
Chapter 12

Alternaltive Logic

The model elevator system has been defined as the product of three primary variables: the
physical configuration, the input stream, and the operational logic. Thus far, we have seen
how the physical configuration and input streams affect system performance and adaptability,
but in the context of a single set of system rules. Characterization of complexity measures
in systems with variations on the operational logic offers a view of a larger state space and
indicates the extent to which operational logic affects complexity and its relationship to
throughput and robustness.

The systems presented in the discussion of complexity measures used the set of operational
logic most representative of a conventional naval weapons elevator system. This system
is characterized by serial carriage and ballistic hatch/magazine door operations and the
application of interlocks for compartmentalization and survivability. By combining these
attributes, we can obtain four distinct sets of system rules that dictate how a carriage
interacts with hatches and doors and how it travels within its shaft.

The combination of the serial operation of carriages and hatches/doors and the application
of interlocks is arguably the safest operational mode, but also the most prohibitive with
respect to performance. Elimination of these restrictions increases the effectiveness of the
weapons elevator system and, in general, the carrier, by reducing the time spent off-station
during a reloading and strike-down operation, during which normal carrier flight operations
are restricted and the carrier exhibits vulnerability. The elimination of one or both of
these restrictions tends to increase throughput by effectively reducing or eliminating the
waiting time associated with hatch/door operations from the perspective of the carriage.
Theoretically, the changes in the waiting times can alter the sequencing of states and therefore
the complexity. However, differences in complexity measures resulting from changes in shaft
logic are predominantly a function of temporal, not state changes.

Figure 12.1 presents the distribution of evolutions with respect to logical complexity and
throughput for all 2-3-4 configurations with (a) serial operation of hatches/doors and car-
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riages and with interlocks (SIL), (b) serial operation of carriages and hatches/doors without
interlocks (SNIL), (c) parallel carriage and hatch/door operations with interlocks (PIL),
and (d) parallel carriage and hatch/door operations without interlocks (PNIL), with all dis-
tributions using the same scales for axes. A comparison of the ranges of the throughput
values for each figure indicates that interlocks have a greater effect on performance than
the serial/parallel nature of carriage/door operations. More importantly, a comparison of
the distributions indicates a nearly identical distribution for all sets of operational logic,
although the range of logical complexity and throughput values are proportionally scaled.
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Figure 12.1: The distribution of 2-3-4 evolutions with respect to logical complexity and
throughput with (a) SIL, (b) SNIL, (c) PIL, and (d) PNIL shaft logic. Changing the shaft
logic does not affect the relative distribution of evolutions, but proportionally scale the
logical complexity and throughput values. For the cycle times assumed, interlocks have a
more significant effect on performance and logical complexity than the serial/parallel nature
of carriages and hatches/doors.

Scaling with changes in operational logic is also apparent in the comparison of distribu-
tions of 2-3-4 configurations with respect to state complexity and throughput presented in
Figure 12.2. However, scaling of both the complexity and throughput is not apparent in
Figures 12.3 and 12.4, for the compressed state complexity and the number of states used.
For these measures, only throughput, not complexity, varies with changes in the operational
logic.

The reason for changes in both the complexity and throughput for the logical complexity and
state complexity is that these measures are based on the temporal evolution length, which
is dependent on the evolution logic. The number of unique states and the compressed state
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Figure 12.2: The distribution of 2-3-4 evolutions with respect to state complexity and
throughput with (a) SIL, (b) SNIL, (c) PIL, and (d) PNIL shaft logic. Like logical com-
plexity, changes in the shaft logic result in scaling of the state complexity and throughput
in proportion.
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Figure 12.3: The distribution of 2-3-4 evolutions with respect to compressed state complexity
and throughput with (a) SIL, (b) SNIL, (c) PIL, and (d) PNIL shaft logic. Unlike the logical
and state complexities, the compressed state complexity does not scale with changes in shaft
logic.
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Figure 12.4: The distribution of 2-3-4 evolutions with respect to the number of states used
and throughput with (a) SIL, (b) SNIL, (c) PIL, and (d) PNIL shaft logic. The number of
unique states also does not scale with shaft logic, implying that shaft logic affects temporal
evolutions, but not logical evolutions.
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complexity are exclusively state-based measures - that is, these measures can be derived
exclusively from the logical evolution - and the number of states and their sequences remain
largely unchanged for a configuration and input stream.

An illustrative example of the effects of operational logic on complexity measures, we consider
the evolution of the completely connected 2-3-4 configuration 262143 with a (60-40-0-0) queue
distribution. For simplicity, we will only consider the two evolutions corresponding to SIL
and PNIL operational logics, which have the greatest difference between them. Figure 12.5
presents the temporal evolutions under the two logic sets. The evolutions share similar
patterns, yet the evolution corresponding to the PNIL system is significantly shorter, at
2542 steps versus 4836 (≈ 52%). The shorter temporal evolution length is strictly a result of
the shorter transit time from queue to magazine and from magazine to queue. The theoretical
minimum transit time for a carriage through all possible levels with the assumed carriage
speed of 7 steps per level is 42 steps. With serial carriage/hatch operations and the use of
interlocks, the typical transit time is 108 steps while a PIL system requires 46 steps. The use
of alternative operational logic can therefore be thought of as effectively reducing the waiting
time associated with hatch/door cycle times and interlocking, or equivalently, as increasing
the cycle/transit times of carriages, hatches, and doors. If the hatch/door cycle times are
sufficiently low, the hatches/doors would appear non-existent with respect to the carriage,
leaving transit time strictly a function of carriage speed.

Depending on the relative times for transit and hatch/door operations, sufficiently low
hatch/door cycle times would result in a completely interlocked system without sacrific-
ing non-interference of carriages and hatches/doors in a system with parallel operations.
The decrease in the cycle times is apparent in a comparison of the evolution histories in
Figure 12.5, where the relative widths of the cycles corresponding to loading and unloading
are narrower for SIL logic.

While the temporal evolution length changes as a result of operational logic, the logical
evolution does not. Figure 12.6 presents the logical evolution histories for the 262143 config-
uration with a (60-40-0-0) queue distribution and SIL and PNIL shaft logic. The evolutions
are identical, in both the states and their sequence. For this, and most conventional evo-
lutions, changing the operational logic with respect to carriage/hatch operations and with
respect to the use of interlocks does not change the sequence of states and only consistently
alters the transit time of carriages. One of the primary reasons for a lack of state changes
with changes in operational logic is the simplifying assumption that all magazines exist at
a common level. When magazines are located at different levels, there exists the possibility
for changes in state sequences in a deterministic evolution depending on the relative transit
times of carriages and cycle times of hatches/doors.

