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Development of a Support-Vector-Machine-based Supervised Learning Algorithm 

for Land Cover Classification using Polarimetric SAR Imagery  

James Noel Black 

ABSTRACT 

Land cover classification using Synthetic Aperture Radar (SAR) data has been a topic of great 

interest in recent literature.  Food commodities output prediction through crop identification, 

environmental monitoring, and forest regrowth tracking are some of the many problems that can 

be aided by land cover classification methods.  The need for fast and automated classification 

methods is apparent in a variety of applications involving vast amounts of SAR data.  One 

fundamental step in any supervised learning classification algorithm is the selection and/or 

extraction of features present in the dataset to be used for class discrimination.  A popular 

method that has been proposed for feature extraction from polarimetric data is to decompose the 

data into the underlying scattering mechanisms.  In this research, the Freeman and Durden 

scattering model is applied to ALOS PALSAR fully polarimetric data for feature extraction.  

Efficient methods for solving the complex system of equations present in the scattering model 

are developed and compared.  Using the features from the Freeman and Durden work, the 

classification capability of the model is assessed on amazon rainforest land cover types using a 

supervised Support Vector Machine (SVM) classification algorithm.  The quantity of land cover 

types that can be discriminated using the model is also determined.  Additionally, the 

performance of the median as a robust estimator in noisy environments for multi-pixel 

windowing is also characterized.   
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GENERAL AUDIENCE ABSTRACT 

Land type classification using Radar data has been a topic of great interest in recent literature.  

Food commodities output prediction through crop identification, environmental monitoring, and 

forest regrowth tracking are some of the many problems that can be aided by land cover 

classification methods.  The need for fast and automated classification methods is apparent in a 

variety of applications involving vast amounts of Radar data.  One fundamental step in any 

classification algorithm is the selection and/or extraction of discriminating features present in the 

dataset to be used for class discrimination.  A popular method that has been proposed for feature 

extraction from polarized Radar data is to decompose the data into the underlying scatter 

components.  In this research, a scattering model is applied to real world data for feature 

extraction.  Efficient methods for solving the complex system of equations present in the 

scattering model are developed and compared.  Using the features from the scattering model, the 

classification capability of the model is assessed on amazon rainforest land types using a Support 

Vector Machine (SVM) classification algorithm.  The quantity of land cover types that can be 

discriminated using the model is also determined and compared using different estimators. 
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Chapter 1  

Introduction 

 

1.1) Background 

 

Rainforest deforestation quantification and crop type identification are a few applications 

that can benefit from efficient Synthetic Aperture Radar (SAR) classification methods. 

Increasingly, airborne and space-borne sensors such as the Advanced Land Observing Satellite 

(ALOS) equipped with fully polarimetric SAR sensors are being fielded.  The advantage of fully 

polarimetric data is that it adds the dimension of electromagnetic field orientation in the return 

data which can be used to improve overall classification capability.  Different surface scattering 

features are manifested in unique polarimetric responses that can be exploited for classification 

purposes.  Furthermore, the L-band Polarimetric SAR sensor on ALOS has been shown in recent 

studies to be ideal for rain forest land cover differentiation [1]. 

  Historically, many feature extraction algorithms for SAR classification have been purely 

mathematical in nature without a true basis in physical models.  For example, Cloude and Pottier 
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proposed a decomposition into three orthogonal components which may be too restrictive for a 

true physical model [3].  The Cloude and Pottier model is based in eigenvalue analysis and 

employs a statistic known as scattering entropy.  More recently, however, physical model based 

polarimetric SAR decompositions have been proposed.  Freeman and Durden have developed a 

three-component scattering model that is rooted in distinct physical scattering mechanisms.  The 

three mechanisms represent canopy/volume scatter, surface scatter and double bounce scatter.  

Additionally, a four-component physical model has been proposed by Yamaguchi to extend the 

Freeman and Durden model to include a fourth helical scattering component [6].  

 

1.1.1) Synthetic Aperture Radar Description 

 

 Synthetic Aperture Radar is a type of imaging radar in which the movement of the 

antenna platform over an interval of time produces a much larger effective antenna size, thus 

increasing the radar’s azimuthal resolution.  In fact, the azimuthal resolution is inversely 

proportional to the platform velocity of the SAR system [5].  Due to the platform velocity that is 

necessary for fine resolutions, these radar platforms are typically airborne or spaceborne.  To 

generate an image, the system integrates chirp pulses sent at a certain pulse repetition frequency 

(PRF) over a coherent interval of time.  This period of time corresponds to the SAR aperture 

length and is inversely proportional to the azimuth resolution [12].  So, as the coherent interval is 

increased for a SAR sensor at the same velocity, the azimuthal resolution becomes finer.  

Additionally, the real aperture length of the physical sensor at a constant velocity is exactly twice 

the azimuthal resolution [10].  In other words, a very small SAR antenna can theoretically 
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produce very fine azimuthal resolutions.  The other dimension for resolution in a SAR system, 

range resolution, is determined by the inverse of the Radar bandwidth.       

Unlike optical sensors, radar sensors are not sensitive to cloud cover and they can provide 

both amplitude and phase information.  Additionally, polarimetric SAR sensors also provide the 

added feature of polarization orientation.  It has been shown that L-band is the optimal frequency 

for land cover classification [7].  Although fully polarimetric L-band platforms such as ALOS 

PALSAR have been collecting data for some time now, very few studies into the rain forest 

classification ability have been carried out [1].  

 SAR image processing suffers from a phenomenon known as speckle noise.  This is a 

type of multiplicative noise where the amplitude of the return in a resolution cell follows a 

Rayleigh distribution given by the probability density function (PDF) [10]: 

𝑝(𝐴|𝜎2) =
2𝐴

𝜎2
𝑒𝑥𝑝(

−𝐴2

𝜎2
), 𝐴 ≥ 0    (1) 

 Where A is the amplitude, and 𝜎2is the variance.  Speckle noise can be viewed as a trade 

between contrast and variance since the variance must be decreased to increase the contrast [10].  

The noise can be effectively mitigated by taking multiple looks of the same area and averaging 

the results to reduce the variance.  Another method that is often used is to create a window that 

contains the average of a few pixels.  This technique reduces variance at the expense of 

resolution.  

 Another issue that arises in SAR imaging are distortions in the image projection onto the 

ground.  Typically, a SAR sensor is not generally located overhead of the image area, but rather 

is viewing the ground at an angle 𝛳.  Due to the ground topography and the 𝛳 view angle, 

various distortion effects occur in the image.  The two-dimensional projection of the returned 

energy can be described by [10]:  
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𝐸(𝑥, 𝑅) = ∫(𝑥, 𝑦0 + 𝑅𝑠𝑖𝑛𝜃, 𝑧0 − 𝑅𝑐𝑜𝑠𝜃)𝑅𝑑𝜃    (2) 

Where R is the range, E is the energy received, and x,y,and z are the cartesian coordinates of the 

3D ground topography.  It is important to notice that a specific point in the 2D receive plane is an 

integral over the angle 𝛳.  Therefore, the energy returned from the top of a sharp mountain will 

be overlaid onto the valley before it if the two points have the same range to the SAR receiver.  

Additionally, at a sharp angle 𝛳, that same mountain will obscure the far side of the mountain 

since it will be in the Radar shadow.  Lastly, the effect of foreshortening is related to layover but 

where the base of the mountain is actually closer to the receiver than the top causing the 

mountain slope to be compressed in the image.  All three of these phenomena can cause 

significant distortions in the ground-plane projected image, depending on the roughness of the 

terrain and severity of the look angle 𝛳.  These distortions need to be taken into account when 

the imagery is interpreted and classified in the results to follow.          

