SSD, or both types of data on SSD, etc. For each application, the profiler records

essential information, such as, the volume of data read/written in different phases and the

completion time of these phases under each configuration. This profiling information is then

used to guide the various components of DUX.

The Popularity Predictor component dynamically keeps track of the access counts of input

data files in HDFS. Based on this information, the component periodically makes a predic-

tion for the popularity of each data file in the upcoming interval and instructs HDFS to move

the popular files into the SSD tier if needed. The Adaptive Placement Manager component

analyzes the jobs that are submitted to the workflow manager, and based on the input from

the application profiler, decides appropriate storage configurations for each job. If a job

performs better with low latency storage devices, the Adaptive Placement Manager changes

the job configuration of the data file and prefetches the required HDFS data into the SSD

tier.
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6.1.2 Enabling Technology: hatS

hatS [232] is an enhancement to HDFS that provides heterogeneity-aware tiered storage in

Hadoop. hatS logically groups all storage devices of the same type across the nodes into an

associated ‘tier’. A deployment has as many tiers as the types of storage devices used. A

node with multiple types of devices is a part of multiple tiers. For instance, if a deployment

consists of nodes with an SSD and an HDD, all SSDs across the deployment will become part

of a SSD tier, and similarly all HDDs will form a HDD tier. By managing tiers individually,

hatS is able to capture the heterogeneity in hardware and exploit it to achieve high I/O

performance. While HDFS considers only network-aware data placement and retrieval poli-

cies, hatS proposes additional policies to replicate data across tiers in a heterogeneity-aware

fashion. This enhances the utilization of the high-performance storage devices by efficiently

forwarding a greater number of I/O requests to the faster tier, thus improving overall I/O

performance.

We leverage hatS to provide an enhanced HDFS component for the system. We employ the

default Hadoop data placement policy but ensure that the data is placed only in the HDD

tier by default. Also, in order to avoid network contention during accesses and to provide

tolerance against node failure, we ensure that whenever a block is moved to the SSD tier,

it is not replicated at the node that already stores it. The data retrieval policy that we

employ always accesses the data from the fastest available tier. One concern is that the

tier-aware placement may be violated in the case of node failures. To overcome this, we

utilize hatS monitoring daemon at the NameNode to ensure that any re-replication is done

on the same tier from which the data is lost. Moreover, we also provide APIs that are used

by the Adaptive Placement Manager to enable data movement between tiers.

6.1.3 Enabling Technology: Popularity Predictor

The Popularity Predictor uses HDFS audit log information to determine the popularity of

a file in HDFS in order to proactively fetch the popular data from the HDD tier into the

persistent region of the SSD tier. This is an effective approach for identifying hot data as also

shown in the previous work [224, 225]. The popularity predictor periodically analyzes the

access patterns of each file and predict the file’s expected popularity value for the next inter-

val. The length of each interval is called Reference Time (RT). The choice of RT is critical; a

very large RT can result in a stale SSD cache tier, whereas a small RT can increase network
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traffic. Previous work [43, 224] suggests that an RT between 12 and 24 hours is sufficient.

When a file is created, its popularity is initialized to average file popularity observed in the

system. For each access to a file, its popularity is increased by one. Similarly, whenever a

file is deleted, the popularity of other files is updated based on the popularity of the deleted

file. When a popular file is deleted, the popularity of other files in the system increases.

Conversely, when an unpopular file is deleted, the popularity of other files decreases. After

the accesses to all files in the system are processed, the popularity value of a file for the most

recent access is decreased by the mean increase in the popularity of the file during that RT.

This is done to makes sure that the popularity of the file does not grow arbitrarily. The

mean increase in popularity is a fraction of increase in popularity during RT over the set

of all files in the system. Finally, we compute the predicted popularity of the file, for the

next RT by linear extrapolation. We assume that the rate of change of popularity for the

next RT will be same as the rate of change of the current RT. Such linear extrapolation

based prediction ensures that cold data that becomes hot after a while will also be stored in

the SSD tier. The files in HDFS are sorted in the order of their predicted popularity, and

popular files are loaded into the SSD tier, until the persistent region is full.

6.1.4 SSD Capacity Management

In DUX, the SSD tier is used for three types of cached data: the intermediate data, the

popular input data, and the unpopular prefetched input data. To enable configurable shar-

ing of the SSD tier between different data types, the cumulative storage capacity of SSDs

aggregated across all nodes is virtually split into a persistent region and a temporary region.

This is inspired by pattern-based OS caching approaches [233, 234]. Files that are popular

are placed in the persistent region, while the temporary region is utilized for the intermediate

data and for prefetched HDFS data that is not yet popular but will be used by jobs that

are next in the job queue. Input files for jobs that are scheduled for later execution are also

prefetched into the temporary region. The size of the persistent region is configurable, and

should be selected based on the utilization of the cluster. For heavily-loaded clusters, a large

volume of intermediate data is generated, therefore, a large capacity should be allotted for

the temporary region. A smaller persistent region means a smaller number of popular files

will be moved into the SSD tier by the Popularity Predictor. Consequently, the amount of

data prefetched by the Adaptive Placement Manager will increase, causing an increase in the

network traffic that must be sustained by the network infrastructure. In this way, splitting
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the SSD capacity allows the users to tune the storage performance based on the provisioned

network capacity.

6.1.5 Application Profiler

DUX employs an Application Profiler that performs statistic profiling of applications to

better guide its data placement and resource allocation. Applications are executed in a

test environment on all possible storage configurations and metrics are recorded related to

the I/O profile of applications, such as, amount of input data read from HDFS, amount of

intermediate data generated, job completion time on each configuration, time spent in the

map, sort/shuffle and the reduce phases on each configuration etc. Each configuration is

tested multiple times to record average metric values. Throughout this profiling, we treat

an application as a black box, i.e., we do not analyze the application code and the profiled

information are based only on the execution history.

We argue that statistic profiling of workloads prior to production execution is ideal for this

scenario as the collected statistics do not have interference from other jobs. However, a

dynamic feedback loop is also needed to approximate the characteristics of new jobs that

are not profiled but submitted to the cluster after the statistic profiling has been done.

The Application Profiler maintains a database of the results from statistic profiling and the

execution history of applications. This database includes information, such as, a list of re-

cently completed applications, associated execution times, input data size, and the size of

intermediate data generated during prior runs of the same application (both from statis-

tic profiler and dynamic feedback). The database is queried by the Adaptive Placement

Manager when it needs to choose a storage configuration for the submitted job.

To derive our profiling techniques, we studied 10 representative MapReduce applications from

HiBench [235], which cover a wide range of workload behavior, such as, batch processing,

iterative jobs and interactive querying. This is motivated by the previous research [52, 93],

which has shown that MapReduce workloads are predictable for their behavior and that

the number of different job types is small. Studying a range of test applications on target

clusters enables us to determine the initial job schedule in a multi-cluster deployment.
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6.1.6 Popularity Predictor

The Popularity Predictor uses the HDFS audit log information to determine the popularity

of a file in HDFS in order to proactively fetch the popular data from the HDD tier into the

persistent region of the SSD tier. This is an effective approach for identifying hot data as

also shown in previous work [224,225]. The popularity predictor uses Algorithm 2 to analyze

the access patterns of each file after periodic time intervals and predict the file’s expected

popularity value for the next interval. The length of each interval is called Reference Time

(RT). The choice of RT is critical; a very large RT can result in a stale SSD cache tier,

whereas a small RT can increase network traffic. Previous works [43, 224] suggests that an

RT between 12 and 24 hours is sufficient.

When a file is created, its popularity P1(f) is initialized to average file popularity observed

in the system, AV G(P ). For each access to the file, the popularity of the file is increased

by one. Similarly, whenever a file is deleted, the popularity of other files is modified based

on the popularity of the deleted file. When a popular file is deleted, the popularity of other

files in the system increases. Conversely, when an unpopular file is deleted, the popularity

of other files decreases. After the accesses of all files in the RT are processed, the popularity

value Pi(f) of a file f for the most recent access i is decreased by the mean increase in the

popularity of the file f during that RT. This is done to makes sure that the popularity of the

file P (f) does not grow arbitrarily. The mean increase in popularity is a fraction of increase

in popularity, IP , during RT over F , the set of all files in the system. Finally, we compute

the predicted popularity of the file, Ppredicted(f), for the next RT by linear extrapolation.

We assume that the rate of change of popularity for the next reference time will be same as

the rate of change of the current reference time. Such linear extrapolation based prediction

ensures that cold data that becomes hot after a while will also be stored in the SSD tier.

The files in HDFS are sorted in the order of their predicted popularity, and popular files are

loaded into the SSD tier, until the persistent region is full.

When a file is created, its popularity P1(f) is initialized to average file popularity observed

in the system, AV G(P ). For each access to the file, the popularity of the file is increased

by one. Similarly, whenever a file is deleted, the popularity of other files is modified based

on the popularity of the deleted file. When a popular file is deleted, the popularity of other

files in the system increases. Conversely, when an unpopular file is deleted, the popularity

of other files decreases. After the accesses of all files in the RT are processed, the popularity

value Pi(f) of a file f for the most recent access i is decreased by the mean increase in the

popularity of the file f during that RT. This is done to makes sure that the popularity of the
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Input : HDFS audit logs
Output: HDFS files with their new popularity based on the access count.

F is the set of files in the file system;
foreach access i+ 1 to the file f ∈ F in RT do

if i==0 then

Pi+1(f)← AV G(P );
end

else

Pi+1(f)← Pi(f) + 1;
end

IP = IP + Pi+1(f)− Pi(f);

end

foreach deletion of the file f in F do

IP = IP +AV G(P )− P (f);
end

MIP ← IP
size(F ) ;

foreach file f in F do

Pi(f)← Pi(f)−MIP ;
where i is the most recent access to the file f . Ppredicted(f)← Pi(f) + (P (f)− Pi(f));
P (f)← Pi(f);

end

Algorithm 2: Algorithm used by the Popularity Predictor.

file P (f) does not grow arbitrarily. The mean increase in popularity is a fraction of increase

in popularity, IP , during RT over F , the set of all files in the system. Finally, we compute

the predicted popularity of the file, Ppredicted(f), for the next RT by linear extrapolation.