For the assumed systems, identical logical evolutions but varying temporal evolutions mean
that any complexity measure associated with temporal effects are affected by changes in
operational logic, but those defined exclusively by states are not. Thus, decreasing the
temporal evolution length by decreasing the effective carriage transit times results in higher
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Figure 12.5: The temporal carriage histories for the completely connected 2-3-4 configuration
262143 with a (60-40-0-0) queue distribution with (a) SIL and (b) PNIL shaft logic. The
patterns are identical, but the cycles for the SIL evolution are longer because of longer
carriage transit times.
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Figure 12.6: The logical carriage histories for the completely connected 2-3-4 configuration
262143 with a (60-40-0-0) queue distribution with (a) SIL and (b) PNIL shaft logic. Since
the logical evolutions are identical but the temporal evolutions differ, complexity measures
based on temporal evolution lengths are affected by changes in operational logic but strictly
state-based complexity measures are not.
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logical and state complexities, which are both normalized by the temporal evolution length.
The number of unique states and compressed state complexity both remain constant because
they are state-based measures.

The increase in complexity for some measures and the lack of change for others presents an
apparent paradox. How can a change in an evolution result in both a change and no change
in complexity simultaneously? This contradiction runs to the heart of the fundamental
definition of algorithmic complexity, compression and randomness.

If the length of a binary sequence increases, but only involves first order repetitions (repeti-
tions of a single bit, not bit sequences), then the information required to completely express
the sequence is relatively unchanged as the information required to define the number of
repetitions of a bit is largely unchanged by the number of repetitions, especially for longer
repetition lengths. For example, in the binary sequences in Figure 12.7, the information
required for a complete description is identical. For the sequence in (a), a first order de-
scription is <Print ‘10’, Print 8 1’s in a row, Print ‘010’> while a description of sequence
(b) is <Print ‘10’, Print 15 1’s in a row, Print ‘010’>. The number of binary bits required
to state the number of repetitions in both sequences is 4 (1000=8 and 1111-15), implying
that the sequences have identical algorithmic complexity, despite the difference in sequence
lengths. This interpretation suggests that the logical evolution and the state sequence are
more relevant to the amount of information in a sequence and, for our measures, strictly
state-based complexity measures are a better interpretation of algorithmic complexity.

(a) 1011111111010
(b) 10111111111111111010

Figure 12.7: In one interpretation of algorithmic complexity, the sequences in (a) and (b)
are algorithmically equivalent because the bits required to describe each sequence in their
shortest forms are identical.

However, the intent of algorithmic complexity is to measure the amount of randomness (or
compression) in an information stream. The above algorithmic descriptions of sequences (a)
and (b) in Figure 12.7 seem to suggest an equivalent compressed form of both sequences, yet
the longer sequence in (b) is more compressible relative to its length, meaning the sequence
in (a) is more random and therefore has greater algorithmic complexity. This interpretation
suggests that temporal, or actual sequence lengths are more representative of algorithmic
complexity and complexity measures must account for explicit evolutions.

The subtleties in the interpretation of algorithmic complexity suggest that different interpre-
tations and therefore different complexity measures are applicable when making comparisons
of systems based on various changes. Internal comparisons within a set of configurations of
a given size with common cycle times and operational logic are always valid. When changes
in the operational logic or cycle times are made, both logical and temporal effects are possi-
ble. In order to identify the effects on the logical evolution alone, ignoring the information
present in first-order repetitions, state-based complexity measures such as compressed state
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complexity and the number of states should be used. To account for both logical and tem-
poral effects, measures like the state and logical complexities that consider the complete
sequence of states, including first order patterns, are applicable.

While changing the operational logic related to the serial/parallel nature of carriage/hatch
operations and the use of interlocks can theoretically affect the states entered and their
sequence in an evolution, thereby changing all complexity measures and their relationships
to throughput and robustness, this logic only practically affects the effective transit time
of carriages. However, we can envision other, more fundamental changes to the evolution
logic which dictate changes in physical construction that significantly alter system dynam-
ics, the potential state space, and the complexity-performance and complexity-adaptability
relationships.



Chapter 13

Mobile Carriage Systems

In a conventional elevator system, carriages are assumed to be fixed within a shaft, which
is necessarily bi-directional. The terms carriage and shaft are therefore interchangeable in a
conventional system. If carriages have the ability to enter and exit the physical confines of
shafts, then the terms are no longer synonymous and the state space of operational logics
increases significantly. With additional degrees of freedom for carriage mobility, it is possible
to create circuits, or networks of system elements that can fundamentally change the decision
logic of carriages.

Since the mobility of carriages implies a circuitous operation, carriages are assumed to be uni-
directional. Without some set of logic preventing the simultaneous upwards and downwards
movement of multiple carriages in a single shaft, uni-directionality is a requirement for
avoiding interference. The concept of uni-directionality alters the definitions of validity for
connectivity. In order to be part of a circuit, each queue and magazine must be connected to
at least one up-shaft and one down-shaft, so that the simplest system or subsystem contains
one queue, two shafts, and one magazine. Because the directionality of shafts is important
to the definition and operation of configurations, the shaft directionality is included in the
configuration codes. In the shaft direction vector, or SDV, a 0 indicates a shaft is down only
and a 1 indicates an up shaft.

In conventional elevator systems, the number of carriages is, by definition, equal to the
number of shafts. However, in a system with mobile carriages, the number of carriages must
be defined explicitly, independently of the number of shafts. For simplicity, the number
of carriages is assumed to be equal to the number of queues such that carriages start an
evolution in a distinct queue. However, these initial conditions do not imply that a carriage
has any long term association with the initial queue, nor does it imply that a system with
a specified number of queues is limited to an equal number of carriages. If the number of
carriages exceeds the number of queues, the number of carriages in excess of the number of
queues are all initially located in a single queue.
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In addition to system definition and operation, uni-directionality has an impact on the system
state space. With carriages fixed in shafts, the location of a carriage is implicitly defined
while the carriage is moving. However, mobile carriages are able to travel in multiple shafts,
requiring explicit definition of the current shaft and increasing the potential state space.
Additionally, since carriages may have options in the destination queue and the path to the
queue based on queue/path availability, a carriage may wait in a magazine while determining
its destination after unloading items, eliminating the concept of an unsure carriage and its
state definition. At the same time, explicit definition of a carriage’s direction is not required,
because shaft direction is specified in the configuration definition.

The operational logic and physical representation of mobile carriage systems therefore may
have a distinctly different state space and potential for differences in state-based complexity
measures (and logical evolutions) as compared with conventional systems. Comparisons of
mobile carriage and conventional systems with respect to complexity measures are therefore
invalid, although internal comparisons of systems with common logic and sets of attributes
used to define states remain valid.