        

1.1.2) Current Radar Image Classification Methods  

 

In the Amazon, rainforest land cover type classification is an important issue.  The area is 

home to some of the world’s most biodiversity yet is also the subject of human caused 

deforestation.  Classification algorithms that can be run on vast amounts of Amazon rainforest 

area can assist in auditing deforestation for compliance with laws and regulations.  In addition, 

classification methods may be able to characterize the regrowth of the forests over time [1]. 

 There are many machine learning methods that have been successfully applied to Radar 

image classification problems.  This include supervised methods such as Maximum Likelihood 

Classifier (MLC) and Support Vector Machine (SVM) as well as unsupervised clustering 
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methods such as K-means.  MLC is a probabilistic method that relies on the statistical 

representation of each of the classes.  In Radar image applications, the Wishart distribution is the 

most appropriate.  Once the class distribution models are created, the classifier works by 

calculating the probability that each data point is from each class and choosing the class with the 

highest probability [1].  The SVM technique works to optimally separate two classes with a 

hyperplane in the feature space and is independent of data distribution and is robust with respect 

to the Hughes phenomenon [2].  The Hughes phenomenon first demonstrated in 1968, showed 

that for a given sample data size, increasing the feature dimensionality leads to maximum 

classification accuracy and then decreases thereafter for a Bayesian classifier.        

 

1.2) Current Method Shortfalls 

  

 Many of the current methods used for feature extraction in polarimetric SAR image 

classification lack a physical model.  For example, the popular alpha-entropy decomposition 

does not account for distinct scattering mechanisms that are distinguishable with polarimetric 

data.  As a result, the classification results are inherently diminished without exploiting the 

information contained in the scattering mechanisms.  Physics based models that rely on 

scattering mechanisms such as the Freeman-Durden and Yamaguchi have largely not been used 

in image classification investigations. 

Some modern machine learning algorithms such as the Convolutional Neural Network 

(CNN) do not rely on advanced feature extraction methods.  Instead, the raw complex SAR data 

can be fed directly into the CNN classifier, skipping the traditional feature extraction step.  

While this method can be beneficial and has been successfully applied to many applications 
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including image classification, there are drawbacks.  CNN for image classification requires vast 

amounts of training data to ensure good performance.  Due to the high cost of fielding airborne 

and spaceborne SAR platforms, image data can be quite limited.  Also, CNN’s are 

computationally expensive.  With all the training data being fed into the model, computational 

complexity is high.  Although CPU’s and GPU’s have been dropping significantly in price and 

increasing significantly in performance, computational complexity of algorithms still needs to be 

considered.  Other supervised machine learning algorithms such as SVM rely on a good feature 

extraction model, but do not require vast amounts of training data and have lower computational 

complexity than CNN’s.       

 

1.3) Contributions 

 

This thesis expands on the work of the Freeman and Durden paper.  The equations 

presented in the paper for feature extraction are solved explicitly and implemented in Matlab on 

real SAR datasets in this research.  The Freeman and Durden feature extraction method is 

combined with a one-vs-one multiclass SVM to characterize the performance of land cover type 

discrimination specifically in the Amazon rainforest region.  A robust windowing technique 

utilizing the median estimator is used to improve the performance of the classifier in speckle 

noisy environments. The resulting performance of the classification method is compared to 

previous studies such as Negri et al.   

 

1.4) Thesis outline 
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 An extensive literature review is presented in chapter 2.  The review explores both 

current feature extraction methods as well as supervised learning algorithms that have been 

applied specifically to polarimetric SAR image classification. Additionally, the performance of 

these methods to current land cover classification problems such as crop identification and rain 

forest regrowth characterization is investigated.  Chapter 3 contains a detailed description of the 

physics-based classification model.  Chapter 4 describes the specific rainforest classification 

application for model testing and then chapter 5 presents the results of the study.  Chapter 6 

contains the conclusions that came out of the study and recommendations for future work.     
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Chapter 2  

Literature Review of Supervised Learning 

 

1.1) Feature Extraction 

 

 In the study of Polarimetric SAR, much emphasis has been placed on determining the 

underlying scattering mechanisms present in the backscatter return of various surface features.  

The importance of characterizing these mechanisms is fundamental to the ability to classify land 

cover types.  If certain land cover types exhibit certain scattering mechanisms, that information 

can be exploited for efficient land cover classification.  Freeman and Durden describe a method 

to decompose SAR complex data into three scattering mechanisms, namely volume, surface and 

double-bounce.  Chen corroborates that these are the main three scattering mechanisms present 

in SAR [10].  However, later on Chen modifies this model to include five distinct scattering 

mechanisms that are rough surface, low-order multiple scattering, random volume scatter, 

surface scatter, and single scatter from anisotropic structures.  These five scattering mechanisms 

were introduced by Cloude in his explanation of target decomposition [11].     
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 In addition to the Freeman-Durden model, the Cloude and Pottier decomposition model 

introduced in 1997 is also commonly used to decompose the polarimetric scattering matrix [3].  

This method is an eigenvector decomposition which produces three parameters namely, entropy, 

alpha angle, and anisotropy.  The Cloude and Pottier method is capable of identifying the three 

primary scattering mechanisms of volume, surface and backscatter as zones in a 2D plot of alpha 

and entropy.  While this is not as direct of a physical model for the scattering mechanisms as the 

Freeman and Durden method, it has still been shown to produce good results.  The Cloud-Pottier 

method, also known as alpha-entropy, is typically used to identify volume vs rough surface 

scatter.  The anisotropy parameter determines the dominance level of a single scattering 

mechanism. If the anisotropy is low, multiple secondary scattering mechanisms are present, and 

if the anisotropy value is near one, one of the secondary scattering mechanisms is dominant [13].   

The journal article by Adams et al evaluated the discrimination capability of C-band 

Polarimetric SAR data for determining unharvested crops vs post-harvest crops using the alpha-

entropy method and the Freeman and Durden method.  The conclusion of the study determined 

that there was general agreement in the two methods for determining the harvested vs. 

unharvested fields.  The authors do suggest that there is likely more utility in in these 

decompositions in determining land cover classification types instead of the temporal 

classification of pre-harvest and post-harvest.  Though this study concluded with the similar 

utility of the two decompositions it should be noted that this was with C-band data used for 

temporal classification, verses the L-band data used in this research for land cover classification 

types.      
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2.2) Classification methods 

 

 Given the high level of interest in land cover classification, many types of classification 

techniques have been employed in recent literature with the goal of achieving the best results 

possible.  The types of techniques can generally be placed into a few distinct categories.  There 

are feature-based methods which use the parameters produced by models such as the Freeman 

and Durden or alpha entropy to train a classifier such as SVM or neural network.  Alternatively, 

there is the Bayesian maximum likelihood method in which the probability density function for 

each class is estimated from the training data.  Classification on samples is performed by 

determining the statistical likelihood that a sample came from each of the classes and then 

choosing the class that has the maximum likelihood.  The first challenge with this technique is 

finding an accurate distribution model with the parameters to be estimated.  The most common 

distribution used in recent literature is the complex Wishart distribution.  The reason is that for 

the common assumption of fully developed speckle, the polarimetric scattering matrix follows a 

Wishart distribution.   

 Many current studies have explored the capability of a support vector machine classifier 

as a feature-based method.  One recent study evaluated the classification potential of SVM for 

forest classification using RadarSat-2 C-band Polarimetric SAR data [17].  While C-band has 

been shown to not be the ideal frequency for land cover classification, the potential was still 

explored.       

Another recent study used the Wishart distribution model to develop a bayesian 

maximum likelihood classifier based on a distance metric [14].  Class determination was 

performed by choosing the class with the shortest distance between the average covariance 
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matrix of that class’s Wishart distribution and the sample pixel covariance.  The results of the 

study showed accuracies of as high as 86% for determining the growth stages of agricultural 

crops using PolSAR imagery generated from the C-band RADARSAT-2.  The paper proposed 

using a wrapper feature selection method to reduce the large number of features considered in 

order to speed up the SVM training algorithm.  The results of the study showed about a 10 

percent increase in classification accuracy over the Wishart classifier.   