We assume that the rate of change of popularity for the next reference time will be same as

the rate of change of the current reference time. Such linear extrapolation based prediction

ensures that cold data that becomes hot after a while will also be stored in the SSD tier.

The files in HDFS are sorted in the order of their predicted popularity, and popular files are

loaded into the SSD tier, until the persistent region is full.

6.1.7 Adaptive Placement Manager

The task of the Adaptive Placement Manager is to: (i) decide the appropriate storage for

each submitted job by querying the Application Profiler, (ii) update the job-associated stor-

age configuration as needed, and (iii) (if required) prefetch unpopular input data into the

SSD tier while the job is waiting in the job queue. Whenever a job is submitted, the Adap-

tive Placement Manager queries the Application Profiler to access critical information about

the job, i.e., the job completion time, the time spent in map and shuffle phases on different
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storage configurations, and the predicted space requirements for the input and intermediate

data. The Adaptive Placement Manager then uses the information to decide the appropriate

storage configuration for the job. If the choice of input storage is SSD tier, the Manager

accesses HDFS data layout from performance predictor to check if the input data is already

available in the SSD tier (i.e., it is popular data). If not, it prefetches the data into the SSD

tier. If the SSD tier is the choice of storage for intermediate data, we make sure that the

tier has the requisite space. For this purpose, we linearly extrapolate the input data size to

predict the available space. Considering potential prediction errors, there is a buffer space

in the temporary region to ensure that the jobs do not fail due to missing the required data.

The Adaptive Placement Manager also has a StorageCounter that keeps track of the storage

utilized in the SSD tier. Whenever some HDFS data is prefetched or intermediate data is

configured to be stored in the SSD tier, the counter is incremented and then decremented

after the job associated with the data completes. StorageCounter enables the Adaptive

Placement Manager to evict unnecessary data from the SSD tier and to plan the storage

configuration for jobs waiting in the job queue.

6.1.8 Discussion

DUX can co-exist with the master component of each cluster or in a separate node. The

computational overhead of DUX is small as after initial processing, the requisite algorithm

is run once for every new submitted job, and entails a database lookup and execution of the

update steps. The Adaptive Placement Manager predicts the configuration of the job by ac-

cessing the application profiler, which is based on the job execution traces that are collected

as a background process in each node. The performance predictor predicts the popularity

of data files by linearly processing (O(n), where n is the number of files) the Hadoop file

system audit logs. Moreover the prediction is done every RT, i.e., 12 to 24 hours, further

amortizing the associated overhead.

Hadoop performance is sensitive to network bandwidth, particularly during the shuffle phase

that involves moving large amounts of data across the network. The Performance Predictor

rearranges the data after every RT and the Adaptive Placement Manager prefetches input

data into the SSD tier as needed. This entails additional network overhead. Data movement

across tiers during the network-intensive shuffle phase may adversely affect the performance

of executing jobs. To balance the bandwidth consumption, HDFS employs multi-location

replication [43], where the data to be moved across tiers is read from multiple sources thereby
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spreading the traffic across nodes. To remedy this, the Performance Predictor’s data rear-

rangement is made a low priority background process that yields to the shuffle phase to

avoid negative performance impact. The approach, however, may not be applicable when

prefetching, as that handles data that is needed by the jobs in the queue. An approach that

can mitigate the problem is to prefetch for jobs further down the queue in advance, provided

enough capacity is available in the SSD tier. Finally, placement of intermediate data does

not add to any additional network overhead, as the network contention will be the same,

irrespective of the storage configuration.

In summary, profiling the characteristics of applications help DUX better understand the

behavior and I/O characteristics, as well as the dependence of the I/O on the execution time

of the studied applications. Using this information, the Adaptive Placement Manager is able

to estimate the required storage space for the applications to run, check for the availability

of resources, and modify associated job configuration files accordingly, before submitting the

jobs. By better matching jobs with appropriate tiered storage, DUX is expected to yield

higher overall performance and achieve better system efficiency, as observed in our evaluation

(Section 8.2).

6.2 Implementation of DUX

In this section, we describe our implementation of DUX and related HDFS enhancements.

We have implemented a proof-of-concept Popularity Predictor and an Adaptive Placement

Manager in Python. We used the SAR tool [210] to collect job execution traces containing

information about storage configuration of applications. For statistics profiling, we con-

figure HDFS and the intermediate storage to different storage devices to collect separate

statistics for input and intermediate data. We also parse Hadoop logs to determine times-

tamps associated with the start and finish time for the given applications, which are then

used to separate execution information for each application. The Application Profiler uses

a MySQL database instance to store the collected application information as well as the

associated resource utilization.

To enable HDFS to support the caching tier, hatS—that serves as our enabling component—

configuration files are extended and modified to enable SSD and HDD tiers. To support

data placement that will enable prefetching, we modify the NameNode’s ReplicationTar-

getChooser. A list of nodes is chosen from the NetworkTopology structure that provides
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information about various racks and tiers in the cluster (clusterMap). Similarly, we mod-

ify NetworkTopology and DataNodeDescriptor in hatS to realize appropriate data retrieval

policy as described in Section 6.1.

For the Popularity Predictor to load the popular files into the SSD tier and Adapter Place-

ment Manager to prefetch the data from HDD into the SSD tier, we use the boolean

moveToSSDTier (String filename, number of replica) and boolean moveToHDDTier (String

filename, number of replica) APIs provided by hatS [232]. For the Adaptive Placement

Manager to modify the location of the intermediate data, we set the location of the

mapred.local.dir to the appropriate storage device. This property is set in command line us-

ing the -D switch. We also implement a plugin that can modify the configuration for Apache

Oozie [85] workflow manager. The components interact as described earlier to realize DUX.

6.3 Evaluation of DUX

In this section, we present the evaluation of DUX using a real deployment on a 9-node

Hadoop cluster, as well as using trace-driven simulation that executes synthetic Facebook

workloads [34]. We first study the characteristics of 10 representative Hadoop applications on

SSD and HDD storage configurations. Next, we evaluate the impact of our HDFS enhance-

ments, performance prediction and adaptive placement. Finally, we compare the overall

performance of DUX against the existing application-oblivious storage placement strategy.
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Table 6.1 Specifications of storage devices used in our tests.

Device Type Write BW Read BW IOPS # of Devices

PCIe SSD 245 MB/s 533 MB/s 70k 3
HDD 46 MB/s 61 MB/s 3.5k 27

6.3.1 Experimental Setup

Our testbed consists of a master node and eight worker nodes. Each node has two 2.8 GHz

quad-core Intel Xeon processors, 8 GB of RAM, and one SATA HDD. The HDDs are 500 GB

7200 RPM Seagate Barracuda ES.2 drives. In addition to HDDs, each worker node is provi-

sioned with an OCZ RevoDrive series PCIe 128 GB SSD. Table 6.1 shows the specifications

of the storage devices. In our setup, all DataNodes contribute to both the SSD tier and the

HDD tier. The nodes are connected using a dedicated 10 Gbps InfiniBand switch. Each

worker node is configured with six map slots and two reduce slots so that all available cores

on a node are used. The benchmark applications are mostly map intensive, so there are more

map slots than reduce slots. The master node runs both the JobTracker and NameNode for

all experiments, and all the worker nodes contribute to both TaskTracker and DataNode.

The replication factor is fixed at the default value (i.e., three), and the block size used in

our evaluation is 64 MB.

6.3.2 Benchmark Applications

We have used 10 applications from well-known Hadoop HiBench Benchmark Suite [235] for

evaluating DUX. These applications represent batch processing jobs, iterative jobs and inter-
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active querying jobs. Table 8.2 lists these applications, and for each summarizes parameters

such as the input and output data size, and the number of mappers and reducers.

6.3.3 Application Analysis

In our first set of experiments, we analyze the performance of our benchmark applications

under four different storage configurations shown in Table 8.1. The results presented below

are average of five executions; the standard deviation across the executions was observed to

be negligible.

6.3.3.1 Observing Non-Uniform Effect of Storage on Performance

Figure 6.4 shows the performance of our test applications under storage configurations of

Table 8.1. We observe that under Config-2, jobs perform 12% faster on average over Config-

1. Here, NutchIndex, Bayes, Sort and TeraSort show an average performance improvement

of 19.7%, while the other applications show an average performance improvement of only

2.9%. This observation highlights the differences in benefits that different applications can

achieve from the exclusive use of the SSD tier. Moreover, by monitoring the disk accesses we

find that NutchIndex, Bayes, Sort and TeraSort contribute 60% of the total disk usage under

Config-2, while all the other applications only contribute 40% aggregately. Therefore, if we

were to place the input and intermediate data for only these four applications in the SSD

tier and use the HDD tier for all other applications, we will achieve an average performance

improvement of 11% under Config-1.

Table 6.2 Representative Hadoop applications used in our study.

Application
Map Reduce Number

Input Output Output Mapper Reducer

NutchIndex 1.5 GB 2.8 GB 1 GB 1 81
Bayes 128 MB 256 KB 4.5 GB 16 1
Kmeans 1 GB 64 KB 1 GB 20 1
Hive-bench 5 GB 3.2 GB 256 MB 8 16
PageRank 128 MB 1 GB 12.5 MB 16 8
Sort 3 GB 11.5 GB 3 GB 64 8
TeraGen – – 15 GB 16 0
TeraSort 15 GB 15 GB 15 GB 249 8
WordCount 12 GB 30 GB 12 KB 102 8
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Table 6.3 Different storage configurations used in statistical profiling.