Because of the construction and operation that follow from the operational logic of mobile
carriage systems, complete evolutions tend to have very similar performance, regardless of
the queue distribution. In conventional systems, throughput is a function of when carriages
halt in the course of an evolution, which is dependent on the physical connectivity and
queue distribution. For complete evolutions, where present connectivity exists between all
queues and magazines corresponding to item types present in the queue distribution, halting
of the carriage is dependent on the specific connectivity of the corresponding shaft. Like
conventional systems, systems with mobile carriages require present connectivity between
queues and magazines with corresponding item types (present connectivity in both the QMUP

and QMDOWN matrices) for a complete evolution, with some exceptions. This connectivity
implies that each queue has some down path to each magazine and each magazine has some
up path to each queue. In a complete evolution, a carriage therefore always has a path
available to a queue containing items that are deliverable after unloading. Since carriages
are not associated with a single shaft and its limited connectivity, each carriage is essentially
completely connected and will never halt, therefore resulting in near maximum throughput
for any complete evolution.

The sole exception to the effect of disassociation of carriages and shafts on carriage halting
occurs under similar circumstances we identified previously for a conventional system with
higher amounts of connectivity. A carriage bases its selection of a destination queue on the
state of the queues at the time it finishes an unloading operation. A carriage may therefore
base its destination on the presence of a single item that has been loaded by another carriage
in the time required to travel from magazine to queue. Upon arrival to an empty queue, the
carriage waits indefinitely and is no longer utilized, thereby decreasing throughput. As with
the conventional system, without some reservation or item buffer logic, carriages will have
the potential of getting “tricked” into travel to an empty queue.
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Since carriages typically do not halt in complete evolutions, resulting in similar throughput
values for any configuration with the same number of carriages, there should be little corre-
lation between complexity measures and performance. The similarity in performance values
does not suggest however, that ranges of complexity values are necessarily limited.

For any configuration with two shafts and a fixed number of carriages, there exists only one
performance/complexity value, barring evolutions in which carriages are tricked into entering
empty queues, because one shaft must be up and the other must be down, meaning every
queue and magazine must be connected to both shafts in a valid configuration. However,
if the number of shafts increases, thereby increasing the configuration design space, a range
of patterns is possible. Figure 13.1 presents the distribution of complete 2-3-4 evolutions
with respect to the number of distinct states and throughput. Although we used 2-3-4 sized
systems for analyses of conventional systems, the 2-3-4 sized mobile carriage systems are not
necessarily used as an example system for the same reasons and their use is not intended to
imply that comparisons should be made between the behaviors of conventional and mobile
carriage systems. Mobile carriage systems with three shafts represent the simplest systems
that result in non-trivial behavior. As with conventional systems, four magazines provide
a large cross section of queue distributions and item variety, which is useful in identifying
trends with respect to robustness.
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Figure 13.1: The distribution of complete 2-3-4 evolutions with respect to the number of
states used and throughput using mobile carriages. Despite the appearance of some rela-
tionship, most evolutions have maximum throughput, but a range of complexity values.

Although there exist some evolutions in Figure 13.1 at lower throughput values that create a
distribution that is vaguely reminiscent of those seen for conventional systems, these evolu-
tions are misleading since they represent a small fraction of the total number of evolutions.
Out of 2889 complete 2-3-4 evolutions, 2789, or 97%, have a throughput value greater than
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0.33. The evolutions with lower throughput are the result of carriages tricked into halting.

Ignoring the effects of halting, the range of states entered is partly a function of item variety
in the queue distributions. Every evolution with the minimum of 46 states entered corre-
sponds to a queue distribution with a single item type. Carriages operate with a constant
phase lag introduced by the common destination (and shaft) and operate in simple patterns,
the number of which is dependent on the number of queues. For evolutions with the greatest
number of unique states, the greatest item variety is a prerequisite. Item variety not only
implies that more locations and therefore more states are entered, but also that logic speci-
fying that carriages select the most abundant items in a queue creates more unique system
patterns.

While item variety certainly has an effect on the number of states, evolutions with a common
amount of item variety still have a range of values of the number of states. The range is
largely a function of the actual connectivities of configurations and their effect on specific
relative ratios of item types.

Since the number of states is variable with respect to a set of evolutions, but throughput
remains fairly constant, the state complexity also exhibits no correlation with performance.
Shown in Figure 13.2 is the distribution of 2-3-4 evolutions with respect to state complexity
and throughput. A comparison with Figure 13.1 for the number of states reveals a nearly
identical distribution, resulting from a similar temporal evolution length for all evolutions.
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Figure 13.2: The distribution of complete 2-3-4 evolutions with respect to state complexity
and throughput using mobile carriages. The shape of the distributions for the state com-
plexity and number of states are nearly identical because the common throughput values of
evolutions mean common temporal evolution lengths.

The distribution of 2-3-4 evolutions with respect to compressed state complexity and through-
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put, presented in Figure 13.3 also reveals a similar relationship between complexity and
performance as in Figures 13.1 and 13.2. This distribution implies that both the logical
evolution length and the temporal evolution length change proportionally and, since the
temporal evolution length is approximately constant, the logical evolution length should be
as well. The proportional change means that the logical complexity, the ratio of the logical
and temporal evolution lengths, should be approximately constant. Figure 13.4, the three-
dimensional distribution of evolutions with respect to logical complexity and throughput
reveals that logical complexity is very nearly a constant. For the evolutions in which no
halting of carriages occurs (2788 out of 2888 or 97% of evolutions), the logical complexity
ranges from 0.0526 to 0.0532, a relative difference with respect to the maximum of 1.1%,
compared with relative differences between the minimum and maximum with respect to the
maximum of 76% for both the state and compressed state complexities.
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Figure 13.3: The distribution of complete 2-3-4 evolutions with respect to compressed state
complexity and throughput using mobile carriages. Since the shapes of the distributions
for state and compressed state complexity are similar to the shape of the distribution for
the number of states, the logical evolution length must scale with the temporal evolutions
length.

Of interest in Figure 13.4 is the distribution of evolutions with lower throughput values along
a linear boundary, which is reminiscent of the boundary found in distributions for conven-
tional systems. And, although there are relatively few evolutions defining this boundary,
the reason for the relationship remains identical. When mobile carriages halt, correlations
between logical complexity and throughput result as dissimilar carriage utilization results in
longer evolution lengths, and therefore lower throughput, as well as fewer state transitions
per system cycle and therefore lower logical complexity. The logical complexity distribution
shares additional characteristics with distributions of conventional evolutions, with certain
relative numbers of system elements.
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Figure 13.4: The three dimensional distribution of complete 2-3-4 evolutions with respect
to compressed state complexity and throughput using mobile carriages, which includes fre-
quencies of evolutions at blocks of values. The proportional scaling of logical and temporal
evolution lengths is evident in this distribution, since most evolutions occupy a small range
of logical complexity values.