In addition to the supervised feature-based methods and the supervised wishart classifier 

previously described, various unsupervised techniques have also been effectively applied to land 

cover classification.  Oftentimes these unsupervised techniques are initialized with training sets 

obtained from supervised classification algorithms.  For example, one study used Alpha-entropy 

to initially classify a PolSAR image and then that training data is fed into a Wishart-based 

classifier.  In the unsupervised process, the classified results are used to iteratively retrain the 

Wishart classifier until the number of pixels changing classes reaches a low enough threshold 

[15].  The outcome of the study found that there was improved performance through the use of 

iteration, and also that after the initialization step the unsupervised method is automated.   

Another study in unsupervised methods applied spectral clustering to PolSAR data by 

performing a pairwise distance measurement on pixels based on the Wishart distribution [16].  

Grouping according to this method has significant benefits over the Wishart unsupervised 

classifier.  The major benefit is the ability for the pairwise distance algorithm to capture more 

complex clustering structures in the feature space.  The method works by first computing the 

pairwise distances between all of the pixel’s coherency matrices and transforming those to 

affinities by way of a Gaussian kernel function.  Clustering is then performed in the eigenspace 

decomposition of the affinity matrix.  Assuming the classes are separable, the clusters should 
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form around the orthogonal axes after algorithm iteration.  One drawback of this method is its 

high computational complexity.  The authors perform random sampling on the pixel data in order 

to significantly reduce the number of pixels for which pairwise distances and iterative 

classifications must be computed.  
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Chapter 3  

Proposed Method Description     

 

3.1) Freeman-Durden Description 

 

The Freeman-Durden model is a polarimetric decomposition algorithm rooted in the 

physical scattering mechanisms present in natural environments.  Three distinct scattering types 

are represented by the model.  The first component is volume scatter commonly found in canopy 

backscatter where the energy is scattered uniformly in all directions.  In the model, this 

phenomenon is represented by thin cylindrical scatterers exhibiting random orientation in 3D 

space.  The second scattering component is double-bounce scatter.  This type of scattering is 

found in natural environments anywhere there are right angles of two surfaces with different 

dielectric constants.  One simple example of this would be the double bounce off the ground and 

a tree.  For the purposes of the model, double bounce scatterers are assumed to be dihedral 

corner reflectors where the two surfaces have different dielectric constants.  The final type of 

scatter is called surface scatter and is modeled as a Bragg surface from a rough surface.  
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Assuming that these three scattering components are mutually uncorrelated, a system of 

equations can be constructed with the relative contribution of each scattering component as the 

variable to be solved for.        

 

3.2) Freeman-Durden Solution 

 

The Freeman and Durden model for polarimetric decomposition culminates in three 

equations and four unknowns: 

[|𝑆ℎℎ|2] = 𝑓𝑠
|𝛽|2 + 𝑓𝑑

|𝛼|2     (3) 

 

[|𝑆𝑣𝑣|2] = 𝑓𝑠 + 𝑓𝑑      (4) 

 

[𝑆ℎℎ𝑆𝑣𝑣
∗

] = 𝑓𝑠𝛽 + 𝑓𝑑𝛼      (5) 

 

The S quantities in equations 3-5 represent the scattering matrix complex values and the 

subscripts of S represent the transmit and received polarizations.  For example, 𝑆ℎℎ represents the 

received return from horizontal transmit and vertical receive.  These are the “known” quantities 

in that they are estimated from the raw data.  It should be noted that the square brackets on the 

left-hand side of the equations represent expected values such that those quantities are described 

probabilistically.   Everything on the right-hand side of equations 3-5 are variables to be solved 

for.  fs and fd are the surface and double bounce scatter variables, respectively.  𝛼 and 𝛽 are 

variables that arise from the double bounce scatter model and the Bragg surface scatter model, 

respectively.   This system of equations becomes a solvable three equations in three unknowns 
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once an assumption is applied to fix either alpha or beta in the above equations.  The assumption 

used in the Freeman and Durden model is that if the real part of the left-hand side of the third 

equation is positive that surface scatter is considered dominant and alpha is fixed be negative 

one.  Otherwise double-bounce scatter is dominant, and alpha remains a variable while beta is 

fixed to be one.  Solving this system of non-linear, complex equations efficiently is a critical step 

in the method, since this set of equations has to be solved for each pixel or window of a few 

pixels.  To this end, several candidate solution methods were explored and compared.  Gradient 

descent and Newton’s method employ iterative techniques but if multiple solutions exist, the 

initial conditions will affect the solution that is reached by the algorithms.  However, using 

substitution the above system of equations can be solved explicitly for the two cases: 

 

Case 1 𝑟𝑒𝑎𝑙(𝑆ℎℎ𝑆𝑣𝑣
∗ ) > 0: 

 

𝛼 = −1 

 

𝐶1𝛽2 + 𝐶2𝛽 + 𝐶3 = 0, where 

 

𝐶1 = [𝑆ℎℎ𝑆𝑣𝑣
∗ ] − [|𝑆𝑣𝑣|2] ∗ 𝛼 

𝐶2 = [|𝑆𝑣𝑣|2] ∗ |𝛼|2 − [|𝑆ℎℎ|2] 

𝐶3 = −[𝑆ℎℎ𝑆𝑣𝑣
∗ ] ∗ |𝛼|2 + [|𝑆ℎℎ|2]𝛼 

 

Applying the quadratic formula to find 𝛽: 

𝛽 =
−𝐶2±√𝐶2

2+4∗𝐶1∗𝐶3

2∗𝐶1
     (6) 
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The other two variables can easily be found from 𝛽: 

 

𝑓𝑠 =
[𝑆ℎℎ𝑆𝑣𝑣

∗ ]−[|𝑆𝑣𝑣|2]∗𝛼

𝛽−𝛼
     (7) 

𝑓𝑑 = [|𝑆𝑣𝑣|2] − 𝑓𝑠     (8) 

 

 

Case 2 𝒓𝒆𝒂𝒍(𝑺𝒉𝒉𝑺𝒗𝒗
∗ ) < 𝟎: 

𝛽 = 1 

 

𝐶1𝛽2 + 𝐶2𝛽 + 𝐶3 = 0, where 

 

𝐶1 = [|𝑆𝑣𝑣|2] ∗ 𝛽 − [𝑆ℎℎ𝑆𝑣𝑣
∗ ] 

𝐶2 = [|𝑆𝑣𝑣|2] ∗ |𝛽|2 + [|𝑆ℎℎ|2] 

𝐶3 = [𝑆ℎℎ𝑆𝑣𝑣
∗ ] ∗ |𝛽|2 − [|𝑆ℎℎ|2]𝛽 

 

Applying the quadratic formula to solve for 𝛼: 

 

𝛼 =
−𝐶2±√𝐶2

2+4∗𝐶1∗𝐶3

2∗𝐶1
     (9) 

 

The other two variables can easily be found from 𝛼: 
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𝑓𝑠 =
[𝑆ℎℎ𝑆𝑣𝑣

∗ ]−[|𝑆𝑣𝑣|2]∗𝛼

𝛽−𝛼
     (10) 

𝑓𝑑 = [|𝑆𝑣𝑣|2] − 𝑓𝑠     (11) 

 

Through an analysis of the solutions, it was found that only the positive quadratic solution results 

in a physically meaningful result.  Once fs and fd are determined from the raw SAR complex data 

using equations 7-8 or 10-11, the relative powers of each of the three scattering mechanisms Ps, 

Pd, and Pv can be solved for using the equations [4]: 

 𝑃 =  𝑃𝑠 + 𝑃𝑑 + 𝑃𝑣 = (|𝑆𝐻𝐻|2 + 2|𝑆𝐻𝑉|2 + |𝑆𝑣𝑣|2)    (12) 

𝑃𝑠 = 𝑓𝑠(1 + |𝛽|2)      (13) 

𝑃𝑑 = 𝑓𝑑(1 + |𝛼|2)      (14) 

𝑃𝑣 = 8𝑓𝑣/3       (15) 

Where P is the total power.  The three powers, Ps, Pd, and Pv can then be used as the features fed 

into the SVM classification model.  