Configuration HDFS Data Intermediate Data

Config-1 HDD HDD
Config-2 SSD SSD
Config-3 SSD HDD
Config-4 HDD SSD
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Comparing the performance of our benchmark applications under Config-3 and Config-4

helps us determine the impact of the performance of input or intermediate storage on the

overall performance of an application. We highlight this in Figure 6.5 by showing the percent-

age increase in the completion times (i.e., slowdown) of NutchIndex, Bayes, Sort, TeraGen

and TeraSort under Config-3 and Config-4 against the respective completion times under

Config-2. NutchIndex experiences an identical slowdown in both Config-3 and Config-4,

which shows that it needs both its input and intermediate data in the SSD tier for optimal

performance. Bayes, Sort and TeraSort only experience a slowdown under Config-3, indicat-

ing that their performance depends entirely on intermediate data storage. Finally, TeraGen

depends entirely on the performance of its output storage. This analysis validates the need

for the proposed Adaptive Placement Manager.

6.3.3.2 Variation in Data Access Pattern

In the next set of experiments, we study the variation in access pattern across different

applications. Figure 6.6 shows the results. For applications such as NuthchIndex, Bayes,

Pagerank, TeraSort and Wordcount, more than 50% of the data accesses are for intermediate

data. Conversely, for applications such as Kmeans, Hive, Sort and TeraGen, more than 50%
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of the data accesses are for HDFS. Both NutchIndex and PageRank access approximately

14 GB of intermediate data and total I/O accesses of 15 GB and 17 GB, respectively, but

the benefits of using SSDs are different; the former shows 26.5% performance gain, while

the later shows only 0.5%. This analysis validates the claim that applications with similar

access patterns show variation in execution time, thus forcing the need for an application-

attuned storage configuration. Our approach will ensure that the SSD storage tier services

only those applications that will benefit from the low-latency storage device, thus effectively

maximizing the use of the available SSD space.

6.3.3.3 Impact of Data Size

In the next set of experiments, we study the impact of increasing input data size on the per-

formance of the studied applications. Figure 6.7 shows the completion time of applications

under varying input data sizes for Config-4. We increase the respective input sizes shown in

Table 8.2 from 0.5× to 2.5×. We find that although the increase in the completion time is

linear, the rate of increase is not the same across all applications, e.g., Hive takes 2× time

to process 5× more data, whereas, WordCount takes 6× time. Figure 6.8 shows the effect of

increasing the input data size on intermediate data generation. Similar to completion times,

we observe a linear increase in the input data generation. The scaling factor for the inter-

mediate data generation and the completion time is unique per application. Understanding

this enables us to better estimate the time and resources required by the application to

execute on a particular storage configuration with a given data set size. We note that a

similar performance-data size pattern is also observed under other hardware configurations,

though the rate of increase in application completion time and the input data generation

varied across the storage configurations by a linear factor.

6.3.3.4 Limitation of DUX

Throughout the profiling process, we treat the application as a black box. Our prediction

on intermediate data generation and execution time is based on multiple executions of the

application for varying data sets. Although our approach is effective for some applications

such as Sort, NutchIndex, WordCount, TeraSort and KMeans, it can not be generalized for

all possible applications.
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Figure 6.9 shows the intermediate data generated across different executions of Grep on the

same data set with different search queries. We observe that the intermediate data gener-

ated is not constant across all runs and the standard deviation is 9,000 Bytes and 17,000

Bytes for read and write, respectively. DUX will benefit from static program analysis tech-

niques [236] designed for Hadoop applications that can provide hints about the behavior and

the characteristics of the data. While there is an emerging body of work in the area of static

analysis of Hadoop applications [237, 238], there exists no work that is directly applicable

in the targeted context. Moreover, while complementary, such work is beyond the scope of

DUX.

6.3.4 Performance Analysis of DUX

In the next set of experiments, we evaluate the overall performance of DUX using a real

system as well as through whole-system simulation.

6.3.4.1 Trace Driven Simulation

For our simulation, we replayed Facebook-like traces that are generated synthetically by

sampling historical MapReduce cluster traces. These are representative of traces generated

from a Facebook cluster from October 2010 for a period of one and half months and are

provided by Chen et. al. [34]. The available workload for a one day duration and contains

24 historical trace samples, each of 1 hour long. The traces contain the record of accesses to

approximately 18,000 files (along with filenames) constituting a total input size of 1548 TB.
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The size of the shuffle data generated is 375 TB and the output data generated is 755 TB.

55% of files are accessed more than once while the other 45% are accessed only once. The

highest number of accesses to any file is 721. These files are accessed by 25,500 jobs, with

1075 jobs accessing the files every hour.

In our simulation we set RT = 1 hour, i.e., the performance predictor ran once every hour,

generating a new set of popularity predictions and moving the most popular files to the

SSD tier. This creates a new HDFS layout on every interval. Our simulation incorporates

various factors including the impact of replication, contentions while accessing a data file,

and advantages of data distribution along with those observed in Section 6.3.3.

Figure 6.10 shows the completion time across the four fixed storage configurations from

Table 8.1 using DUX. We observe that Config-2 is 14% and 3% faster than Config-4 and

Config-3, respectively. Whereas, DUX is 10% and 6% faster than Config-1 and Config-3,

respectively. We note that although DUX is 5% slower than Config-2, DUX uses 5.5× less

storage than that under Config-2.

Next, we simulate the effect of increasing the size of persistent region in the SSD tier on the

performance predictor. Figure 6.11 shows the variation in the number of cached files and

the percentage of accesses for the SSD tier as the size of persistent region is increased. We

observe that with increasing persistent region size, a larger number of input files are stored

and accessed from the SSD tier. Figure 6.12 shows the effect of increasing the size of tempo-

rary region and its impact on application completion time and network traffic. We observe

that increasing the temporary region size increases the performance of the applications but

at an increased network overhead. This is because the performance predictor is only able to

load an increasingly smaller subset of files into the persistent region, which results in more

data being prefetched, consequently increasing the network traffic. In clusters where network

capacity can potentially become a bottleneck, using large temporary region sizes may not

be a viable option.

6.3.4.2 Implementation Test

In order to validate the results from our simulation, we perform tests on a real cluster de-

scribed in Section 6.3.1. Our workload is generated from traces described in Section 6.3.4.1

and a slice of this workload (lasting for approximately 3 hours) is executed. We replace jobs

in the trace with the benchmark applications (Table 8.2). We note that our implementation
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results do not include the Performance Predictor component, as the workload length is too

small to observe any significant advantages. For the same reason, we also limit our SSD

capacity to be 10% of the available storage. DUX was run on an independent node (so as

to avoid influence of Predictor’s computations and Profiler’s database on the running job)

and communicated with the master node to modify the storage configurations. Figure 6.14

shows the results. We observe that due to its dynamic placement, DUX is 11% faster than

the fixed Config-1 and 6% slower than Config-2 but utilizes 63% less SSD storage capacity

than Config-2. Although Config-2, the full SSD-based Hadoop configuration provides the

fastest solution, DUX offers a practical alternative with fewer number of SSDs. Thus DUX

is effective in its goal of achieving higher performance by effectively utilizing the SSD tier.

In summary, evaluation of DUX using a 9-node Hadoop cluster shows an 11% speed-up in

application completion times when the SSD tier accounted for only 10% of the total available

storage. Our trace-driven simulations using synthetic Facebook workloads show that DUX

performs only 5% slower while using 5.5× fewer SSDs when compared to a Hadoop cluster

provisioned entirely with SSDs.
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6.4 Chapter Summary

In this chapter, we have presented the design and implementation of DUX, an application-

attuned dynamic data management system for Hadoop. DUX aims to improve overall I/O

throughput of Hadoop via effective use of SSDs as a cache, not for all data, but only for

workloads that are expected to benefit from SSDs. The novelty of our approach is that it

profiles the Hadoop application performance on SSDs and HDDs, analyzes the I/O behavior,

and considers the available SSD capacity to dynamically place data in an appropriate storage

tier. We also design placement and retrieval schemes to utilize the caching tier for popular

data, and support prefetching of input data, consequently maximizing the impact of SSDs

on overall performance. We evaluate our implementation of DUX on a 9-node cluster and

show that DUX achieves 11% improvement in application completion times when only 10%

of its storage is provided by SSDs.



Chapter 7

A Heterogeneity-Aware Hadoop
Workflow Scheduler

The DSF hardware setups are becoming heterogeneous, both from the use of advance hard-

ware technologies and due to regular upgrades to the system. This in effect leads to a Hadoop

deployment resembling a cluster of clusters that each has distinct hardware characteris-

tics. The goal of φSched is to sustain Hadoop in the face of such underlying heterogeneous

hardware.

Hadoop applications are also becoming more intricate, and now comprise complex workflows

with a large number of iterative jobs, interactive querying, as well as traditional batch-

friendly long running tasks [52]. Moreover, the workflows are realized through a variety of

high-level tools and languages [86] instead of manual MapReduce programming. Therefore,

systems such as Oozie [87], Nova [88], and Hadoop+Kepler [89] have been developed to man-

age and schedule the workflows, and provide ease of use. The main goals of the workflow

schedulers are to support high scalability, multi-tenancy, security, and inter operability [87].

The challenge is that extant workflow schedulers are (mostly) oblivious of the underlying

hardware architecture. Thus, the schedulers do not consider in their scheduling decisions

the varying execution characteristics such as CPU, memory, storage, and network usage of

Hadoop applications on heterogeneous computing substrates that are quickly becoming the

norm.

φSched considers the applications behavior on specific hardware configurations when schedul-

ing Hadoop workflows. We assume that a deployment is made of one or more resource clusters

each with a different hardware configuration, and that the resources within a cluster are simi-

lar/homogeneous. For this work, we focus on variations in performance characteristics, where

the same application binaries can be run on the different clusters. However, the techniques

presented here can also be extended to clusters comprising advanced architectures such as

100
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GPUs, accelerators, and Microservers. We first study characteristics such as CPU, mem-

ory, storage, and network usage for a range of representative Hadoop applications on four

different hardware configurations. Next, based on our understanding of the applications,

we design a hardware-heterogeneity-aware workflow scheduler, φSched1, which: i) profiles

applications execution on different clusters and performs statistical analysis to determine a

suitable resource–application match; and ii) effectively utilizes the matching information to

schedule future jobs on clusters that will yield the highest performance. Such profiling is

feasible as recent research [52, 93] has shown the workflows to have very predictable char-

acteristics, and the number of different kinds of jobs to be less than ten. To schedule a

job, φSched examines the current utilization of the clusters and the suitability of clusters to

support the job based on prior profiling. Based on these factors, φSched then suggests the

best cluster to execute the job.