In a system with three shafts, a valid configuration must consist of a single shaft of one
direction and two in the other direction. While variations in the connectivities of the two
shafts with a common direction are possible with sufficient queues or magazines, the sin-
gle uni-directional shaft has complete connectivity to all queues and magazines. With its
complete connectivity, the lone shaft is common to all carriages, making parallel operations
impossible. For any sort of parallelism, there must be at least four carriages (and greater
than one queue and magazine), permitting simple 1-2-1 subsystems to arise.

As with conventional systems, true parallelism - completely independent subsystems - never
results in complete evolutions, assuming queues are initially identical with respect to the
items they contain. However, significant parallel operations are possible in mobile car-
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riage systems, if specific connectivity links the subsystems in the context of item variety.
Figure 13.5 shows the temporal evolution history or configuration 14364390 2-4-3 with a
(20-40-40) queue distribution. The connectivity of configuration 14364390 is presented in
Figure 13.6 and shows that the first queue and magazine and the second queue and magazine
are partly isolated. Along with de facto priority logic, Figure 13.5 shows that the carriages
utilize this independence to operate without a phase lag. In order to be complete, present
connectivity must be present between all queues and magazines via down shafts. This con-
nectivity, along with common connectivity with respect to the third magazine, result in a
configuration that operates in parallel until being “tripped” into a phase lag required for a
complete evolution.
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Figure 13.5: The temporal evolution history of configuration 14364390 2-4-3 with a (20-40-
40) queue distribution. The two carriages in this configuration operate in parallel with no
phase lag until being tripped into a phase lag by common connections.

Like the conventional systems, synchronous carriage operations without a phase lag mean
that less state transitions per carriage cycle occur, resulting in lower logical complexity
values. The relative amount of time that a system spends with and without a phase lag
or, more accurately, the average number of state transitions per system cycle determine the
equivalent number of carriages (logically) in the system, or the level of mimicry with respect
to logical state transitions.

13.1 Robustness

The construction of mobile carriage systems results in similar throughput values for most
complete evolutions for the set of logic described, because of the inherent immunity of car-
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(SQ) =




1 1
0 1
1 0
1 1


 (SM) =




0 0 1
0 1 1
1 0 1
1 1 0


 (SDV ) =




0
1
1
0


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(SQDOWN) =




1 1
0 0
0 0
1 1


 (SMDOWN) =




0 0 1
0 0 0
0 0 0
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


(SQUP ) =




0 0
0 1
1 0
0 0


 (SMUP ) =




0 0 0
0 1 1
1 0 1
0 0 0




(QMDOWN) =

(
1 1 1
1 1 1

)
(QMUP ) =

(
1 0 1
0 1 1

)

Figure 13.6: The incidence matrices for configuration 14364390 2-4-3 reveal that the first
queue and magazine and second queue and magazine have some independence that can
result in the absence of a phase lag between carriages. The subsystems must be ultimately
connected in some manner for a complete evolution.

riages to halting (complete immunity if some form of reservation logic is employed). While
the lack of halting does not provide any useful relationship between complexity and perfor-
mance, complexity can still be applied towards robustness, particularly for measures related
to the physical connectivity.

The tendency for carriages to have uniform utilization in complete evolutions in no way
suggests that any configuration has maximum robustness because not all evolutions are nec-
essarily complete. As for conventional systems, robustness is a function of the combination
of physical connectivity in the context of variable input streams.

Figure 13.7 presents the robustness curves for the set of 2-3-4 evolutions, superposed with
the normalized number of configurations at each populated level. Because each set of config-
urations at each level of robustness is composed only of complete evolutions, and complete
evolutions have been shown to have maximal throughput, the robustness curve for through-
put is, not surprisingly, an essentially flat line. The logical complexity robustness curve
matches that of the throughput, because the logical and temporal evolution lengths scale in
proportion in systems where parallel, in-phase carriages are impossible. For configurations
in which phase lags may be absent (at least partially), such as the 2-4-2 systems with some
degree of subsystem independence, a range of logical complexities may exist at the near con-
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stant throughput and their respective throughput and logical complexity robustness curves
may begin to deviate.
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Figure 13.7: The robustness curves for throughput and various complexity measures for
the 2-3-4 mobile carriage configurations, superposed with the configuration populations at
each level. The throughput and logical complexity curves are nearly identical and share no
practical correlation with robustness. The state-based complexity measures are also quite
similar, since the logical and temporal evolutions lengths are fairly constant for all complete
evolutions, and suggest a correlation with robustness.

The state-based complexity measures - the number of unique states, state complexity, and
compressed state complexity - share nearly identical robustness curves, which are funda-
mentally different than those for the logical complexity and throughput. Although the
distributions of evolutions with respect to state-based complexity measures reveal a range of
possible values, the distributions alone provide no clue as to their relationship to robustness.
However, there is a distinct trend in the state-based complexity measures with respect to
robustness.

The explanation for lower state-based complexity measures at lower levels of robustness is
largely a function of the definition of robustness and, more importantly, the attributes of a
configuration that are responsible for complete evolutions. Because the number of complete
evolutions, and therefore the level of robustness, is dependent on the number of magazines
with absent connectivity to queues, configurations at lower levels of robustness are complete
only for evolutions with less item variety in the queue distribution. A configuration with a
level of robustness of 1 is therefore complete only when a single item type is present. As the
level of robustness increases, corresponding configurations are able to completely transfer
queue distributions with greater variety. But since item variety typically results in a greater
number of states, and since throughput and evolution length remain relatively constant, then
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configurations that result in complete evolutions with a greater variety of item types will
have higher mean numbers of states. That is, the number of states entered in an evolution
of a configuration with a low level of robustness is approximately the same as that for a
configuration with a high level of robustness for the common set of queue distributions.
However, the complement of queue distributions will have greater item variety and increase
the mean number of states for the robust configurations.