 

3.3) Window size and median estimation 

 

Windowing is a technique used to combine sample cells to help filter out speckle noise.  

This speckle noise is a multiplicative noise that normally results from the coherent sum of 

scatterer responses in a single pixel.  For a Gaussian received signal amplitude distribution, this 

results in a rayleigh distribution in the pixel amplitude [5].  So even sample regions with the 

same mean Radar cross section can result in different pixel amplitudes.  Averaging pixels over a 

window of 2x2 or 3x3 pixels has been shown to effectively mitigate speckle noise at the expense 
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of resolution.  Other techniques used to reduce speckle noise include filtering and combining 

multiple looks of the same scene over time.    

A 3x3 non-overlapping window was investigated both to help filter out speckle noise and 

reduce the time for the feature extraction step.  The sample median of the cells in the window 

was also calculated instead of the mean to provide a robust estimate over the chosen window.  

The medians of the raw amplitude and phase data were set as the respective expected values for 

[|𝑆ℎℎ|2], [|𝑆𝑣𝑣|2], and [𝑆ℎℎ𝑆𝑣𝑣
∗

].  

 

3.4) SVM description 

 

A Support Vector Machine (SVM) is used as a classification method to discriminate the 

various classes embedded in the raw data.  For two-class data non-linearly mapped to a 

sufficiently high dimensional feature space, SVM’s can guarantee that a hyperplane exists to 

separate the data [8].  A support vector machine seeks to find the optimal hyperplane separating 

the two classes such that the margin between the two classes is maximized.  In the algorithm, 

only a subset of the data points closest to the class boundary are used in the calculation of the 

optimal hyperplane and these data points are known as support vectors. 

 

In the two-class optimal hyperplane separation algorithm first introduced in 1995 by 

Cortes and Vapnik, assume that there exists a training data set x in a high dimensional feature 

space with class labels y of either 1 or -1 to describe the two classes [9].  Any hyperplane can be 

described in Hesse normal form by: 

𝒘 ∗ 𝒙 + 𝑏 = 0       (16) 
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In order for the two classes to be linearly separable in feature space, the following 

inequality must be satisfied for all training data points for some distinct hyperplane determined 

by a fixed w and b: 

𝑦𝑘(𝒘 ∗ 𝒙𝒊 + 𝑏) ≥ 1 for all i    (17) 

 

It can also be shown that the distance between the optimal hyperplane and a training data 

point is given by: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
2

|𝑤|
     (18) 

Therefore, we have an optimization problem of minimizing w to maximize the distance 

between the training data points and the hyperplane, under the inequality constraint (equation 

17).  This optimization problem can be reformulated as a quadratic programming problem by 

transforming it into its lagrangian dual problem.  It should be noted here that this solution only 

works if there is a so-called “hard margin” between the two classes, meaning that the feature 

space is linearly separable.  A separate optimization problem and the more general solution for 

the “soft-margin” problem can also be formulated in cases where there is spillover in the class 

boundary.   

SVM’s have certain advantages over other supervised classification techniques such as 

neural networks.  For one, the computational complexity of the algorithm is related to the 

number of chosen support vectors and not the number of dimensions in the feature space [8].  

Incidentally, this phenomenon has the added benefit of making SVM’s less susceptible to 

overfitting in the classification process than various other classification methods.  One may think 

that since SVM’s can separate two classes in sufficiently high dimensional feature space and that 
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high dimensionality does not cost much in terms of computational complexity that higher 

dimensionality should always be chosen. Unfortunately, there exists a phenomenon known as the 

curse of dimensionality in which the sparsity of the data increases rapidly as the number of 

dimensions is increased.  This has the effect of requiring an exponentially increasing number of 

data points as dimensionality is increased to provide any statistical discrimination in the data, 

especially if the problem is generalized to more than two classes. 

Although SVM is fundamentally a pattern classification technique for only a two-class 

problem, there are schemes to extend the method for three or more classes.  The most common 

and practical technique is to simply divide the multiclass problem into a series of two class 

problems.  This can generally be achieved in one of two ways.  In the one-vs-all method, n 

classifiers are created of each class vs all of the rest, where n is the number of classes.  Final 

classification is determined by the SVM classifier that results in that data point having the 

maximum distance from a hyperplane and thus the highest confidence in the classification.  In 

the one-vs-one approach, n(n-1)/2 SVM classifiers are created for all the possible two class 

combinations.  Each data point is run through each of the classifiers and the class that has the 

most “votes” is determined to be the most likely final classification.  For the purpose of this 

research, the one-vs-one approach was the implementation used.    

 

3.5) SVM Kernel Function        

 

The kernel function in a machine learning application is simply a similarity function 

which operates in a high dimensional feature space.  The most basic kernel function that is used 

in SVM methods is the linear kernel function also known as the dot product.  The linear kernel is 
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often preferred due to its mathematical simplicity and efficient computation.  However, other 

kernel functions are common such as the quadratic kernel and the Radial Basis Function (RBF).  

RBF is the most general kernel function that is used when there is no prior information about the 

data.  In this research, the linear kernel function was used for efficiency and simplicity. 

 

3.6) Cross-Validation 

 

Cross-validation is a statistical technique used to estimate the accuracy of a trained model 

by splitting the original training data into a training subset and a testing subset.  The advantage is 

that by using part of the labeled original training set as a model testing set, one is able to test the 

accuracy of the model.  This method is typically repeated many times with the training and 

testing data being rotated continuously such that a good estimate of the model accuracy is 

achieved.  For every SVM trained in the results of this research, the model was cross-validated in 

MATLAB to ensure accuracy.       
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Chapter 4  

Application Description 

 

4.1) Problem Formulation 

 

The objective of this study was to characterize the class discrimination capability of a 

SVM classifier applied to the Freeman and Durden model features extracted from raw 

polarimetric SAR complex data.  More specifically, the discrimination capability of L-band 

polarimetric SAR in rainforest environments was sought to be determined.  To achieve this, a 

large set of land cover classes were chosen and based on truth data.  Then a small subset of those 

classes that were known to have high inherent discrimination likelihood in the Freeman and 

Durden model were run through the SVM classifier.  Larger subsets were subsequently run 

through the classifier to determine at what point the model could no longer accurately classify 

the data.  The truth dataset came from the TerraClass project 2010 data classification which 

provided detailed class labels for pieces of land cover corresponding to the test images.  This 

truth dataset is in the form of shape files that can be overlaid on google earth imagery.  Each 
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false color section represents a different classification type in the data.  The test SAR images 

used from ALOS PALSAR were from 2010 also.      

 

 

Figure 4.1: TerraClass project 2010 classification data overlaid on google earth imagery (data 

obtained from http://www.inpe.br/cra/projetos_pesquisas/terraclass2010) 

     

 

4.2) Raw Data Preprocessing Explanation 

 

The raw SAR data generated from ALOS PALSAR platform used in this study were 

obtained from the Alaska Satellite Facility with permission for use in educational purposes 

(Figure 4.2).  The datasets were obtained as L1.1 raw complex data.  The Alaska Satellite 

Facility MapReady version 3.1 software was used to process the raw data into four complex-
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valued geotiff files representing each of the four polarization permutations.  These are HH, HV, 

VH, and VV, where the first letter represents the transmit polarization either horizontal or 

vertical referenced to the ground and the second is the receive signal polarization also either 

vertical or horizontal.  These four channels completely represent the polarimetric information 

contained in the radar response and collectively the dataset is therefore considered to be fully 

polarimetric.   