As stated above, we treat a Hadoop deployment to consist of multiple separate clusters to

handle resource heterogeneity. This leads to the problem that the best cluster, CB, to run

an application in terms of execution time may not have the data associated with the appli-

cation, entailing data copying/movement to CB from the cluster, CD, that has the data. CD

may not be able to support the application due to hardware constraints. Moreover, the data

movement may be very expensive and negate the performance gain that can be realized by

running the job on CB. A similar problem is faced in standard Hadoop deployments in large

Enterprises as well. For instance, Yahoo! has numerous “common data sets” that are actu-

ally stored across independently-managed storage substrates [239], i.e., the data that may

be required across multiple clusters is managed and stored at only one cluster that cannot

always run the jobs associated with the data. The extant solution is to use the distcp [240]

tool to copy data from one cluster to another. However, this is very expensive, and not

desirable.

Configuring a single Hadoop Distributed File System (HDFS) for all the Hadoop clusters

can help mitigate the above problems. This can lead to two issues. First, a single HDFS

instance may not scale to accommodate all the nodes from the multiple clusters. This is

resolved by the use of HDFS Federation [241] that supports multiple master components,

which ensure increased horizontal scalability. Second, the data placement supported by

HDFS is not suitable to the multi-cluster setup. To this end, we enhance the HDFS with

the notion of a “region,” and the storage substrate attached to each cluster is associated

with a unique region. We then exploit the region information to achieve better cluster lo-

1The φ in φSched is inspired by the use of φ as the work function in solid state physics.
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Figure 7.1 φSched architecture overview.

cality for the data. Moreover, we also provide APIs to move data across regions and use

region-specific replication factors for data items. φSched can leverage these APIs to extract

file specific storage information such as regions in which a file is stored and the number of

replicas of a file in a region. This also leads to better management of data movement when

needed, e.g., by pre-staging data from one cluster to another to improve performance.

7.1 Design of φSched

In this section, we present the design of φSched and how we enhance HDFS to integrate data

from multiple clusters into a single storage component.

7.1.1 Architecture Overview

Figure 7.1 shows the overall architecture of φSched. The target environment consists of

multiple heterogeneous clusters, where each cluster comprise of homogeneous resources. To

effectively manage the heterogeneity, we propose a hierarchical approach where we manage

each cluster separately using an instance of the JobTracker, and then build a software layer

for the multiple JobTrackers to interact with each other. Moreover, to avoid data partitioning

between clusters, we utilize a single NameNode — that we enhance and make heterogeneity

aware — to manage all the clusters.
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The system works as follows. When a job is submitted to φSched, it is placed in a job queue.

Next, we utilize enhanced HDFS APIs to determine the clusters where the data associated

with the job is stored. We examine the current cluster load along with data availability

information to schedule the job to an appropriate cluster. The actual execution is done by

handing over the job to the JobTracker of the selected cluster. We also perform static sta-

tistical analysis to determine the expected execution time and resources required by the job.

Moreover, the actual execution time of the job is compared with the expected values and

also recorded for further fine tuning and analysis, which can then be used to guide future

jobs.

7.1.2 Cluster Manager

We employ a Cluster Manager that manages all the clusters in a deployment. The manager

tracks the load as it is assigned to the clusters, and is also responsible for profiling and pre-

dicting the utilization of resources such as CPU, memory, network and disk, for the clusters.

To this end, we use both static analysis and dynamic profiling.

To drive our static analysis, we studied 12 representative MapReduce applications from

HiBench [235], which cover a wide range of workload behavior such as batch processing,

iterative jobs and interactive querying. This is motivated by previous research [52, 93] that

has shown that MapReduce workloads are predictable in terms of their behavior and that

the number of different kinds of jobs is small. By studying a range of test applications on

the target clusters, we can build knowledge to better guide initial scheduling of jobs in a

multi-cluster deployment.

Once a job is scheduled, the Cluster Manager switches to the dynamic profiling phase. Here,

we exploit the observation that the resource consumption per task is similar across the many

map (or reduce) tasks of an application, provided the underlying hardware is homogeneous.

Thus, within a cluster, we can profile a single map/reduce task to predict the overall con-

sumption, Rr, by the job. The expected Rr depends on the number of map and reduce tasks

therein, the utilization of a single map/reduce task, as well as the input data size. Algo-

rithm 3 shows the steps taken by the Cluster Manager to update the available resources, Ra,

at a cluster as jobs are submitted and complete.
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initialization : Ra = SystemResource;
foreach job j in already scheduled job list do

Ra = Ra - Rr(j);
wait(expectedExecutionT ime of j);
Ra = Ra + Rr(j);

end
Algorithm 3: Determining resource availability. Ra is the resource available in the cluster
and Rr is the resource required by a job.

forall the job j in job queue do
forall the clusters ci in cluster list do

Historyj,ci=FetchCatalog(j, ci);
Rr(j)=HistorylookupResource(datasize);
//From catalog
Rr(j)=ScaleToDevice(datasize); //From static analysis
Ra = GetRa(ci); //From Cluster Manager
if Rr < Ra then

Et(j) = HistorylookupT ime(j, datasize, ci);
OptimalListj .add(ci, Et(j));

end

end
Sort(OptimalListj(ci, Et(j));

end
Algorithm 4: Steps taken by the Execution Predictor.

7.1.3 Execution Predictor

The main task of the Execution Predictor is to determine expected Rr for submitted jobs

and identify suitable clusters to execute the jobs. This component maintains a catalog of

job execution histories for each cluster, which includes information such as a list of recently

executed applications, associated execution times, input data size, and the average Rr across

prior runs of an application. The Predictor interacts with the Cluster Manager to analyze

the catalog in conjunction with the Ra information, and creates lists of potential clusters

that can efficiently support each application in the job queue. Moreover, the lists are sorted

from least to most suitable cluster for supporting the associated job in terms of execution

time and resource utilization. Algorithm 4 shows the steps taken by the Execution Predictor.
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Table 7.1 φSched APIs for enhancing HDFS with region information.

API Arguments & Return Type Description

boolean createFileRegion(...) Creates a replica of a file in the specified region.
String filename Name of the file to be replicated.
String region Region in which the replica will be created.
boolean return value Returns 0 on success, 1 on failure.

boolean deleteFileRegion(...) Removes a replica of a file from a region.
String filename Name of the file whose replica will be deleted.
String region Region from which to remove the replica.
boolean return value Returns 0 on success, 1 on failure.

boolean moveRegion(...) Moves replicas of a file across regions.
String filename Name of the file to be moved.
String from region Source region from which replica will be removed.
String to region Destination region for the new replica.
int number of replicas Number of file replicas to be moved.
boolean return value Returns 0 on success, 1 on failure.

void setRepRegion(...) Modifies the replication policy for a file.
String filename Name of the file to be affected.
String region Region for the new replica.
int number of replicas Number of replicas under the new policy.

void findRegion(...) Map of block distributions across different regions.
String filename Name of the file to be tracked.

7.1.4 HDFS Enhancement

A key challenge that we face in φSched is to ensure that data is seamlessly available in all

the clusters managed by separate JobTrackers. The solution that we employ is to run one

instance of HDFS, i.e., one NameNode, to manage all the nodes across all the clusters. This

leads to the problem that the default replica placement may store data associated with a

job in racks that are multiple hops away from a suitable cluster for running the job. Conse-

quently, resulting in expensive cross-cluster accesses, as well as network contention between

data movement and other Hadoop operations, e.g., shuffle traffic.

To mitigate the above issue, we enhance HDFS to logically arrange participating HDFS

nodes by associating each node’s storage within a virtual storage group referred to as “re-

gion.” Typically, all the storage in a cluster will be assigned to the same region, and storage

from different clusters will be associated with different unique regions. To achieve this, we

modify the DataNode to also include a region identifier as part of its characteristics speci-

fication. At the time of cluster configuration the administrator specifies the regions for the

DataNodes. We also modify the NameNode to use region identifiers to group the DataNodes

into their associated region. We exploit the region information to strategize when and where

to place replicas of a block.

We also provide runtime APIs, shown in Table 7.1, to manage region-aware data placement.

The APIs allow the system to move files between regions, create a replica of an already
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existing file in a specified region and delete a file from a specified region. We note that,

similarly as in default HDFS, all the APIs modify data placement at the granularity of a file

and do not support block-level modifications.

Our placement policy maintains the invariant that a region contains all blocks belonging

to a file. This is to avoid the inter-region fetch that might be needed for the blocks that

are not in the region. Moreover, a region can have more than one replica of a file, and a

file can be replicated in multiple regions as long as each region contains a complete copy

of the file. This provides for routing accesses to frequently used files. Data Placement is

a crucial design decision as naive replication can compromise performance and reduce the

efficacy of our approach. The proposed region-aware placement policy takes into account the

different regions and distributes the three default replicas across the regions. We can also

observe workload patterns and job queue predictions, and use the APIs to move or pre-stage

replicas across regions to ensure that the suitable clusters identified using Algorithm 3 have

the needed data.

A problem of cross-region replication is that the write time for a data item may increase. We

can mitigate it by relaxing the reliability requirement and returning to the application after

writing to the first replica only, while other replicas are created asynchronously. However,

given that HDFS is write-once read-many file system, even if we wait for all replicas to be

written synchronously, the write overhead is amortized quickly by the performance and data

locality advantages achieved using our region-aware placement. Thus, we expect the impact

on the overall application execution time due to our HDFS enhancement to be negligible.