Looking with greater detail at the robustness curves in Figure 13.7 provides greater in-
sight into the relationship between physical connectivity and robustness. For conventional
systems, a configuration is complete for the set of queue distributions formed by the com-
bination of item types equal to the number of relevant magazines - those magazines with
present connectivity to all queues. With our constant 20% item distribution increment,
there is therefore 1 queue distribution that results in a complete evolution for a configura-
tion with 1 relevant magazine, 6 queue distributions that result in complete evolutions with
2 relevant magazines, 21 queue distributions with 3 relevant magazines, and, for configu-
rations with 4 magazines, the greatest number of magazines for the systems analyzed, 56
queue distributions result in complete evolutions. For conventional systems, when consider-
ing completeness, and not uniqueness, a configuration exists only at the 1st, 6th, 21st, or 56th

level of robustness, depending on the number of relevant magazines. However, Figure 13.7
for mobile carriage systems, reveals populations at additional levels of robustness. The ex-
planation for these intermediate levels is related to the uni-directionality of shafts and the
importance of distinguishing between sub-circuits with up and down shafts.

With respect to the sub-matrix describing connectivity between queues and magazines via
down shafts, the relationship between the number of relevant magazines and the level of
robustness is identical to that for conventional systems. If no downward shaft connects a
magazine to a queue, then none of the items in that queue destined for that magazine can
be delivered directly and all evolutions with queue distributions containing some fraction of
this item type are incomplete. However, if an upward connection between a magazine and
queue is absent, then an evolution may still be complete, although higher level patterns are
required.

As an example, consider configuration 1019774 2-3-4, which has the incidence matrices pre-
sented in Figure 13.8 and a level of robustness of 46. The pathways and their directions
for this configuration are illustrated in Figure 13.9. Inspection of the QM matrix, ignor-
ing directionality, suggests that the configuration is capable of complete evolutions for any
queue distribution, because of present connectivity between all queues and magazines. But
the direction of the pathways is essential to robustness. Looking at the QMDOWN matrix
we again see present connectivity between all queues and magazines - a result of a single
down shaft that must be completely connected for a valid configuration. The QMUP ma-
trix however, has an absent connection between the first queue and fourth magazine. This
connectivity initially suggests that the configuration has three relevant magazines and any
queue distribution containing item types corresponding to the fourth magazine results in an
incomplete evolution because there is no return path from the fourth magazine to the first



Roger Anderson Chapter 13. Mobile Carriage Systems 307

queue. And the evolution of this configuration with a queue distribution containing only
items corresponding to the fourth magazine is certainly incomplete. However, if the number
of items bound for the fourth magazine is sufficiently low, then complete evolutions result,
as the system essentially utilizes a collateral circuit via higher order patterns.

(SQ) =


 0 1

1 1
1 1


 (SM) =


 0 0 0 1

1 1 1 0
1 1 1 1


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(SDV ) =




1
1
0


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2 2 2 1
2 2 2 2

)

(SQDOWN) =


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1 1


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
 0 0 0 0

0 0 0 0
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
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(SQUP ) =




0 1
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
 (SMUP ) =




0 0 0 1
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0 0 0 0




(QMDOWN) =

(
1 1 1 1
1 1 1 1

)
(QMUP ) =

(
1 1 1 0
1 1 1 1

)

Figure 13.8: The incidence matrices for configuration 1019774 2-3-4. There is no connection
between the first queue and fourth magazine via up shafts, yet the configuration is capable of
complete evolutions, when the number of items bound for the fourth magazine are sufficiently
low, because higher order patterns return carriages to the first queue to deliver items to the
fourth magazine.

Figure 13.10 presents the temporal evolution history of configuration 1019774 with an (80-0-
0-20) queue distribution, with emphasis on the higher order patterns that enable the system
to deliver items from the first queue to the fourth magazine. For this example evolution,
for a carriage to transport items from the first queue to the fourth magazine, it must travel
indirectly through the second queue and first magazine as it carries corresponding items. In
order to complete the indirect circuit, there must be sufficient items corresponding to the first
magazine (or second or third for this configuration) relative to the number of items bound
for the indirectly connected fourth magazine, in the context of de facto priority logic. For
configuration 1019774, queue distributions with more than 40% of item types corresponding
to the fourth magazine result in incomplete evolutions. The ten of these queue distributions
therefore result in the 56 − 10 = 46th level of robustness. In general, a configuration with
absent connectivity in the QMUP sub-matrix must have sufficiently high ratios of item types
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Figure 13.9: A schematic layout of configuration 1019774, showing the connections between
queues and magazines and the directionality of shafts. The vertical layout of magazines and
queues is not intended to suggest a physical reality - all queues are on one level and all
magazines are on a common level.

required for collateral circuits with sufficient connectivity for repetition of the necessary
higher order patterns.
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Figure 13.10: The temporal evolution history of configuration 1019774 2-3-4 with a (80-0-0-
20) queue distribution. Higher order patterns are highlighted that describe carriages’ circuits
that result in a complete evolution

The relationship between connectivity and throughput indicates an important characteristic
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of these mobile carriage systems. Given that complete evolutions tend to have maximum
throughput and present connectivity between queues and magazines with respect to both
up and down shafts guarantees completeness, then additional connectivity does nothing to
increase performance or adaptability. Increasing the number of connections between queues
and magazines, while increasing average robustness and throughput in conventional systems,
is inefficient in mobile carriage systems, only increasing the practical costs of additional
connections.

Because we need to see how both the up and down sub-circuits behave in order to determine
robustness, the use of average physical connectivity, when considering a configuration as
a whole without regard to directional circuits, is not particularly useful for mobile carriage
systems as a predictive measure of robustness (and, like other complexity measures, certainly
not for throughput). However, understanding how the actual connectivity impacts robustness
is useful and is applicable as a first-order filter for candidate configurations, given constraints
on the control of the queue distribution.

A complete analysis of systems with mobile carriages, including investigation of the effects
of parallel carriage/hatch operations and the absence of interlocks, is not performed here.
Mobile carriage systems are intended only to illustrate how the associated assumed logic, in
the context of physical connectivity and input streams, can significantly impact the relation-
ships of complexity measures with performance and adaptability and therefore the practical
applicability of these complexity measures in optimal searches of large design spaces. The
lack of a practical relationship between complexity measures and performance or adaptabil-
ity does not suggest that such useful relationships are inherently absent from systems with
mobile carriages. Adaptation of the logic and system operation may introduce meaningful
correlations, but require additional development not addressed here.



Chapter 14

Conclusions

Intuitively, we are able to distinguish between different types of behaviors. However, qualita-
tive descriptions are too imprecise, especially in intra-class comparisons of behaviors. That
is, can one thing be more chaotic than another? And to what extent? Based on theoretical
measures such as algorithmic complexity and component counting and drawing from con-
cepts from network topologies, we have created measures applicable to models of vertical
material handling systems. Specifically, we examined deterministic models of conventional
and unconventional naval weapons elevator systems with parallel, structured input streams
that are simple enough to permit exhaustive characterization, yet large enough to exhibit
a range of behaviors. Using these measures, we have demonstrated that relationships are
present between behavior and performance and between behavior and robustness.