 

 Figure 4.2: ALOS PALSAR fully polarimetric image ground footprint 
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Chapter 5  

Experimental Results              

 

The three-class case is shown in figure 5.3.  The classes based on the truth data were 

water, farmland, and urban depicted as false color blue, green, and red, respectively.  The SAR 

image on the right is 750 by 750 pixels.  The Freeman and Durden feature extraction was 

performed on the mean of a 3 by 3 pixel window and the resulting feature space data was fed to 

the SVM classifier.  The training data for each class for the SVM model was chosen from the 

same feature mapped data with only a 10 by 10 pixel training set for each class as shown in 

figure 5.4.  The training data included a forest class as a fourth class.  Classification was applied 

to the whole image using the same 3x3 non-overlapping window such that the final classified 

image was 250 by 250 pixels.  Even with the resolution down sampling factor of 3, the SVM 

classifier was clearly able to discriminate small bodies of water and rivers from land.      
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Figure 5.3: The left is the SAR image after raw complex preprocessing and the right image is the 

results of the SVM classifier. 

 

Figure 5.4: SVM training data sites  
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If only two of the three classes are considered, specifically the water class and the farmland 

class, the SVM classifier performs very well as shown in figure 5.5. 

Figure 5.5: Two-class SVM classifier results for farm as green and blue for water 
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Figure 5.6: Three class SVM with blue as water, green as forest, and yellow as farmland. 

Figure 5.7: Four class SVM with blue as water, green as forest, yellow farmland, and red urban 

  

The above classification results were generated using the mean of each 3x3 window in 

the Freeman and Durden calculation.  That is, the mean of each complex scattering component is 

computed over the window size, which is this case is nine pixels.  This is also known as 

calculating the ensemble average over all of the pixels in the window and will represent the 

expectation of the scattering components in the Freeman and Durden equations.   However, it is 

difficult to ensure that the mean of the nine pixel samples in the window represent the true 

expected value of the scattering components in that window.  If outliers are present in the 

window, the mean could be drastically affected, resulting in a poor estimate of the expected 

value of the scattering matrix in the window.  This will in turn throw off the calculations for the 

Freeman and Durden scattering mechanisms and affect the classification performance of the 

algorithm.   
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Alternatively, in figure 5.8, the median of the window scattering components is used in 

both the training of the SVM and the testing of the results.  The median estimator was chosen 

since it is significantly less impacted by outliers in general.  It should be noted that many more 

complex classes of estimators used for outlier suppression have also been proposed in the field of 

robust statistics.  Huber introduced a class of so-called M-estimators specifically for the purpose 

of mitigating the effect of outliers [18].  Maximum likelihood estimation is one such M-

estimator.  In the median estimator case explored here, there seems to be a slight increase in 

performance using the median in place of the mean.  In particular, the water areas denoted with 

blue dots appear more crisp and less diluted with the false urban (red) classification.  Figure 5.8 

shows the median performing better in classifying the river in the lower right corner as water 

verses using the mean estimator in figure 5.7.        

 

  Figure 5.8: Four class results using the median estimator  
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 In order to quantify the results for the different number of classes chosen in the SVM 

model, the total number of pixels assigned to each class for each SVM model is shown in Table 

5.1.  The sample average estimator was used for all the models in the table for accurate 

comparison.  It would be best to have this compared to the number of pixels that are actually in 

each class according to the ground truth.  However, the accuracy of the ground truth is not good 

enough for such a comparison.  Note that the water percentage slowly decreases as the number of 

classes in the model is increased and the ability to accurately discriminate water decreases.  The 

5.0% from the 2-class model is likely the most accurate just looking at the crispness of the 

resulting image compared to the SAR image.    

 

 

 

 Forest Farm Water Urban 

2-Class SVM N/A 58926 (95.0%) 3075 (5.0%) N/A 

3-Class SVM 33615 (54.2%) 26516 (43.8%) 1870 (3.0%) N/A 

4 Class SVM 34320 (55.4%) 23929 (38.6%) 1797 (2.9%) 1955 (3.2%) 

Table 5.1 Classification Results by Pixel Percentage for all SVM Models 

 

The previous classification results were used to test the ability of model to discriminate 

between major land types such as urban area and forest.  However, more specific subtypes such 

as different kinds of forest were not included in the classes.  This is an important subject of the 

study because a goal is to use this classification model to characterize the regrowth stages of 

rainforest environments to determine the health of the forest and any deforestation.  In order to 

simplify the model and due to the availability of truth data, only two forest types were 
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distinguished.  The first type is secondary vegetation and includes lower canopy areas in an 

intermediate forest growth stage.  The other class was primary forest which is characterized by 

higher and more dense canopies than secondary vegetation.   

For the training data in the SVM model, more training areas were used than the previous 

results. Specifically, each class had two separate training areas verses the one training area in the 

previous terrain results.  The goal of this was to account for slight differences between areas that 

should be labeled as the same class to make the model more robust.  In figure 5.9, the red squares 

highlight the secondary vegetation training areas and the blue are the primary forest training 

areas.             

 

Figure 5.9: Training data areas for the forest discrimination. 
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Figure 5.10: Classification results (left) of raw SAR image (right) for two forest classes. Green is 

primary forest and blue is secondary forest. 

  

The results of the two classes of forest types in figure 5.10 appears to have significant 

misclassifications.  The areas that should be secondary forest are not clearly defined in the 

classification results.  However, overall the sample image was mostly classified as primary forest 

which probably 80-90% of the sample area actually is.  It is likely that with more separate 

training areas of each type, the classification results could be improved.   
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Chapter 6  

Conclusions and Future Work 

 

6.1) Conclusions 

 

 In this work, the Freeman and Durden scattering model was applied to fully polarimetric 

SAR data and a support vector machine classification method was used discriminate class types 

in a tropical rainforest environment.  An efficient method for solving the freeman and Durden 

complex system of equations was developed and implemented in Matlab.  Solving the system 

directly proved to be significantly faster than both Newton’s method and the gradient descent 

method (Appendix A).  Next, the classification capability of the model was put to the test 

specifically on the amazon rainforest land cover types.  For the two-class case, the trained SVM 

model worked very well with very few misclassifications.  As the model was implemented on 

more class types, however, the performance of the model decreased substantially.  For example, 

much of the largest body of water in the test image was misclassified as the urban land cover 

type.  Perhaps this was due to insufficient quality or quantity of training data for those two land 
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cover types.  Interestingly, in the three-class case, the same portion of water in the test image was 

misclassified as farmland.  Even in the two-class case, there were misclassifications as well in 

that area.  This is unexpected since water areas in a SAR image should be easily distinguishable 

from the rest of the land areas.  Calm water should have a uniform signature very different from 

complex multi-bounce in urban environments and canopy/volume scatter in forest environments.  

However, if the water in that area had a rougher state, perhaps double bounce scatter is more 

pronounced due to the waves.  Therefore, that water was being classified as “urban” which is 

typically dominated by double bounce man-made structures.   

Employing the median to the multi-pixel windowing helped alleviate the 

misclassification problem in the large water area.  It should be noted that the median estimator 

was used for both the training data and the classification results in figure 5.8.  It is likely that the 

use of the median on the training data was more beneficial than using the median in the 

classification step.  The training data used for each class was a small area which would have 

been greatly affected by outliers if the average was used instead of the median.  The median 

should have helped smooth out the effects of any outliers in the training data.         