7.1.5 Hardware-Heterogeneity-Aware Scheduling

φSched realizes heterogeneity-aware scheduling as follows. Whenever a job is submitted to

the job queue, φSched invokes the Cluster Manager to compute the expected execution time

of the job on the different clusters. The Cluster Manager in turn consults the Execution

Predictor to return a sorted list of clusters. φSched then uses the list and the enhanced

HDFS APIs to find the region that contains the job associated data. This information is

then used to select an appropriate cluster to execute the job. The job information is also

tracked to guide future analysis and scheduling. In case a cluster, Ca, is available but does

not have the required data, φSched will wait for a pre-specified time for a cluster with the

data to become available. If that does not happen, φSched will invoke the HDFS APIs to
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copy the data to Ca. This ensures that jobs wait time is bounded as long as resources are

available in the system.

Profiling execution time for all applications across all the clusters in a deployment will help us

understand the behavior of studied applications. Once we have a sorted list of the time that

each application takes to complete on a specific hardware, Execution Predictor will be able

to estimate the execution time and required resources for upcoming jobs based on this infor-

mation. This approach enables φSched to appropriately schedule each application according

to available resources and the performance of the application on a particular hardware.

7.2 Implementation of φSched

In this section, we describe our implementation of the various components of φSched and

the HDFS enhancements.

Cluster Manager and Execution Predictor We have implemented a proof-of-concept

Cluster Manager and Execution Predictor in Python. We used the SAR tool [210] to collect

job execution traces containing information such as disk, network, memory, and CPU usage

for applications running on various clusters. We also parse the Hadoop logs to determine

the timestamps associated with the start and finish time for the applications, which are then

used to separate execution information for each application. The Execution Predictor uses

the MySQL database to store the collected application information as well as the associated

resource utilization. We used MySQLdb module [242] (package name python-mysqldb) to

enable this interaction.

Region Identification The HDFS region-awareness is realized by modifying or adding

about 1800 lines of Java code in Hadoop to add the features of and to enable the APIs

of Table 7.1. We introduce a new parameter dfs.region.id in the Hadoop configuration file

(hdfs-site.xml), which the cluster administrator can use to identify the region to which

different DataNodes belong. Next, we modify HDFS’s DataNodeDescriptor data structure

to incorporate the unique identifier as an additional global characteristic of each DataNode.

The extended descriptor can then be used by the HDFS’s DataNodeRegistration process for

registering the region-based DataNode with the NameNode.



7.3 Evaluation of φSched 108

To support region based data placement, we modify the NameNode’s ReplicationTar-

getChooser component to implement the proposed region-aware data placement. A list of

nodes is chosen from the NetworkTopology structure that provides information about various

racks and regions in the cluster (clusterMap). The nodes selected to store a replica of a data

is added to the excludenode list to ensure that multiple replicas of a block are not placed on

the same node.

After a DataNode is chosen to store a block, the block and its corresponding INodeFile struc-

ture are associated with the DataNode’s region. This is to enable re-replication of the block

in the same region in case of a failure. A background daemon periodically runs to ensure

that the blocks are associated with appropriate regions, and if not, the daemon initiates our

moveRegion API to move the replicas to the appropriate regions.

7.3 Evaluation of φSched

We evaluate φSched using a real deployment on a medium-scale cluster. In the following,

we first study the characteristics of 12 representative Hadoop applications on four different

cluster hardware configurations. Next, we evaluate the impact of our HDFS enhancement

and data placement policy. Finally, we compare the overall φSched performance against a

hardware oblivious workflow scheduler.

7.3.1 Experimental Setup

We used the Amazon EC2 [243] to perform our experiments. We used four clusters of eight

homogeneous nodes, where each cluster had a different hardware configuration as listed in

Table 7.22. All the virtual machines that we use are based on 64-bit Ubuntu Server 12.04.3.

In all of the Hadoop deployments considered in our tests, the master node ran both the

Hadoop JobTracker and NameNode, and was co-located with a worker node. Moreover,

all worker nodes were configured with two map slots and two reduce slots, along with a

DataNode component.

2Amazon EC2 description does not specify the exact networking characteristics, rather provide a relative
ranking only, which we report in the table.
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Table 7.2 Hardware configurations considered in our experiments.

Name ECUs vCPUs RAM (GB) Storage (GB) Network

m3.large 6.5 2 7.5 1 x 32 (SSD) Moderate
m3.xlarge 13 4 15 2 x 40 (SSD) High
m2.xlarge 6.5 2 17.1 1 x 420 Moderate
c1.xlarge 20 8 7 4 x 420 High

Table 7.3 Representative MapReduce (Hadoop) applications used in our study.

Application Map Reduce Number
Input Output Output Mapper Reducer

NutchIndex 1.5 GB 2.8 GB 1 GB 1 81
WordCount 6 GB 30 GB 12 KB 102 8
DFSIOE-Read 8 GB – – 128 1
DFSIOE-Write 8 GB – – 128 1
Kmeans 1 GB 64 KB 1 GB 20 1
Hive-bench 5 GB 3.2 GB 256 MB 8 16
PageRank 128 MB 1 GB 12.5 MB 16 8
Bayes 128 MB 256 KB 4.5 GB 16 1
RandomWriter – – 3 GB 32 0
Sort 3 GB 11.5 GB 3 GB 64 8
TeraGen – – 15 GB 16 0
TeraSort 15 GB 15 GB 15 GB 249 8

7.3.2 Studied Applications

In this section, we describe 12 applications from the well-known Hadoop HiBench Benchmark

Suite [235], which we have used in our study. These applications are representative of batch

processing jobs, iterative jobs and interactive querying jobs. Table 7.3 lists the applications,

and for each also summarizes parameters such as the input and output data size, and the

number of mappers and reducers.

7.3.3 Application Analysis

In our first set of experiments, we analyze the performance of our test applications under

four different clusters configurations. The input parameters of the application are specified in

Table 7.3. The results discussed below are average of four executions; the standard deviation

across the runs was observed to be negligible.



7.3 Evaluation of φSched 110

 0

 100

 200

 300

 400

 500

 600

 700

N
u
tch

In
d
e
x

W
o
rd

C
o
u
n
t

D
F
S

IO
E

-R
e
a
d

D
F
S

IO
E

-W
rite

K
m

e
a
n
s

H
ive

-b
e
n
ch

P
a
g
e
R

a
n
k

B
a
ye

s
R

.W
rite

r
S

o
rt

T
e
ra

G
e
n

T
e
ra

S
o
rt

T
im

e
 (

s
)

m3.xlarge
m2.xlarge
m3.large
c1.xlarge

Figure 7.2 Application execution time on the
studied hardware configurations.
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Performance Comparison In this test, we measured the execution time of our test appli-

cations on the studied clusters. As shown in Figure 7.2, the execution time of the applications

varies across different cluster configurations. We find that across all applications, on average,

m3.xlarge performs 17.5% faster than both m3.large and m2.xlarge cluster configurations.

However, we observe that the variation in performance is not similar across all applications.

For instance, in case of NutchIndex, m3.xlarge performs 48% faster than c1.xlarge, whereas

for the same cluster, Bayes perform only 6% faster.

To study this variation in detail, we compared the performance under m3.large and m2.xlarge

across all the studied applications. Figure 7.3 shows the results. For applications such as

NutchIndex, Kmeans, PageRank, Bayes, and Sort, m3.large performs better, while for the rest

of the applications m2.xlarge performs better. One reason for this is the varying resource

needs of the applications. For example, TeraSort that is a memory intensive application

performs 16.5% faster in m2.xlarge that has more memory, and NutchIndex that involves

significant network and I/O usage performs better in m3.large that has better intercon-
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nects. Similar pattern is also observed while comparing the execution time of m3.xlarge with

c1.xlarge, in fact the best case placement will perform 34% faster than the worst case. These

results validate our claim that the performance of the application varies significantly across

various cluster configurations, and can be problematic if the entire deployment is managed

using a single Hadoop instance or in a hardware oblivious manner.

Impact of Data Size In the next set of experiments, we study the impact of increase in

data size on the performance of the studied applications. Figure 7.4 shows the execution

time of the applications under varying data size for the m2.xlarge configuration. We increase

the input size shown in Table 7.3 from 1× to 3×. We find that although the increase in

the execution time is linear, the rate of increase is not the same across the applications,

e.g., PageRank takes 1.31× the time to process 3× more data, whereas NutchIndex takes

2.87× the time. Understanding the scaling factor for an application enables us to better

estimate the time and resources required by the application to execute on a particular hard-

ware configuration with a given data set size. We note that a similar performance-data size

pattern was also observed under other hardware configurations, though the rate of increase

in application execution time varied across the hardware configurations.

Usage Characteristics Next, we study the CPU, memory, storage, and network usage of

our test applications. While, we studied all the applications and observed similar variations,

we present the results only for Kmeans, TeraSort, and Bayes.

Kmeans is an iterative application and the size of the data does not vary between iterations.

Moreover, Figure 7.5 shows that the resource usage is similar across iterations. We observe

that Kmeans is CPU bound and uses almost 28% of the CPU, on average. Next, Figure 7.6

shows the usage characteristics of TeraSort. Although the execution time of the application

is similar to that of Kmeans, it shows 35% increase in the CPU usage and 24% increase

in memory utilization with the peak memory utilization reaching up to 50% compared to

that for Kmeans. Similarly, while comparing the storage and network usage of TeraSort

and Kmeans, we observe that TeraSort shows higher usage characteristics with up to 9× for

storage and 10× for the network on average. The peak usage reaches up to 2× for storage

and 4× for the network. Thus, execution time alone is not a good indicator of the suitability

of a resource to efficiently support an application.

