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(ABSTRACT)

Most of the techniques that have been applied to the short-term load forecasting

problem fall within the time series approaches. The exception to this has been a new

approach based on the application of expert systems. Recently several techniques have been

reported which apply the rule-based (or expert systems) approach to the short—term load

forecasting problem. However, the ma>ömum lead time used for these forecasts has not gone -

beyond 48 hours, even though there is a significant difference between these algorithms in

terms of their data base requirements (few weeks to 10 years).

The work reported in this dissertation deals with two aspects. The first one is the

application of rule-based techniques to weekly load forecast. A rule-based technique is

presented that is capable of issuing a 168-hour lead-time load forecast. The second aspect is

the development of a comprehensive load forecasting system that utilizes both the statistical

and rule-based approaches. This integration overcomes the deficiencies that exist in both of

these modeling techniques. .

The load forecasting technique is developed using two parallel approaches. In the first

approach expert information is used to identify weather variables, day types and diurnal

effects that influence the electrical utility load. These parameters and hourly historical loads

are then selectively used for various statistical techniques (e.g., univariate, transfer function

and linear regression). A weighted average load forecast is then produced which judiciously

combines the forecasts from these three techniques. The second approach, however, is free

of any significant statistical computation, and is based totally on rules derived from electric

utility experts. The data base requirement for any of these approaches do not extend more



than four weeks ol hourly load, dry bulb and dew point temperatures. When the algorithms

are applied to generate seven-day ahead load forecasts for summer (August) and winter

(February) the average forecast errors for the month come under 3%.
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Chapter I

INTRODUCTION

Load forecastlng is a central and an integral process in the operation and planning of

electric power systems. Therefore, accurate load forecasts are always needed for the

successful operation of these systems. Many techniques have been investigated to solve the

problem of load forecastlng in the last 15 to 20 years. These techniques have been classified

depending on the area of application into long, medium, and short term load forecastlng.

Long-term load forecasting is necessary for system planning such as to expand the system

capability in order to meet the expected long-term growth in demand. Medium-term load

forecastlng is necessary for schedullng of fuel supplies, schedullng of maintenance

operations, and planning for inter-utility power transfer. Short-term load forecastlng is

necessary in the daily operations such as unit commitment, energy transfer scheduling, and

load dispatch. Besides, the short-term load forecastlng is necessary for the coordination ofthe

energy management programs with the system resources [1].

Almost all the existing techniques that have been used to solve the problem of load

forecastlng fall in the time series approaches [2]. Such approaches can give results with

accuracies as high as 2% absolute average error (w.r.t. peak load) for short lead times (up

lNTRo¤ucTl0N 1



to 24 hours). Accuracies decrease as the lead time increases. However, such algorithms

require, for the statistical analysis, huge historical data bases. These data bases could be

as large as 2 or 3 years in depth. Other techniques such as pattern recognition may require

larger data bases which could go up to 10 years [3]. There are of course other techniques

which could require smaller data bases such as correlation, regression, exponential

smoothing, state-space and Kalman filter, and others. However these approaches are not as

popular in their application to the load forecast problem as the time series approach.

Recently, a new technique based on the application of expert systems to the problem

of load forecast has been introduced by Rahman and Bhatnagar. Rahman and Bhatnagar [2,4]

proposed and applied a knowledge-based algorithm for short term load forecasting. They

tested their method against some existing statistical methods. They developed an algorithm

for the six-hour load forecast and another algorithm for the 24-hour load forecast. Such

algorithms were developed "based on the logical and syntactical relationships between the

weather and prevailing daily load shapes' [2].

ln the light of the current state of the art of load forecasting the direction of this research

was to pursue the investigation of the short~term load forecasting up to 168-hour lead time _

predictions. Therefore, the direction of this research is intended to proceed in the

investigation of both statistical and rule-based approaches to the development of load

forecasting algorithms. These algorithms would include a short-term forecast for hourly load

demand up to 168-hour lead-time and a daily peak load forecast up to 7-day lead time. This

algorithms would be integrated under an intelligent load forecasting system.

The work proposed in this dissertation research starts by a study of the existing

statistical and knowledge-based load forecasting techniques as covered in Chapter 2. This

includes discussion on the structure of the load forecasting problem and the different methods

that have been used in approaching this problem. Through this study, the need for an adaptive

short-term load forecasting technique has been identiiied. The use of an adaptive load

forecasting technique, based on both the statistical and rule-based approaches, is presented

in chapter 3. This includes the argument why it is necessary to investigate both the

lNTRO¤UcTl0N 2



conventional techniques as well as the rule·based approaches. Thus it is argued that the

Iogical way to proceed for developing load forecasting algorithms, that are adaptive to

changing conditions, is the implementation of knowledge based systems which include both

the conventional and rule rule-based approaches. This is followed by Chapter 4 which gives

a brief presentation on expert systems and their applications to power systems. Following this

a discussion on the time series approach to load forecasting with improved models for weekly

load prediction is presented in chapter 5. This is followed in chapter 6 by an implementation

of rule-based (expert system) techniques to the 168·hour lead time load forecast prediction.

Analysis and evaluation of this technique is also presented in this chapter. ln chapter 7,

short—term ( 24-hour lead time) load forecast models are developed using several statistical

techniques. The predictions of these load forecast models have been compared with the

predictions produced by a model that is completely based on a rule-base approach.

Evaluation of these techniques are presented as applied to the same data base. In chapter 8,

an intelligent load forecasting system is proposed. This system integrates both the statistical

and rule-based approaches under a knowledge-based system. This is followed by an

evaluation of the performance of this load forecasting system as presented in chapter 9.

Finally, conclusions and recommendations that have resulted from this study are presented
—

in chapter 10.
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Chapter II

A REVIEW OF LOAD FORECASTING

METHODOLOGIES

2.1 Introduction

Load forecast has been an important process in the planning and operation of electric

utilities. Therefore, many techniques and philosophies have been investigated to tackle this

problem in the last two decades. These techniques and philosophies are often different in

nature and may implement different engineering considerations and economic analyses.

The IEEE load forecasting working group has published, in two phases, a documentary

bibliography on load forecasting, The first bibliography (PHASE I) has covered general

philosophies of load forecasting [5]. The second bibliography (PHASE Il) has focused on the

economic issues of load forecasting [6]. The most recent review is reported by Gross and

Galiana [7] in 1987 where the authors have reviewed various short-term load forecasting

techniques that have been proposed or in use today. There are additional publications that

have reviewed load forecasting. One of these is the work of Bunn [8] which has reviewed the
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short-term load forecasting procedures in the electricity supply industry. ln another work

Bunn and Farmer [1] have also reviewed and discussed the forecasting techniques that have

been applied in the electric power industry. Another work by Fildes [9] has covered the

explorative models for quantitative forecasting. An early review of the techniques for

predicting load demands in the electric supply industry was reported by Matthewman and

Nicholson [10]. ln another paper Abu El-Magd and Sinha [11] have reviewed the short-term

load demand modeling and forecasting. Engle and Goodrich [12] have discussed the use of

seven different forecasting models to calculate one-month to five years of monthly electricity

sales. Even though the targeted application of this report is different from the focus of this

research, which is short-term (one hour up to one week lead time) load forecasting, the review

of statistical techniques there is useful.

This chapter presents a review of the most widely applied load forecasting

methodologies. ln particular, those modeling techniques that have been applied to short and

medium-term load forecasts. The review includes the following load forecasting

methodologies:

- Multiple Linear Regression

- Stochastic Time Series

- Exponential Smoothing

- State Space and Kalman Filter

- Other Conventional Methods

- Rule-Based Approach

The review is started by an explanation of the load forecast model parameters as

covered in Section 2.2. Next, discussions of the previously mentioned forecasting

methodologies are given in Sections 2.3 through 2.8. Each methodology is reviewed by an

explanation of its load-forecast model followed by a summary of various applications of this

methodology. This is followed by a summary conclusion about the advantage and/or

disadvantage of the reviewed methodology along with the range of its prediction applicability.

An overall summary of these techniques is presented in Section 2.9.
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2.2 Load-Forecasting Parameters

In the load forecasting problem, the number of variables or parameters which are

needed to build the load-forecasting model varies depending on the philosophy and the

techniques used in approaching the problem. For example, weather information may or may

not be included with the recent load information to build the load-forecasting model. Besides,

if weather information is included, range of the selected variables may differ from one method

to another. Generally, in this section, the load forecasting parameters are divided into

non-weather type parameters and weather type parameters.

2.2.1 Non-weather sensitive parameters

The non-weather type parameters may include the following [2]:

1. SEASON OF THE YEAR: This means that each season may have its own 'Iogic' in

the process of load forecasting. For example, in the summer as the (weather)

temperature rises the load demand increases; while in the winter, as the (weather)

temperature rises the load demand decreases.

2. SEASONAL LOAD SHAPE: This means that for each season, there is a specific load

shape. For example, in the summer the load curve has one peak occurring in the

late atternoon; while in the winter, the load curve has two peaks one in the morning

and the other in the evening.

3. DAY-OF-THE WEEK: This means that the seasonal load shapes are more similar for

the same days of the week. For example, the load shape for Tuesday resembles the

previous Tuesday more than that of the previous Monday. Special days such as

holidays are excluded and have to be considered separately.
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2.2.2 Weather parameters

There are many weather parameters that may be selected in building load forecasting

model. These selected parameters may not be the same for each load forecasting method.

Some methods may lmplement more parameters than other methods, as some parameters

may be more signilicant than other parameters. This signiticance may also vary from one

season to another. These weather variables are needed in two modes; historical mode and

‘ forecast mode. ln the historical mode, weather information about the day of forecast and

previous days, depending on the sutliclent depth for the estimation process, are needed to

estimate the load-forecast model parameters. ln the forecast mode, weather information is

needed to issue the load forecasts using the model parameter estimates that have been

evaluated using the historical mode. The weather variables may include:

• Dry bulb temperature,

•
Wet bulb temperature,

•
Dew point temperature,

•
Relative humidity,

•
Wind speed,

•
Wind direction, and

•
Sky cover.

These weather variables might be needed in hourly intervals if the forecast is required

on an hourly basis. Some of these weather variables could be used in delining more than a

variable in the load-forecast model. For example, along with the dry bulb temperature
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variable, other variables such as maximum, minimum, and average values for this dry bulb

temperature may be needed in the load-forecast model. Other weather variables could also

be expressed as a combination of more than a single variable such as the Temperature

Humidity Index (THl) and Wind Chill Index (WCI) if such combination proved to be benelicial.

2.2.3 Temperature-Humidity Index (THI)

ln the summer, many factors affect the air conditioning load. These include temperature

difference between the human body and the surroundings, humidity of the surroundings, wind

speed, and thermal radiation. Among these factors, the temperature and humidity have major

effects. Therefore, in order to see the effect of both temperature and humidity together a

variable combining them has been designed. This variable gives an indication about the

equivalent heat stress or discomfort in the summer. This variable is called the

Temperature~Humidlty Index (THI) and is expressed by:

THI = 0.55T+ 0.2Td +17.5

THI = 0.4(Td + Tw) + 15

THI = Td — (0.55 — 0.55RH)(Td — 58) (2.1)

where,

T = Temperature in degrees Fahrenheit.

Td = Dew point in degrees Fahrenheit.

Tw = Wet bulb temperature in degrees Fahrenheit.

RH = Relative humidity in percent.
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2.2.4 Wind Chill Index (WCI)

In the winter, many factors affect the heating load. These include the surrounding

temperature, wind speed, and wind direction. The effect of combining both the surrounding

temperature and the wind speed can be combined into a single variable. The designed

variable gives an indication about the discomfort in the winter due to the surrounding

temperature and wind speed. This variable is called the Wind Chill Index (WCI) and is

expressed by:

WCI = 33 — (10.45 + 10„/-IT — v)(33 — T)/22.04 . (2.2)

where,

WCI = Wind chill equivalent temperate in degrees Celsius.

v = Wind speed in m/sec.

T = Temperature in degrees Celsius.

2.3 Multiple Linear Regression (MLR)

ln this method, the load is found in terms of explanatory variables such as weather and

non-weather variables which influence the electrical Ioads. These explanatory variables are

found on the basis of correlation analysis.

The multiple linear regression model of the load can be written in the form:

y(t) = a0+a1X1(t)+... +a„X„(t)+a(t) (2.3)

where,

y(t) = electrical load
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x,(t)..., x„(t) = Explanatory variables correlated with y(t).

a(t) = a white noise

au, a,, ..., a„ = regression coefticients.

The regression coefticients are usually found using the Ieast—square estimation

technique. Statistical tests such as the F-statistic tests are performed to determine the

slgnificance of these regression coefticients. The t-ratlos resulting from these tests determine

the signiticance of each of these coefticients.

This method and the applicable aigorithms are explained in many statistical books and

published works such as [13,14] and others.

The application of this method to the load forecast problem was first conducted by Davis

[15]. In his work, Davis has analyzed the load-weather relationship.

Heinemann et. al. [16] used this method to study the relationship between the summer

load and the summer weather. They modeled the daily peak load (DPL) as:

DPL = B + CDF x (WV) (2.4)

where,

D-PL = daily peak load

B = basic load
T

CDF = cooling demand factor

WV = weather sensitive load

Corpening et. al. [17] have expanded the work of Heinemann et. al. [16] by accounting

for different weather variable functions. They have incorporated a nonlinear function of dew

point temperature and weighted dry bulb temperature (DBT) from the coincident and previous

three days DBT and another linear function combining wind speed and cloud coverage.
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Stanton and others [18,19] used an exponentially weighted regression for forecasting

medium—range and long—range load demand respectively. In their modeling the weather

induced demand DW is expressed as:

DW = Ks(T— Ts) T > TS

DW = 0 TWS T$ Ts

DW = KW(T- TW) T< TW (2.5)

where T = weather variable

The parameters K, KW, T,, and TW are to be identified from historical load and weather data.

The success of the MLR method relies heavily on the knowledge of many factors; such

as, geographical distribution of loads and weights of residential, commercial, and industrial

loads relative to each other. The accuracy of the MLR method results is highly dependent on

the assumptions of the model at the beginning ofthe analysis. This method has mostly been

applied to the medium and long term load forecasts.

2.4 Stochastic Time Series (STS)

This method is the most popular approach that has been applied and is still being

applied to forecasting load demand in the electric power system industry. The theory of

stochastic time series is discussed in some depth in chapter 5. Therefore, discussions here

will be limited to the techniques and algorithms that have been proposed and applied to the

load forecast problem.

Weiner [20] was the first to develop this technique to model stationary time series. He

has modeled stationary time series as the output of a linear filter whose input was a white
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noise. This idea was extended later by Whittle [21], and Box and Jenkins [22] to a special

class of nonstationary time series by means of using a tinite linear transformation.

The general model for a seasonal univariate time series model can be written in the

form:

<l><Bs)¢>(B>V°VÄ)v(¢) = ®(B°)9(B)a<0· (26)

where,
l

y (t) = load series

d>(B*) = seasonal polynomial of order P

¢> (B) = polynomial of order p

@(8*) = seasonal polynomial of order Q

8 (B) = polynomial of order q

Vd = difference operator of order d

V2 = seasonal difference operator of order D

a(t) = a white noise

The previous modeling does not account for the effect of weather variables. Such an

effect can be accounted for by using the transfer function modeling of time series as

developed by Box and Jenkins [22]. This transfer function modeling can be expressed as:

y(t) = x(t — b) + n(t) (2.7)
¤(B)

where,

w (B) = polynomial of order r.

6 (B) = polynomial of order s.

x (t-b) = weather variable leading the response by b time intervals.

n (t) = a non-white noise series.

A REVIEW OF LOAD FORECASTING METHODOLOGIES 12



The noise series can be modeled as a seasonal or nonseasonal ARIMA process using the

expression of equation 2.6.

There has been extensive work done for applying time series approach to the load

forecast problem. Many techniques have been developed for identification and estimation of

time series for off and on—line applications. A summary of these works are presented in this

review.

Stanton et. al. [18,23] and Gupta [24] have applied the seasonal autoregressive

moving-average (ARMA) model described by equation 2.6 to forecast medium and long-range

load demand of a power system. These developed algorithms were applied for off·line

forecasts.

Keyhani et. al. [25,26] have modified the previous techniques to work for on-line

applications. This has been achieved by implementing a recursive estimation algorithm

capable of discarding the effect of the oldest observation and accounting for the effect of new

observation. Such an algorithm has been developed by Kashyap and Rao [27]. The selection

of the orders p and q of the ARMA process is based on fixing a value for q, then searching for

a p value below a prespecified value denoted by p' . This process is started from zero value

of q up to a prespecified value denoted by q' [11].

Keyhani et. al. [28] have proposed another method for determining the p and q orders

of an ARMA process. This has been done by assuming different ARMA models. Then, the one

resulting in the minimum mean square error predication was chosen for forecasting.

Hagan et. al. [29,30] have used the seasonal ARIMA model expressed by equation 2.6 to

forecast load demand up to four·hour lead time. For estimating the parameters of the process

they have used an algorithm developed by Marquart [31] for least square estimation [11].

Hagan et. al. [30] have compared the transfer function (TF) model described by equation (2.7)

to the seasonal ARIMA expressed by equation (2.6). They have found that the TF model results

in a slightly better forecast.
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ln another work, Hagan et. al. [32] have used a technique called a recursive on-line

maximum likelihood estimation procedure to update the process parameters [11]. This

technique was based on a similar technique developed by Gertler et. al. [33].

Lately, Hagan et. al. [34] have proposed a third order polynomial to relate the daily peak

temperature to the daily peak load. lnstead of using the temperature as an input in the Box

and Jenkins TF model [22] (equation 2.7), they have used a transformed form of this

temperature value using the third order polynomial. This new modeling approach for the input

“
has resulted in a more accurate forecast.

Vemuri et. al. [35,36] have used the ARMA model expressed by equation (2.6). They

proposed a sequential least square estimator to identity the orders of the process. This is

achieved by identlfying an Infinite order for the autoregressive (AR) model representing the

process. This finite order model is then used to find an equivalent ARMA model with finite AR

and MA orders. This approach of identification was claimed to lead to better results compared

to the Box and Jenkins methodology. The algorithms developed were applied for on-line

forecasting. Such algorithms were claimed to require little intervention by the operator where

the load-forecast model needs to be revised.

Nelson and Vemuri [37] have performed an extensive analysis using the techniques

proposed in [35,36]. ln addition to this work, they have proposed a procedure for incorporating

the temperature as a variable so that the accuracy of the forecasts can be improved. Forecast

results of the proposed methodologies were claimed to show a significant improvement over

those forecast results obtained using the Box and Jenkins methodology [22].

Abu-Hussein et. al. [38] have proposed two algorithms for on-line modeling and

forecasting of load of a multinode power system. The models used in these algorithms are

individual bus loads that are strongly dependent on weather information. The first algorithm

has implemented a multivariable time series model. The order ofthis model and the estimates

of its parameters are determined systematically based on a criterion known as the Akaikes

Information Criterion (AIC) [39]. The other algorithm has implemented a state variable
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formulation. The estimates of the parameters and the states of the model are obtained using

a combined recursive least-squares and adaptive Kalman filtering procedures.

lrisarri et. al. [40] have proposed an on-line load forecasting algorithm Implementing the

Generalized Least-Square Estimation approach for evaluating the load parameters estimates.

The estimates provided using this approach were unbiased. This algorithm has been designed

to be implemented for energy control centers with a capability of issuing forecasts up to

24-hour leadtime.Goh

et. al. [41] have conducted a comparative study for short-term load forecasting of

energy and peak power demand. The study is aimed at evaluating the performance ofdifferent

forecasting approaches. This has been conducted in terms of both data characterization

adequacy and data behavior projection. A method for selecting the best forecast model is

presented. This method is based on the amount of the change of the mean square errors

(MSE) in the load forecast. The model with the least increase in the change of the MSE as the

forecast progresses can be selected for producing the forecasts.

Goh et. al. [42] have presented a statistical forecasting approach of daily peak power

demand. This approach was based on the Box and Jenkins methodology. Peak loads for the

different substations are obtained separately. The total peak demand is then found as a linear

combination of these individual models,

Rajurkar et. al. [43] have developed a stochastic modeling and analysis methodology

called data-dependent systems (DDS). They have applied this methodology to short-term load

forecasting. They claimed that the difiiculty of trial and error of most applied techniques were

circumvented using the DDS by the successful fitting of higher models for the data. They have

also indicated that such methodology can be used on a microcomputer as the model order

was small and only the recent data were needed to be retained in the memory. The forecast

results using one week of the summer data in 1983 had a maximum error of 10 percent at a

peak hour. They have proposed to extend their work to the multivariate DDS modeling by

including temperature and humidity; thus hoping for an improvement in the load forecast

accuracy.
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There are some other research that have used the stochastic time series approach.

These are reported by Abu—Almagd et. al. [11] which include the works of Meslier [44], Uri [45],

Liang et. al. [45], Van Meeteren et. al. [47], and De Matino et. al, [48].

The popularityof the stochastic time series approach indicates its ability to meet the

general needs in the industry at present. Although most ofthis research is based on load data

only, there are others which are able to account for weather variables such as temperature

by means of the transfer function modeling as seen in Box and Jenkins [22]. A drawback in

many of the proposed algorithms is the unsuitability for on-line applications as a result of the

lack of an updating mechanlsm for the model parameters. Other techniques were proposed

to overcome this problem by Implementing some recursive procedures so that the model

parameters can be updated to make the algorithm suitable for on-line applications. However,

the implementation ofthe updating mechanlsm has shown to be effective only when the model

parameters are changing slowly. Most of the proposed techniques using this methodology

have been applied to the short-term load forecasting problem.

2.5 Exponential Smoothing (ES)

Exponential smoothing techniques are special cases from time series autoregressive

moving·average (ARMA) processes modeling but with imposed particular restriction. A

common characteristic among these techniques is represented by the procedure for weighting

the data observations. The new data observations are weighted more heavily than old data

observations. Discussion of these techniques are covered in this section starting from the

simple exponential smoothing model.
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2.5.1 Basic exponential smoothing

This model can be derived for a time series sequence of x(t), x(t-1), x(t-2), as given in

[13] as:

S[1](t) = 6x(r)+ (1 —a)S[1](t) (2.8)
A
/

where, ci, _ [Ö

Sl‘J(t) = new estimate

X(t) = new data

S!‘](t — 1) = previous data

a = smoothing constant, 0 < 11 < 1

A cascade expansion for equation 2.8 yields the following form:

S[1](t) = 6x(r) + a(1— a)X(t— 1)+ ..... + (1 (2.9)

where.

SW(0) = the Initial estimate

Usually the initial estimate is found by averaging past observations of the process. The

smoothing constant tz is established by trial procedure. The criterion for this procedure could

be set as: the smoothing constant iz is chosen such that the root mean square error (RMSE)

of the process is minimum.
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2.5.2 Double exponential smoothing

When the data has a linear trend, a double exponential smoothing statistic Sm(t) has to

be used. This smoothing statistic is expressed as

S[2](t) = aS[1](t)+(1— a)Sm(l) (2.10)

The model for forecasting future demand when linear trend exists is written as.

y(t + T') = a(t) + b(t + T) (2.11)

where,

T = Lead time period from the present time, t.