              

6.2) Future Work 

 

 This research only considered the Freeman-Durden scattering model to generate the 

features used for classification.  While this model includes the three major polarimetric radar 

scattering mechanisms, the Yamaguchi model adds a fourth helical mechanism which may more 

accurately describe the backscatter physics.  Future work could replace the Freeman and Durden 

model with the Yamaguchi model in the feature extraction step and compare the results.  Support 
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Vector Machine methods are known to perform well in relatively high dimensional feature 

spaces, so the addition of the helical scattering feature may improve the overall classification 

performance.   

Other features could also be added to see if they improve the overall classification 

performance of the SVM model.  Alpha-Entropy is a well know decomposition technique that 

would add two useful features to the feature space.  Additionally, SAR collection parameters 

could possibly be added to the feature space.  For example, many scattering effects are 

dependent on the grazing angle of the collection.  For a space-based collection system, the 

grazing angle will change significantly on orbit passes of a ground region.  If grazing angle were 

added as a feature to the model, it may help with classification performance if enough training 

data was ingested at representative grazing angles. 

In this research, a simple, though effective, approach was taken to train the model.  For 

each class, only one small region was used as the training data for the SVM classifier.  That 

trained classifier was then used on the rest of the much larger image.  In order to build a more 

robust classifier, the training data for each class should be increased substantially and taken from 

multiple regions of the image for each class.  Preferably, the training data should also be taken 

from multiple images for each class as well.  

Support Vector Machine was the only supervised learning technique that was employed 

in the method and simulation results in this study.  SVM was chosen for computational 

simplicity and proven ability to perform well in higher dimension feature spaces.  Other methods 

such as the maximum likelihood classifier using the Wishart distribution and deep neural 

networks are proven machine learning techniques.  It would be useful to implement these 
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techniques with the Freeman and Durden model and compare the classification results to Support 

Vector Machine. 

While the L-band SAR imagery from ALOS PALSAR that was used to test the SVM 

model has been shown to be effective in vegetation classification problems, other frequency 

bands of SAR data could be explored as well.  For example, RADARSAT-2 is a fully 

polarimetric SAR sensor platform that operates in C-band.  The C-band data from RADARSAT-

2 has been used too in classification applications such as crop identification, forestry 

classification, and ice cap studies. TerraSAR-X is another polarimetric SAR satellite-based 

platform that operates at the X-band frequency and the dataset has been shown to provide better 

final classification accuracies than C-band datasets by about 10 percent [19].  It would be useful 

in future work to compare the classification capability of the model using different bands of 

input polarimetric SAR data and determine the optimal band for each application.   

Finally, future work should involve new applications for using the classification 

techniques developed in this research.  In this work, the classification application was focused on 

land cover types in the Amazon rainforest specifically for purposes of tracking deforestation and 

forest regrowth.  There is always an ideal classification technique for every application and it is 

not always obvious which technique will work well with which application.  Therefore, it would 

be prudent to test the classification methods on multiple applications and determine which 

applications work best.  Some classification applications that could be explored with fully 

polarimetric SAR data are crop identification, hydrology, polar ice studies, and geology.          
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Appendix A  

Implementation of Proposed Model in Matlab 

 

Function to solve Freeman-Durden equations (Newton’s method commented) with median 

windowing estimation: 

 
%This function reads in the amplitude and phase pixel info and creates matrices for each of 

%the three scattering powers (volume, surface, and double bounce) 

%the arguments define a window on which the scattering powers are 

%decomposed 

 

function [Ps_med, Pv_med, Pd_med] = Freeman_durden_function(x1,x2,y1,y2,k,m,Ls,Ss) 

 

%Read in the amplitude and phase data for each polarization 

SHH_A = imread('ALPSRP254257130-P1.1__A_AMP-HH.tif','PixelRegion',{[Ls+3*(k-1)+1,Ls+3*k],[Ss+3*(m-

1)+1,Ss+3*m]}); 

SHH_P = imread('ALPSRP254257130-P1.1__A_PHASE-HH.tif','PixelRegion',{[Ls+3*(k-1)+1,Ls+3*k],[Ss+3*(m-

1)+1,Ss+3*m]}); 

SVV_A = imread('ALPSRP254257130-P1.1__A_AMP-VV.tif','PixelRegion',{[Ls+3*(k-1)+1,Ls+3*k],[Ss+3*(m-

1)+1,Ss+3*m]}); 

SVV_P = imread('ALPSRP254257130-P1.1__A_PHASE-VV.tif','PixelRegion',{[Ls+3*(k-1)+1,Ls+3*k],[Ss+3*(m-

1)+1,Ss+3*m]}); 

SHV_A = imread('ALPSRP254257130-P1.1__A_AMP-HV.tif','PixelRegion',{[Ls+3*(k-1)+1,Ls+3*k],[Ss+3*(m-

1)+1,Ss+3*m]}); 

SHV_P = imread('ALPSRP254257130-P1.1__A_PHASE-HV.tif','PixelRegion',{[Ls+3*(k-1)+1,Ls+3*k],[Ss+3*(m-

1)+1,Ss+3*m]}); 

 

%Convert data to double format 

SHH_A = double(SHH_A); 

SHH_P = double(SHH_P); 

SVV_A = double(SVV_A); 

SVV_P = double(SVV_P); 

SHV_A = double(SHV_A); 

SHV_P = double(SHV_P); 

 

%find middle of window value 

x3=2; 

y3=2; 

 

%Convert data to complex numbers 

SHH_real = SHH_A*cos(pi/180*SHH_P); 

SHH_comp = SHH_A*sin(pi/180*SHH_P); 

SVV_real = SVV_A*cos(pi/180*SVV_P); 

SVV_comp = SVV_A*sin(pi/180*SVV_P); 

SHV_real = SHV_A*cos(pi/180*SHV_P); 

SHV_comp = SHV_A*sin(pi/180*SHV_P); 

 

SHH = SHH_real + SHH_comp*j; 

SVV = SVV_real + SVV_comp*j; 

SHV = SHV_real + SHV_comp*j; 



41 
 

 

%median (or change to mean() for these 4 lines) 

SHH1=median(median((abs(SHH)).^2)); 

SHV1=median(median((abs(SHV)).^2)); 

SVV1=median(median((abs(SVV)).^2)); 

SHH_SVV=median(median(SHH*conj(SVV))); 

 

%calculate fv 

fv=3*SHV1; 

 

        %If real(SHH*conj(SVV)) is positive, then surface scatter is dominant: 

        if real(SHH_SVV) > 0 

 

            a=-1; 

                

 

%           Implement Newton's method 

%             x0=[10^12 10^12 1]';  %seem to be the right initial conditions 

%             x0=[10^12 10^12 1]'; 

%             fs=x0(1); 

%             fd=x0(2); 

%             B=x0(3); 

%             f=[fs*(abs(B))^2+fd*(abs(a))^2-SHH1;fs+fd-SVV1;fs*B+fd*a-SHH_SVV];  

%             J=[(abs(B))^2 1 2*fs; 1 1 0; B -1 fs]; 

%             J_inv=1/(B^2*fs-fs+2*fs*(-1-B))*[fs -fs -1-B;-3*fs fs*B^2-2*fs*B B^2+B;-2*fs 2*fs B^2-1]'; 

%             for i=1:1 

%                 dx=-J\f 

%                 x0=x0+dx; 

%                 x0=x0-J_inv*f; %Newton's method 

%                 x0=x0-10^-24*ctranspose(J)*f %Gradient descent 

%                 x0=x0-1e-25*(ctranspose(J)*f+ctranspose(J)*conj(f))  

%                 fs=x0(1); 

%                 fd=x0(2); 

%                 B=x0(3); 

%                 f=[fs*(abs(B))^2+fd*(abs(a))^2-SHH1;fs+fd-SVV1;fs*B+fd*a-SHH_SVV];  

%                 J=[(abs(B))^2 1 2*fs; 1 1 0; B -1 fs]; 