The results for Bayes are shown in Figure 7.7. We see that Bayes has 2× the execution

time compared to both Kmeans and TeraSort. We observe that in spite of the increased
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Figure 7.5 Resource usage characteristics of Kmeans on m3.xlarge.
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Figure 7.6 Resource usage characteristics of TeraSort on m3.xlarge.

execution time, the average resource utilization is very low. The peak memory usage is less

than 20% throughout the execution of the application, and it is 5× less than that of the

peak utilization of TeraSort. Moreover, the average memory utilization is 6× lower than

that of TeraSort. Similarly, the average utilization of CPU, storage and network is also low

and bursty. Understanding such usage behavior enables us to co-locate appropriate tasks,

e.g., a compute-intensive task with an I/O-intensive task running on the same cluster, in

order to achieve efficient resource usage without sacrificing application performance.

7.3.4 HDFS Enhancement

In the next experiment, we evaluate how our HDFS enhancements impact φSched. For this

test, we use a local cluster instead of EC2. This is because we want to use a slower in-

terconnect that can help highlight the impact on the network, which may be masked due

to the high-speed interconnects in EC2. To emulate a large cluster with a large number

of DataNodes, we run five DataNodes in each physical node, which gives us a total of 50

DataNodes. We categorize the nodes into five regions.

Validation of Placement Policy To validate our region-aware placement policy, we ran

TeraGen to generate 20 GB (318 blocks) of data distributed across different nodes. Fig-

ure 7.8 shows the distribution of blocks, which we determine by parsing HDFS logs. We find

that both the default placement and region-aware placement distributes the data uniformly
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Figure 7.7 Resource usage characteristics of Bayes on m3.xlarge.
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cated across multiple regions under default and
region-aware policies.

among different regions. However, a closer analysis (Figure 7.9) reveals that for the default

policy, only 24% of the files have all their blocks replicated across three different regions, and

more than 22% of the files have their data blocks replicated within only one region. This

would lead to expensive remote accesses if the jobs are scheduled to the clusters associated

with the other four regions. In contrast, the region-aware policy distributed all the blocks

across different regions, thereby providing a more efficient distribution of data, which in turn

would reduce the network overhead when jobs are scheduled across regions.

To ensure this is the case, we took the data placement distributions created by the two

policies, and ran TeraSort on the distributed data. We observed that the default policy

resulted in 48% accesses that are remote reads, whereas region-aware policy has only 14%

remote reads. This eliminates the additional network overhead for 34% of reads, consequently

improving the overall performance.

Performance Analysis In our next test, we measured the read and write performance

under our HDFS enhancements using the HDFS benchmark TestDFSIO. Here, each worker

node writes a 1024 MB file (16 blocks) during the write test followed by reads of a file of

the same size during the read test. Figure 7.10 shows the overall I/O throughput for each of

the map tasks, as well as the average I/O rate across all map tasks. We find that the HDFS

enhancements yield lower throughput and average I/O rate for the write operations. This
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Figure 7.13 Average hardware usage of the test
workflow under φSched.

is because of the network overhead involved in writing all the replicas to different racks. As

pointed our earlier, this overhead can be amortized due to write-once read-many workloads

of Hadoop, as well as through use of asynchronous replication. In case of read operations,

the region-aware placement shows 23% improvement in throughput and 26% improvement

in average I/O rate. Moreover, we find that the variance in the average I/O rate for the

default policy is high because of the high variation in the network overhead associated with

each read operation. As observed, this is minimized under the region-aware policy.

These experiments outline the benefits that the proposed region-aware HDFS enhancements

can provide for Hadoop workflow scheduling.
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7.3.5 Performance of φSched

In our next experiment, we evaluate the performance of φSched. We use a 20-node Hadoop

deployment with the four cluster configurations of Table 7.2, each with five nodes. The

Hadoop master components co-exist with a worker node in each of the clusters. Moreover,

we run the management components of φSched on a separate m3.xlarge node. For compari-

son, we use a hardware oblivious workflow scheduler (similar to schedulers such as Oozie or

Nova) as our baseline, where data is randomly assigned to clusters and workloads are sched-

uled to clusters that store the input data whenever possible. To drive our test, we generated

a large workflow comprising of 48 applications chosen randomly from Table 7.3. Each of

the application was included at least once, with multiple instances of the same application

processing randomly varying input data. First, we measured the execution time for baseline

and φSched as shown in Figure 7.11. We repeated the experiment three times. The baseline

scheduler results varied, while those for φSched were consistent across the runs. We observe

that φSched yields 17% to 22% better execution time than that under baseline, and the

average improvement is observed to be 18.7%.

Next, we compared the average resource utilization across different hardware configurations

under baseline and φSched. Figures 7.12 and 7.13 show the results. We find that the aver-

age memory utilization for the high-memory cluster m2.xlarge is lower than that of m3.large

under baseline. Similarly, c1.xlarge that is provisioned only with a HDD performs 1.2×

more I/O operations than m3.xlarge that is provisioned with a SSD. This leads to an in-

creased execution time. In contrast, φSched considers resource availability while scheduling

the jobs to different clusters, which results in better utilization of available resources as seen

in the figures. For example, the average memory utilization in m2.xlarge is 1.5× higher than

m3.large, which is the expected behavior.

In summary, our evaluation of φSched reveals that hardware-aware scheduling is a viable

solution in large deployments with multiple heterogeneous clusters. φSched can improve the

execution time of the applications by scheduling jobs to clusters that are better suited to

support them. These features are key to sustaining Hadoop for emerging architectures and

applications.
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7.4 Chapter Summary

In this chapter, we design and implement φSched, a novel hardware-aware workflow scheduler

for Hadoop. We observe that different workflows perform differently under varying cluster

configurations, and making workflow managers aware of the underlying configuration can

significantly increase overall performance. To implement this approach, we developed a hier-

archical scheduler that treats a Hadoop deployment as a collection of multiple heterogeneous

clusters. We also enhance HDFS to manage storage across a multi-cluster deployment, which

allows φSched to handle data locality as well as enable pre-staging of data to appropriate

clusters as needed. We study the impact of φSched on Hadoop application performance

using a range of representative applications and configuration parameters. Our evaluation

shows that φSched managing four different clusters can achieve performance improvement

of 18.7%, on average, compared to hardware oblivious scheduling. Moreover, for the well-

known TestDFSIO benchmark, our HDFS enhancement increased the I/O throughput by up

to 23% and the average I/O rate by up to 26%.



Chapter 8

Towards Energy Awareness in Hadoop

In this work, we propose ǫSched to improve the application-resource match by considering

heterogeneous Hadoop deployments that comprise of one or more homogeneous sub-clusters.

The set of tasks to be executed on the heterogeneous deployment cluster will be scheduled to

the sub-clusters such that the total energy consumption is minimized while the performance

goals specified in the Service Level Agreement (SLA) are met. We propose simple, applica-

tion characteristic-aware task scheduling in Hadoop to reduce the power consumption or to

improve the throughput.

8.1 Design of ǫSched

To this end, we present ǫSched, a heterogeneity-aware and power-conserving task scheduler

for Hadoop. ǫSched extends our own φSched system [94] – a hardware characteristic-aware

scheduler that improves the resource-application match. We extend Hadoop’s hardware-

aware scheduler, which is optimized only for performance, to be an energy efficient scheduler.

We adopt a quantitative approach where we first study detailed behavior of applications,

such as performance and power characteristics, of various representative Hadoop applications

running on four different hardware configurations. Next, we incorporate findings of these ex-

periments into φSched. To ensure that job associated data is available locally to (or nearby)

a cluster in a multi-cluster deployment, φSched configures a single Hadoop Distributed File

System (HDFS) [94] instance across all the participating clusters. As part of ǫSched, we also

design and implement a region-aware data placement and retrieval policy for HDFS in order

to reduce the network overhead and achieve cluster-level data locality.

117
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Figure 8.1 ǫSched architecture overview.

8.1.1 Energy Profiler

As shown in Figure 8.1, ǫSched integrates an Energy Profiler component to φSched to track,

record and analyze the power usage characteristics of the application on a particular hard-

ware. ǫSched computes the performance to power ratio for different jobs in each cluster. As

shown in Section 8.2, different cluster show different performance and power characteristics.

There is no single cluster that is optimal for power and performance for all workloads.

As illustrated in Algorithm 5, when a job is to be scheduled in one of the homogeneous

sub-clusters, C1, C2, ..., Cn in a heterogeneous cluster, C, deployment, the Energy Profiler

component accesses its profiled power characteristics. The sub-clusters are arranged in the

order of performance to power ratio. Energy Profiler will traverse through the ordered list

of sub-clusters to find the cluster that would meet the SLA of the workflow to be sched-

uled. Upon recognizing the optimal sub-cluster that will ensure the least power usage while

meeting the SLA requirements, the Cluster Manager in φSched checks for the availability of

resources in optimal sub-cluster to schedule the workflow W . If the availability of resources

is determined, W is scheduled, else the process is repeated to search for the next optimal

cluster.
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For workload W , arrange clusters C1 to Cn in C in the descending order of
performance to power ratio ;
foreach Ci in C do

if Ci meets SLA then
if isResourceAvailable(Ci,W ) then

Schedule W in Ci;
Increment cluster utilization for Ci;
break ;

end

end

end
Algorithm 5: Energy Profiler in ǫSched.

8.1.2 Discussion

The HDFS enhancement provided by φSched will ensure data availability in a smaller set of

nodes by modifying the placement policy. At least one replica of a file is stored in a small

subset of nodes (i.e., the sub-cluster with low power-usage) called Covering Subset [244].

This will enable us to apply energy harvesting techniques such as turning a sub-cluster off or

running in it low power mode for any of the under-utilized sub-clusters that are not a part

of Covering Subset.

It is important to note that the power characteristics of a workload on a cluster is linearly

dependent on the data size. Thus the profiler component can linearly extrapolate the power

characteristics to different data sizes based on the studied workloads. Similar observations

were made for performance characteristics in φSched [94]. Moreover the number of sub-

clusters in a real deployment will be less than ten, so the overhead constituted by the energy

profiler component is minimal.