The coefficients a(t) and b(t) are found as follows:

a(z) = 2SU](t)—S[2](t) (2.12)

(2.13)

The initial estimates for
S€‘l(0)

and $m(0) have to be determined along with the value of

the smoothing constant a .

2.5.3 Triple exponential smoothing
‘

When the trend is changing so that curvature characteristics exist, a third exponential

statistic Sl“i(t) has to be used. This smoothing statistic is expressed as:

A REVIEW OF LOAD I=oREcAsTINc METHODOLOGIES 18



S[3](t) = aS[2](f)+(1—a)S[3](f) (2.14)

The model for a forecasting series with curvature characteristics is expressed in

quadratic form as:

y(t + T) = a(t) + b(t).T + c(t).T2 (2.15)

where,

a(r) = 3Sm(t) — 3Sm(t) + S[3](t) (2.16)

b(t) [(6 — 5a)S[1](t) - 2(4 - 3a)S[2](t) + (4 — 3a)S[3](t)] (2.17)
— (X

32 111 121 131
c(t) = ———j—[S (t)—2S (1*)+8 (1)] (2.18)

2(1 — cz)

2.5.4 Winters method

When seasonal influence exists along with trend effect, Winters method is capable of

accounting for these characteristics in the data. The model for predicting future demand at

lead time T is given by [13]:

y(t+ T) = (a(t) + b(t).T)F' (2.19)

where,
F‘

= best estimate for seasonal factor, F(t).

The estimates of the coeflicients a(t) and b(t) and the updated seasonal factor F(t) are

expressed as:
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x(t)
a(t) - a(

F(t_N,)
)+(1·— a)(a(t- 1) +b(t— 1)) (2.20)

b(t) = ß(a(t) — a(t— 1)) + (1 — ß)b(t — 1) (2.21)

F
(1) ,(F) = v(¤7 (1)) + (1 — v)F(1 — N) (222)

where

N' = number of observations comprising seasonallty.

a, ß, y = exponential smoothing coefticlents 0 < a, ß, y <1

2.5.5 General exponential smoothing (GES)

The general exponential smoothing model for the load at time t, y(t), is expressed

linearly in terms of known (titting) functions in the form:

v(¢) = ß(1)Tf(¢) + =(¢) (2-23A)

where,

f(t) = titting function vector for the process

ß(t) = coetlicients vector

6(I) = a white noise

T = transpose operator

The load model can be written in a vector form using the recent N sampled observations

as:
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Y =
x’ß

+ E (2.23B)

where,

Y = process observation in N periods

= D/(1)·---„v(^/)]’

X = titting function for the process

= [f( —N + 1),...,f(0)]’

- ß = estimates of the coefticients with zero noise

= [ißt- ßz· ---·
ßM]T

E = load residuals (white noise) in N periods

The noise or load residuals has the following covariance matrix

v(E) = «2n" (2.24)

where,

wN"1...0 0

0 ...w‘ 0

0 0 vi/°

Usually the weights (w’s) lie between 0.7 and 0.95 [49].

. The estimates of the coefficients are found using weighted or discounted mean square

error, i.e. minimizing

~-1 ·w’
Lv(N -1) - fT( —1)ß]2 0 < w < 1 (2-25)

1=0
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The minimization of the previous process yields the estimate vector of the coeflicients

as:

^ -1ß(N) = F (N)h(N) (226)

where, ~

N-1
(2-27)

/=0

N-1
h(^/) = ZWJK —J)l/(N -1) (228)

i=0

The forecast of the series at lead time Z is found [14,49] as:

A 7 ^v(N+¢’) = Y (¢’)ß(N) (229)

The coeflicients estimates and the forecasts can be updated respectively using:

A U- TA _1
^ß(N+ 1) — L ß(N) + F T(6)LV(N+ 1) —Y(T)] (286)

A _ 7 ^y(N +1+ Z) - f (!)ß(N +1) (2.31)

where,

F = lim F(N)

N —> oo
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This matrix is assumed to exist for all smoothing constants and Iitting functions selected.

The L matrix is usually constructed on the basis that the model will have a litting function

satisfying the relationship:

f(t) = Lf(t— 1) (2.32)

Application of the smoothing techniques for load forecast is not popular. Few proposed

applications are found in the literature and are summarized here.

Christiaanse [50] proposed an exponential smoothing model for hourly load over a

one-week period. This model consists of a constant part, C, and a Fourier series with 'm"

frequencies and a weekly periodicity w, . This selected model has the form

M

y(t) = c + Z(a, sin wit + bi cos wit). (2.33)
l=‘l

where,

- Awi - 168
K, (2.34)

K, = positive integer less than 84 (Nyquist limit) [50].

the forecast for lead time { is found as

A r^y(t+ Z) = f(f + Z) ß(t) (2.35)

where,
A
ß(t) = estimates of the coefficients of equation

f(t) = titting function satisfying equation (2.32).
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The estimates of the coefficients are expressed by equations (2.26) through (2.28) where the

fitting function is expressed as:

sin w,t

cos w,f

f(t) = . (2.36)

sin wm!

cos wmf

The update of the estimates and the forecasts are performed respecfiveiy using equation

(2.30) and equation (2.31).

Christiaasne [50] proposed an extensive analysis to select the fitting functions and to find

the proper smoothing constant. He extended this method by forecasting the error using an

autoregressive model with lags of 1 hour and 24 hours. The forecast results for short lead _

times using the e><tended model were more accurate.

Phi et. al. [51] have used the Christiaanse proposed method to generate hourly forecasts

up to 168-hour lead time. The forecast obtained was modified in order to account for the effect

of weather temperature. Such modification was based on a one year data analysis to yield for
”

each month the required megawatt adjustment per degree difference [11].

Settlage [52] proposed a two-stage statistical procedure to forecast short-term power

system load. The first stage is to forecast the load shape or typical load in terms of its major

components. The second stage is to forecast the residual of the load in terms of previous

residuals.

The model of the load shape for day d and hour h is expressed as:

yW(d,h) = xo + x1.W + SLw(d,h) (2.37)
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where,

y„(d,h) = typical load estimate for the given day—hour

of week W.

x„ = base load estimate of the given day-hour

x, = growth rate estimate of the given day—hour

W = week number

SL,„(d,h) = seasonal weather load at the given day-hour

of week W.

The seasonal weather component ls expressed in terms of four harmonic components

as

4

Lw(d,h) = Z(X2, sin iwf cos iwf) (2.38)
l=1

where,

_ 21rWw! — ———52 (2.39)

X, ,...,X, = seasonal function coefficients

The initial values of the coeflicients were found using three years of historical data.

These coefficients were updated using a forward and backward Kalman filters to delete the

effect of the oldest observations and to account for the effect of the new observations.

The forecast of the residual was found for the next day-hour using double exponential

smoothing statistics as:
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4

R(d,h) = 2:41 — a)lS(d,h — I) + (1 — a)5S(d,h — 23) (2.40)
l=0

where,

a = a smoothing constant

S(d,h—i) = single exponential component statistics for the I"' hour prior to the day-hour

considered.

The single exponential statistics are expressed in terms of the residual forecasts as:

4
S(d,h) = E-:a(a — a)]r(d,h — i) + (a — a)5S(d,h — 23) (2.41)

I=o

where

r(d,h-i) = the difference between the actual and typical load for

the I"' hour prior to the day-hour considered.

Sachdev et. al. [53] proposed an exponential smoothing model for on—line application.

This model consists of two components [11]. The load component for day (d) and hour (h) is

assumed as

y(d„h) = v(d — 1.h) + (1 — ¤„)L$(d — 1.h) — v(d — 1.h)]: 0 s ad s 1 (2.42)

The error component is expressed using a model similar to the load component as given by

equation (2.42).

Feuer [54] introduces a technique for forecasting with adaptive gradient exponential

smoothing (AGES). This technique is based on exponential smoothing methods. The
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technique has been applied on simulated data. The results showed that this technique has a

strong convergence property.

It appears from the preceding discussion that the smoothing constant or constants will

be a major factor in determining an accurate forecast. Since the smoothing constant is found

by trial and error and may not be revised as the process changes with time, this dependency

creates a drawback in these techniques. This method has usually been used for short-term

load forecasting.

2.6 State Space and Kalman Filter

ln this method, the load is modeled as a state variable using state space formulation.

The model assumed could include other states, if they are needed for modeling the process

such as load growth and load seasonalities. Other effects on the load, such as that of weather

conditions, can be accounted for by using this approach.

The state space model is written in the form [55].

X(k + 1) = <I>(k)X(k) + W(k) (2.43)

Y(k) = H(k)X(k) + V(k) (2.44)

where,

X(k) = (n x 1) process state vector at time t,,

<I>(k) = (n x n) state transition matrix relating X(k) to X(k + 1) when no forcing

function exists.

W(k) = (n x 1) a white noise with a known covariance Q(k)

Y(k) = (m x 1) vector measurements at time t,,

H(k) = (m x n) matrix relating X(k) to Y(k) without noise

V(k) = (m x 1) measurement error which ls a white noise with known
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covariance R(k)

The covariance matrices for the vectors W(k) and V(k) are given by:

T i = k
E(W(k), W(i) ) = (2.45)

0 i ¢ k

T
R(k) i = k

E(V(k), V(i) ) = (2.46)
I 0 i=# k

and

E(W(k), V(i)T) = 0for a/Ikandi (2.47)

At any instant t,, there will be an estimate for the process based on knowledge of the

process up to t,,_,. This estimate is called the priori estimate and is expressed as X (l</k-1).

The associated error between the actual and the previous estimate of the process is given as.

¢(k/(k — 1)) = X(k) — X(k/(k — 1)) (2-48)

This error vector has an error covariance matrix expressed by

E(<=*(k/(k — 1))- ¢(k/(k — 1))T) = /’(k/(k — 1)) (2-49)

The updated (a posteriori) estimate ls obtained as a linear combination from the a priori

estimate and the measurement noise as:

x(k/k) = X(k/(k — 1))+ K(k)x[Y(k) — H(k)X(k/(k — 1))] (2.50)

where

X(l</k) = updated estimate

K(k) = blending factor
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The error associated with the actual and the updated estimate of the process is

e(k/k) = X(k)—X(k/k) (2.51)

The covariance matrix of this error vector is expressed by

E(@(k/k), ¢(k/l<>T) = P(k/k) (2-52)

The blending factor K(k) Is found such that X(k/k) is optimal in some sense such as the

minimum mean—square error (MSE) crlterion. This factor is known as Kalman gain and the

procedure for Implementing Kalman ülter for load prediction Is as follows [55].

1. Find the process periori estimate X(k/k-1) and the error covariance matrix associated with

it P(k/k-1).

2. Compute the Kalman gain

K(k) = P(k/k - 1)H(k)T(H(k)P(k/k - 1)H(k)T — R(k)”1) (2.53)

3. Compute the updated estimate error covariance matrix.

P(k/k) = (1 — K(k)H(k))P(k/k — 1) (2.54)

4. Project ahead a priori estimate X((k+1)/k) and the error covariance matrix P(k+1/k)

associated with it.

X(k + 1/k) = <I>(k)X(k/k) (2.55)

P(k + 1/k) = <I>(k)P(k/k)Q(k)T + Q(k) (2.56)

5. Go to Step 2 moving to the next time step.
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It is clear that the state space method is very attractive for on—line prediction as a result

of the recursiveness property of Kalman filter. The optimal forecast which is generated will

be based on the assumed model. Therefore, the model has to be known prior to using Kalman

filter. The identification process is the main difficulty of this approach. Nlainly the noise

covariance matrices Q(k) and R(k) are not easily estimated.

Kalman and Bucy [56,57] proposed this technique of state estimation and sequential

filtering known as Kalman filter in 1960. The application of this technique for load forecasting

came almost a decade later by Toyoda et. al. [58,59] who applied it to the short-term load

forecast. Toyoda et. al. [58] suggested three models for different lead time predictions asfollowsz _
i) For a very short time (5 to 10 minutes) where no large fluctuation exists with the load, the

model is expressed as

x(k + 1) = x(k) + w(k) (2.57)

y(k) = x(k) + v(k) (2.58)
l

il) For a short-term prediction from 10 minutes to one hour where fluctuation has to account

for, the model is expressed as
x(k + 1) 1 1 x(k) w1(k)

= + (2.59)
A(k + 1) 0 1 A(k) w2(k)

. x(k)
y(k) = [1 0] + v(k) (2.60)

Otk)

iii) For hourly or daily forecast where periodical and load pattern have to be accounted for,

the model is expressed as
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x(k + 1) 1 0 x(k)

[Mk +1)} = [0 a(k)} [M10]

00+
+ (2.61)

ß(k> v(k) H(k) wel/<)

i“’°lv(k) = [S(k) 1] +v(k) (2-62)
Mk)

where,

x(k) = system load

y(k) = observation value of load

w(k) = system noise

v(k) = observation noise

Mk) = load increment

T(k) = temperature

H(k) = humidity
.

S(k) = daily standard load pattern coeflicient

a(k),ß(k),6(k) = coeflicients

All coefücients are estimated from historical observations.

Toyoda and Chen [60] suggested 10-minute, hourly and daily models similar to those of

Toyoda et. al. [58,59]. The estimation technique of [58,59] is used along with examining the

correlation between the load forecast errors and the weather variables for accuracy

improvement.

Gupta and Yamada [61] suggested two complex models for load forecasting. The first

model is for 1 to 24 hour forecast and the other model is for daily peak forecast. The 1 to

24-hour model expressed at hourj and day i is written as:
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VUJ) = B0.:) + WC(/J) + XUJ) (263)

where,

y(i,j) = Hourly measured MWH load

B(i,j) = Basic load component

WC(i,j) = Weekly cycle component

X(i,j) = Residual component containing the weather variation etTect

The peak load model for the i"' day is given by

yp(0 = Bp(D + S(i) + WS(i) + »:(D (2.84)

where,

yp(1) = peak load

B„(D = basic load component

S(i) = weekly pattern component

WS(i) = weather sensitive component

6(i) = a random component

The weekly pattern component, S(i), takes the value of weekly pattern oorresponding to the

day modeled. The weather sensitive component, SW(i), is expressed as a linear combination

of transformed weather variables as those given by equation (2.5).

Girgis et. al. [82] proposed a recursive optimal estimator for power system modeling and

forecasting. They use a similar technique as that of Szelag [83] which has been proposed for

short-term forecasting of trunk demand. The model proposed by Girgis et. al. [62) for the

hourly load, y(t), is represented by two components. The tirst component,y,(t) is a constant

part component and is expressed as:

V10) = (10) (265)
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where,

ß(t) = a white noise.

The second component, y,(t) is an osclllatory part component and is expressed as:

I/'2l¢) + w2v2(¢) = tgl!) (2-66)‘

where,

ß(t) = a white noise independent of ß(t).

w* = oscillation frequency

The state variables are chosen as y,. y,. y', respectively. The Kalman filter previously

discussed is implemented for the prediction process assuming different covariance values for

the white noise.

There are other approaches and methodologies which utillzes the Kalman filter theory.

These include the work of Sharma et. al. [64], Singh et. al. [65], Galiana et. al. [66,67], Panuska

et. al. [68,69], and Campo et. al. [70].

Some of these researchers have adapted other modeling techniques so that the Kalman

filter theory could be used. For example Sharma et. al. [64] have used a model proposed by

Christianse [50] based on general exponential smoothing and a Kalman filter. Singh et. al.

[65] have used an autoregressive AR model of order p. Recently Campo and Ruiz [70] have

used Box and Jenkins time series modeling methodology [22] along with Kalman filter to get

an adaptive weather sensitive short-term forecast.

A close look at these papers, the state space modeling and the Kalman filter theory in

particular, shows the suitability of this technique for on-line calculation. Many modeling

approaches are modified to work with Kalman filter thus allowing them to be adaptive and

capable of updafing the model parameters as new observations (i.e., load measurements)

become available. This method has usually been applied to the short-term load forecasting.
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2.7 Other Conventional Methods

There are other modeling techniques that have been used in load forecasting. These

techniques include spectral decomposition, pattern recognition, Bayesian modeling,

multivariable load modeling and other modeling techniques that have been implemented for

certain applications. A review of some such papers is presented next.

Dehdashti et. al. [71] have developed an algorithm based on pattern recognition

techniques to forecast hourly load demand up to 24-hour lead time with the use of forecasted

weather variables. The algorithm was proposed for forecasting load demand ln small area

power systems where uniform weather patterns exist.

Srinivasan et. al. [72] have developed a method for forecasting hourly load demand

using multiple correlation models. ln this method, different prediction models corresponding

to the hourly, daily, weekly, and yearly correlation periods are assumed. The forecast is

obtained using the prediction values of these models together in an optimal combination.

Forecasts for holidays are improved if some of these predicted component values are

rejected. The temperature effect is not included in such modeling.

Bunn [73] has investigated the method of Bayesian model discrimination for forecasting

daily electricity load demand. This method is explained as being an extension of the standard

load construction method. The load forecasts are obtained by knowing the differing demand

models and the probabilities associated with them. Continuous updating of these probabilities

, are to be made as new data become available.

Singh et. al. [74] have proposed a multivariable load forecasting approach real time

monitoring of power systems. This has been achieved using a multivariable state space model

for the load of multinodes. The model parameter estimates are found using both the extended

Kalman filter and another adaptive estimation techniques developed by Kashyap [75]. This

approach requires a huge computational effort [11].
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Van Meeteren et. al. [47] have proposed a short-term load forecast algorithm using a

combination of different models. These models include a nominal load, a weather sensitive

load, and a residual load. Each of these models is predicted separately by using a special

approach for the identiücation and estimation of the parameters. The algorithm proposed is

able to work for on-line applications.

Other approaches that have been applied for certain applications include the work of

McRae et. al. [76], Ross et. al. [77], Willis et. al. [78], Broehl [79], Letter et. al. [80], Krogh et.

_ al. [81], and Michaelson et. al. [82].

The diversity among the methods used in load forecasting lndicates the problem of load

forecast is not bounded. It can be addressed from different perspectives. However the final

goal is to get a forecast which is accurate, adaptive, robust, and economic.

2.8 Rule-Based Approach

Rahman and Bhatnagar [2,4] were the first to investigate the applicability of expert

systems (rule-based) to short-term load forecasting. They have developed two similar

algorithms. One produces one-to-six hour ahead forecasts and the other produces

one-to-twenty-four hour ahead forecasts. The absolute average error in the forecasts range

from 0.869% to 1.218% in the six-hour forecast algorithm and 2.429% to 3.3% in the 24-hour

forecast algorithm.

Rahman and Baba [83,84] have extended the work to 24-hour load forecasting while

lntegrating demand-side control. This algorithm ls claimed to have the following features [83]:

•
The algorithm requires an on-line database of only one to two weeks of load and

weather data.

•
The algorithm does not require a large number of computations.
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• The algorithm has a built-in revising mechanism able to modify the preselected

rules if the average error of previous three days forecast continues to be more than

a certain pre·determined limit.

•
The algorithm uses Extended Fortran Language (EFL), Ratfor Language, and C

language together for detining the rules of the rule-base in an easy and efficient

manner. _

•
The algorithm has the ability to work continuously and has the ability to transfer

information to other systems.

Jobbour et. al. [3] designed an expert system called ALFA (Automated Load Forecasting

Assistant) to generate load forecasts up to 48-hour lead time. ALFA has a database of 10

years of load and 12 weather variables. The weather variables needed are obtained from the

National Weather Service via a satellite interface. A rule-base has been used to generate the

forecasts that is able to account for load growth and seasonalities (daily, weekly) besides

special events and holidays.

Thus one can see that the application of a rule-base (or an expert system) has been

limited to the short—term load forecast. Specifically, it has only been applied to the 1 to 24-hour

forecast in the work of Rahman et. al. [2,4,83,84] and to the 1 to 48-hour forecast in the work

of Jabbour et. al. [3]. A remarkable difference exists between these two work in terms of the

size of the database requirement (few weeks compared to 10 years). This makes Rahman et.

al. approach suitable for work on microcomputers.

2.9 Summary

An exhaustive survey of the load-forecasting algorithms has been conducted. A review

ofthe different techniques that have been applied to the load forecasting problem has been
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addressed in this chapter. Each of these methodologies has been covered in terms of its

modeling techniques followed by the applications that have been performed using such a

methodology.

2.9.1 Model Variable Identification and Estimation

Identification of the appropriate model in any methodology is the cornerstone of such

an approach. Therefore, sufficient data may be needed which could extend to several years

in order to adequately identlfy the load model variables (or parameters) that best model the

load as represented by the given data base. Although experience of the forecaster plays a

major part in a successful and appropriate load forecast model, different methodologies apply

different identification methods and possibly different estimation techniques. A summary of

data base requirements, model identification and estimation, and adaptiveness and

recursiveness is presented in Table 1.

MLR · Multiple Linear Regression

STS - Stochastic Time Series °

GES - General Exponential Smoothing

SSKF - State Space & Kalman Filter

RBS · Rule-Based Systems

2.9.2 Error Analysis and Accuracy of Result

It is difficult to compare the five given methodologies as some are not appropriate for a

given load data, and some may be more suitable for specific applications than others. These

methodologies have been applied for different lead times using different data bases with

various data depths. In addition to this, the forecaster’s experience plays a major part in

identifying the adequate load model in each methodology. As a result of these confiicts, the
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Table 1. Summary ol Various Characterlstlcs of Five Load Forecastlng Technlques

Charactrestic Technique

MLR STS GES SSKF RBS

Analysis Dat 16 1 2 1 1
Base Years Year Years Year Year

Forecast Dat 3 9 1
Base Days Days Week

(Selected Data)

Identification Correlation & Data Plots, ACF, Data Plots Spectral Operator
Method(s) Regression PCF, and CCF ACF, and Analysis Experience

Analyses (for TF Models) Power Spectru

Estimation Least-Squares Maximum Discounted Least-Squares Statistics~Based
Method(s) Likelihood Least-Squares Heuristics

ls the Metho Yes Yes Yes
Adaptive?

ls the Metho Yes Yes Yes Yes
Recursive? _
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summary of the performances of the five major methodologies is presented in Table 2 with

certain qualitications. The reader should bear ln mind that the tive techniques have been

independently applied to live different data bases by tive different researchers. Such results

could give, though not precisely, an idea of the order ofthe error of each methodology subject

to the caveats discussed above.
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Table 2. Summary ol Error Analysls for Five Load Forecastlng Techniques

Technique Qualllicatlon Forecast Lead Time lnterval

1-Hour 6-Hour 24-Hour

MLR · verage and Maximu N/A N/A 5.7%(Max.)
Daily Peak Forecast 2.4%(Ave.)’
(16 Summer Peaks)

STS Average Forecast N/A N/A 4.2% (ARIMA)
Error of All Seasons 4.0% (TF)

(3 Weeks in each) 3.97% (NLETF)

GES Standard Error 3.3% N/A 4.5%
of 2 Years of (Original Model) (Original Model)

Simulated Results 2.0% 4.0%
(Extended Model) (Extended Model)

SSKF Sum Squares of 0.225 N/A N/A
Forecast Errors (SSE) (Q-Matrix = O)
(24-Hour Load Cycle 0.0365

1-Hour Forecast) (Q-Matrix ¢ 0)

Average Forecast 1.001% 3.113% 2.736%
Error of All Hours

of All Seasons
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Chapter Ill

NEED FOR ADAPTIVE FORECASTING TECHNIQUES

3.1 Introduction

Load forecast plays an important and an integral role in the various operations of

electric utilities. For short·time periods (few minutes to hours and upto one week), the

interrelationship between the load forecast and these operations can be demonstrated as

shown in Figure 1 [85]. ln this demonstration, load forecast is shown as the dynamo for the

different power system operations. Consequently, load forecasts for different lead times are

needed for the performance of these operations. As indicated earlier, it is proposed to

develop load forecasting algorithms capable of lssuing load forecasts for different lead times.