%                 J_inv=1/(B^2*fs-fs+2*fs*(-1-B))*[fs -fs -1-B;-3*fs fs*B^2-2*fs*B B^2+B;-2*fs 2*fs B^2-1]'; 

%             end 

%             Ps = abs(double(fs*(1+(abs(B)^2)))); 

%             Pd = abs(double(fd*(1+(abs(a)^2)))); 

%             Pv = abs(8*fv/3); 

%           end Newtons 

 

 

            %START analytic solution 

            %apply quadratic formula to find B 

            %plus solution 

            B=(-(SVV1*(abs(a))^2-SHH1)+sqrt((SVV1*(abs(a))^2-SHH1)^2-4*(SHH_SVV-SVV1*a)*(-

SHH_SVV*(abs(a))^2+SHH1*a)))/(2*(SHH_SVV-SVV1*a)); 

            %minus solution 

            %B=(-(SVV1*(abs(a))^2-SHH1)-sqrt((SVV1*(abs(a))^2-SHH1)^2-4*(SHH_SVV-SVV1*a)*(-

SHH_SVV*(abs(a))^2+SHH1*a)))/(2*(SHH_SVV-SVV1*a)); 

            fs=(SHH_SVV-SVV1*a)/(B-a); 

            fd=SVV1-fs; 

            Ps = abs(double(fs*(1+(abs(B)^2)))); 

            Pd = abs(double(fd*(1+(abs(a)^2)))); 
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            Pv = abs(8*fv/3); 

            %End analytic solution 

        else 

            %If real(SHH*conj(SVV)) is negative, then double bounce is dominant: 

            B=1; 

             

 

              %Implement Newton's method 

%             %x0=[10^12 10^12 1]';  %seem to be the right initial conditions 

%             x0=[10^12 10^12 1]'; 

%             fs=x0(1); 

%             fd=x0(2); 

%             a=x0(3); 

%             f=[fs*(abs(B))^2+fd*(abs(a))^2-SHH1;fs+fd-SVV1;fs*B+fd*a-SHH_SVV];  

%             J=[1 (abs(a))^2 2*fd; 1 1 0; 1 a fd]; 

%             J_inv=1/(fd-fd*(abs(a))^2+2*fd*(a-1))*[fd -fd a-1;fd*(abs(a))^2-2*a*fd -fd -a+(abs(a))^2;-2*fd 2*fd 1-

(abs(a))^2]'; 

%             for i=1:3 

%                 %dx=-J\f; 

%                 %x0=x0+dx; 

%                 x0=x0-J_inv*f;  %Newton's method 

%                 %x0=x0-10^-30*J'*f %Gradient descent 

%                 fs=x0(1); 

%                 fd=x0(2); 

%                 a=x0(3); 

%                 f=[fs*(abs(B))^2+fd*(abs(a))^2-SHH1;fs+fd-SVV1;fs*B+fd*a-SHH_SVV];  

%                 J=[1 (abs(a))^2 2*fd; 1 1 0; 1 a fd]; 

%                 J_inv=1/(fd-fd*(abs(a))^2+2*fd*(a-1))*[fd -fd a-1;(abs(a))^2*fd-2*a*fd -fd -a+(abs(a))^2;-2*fd 2*fd 1-

(abs(a))^2]'; 

%             end 

%                 Ps = abs(double(fs*(1+(abs(B)^2)))); 

%                 Pd = abs(double(fd*(1+(abs(a)^2)))); 

%                 Pv = abs(8*fv/3); 

            %end Newtons 

             

            %Start analytic solution 

            %apply quadratic formula to find a 

            Ca=SVV1*B-SHH_SVV; 

            Cb=-SVV1*(abs(B))^2+SHH1; 

            Cc=SHH_SVV*(abs(B))^2-SHH1*B; 

            %plus solution 

            a=(-Cb+sqrt(Cb^2-4*Ca*Cc))/(2*Ca); 

            %minus solution 

            %a=(-Cb-sqrt(Cb^2-4*Ca*Cc))/(2*Ca); 

            fs=(SHH_SVV-SVV1*a)/(B-a); 

            fd=SVV1-fs; 

            Ps = abs(double(fs*(1+(abs(B)^2)))); 

            Pd = abs(double(fd*(1+(abs(a)^2)))); 

            Pv = abs(8*fv/3); 

            %end solve equations analytically 

         end 

 

 

            %output the median values for each scattering power 

            Ps_med=median(median(Ps)); 

            Pv_med=median(median(Pv)); 
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            Pd_med=median(median(Pd)); 

             

end 

 

 

Computing the Scattering Components of an Image Window: 
 

%This script calculates the freeman-durden composition (using the freeman-durden function) for a given sample 

%of a image and window size, and plots the three scattering powers over the 

%sample image 

%define line and sample region 

tic 

 

% test region 

L1=783; 

L2=1530; 

S1=416; 

S2=1163; 

 

%set line and sample to the image evaluation limits 

 

x1=L1; 

x2=L2; 

y1=S1; 

y2=S2; 

 

%calculate the number of samples using a 3x3 window 

rx=(L2-L1)/3; 

ry=(S2-S1)/3;; 

 

%calculate the Freeman_durden decomposition on each window and store 

%scattering powers a matrix 

for i=1:rx 

    for j=1:ry 

         

        [Ps1, Pv1, Pd1] = Freeman_durden_function_3x3_v2(L1+(i-1)*3,L1+i*3,S1+(j-1)*3,S1+j*3,i,j,L1,S1); 

        Ps_mat(i,j)=Ps1; 

        Pv_mat(i,j)=Pv1; 

        Pd_mat(i,j)=Pd1; 

 

    end 

end 

toc 

 

Support Vector Machine Classifier: 

 

%This script imports freeman-durden power data as training matrices for an 

%SVM model.  It then uses test data to predict classes using the trained 

%SVM model.  This script works for 4 classes so far.  It plots the 

%classification results for the test data. 

tic 

%define test image size 

Length=83; 

Width=83; 
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%Define urban area training matrices (log10 of the original) 

Ps_urban = [   12.9046   12.8348   12.6520   12.8015   12.4603; 

   12.7582   12.9269   13.1831   13.1016   12.6513; 

   13.1073   12.8745   12.9371   12.9091   12.5998; 

   12.4188   12.8326   12.9443   12.6317   12.7837; 

   12.1924   12.8502   12.7442   12.5910   12.4041]; 

 

Pv_urban = [   12.1546   11.8951   12.0218   12.0179   11.8208; 

   11.8294   11.9208   11.9748   12.0875   11.9017; 

   12.1966   12.0113   11.7236   11.9821   12.0738; 

   11.7983   11.8556   11.7820   11.9026   11.8237; 

   11.8773   11.8162   11.7102   11.8835   11.8291]; 

 

Pd_urban = [   12.5608   12.4744   12.3095   12.4190   12.1326; 

   12.4349   12.5915   12.8741   12.7743   12.3663; 

   12.8464   12.6050   12.6408   12.5484   12.2816; 

   12.1487   12.5945   12.5958   12.3137   12.4476; 

   11.8874   12.5751   12.3986   12.2616   12.0381]; 

 

Ps_urban_row = [Ps_urban(:,1)' Ps_urban(:,2)' Ps_urban(:,3)' Ps_urban(:,4)' Ps_urban(:,5)']; 

Pv_urban_row = [Pv_urban(:,1)' Pv_urban(:,2)' Pv_urban(:,3)' Pv_urban(:,4)' Pv_urban(:,5)']; 

Pd_urban_row = [Pd_urban(:,1)' Pd_urban(:,2)' Pd_urban(:,3)' Pd_urban(:,4)' Pd_urban(:,5)']; 

 

Pd_urban_pred = [Ps_urban_row; Pv_urban_row; Pd_urban_row]'; 

 

%Define water area training matrices (log10 of the original) 