Algorithmic complexity, which is a significant basis for all dynamic measures and serves as
a context for validating our intuitions regarding complexity, has been shown to exhibit little
correlation to system performance. However, the practical implementations of algorithmic
complexity do show correlations. For all dynamic measures, correlations result from the
occurrence and timing of halting carriages, which is ultimately a function of physical con-
nectivity and input streams. This effect is particularly apparent for the number of unique
states, where no theoretical correlations are apparent and no other influences are present,
such as normalizations by evolution lengths, which are inherently related to throughput.

Since model systems are defined in terms of physical connectivity, input streams, and control
logic, it should not be a great surprise that the physical configuration play such an important
role in the relationship between complexity and performance. However, it is extremely
significant that a relatively simple potential complexity measure, such as the average physical
connectivity, shows a strong relationship to performance. With a static, potential measure,
the costs of simulations are avoided to a great extent, which can significantly reduce the time
necessary to identify optimal solutions or can increase a search space.

In the design of complex systems with dynamic environments or, in the case of naval weapons

310
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elevator systems, an intractable state space of input streams, the concept of optimality
is not limited to performance, but also must account for robustness. According to our
interpretation of algorithmic complexity, optimal performance corresponds to the simplest
evolutions, with little carriage interaction and delays. And, distributions of evolutions for
our applied complexity measures often indicate this combination. However, this simple
evolution/high performance point represents a very specific case for a combination of a
certain physical connectivity and input stream, typically with little item variety. There is
no guarantee that configurations with evolutions corresponding to this region will be good
performers for other, more complex input streams. It is therefore necessary to consider
the robustness of a configuration with a range of input streams. Our ‘robustness curves’,
when superposed with configuration populations across possible levels of robustness, indicate
that the most robust configurations generally have greater mean complexity, largely because
robustness is a function of connectivity, specifically the presence and distribution of absent
connections between queues and magazines and this connectivity dictates the amount of
item variety that is possible for complete evolutions.

In recognizing the attributes of physical connectivity that relate to the level of robustness,
we also found that optimality with respect to robustness by no means guarantees optimal
performance. Given the constraints of connectivity imposed by a certain level of robust-
ness, we must understand how specific connectivities relate to performance. While greater
connectivity and more uniform distributions of connections tend to result in greater perfor-
mance, the advantages of greater connectivity must be weighed against the practical costs
and feasibility of more connections. Additionally, it is possible to obtain maximum or near
maximum performance for all input streams without the necessity for complete connectivity.
By avoiding redundant connectivity for shafts, we can obtain maximum performance for
a given number of connections, while maintaining maximum robustness, yielding the most
efficient configurations with respect to carriage utilization for a range of input streams.

The robustness of a configuration must also be considered in the context of the level of
control of input streams. For the models used in this work, all queues were assumed to be
identical and the set of input streams was constructed to consider a wide range of possibilities
in order to simplify simulations while providing complete fundamental characterization of
performance and behavior. Since physical connectivity and the set of possible input streams
collectively determine the level of robustness, as the level of control of queues increases,
connectivity can be decreased accordingly while still maintaining maximum robustness with
respect to the set of input streams encountered, although this relationship indicates nothing
about the resultant performance. However, the benefits associated with reducing connectiv-
ity based on the level of control of input streams comes at the price of reduced functionality
- only those input streams suited to the physical configuration will result in complete evo-
lutions, which may or may not raise any issues, depending on the life and intent of the
system.

The relationships between complexity and performance and between complexity and robust-
ness suggest that we design, or search for, configurations with maximum or near maximum
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complexity. However, in our deterministic system with the set of fixed evolution logic, chaotic
behavior is never evident and the systems always operate in a simplistic regime, although
the relative complexity in this regime varies. Evidence of operation in a simple regime lies
in the values of the absolute complexity measures based on algorithmic complexity, such as
logical and compressed state complexity, which indicate significant amounts of compression.
Although our interpretation of the weapons elevator system results in operation strictly in
a simplistic regime, the relationships in this regime are in agreement with evidence from
complex systems, particularly from natural systems. The results therefore suggest a gen-
eral applicability of behavior as part of an optimization method, where designed behavior
is considered in the context of the environment. In evolutionary terms, systems with lit-
tle environmental variability require simplicity in order to take advantage of environmental
niches. With greater environmental variability, or even functionality, complex behavior is
appropriate because of the associated mixture of adaptation and stability. Similarly, com-
plex behavior is suitable in chaotic environments because of the self-organizing properties
of complex systems. It is in these latter two situations that behavior-based optimization is
intended to exhibit advantages over conventional methods, which do not consider behavior
and provide little indication of performance and, more importantly, robustness beyond the
limited set of simulations used in their application. But to validate these general principles,
we require a formal “language” for complexity and behavior - a set of tools that enables
identification of systems that would benefit from behavior-based optimization methods that,
to date, does not exist. So, while the results of this work show that relationships can be
present and offer the potential for behavior-based optimization techniques, they offer little
with respect to general applicability beyond what we may imply from evidence in other
complex systems.

The relationships for conventional systems show that physical connectivity and input streams,
two of the three factors that define a system, have a collective impact on behavior, perfor-
mance, and robustness. But the third factor, the operational logic, can also have a significant
impact. Changes to the operational characteristics of shaft operations revealed no fundamen-
tal change in correlations, effectively changing only temporal effects, not logical. However,
comparison of the effects of changes in operational logic in conventional systems on vari-
ous complexity measures indicates interesting subtleties in the interpretation of algorithmic
complexity which can affect the applicability of complexity as an optimization tool. Algo-
rithmic complexity is defined as the length of the shortest program necessary for a complete
description of an information stream. By this definition, the number of repetitions of a pat-
tern is largely irrelevant, as the information required to describe the number of repetitions
is typically negligible relative to the information required to describe the pattern. But if the
intent of algorithmic complexity is to describe the amount of randomness or compression in
an information stream, then the number of repetitions is relevant. The two interpretations
of algorithmic complexity, as a relative or absolute measure or, for the model system, as a
logical or temporal measure, indicates that a duality of algorithmic complexity is present
that can affect its interpretation and application during comparisons of systems and their
evolutions.
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The control logic of mobile carriage systems, which is fundamentally different than that for
conventional systems, resulted in a lack of correlations between behavior and performance
or robustness. For these systems, an evolution is complete if all queues have at least one
‘down’ connection to each magazine corresponding to present item types and all of these
magazines have at least one ‘up’ connection to each queue. Since carriages have no asso-
ciation with any particular shaft, the configuration that results in a complete evolution is
effectively completely connected with respect to the input stream, meaning no carriage halts
and therefore every complete evolution has maximum performance. So, despite variations
in physical connectivity and input streams, the operational logic of mobile carriage systems
effectively eliminates halting, the cause of correlations between complexity and performance
and robustness in conventional systems, indicating that the operational logic must be suited
to correlations if complexity-based optimization techniques are applicable.