8.2 Evaluation of ǫSched

We evaluate the energy characteristics of Hadoop applications on using a real deployment

on a medium-scale cluster. We first study the characteristics of 8 representative Hadoop

applications on three different cluster hardware configurations.
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Table 8.1 Hardware configurations considered in our experiments.

Name CPUs
RAM Storage

Network
Map Reduce

(GB) (GB) Slots Slots

Cluster-1 16 16 HDD 10 Gbps 8 4
Cluster-2 2 2 HDD 128 Mbps 2 2
Cluster-3 8 8 SSD 1 Gbps 4 2

8.2.1 Experimental Setup

We used three clusters of five homogeneous nodes each, where each cluster has a different

hardware configuration as listed in Table 8.1. In all of the Hadoop deployments considered

in our tests, the master node ran both the Hadoop JobTracker and NameNode, and was

co-located with a worker node. Moreover, all worker nodes were configured with varying

number of map and reduce slots depending on the configuration of the machines (Table 8.1)

along with a DataNode component.

For measuring the power usage we used Watts Up? PRO [245] power meters in the worker

nodes. The power values represented in this section are usage characteristics of one worker

node in every sub-cluster. All worker nodes in a single sub-cluster are homogeneous and

showed similar power characteristics. We do not consider the power consumption of the

master node, as we do not propose any optimization to the Hadoop master components.

8.2.2 Studied Applications

We have used 8 applications from the well-known Hadoop HiBench Benchmark Suite [235]

in our study. These applications are representative of batch processing jobs and iterative

jobs. Table 8.2 lists the applications, and summarizes parameters, i.e., the input and the

output data sizes, the number of mappers and reducers, for each application.

In this experiment, we measured the execution time of our applications on each of the stud-

ied clusters. As shown in Figure 8.2, the execution time of the applications varies across

different cluster configurations. We find that across all applications, on average, Cluster-1

performs 43% and 31% faster than Cluster-2 and Cluster-3, respectively. However, we ob-

serve that the variation in performance is not similar across all applications. For instance,

in the case of DFSIOE-Read which involves significant I/O, Cluster-3 performs 14% faster

than Cluster-1, whereas for the same cluster, PageRank performs only 22% slower.
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Table 8.2 Representative MapReduce (Hadoop) applications used in our study.

Application Map Mappers Reducers
Input Output

WordCount 6 GB 12 KB 120 8
DFSIOE-Read 8 GB – 128 1
DFSIOE-Write 8 GB – 128 1
Kmeans 1 GB 1 GB 20 1
PageRank 128 MB 12.5 MB 16 8
Bayes 128 MB 4.5 GB 16 1
Sort 6 GB 3 GB 120 8
TeraSort 15 GB 15 GB 240 8

 10

 100

 1000

 10000

W
o
rd

C
o
u
n
t

D
F
S

IO
E

-R
e
a
d

D
F
S

IO
E

-W
rite

K
m

e
a
n
s

P
a
g
e
R

a
n
k

B
a
ye

s

S
o
rt

T
e
ra

S
o
rt

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Cluster1
Cluster2
Cluster3

Figure 8.2 Time taken for each application in
studied cluster.

-100

-50

 0

 50

 100

W
o
rd

C
o
u
n
t

D
F
S

IO
E

-R
e
a
d

D
F
S

IO
E

-W
rite

K
m

e
a
n
s

P
a
g
e
R

a
n
k

B
a
ye

s

S
o
rt

T
e
ra

S
o
rt

%
 v

a
ri
a

ti
o

n
 i
n

 p
e

rf
o

rm
a

n
c
e

Figure 8.3 Performance improvement observed
on Cluster-1 compared to Cluster-2.

To study this variation in detail, we compared the performance under Cluster-1 and Cluster-

2 across all the studied applications. Figure 8.3 shows the results. For applications such

as WordCount, DFSIOE-Write, Kmeans, Bayes, and Sort, Cluster-1 performs better, while

for the rest of the applications Cluster-2 performs better. One reason for this is the varying

resource requirements of the applications. For example, Kmeans, which is a CPU intensive

application, performs 27.5% faster in Cluster-1 that has more memory, and TeraSort, which

involves significant network and I/O usage, performs better in Cluster-3 that has better

interconnects.

8.2.3 Power Usage Comparison

In this experiment, we measured the total power consumption of our test applications on the

studied clusters. As shown in Figure 8.4 (Y-axis — log scale), the total power consumption

of the applications varies across different cluster configurations. As expected, the power
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Figure 8.4 Total power consumption for each
application in studied cluster.

-200

-150

-100

-50

 0

 50

 100

 150

 200

W
o
rd

C
o
u
n
t

D
F
S

IO
E

-R
e
a
d

D
F
S

IO
E

-W
rite

K
m

e
a
n
s

P
a
g
e
R

a
n
k

B
a
ye

s

S
o
rt

T
e
ra

S
o
rt

%
 v

a
ri
a
ti
o
n
 i
n
 p

o
w

e
r

Figure 8.5 Power Consumption observed on
Cluster-1 compared to Cluster-2.
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Figure 8.6 Power Consumption observed on
Cluster-1 compared to Cluster-3.
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Figure 8.7 Average power consumption for
each application in studied cluster.

consumption of an application is not only dependent on the underlying hardware architec-

ture but also on the execution time of the application. For applications such as WordCount,

DFSIOE-Write and DFSIOE-Write, the optimal power consumption is observed when exe-

cuted on Cluster-1; for Kmeans, PageRank, Bayes and Sort the optimal power consumption

is observed under Cluster-2; finally, TeraSort shows the least power consumption under

Cluster-3.

To further study this variation in detail, we compared the power consumption under Cluster-1

and Cluster-2 across all the studied applications. Figure 8.5 shows the results. For applica-

tions such as WordCount, DFSIOE-Read, and DFSIOE-Write, Cluster-3 shows lower power

consumption while for Kmeans, PageRank, Bayes, Sort and TeraSort Cluster-1 shows the

lower power consumption. Similarly Figure 8.6 shows the comparison of power consump-

tion between Cluster-1 and Cluster-3. For applications such as WordCount, DFSIOE-Write,

DFSIOE-Write and Kmeans, Cluster-3 performs better while Cluster-1 performs better for

the rest of the applications.
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Figure 8.8 Performance to power ratio for each
application in studied cluster.
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Figure 8.9 Performance to Power ratio im-
provement observed on Cluster-1 compared to
Cluster-2.

We observe that in spite of the high execution time, for a subset of applications such as

WordCount, DFSIOE-Read and DFSIOE-write, the total power consumption is the least

in Cluster-2 because of its low average power consumption as shown in Figure 8.7. It is

observed that Cluster-2 consumes the least power and Cluster-1 and Cluster-3 consume 2×

and 3× the power respectively. A similar trend is observed across all applications.

8.2.4 Performance to Power Ratio Comparison

Figure 8.8 compares the ratio (higher the better) of performance to the total power in or-

der to find the optimum cluster in terms of both performance and power. For applications

such as WordCount, DFSIOE-Write and DFSIOE-Write, the optimal cluster is Cluster-1,

for Kmeans, PageRank, Bayes and Sort the optimal cluster is Cluster-2, and for TeraSort

the optimal cluster is Cluster-3. In Figure 8.9, detailed examination reveals a variation in

the application behavior, similar to the above cases.

For our next set of experiments, we develop an accurate simulator for ǫSched to observe the

power consumption and the execution time of the considered clusters. Our fine-grained sim-

ulator takes into account details such as the effect of compute capacity, network and storage

infrastructure, and application-hardware affinity with reference to power and execution time.

We simulate a 300-node cluster, consisting of three 100-node homogeneous sub-clusters. The

configuration of each node in a sub-cluster is similar to Cluster-1, Cluster-2 and Cluster-3

shown in Table 8.1. We use the publicly available synthetic Facebook production traces [211]

for driving the simulation. We replay a snippet of these traces using HiBench [212] applica-

tions (Table 8.2). The traces run for a length of 3 hours under baseline Hadoop (hardware
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Figure 8.10 Power and performance improvement of ǫSched over Hadoop.

oblivious scheduling).

Figure 8.10 shows the completion time and the power consumed by the workloads under both

ǫSched and hardware oblivious scheduling. To highlight the power savings achieved using

ǫSched we neglect the power consumption of the system in idle state, assuming that power

management schemes can be applied to nodes that are in idle state for a longer period of

time. ǫSched achieves both performance benefits and power savings over baseline Hadoop.

By the application-hardware match improvements in ǫSched, the completion time of the

application improves by 12.8%, while consuming 21% less power than baseline Hadoop.

In summary, the above experiments validate the claim that different application-hardware

interactions produce different power consumption and performance characteristics.

8.3 Chapter Summary

In this paper, we design and implement ǫSched, a novel hardware-aware workflow sched-

uler for Hadoop. We observe that different workflows have different performance and power

usage characteristics under varying cluster configurations, and making workflow managers

aware of the underlying configuration can significantly increase overall performance and

power consumption. We study the impact of ǫSched on Hadoop application performance

using a range of representative applications and configuration parameters. Our evaluation

shows that ǫSched managing three different clusters can achieve performance improvement

of 12.8%, on average, while consuming 21% less power when compared to hardware oblivious

scheduling.



Chapter 9

Conclusion

The dissertation presents the design of a resource management framework for heteroge-

neous DSFs. A major problem faced in evolving DSFs is to efficiently handle increasing

heterogeneity in the underlying hardware infrastructure. The infrastructure that supports

DSFs is becoming increasingly heterogeneous. DSF computation is tending towards low-

cost, power-efficient clusters that employ traditional servers along with specialized resources

and high-throughput DSF storage is trending towards hybrid and tiered approaches that use

large in-memory buffers, SSDs, etc., in addition to traditional disks. One reason for this is

that different types of hardware such as CPUs, memory, storage, and network are deployed

when large clusters typically go trough upgrade phases. However, a more crucial driver for

the heterogeneity is the rise of hybrid systems. The net effect of the above trends is that

DSF cluster nodes exhibit orders of magnitude variation in terms of compute power, cluster

integration and programmability. While recent studies have shown that use of specialized

accelerators for Hadoop is desirable, sustaining DSFs on such resources is challenging. This

is because most modern DSFs are designed to run on homogeneous clusters and cannot

effectively handle general purpose workloads on heterogeneous resources.