Ps_water = [   11.1243   10.8993   10.9027   10.8358   11.0104; 

   11.0188   11.0764   10.9367   10.9501   10.9730; 

   11.0188   10.9518   10.9807   10.9714   11.0038; 

   10.8739   10.8980   10.9205   10.9327   10.9726; 

   10.9158   10.9220   10.9313   10.9092   10.8921]; 

 

Pv_water = [11.0694   10.9366   10.8751   10.9543   11.0079; 

   10.8103   10.8347   10.6947   10.9168   11.0167; 

   10.8373   10.8523   10.7674   10.8034   11.0039; 

   10.8093   10.6739   10.8041   10.8148   10.7984; 

   10.7722   10.8566   10.8467   10.7581   10.8143]; 

 

Pd_water =  [10.8194   10.5983   10.6219   10.5401   10.7199; 

   10.7106   10.7317   10.6441   10.6295   10.6804; 

   10.7225   10.6726   10.6887   10.6712   10.6916; 

   10.5772   10.5944   10.5974   10.6191   10.6569; 

   10.6030   10.6201   10.6366   10.5703   10.5657]; 

 

Ps_water_row = [Ps_water(:,1)' Ps_water(:,2)' Ps_water(:,3)' Ps_water(:,4)' Ps_water(:,5)']; 

Pv_water_row = [Pv_water(:,1)' Pv_water(:,2)' Pv_water(:,3)' Pv_water(:,4)' Pv_water(:,5)']; 

Pd_water_row = [Pd_water(:,1)' Pd_water(:,2)' Pd_water(:,3)' Pd_water(:,4)' Pd_water(:,5)']; 

 

Pd_water_pred = [Ps_water_row; Pv_water_row; Pd_water_row]'; 

 

%Define farm area training matrices (log10 of the original) 

 

Ps_farm =  [12.5503   12.1432   12.4499   12.3177   12.4626; 

   12.2150   12.2803   12.2168   12.4165   12.4670; 

   12.5078   12.2784   12.3691   12.3054   12.4110; 

   12.5024   12.4910   12.3791   12.1808   12.1506; 
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   12.3854   12.3874   12.3402   12.0808   12.3295]; 

   

 

Pv_farm =     [12.2411   12.0464   12.4356   12.3202   12.2793; 

   12.0072   12.1312   12.0233   12.3351   12.2390; 

   12.0660   12.1793   12.0101   12.1941   12.2702; 

   12.2805   12.3103   12.2323   11.7675   11.9552; 

   12.1256   12.3815   12.1361   11.9425   12.2244];   

 

Pd_farm =    [12.2361   11.8433   12.1510   12.0188   12.1602; 

   11.9455   12.0024   11.9201   12.1220   12.1592; 

   12.1846   11.9858   12.0747   11.9871   12.1251; 

   12.1898   12.1891   12.0629   11.8889   11.8354; 

   12.1160   12.0867   12.0205   11.7717   12.0314]; 

 

Ps_farm_row = [Ps_farm(:,1)' Ps_farm(:,2)' Ps_farm(:,3)' Ps_farm(:,4)' Ps_farm(:,5)']; 

Pv_farm_row = [Pv_farm(:,1)' Pv_farm(:,2)' Pv_farm(:,3)' Pv_farm(:,4)' Pv_farm(:,5)']; 

Pd_farm_row = [Pd_farm(:,1)' Pd_farm(:,2)' Pd_farm(:,3)' Pd_farm(:,4)' Pd_farm(:,5)']; 

 

Pd_farm_pred = [Ps_farm_row; Pv_farm_row; Pd_farm_row]'; 

 

%Define forest area training matrices (log10 of the original) 

 

Ps_forest =  [12.3246   12.3372   12.3772   12.4643   12.5337; 

   12.3543   12.2369   12.3119   12.3964   12.4120; 

   12.4656   12.3145   12.3361   12.3102   12.4525; 

   12.4478   12.3352   12.3576   12.2805   12.3173; 

   12.3085   12.1832   12.3821   12.3545   12.3791]; 

   

 

Pv_forest =     [12.1816   12.2443   12.1566   12.2340   12.3100; 

   12.2344   12.0534   12.1258   12.3344   12.3101; 

   12.1540   12.2121   12.1536   12.1890   12.2880; 

   12.2616   12.1940   12.1386   12.0213   12.1146; 

   12.0445   12.1073   12.1065   12.2027   12.2794];   

 

Pd_forest =    [12.0320   12.0401   12.0683   12.1712   12.2209; 

   12.0625   11.9383   11.9905   12.0892   12.1323; 

   12.1535   12.0126   12.0181   11.9865   12.1637; 

   12.1412   12.0601   12.0412   12.0092   12.0292; 

   12.0042   11.8918   12.0788   12.0617   12.0940]; 

 

Ps_forest_row = [Ps_forest(:,1)' Ps_forest(:,2)' Ps_forest(:,3)' Ps_forest(:,4)' Ps_forest(:,5)']; 

Pv_forest_row = [Pv_forest(:,1)' Pv_forest(:,2)' Pv_forest(:,3)' Pv_forest(:,4)' Pv_forest(:,5)']; 

Pd_forest_row = [Pd_forest(:,1)' Pd_forest(:,2)' Pd_forest(:,3)' Pd_forest(:,4)' Pd_forest(:,5)']; 

 

Pd_forest_pred = [Ps_forest_row; Pv_forest_row; Pd_forest_row]'; 

 

%combine the four matrices 

 

Pred_mat = ([Pd_forest_pred; Pd_farm_pred; Pd_water_pred; Pd_urban_pred]); 

 

%create the class labels (-1 is forest, 1 is farm, 2 is water, 3 is urban) 

theclass = ones(100,1); 

theclass(1:25) = -1; 

theclass(51:75) = 2; 
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theclass(76:100) = 3; 

 

%create the model 

%for multiclass use fitcecoc 

 

%SVMModel = fitcsvm(Pred_mat,theclass,'KernelFunction','linear',... 

    %'BoxConstraint',Inf,'ClassNames',[-1,1]); 

 SVMModel = fitcecoc(Pred_mat,theclass); 

 

%perform cross validation to test model accuracy 

cross_val = crossval(SVMModel); 

misclass1 = kfoldLoss(cross_val); 

misclass1 

 

 

%Define test matrix  

Ps_test =  log10(Ps_mat); 

 

Pv_test =  log10(Pv_mat); 

 

Pd_test =  log10(Pd_mat); 

 

Ps_test_row = reshape(Ps_test,[1,62001]); 

Pv_test_row = reshape(Pv_test,[1,62001]); 

Pd_test_row = reshape(Pd_test,[1,62001]); 

 

Pd_test_pred = ([Ps_test_row; Pv_test_row; Pd_test_row]'); 

 

%do the prediction based on the SVM model 

[label,score] = predict(SVMModel,Pd_test_pred); 

 

label_new = reshape(label,[249,249]); 

 

%build the data and then the scatterplot 

 

%green for forest 

[green_loc_row, green_loc_col] = find(label_new==-1); 

 

%yellow for farm 

[yellow_loc_row, yellow_loc_col] = find(label_new==1); 

 

%blue for water 

[blue_loc_row, blue_loc_col] = find(label_new==2);  

 

%red for urban 

[red_loc_row, red_loc_col] = find(label_new==3); 

 

%set the maker size 

sz=3; 

 

scatter(green_loc_col, 249 - green_loc_row,sz,'g','filled'); 

hold on 

scatter(yellow_loc_col, 249 - yellow_loc_row,sz,'y','filled'); 

hold on 

scatter(blue_loc_col, 249 - blue_loc_row,sz,'b','filled'); 

hold on 
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scatter(red_loc_col, 249 - red_loc_row,sz,'r','filled'); 

 

toc 

 

 

 

 

 

 

 

 

 