Such algorithms would enable the design of integrated load forecasting schemes for different

operational aspect of electric utilities as demonstrated in Figure 1. These forecasting

schemes have to be sensitive (adaptive) to the variability in these operations as a result of the

changes in the conditions affecting the performance of these operations. In other words, these

forecasting schemes have to be able to react to the control actions taken by the operator.

Such control actions could be issued based on predicted load demand in order to achieve
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some prespecilied objectives. For example, based on load forecast issued, the peak load is

expected to exceed a prespecilied maximum value. Therefore, the operator will decide to

issue some control actions to avoid such peaks. As a result of these actions, load will change

not only when the control actions take place, but at later times as a payback for these control

actions. Another example, based on the load forecast issued, the operator may find it

economical to work on improving the load factor of the system. This can be done by using

batteries and/or pumped storage so that this stored energy can be used to replace some of

_ the peaking units such as gas turbines. Delinitely as a result of these control actions the

anticipated load will change and consequently the load forecast has to be revised to account

for these changes.

Any load forecasting method is based on the assumption that the current and future

values of the load will follow the same model as that of past load values. ln other words, the

future values of the load will be predicted based on the parameters estimated from historical

observations. This assumption can only be true if future conditions affecting the future load

are the same as those affecting its past values. Unfortunately, load shape behavior always

varies and the parameters estimated from past information may not match those parameters

under future circumstances affecting the load. ln many cases, these variations could be

tolerated. However, some other variations could cause abnormal changes in load behavior

such as a large increase or decrease in load as a result of severe weather changes or any

other intluencing variable. These abrupt changes may not be correctly accounted for due to

the attributed weight of the effect of the previous data observations that have been used for

estimating the load-forecast model parameters. Therefore, in developing a forecasting

algorithm, the developer has to bear in mind that the future conditions can not always be a

replica of the past conditions in the sense discussed.

One other dimension that can be added to the complexity of load forecasting is projected

by Rahman [85]. This complexity is represented by what is called "the scenario of spot pricing

or service reliability driven pricing". This "scenario" means that the production cost of

electricity can change intermittently as a result of meteorological conditions change. This
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Figure 1. Load Forecast as an Integral Part ol Utility Operations. (Source: Ref. 85)
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dependency can be explained if intermittent generation sources such as wind mill generators

and photovoltaic power generation panels comprise a significant part of the system energy

generation resources. Therefore, this "scenario" will result in an impact on the load behavior.

That is, the load will change its behavior according to the pricing system.

The next section, Section 3.2, discusses the role of load forecasting in the operation of

electric power industry. A coverage of the required features in any load load forecasting

algorithm is next conducted in Section 3.3. Each of these features is covered in a subsection

by an explanation signifying its importance. A detailed presentation has been given to the

feature of adaptiveness to stress its significance in the design of load forecasting systems.

The planned objectives are covered next in Section 3.4. The direction of the research is

planned towards investigating the conventional load forecasting methods along with the

expert system approach to load forecasting. This is followed by discussion of the

appropriateness of the knowledge based approaches to the problem of load demand

forecasting, especially to the 168·hour load forecast as covered in Section 3.5. ln Section 3.6,

benefits from the combination of the statistical and the knowledge based approaches to the

load forecasting problem is presented. Finally, a summery for this chapter is covered at

section 3.7.
~

3.2 Role of Load Forecast

The role of load forecasting is very important in many operations of the electric power

system. As mentioned earlier, these operations include unit commitment, energy transfer

scheduling and load dispatch, coordination of energy management programs with the system

resources, maintenance service and fuel supply scheduling, and others.

Unit commitment is the process of scheduling the system generating plants by advance

planning for the start-up and the shut-down of these generating units. This process is

performed to meet the load demand with the required reserve margin at the minimum

NEED FOR ADAPTIVE FORECASTING TECHNIQUES 44



operating cost taking into account the required degree of system security. The role of load

forecasting here (short-term) is that the load demand has to be predicted to carry out this

process. A successful and economic unit commitment operation will rely on how accurate is

the predicted load or the forecast.

Energy transfer schedullng and load dispatch is the process of minute-to-minute

economic allocation of the output of the generating units. Such process is performed in order

to meet the load demand at the minimum operating cost taking into account the tie-line

scheduled energy. The role of load forecasting here (short—term) is that the prediction of the

load demand with good accuracy is important for two purposes. First, the decision for selling

or buying energy will be carried out according to these forecasts. Second, the economic

operations (schedullng and dispatching) of the generating units will rely on these forecasts

and their accuracy.

Coordination of the energy management programs with the system resources is the

process of altering the load curve such that the peak load demand is reduced or shifted to

other times where the available resources are capable of supplying this demand

economically. This includes the case when electricity is bought from neighboring utilities. The

role of load forecasting here (short to medium-term) is predict the peak demand accurately.
U

Besides predicting the peak demand and its time of occurrence, prediction of the peak

demands of the neighboring utilities and the time for their occurrence are also required when

electricity is bought from these utilities. lt is also of importance to know whether these _

neighboring systems will use any energy management programs or not. lf so, how these

programs will affect the effectiveness of these systems’ own energy management programs

and what remedies should be applied.

Maintenance schedullng is a necessary process for any operating system. This process

needs to be planned in advance so that economic consideration could be justilied for this

process. Usually, maintenance is performed for each unit during the time periods when there

is no need for its generating capacity. This becomes more critical if the unit scheduled for

maintenance comprises a significant percent of the system capacity and if the unit is
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considered as a "base" generating unit. Usually, an optimum maintenance scheduling is

planned based on the generating unit's characteristics and the forecasted load demand.

Therefore, scheduling of the generating units for maintenance service requires an accurate

short to medium-term load forecast to achieve this process in a successful and economic

manner.

Fuel scheduling is based on contracls which could vary in nature and/or duration. The

concern here is how such scheduling will insure sufficient fuel for the required generation plus

the required fuel reserve through a prespecilied planned period. A good prediction of the

energy consumption can justify the required fuel scheduling as planned by these contracts.

Such prediction of the energy consumption can be estimated from the load forecast of the

intended fuel scheduling period. Therefore, an accurate load forecast will result in better

planning for fuel supply scheduling.

3.3 Features Required in Load Forecasting Algorithm

There are many features that are required when designing a short-term load forecasting

algorlthm. These features are pointed out as follows.

3.3.1 Adaptivity

The load forecast model can not be considered or assumed stationary (or fixed) indefinitely.

This variability can be viewed in two aspects. The first aspect is the variability in the load

forecast model due to the changes of external infiuencing variables. This includes the the

effect of changes in seasonal and meteorological variables. The second aspect is the

variability in the load forecast model due to the changes in internal (to the system) influencing

variables. This include the effect of control actions such as those resulted from the application
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of energy management programs. Therefore, the design of realistic load forecasting system

requires that the load forecast model be adaptive as regarding both the changes in its

parameters and as regarding the changes in its structure.

3.3.1.1 Parameter adaptlvity

Load-forecast model parameters may change with time due to seasonal and

meteorological variables changes. Therefore, the load forecast model has to adapt to the

changes of its parameters. This is very important if good and accurate forecast is required.

Adaptiveness due to the changes in the model parameters can be viewed in two senses.

The first sense is updating ofthe parameter estimates as new observations become available

to account for the new conditions associated with the new measurements. For example,

recursive algorithm such as Kalman filtering could update the parameter estimates as every

new observation becomes available to the algorithm. Alternatively, re-estimation of the model

parameters can be performed using the new available measurements if the need arises. The

second sense is updating the model parameters themselves in order to account for the

seasonal changes. For example, in the winter wind chill is an important parameter in the

short-term forecasting; while in the summer, it is not of such importance. On the other hand,

relative humidity is an important parameter in the summer but it has little importance in the

winter. Therefore, each season should have its own algorithm adapting the parameters which

play an important role in the process of load forecasting during that season.

3.3.1.2 Structure adaptlvlty

Load-forecast model structure may change as a result of the control actions that could

be taken by the system operator for energy management purposes. Therefore, these changes

in the load process (or its structure) has to be adapted to the control actions if good and

accurate forecast is required.

Adaptiveness due to the changes in the load process (or structure) can also be viewed

in two senses. The Erst sense is updating the load predictions to refiect the effect of control
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actions as given by the energy energy management programs. For example, if the generation

is to be reduced by certain MW at the time of expected peak, then such reduction should be

reflected in the predicted values of the load in the hour of the peak and subsequent hours as

a result of the payback of this control action. The second sense is rebuilding of the load

process as new observations become available by removing the effect of the control action

and its subsequent results. this process is very important to make it the load process as

natural as possible in order to allow its modeling in stochastic sense. For examples, the

action of peak reduction mentioned by certain MW has to be reversed to/restructured to

rebuild the load curve as if there were no control action issued. J
rf

3.3.2 Recursiveness

This means that as new data become available they are used in updating the data base

needed to generate the new forecasts. This has to be done without any necessity for updating

the model parameters for each forecast. For example, in each season the next load forecast

will be calculated using the same model utilizing the actual data as they become available.

Such calculation will be based on an assumption that the algorithm is capable to span the

whole season with the same model parameters.

3.3.3 Computational economy

Load forecast algorithms need to be executed economically as regarding both of the

core storage and the execution time. The core storage can be minimized by reducing the data _r,Vr _

needed to generate the load forecast. The execution time can be minimized byusing

computers with sufficient speed. This issue becomes more clear with the application of expert

system methods to the problem of load forecasting where both of these requirements are

satistied.
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3.3.4 Robustness

A robust load forecasting algorlthm would have the following characteristics:

1. There may be circumstances where the situation on hand does not match with the rule

base. ln such cases the algorlthm should still be able to generate reasonable forecast

values.

2. There may be measurement errors resultlng in some bad load or weather data. Such bad

data have to be detected by the algorlthm and discarded prior to generating the forecast.

Usually this is done by implementing a liltering routine in the algorlthm which is capable

of detecting these bad data.
l

3. There may be circumstances where the new load and/or weather data needed to update

the data base are not available. This can happen if the communication network which

transmit them is faulty for example. Then, there should be some default data values which

still can generate a suitable forecast.

3.4 Planned Objectives

The proposed objectives of this research include developing forecasting schemes for

short-term (both hourly and daily peak) load demand prediction upto one-week lead time.

These forecasting schemes are essential for the design of a complete operating system. Such

developed schemes have to implement all the desired features required in load forecasting

algorithms. This means these algorithms have to be adaptive in accounting for the load

parameter changes, recursive to account for the information obtained in the new load

NEED FOR ADAPTNE FOREcAsTlNG TECHNIQUES 49



observation available, robust in lssuing forecasts with good accuracy, and computationally

economic as regarding the execution time and the data base requirement.

The research will investigate the conventional forecasting methods as well as the expert

system approach to load demand forecasting. The conventional method will be investigated

in order to develop forecasting algorithms that are capable of implementing the previous

mentioned features required in load forecasting algorithms. These algorithms may be

developed using a combination of different conventional methods that could result in better

forecasts. The investigation of the conventional methods will such that these algorithms work

under a complete load forecasting system that work under a knowledge-base approach. The

range of this conventional techniques will investigated to higher lead time, namely upto one

week lead time. The reason behind this constraint is that this range has not been extensively

investigated by the conventional methods. The expert system approach will be investigated

on its applicability to tackle the short-term (1 to 168 hours) and daily peak (one to seven days)

load forecast. Both of these ranges have not been investigated yet by the expert system

approach. Some combination of conventional methods and the expert systems approach

could be used if this results in a robust and accurate forecasts. An investigation for this

possibility will be conducted following the separate development of the algorithms by both

approaches.

3.5 Appropriateness of Rule-Based Approach.

The 168—hour load forecast is quite appropriate for implementation using a rule-based

approach if sufficient rules about this process could be extracted so that reasonable forecasts

can be generated. More rules could be e><tracted as experience is increased or obtained from

experts in this lield. The appropriateness of the rule-based algorithm to the 168—hour load

forecast can be justilied as follows:
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•
The nature of the 168-hour load forecast (and higher lead time forecasts in general) is

suitable for rule-based techniques. Such suitability is based first on the fact that

qualitative forecasts get more accurate as the forecast lead time increases. Second, it is

based on the fact that operator experience plays an important role in judging whether the

results obtained using algorithmic (statistical) methods are acceptable based on his

experience. Third, in many instances forecasts issued based solely on the operator

experience is an acceptable practice for many utilities. Such predictions could be

produced when the algorithmic (statistical) methods are likely to fail to predict

appropriate load forecasts as a result of the lack of adaptiveness of these algorithms to

varying future conditions.
I

~

•
The complexity of the 168-hour load forecast (and load forecast in general) dictates that

rule-based approach could be appropriate to such a complex problem. This complexity

rises from the fact that many factors are involved in the demand for electricity. These

factors have different effects at different times and at different magnitudes. Algorithmic

(statistical) methods are unable to account for all inlluencing factors as a result of the
·

following:

- Assuming all (external) factors or variables affecting the load are continuously

significant and a multiple input-single (or multiple) output linear modeling approach

(statistical) can be used. Then such a load forecast process requires huge computational

resources. This modeling approach is of high cost. On the other hand, many inlluencing

factors are of intermittent effect and some others have a nonlinear effect. Therefore,

some factors could be dropped as they show no signilicant correlation with the load, while

other factors will be modeled linearly where, in fact, they have a nonlinear effect. The

rule-based approach is promising in dealing with the effect of these many variables if

rules and functions could be devised to account for their effect. On the other hand,

burden of computation for the search for a "practical" load forecast could justify the cost

of building an knowledge-based expert system in the long run.
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· There are other factors or variables (internal) affecting the load which are imposed

by the system operator as a result ofthe operations of the energy management systems.

These factors affect the predicted load as well as alterlng the natural load demand

measurement. A knowledge·base system can handle this complexity. First, all the control

actions performed by the operator could be stored in the system data base. Then through

the rules developed from the system experts and the given functions of the impact of

such control actions, the knowledge-based expert system can issue modified forecasts

that have accounted for the effect of the control actions. As measurements become

available, the knowledge·base system will be able to readjust the load measurements by

removing the effect of the imposed control actions. Such removal of the effect of the

control actions will be performed to make the load demand process as close as possible

to its natural behavior. Such natural behavior is more likely to produce more accurate

forecasts than those forecasts which are produced using the altered (or the disturbed)

load behavior by the control actions.

- There is another complexity that can be added to the load forecast problem. This

complexity is projected by Rahman [85] and is represented by what is called 'the

_

scenario of spot pricing or service reliability driven pricing'. This 'scenario' means that

the production cost of electricity can change intermittently as a result of meteorological

condition changes. This dependency can be explained if intermittent generation sources
”

such as wind mill generators and photovoltaic power generation panels comprise a

significant part of the system energy generation resources. Therefore, this 'scenario'

will result in an impact on the load behavior. That is, the load will change its behavior

according to the pricing system. Definitely the statistical techniques by themselves will fail

to handle all information involved with this complexity. The use of a knowledge-based

load forecast expert system should be able to handle this problem through finding and

building rules and functions that can handle the various aspects ofthis 'scenario".
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•
The scope of the load forecast problem is too broad, since it touches most if not every

aspect of the operation and planning of electric utilities. A comprehensive

knowledge-based system requires several man-years of group work. Therefore, the scope

has been defined from the problem at hand as the 168-hour load forecast. This scope has

been chosen because of the following facts:

1) No rule~based approach has been applied to higher lead time than 48—hour. Namely,

the work of Rahman and Bhatnagar [2], and Rahman and Baba [83] have addressed the

load forecast upto 24-hour lead time and the work of Jobbour et. al. [3] has addressed

the load forecast upto 48-hour lead time.

2) No rule·based approach in an artiticial intelligence environment has been developed

for higher lead time than 24-hour using a personal computer. The work of Rahman and

Bhatnagar [2] and Rahamn and Baba [83] have been applied using personal computers.

These programs have been developed using FORTRAN language to forecasting load

upto 24-hour lead time. The work of Jobbour et. al. [3] has been applied using a

IBM·3090 mainframe computer. This program has been developed using LISP language

and uses a large data base extending upto 10 years of hourly data of eleven variables.

3) The developed rule-based algorithm will be suitable for microcomputer applications.

3.6 Benefits from Combined Rule-Based and Statistical Approaches

lt would be very beneficial to have a combinations of rule~based and statistical load

forecasting technique upto 7-day lead time. The reason behind this aftirmative answer can

be explained by the following:

1. The expertise in the load forecast domain that is needed for building the

knowledge-based expert system can not be claimed to exist such that it spans every

condition or circumstance that could be faced in the load forecast process. Building a
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knowledge-based expert system ls a dynamic process. This means that expertise can be

increased as knowledge about the system is expanded. This expanded knowledge is

transformed through the experience of experts into more rules in the knowIedge~base to

cover new circumstances. Therefore, there will exist especially in the early stages of the

rule—base algorithm performance,a need for the statistical algorithms to cover these gaps

where the system is "unabIe" to deduce "accurate” load forecasts using the given rules

in the knowledge-base of the expert system.

2. The statistical methods are not a pure science in the sense that the forecaster experience

plays a major part in developing a load-forecast model for the load forecast process,

which makes forecasting processes to be described, as an art. This experience includes

manipulating the data, transforming it, searching for the appropriate explanatory

variables, and linding the appropriate load forecast model that can produce forecasts with

the most likely accuracy for the a given application under a given circumstance. In this

case, the knowledge-based expert system can be built so that forecasts can be produced:

(i) Using the rules and functions that have been extracted from expert(s) and have been

developed into the knowledge-base of the expert system. (ii) Using statistical modeling

methods that are controlled by the the knowledge-based load forecast expert system.

The statistical method forecasts could be produced from different load forecast models

possibly using different statistical modeling techniques that are controlled by rules built

in the knowledge-base of the load forecast expert system. These forecasts could be

displayed to the system operator along with the forecast contidence intervals or certainty

factors for the required lead time. The operator can ask the knowledge-based system for

interpretation of the results and on explanation of how these results were obtained so that

he can select the best forecast for the conditions at hand. This could be very beneticial

in real time where the load-forecast expert system is a part energy management systems.

3. The rule-based approach could be used with statistical methods such that it can rectify

the forecasts produced by statistical methods where these method are unable to adapt
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for varying conditions. Also the rule-base approach could be used to modify the data that

will be used with statistical methods such as removing the effect of variables which could

not be accounted for using these statistical techniques.

4. Another deeper applicability of both the rule-base approach and statistical methods is the

design of a knowledge-based system which acts as a load forecaster. This means this

system can analysis the data, select the variables that can explain this data, and select

a method or methods which can produce a good forecast for this load process. This could

be beneficial in cases where the load model needed to be reexamined frequently. This

need for reexamination of the load forecast model comes as a result of the variability of

the factors that are used in building the load forecast model and also as a result of the

variability in the estimates of load forecast model parameters.

3.7 Summary

The proposed research objectives have been discussed in this chapter. Knowledge of

the role of the load forecast in the operation of electric utilities and the features required in

these load forecasting algorithms have dictated these research objectives. These objectives

have been represented by:

•
A rule-based load forecasting for 168-hour load foresting is needed as a part of a load

forecasting expert system that can be a part of a generation control system. The main

need for the 168—hour rule-base load forecast is for the unit commitment operation

problem possibly combined with storage generation. The rule-based approach is believed

to have the capability and tlexibility of producing load forecasts that are adaptive to

changes in the operation of electric utilities and the conditions affecting these operations.
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•
Combination of rule-based and statistical load forecasting approaches for 7-day lead time

would be beneficial. The reason behind this has been addressed from different aspect of

benefits. For the problem at hand, this combination could be used to:

(i) Adjusting the data base that will be used in building the statistical load forecast

model or models. This can be done by filtering the effect of the variables that are not

accounted for using these statistical techniques.

(il) Adjusting the data base from other bad data that can result in building inaccurate

U load forecast model and replace these data by proper values so that a more accurate

load forecast model can be constructed from the same historical data structure.

(iii) Removing the effect of any enforced actions as applied by the system operator to

make the load series as natural as possible and consequently increasing the llkelihood

of having more accurate forecasts. _

(iv) Modifying the issued forecasts to account for any future conditions that are not

considered in building the load forecast model. This includes both external and internal

factors to the system.
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Chapter IV

EXPERT SYSTEMS AND THEIR APPLICATIONS

4.1 Introduction

Artificial intelligence (Al) is a branch of computer science concerned with the

development of intelligent computer programs. Expert systems are fruitful results that have

been achieved as a product of applied artificial intelligence in the last twenty years.

Since rule~based expert systems will be applied to the load forecasting problem, a

logical step in proceeding towards this goal is by exploring what an expert system is. This

starts by defining and explaining the features
Lof

an expert system as covered in Section 4.2.

This gives an idea about what kind of problems an expert system is suitable for solving. The

need for using expert system for these applications is covered in Section 4.3. The architecture

of an expert system is next explained in Section 4.4. This includes explanations for each ofthe

components forming the structure of an expert system. Section 4.5 covers an explanation for

the characteristics of an expert system. Section 4.6 covers an explanation for the types of

activities an expert system can be applied to. These activities are categorized and explained

accordlngly. Expert systems in the area of power system applications are covered in Section
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4.7. Rules of computer languages in designing expert systems and expert system shells are

explained in Section 4.8. This is followed by a discussion of rule-based programming in

section 4.9. Finally, a summary for this chapter is included in Section 4.10.

4.2 Definition and Features of an Expert System

An expert system is a knowledge-based approach in solving problems in a specific '

problem area. This means an extensive body of knowledge about the problem domain is

needed. This body of knowledge has to be ordered as a collection of rules in order for the

system to establish conclusions about the involved problems from this given data.