The application of theoretical complexity measures and the identification of relationships
between behavior and performance and between behavior and robustness in real systems, as
well as their fundamental causes, represent preliminary steps towards the application of com-
plexity to optimization. It is conjectured that complexity-based optimization is applicable as
a stand-alone tool, filtering out configurations based on the behavior of evolutions in simu-
lations, even as patterns emerge in the course of evolutions. It is envisioned that complexity
can also be used as a quantitative measure of fitness in existing heuristic methods, such as
genetic algorithms, as an additional optimizing filter. However, while heuristic methods rely
on explicit simulation, static complexity measures offer the possibility of avoiding the costs
associated with explicit simulations, which can significantly reduce the time necessary to find
a suitable solution or, more importantly, can expand the size or detail of complex problems
that can be solved.
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Appendix A

Baseline Operation Cycle
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Table A.1: The strike-down sequence and cycle times for the modified baseline configuration
consisting of a single queue, shaft, and magazine (located on the 7th deck). At the start
of the cycle, the carriage is assumed to be unloaded at the main deck. The upper ballistic
hatch is open and the lower ballistic hatch and magazine door are closed. In this sequence,
the lower hatch is assumed to close over the carriage when it stops in the lower shaft. This
operation represents a divergence from the actual sequence to reflect potential advances in
system hardware. The individual cycle times have also been changed from existing baseline
values to reflect these advances.

Cycle Cumulative
Step Operation Time (s) Time (s)

1 Load weapons at queue 20 20
2 Carriage travel from the main deck to the upper 14 34

shaft, lower way point at the 3rd deck (2 decks
at 7 seconds transit time per deck)

3 Upper ballistic hatch closes and locks 18 52
4 Lower ballistic hatch unlocks and opens 18 70
5 Carriage travel from the upper shaft, lower way 28 98

point to the destination magazine level at the
7th deck (4 decks at 7 seconds transit time per
deck)

6 Lower ballistic hatch closes and locks 18 116
7 Magazine door unlocks and opens 10 126
8 Unload weapons at destination magazine 20 146
9 Magazine door closes and locks 10 156
10 Lower ballistic hatch unlocks and opens 18 174
11 Carriage travel from the 7th deck to the upper 28 202

shaft, lower way point at the 3rd deck (4 decks
at 7 seconds transit time per deck)

12 Lower ballistic hatch closes and locks 18 220
13 Upper ballistic hatch unlocks and opens 18 238
14 Carriage travel from the upper shaft, lower way 14 252

point to the main deck
15 Completion of one cycle with carriage ready to

load at the main deck. Total cycle of 252 seconds
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Appendix B

Model Validation

B.1 Baseline Sequence

Validation of the weapons elevator model and simulation is performed with a comparison
of the modified baseline sequence in Table A.1 to a trace of the evolution of states in time
taken from the model. In the following single cycle of the evolution of the single queue,
shaft, and magazine system (configuration 3 1-1-1 (100)), more system states than the 11
used to define system states in evolutions presented throughout the text are involved in
order to provide the level of detail required for comparison with the baseline sequence. The
32 states used for the baseline cycle (and their bit position in the graphical representation)
are enumerated in Table B.1. Any column containing colored cells describes the state of
a binary variable, where white cells represent a false value and black cells represent a true
value. Columns containing numbers represent the value of timers, location values, or other
non-binary states.

When multiple carriages are present in an evolution, information is partitioned with respect
to carriages such that the states in Table B.1 comprise a packet corresponding to a par-
ticular carriage. While the number of columns required to describe an evolution is clearly
not constant and depends on the number of carriages, the size of packets for a particular
configuration size is also not constant. Since the magazine door states corresponding to a
particular shaft are included in each packet, the number of columns required to describe the
state of a carriage is dependent on the number of magazines. However, since all respective
magazine door states are included in a packet regardless of the connectivity of the corre-
sponding shaft and magazines, the number of states in each packet is identical. The number
of states required to describe a model in this format is therefore presented in Equation B.1,
where s is the number of shafts/carriages and m represents the number of magazines.

States = s (26 + 6m) (B.1)
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Table B.1: The 32 states used in the trace of the baseline, single queue, shaft, and magazine
system. In columns containing only color, a white cell indicates the state is false and black
cells represent true. Numbered cells describe the value of a non-binary state such as a timer
or location number.

Bit State
1 Destination type
2 Destination number
3 Current location type
4 Current location number
5 Carriage loading
6 Loading timer
7 Upper ballistic hatch closed
8 Upper ballistic hatch opening
9 Upper ballistic hatch opening timer
10 Upper ballistic hatch open
11 Upper ballistic hatch closing
12 Upper ballistic hatch closing timer
13 Lower ballistic hatch closed
14 Lower ballistic hatch opening
15 Lower ballistic hatch opening timer
16 Lower ballistic hatch open
17 Lower ballistic hatch closing
18 Lower ballistic hatch closing timer
19 Magazine door closed
20 Magazine door opening
21 Magazine door opening timer
22 Magazine door open
23 Magazine door closing
24 Magazine door closing timer
25 Carriage unloading
26 Unloading timer
27 Up direction
28 Down direction
29 Up movement
30 Down movement
31 Shaft movement timer
32 Carriage level

Included on the right edge of the evolution are indicators of states changes corresponding to
those in the baseline sequence, where the numbers describe the states in Table A.1. We can
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therefore establish the validity of the model by comparing the state of the system at each
state change, knowing the order of states from Table B.1, with the corresponding number
in Table A.1 as well as comparing the step in the evolution at each state change with the
cumulative time in Table A.1. A cursory comparison of the steps corresponding to state
changes in the model evolution and the baseline sequence reveals discrepancies that initially
serve to invalidate the model. However, closer inspection reveals that the differences are
trivial and irrelevant to model validity. For six of the state changes in the evolution, two
time steps are required for a complete state change. This transition is a direct result of the
serial nature of the programming used in the model. In a single scan of checks for state
changes, if an updated value affects states checked earlier in the code, then an additional
time step is required for the earlier code to respond to the change. The occurrence of these
delays, described in Table B.2 for the baseline scenario, is a function of the sequence of code
presented in Table B.3 that performs checks for changes in state values. For instance, when
the simulation has detected that the lower ballistic hatch has finished opening (the end of
operation 4 in Table A.1), the carriage does not simultaneously begin downward movement
because the checks that permit downward movement are performed prior to the checks for
updates in hatch states. Only in the subsequent check for carriage movement in the following
cycle does the carriage movement state change and movement begin. Since the effects of the
delays are cumulative and there are 6 instances in this evolution that result in delayed state
changes, the length of a cycle in described by the simulation is 258 steps, compared with the
252 steps defined by the baseline scenario.