In this dissertation, we research to design, implement, and evaluate an application-

characteristics-aware resource manager for DSFs, which adopt a quantitative approach where

we first study detailed behavior of various DFS applications running on different hardware

configurations and propose application-attuned dynamic system management in order to

improve the resourceapplication match. LSN presents a novel enhancement for Hadoop,

which divides a traditional Hadoop rack into several sub-racks, and consolidates the disks

attached to each of the sub-racks compute nodes into a shared LSN for servicing the sub-

rack. The scope of a single LSN can range from serving a few nodes to perhaps a complete

Hadoop cluster rack depending on workload and usage characteristics. The thesis also ex-

plores the utility of heterogeneous storage devices in Hadoop and address challenges therein

125
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by designing hatS, a heterogeneity-aware tiered storage for Hadoop. hatS logically groups

all storage devices of the same type across the nodes into an associated “tier.” hatS also

provides custom APIs for seamless data transfer across the tiers and management of stored

data in each tier. These features allow hatS to integrate heterogeneous storage devices into

Hadoop to extract high I/O performance. AptStore analyzes the I/O access patterns and

suggests storage policies to increase the overall read throughput and the storage efficiency

of the system. To tackle compute heterogeneity, φSched examines the current utilization of

the clusters and the suitability of clusters to support the job based on prior profiling. Based

on these factors, φSched then suggests the best cluster to execute the job. DUX provides

an application-attuned storage management for Hadoop, it predict the impact of the I/O

accesses on execution time and choose an appropriate tier for storing the intermediate data

and for the jobs waiting in the job queue, prefetch the input data into the SSD tier if it

has not been selected by AptStore. DerbyhatS provides a holistic approach by combining

the above component and enabling a workflow scheduler, constituted of two components.

φSched manages the compute heterogeneity and DUX coupled with AptStore manages the

storage the storage substrate to exploit heterogeneity.

9.1 Future Research

This is a DSF era in which heterogeneous-aware resource management techniques serve as a

fundamental enabling technology. In this dissertation, we have addressed the challenges of

managing resources and enhanced heterogeneous storage management for emerging DSFs.

Nevertheless, there exists a number of open questions related to the efficient use of comput-

ing resources in the cloud. In the following, I outline my vision that are natural extensions

of the techniques discussed in this dissertation especially in data analytics performance

improvement, areas of resource management and storage optimization in DSFs.

9.1.1 Evaluating the Impact of Heterogeneous DSF Design Changes
in Simulation Frameworks

DSFs, both native and in the cloud, are now integral in delivering fast time-to-solution in

a myriad of fields. Simulation-based modeling to re-architecture DSFs can have a profound
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impact on how we think of developing, deploying, and using the next-generation heteroge-

neous DSF applications and systems. Evaluating the impact of DSF design changes in real

clusters is cumbersome, consider the following steps in determining whether a new network

topology for DSF would be beneficial. First, the new cluster networking must be configured,

typically requiring labor-intensive rewiring, and designing new routing. Some cluster nodes

may also need to be repositioned, e.g., to make room for the new network components, fur-

ther requiring reconfiguring of support infrastructure, e.g., electrical sockets, cooling, etc.

Second, a set of representative benchmarks must be run to test cluster performance. Third,

the results have to be assembled and analyzed. Then, the whole process has to be repeated

for varying cluster sizes to ensure that the observed behavior is not merely an artifact of

a particular cluster/benchmark instance. Consequently, testing new DSF designs on a real

cluster quickly becomes overwhelming, forcing many DSF cluster designers to simply use

generic models that yield sub-optimal realizations. On the other hand, using integrated

simulations can simplify, speedup, and automate explorations in the DSF design space.

To this end, simulations can enable cost-effective exploration of new hardware and software

concepts. A benefit of simulations is that they enable investigation of innovative designs in

DSF, even if they are merely conceptual and have not been completely implemented, e.g.,

novel networking hardware. Such exploratory studies are not cost-effective or even possible

if done on a real cluster. One example is the study of different storage-compute configu-

rations for scalability. For example, Network Attached Storage (NAS) can be employed in

DSF if the loss of data locality is amortized using an innovative design, e.g., via using novel

interconnects. Another example is to revisit optimizations, such as anticipatory scheduling

and history based prediction, in the context of DSF All of the above mentioned design ex-

plorations become even more difficult for virtualized DSF, as now one has to also consider

the interactions of DSF with cloud VM management, as well as virtualized topology. Simu-

lations are ideal here, as they can model entire systems and provide insights into the relative

performance of different designs.

Simulations can predict DSF behavior online to drive better resource management simula-

tions to provide means for quickly estimating system behavior. We can capture the current

state of a live DSF system, simulate, and predict the expected interactions for the near

future. This information can then be used to guide DSF resource management. Thus, our

proposed simulation framework can also be used as a scheduling and resource management

tool for DSF. Developing such an encompassing DSF simulation framework is a daunting

task. Of particular importance is extending and verifying the simulator at scale, ensuring
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its modularity, and developing associated flexible and expandable APIs. Another issue is to

accurately capture DSF behavior, especially given the myriad of design parameters, as well

as validation of the sub-components and the system as a whole. Finally, the overhead of

running the simulation online within DSF should be kept to a minimum.

9.1.2 Application Behavior Analyzer and Optimizer

A major problem faced in evolving DSFs applications is that they typically are complex

workflows comprising multiple different kernels. The kernels can be diverse, e.g., compute-

intensive processing followed by data-intensive visualization, and thus preclude the use

of extant static global optimizations in DSFs. Typical modern data analysis application

workflows comprise of multiple independent tasks exhibiting different characteristics during

application execution, and the underlying infrastructure is also becoming heterogeneous.

Current optimizations in compilers and runtime systems are severely limited in handling

user defined functions (UDFs) , such as the ones implementing custom mappers, reducers,

and mergers. UDFs currently are treated as black boxes, whose properties and potential for

parallelization on different types of hardware remain unexplored. These black-box UDFs are

increasingly composed into complex dataflows, but the runtime system remains unaware of

their essential characteristics, and as a result, opportunities for many cross-task and cross-job

optimization opportunities are lost. There is an urgent need for an automated, cross-layer

performance optimization framework for DSFs, which encompass new compile- and run-time

optimizations, and also supports their seamless collaboration.

Many DSFs are now running complex workflow applications with user defined functions,

which are currently treated as black boxes. One way to improve performance is to expose

the heterogeneity and allow programmers to handle it explicitly. However, this would be

counterproductive and break the effective programming model that makes modern DSFs

easy-to-use. Rather an indepth understanding of properties of complex workflows is needed

to do away with the unsustainable black box model and to improve the DSF cluster design

and resource management strategies. An application-aware optimizer can exploit a wide

spectrum of UDF properties such as data partitioning and functional/algebraic properties,

such as monotonicity and commutativity. For example, if the input dataset is sorted, and a

transfer function is monotonically increasing, then the output is guaranteed to be sorted as

well. If an intelligent DSF runtime system can infer this property, it can eliminate a sub-

sequent network hungry data-shuffling phase, therefore significantly improving the runtime
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performance. Similarly, an optimizer in the workflow execution engine can move a cheap

filter ahead of a more expensive operation with which the filter commutes. However, if the

operation involves a UDF, which is treated as a black box by todays runtime systems, it

would be impossible for the optimizer to decide whether the two operations commute.

To support writing of efficient data parallel programs without sacrificing programmabil-

ity, we need to hide the details of the DSF runtime and leverage automated optimizations

aggressively. Such optimizations may be used at compile time to remove redundant opera-

tions from the dataflow, and at run time to improve task scheduling and data management.

However, traditional optimizations in compilers and runtime sysems are severely limited in

dealing with UDFs. UDFs are the programmer provided codes for implementing custom

operations, such as mappers, reducers, and mergers in DSF. Unlike standard operators with

known cost and data reduction properties, UDFs are black boxes. Since neither the dataflow

optimizer nor the runtime system is aware of the essential characteristics of these UDFs,

many cross-task and cross-job optimization opportunities are lost. As a result, todays data

parallel programs have to rely on hand optimization, which is ineffective, and limits the

programmers productivity and code re-use.

The findings of my thesis are applicable to other research areas as well. Datacenters infras-

tructure is becoming increasingly heterogeneous. A more crucial driver for the heterogeneity

is the rise of hybrid systems. The compute nodes in modern large-scale distributed systems

often boasts of multicore processors with tightly coupled accelerators. Numerous current

products from major vendors package a few general-purpose cores (e.g., x86, PowerPC) and

several accelerators (e.g., SIMD processors, GPUs, FPGAs), yielding power-efficient and low-

cost compute nodes with performance exceeding 100 Gflops per chip. Therefore, specialized

embedded devices are also gaining popularity in data centers. Similarly, storage systems are

increasingly employing hybrid and heterogeneous storage devices such as Solid State Disks

(SSD), Ram Disks and Network Attached Storage (NAS) to yield very high I/O rates at

acceptable costs. As a result, a clear disconnect between the design and actual implemen-

tations arises, which causes breakdown of design-time assumptions, consequently leading to

lost optimization opportunities, degraded performance, and increased failures. There is a

crucial need for a resource managers that can capture the true characteristics of the emerg-

ing heterogeneous datacenters and help robust development of the systems and application

software stacks. The findings of my thesis are applicable for a broad range of traditional

computer science research such as High Performance Computing (HPC) and Operating Sys-

tem. HPC can take advantage of the heterogeneous workflow scheduler and effective way
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of employing hybrid and heterogeneous storage devices. Similarly, traditional OS cache can

take advantage of the proposed SSD caching techniques for permanent and temporary data.
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