A formal definition, which refiects the features of an expert system, has been proposed

by the British Computer Society’s Specialist Group as follows:

"An expert system is regarded as the embodiment within a computer knowledge-based

component, from an expert skill, in such a form that the system can offer intelligent

advice or take an intelligent decision about a processing function. A desirable additional .

characteristic, which many would consider fundamental, is the capability ofthe system,

on demand, to justify its own line of reasoning in a manner directly intelligent to the

enquirer. The style adapted to attaln these characteristlcs is rule-based programming"

[86].

A simple and brief definition for an expert system is that it is a computer program

(though not necessarily algorithmic) which has the ability fo act as an expert. This means this

program can reason, explain, and have its knowledge-base expanded as new information

becomes available to it.

Forsyth [86] has summarized the features that distinguish an expert system as follows:

(1) An expert system is limited to a specific domain of expertise.

(2) lt can reason with uncertain data.

(3) lt can explain its train of reasoning in a comprehensive way.
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(4) Facts and lnference mechanism are clearly separated.

(5) lt is designed to grow incrementally.

(6) lt is typically a ruled-based. _

(7) lt delivers ADVICE as its output.

(8) It makes money.

4.3 Need for an Expert System

An expert system is needed in cases where features of the problems involved are

suitable for its application. The suitability ofthese applications is based on general experience

in the field of application of expert systems. These applications include the following cases

[87]:

1. The problems involved need diagnosis rather than calculations as in the operation of

many diagnostic systems. This gives a feeling of the different possibilities of diagnostic _

factors and solutions among which the best can be chosen.

2. The theory governing the involved problem is not completed (has not been established)

or is inconsistent. This enables a skilled practitioner to depend on knowledge and
‘

'intuition' in solving the problem involved.

3. The human experience about the involved problem (area) is scarce or expensive. Then

use of an expert system with a trained person in the field can compensate for the lack of

an expert in the field.

4. The data collected to solve the involved problem is ' noisy". A tuning logic can come into

play by using an expert system.
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4.4 Architecture of an Expert System

There are four components by which expert systems are constructed as shown in Figure 2.

These components are as followsz

4.4.1 Knowledge Base

A knowledge base consists of facts (or assertions) and rules (or knowledge

relationships). Facts represent 'declaratlve knowledge about a particular problem being

solved and the current state of affairs in the attempt to solve the problem' [88]. This data can

be represented by many methods such as the first-order predicate logic, the frames, or the

semantlc networks. Rules, on the other hand, represent "formulas showing the relationship

among several pieces of information' [89]. A well-known formula for representing rules is the

IF-THEN production rule.

4.4.2 inference Engine

There are two inference strategies that can be used with expert systems. A forward

chaining which involves reasoning from data to hypothesis. While a backward chaining

involves linding data to prove or disprove the hypothesis. For a successful expert system,

both ofthe fore mentioned strategies have to be implemented.

Besides the above search strategies, the inference engine should contain an explanation

trace. This is very important in expert systems because there may be some doubts about the
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accuracy of the conclusions drawn by the expert system. Therefore, it is for the systems credit

to be able to explain the reasoning that led to the drawn conclusions.

4.4.3 Acquisition Module

Knowledge about the specific problem domain (or expertise) needs to be transferred

from the knowledge source (or expert) to a program. This process is costly because of the

scarcity of knowledge (or expertise). Usually a "domaln expert" (or more) with a ”knowledge

engineer" are needed in order to codify what the expert knows. This includes the processes

in the domain, the general methods for the problem solving, the specific classes of the

problem in the domain with the specific methods to solve them.

4.4.4 Explanatory Interface

An expert system needs to be able to reason its own processes if it is asked. This feature

of explanation ability is usually done by tracing the reasoning steps that led to the drawn

conclusions.

4.5 Characteristics of an Expert System

In order to distinguish an expert system from a conventional program, expert system

must have the following characteristics. One of these characteristics and most important is

expertise. This is reflected by a good, skillful, and robust performance of the expert system.

Another characteristic is symbolic reasoning. This is reflected by a symbolic representation
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for knowledge and also by symbolic formulation ofthe problem. A third characteristic of expert

systems is depth. This is reflected by the ability of the expert system to handle difficult

problems and also by the ability to implement complex rules to solve these problems. A fourth

and final characteristic of an expert system is self—knowledge. This is reflected by the ability

of the expert system to examine its own reasoning and to explain its operation.

4.6 Activities of an Expert System

Expert systems can be built to solve different problems in different fields. The main

activities of an expert system as demonstrated from applications in the power system area

are categorized into the following: ~

1. INTERPOLATION: interpolation in expert systems is performed by using observables such

as sensors in order to infer the description of the system status. This type of activity may

need the processing of many different types of data. An example of interpolation expert

system is a military interpretation system which uses signals from radar, radio, and sonar

devices in order to identify targets and determine their situations.

2. PREDICTION: Prediction in expert systems is performed by simulating models in order

to create a scenario that may exist from specific input data. This type of activity may need

reasoning about time. An example of a prediction expert system is the one proposed in

this work for solving the problem of load forecasting of electric power demands.

3. DIAGNOSIS: Diagnosis in expert systems is performed by using methods or processes

that can help in finding the faults of the system. This type of activity may require an

interactive course between the user and the system to find the faults and the steps

towards correcting them. This activity is the most applied area of power systems to the

approach of expert systems. An example ofa diagnostic expert system is a hybrid expert
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system for identification of faulted sections and interpreting protective apparatus'

operation in large interconnected power systems [91].

4. DESIGN: Design is performed by the development ofthe shape and structure of objects.

This development is contined by meeting the required characteristics without violating the

problem constraints. Design is usually associated with another activity, planning. An

example of a design expert system is the application of intelligent computer-aided design

techniques to power plant design and operation [92].

5. PLANNING: Planning is performed by the design actions. This means decision comes

before design. Planning is usually associated with back tracking or rejecting part of the

plan where violation of limits occurs. An example of a planning expert system is an

intelligent support system for power system planning [93].

6. MONITORING: Monitoring is performed by comparing the actual and the predicted

behavior of the system. This is done by observing events that agree with the expectations

about a particular behavior. Monitoring deals with time which should be implemented in

the interpretation of the monitoring results of the system. An example of monitoring

expert system is a dispatcher alarm and message processing system [94].

7. DEBUGGING: Debugging is performed by suggesting corrections for the existing faults.

This is done by using tables of remedies which correspond to specific faults. A difficult

task in debugging is the design of effective remedies by the system. An example of a

debugging expert system is an expert system that act as an aid for the system dispatcher

for the isolation of line section faults [95].

8. REPAIR: Repair is performed by developing and executing prescribed remedies for some

known faults. This is done by implementing the capabilities existing in the debugging and
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planning activities ln the process of repair execution. An example of a repair expert

system is a KBES (knowledge—based expert system) for power system restoration [96].

9. INSTRUCTION: Instruction is performed by the embodiment of debugging, repair, and

diagnosis activities to problems addressed to students. Such systems are built to

diagnose the deliciencies in the student’s knowledge and find suitable remedies for them.

An example of an instruction expert system is the EPRI (electric power research institute)

operator training simulator [97].

10. CONTROL: Control is performed by governing the overall behavior of the system. This is

done by coordinating many activities at the same time such as monitoring, diagnosis,

debugging, planning, and prediction. A good example for a control expert system is an

expert system for assisting decision making of reactive power/voltage control [98].

4.7 Expert Systems Applied to Power Systems

ln the last section the different activities of expert systems have been categorized with

an explanation for each category. Many of these categories, that have been explained, are

performed by engineers in the power system area. Many of these activities are good

candidates to the application of expert systems as demonstrated by examples from the power

system area in the last section.

Interest for the application of expert systems in the power engineering area has

increased greatly in the last years. This interest is mainly due to the fact that expertise plays

an important and integral role in many aspects of power system operations. Also, this interest

is growing due to the facts that experts are scarce. Such scarcity is a result of the long period

required for new experts to emerge as a result of retiring of existing experts at sometime in

their life. This makes expert systems viable solution to many of the problems in the power
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system area. Mainly, they can be used as an aid to the decision making and as a buffer to

minimize the operators' human error.

Most of the interest in the applications of expert system in the power system was led

by the Electric Power Research institute (EPRI). Such interest was aimed to develop expert

systems for the existing electrical power systems. At present, application of expert systems

has spanned many aspects of the power system operations as surveyed by Zhang [87]. These

aspects include the following:

· Fault diagnosis

- Load llow planning

- Reactive power and voltage control

- Switching operations

- System restorations

- Security assessment

— Transient stability problem

- Unit commitment -

- Operator training

- Friendly interface

- Network maintenance scheduling

- Substationautomation-

Computer relaying

- HVDC transmission system

- Utility electrical power plants systems

Some applications of the activities in the power system area have been mentioned in the

previous sections. Other applications could be found in the work reported in the references

[99] through [102]. References to other different aspect of applications that are mentioned
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above could be found in the work of Zhang et. al. [87]. This is the most recent work that gives

a bibliographical survey on expert systems in the electric power system area.

4.8 Programming Languages and Expert System Shells

An expert system is an intelligent computer program with some distinguished features.

This means that the tools for building such a system are programming languages. There are

two types of programming languages. One type is problem-oriented languages such as APL,

FORTRAN, and PASCAL. These types of languages are capable of conveniently performing

algebraic calculations. This makes these types suitable for the application to problems in the

fields of science, mathematics, and statistics. The other type is symbol-manipulation

languages such as OPS (a rule-based language), LlSP (a procedure-oriented language), and

PROLOG (a logic-based language).This type is suitable and useful when complex concepts

are required for representation. LlSP is the most popular language used in the application of

an expert system. ln spite of the popularity gained by PROLOG, this language is ”ahead of its

time' as described by Forsyth [86]. However, a recent survey of application of expert systems

in the power system area shows that PROLOG applicability is increasing [87]. Almost equal

applications are attributed to both LlSP and PROLOG at the current state. Applications using

OPS are less than that of either LlSP or PROLOG applications. Many of the applications using

OPS are in different versions such as OPS5 and OPS83.

The application of expert systems to a specific domain area usually incorporates

building all the components of an expert system previously discussed in section 4.3. This

means building the interface, inference engine and the knowledge base components. Some

expert systems are built such that they are suitable to work in different field domains. Such

systems are build without the knowledge-base component. These systems are referred to as

expert system shells. These can be applied to the different suitable domains by constructing

the appropriate knowledge—base of such domains.

EXPERT SYSTEMS AND THEIR APPLICATIONS 67



4.9 Rule-Based Programming

Most current expert systems are described using rule-based techniques. The rule—base

represents the set of rules that governs the behavior of the system. These rules are usually

called production rules. The basic form for representing these rules is the IF·THEN production

rules. This means that for the actions under the THEN statement to be appropriate, all the

conditions under the IF statement must be true.

The rules in the data base can be represented either in the problem-oriented languages

such as FORTRAN and PASCAL or symbol-oriented languages such as LISP and PROLOG.

Usually the symbol-oriented languages (known as rule-base languages) are suitable for large

data bases where numerous rules have to be represented. Besides, the symbol-oriented

languages are more open in the sense that new rules can be added easily.

4.10 Summary

This chapter has covered most of the concepts associated with expert systems. This

includes definition and features, suitability for applications, architecture, activities, and

applications in the power system area of expert systems. The role of programming language

and expert system shells, and rule base programming are discussed. This coverage has been

a necessary step before proceeding to the topic of this dissertation which includes

implementation of expert systems to load (demand) forecasting.
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Chapter V

5.1 Introduction

Time series are sets of discrete or continuous observations in time. These observations

are usually sampled at equidistant time intervals. Depending on the nature of future values,

there are two classes of time series. These are the deterministic and the stochastic time

series processes. In the deterministic time series process, the future values of the time series

are known exactly by means of exact formulation. On the other hand, the future values of the

stochastic time series can only be known in terms of probability distribution functions.

The nature that governs the electrical load is a stochastic process. Therefore, the

concern in this part of the study will be focused on the stochastic time series approach.
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5.2 Classes of Stochastic Time Series Processes

Time series are classitied into stationary or nonstationary processes. For a time series

process to be categorized as a stationary process, it has to satisfy the two conditions of

stationary. These two conditions are:

1. The mean ofthe time series has to be constant with time, i.e.,

E (y(t)) = constant (5.1)

2. The covariance between any two equidistant observations (in time) is a function of

the relative time distance only, i.e.,

cov (y(t+k), y (t)) = cov (y(t+k+ n), y(t+n)) (5.2)

In reality, many of the time series are classilied as non-stationary processes. Since

stationary time series are the only processes that can be modeled, transformation of these

time series into stationary processes are needed. This can be achieved for many of the

nonstationary time series in the following cases.

1. lf the mean of the time series is changing, then differencing the time series one time or

more could produce a stationary process. In this case, the differenced time series will

be modeled instead of the original series. This subject is discussed in section 5.3.3 under

modeling the class of autoregressive integrated moving average (ARIMA) processes.

2. If the variance of the time series is changing with time, a suitable transformation can be

found for some ofthese processes. For example, if the variability is constantly increasing

with time a logarithmic transformation can suppress this variability and the process could

be transformed into a stationary one along with performing step 1 if needed.
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5.3 Modeling

A stochastic time series can be represented as shown in Figure 3. In this representation,

the time series y(t) is modeled as the output from linear filter. The input to this filter is a series

of random ”chocks", a(t) [22]. This random input is of zero mean and unknown fixed variance

6§(t) (i.e., a white noise).

Depending on the characteristic of the linear filter, different models can be classified as

follows:

5.3.1 The Autoregressive (AR) process

In the autoregressive process the current value of the time series y(t) is expressed

linearly in terms of its previous values, y(t-1), y(t-2), and a random white noise, a(t). The

order of this process depends on the oldest previous value at which y(t) is regressed on. For

an autoregressive process of order p (i.e., AR(p)), this model can be written as:

v(¢) = ¢>1)'(¢— 1) + ¢>2v(1 — 2) +--- + ¢pY(1— P) + a(t)- (5-3)

A convenient way to express the previous equation can be obtained when introducing the

following backshift operator:

B1/(1) = 1/(1-1):

B°y(f) = y(1— 2):

and

B"’v(¢) = v(1—m) (54)
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lt can be easily verifled that equation (5.3) can be written by using the operator expressed in

equation (5.4) as followsz

¢>(B)v(() = a(¢)- (5-5)

where,

¢>(B) = 1- ¢>1B - ¢>2B2 - -
¢>pBp‘

(5.6)

The parameters expressed in equation (5.6) are chosen such that the autoregressive process

is stationary. This means that the system is stable. In other words, when expressing equation

(5.5) in transfer function form, the poles of this transfer function are all located within the unit

circle. The identification of the autoregressive process parameters ls based on the spectrum

of the autocorrelation function (ACF) and the partial autocorrelation function (PACF). This

method is covered in section 5.4.1.

The estimation of the AR parameters are obtained from the sample ACF. This solution

for the estimates of the parameters of the AR process is known as the Yule-Walker equations

solution. A discussion of the estlmation method is covered in section 5.4.2.

5.3.2 The Moving-Average (MA) process

ln the moving-average process, the current value of the time series y(t) ls expressed

linearly in terms of current and previous values of a white noise series. The order of this

process depends on the oldest value of this noise series at which y(t) is regressed on. For a

moving average of order q, (i.e., MA(q)), this model can be written as:

y(t) = a(f) - 01a(t - 1)- 92a(f - 2)- — 0qa(t — q). (5.7)

A similar convenient form to write equation (5.7) can be obtained by applying the backshift

operator on the white noise terms as followsz
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8a(t) = a(t— 1);

82a(t) = a(t— 2);

and

B”a(t) = a(t - n). (5.8)

Using the operator expressed in equation (5.8), it can be easily shown that the MA(q) can be

written in the form:

y(t) = 0(8)a(t). (5.9)

where,

0(B) = 1- 0,8 — 0282 — -
0q8q‘ (5.10)

The parameters expressed in equation (5.10) are chosen based on the assumption that the

process is invertible. This means that the input, i.e., the white noise, can be known completely

in terms ofthe output. This also means all the zeros of equation (5.10) are located within the

unit circle. The identification of and estimation of the moving-average process parameters is

explained in section 5.4.1, and section 5.4.2 respectively.

5.3.3 The Autoregressive Moving-Average (ARMA) process

ln the autoregressive moving average process, the current value of the time series y(t)

is expressed Iinearly in terms of its values at previous periods and in terms of current and

previous values of a white noise series. The order of the ARMA process is selected by both

the oldest previous value of the load series and the oldest previous value ofthe white noise
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series at which y(t) is regressed on. For an autoregresslve moving-average process of order

p, and q (i.e. ARMA(p,q)), the model is written as:

y(t) = ¢>,y(t — 1) + + ¢py(t — p) + a(t) — 61a(t — 1) — — 6qa(t —— q). (5.11)

By using the operator defined in equation (5.4) and equation (5.8), it is clear that equation

(5.11) can be written in the following form:

<I·(B)v(¢) = 9(B)a(¢)- (5-12)

where ¢(B) and 0(B) are defined by equation (5.6) and equation (5.10) respectively.

As mentioned earlier, the parameters of AR and MA processes are chosen such that

these processes are stationary and invertible respectively. For the ARMA process these

conditions must be satisfied. Together this means that all the pole and zeros of the transfer

function of equation (5.12) are located within the unit circle. The choice of the ARIMA

parameters and their estimation are covered in section 5.4.1 and section 5.4.2 respectively.

5.3.3 The Autoregressive Integrated Moving-Average (ARIMA) process

ln modeling time series in the previous sections as an AR, MA, or as an ARMA

processes, it has been assumed that these series are stationary according to the definition

given in section 5.2. Therefore, if the process is nonstationary, transformation of the series to

a stationary process has to be performed first. This can be achieved to many time series by

a differencing process. By introducing the V operator, a differenced time series of order 1 can

be achieved as:

Vv(¢) = I/(f) — v(t — 1)- (5-13)

By using the operator defined in equation (5.6), equation (5.13) can be written in the form:
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Vyff) = (1 — B)y(f)~ (5-14)

A cascade differencing of order d can be written using equation (5.14) as:

vdym =

(1Theresulted differenced series, V"y(f) obviously has less observations than the undifferenced

time series, y(t), equal to the degree of differencing, d. The model for an autoregressive

integrated moving-average of degree p, d, and q ,(i.e ARlMA(p,d,q)), is written as;

¢>(B)V°y(1) = 9(B)a(f)- (516)

where ¢>(B), Vd, and 0(B) are defined by equations (5.6), (5.10) and (5.15) respectively.

The choice of the parameters ofthe differenced series and their estimation is performed

in the same manner as that of an ordinary ARMA process.

5.3.4 Seasonal processes

As a result of daily, weekly, yearly or other periodicities, many time series exhibit

periodic behaviors in response to one or more of these periodicities. Therefore, a different

class of models which have this property is designated as seasonal processes. Seasonal time

series could be modeled as an AR, MA, ARMA or an ARIMA seasonal process similar fo the

nonseasonal time series discussed in the previous sections [22]. A purely ARIMA seasonal

process is written as:

<¤><B‘>v?y(r> = @<¤*>«<r> (5-17)

where,

tz(f) = a noise series
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$(8*) = 1- $,8* - ·- $,8**

@(8*) = 1- @,8* — - @o8°*

V? = seasonal difference operator.

lt is rare to find a model which is purely seasonal. In other words, the series a(t) has to

be a white noise. Therefore, another ülter is needed to model the nonseasonal effect

contained in a(t) . The ARIMA process for a(t) can be written using equation (5.16) as:

‘ 4>(B)V°v(1)<¤(f) = ¤(1) (5-18)

Combining equation (5.17) and equation (5.18) gives the so called general multiplicative model

[22].

<¤(Bs)¢(B)VdV?v(1) = @(B’)9(B)¤(1) (5-19)

lf higher periodicities exist, similar procedures can be used to drive the multiplicative

model which will be structured similar to equation (5.19).

5.3.5 Transfer function modeling

The previous models allow y(t) to be expressed in terms of its history (and a white

noise). lf other variables are affecting the value of y(t), inclusion of the effect of these

variables can be accounted for using a transfer function model. For the case of one

independent variable x(t), the transfer function model shown in Figure 4 can be written in the

form [22,103].

8
y(t) = BQXU — b) + n(t) (5.20)

0(B)

where,
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w (B) = polynomial of order r.

6 (B) = polynomial of order s.

x (t-b) = weather variable leading the response by b time intervals.

n (t) = a non-white noise series.

The series n(t) can be modeled in terms of its past values and a white noise using any

of the previously discussed processes. The response lag time b and the orders r, s of the

w(B) and 6(w) polynomials can be identified from the cross correlation function plot between

the stationary (and prewhitened) y(t) and x(t) series. A preliminary estimate ofthe parameters

of the polynomials w(B) and 6(B) can also be found from the cross correlation values once b,

r, and s are identified.

5.4 The Box-Jenkins Methodology

Box and Jenkins [22] have introduced a complete and systematic method for forecasting .

and control of time series. This is the most popular and accurate method among the ones that

have been used by many electric power utilities. The Box and Jenkins methodology is an

iterative procedure consisting of three stages as shown in Figure 5. These stages are the

identification, estimation, and diagnostic checking for the model. A discussion of each of these

stages and the model overfitting is discussed repectively in the following subsections.

5.4.1 Identification

The identification ofthe load forecasting models is obtained by analyzing the raw load

data. This analysis includes the use of the range-mean ,autocorrelation function, and partial

autocorrelation function plots. The use ofthese tools leads to initial guesses of the required
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data transformation and degree of differencing to obtain a stationary process. Besides. the

order ofthe polynomials appearing in the autoregressive (AR) and the moving-average (MA)

parts of the series can be initially identified [103]. The degrees of the AR and the MA

polynomials are determined by means of using the autocorrelation function (ACF) and the

partial autocorrelation functions (PACF) according to the following rules [104].

•
lf the ACF of the series is of infinite length while the PACF of the series is of finite length

then the series is modeled as an autoregressive process of order p. This process order

is equal to the length of the PACF and this process is defined as AR(p).

•
If the length of the PACF of the series is infinite while the length of the ACF is the series

is finite then the series is modeled as a moving average process of order q. This order

is obtained as the finite length ofthe ACF and the process is defined as MA(q).

•
If the both the ACF and the of the series are of infinite lengths, then the series is modeled

as autoregressive moving-average process of orders p,q and defined as ARMA(p,q).

5.4.2 Estimation

The estimation of the parameters of the identified load forecasting model is usually

achieved through the use of an efficient estimation method. For a pure AR model the

Yule-Walker equation solution results in the estimates ofthe parameters of this process. Other

methods such as the maximum likelihood technique are capable of being applied_to other

processes as well. Along with the estimation of the load forecasting model estimation of the

standard deviation and correlation of these parameters along with the variances and

covariances ofthe residuals are established for the analysis [103].
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5.4.3 Diagnostic checking

The load forecast model obtained can only be assumed correct as identified with its

parameters as estimated only if such model passes the diagnostic checking test. This step

is usually performed to account for any inadequacies in the model obtained. Such

inadequacies could exist as a result of the lack of the model to account for all needed

explanatory variables.