Table B.2: Scenarios that result in an apparent delay in state transitions. These delays are
a function of the serial nature of programming used.

Step Delayed transition
70 Lower ballistic hatch finishes opening,

then carriage starts movement
117 Lower ballistic hatch finishes closing,

then magazine door starts opening
128 Magazine door finishes opening, then

carriage begins unloading
177 Lower ballistic hatch finishes opening,

then carriage starts movement
224 Lower ballistic hatch finishes closing,

then upper ballistic hatch starts opening
244 Upper ballistic hatch finishes opening,

then carriage travels from the 3rd deck to the main deck

While the effects of serial programming that result in a discrepancy between “actual” and
modeled sequences of state changes can be remedied in a number of ways, the differences are
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Table B.3: The serial sequence of states used in the programming for the elevator model.
Two states that change simultaneously in the baseline sequence may change on different time
steps in the model if a change made in a latter module affects a change in an earlier module.

Checks for updating carriage states
CheckForStartLoading
CheckForFinishLoading
CheckForStartUnloading
CheckForFinishUnloading
CheckForUpMovement
CheckForDownMovement
CheckToReserveMagazine
CheckForSelectQueue
CheckForRequestOpenUpperBallisticHatch
CheckForRequestOpenLowerBallisticHatch
CheckForRequestOpenMagazineDoor
CheckIfMovingUpOrDown

Checks for updating hatch/door states
CheckForMagazineDoorToStartOpening
CheckForMagazineDoorToFinishOpening
CheckForMagazineDoorToStartClosing
CheckForMagazineDoorToFinishClosing
CheckForUpperBallisticHatchToStartOpening
CheckForUpperBallisticHatchToFinishOpening
CheckForUpperBallisticHatchToStartClosing
CheckForUpperBallisticHatchToFinishClosing
CheckForLowerBallisticHatchToStartOpening
CheckForLowerBallisticHatchToFinishOpening
CheckForLowerBallisticHatchToStartClosing
CheckForLowerBallisticHatchToFinishClosing
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irrelevant with respect to the primary objectives of the work. Since the model is deterministic
and phase lags between the sequences of carriage states remain fixed after being introduced,
transition delays do not result in additional, or fewer system states. Since our intent is not to
model the particular system defined by the baseline scenario, but to investigate relationships
between complexity, performance, and robustness, these delays are therefore irrelevant to
the validity of the model.
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B.2 Validation with Greater Complexity

Using similar techniques for tracing the evolution of the baseline scenario, we can investigate
more complex evolutions involving greater numbers of states that also allow us to validate
the model logic. In particular, we can use the trace to identify problems associated with
system operation not obvious or predictable from the rule sets, such as the “halting” problem
identified in analyses, in which a carriage is “tricked” into selecting a queue that is emptied
prior to the carriage’s arrival. A view of the temporal evolution history for each carriage in
this scenario is provided in Figure B.1. In this illustrative case (262143 2-3-4 (0-0-40-60))
of the completely connected 2-3-4 system, the second carriage halts at approximately the
3,100th step. However, an analysis of the following detailed evolution trace in Figure B.2
reveals that the cause for the halting of the second carriage is set up in the sequence of
events prior to the halting. To observe these events, the evolution trace presents the states
from the 2,965th step to the 3,120th step. As with the baseline evolution, key steps in the
evolution relevant to the halting scenario are presented on the right margin of the evolution.
For simplicity of the trace, descriptions of these steps are presented in Table B.4 that include
the relevant bit numbers associated with state changes.
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Figure B.1: The individual carriage state histories of the (a) first carriage, (b) second car-
riage, and (c) third carriage for configuration 262143 with a 0-0-40-60 queue distribution.
The second carriage halts at approximately the 3,100th step, despite the complete connec-
tivity of the configuration when the second carriage enters an empty queue. A detailed trace
of the evolution illustrates the course of events and the logic that results in this scenario.
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Since there are significantly more states involved in this evolution than in the baseline sce-
nario because of the number of carriages and magazines, columns containing numerical values
are difficult to interpret. As a result, the descriptions of these numbers have been replaced
by shaded cells, where the intensity of the shading indicates the value of the state relative to
the maximum value the state can assume. For instance, as a timer counts down from a value
of 20, the cell will lighten steadily from a black cell through 18 shades of gray and result as
a white cell.

Table B.4: A description of the sequence and timing of events that result in a carriage
that enters an empty queue. The state numbers refer to key steps indicated in the detailed
evolution trace.

State Step Event Relevant bits
1 2968 First carriage begins unloading in the fourth 3, 4,

magazine 43, 44
2 2988 First carriage finishes unloading and selects 1, 2,

the first queue as its destination. At this 43, 44
time, there is a single item in the first
queue, which corresponds to the third
magazine

3 2989 Second carriage starts unloading in the third 53, 54
magazine 93, 94

4 3009 Second carriage finishes unloading and selects 47, 49
the first queue as its destination as well 50, 51,
because the lone item on which the first 52, 93,
carriage based its queue selection has not 94
been picked up by the first carriage yet, so
the second carriage is under the impression
the item is available. The first carriage is
waiting at the seventh deck while the magazine
door to its shaft closes

5 3097 The first carriage starts loading the last 3, 4,
item in the first queue. The second carriage 5, 6,
is at the third deck, waiting for its 58, 59,
corresponding upper ballistic hatch to finish 95, 99,
opening 100

6 3117 The first carriage finishes loading and the 5, 6,
the second carriage arrives at an empty queue 100
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Figure B.2: The detailed evolution trace of the completely connected 2-3-4 size system with
a (0-0-40-60) queue distribution from the 2,965th to the 3,120th evolution step. In this
sequence, the events leading to a carriage entering an empty queue are illustrated.

333



Vita

Roger Anderson was born on September, 1976 to parents Robert and Ellen in Huntington,
NY. He attended Webb Institute on a full scholarship and, in 1998, graduated with a bach-
elor’s degree in naval architecture and marine engineering. In 1999, he received a master’s
degree in ocean engineering from the Massachusetts Institute of Technology. His master’s
thesis, Experiments and Simulation of Line Heating of Plates, investigated a model to predict
angular deformations in plates from localized heating as an alternative to computationally
intensive three-dimensional, non-linear finite element modeling.

334