The_residual autocorrelation function (ACF) and partial autocorrelation function (PACF)

provide a suflicient evidence whether the assumed model is elaborated. lf the model is not

adequate then the ACF and PACF of the residuals give indications about the source of these

lnadequacies. If correction is suggested in the diagnostic test then it is implemented and the

estimatlon stage is reexecuted and the diagnostic checking is performed. This iterative

procedure continues until adequate load forecasting model is obtained.

5.4.4 Over-fitting

Over-litting is a technique that is used for diagnostic checking. Usually it is applied to

insure the adequacy of the identified model by accounting for the suspected influential

parameters that can help improving the model accuracy. The account of these parameters is

performed one parameter at a time. lf no further improvement is achieved, this process can

be considered as a proof of the correctness of the identified model.

5.5 Summer Load-Forecast Models

The Box and Jenkins methodology discussed in the previous section was used to build

stochastic time series forecasting models for the hourly electric load in all seasons. Both the
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multiplicalive seasonal ARIMA and the TF processes were investigated in building these

hourly load forecast models. The building and application of such models are presented in

this section to the Summer hourly load forecast models as follows:

5.5.1 The Multlpllcatlve Seasonal ARIMA Load Forecast Model

This model has been identitied using plots of the ACF and PACF of the the hourly load

time series using four weeks of hourly load observations. First, the ACF of the original

(undifferenced) time series has been plotted as shown in Figure 6. The inlinite length ofthis

ACF indicated that the series is not stationary and needs to be differenced. Also, the cyclic

autocorrelation shown in the ACF plot indicated that there is a seasonal (daily) effect.

Performing a non-seasonal (i.e., hourly) and a seasonal (i.e., daily, s=24) differencing to the

time series separately and together, the ACF plots using these differenced series have been

found as shown in Figures 7(a), 7(b) and 8(a) respectively. The ACF plot in Figure 8(a)

indicated that the differenced series, VV,,_y(t), is stationary. Second, using the ACF and the

PACF plots of this differenced series shown in Figure 8 , (a) and (b), and the fact that the model

will be used for issuing forecasts upto 168-hour lead time, the best model has been found as:

iiii
—¤>„¤“—¤>„¤” —<¤>„¤‘“ — <¤>„¤" — ¤>96¤°"—<r>„„B"°— <¤>„.„¤‘“>

W„yir> =(1The

above load model has been obtained after several iterations that were based on the

minimum standard error which has been estimated as 79.12 (MW).

The estimates of the load model parameters has been found using the conditional

least-squares estimation technique. These estimates are shown in Table 3.
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Table 3. Eatlmates ol the Summer Hourly Load Seasonal ARIMA Model Parametera

Approxlmate

Parameter Standard Error T~Ratio

Q., O.„....124>,
0.360791 0.0404148 8.93

¢», 0.261702 0.0418854 6.25

4>, -0.102288 0.0400343 -2.56

¢„ -0.144239 0.0352276 -4.09

<I>„ -0.774248 0.0380028 -20.37

d>„ 0.109775 0.0299357 3.67

<D„ -0.696514 0.0464636 -14.99

<l>„ -0.669257 0.0514090 -13.02

<I>„ -0.639803 0.0543695 -11.77

d>,,„ -0.715685 0.0553242 -12.94

<b,„ -0.552752 0.0609496 -9.07
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The check of the adequacy of this model has been performed by plotting the ACF and the

PACF of the residual series as shown in Figure 9(a) and (b). Such plots indicated that the

autocorrelation of the noise series is not signllicant for all lag times and consequently this

series is considered as a white noise series.

Hourly load forecasts upto 168-hour lead time have been generated using the Summer

model described by equation (5.21) and Table 3. About one week data-depth has been used

for generating these forecasts. The hourly load forecasts and the actual hourly load data are

shown in Figure 10. The average absolute percent error of these forecasts has been found to

be 6 % with respect to the actual hourly load data and as 4.4 % with respect to the actual

weekly peak load. These results indicated that about 96 % of these forecasts have absolute

forecast errors of less than 10 % with respect to the weekly peak load. Since the forecast error

increases as the forecast lead time increases, most of the contribution for the high error

indicated above (i.e., 10%) is due to the build up in the inaccuracy of the forecasts as a result

of using forecasted values in issuing higher lead time forecasts.

5.5.2 The Transfer Functlon (TF) Model

The TF model building is also an iterative process using the three stages of

identification, estimation, and diagnostic checking. The TF model building requires finding of

three models; (i) finding a model for the input variable, (ii) finding a model for the part that can

be explained by the input variable, i.e., the input-output transfer function, and (iii) finding a

model for the residual series ,i.e., the unexplalned part by the effect of the input varia_ble. The

Summer TF model has been built assuming that the dry bulb temperature (DBT) is the major

input variable that affect the demand for electriclty. The hourly DBT data that are associated

with the hourly load have been used to build the TF model input variable. ln particular, a

transformed form for the dry bulb temperature is defined by:
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DBT(f) — 72.0 DBT> 72.0 F°
~ x(t) = (5.22)

0.0 ber S 72.0 I=°

The input variable has been chosen as defined by equation (5.22) based on

cross-correlation analysis between the load and the DBT which has shown that only small

cross-correlation exists at lag zero and no further significant cross—correlation exist at any

‘
other lag time. Definitely this is not the case and the choice and defining the input as given

by equation (5.22) has resulted in some improvement which needs to be investigated further

to obtain the actual effect of the dry bulb temperature.

1. The input variable model has been built using a multiplicative seasonal ARIMA process

exactly as performed for building the seasonal multiplicative model for the hourly load

data presented in section 5.5.1 as follows. First, the input series has been transformed

into a stationary series by performing a non-seasonal (hourly) and a seasonal (daily)

differencing operations as shown in the Figures 11 through 13. Second, based of the ACF

and the PACF shown in Figure 13 and the fact that the input variable has to be forecasted

upto 168-hour lead time in order for the TF model to be able to generate load forecasts

upto such lead time, the best model for the hourly input variable (DBT) has been found

as:

(1 * $18)

(1_ (1,24824 _ $488421 _ $72872 __ (1,96896 _ $1208120 _ $1448144 _ $1688166 _ $1925192)

VV24x(t) = a(t) (5.23)

This model has been obtained after several iterations to determine the highest significant

seasonal autoregressive order for this model. The criterion for such determination was based

on the standard error ofthe residuals which has been found as 1.043 (F°).
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The estimates of the parameters of the hourly input variable has been found using the

conditional least-squares estimation technique. These estimates and are given in Table 4.

The ACF and the PACF ofthe residual shown in Figure 14 series has been used to check

for the adequacy. Such plots indicated of no further inadequacies to be accounted for meaning

that the residual series is a white noise.

The input model has been used to forecast future hourly input values upto 168-hour lead

time. These forecasted hourly data along with the actual data are shown in Figure 15. These

forecasts have been shown to have small errors upto 15-hour lead time, high errors for the

next 48-hour lead time and much higher errors for the rest of the 168-hour lead time. One

reason could be that the characteristic of the data used to build the input variable model which

showed that there is a trend for an increase in the input variable future values. Such a growth

did not happen but on the contrary the input variable future value has dropped for some other

reason such wind speed that connot be explained by the historical input variable data. The

other reason is the build up in the inaccuracies as a result of the serial correlation which

means using forecasted values in issuing higher lead time forecasts.

2. The part that can be explained by the input variable (i.e., the TF model) has been built

as follows. First, the input time series, VV„x(t), has been transformed into a white noise

series, a(t), using the multipllcative seasonal autoregressive filter of equation (5.23). This

process is called "prewhitening' the input [22]. The same transformation has also been

applied to the stationary hourly load time series, VV„y(t), to obtain a transformed hourly

load time series, ß(t) as:

ßtf) = (1-1*18)

(1_ $24824 _ $48846 _
$72572

_
$96896

_ $1208120 _
$1448144

_
$1688166

_ $@28192,

VV2_,y(t) (5.24)

The above process of transformation makes the cross-correlation function (CCF) between the

”prewhitened" hourly input series ,a(f), and the transformed hourly load series, ß(t) ,
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Table 4. Eetlmetee ol the Summer Model lnput Parametere

Approximate

Parameter Standard Error T-Ratio

¢, 0.09422620.0405802@2,

-0.7960220 0.0408917 -19.47

@,2 -0.5631500 0.0520753 -10.81

@,2 -0.3974720 0.0564689 -7.04

@22 -0.2707100 0.0575077 -4.71

@,22 -0.3858680 0.0587925 -6.56

@2,, -0.2901780 0.0599997 -4.84

@,22 -0.2327650 0.0561597 -4.14

@,,2 -0.1233760 0.0454162 -2.72
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proportional to the impulse response function [22]. The (estimated) CCF between the input

prewhitened),a(t), and the output (transformed), ß(t), has been obtained (using the four weeks

of hourly input and load data)

as shown in Figure 16. The CCF plot indicated that there is no lag time response (i.e., b=0).

The high impulse shown- at lag time k=~1 can be understood as if the input is leading the

output (i.e., noncausal system). This obviously is not the case and there is no obvious

interpretation for this behavior. One interpretation could be due to the fact that an average

hourly data from three areas has been used for the input variable which may have led to such

a behavior. This possibility could be verified by considering the data from the three areas as

three inputs.

The orders s and r of the polynomials w(t) and 6(t) of the TF model have been identitied

from the CCF plot of Figure 16 as s = 2 and r = 0 to suggest a transfer function model as:

VV„y(t) = (wo — w,B - w2B2)VV24x(t) (5.25)

A preliminary estimate of the parameters of equation (5.25) can be found using the response

impulse function (i.e., CCF values).

3. The noise series or the part that connot be explained by the effect of the input variable

has been built as follows. First, the ACF and the PACF plots shown in Figure 17 have been

used to identify the noise model. Second, the estimates of the parameters of both of the

noise model and the TF model have been found using the conditional least-squares

estimation technique as shown in Table 5. The estimate of the standard deviation of error

has been found as 78.5 (MW).

The model obtained has been checked using the ACF and the PACF of the residual

series as shown in Figure 18. Such plots gave no indication of any further inadequacies

to be accounted for.
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Table 5. Estlmatee 01 the Summer Hourly Load TF Model Parametern

Approximate

Parameter Standard Error T-Ratio

11.009700 3.04913(X) 3.61

-9.804660 300936(Xl -3.26

-6.332720 3.01403fX) -2.10

Gm 0.2548920.069098748,

0.308202 0.0427860 7.20

¢, 0.210072 0.0433921 4.84

48, -0.101610 0.0417632 2.43

¢14 -0.154745 0.0377323 4.10

¢„ -0.767134 0.0381804 -20.09

¢I>„ 0.104670 0.0302246 3.46

ID, -0.693132 0.0467932 -14.81

(Du -0.660352 0.0517085 -12.77

ID, -0.633507 0.0545685 -11.61

<i>,„ -0.700128 0.0555016 -12.61

¢D,„ -0.557970 0.0611952 -9.12
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The complete TF model obtained has been used to issue a load forecast upto 168-hour

lead time using both the forecasted hourly input values and the actual future hourly input

values as given in Figures 19 and 20 respectively. The average absolute percent value of the

error of the forecasts that have been based of forecasted dry bulb temperature has been found

as 7.7 % with respect to the actual hourly load data and 5.7 % with respect to the weekly peak

load. And the average absolute percent value of the error of the forecasts that are based of

the actual future DBT data has been found as 4.2 % with respect to the hourly load data and

3.2 °/¤ with respect to the weekly peak load.

The accuracy of the TF model forecasts that have been issued using the forecasted input

variable is less accurate than the univariate seasonal ARlMA model. This can be explained

by the fact that the future input variable is not as predicted by the model obtained for the input

series which resulted in contribution that has decreased the forecast accuracy. The actual

future input variable when used in forecasting the hourly load upto 168-hour lead time has

helped improving the accuracy of the forecast from 4.4 % when using the ARlMA model to

3.2 % in the TF model. This means that the accuracy of the forecasts has improved such that

all the forecasts are contained with 10 % with respect to the weekly peak load. This also

means that about 97 %, 93 % , and 88 % of the forecasts are within 8 %, 7 % , and 6 %

average absolute error respectively with respect to the weekly peak load.

5.6 Results from Time Series Modeling

Results of applying the Box and Jenkins methodology to one-week load forecasts for all

four seasons are presented in this section. These results have been obtained by building

models similar to the models built for the Summer season given in the previous section (i.e.,

seasonal multiplicative ARlMA ad TF models). The exception to this is no TF model could be
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built for the Fall season as a result insigniücant dependence between the load and the

temperature in this season. The forecasts of these models upto 168-hour lead time in each

season and the actual hourly load data are given in Figures 25 through 30 in appendix A.

Summary of these forecasts are given in Table 6 (a) and (b) with respect to the hourly load

data and the weekly peak load respectively.

5.7 Conclusion

This Chapter has covered the time series modeling approach for the hourly electric load.

Detailed presentation for the model building using this method is demonstrated for the

Summer hourly load model for both the seasonal ARIMA and the TF processes. Results have

been presented using the models ofthe four seasons and have been summarized in a tubular

form. Such results are needed for comparison with the knowledge-based expert system

approach that will be presented next.
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Table 6. Average Absolute Percent Forecast Error for Four Seasons

(a) With Respect to the Hourly Load Data

ARIMA Model TF Model

Forcasted Input Actual Input

Summer 6.0 % 7.7 % 4.2 %

Fall 3.8 % n/a n/a

Winter 5.4 % 3.6 % 4.3 %

Spring 7.2 % 5.6 % n/a

(b) With Respect to the Weekly Peak Load

ARIMA Model TF Model

Forcasted Input Actual lnput

Summer 4.4 % 5.7 % 3.2 %

Fall 3.1 % n/a n/a

Winter 4.3 % 2.9 % 3.5 %

Spring 5.4 % 4.3 % n/a
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Chapter VI

EXPERT SYSTEMS APPROACH TO LOAD

FORECASTING

6.1 Introduction

A different approach to the load forecasting problem will be addressed in this chapter.

This approach is based on applying expert system techniques to the load forecasting problem.

Such techniques were first applied by Rahman and Bhatnagar to short-term load forecasting

[2,4]. Rahman and Bhatnagar have developed two algorithms. One algorithm generates

forecasts upto 6-hour lead time and the other generates forecasts upto 24-hour lead time.

Lately, Rahman and Baba extended the work on the 24-hour lead-time load forecast. They

developed an improved 24-hour load forecasting algorithm for demand-side management

application [83,84]. The maximum lead-time used in was 24 hours. For higher lead-time

forecast, another rule-based algorithm has been reported in the literature. This algorithm is

called ALFA (Automatic Load Forecasting Assistant) [3]. ALFA is capable of generating

forecasts upto 48-hour lead-time. However, this algorithm requires a huge data base. This
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data base consists of eleven variables and has a depth of 10 years of hourly data for these

variables. ALFA runs on a high powered mainframe computers namely IBM-3090.

Therefore, the focus of this chapter is the applicability of rule-based expert systems to

load forecasting in higher lead times, but reduced computational burden. Specilically this

work is aimed at developing a 168-hour (1-week) lead time load forecasting technique using

a knowledge—based approach. This is done in the form of rules in a rule-base. The rules used

in this work are extracted from the statistical relationships between load and weather

variables, other historical observations and perceptions of domain experts. The rule-base is

developed using these relationships that govern the impact of weather conditions and other

physical forces on the prevailing load shapes. The accuracy ofthe forecast using this program

is at least as good as those of statistical technique. Because of its simple features, this

technique is suitable for implementation on microcomputers.

Rule-base techniques are the means by which most current expert systems are

described. An explanation for rule-based (expert system) load forecasting is provided in

Section 6.2. Next, in Section 6.3 the one-week lead-time load forecast (rule-based) program is

discussed. This includes explanation of the data base requirement, the selection of the data

points needed for issuing the load forecast, and the load forecast calculations. Results and

discussion using this technique is covered in Section 6.4. A conclusion about this work is

presented in Section 6.5.

6.2 Rule-Based Load Forecasting

Expert systems are new techniques that have emerged as a result of advances in the

field of artificial intelligence (Al) in the last two decades. These systems use a

knowledge-based approach in solving problems in a speciüc problem area. This means an

extensive body of knowledge about the problem domain is needed. This body of knowledge
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has to be formalized as a collection of rules and facts in order for the system to establish

conclusions about the problems involved from this given knowledge.

A discussion of expert systems and their applications was presented in chapter 4. In

brief, an expert system is a computer program (though not algorithmic) which has the ability

to act as an expert. This means this program can reason, explain, and have its knowledge

base expanded as new information becomes available to it.

The load forecast model (in the expert system technique) is built using the knowledge

about the load forecast domain from an expert in the field. The "Knowledge Engineer'

extracts this knowledge from load forecast (domain) expert by what is called the acquisltion

module component of the expert system. This knowledge is represented as facts and rules

by using the first predicate logic to represent the facts and IF—THEN production rules. This

representation is built in what is called the knowledge base component of the expert system.

The search for solution or reasoning about the conclusion drawn by the expert system is

performed by what is known as the "Inference Engine" component of the expert system. For

any expert system it has to have the capability to trace its reasoning if asked by the user. This

facility is built through an explanatory interface component.

Most current expert systems are described using rule-based techniques. The rule-base

represents the set of rules that governs the behavior of the system. These rules are usually

called production rules. The basic form for representing these rules is the IF—THEN production

rules. This means for the actions under the THEN statement to be appropriate all the

conditions under the IF statement must be true.

The rules in the data base can be represented either in the problem·oriented languages

such as FORTRAN and PASCAL or symbol—oriented languages such as LISP and PROLOG.

Usually the symbol-oriented languages (known as rule-base languages) are suitable for large

data bases where there are numerous rules which need to be represented in the data base.

Besides, the symboI—oriented languages are more open in the sense that new rules can be

added easily.

EXPERT SYSTEMS APPROACH TO LOAD FORECASTING 111



The rule-based program of this work has been developed in FORTRAN language. This

ls due to the fact that the number of rules are not that large until now. However, the

symbol-oriented languages could also be used for the development of this rule-base load

forecasting algorithm.

6.3 Forecast Program

This program is a 168-hour lead-time electric load demand predictor. This program uses

a rule (or knowledge) base in the representation ofthe load forecast model. This knowledge

base comprises the rules and relationships that are used in building the load forecast model.

The rules may include the following:

•
Rules for ldentifying the variables that are necessary in developing the load forecast

model.

• Rules for ldentifying the the relationships that will be used in the calculatlon of the load

predictions; and

•
Rules for enabling the program to adapt to the different variations in weather conditions.

The rules and the relationships that were used in developing the load forecast model

are based on: (1) the long term statlstical relationships and (2) the knowledge and the

experience of the system operator in the electric utility industry. ln spite of the fact that the

knowledge base consists of few rules, the forecasts generated are quite satisfactory when

compared to the ones generated using conventional statistical techniques.
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6.3.1 Data base

The data base requirement for this algorithm consists of four weeks of hourly historical

load and weather information plus one week of hourly future weather information. Each

record in this data base consists of the following:

1. Hourly historical MW load demand data.

2. Hourly historical and future weather data.

3. Year, month, day, hour, and day type data that associate with the load and/or weather

data.

The weather data consists of dew point temperature, wind speed, dry bulb temperature,

wet bulb temperature and relative humidity. All of these variables however are not essential

for all hours. ln fact some of them will be used only in a specific season while in other

seasons they will not. Furthermore, some of them will be valuable in particular circumstances

in a given season. The reason behind using a universal data base is explained by the features

implemented in the load forecasting algorithm. Since this algorithm will be developed using

rule-based techniques, it will be able to select the required variables for the prediction

process in any specific season or circumstance.

6.3.2 Selection of data for forecasting

The selection of data for forecasting is based on weekly and seasonal variations. The

weekly seasonalities dictate that similar day types have similar load shapes. This helps the

construction of the one-week lead time load forecasts from current and previous days grouped

on the basis of day types. The seasonal variations dictate that changes in the load shape of
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similar day types become apparent for higher separation in lag time. This means older day

type data are less useful in producing accurate forecasts. Also, it must be noted here that the

forecast interval is always seven days.

Three sets of historical data points from the same day type were found to be the best for

producing the load forecast at the current stage. lf one of the historical days happens to be

a holiday, then data set from the previous similar day is used to replace the data set of this

day. ln addition to the selected historical data points a set of future weather data about the

forecasted day is needed. The criterion for considering three historical sets of data points as

the best selection was based on the average of absolute error of the forecasts.

Each set of the historical data consists of load and weather information at the same

hours on the selected historical day and the forecast day. Each set also includes information

about average weather information at some prespecified lag time. The future data consists

of similar weather information at the forecasted hour plus average weather information at the

same prespecitied lag time with the historical data. The selected weather variables do not

include all the variables in the data base. This is obvious since each season has it own

weather variables which play a role for the demand for electricity.
E

6.3.3 Load forecast calculation

The load forecast will be calculated using a multiplicative load forecast model at its

current state. This model consists of a 'base load forecast' and multiplicative correction

factors. ln some circumstances additive corrections are needed to rectify the load forecast.

The model for predicting a 168-hour lead-time load for summer is written for the I"' hour

(seven-days ahead) in the form:

YFCST(i) = BASEMW(i)*FACTR1(i)*FACTR2(i)'FACTR3(i)
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+ DMWBTH(i)'(THlF(i)-BASTHl(i))

+ DMWBDB(i)'(DBTF(i)-BASDBT(i)) (6.1)

where,

BASEMW(i) = forecasted base MW load

FACTR1(i) = factor accounting for load growth

FACTR2(i) = factor accounting for weather differences effect

FACTR3(i) = factor accounting for weather inertia differences effect

DMWBTH(i) = factor rectifying the account for large differences in THl

DMWBDB(i) = factor rectifying the account for large differences in DBT

THlF(i) = temperature-humidity index (THI) at the hour of forecasted load

BASTHl(i) = equivalent THI associated with the base MW load

DBTF(i) = dry bulb temperature (DBT) at the hour of forecasted load

BASDBT(i) = equivalent DBT associated with the base MW load

The differences mentloned above is meant between the weather conditions associated

with the selected data points for producing the forecast, and the weather conditions

associated with the required load forecast, -

The parameters in the above load—forecast equation are calculated as follows:

•
The 'reference load' MW load, BASEMW(i), is calculated by simply averaging the MW

Ioads ln the i"' hours in the selected day types, n, as:

f=¤

BASEMW(i) = MW(iJ) (6.2)
1=1
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where n is the number of selected historical day types.

•
In a similar fashion, the equivalent THI and DBT for the 'reference load' MW is calculated

by simply averaging the respective values of THl and DBT in I"' hour in the selected day

types, n, as:

f=¤
BASTHI(i) = THl(i , J) (6.3)

1=l

j=n

BASDBT“ — 1 ‘
(I) —- —-,TDBT(I , J) (6.4)

I=‘l

•
The correction factor FACTR1(i) is introduced to account for the load growth. The

expression for this factor has not been settled to a specific rule. A deeper understanding

of the system load growth helps achieving accurate higher lead-time forecasting. For the

moment, the growth is considered zero, and therefore FACTRI(i) = 1.0.

• The correction factor FACTR2(i) accounts for the differences between the weather

conditions at the hour of forecasted load and the hour of the selected historical data

points. This factor is expressed as:

FACTR2
TH,F(Ü

DBT 800F°(Ü T 6AsrHI(n > ‘
6 5- Dm "’

T BASDBT(O S ‘

•
The correction factor FACTR3(i) accounts for the difference in the effect of the 'inertia'

generated as a result of lag time weather effect on the selected historical load data points

and the effect of the ”inerlia” that would be generated as a result of lag time weather

effect on the forecast load. This factor has an expression written in the form:
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. __ AVBTHF oFACTR3(I) ——
AVG THW DBT > 80.0F

(6 6)
_ AVGDBF o

‘

——ßVGDBW DBT$80.0F

where,

k=L 1AVGTHF T- TH/F(i — k) (6.7)
k=1

k=L 1AVGDBF = I—DBTF(i — k) (6.8)
k=1

]="
1 k=L 1Avemw = TH/(I - k, )) (6.9)

j=‘l
k=1

J=¤ k=L
Aveosw (6.10)

j=1 k=‘I

and where,

L = considered lag time hours for accounted weather conditions

THIF(i) = THI at the i"' hour in the forecasted day

DBTF(i) = DBT at the I"' hour in the forecasted day

THI(i,j) = THI at the I"' hour in the selected j"' day type

DBT(l,j) = DBT at the I"' hour in the selected j"' day type

The correction factors DMWBTH and DMWBDB were introduced to account for large

differences between the forecasted and the selected day weather conditions. These factors

will help improving the forecasts in days where the multiplicative model forecasts are in need
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of rectitication due to the sharp increase or decrease in weather conditions in the forecasted

day as compared to the weather conditions in the selected historical day types. Analysis of

long term historical data and interviews with the electric utility experts resulted in the values

shown in Table 7 for both of these factors. The values shown in Table 7 are in MW/°F. These

values are applied where saturation has not reached. The saturation in the effect of these

factor has been suggested as 10 °F difference in effective temperature between the 'reference

load" and the forecasted load.

6.4 Results and Discussions

The rule·based program in its current state has a small data base. This data base

comprises rules that enable issuing a 168-hour load forecast in the summer season. Although

more rules are needed for the summer forecasts, the results using the current data base and

the set of rules look promising. The algorithm has been tested in issuing one-week ahead

hourly and daily peak load forecast for the month of August 1983. This test has been performed

using hourly load for a southeastern utility and average weather information about their

service area. The analysis of the error of the 168-hour lead time forecast are presented in

Table 8 through Table 13 and Figures 21 through 24. For the 7-day lead time daily peak load

forecast, the results are presented in Table 14 and Figure 25. These presented results are

discussed as follows:

6.4.1 The 168·hour lead time hourly load prediction

Table 8 and Table 9 present the average ofthe one-week lead-tlme absolute hourly load

forest percent error using different lag time temperature effect for evaluating FACTR3(i). Table
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Table 7. Addatlve Correctlon Factora Coefflclents for the Summer Model

1
Parameter Day Interval

12-4AM 5-QAM 10AM-1 PM 2-7PM 8-11 PM

DMWBTH 15. 40

DMWBDB 0 40
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8 presents the forecast percent error with respect to hourly load data while Table 9 presents

the forecast percent error with respect to daily peak load data. Table 8 and Table 9 also

present an average for the different issued forecasts for the the whole tested period. Table

10 and Table 11 present statistical analysis results of the one-week load forecast error to the

whole period for the different issued forecasts. Table 10 presents these results where the

forecast errors are calculated with respect to the hourly load as in Table 10 (a) and to the daily

peak load as in Table 10 (b). Table 11 presents these statistical analysis results for the MW

load forecast error. The results shown in Table 8 through Table 11 indicate that the minimum

average value for the absolute error is achieved when considering 20-hour lag time for the

effect weather conditions. However, the difference when considering 16 and 24 hours lag time

are still close to that of the 20-hour lag time weather effect. Different rules could be

constructed for selecting the length of the lag time needed if it ls found that this lag time is a

function of the weather variables and/or a function of the time of the day. Table 12 and Table

13 present the cumulative distribution of the absolute percent forecast errors in the range less

than 5 % and the range 5 % to less than 8 % for the best four lag time temperature effect .

Details of distribution and cumulative distributlons ofthe absolute percent load forecast error

are shown in Table 36 through Table 43 in Appendlx B. These distributlons also indicate that

not much can be gained by varying the depth of the lag time beyond lag time of 16 hours.

These tables together indicate that large error are occurring in special days or cluster of days.

Part of this can be explained by the fact that week-ends usually have large percent error as

regarding the load level in these days and their fluctuations. ln other days such as the

thirteenth through the si><teenth it is found that the temperature dropped suddenly due to a

cold wave. This resulted in the shutdown of many air-conditioning equipment and accordingly

a large drop in the load level. Therefore, the relationship governing the load forecast in these

days are not exactly as developed in the algorithm. These relationships need to be

reexamined and modified. The current rules for DMWBTH(i) and DMWBDB(i) factors that were

used have improved the accuracy of the prediction to some degree. More understanding and

knowledge can produce more rules to further rectify the forecast in such clrcumstances.
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Table 8. One-Week Lead Tlme Absolute Load Forecast Percent Error (w.r.t. Hourly Load) for
Different Lag Time Temperature Effect

day type 1 hour 4 hours 8 hours 12 hours 16 hours 20 hours 24 hours
(°/¤) (°/¤) (%) (%) (%) 1%) 1%)

1 1 3.12 2.98 2.75 2.24 1.88 1.87 2.09
2 2 2.89 2.74 2.70 2.73 2.62 2.38 2.09
3 3 1.84 1.68 1.35 1.31 1.35 1.39 1.36
4 4 2.16 2.11 2.19 2.18 2.07 1.90 1.73
5 5 2.44 1.83 1.33 1.57 1.85 2.15 2.32
6 6 2.82 2.60 2.13 1.83 2.08 2.30 - 2.37
7 7 3.21 3.25 3.08 2.84 2.63 2.45 2.41
8 1 1.72 1.96 2.39 2.82 3.17 3.42 3.58
9 2 2.52 2.29 2.12 2.12 2.17 2.26 2.45

10 3 3.83 3.68 3.51 3.15 2.73 2.30 1.88
11 4 2.91 2.58 1.83 1.42 1.38 1.49 1.54
12 5 2.56 2.46 2.59 2.53 2.33 2.36 2.72
13 6 6.67 5.98 4.92 3.67 2.70 2.02 1.92
14 7 3.72 3.80 3.92 4.13 4.28 4.18 3.77
15 1 8.68 8.63 7.75 6.76 5.87 5.39 5.37
16 2 5.77 5.45 4.76 4.15 3.67 3.70 3.80
17 3 4.79 4.42 3.96 3.41 2.79 2.45 2.27
18 4 5.37 5.04 4.68 4.53 4.45 4.29 3.97
19 5 4.35 4.23 4.04 3.62 3.10 2.84 2.98 '
20 6 2.97 2.67 2.41 2.16 2.59 2.98 3.17
21 7 8.71 8.06 7.22 6.38 5.54 4.93 4.63
22 1 3.14 2.90 2.29 2.24 2.62 2.92 2.99
23 2 4.70 3.99 3.25 2.24 1.68 1.72 1.99
24 3 2.96 2.46 1.67 1.53 1.73 2.11 2.25
25 4 3.02 2.81 2.57 2.42 2.51 2.52 2.50
26 5 3.10 3.07 2.47 2.03 2.01 2.13 2.12
27 6 3.25 2.66 2.06 1.70 1.65 1.63 1.52
28 7 4.73 4.05 3.26 3.25 3.29 3.28 3.10
29 1 3.53 3.47 3.48 3.35 3.33 3.46 3.49
30 2 3.22 3.15 3.32 3.36 3.43 3.61 3.90
31 3 1.76 1.55 1.41 1.42 1.46 1.48 1.54
Av.

-

3.76 E 3.14 2.87 2.74 2.71 2.70
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Table 9. One-Week Lead Tlme Absolute Load Forecast Percent Error (w.r.t. Dally Peak) for
Different Lag Tlme Temperature Effect

day type 1 hour 4 hours 8 hours 12 hours 16 hours 20 hours 24 hours
(°/8) (°/¤) (°/8) (%) (°/¤) (°/0) (°/8)

1 1 2.76 2.57 2.29 1.84 1.52 1.50 1.65
2 2 2.40 2.25 2.17 2.16 2.08 1.95 1.75
3 3 1.50 1.37 1.06 1.03 1.07 1.11 1.09
4 4 1.75 1.71 1.79 1.80 1.74 1.64 1.51
5 5 1.98 1.51 1.08 1.25 1.45 1.68 1.82
6 6 2.21 2.07 1.77 1.55 1.69 1.85 1.89
7 7 2.87 2.88 2.72 2.52 2.34 2.19 2.14
8 1 1.39 1.61 1.99 2.37 2.69 2.94 3.09
9 2 2.06 1.88 1.76 1.77 1.79 1.84 1.96

10 3 3.21 3.14 3.05 2.78 2.44 2.06 1.68
11 4 2.15 1.93 1.43 1.20 1.18 1.24 1.25
12 5 2.05 1.93 2.08 2.09 1.97 2.00 2.34
13 6 6.20 5.54 4.49 3.30 2.39 1.79 1.69
14 7 2.95 3.05 3.17 3.30 3.42 3.36 3.05
15 1 7.23 7.21 6.45 5.54 4.73 4.30 4.26
16 2 5.02 4.72 4.09 3.52 3.10 3.12 3.21
17 3 4.19 3.87 3.42 2.88 2.34 2.05 1.91
18 4 4.46 4.16 3.86 3.76 3.73 3.65 3.43
19 5 3.29 3.22 3.10 2.81 2.46 2.31 2.47 .
20 6 2.16 1.90 1.71 1.53 1.94 2.28 2.46
21 7 7.33 6.82 6.16 5.45 4.72 4.16 3.82
22 1 2.60 2.26 1.68 1.66 1.99 2.30 2.44
23 2 4.14 3.53 2.82 1.92 1.40 1.35 1.50
24 3 2.70 2.22 1.51 1.27 1.36 1.69 1.84
25 4 2.56 2.37 2.15 2.02 2.07 2.03 1.96
26 5 2.44 2.42 1.88 1.48 1.46 1.57 1.56
27 6 2.52 2.06 1.54 1.19 1.20 1.28 1.28
28 7 3.76 3.19 2.55 2.52 2.54 2.55 2.44
29 1 2.44 2.40 2.55 2.59 2.58 2.65 2.65
30 2 2.41 2.40 2.57 2.63 2.69 2.79 2.97
31 3 1.44 1.26 1.14 1.15 1.18 1.20 1.24

Av- Z 340 287 Elßß 221 E

EXPERT SYSTEMS APPROACH TO LOAD FORECASTING 122



Table 10. One~Week Lead Tlme Percent Foreceet Error Stetletlce for Auguet 1983 for Different Leg
Tlme Tempereture Effect

(a) with respect to hourly load

lag time forecast error forecast error forecast error

(hours) average st. dev. lmax value)

1 3.76 3.14 20.48

4 3.50 2.81 19.17

8 3.14 2.50 18.77

12 2.83 2.27 17.86

16 2.74 2.14 17.50

20 2.71 2.11 17.04

24 2.70 2.14 16.62

V (b) with respect to daily peak load

lag time forecast error forecast error forecast error

(hours) average st. dev. lmax value)

1 3.10 2.81 16.85

4 2.89 2.52 14.18

8 2.58 2.20 13.38

12 2.35 1.97 12.72

16 _ 2.24 1.81 12.27 _

20 2.21 1.76 12.02

24 2.20 1.76 11.60
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Teble 11. One-Week Leed Tlme Abeolute Hourly MW Foreceet Error Stetletlce for Dlfferent Leg
Tlme Tempereture Effect

lag tlme forecast error lorecast error forecast error

(hours) average st. dev. (max valuel

1 227.42 191.37 975.71°

4 211.26 169.56 8851])

8 189.10 148.42 850.71

12 173.12 135.87 736.86
‘

16 165.87 127.68 710.86

20 164.95 126.12 696.19

24 165.44 128.24 673.65

' these statistics are expressed ln % w.r.t. hourly and daily peak load ln Table 10
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Table 12. One-Week Lead Tlme Absolute Load Forecast Percent Error (w.r.t. Hourly Load) for
Different Lag Tlme Temperature Effect

day 12 hours 16 hours 20 hours 24 hours

05%<5 5g%<8 05%<5 5g%<8 05%<5 5g%<8 Og%<5 55%<8

1 96 4 96 4 100 O 92 8
2 96 4 96 4 96 4 96 4
3 100 0 100 0 100 0 100 0
4 100 0 100 0 100 0 100 0
5 96 4 100 0 100 O 100 O
6 100 0 100 0 96 4 96 4
7 79 21 79 21 88 12 88 12
8 92 8 83 17 83 17 83 17
9 100 0 96 4 96 4 96 4

10 88 12 88 12 96 4 96 4
11 96 4 96 4 96 4 100 0
12 100 0 96 4 92 8 88 12
13 79 17 92 8 96 4 96 4
14 71 13 63 21 67 17 67 17
15 38 25 41 33 67 8 67 12
16 67 17 75 25 67 29 67 29
17 79 21 96 4 100 0 100 0
18 67 29 75 21 75 21 79 17
19 83 17 96 4 96 4 96 4
20 100 0 96 4 100 0 92 8
21 25 58 41 50 58 33 67 21
22 100 0 88 12 83 17 79 21
23 100 0 100 0 92 8 88 12
24 100 0 100 0 100 0 96 4
25 88 13 92 8 92 8 88 12
26 92 4 96 4 92 4 92 4
27 100 0 100 0 100 0 100 0
28 83 17 83 17 79 21 83 17
29 92 8 92 8 79 17 75 21
30 63 37 63 37 63 37 63 29
31 96 4 96 4 96 4 96 4

AV. 87.9 9.7 88.5 Q 87.9 9.7 87.9 9.7
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Table 13. One-Week Lead Tlme Absolute Load Forecast Percent Error (w.r.t. Dally Peak) for
Different Lag Time Temperature Effect

day 12 hours 16 hours 20 hours 24 hours

05%<5 55%<8 05%<5 5g%<8 Og%<5 55%<8 05%<5 5g%<8

1 96 4 100 0 100 0 96 4
2 96 4 100 0 100 0 100 4
3 100 0 100 0 100 0 100 0
4 100 0 100 0 100 0 100 0

‘ 5 100 0 100 0 100 0 100 0
6 100 0 100 0 96 4 100 0
7 79 21 79 21 88 12 88 12
8 92 8 92 8 92 8 83 17
9 100 0 100 4 100 0 100 4

10 88 12 88 12 96 4 100 4
11 96 4 96 4 96 4 100 0
12 100 0 100 _ 0 100 0 100 0
13 79 17 92 8 96 4 96 4
14 79 17 83 8 75 12 75 21
15 46 29 54 29 75 8 75 8
16 67 33 75 25 67 33 67 33
17 88 12 96 4 100 0 100 0
18 88 12 83 12 83 13 83 12
19 92 8 96 4 100 0 100 0
20 100 0 100 0 100 0 100 0
21 42 42 58 33 63 37 75 25
22 100 0 96 4 92 8 88 12
23 100 0 100 0 100 0 100 0
24 100 0 100 0 100 0 100 0
25 92 8 96 4 96 4 96 4
26 96 4 96 4 96 4 96 4
27 100 0 100 0 100 0 100 0
28 100 0 96 4 96 4 92 8
29 100 0 100 0 96 4 96 4
30 83 17 83 17 83 17 83 17
31 96 4 96 4 96 4 96 4

Av- 89-9 Illß

8-7EXPERTSYSTEMS APPROACH TO LOAD FORECASTING 126



These results indicate that the percent forecast error is about 2.2% (with respect to daily

peak). This result is quite satisfactory as compared to the same forecasts that can be

produced using statistical (conventional) techniques. The distribution of these errors indicates

that the confidence that the error will not exceed 8.0% is more than 97.6% (20—hour lag time

weather effect) with respect to the hourly load as shown in Table 12. This could rise to more

than 98.9% when considering the conlidence with respect to the daily peak load as shown in

Table 13. The actual and forecasted Ioaduusing 20—hour lag time effect that gives the minimum

average MW error for the whole period is shown in Figures 21 through Figure 24.

6.4.2 The 7-day lead-time daily peak prediction

The 7—day ahead daily load prediction was calculated using the same rules and formulas

that have been applied to the hourly load forecast as presented and discussed in previous

sections. The highest such hourly load was then picked up as the peak load of the day. The

forecast error statistics of the daily peak load is shown in Table 14. The results also indicate

that the best lag time effect for the temperature in constructing FACTR3(i) is 20 hours. They

also indicate that average absolute of the daily peak load error is about 216 MW with standard

deviation of about 123 MW and maximum error of 549 MW. The actual and predicted daily

peak load for the whole month of August 83 using 20—hour lag time temperature effect is shown

in Figure 25.

6.5 Conclusion

ln this chapter an expert system approach has been applied to the one-week lead-time

load forecast problem. Though few rules and relationships are used in this work, results

obtained are encouraging as compared to results that could be obtained using conventional
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for Temperature Varlable

EXPERT SYSTEMS APPROACH TO LOAD FQRECASTING 129



norm: rutosrsum anum:umruMV!/¤••3¥¢v¤•/r•¤

I%

eoooo

0000

I

J

1000 —-
- ecru;

--------- - roezcesrzu

0
0 ze •• 72 •• no ru 100

low! ornu

Flgure 22. Actaul and Forecasted Summer Load (8-14 August 1983) Uslng 20-hour Lag Time Effect
for Temperature Variable

EXPERT svsrsms APPROACH TO LoA¤ Fonscesvmc 129



|¤ßYP@X7$I|•t0IIHIIOTK!U
Q/ryrlßlovu/••83

IIIIO

tmuo

“
‘^

» {

3 ^mo (
s. .

mo ' '
1 .

R ·—-—·
- INI!.

••-··-··•·
• YKCISTID

8
8 M 48 72 88 IN 144 tu

EUR0l IIR

Figure 23. Actaul and Forecasted Summer Load (15-21 August 1983) Uslng 20-hour Lag Tlme
Effect for Temperature Variable

EXPERT SYSTEMS APPROACH TO LOAD FORECASTING Wü



IGRY YKGSISIM GIßII0
Q/21/ntuioq/M/alt!

—m

IW

4
\

E ‘ ‘
s-

3 I
L

§ K
\

4%

•i-—- • MNH.

••—····•·- · FMECRSTEII

0
0 M

••
72

••
no su vu

EWR0l lll!

Figure 24. Actaul and Forecasted Summer Load (22-28 August 1983) Uslng 20-hour Lag Tlme
Effect for Temperature Varlable

EXPERT SYSTEMS APPROACH TO LOAD FORECASTING 131



Table 14. Absolute MW Dally Peak Load Forecaat Error Statlatlca for Different Lag Time
Temperature Effect

lag time forecast error forecast error forecast error

(hours) average st. dev. lmax vaIue|
E

1 295.50 231.35 915.71

4 301.59 202.17 821.08

8 260.71 176.84 815.29

12 231.49 156.11 716.92

16 224.59 130.55 636.22

20 216.14 122.66 548.80

24 214.22 124.86 496.65

( peak load of the month = 9409 MW) .
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statistical techniques. This developed approach is implemented using a mlcrocomputer. This

work is considered as a part of a comprehensive load forecastlng system. The development

and performance evaluation ofthis load forecasting system is presented in chapters 8 and 9.
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Chapter VII

7.1 Introduction •

Different forecasting techniques have been applied to the problem of daily load forecast.

Almost all of these techniques fall in the realm of statistical techniques. The exception to this

is a recent approach introduced by Rahman and Bhatnagar [2] which is based on applying a

knowledge-based algorithm to the short-term load forecasting problem. Another algorithm that

has applied the expert system approach is the work of Jobbour et. al. [3].

In this chapter a comparative evaluation of tive short-term load forecasting techniques

is presented. These techniques are:

1. Multiple Linear Regression;

2. Stochastic Time Series;
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3. General Exponential Smoothing;

4. State Space Method; and

5. Knowledge·Based Approach.

Algorithms implementing these forecasting techniques have been programmed and

applied to the same database for direct comparison of these different techniques. A

comparative summary ofthe results is presented to establish an understanding ofthe inherent

level of diftlculty of each of these techniques and their performances.

7.2 Implementation of the Algorithms

The five forementioned algorithms have been applied to obtain hourly load forecasts (for

up to 24 hours) during the winter and summer peaking seasons. Thus the tive forecasting

methodologies have been applied to the same database and their performances are directly

compared. Speciücally these five forecasting techniques are implemented to predict the

hourly load of a southeastern (US) utility. For this purpose a summer peak day and a winter ~

peak day are chosen. The model built for predicting these peak days, as applied to this utility,

are discussed in the next section (i.e., section 7.3 through 7.7).

7.3 Multiple Linear Regression (MLR)

In the MLR application, the hourly load is modeled as: (i) Base Load Component which

is assumed constant for different time intervals of the day and (ii) Weather Sensitive
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Component which is a function of different weather variables. These weather variables

include dry bulb temperature, dew point temperature and wind speed. The relationship

between the weather sensitive component and most of the weather variables is not linear, but

are rather transformed from current and previous lag time values.

The summer model for the hourly load at each of the considered time intervals has the

form:

v,(1) = Ai + B)(T«(1) — Ta) + CAT-„(1) — 7,,)* + Di(T.«(1)— T„)’ + E„(T„(1) — T,)

+ F,(T„. — T„„) + G,(T«(1)—T«(1— 1))+ H„(T.«(1 — 1)- T-Af — 2))

+ /,(T„(1 — 2) — T„(1 — 3)) (7-1)

Similarly, the winter model for the hourly load at each of the considered time interval in

this season has the form.

y,(t) = /1)+ B)(T„ — T-«(1)) + C,(T„) — T«(1))* + Dl(T„ — T„(1))’ + Ei(T,• — T,„(1))

+ F.(T„. — T„„) + G,(T„(1) —T„(1 — 1)) + H,(T«(1— 1)- T«(1— 2))

+ /,(T„(1 — 2) — T„(1 — 3)) + J«(W„(1)) + K,(W„(1 — 1)) + L)(W„(1 — 2)) (7-2)

where, the wind chill factor, [105]

Wc(t) = 33 — [10.45 + 10,/0.477v(t) — 0.447v(t)]x[(33 — 0.556(Td(t) — 32))/22.04] (7.3)

and where _

y,(t) = load at hourt in the interval i of the day.

A, = base load component (regression constant coeflicient)

B, through L, = regression coefticients of weather sensitive component

T,,(t) = dry bulb temperature at time t, deg. F
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(which will be clamped at the cut oli value if necessary)

T„(t) = dew point temperature at time t, deg. F

(which will be clamped at the cut off value if necessary)

T„„ = average dry bulb temperature of previous 24 hours to the time t, deg. F

T„„ = T„„ lagged 3 hours, deg. F

TC, = cut off dry bulb temperature for the interval i in the season, deg. F

TP, = cut off dew point temperature for the interval i in the season, deg. F

v (t) = wind speed at time t, miles/hour

The model parameters have been found for both the summer and the winter weekdays

as shown in Table 15 and Table 16 respectively. These parameters have been estimated

using 4 weeks of weekday hourly data for each time interval. This was done in order to avoid

picking up inter—seasonal variations. It must be noted that the division of the day into six

unequal times zones is based on the authors' experience with the characteristics of the load

shape of this particular utility.

7.4 Stochastic Time Series (STS)

The time series approach has been applied to model the hourly load data for both the

summer and the winter seasons. Both seasonal ARIMA and TF models have been developed

using 4 weeks of hourly data. The ARIMA model has been identified and its parameters

estimated as:

(1 — 0.376 — 0.2382 +0.1163 + 0.006*3 + 0.106** — 0.1063°)(1 — 0.1263*)x

(1 — 0.32B*68)V1V2,,y(t) = (1 — 0.91B2*)a(t) (7.4)
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Table 15. Weekday MLR Summer Model Parameter Estlmates for Dlfferent Tlme lntervals of the
Day

Day Time lnterval

Parameter 12-4AM 5-QAM 10AM-1 PM 6-8PM 9-1 1 PM

A, 2454.75 3733.13 3823.36 3001.17 3180.40 2500.89

B, 75.28 70.88----

C, - 2.20 6.55 9.16 7.46 8.22

D, —
- -0.09 -0.14 -0.12 -0.15

E, 48.26 20.40 52.60 42.57 69.03 45.73

F, -94.35 -138.60 -556.32 -444.19 -328.45 -320.88

G, -109.64 78.41 -55.75 -91.01 -145.43 -143.76

H, -88.3I - - -63.99 -83.80 -194.78

I, -56.50 - - -38.83 - -76.23

TC, 60 60 60 60 60 60

TC, 50 50 50 50 50 50
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Table 16. Weekday MLR \IVinter Model Parameter Estlmates for Different Time lntervals of the
Day

Day Time Intervai

. Parameter 12-4AM 5-SAM 9AM-12PM 8-11PM

A, 2697.67 4771.79 2931.22 3879.89 5502.75 4417.67

B, 96.35 - 70.15 - - -

C, -2.84 1.01 _ - 2.82 1.39 1.00

D, 0.08 - 0.005 -0.02 - -

E, 7.38 - - 13.50 -7.93 ·

F, 72.74 - 144.14 106.84 · ·

G, 45.32-—---

H, 34.74---·-

I,-—----154.12

J, 6.08 - 4.76 6.53 - -

K,-----5.19 ·

L, - - 4.40 - -5.02 —

TP, 50.00 70.00 70.00 70.00 70.00 70.00

TP, 40 - - 60.00 60.00 ·

84.73 693.38 135.37 164.67 513.49
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The TF model has been identitied and estlmated using the same data with the input as the dry

bulb temperature and is expressed as:

(1 — 0.9382°)a(t)
y(t) = (1.94 — 5.25B)x(t)

+V1V2_,(1 — 0.358 — 0.228 + 0.108 + 0.078 +

0.09812 + 0.11814 — 0.9462°)(1 - 0.12B24)(1 - 0.338168) (7.5)

The seasonal ARIMA and TF models were also developed for the winter season using 4

weeks of hourly load data. These are expressed respectively as:

(1 — 0.168 — 0.2582 + 0.1186 + 0.1587)V1V,68 = (1 - 0.6O8168)a(t) (7.6)

and

(1 — 0.608168)a(t)
y(t)= (-2.847 - 6.5548)x(t) + (7.7)

V1V168(‘l— 0.138 — 0.248 + 0.128 + 0.158 )

7.5 General Exponential Smoothing (GES)

The general exponential smoothing technique has been applied to model the hourly load

for both the summer and winter seasons. Each model has been developed from a constant

part, c, and a varying part that is a function of m frequencies with a daily periodicity. These

models can be written as:

m

y(t) = c + 2(a, sin w,t + b, cos wit) (42)
C=1
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where

2
W) = KI

K, has to a positive integer less than halfthe daily period (i.e. 12).

The fitting function can be expressed in the form

1

sin w,t

cos w1t
l

f(!) = . (7.8)

sin wmf

coswmt

An extensive analysis using hourly data for tive previous weekdays has been performed

to find the best litting function parameters (m and k) and smoothing constant (iz = 1 - w) ofthe

model. The best suitable parameters for the GES model for both summer and winter are as

shown in Table 17.

7.6 State Space Approach (SS)

The state space algorithm has been applied to model the hourly load for both summer

and winter days. Such an application has been performed on a special state space

realization, namely canonical realization using stationary ARMA model. This means the
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Table 17. General Exponential Smoothlng Summer and Winter Model Estlmates

Parameter Summer Winter

Model Model

m 11 11

K, 1,2,..,11 1,2,..,11

oz 0.025 0.025

RMSE 189.7 168.2
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modeled series has to be transformed into stationary series prior to modeling, if required. This

transformation has been performed for both the summer and winter models. An hourly and

daily differencing has been applied to the summer series and an hourly and weekly

differencing has been applied to the winter series. The state space model has been obtained

for the summer model as:

0 1 0 1

X(K +1) = 0 0 1 X(K) + 1.307 a(t+ 1) (7.9)

-0.234 0.077 1.114 1.565

Z(K) = [1 0 0] X(K)

(7.10)

where

ylt/0

X(K) = v((¢+1)/0

¥((¢ + 2)/0

For the winter model, the state space model has been identitied and estimated as:

0 1 0 0 1

0 0 1 0 0.148
X(K +1) = X(K) + a(t + 1) (7.11)

0 0 0 1 0.263

-0.280 -0.037 0.558 0.560 0.164
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Z(K) = [1 0 0 0] X(K) (7.12)

where

ylt/0

vllt + 1)/0
X(K) =

~ v((1 + 2)/0

l/((1+ 3)/0

7.7 Knowledge-Based Expert System (KBES)

An example demonstrating this approach is a rule~based algorithm (implemented in this

work) which is based on the work of Rahman and et. al. [85,106]. This algorithm consists of

functions that have been developed for the load forecast model based on the Iogical and

syntactical relationship between the weather and prevailing daily load shapes in the form of

rules in a rule-base. The rule-base developed consists of the set of relationships between the

changes in the system load and changes in natural and forced condition factors that affect the

use of electricity. The extraction of these rules was done off-line, and was dependent on the

operator experience and observations by the authors in most cases. Statistical packages were

used to support or reject some of the possible relationships that have been observed.

The rule-base consisted of all rules taking the IF·THEN form and mathematical

expressions. This rule-base is used daily to generate the forecasts. Some ofthe rules do not

change over time, some change very slowly while others change continuously and hence are

to be updated from time to time.
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Application of the knowledge-based approach is based on the work of Rahman and et.

al. [85,106]. ln this application, the model of the hourly load using the expert system algorithm

is based on selecting a reference day load curve according to a set of rules. This reference

day is then reshaped according to other sets of rules as to account for (1) the expected

variations in the forecasted day from that of the reference day, and (2) the variations in the·

impact of weather change on the load from day to the next. The load at hour h of the

forecasted day is calculated as:

v5' =
y£‘

+ An (7-13)

vl? = vll"' + Avi" (vw

Ay}? = (yäo — vll,) >< (24 — h>/24 (7-15)

Ayh= :l;AtxF1><F2><25, At$10°F (7.16)

A AF ,,y,,=;l;TxF1xF2, At>10F (7.17)

where,

+ in summer

— in winter

and where,
y,f’

= forecasted load at hour h of the day

Ay/," = load correction due to inertia at hour h

yä, = load at hour 00 of the target day

y§„ = load at hour 00 ofthe reference day

h = hour of the day for which forecast is sought

y,f‘
= 1st level forecast of load for hour h
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y,'$'”
= reference day’s load for hour h modified to

to account to the day to day variations

At = ambient (or effective) temperature difference

between hours in forecasted and reference days.

F1 = weighing factor that account for the relative

change in temperature between the forecasted and reference days

F2 = weighing factor that account for the different

reference day temperatures

The rules governing F2 is changing continuously and therefore a revising mechanism

has been developed to update these rules automatically [106].

7.8 Comparative Summary of Results

This section presents a summary of the results of applying the five load forecasting

techniques to a typical southeastern (US) utility. Because of high heating and air conditioning

loads this utility experiences high demand in both winter and summer. ln order to check how

well the implementations of these five forecasting techniques work, they have been applied

to predict the daily load (up to 24 hours) on winter and summer peak days. The error analyses

are provided in Tables 18 and 19 for the winter and summer days respectively. As these

results are based on forecasts of two single days, these should be used for comparative

. purposes only.
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Table 18. Forecast Percent Error for Summer Uslng the Flve Load Forecastlng Algorithms

STS

Time Load MLR _ GES KBES
ARIMA TF

1 4946. 1.79 .08 .07 1.11 .31 -.33
2 4757. -.15 .15 .18 1.44 .77 .33
3 4600. -1.28 -.67 -.53 1.14 .24 .02
4 4586. -.92 -.93 -.74 1.43 .20 .25
5 4756. 1.91 -.77 -.57 1.34 -.24 -.25
6 5196. -5.01 .20 .37 1.78 -.05 -.33
7 5809. 1.18 .67 .80 1.88 -.08 -.55
8 6261. 3.14 -.84 -.81 .06 -2.56 -1.26
9 6847. 4.34 .06 -.02 1.49 -1.34 -1.27

10 7106. .57 -1.16 -1.36 .27 -2.78 -1.69
11 7527. .20 .13 -.13 1.35 -2.57 -1.52
12 7693. -1.59 .07 -.28 .77 -3.75 -1.43
13 7698. -5.80 -1.64 -2.09 -.16 -3.26 -1.43
14 7972. -4.02 .45 -.05 2.22 .09 -2.30
15 8082. -.79 .93 .47 3.17 1.57 -1.49
16 8214. 1.41 1.36 .95 4.03 2.96 -2.65
17 8180. 2.46 1.04 .70 4.27 3.36 -2.40
18 7937. 1.85 -.39 -.67 2.93 1.74 -2.75
19 7559. 1.18 -.70 -.95 2.55 1.48 -1.60
20 7467. 4.55 .32 .14 3.44 1.45 -1.93
21 7284. 6.17 .06 -.11 3.53 1.34 -.16
22 6724. 10.02 .23 .10 3.56 1.49 -.11
23 5989. 4.01 .05 -.05 3.38 2.17 1.97
24 5402. -2.34 .14 .09 3.59 1.97 1.19

EVALUATION OF SHORT-TERM LOAD FORECASTING TECHNIQUES 148



Table 19. Forecast Percent Error for Winter Uslng the Flve Load Forecastlng Algorithms

STS

Time Load MLR GES KBES
ARIMA TF

1 4229. 1.75 .77 .62 -.90 .32 -.10
2 4124. -.31 1.86 1.64 -.24 .43 .10
3 4107. -2.06 2.77 2.12 -.50 1.12 1.29
4 4182. -.68 3.95 3.38 .11 2.01 1.61

5 4315. -.58 4.85 4.49 .02 2.56 2.08
6 4738. -18.71 4.50 4.31 -.45 2.83 1.30
7 5842. -1.88 6.19 6.17 .81 5.40 1.22
8 6558. 8.68 6.67 6.75 .54 7.10 2.18
9 6432. 7.47 4.97 5.09 -1.33 4.27 1.58

10 6149. -2.04 2.34 2.46 -2.99 1.05 .47
11 5879. -2.40 .83 .47 -4.63 -.16 -2.42
12 5688. -3.90 .35 -.44 -4.44 -.43 -1.44
13 5463. -4.98 -.78 -1.84 -4.25 -.85 -.98
14 5303. -3.17 -.77 -2.09 -4.43 .09 -1.03
15 5219. -3.03 -.62 -1.75 -3.55 -.15 .09
16 5138. -3.69 -.50 -1.49 -2.87 .83 .65
17 5364. -.95 -.50 -1.56 -1.17 1.81 1.25
18 5889. -3.18 -1.56 -2.78 -.59 1.60 1.74 .

19 6277. -.18 -.29 -1.56 -.54 1.46 1.49
20 6156. -3.80 -.42 -1.72 -.02 .94 .85
21 5921. 3.18 -1.11 -2.33 -1.15 -.36 1.84
22 5597. -.19 -1.82 -3.11 -1.46 -1.16 1.67
23 5115. -4.41 -2.16 -3.64 -2.69 -2.50 1.52
24 4628. -9.07 -1.49 -3.00 -3.26 -1.50 2.10
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Some interesting observations are made about the results presented in Tables 18 and

19. For example, for the peak summer day the transfer function (TF) approach gave the best

result, whereas for the peak winter day the TF approach resulted in the next to the worst

accuracy. During the peak summer day the temperature profile was typical whereas during

the peak winter day the profile was unseasonal. Thus one can see that because of its strong

dependency on historical data, the TF approach could not take into account abrupt changes

in weather as efficiently as others, like the knowledge based expert system (KBES).

7.9 Conclusion

This chapter is based on the comparative analysis of five short-term load forecasting

techniques. During the implementation of these techniques certain interesting properties of

the load and the variables have been observed. For example, for the multiple linear

regression (MLR) technique the day was divided into six unequal time zones. This gave a
‘

much better lit than not dividing the day, or dividing the day equally. Probably because ofthis

division strong correlations were found between the load, the dry bulb temperature, dew point

temperature, and wind speed. On the other hand, when the transfer function (TF) model was

built, results did not show any signiticant cross-correlation between the load and these
F

variables, with the exception of the dry bulb temperature. The forecast for the TF approach

was based on the historical load and temperature, and the future temperature as forecasted

by the temperature model itself. This has a benelit, because of the internally generated

temperature forecast the weather predlction error would not contamlnate the load forecast.

On the other hand if any signiticant changes in the weather are expected the model cannot

use this information unless forced to do so e><ternally. This may cause higher errors. It may

be noted that the non·Iinearity that caused the unequal division of the day for the MLR

technique was detected through the authors’ experience with the load characteristics. The
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characterization of such nonlinearities ls not an intrinsic property of either the multiple linear

regression (MLR) or the transfer function (TF) technique.
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Chapter VIII

AN INTELLIGENT LOAD FORECASTING SYSTEM

8.1 Introduction

In previous chapters the application of two distinct modeling methodologies, the

statistical and the knowledge-based approaches, have been presented. Each of these

modeling modeling methodologies has its benefits and Iimitations. For example, the

knowledge-base approach has the ability of being very adaptive. This ability could be obtalned

by building a knowledge-base that is capable of accounting for the various foreseen changes

in the load forecast process. The statistical approaches have the ability of systematically

extracting the trend that is contained in the historical load process possibly with other

dependent processes such as those of explanatory weather variables. Another example, the

knowledge-base approach suffers from some Iimitations. One of these iimitations is that the

load predictions will depend on how comprehensive the knowIedge·base is for the load

forecast model. The statistical approaches also have their own Iimitations. One of these

iimitations is their inability to adapt for changes in the load forecast process as a result of

seasonal variations and a a result of internal or external variables.
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In this chapter, a system is proposed that can integrate both of the statistical and the

rule·based modeling methodologies. Such a hybrid system could outperform the individual

performance ofthe statistical or the knowledge-based approach. This outperforming could be

attributed to benefitting from the capabilities and overcoming the drawbacks of these

techniques. lt is believed that this system will have the attractive features of both the

statistical and the rule-based approaches where both can be utilized. The performance of this

load forecasting system is evaluated in the next chapter.

The work presented in this chapter is devoted to cover the development of this hybrid

(comprehensive) load forecasting system. First, the objective behind the development of this

system is covered in section 8.2. This is followed by a discussion of the structure of load

forecasting system as covered in section 8.3. The development of the load forecast system

and its components are covered in section 8.4 through section 8.6. Discussion of the two

essential components for any intelligent system (i.e., knowledge acquisition and

knowledge-base components) are provided in section 8.5 and section 8.6. Finally, section 8.7

covers a summary about the work presented in this chapter.

8.2 Objective of the Load Forecasting System

The load forecast process is not a final product by itself. lt is an input process to other

decision making of the electric utility operations. As previously mentioned and discussed in

chapter 3, the load forecast is the dynamo behind which most if not every utility operation is

derived. This interrelation has been shown in Figure 1. This includes The following:

•
Load (economic) dispatch

•
Generation unit commitment

•
Energy transfer scheduling
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•
Coordination of the energy management programs with the system resources (demand

side management and dispersed generation and storage)

Therefore, the main objective of this load forecasting system is to enable the user (utility

operator) to produce the different lead-time (hourly and daily peak) load prediction that are

necessary for carrying successfully and economically the fore—mentioned utility operations.

8.3 Load Forecasting System Structure

The concept of any load forecasting system is to model the load process using its

historical data and possibly with other explanatory variables. This model is then used to

project the load process into the future and provide estimated load predictions to the desired

lead time. A simple diagram showing the main components of a load forecasting system

structure is shown in Figure 26. Description of each of these components are presented in the

following:

8.3.1 Data base

This comprises the most recent information about the load data and other influencing

variable such as dry bulb temperature, humidity, wind speed and others. This information is

collected usually on a continuous basis through communication channels (i.e. modem

communication and/or hard wire connections) from their sources (i.e. load from generating

stations and meteorological data from weather stations). This information could also be

supplied manually by the user (utility operator) through a terminal keyboard. Usually the

collected information is ültered, stored and archived to be readily retrieved by the proper

programs or techniques in the load forecasting system. This process of acquiring and

managing data is not a subject of study in this work. Such topics have been addressed in the
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work of Rahman and Baba [84]. For the purpose of this study, the most recent load and

meteorological information are assumed to be available and non-contaminated (clean), along

with other needed future meteorological data.

8.3.2 Load forecast model

The load forecasts are obtained through some form of modeling of the load process.

This load model is built using the data base which usually encounters the most recent

information about the load and other influencing variables using quantitative (statistical)

methods. The depth of expertise of the load forecaster plays an important part in building this

forecast model. Load forecast domain experts can also supply a suflicient knowledge for

building a load forecast model using qualitative (knowledge-base) methods. The model as

indicted in Figure 26 could be built either using knowledge-based or statistical modeling

methodologies. The knowledge-base and the various statistical modeling methodologies have

been presented in previous chapters along with an evaluation and analysis for their

performances.

8.3.3 lnputlOutput facilities

The input facilities are basically the tools that are used for supplying the load and

weather information needed for modeling and forecasting the load. This information forms the

data base. The facilities for supplying this information to the load forecasting system has been

explained in section 8.3.1. That includes modem and hard wire communications. This

information as well as other data needed by the system could also be inputted through a

terminal keyboard. The output facilities includes the user terminal, possibly with other

terminal to display the load prediction, and a printer to get a hard copy of the output of the

system load forecast programs.
‘
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8.4 Development of the Load Forecasting System

This system is built using various load modeling methodologies which could be classities

as the best for short-term load prediction. The concept behind the development is to combine

both of the statistical and the rule—based load modeling methodology under one load

forecasting system. These various modeling methodologies will be developed to work under

a knowledge-based (intelligent) load forecasting system. The major components of the

structure of this load forecasting system is shown in Figure 27. Discussion of each ofthe two

essential components of this intelligent load forecasting system and their functions are

discussed in section 8,5 and section 8.6.

8.5 Knowledge Acquisition

Knowledge about the load process, the dependent variable processes, the

cross—relationship between the load and the dependent variable processes, and the
I

inter-relationship between these processes and the power system utility operations are

required. Also knowledge about model building and forecasting using the various techniques

used are required. This required knowledge is explained in depth in section 8.6 (i.e. the

knowledge-base). The process of knowledge acquisition has been explained in section 4.4.3.

The author has performed the task of that of the knowledge engineer and processed the

information provided by the domain expert. The tools that have been used for acquiring the

knowledge needed for developing the knowledge-base of this load forecasting system are the

following:

•
performing exploratory data analysis: This include plotting and other means of

understating the load and weather processes and the relationship between them in all

seasons.
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•
performing statistical analysis: This include mean-range plots, autocoorrelation, partial

autocorrelation and crosscorrelation analysis, spectral analysis, and other useful

statistical analyses.

•
comprehending the various (implemented) modeling techniques: this includes

understanding the procedures for the applications, the properties, the characteristics, and

the capabilities and the limitations of these various modeling techniques

•
performing manual analysis: this includes a careful data observation and hand

calculations.

•
importing expertise: this includes gathering knowledge and other information through

discussion sessions with load forecast domain ”EXPERTS'.

•
monitoring the system performance: this include tracking the forecast residuals along

with other load and weather information along with other information that could help

evaluating and improving the performance of the system.

8.6 Knowledge-Base

Building a knowledge-base is a dynamic process. This means the knowledge-base can

be expanded as expertise about the system is increased. Starting at the current level of

expertise, the knowledge-base is structured as shown in Figure 28. This Figure indicates that

knowledge-base consists of several segment of knowledge about different aspects about this

load forecasting system. The reason behind this partition is to make the task for tracking,

expanding, and updating this knowledge-base easy for these different aspects. Each segment

ofthis knowledge-base is brietly presented with some examples. Along with this presentation,

the role of each component is discussed.

AN INTELLIGENT LOAD FORECASTING SYSTEM 159



Data Base ,4

Load Process

II

Weather Process

I ILoad-Weather Relationship

To InferenceExpertise
Load Modeling

I

II

PerformanceEvaluation·

Uncertalnty Handling

.Energy Management

KNOWLEDGE BASE

Figure 28. Knowledge-Base ef the Load Forecastlng System

AN ium.1.¤cEu·r r.oA¤ roRscAs11Nc svsmw
‘°°



8.6.1 Load process

This segment of the knowledge-base (KB) consists ofthe available information about the

load processes. This includes the different forms of load information that are needed for the
l

system such as hourly load, daily peak, daily average load, power factor, and load in

hourly-intervals. This information usually encountered the most recent measurements ofthese

variables that are sufficient for load model building and forecasting. This load information is

provided with other needed knowledge which could be considered as indicator variable

information such as hour-of-day (0-23), day-of-week (day type, 1-7), and date (day and month).

This type of information are organized in the data base in different files. This type of

information concerning the load process (different load and indicator variables) are facts that

are built in the knowledge-base (i.e., data base which is accessed from within the

knowledge-base). There are other facts that are built in the knowledge-base. This includes the

known holidays. Other than this built in facts, there are other information concerning the load

processes which are expressed using rules or heuristics. One group of rules is those for

accessing the different load variables that are needed for building the load forecast model

or prediction. These rules include: (1) opening the file that includes the right variable or

variables, their position, and format. Such rules take the form of lF·THEN statements such as:

IF the predicted variable is hourly load

THEN open the file 'hrlyload data"

IF the predicted variable is hourly load

AND the file is "hrlyl0ad”

THEN position starts at column 62

AND format is f8.2
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The load processes knowledge-base segment can include knowledge about how load data are

reduced during holidays compared to those in normal working days. For example,

IF the day is of the 4th of July

AND the day of the week is Tuesday through Friday

THEN the load (curve) will be reduced by-15 %.

This type of heuristics not only can be used in adjusting the predicted load variables, but also

can be used as means of adjusting the historical data ofthese variables before using them in

building the load forecast models.

The role of the load process knowledge can be summarized in the following:

•
facilitating the retrieval of the required load variable process(es) for load modeling and

forecasting by the system.

•
removing of the effect of the variables that are not accounted for in the load forecast

model building. The may include the effect of internal variables such as those action taken

by load management programs.

• adjusting the predicted load values to account for variables that are not accounted ln the

load forecast model. This adjustment may include revising the predicted load values to

account for the action of energy management programs.

•
facilitating the storage and archival of the predicted load variable process(es) for future

access by the system.

•
facilitating the retrieval of the predicted load values. This process of retrieval is useful for

evaluating the system performance by comparing these predicted values to the actual

values in view of all the influencing variables. This process is also useful for accessing
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the predicted values In search for a and a suitable prediction that could be obtained ln

some form from these predicted values.

8.6.2 Weather process

This knowledge base (KB) segment includes information about the weather variables

that are most likely to influence the various load processes. Such information is also needed

with information about the indicator variables which include hour-of-day, day-type, and date.

This weather and indicator variable information usually consists ofthe most recent historical

data about these variables that matches the load processes data. Besides the historical

weather data, other information concerning the future weather variable information is also

needed for the prediction processes. This type of information is generated from within the

system for some weather variables. Other variable future (predicted and actual) information

about the weather variables is assumed available from generating sources outside the _

system. This information about the historical and the future weather and indicator variables

are organized in the data base in different files that are accessed through this segment of the

knowIedge—base. This information constitute the fact part of this KB segment. Other

knowledge is in the form of heuristics such as the rules for accessing certain weather

variables. These rule, which are similarto the rules in the previous section, are designed for

opening files, and for defining the format and position of the weather variables needed. Other

heuristics are those concerning the forming of new weather variables that have a compound

or more influencing effect under certain conditions. For example, the effect of temperature

and humidity is summer can be combined using one variable called the temperature humidity

index (THI). This variable then can replace the dry bulb temperature in modeling the

temperature effect on load under certain conditions as:

IF it is summer
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AND the dry bulb temperature is > 80 F.

THEN the temperature humidity index is needed.

The role of the weather process knowledge can be summarized in the following:

•
facilitating the retrieval of the required weather variable process(es) for modeling and

forecasting of these weather variable processes by the system.

• storing the predicted weather variables process that will be needed in the load prediction.

•
facilitating the retrieval of the required weather variable process(es) for load modeling

and forecasting by the system.

•
adjusting of the weather variable process to reflect the actual influence on the load

processes. This may include creating new weather variable from these variable that exist

in the weather variable data base.

8.6.3 Load·weather relationships

This segment of the knowledge base consists of the information needed to identify the
-

different weather variables that affect the different load processes. These identified weather

variables are needed when a weather sensitive component has to be considered in the load

forecast model building. Therefore, this segment of the knowledge includes rules for selecting _

the necessary weather variable(s) in the different seasons, their cut off values, their inertia

effect, and possibly their daily hour—interval effect with weather variable magnitude-interval

effect. This may include rules about the order of significance of these explanatory variables.

Other rules includes the use of compound weather variables such as temperature humidity

index (THI) and wind chill index (WCI) where the use of such variables can best describe the
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weather sensitive component of the load forecast model. For example, in summer the

combination of temperature and humidity can best describe the relationship between the load

and weather than the dry bulb temperature when the later exceeds certain value as:

lF the season is summer

AND the dry bulb temperature is > 80 F.

THEN the THI is needed instead of the DBT.

The role of the load-weather relationship knowledge can be summarized as:

•
facilitating the identification of the different explanatory weather variables in the different

seasons.

• adjusting the effect of the weather variables by creating new compound weather

variables.

•
specifying the peak and valley time intervals of load curve.

The above discussed aspect of load weather relationship addresses the relationship

between the load in general (required generation) and meteorological data. There is another

different aspect for the load weather relationship. This other aspect is the effect between the

controllable Ioads , such as air conditioners and space heaters, and the weather variables.

This aspect is important for the energy management programs that could be part of the load

forecasting system. This aspect is addressed in section 8.6.6. For the part ofthis section, many

rules could be developed to address the load-weather relations as affected by the controllable

Ioads. Such work has been conducted in the Alternate Energy System Laboratory at Virginia

Tech [84]. For example, the demand for air conditioning will rich a saturation value if the

temperature humidity index is greater than 88 F.
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8.6.4 Load modeling

This segment of the knowledge base consists of the knowledge about the different

modeling techniques and the different processes that could be modeled. The modeled

processes are mainly those of the different load variables, but some weather variables

processes are also modeled using similar techniques to those used to model some ofthe load

processes. Both the statistical (quantitative) and the knowledge-base (qualitative) techniques

are used for building models for the load processes, while some ofthe weather processes are

built using statistical techniques only. These techniques and the models built using them at

the current state are as followsx

• Univariate time series (Box and Jenkins) approach

1. hourly load

2. hourly dry bulb temperature

3. daily average load (energy)

4. daily average dry bulb temperature

5. daily peak load

6. daily peak load factor

7. daily peak load dry bulb temperature

8. daily hour type load
”

9. daily hour type dry bulb temperature

10. daily (minimum/maximum) to average dry bulb temperature

• Transfer function time series (Box and Jenkins) approach

1. hourly load
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2. daily average load (energy) forecast.

3. daily peak load

4. daily hour type load

5. daily load factor

• Multiple linear regression

1. daily average load (energy) forecast.

2. daily peak load

3. daily peak range load

• Knowledge base approach

1. hourly load

2. daily peak load

3. daily peak range load

• simple models

1. average daily load curve

2. average load factor (at peak)

This type of information concerning the load modeling (different load models and

techniques) are facts that are built in the knowledge-base (i.e., data base which is accessed

from within the knowledge-base). Each of the previous mentioned models has information

about its structure and variables. This includes the model the needed differencing or centering

of the data, the identiüed variables (parameters) with their estimates and confidence and their

locations. Such information are stored in files that are accessed through this segment of

knowledge base. Other than this built in facts, there are other information concerning the load

modeling which are expressed using rules or heuristics. One group of rules is those for
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accessing the different load models that are needed for issulng the different load predictions.

These rules include: (1) selecting the appropriate model or models. (2) opening the files that

contains the model parameter estimates and various needed Inputs that are stored in the

system. An example ofthese rules is the following.

IF the predicted variable is hourly load

AND the season is SPRING

THEN use the univaraite time series model

An other example is

IF the model is model is univariate

AND the season is SPRING

THEN open the files defining this model
‘

AND open the files containing the model parameters and other needed data

The role of the load modeling knowledge can be summarized in the following:

• facilitating the selection of the different needed load models.

• facilitating the retrieval of the different needed data for the selected load models.

• facilitating the display and the storage of the generated predictions.

8.6.5 Performance evaluation

This segment of the knowledge base consists of the knowledge for monitoring and

tracking the performance of the different load modeling that are applied. This includes tracking

the forecast residuals of both the load and explanatory variables. This also include tracking

the conditions at which each model is valid at. This may require testing the significant of

model parameters, reestimating their values and possibly altering the model structure and
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reevaluating its parameters. The fact part of this segment ofthe knowledge base consists of

all the assumptions, capabilities and limitations at which the different models are applied. For

example, a rule concerning the stationarity of the hourly load series in winter can be

expressed as:

IF the load series is hourly

AND the season is winter .

THEN perform a daily and a weekly differencing to make the series stationary

Another example, a rule for the validity of the transfer function models in summer is can be

stated in the following.

IF the season is summer

AND the daily peak temperature is above 72 deg. F

THEN the transfer function models can be applied.

The role of the performance evaluation knowledge can be summarized in the following:

•
facilitating the monitoring of the actual and predicted data in order to determine the

forecast accuracy as new observations become available.

•
facilitating the monitoring of the actual and predicted data in order to explain their

residuals and variations with respect to the considered explanatory variables as time

changes.

•
facilitating the testing of the validity of the assumptions at which the models are applied.

•
facilitating the testing of the validity of the conditions at which the models are applied.

•
facilitating the tracking ofthe validity ofthe structure of the applied models and signaling

when this structure needs to be altered or its parameters needs to be reestimated.
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•
facilltating the retrieval ofthe different needed data for the selected load models.

8.6.6 Uncertainty handling

This segment of the knowledge base consists of the knowledge that can be used in

calculating the reliability of the forecasts produced. This reliability is expressed in terms of

contidence limits as deviations or percent values around the point estimate of the predicted

variables. Usually, the statistically based models can be built with conlidence intervals

(variances) for their parameters and an overall error variance for the model gs whole. The

variances of the model parameters give a measure ofthe uncertainty in these parameters and

the variance of the error of estimation gives an overall lndex summarizing the uncertainty

contained in the developed models. For the knowledge based models, the degree of risk or

uncertainty is usually obtained from the forecast domain experts along with the facts, rules

and expressions for the model building. ln either of the modeling approaches, facts of

uncertainty ofthe model predictions can be built in this segment ofthe knowledge base. Rules

or heuristics can also be built to access these facts in order to enable the calculation of the

conlidence of the produced forecasts by the load forecasting system. This can be done as the

amount of deviations or the percent variations associated with the forecasts. For example, the

lead time variance of the forecast error of a univariate model of the daily peak in spring can

be calculated by searching for the order of the model and the estimates of its parameters and

error standard deviation. Then using the variance of the forecast error and the forest can be

produced with a conlidence intervals.

The role of the uncertainty handling knowledge can be summarized as:

•
facilitatlng the retrieval of the appropriate needed data for calculating the prediction

uncerlainties.
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•
facilitating the calculations or provisions of the contidence intervals that are associated

with the predicted values.

8.6.7 Energy management

This segment of the knowledge base consists of the information that is needed to

lntegrate the energy management programs into the load forecasting system. By energy

management programs is meant the process of altering the load curve by reducing the peak

load or shitting lt to other times where the available generation resources are capable of

supplying the demand for electricity economically. This include load shedding such as air

conditioning and water heaters and storage techniques such as pumped hydro or battery

storage. These operations usually alfect the load processes as well as the predictions.

Therefore, integrating the effect of the energy management actions into the load forecasting

system is essential for better modeling by removing the effect of the actions of the energy _

management system programs. lt is also essential for accurate prediction where the actions

ofthe energy management programs have to be accounted for in the issued forecasts.

The role of the energy management segment of the knowledge base is:

•
Facilitating the removal of the effect of the energy management programs so the load

processes are as natural as possible to get more accurate load models.

• Facilitating the corrections of the load predictions by accounting for the effect of the

energy management programs on them.
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8.7 Summary

An intelligent load forecasting system has been proposed in this chapter. This system

will combine both statistical and knowledge-base modeling approaches to the load forecasting

problem. This system is expected to have the advantages of both of these modeling

approaches. The evaluation of this load forecasting system is presented in the ne><t chapter.
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Chapter IX

9.1 Introduction

An intelligent load forecasting system has been presented in the previous chapter. Such

system integrates both statistical and rule-based approaches. The evaluation of the

performance of this system is presented in this chapter. This evaluation was simulated by

developing the best statistical techniques as well as a knowledge base technique as covered

in section 9.2. There are two methods for modeling the load, particularly the peak load. These

methods are the power method and the energy method. Details of the models that were

developed using each of these methods are covered in this section. Section 9.3 presents a

discussion of the results of both the power and the energy methods using different statistical

modeling techniques. A judgment was concluded of what method or technique to use in

specific season or under specific weather conditions.

PERFORMANCE EvAt.uATl0N OF THE LOAD FORECASTING SYSTEM 173



The focus of the remaining sections of this chapter was devoted to the one week lead

time forecast. The reason behind this focus was that forecasts to one week time ahead are

needed for unit commitment as well as energy management applications. lt is also believed

that this range has not been addressed signiticantly in the literature. The best of the previous

models and techniques were used to address the one week lead time forecast in section 9.4.

Then a weighted averaging method is presented in section 9.5 where the weights are supplied

by load forecast domain experts. In parallel to this the rule base forecast present in chapter

6 is used to generate forecasts that are totally dependent on the system operator as presented

in section 9.6. Finally in section 9.7 a conclusion about the work of this chapter is presented.

9.2 Simulation

For the purpose of evaluating the proposed intelligent load forecasting system, modeling

and forecasting of both the hourly and the daily peak load have been performed using different

techniques and different models. The knowledge used in applying these techniques and

building the models were extracted from relationships between load and weather variables,

other historical observations and perceptions of domain experts. The techniques and the

models built using them at the current state are as followsz

•
Univariate (UV) time series modeling

1. hourly load

2. hourly dry bulb temperature

3. daily peak load

4. dry bulb temperature at daily peak load

5. daily average load (energy)

6. daily average dry bulb temperature
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7. daily average dew bulb temperature

8. daily load factor

9. daily (minimum/maximum) to average dry bulb temperature

•
Transfer function (TF) time series modeling

1. hourly load

- 2. daily average load (energy)

3. daily peak load

4. daily load factor

•
Multiple linear regression (LR) approach

1. daily peak load

2. daily peak range load

3. daily average load (energy)

•
Knowledge base (KB) approach

1. hourly load

2. daily peak load

•
Simple averaging (SA) approach

1. daily load curve

2. load factor (at peak load)

The above models that were developed using different statistical techniques can be

categorized according to the processed data as either power modeling method or daily energy

modeling method. Each ofthis category of load modeling is examined in the next subsection.
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9.2.1 Power method

In this method the hourly data or the daily peak load data (i.e. power data) were used

to develop model that are capable of producing predictions for the hourly load and the daily

peak load up to one week lead time. Different models were developed and simulated using

different modeling techniques. These model are listed as the following:

Model 1: Hourly load model using load data only.

For this model the hourly load is predicted up to 168·hour lead time using univariate time

series model.

Model 2: Hourly load model using load and weather data (prediction with accurate weather

data).

For this model the hourly load is predicted up to 168-hour lead time using transfer

function time series model. The dry bulb temperature is used as the input series variable,

which is modeled using univariate time series.

Model 3: Hourly load model suing load and weather data (prediction using forecasted weather

data)

This model is the same as model 2 but forecasted weather information is used in the 1

to 168-hour lead time load prediction.

Model 4: Daily peak model using peak load data only.

For this model the daily peak is predicted up to 7-day lead time using univariate time

series model.

Model 5: Daily peak model using daily peak load and weather data (prediction with accurate

weather data).
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For this model the daily peak is predicted up to 7-day lead time using transfer function

time series model. The dry bulb temperature at the hour ofthe peak load is used as the input

variable. This input variable is modeled using univariate time series.

Model 6: Daily peak model using daily peak load and weather data (prediction using

forecasted weather data).

This model is the same as model 5 but accurate weather weather information is used in

the 1 to 7-day lead time load prediction.

9.2.2 Energy method

In this method the total energy requirement is predicted up to 7 days ahead. The daily

peak is determined using a knowledge about the load factor along with the daily energy. The

following formula is used to calculate the daily from the daily energy and the load factor _

predictions.

Daily Energy 1
Peak load- 24

X Load factor
(91)

Depending on the technique for predicting the load factor and the total energy different

models have been developed using this method: These models are as followsz

Model 7: Daily peak model using enegy data only with actual load factor values.

For this model the daily peak is predicted up to 7-day lead time using transfer function

time series method for the energy model and the actual value (prefect prediction) of the load

factor.
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Model 8: Daily peak load model using energy and weather information (prediction using

accurate weather data) with actual load factor values.

For this model the daily peak is predicted up to 7-day lead time using transfer function

model for the daily energy. The input variable of this model is the daily average dry bulb

temperature which is modeled using a univariate time series method. The load factor used for

calculating the daily peak is the perfect (or actual) load factor values,

Model 9: Daily peak load model using energy and weather information (prediction using

forecasted weather data) with actual load factor values,

This model is the same as model 8 with the exception that predicted weather values are

used in calculating the energy predictions.

Model 10: Daily peak model using enegy data only with average load factor values.

This model is the same as model 7 with the exception that average load factor is used

instead of the actual load factor values. The average load factor is based on the most recent -

historical data that are used in building the energy model.

Model 11: Daily peak load model using energy and weather information (prediction using

accurate weather data) with average factor values.
l

This model is the same as model 8 with the exception that average load factor is used

instead of the actual load factor values.

Model 12: Daily peak load model using energy and weather information (prediction using

forecasted weather data) with average factor values.

This model is the same as model 9 with the exception that average load factor is used

instead of the actual load factor values.
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Model 13: Daily peak model using predcited energy and load factor data.

This model is the same as model 7 with the exception that the load factor used ls also

predicted using load factor information only, i.e. univariate time series model.

Model 14: Daily peak load model using predcited energy and load factor data with weather

information (predictlon using accurate weather data).

This model is the same as model 8 with the exception that both the daily energy and the

load factor are modeled using weather information. Actual weather values are used in the

prediction of both the daily energy and the load factor.

Model 15: Daily peak load model using predcited energy and load factor data with weather

information (predictlon using forecasted weather data).

This model is the same as model 14 with the exception that predicted weather

information is used in the prediction of both the daily energy and the load factor.

9.3 Modeling Evaluation

The models that have been presented in the previous section are mainly developed

using the time series approach. This technique has been presented in chapter 5 in details.

Although the time series approach has been applied in modeling the hourly electrical load for

short lead time (up to 24 hour lead time), models for the daily peak and specially models that

are developed using the energy method can be considered as new applications to the daily

peak load prediction. The energy approach as will be demonstrated next is shown to_be more

simple and more accurate especially for addressing the one-week lead time forecast.

Results of the simulation prediction of all of these models have been obtained for the

months, February, May, August, and October representing Winter, Spring, Summer, and Fall

seasons. Some of the models that are developed using both the power and energy methods
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for this simulation are demonstrated in Appendix D. Results of the daily peak 1·day and

1-week ahead predictions for all of this techniques for all seasons are shown in Tables 44

through 73 In Appendix E. A summary of the absolute error of the daily peak forecast error

are shown in Table 20 through Table 23. The following abbreviations are defined.

UV. Univariate time series model
U

TFA. Transfer Function time series model with accurate future input data

t TFF. Transfer Function time series model with predicted future input data

9.3.1 Daily prediction

Inspection of the results of the different developed models gives the following rules or

conclusions for the predictions of the daily peak load one day ahead.

• Winter season.

IF both the future weather variables (mainly the dry bulb temperature) and the future load

factor, LF, can be known accurately (i.e., through experts or external predictions to the

system)

THEN the TFA daily energy model with the obtained LF (i.e., Model 8) gives the best 1-day

ahead daily peak prediction.

IF the future weather variables (mainly the dry bulb temperature) can be known

accurately (i.e., through experts or e><ternaI predictions to the system)

THEN the TFA daily peak model (i.e., Model 5) gives the best 1-day ahead daily peak

prediction.
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Teble 20. Delly Peak Forecaet Error Uelng Hourly Loed Model Predlctlone

(a) One day lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW % MW %

UV 199.49 3.08 184.84 3.62 574.41 7.90 226.56 4.24

TFA 250.81 3.79 251.65 4.86 564.66 7.78 218.85 4.14

TFF 276.56 4.24 395.46 7.77 574.36 7.90 235.29 4.44

(b) One week lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW % MW %

UV 687.90 10.55 851.42 16.61 1822.94 24.74 777.70 14.52

TFA 689.93 10.54 1227.92 23.98 1864.99 25.65 733.45 13.84

TFF 728.13 11.18 2616.06 50.76 2013.30 27.64 1016.82 18.88
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Table 21. Dally Peak Foracast Error Ualng Dally Peak Load Model

(a) One day lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW % MW %

UV 284.03 4.41 179.71 3.59 641.20 8.88 363.67 7.13

TFA 196.94 3.08 271.98 5.41 398.71 5.34 466.46 9.00

TFF 299.90 4.68 296.25 5.96 947.98 12.24 350.09 6.69

(b) One week lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

UV 540.29 8.33 223.34 4.62 858.15 12.42 747.08 14.67

TFA 223.05 3.40 329.34 6.61 562.32 7.74 723.42 13.85

TFF 436.34 6.75 292.56 6.09 1173.41 16.72 735.73 14.55
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Table 22. Dally Peak Foreceet Error Uelng Delly Energy Predlctlon end Actuel Load Factor

(a) One day lead tlme

MODEL FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW % %
UV 240.18 3.68 174.77 3.47 486.18 6.83 350.07 6.91

TFA 191.91 2.97 332.69 6.52 175.91 2.40 374.97 7.02

TFF 354.18 5.44 289.61 5.76 508.09 6.61 343.08 6.44

(b) one week lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

UV 514.07 7.97 210.36 4.33 796.00 11.40 652.40 12.87

TFA 191.91 2.97 415.56 8.24 371.71 5.08 562.47 10.44

TFF 532.00 8.27 265.68 5.47 996.53 14.18 471.09 9.13
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Table 23. Daily Peak Forecaet Error Uelng Delly Energy Predlctlon end Average Load Factor

(a) One day lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW % MW %

UV 281.23 4.34 227.99 4.57 601.95 8.46 409.82 8.10

TFA 228.60 3.56 352.11 6.98 248.70 3.52 365.97 6.89

TFF 367.62 5.65 313.25 6.31 645.73 8.47 361.55 6.80

(b) One week lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

N NNUV439.77 6.87 248.39 5.15 866.87 12.54 755.83 14.84

TFA 228.60 3.56 442.61 8.86 433.09 6.04 543.67 10.10

TFF 447.83 6.98 311.55 6.43 1077.56 15.47 541.10 10.50
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Table 24. Dally Peak Foracaat Error Using Dally Energy and Load Factor Predlctlone

(a) One day lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

% MW % MW % MW %

UV 281.23 4.34 260.12 5.21 616.45 8.61 365.10 7.16

TFA 239.88 3.75 346.35 6.85 222.35 3.10 357.38 6.70

TFF 371.52 5.72 308.10 6.19 659.58 8.53 353.26 6.62

(b) One week lead time

MODEL FEBRAURY MAY AUGUST OCTOBER

N NNUV439.77 6.87 249.42 5.16 866.87 12.54 739.82 14.54

TFA 239.88 3.75 454.11 9.07 432.71 6.06 551.62 10.20

TFF 447.81 6.98 299.18 6.19 1077.64 15.47 521.90 10.13
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IF the future weather variables (malnly the dry bulb temperature) can not be known

accurately

THEN the UV hourly load model (i.e., Model 1) gives the best 1-day ahead daily peak

prediction.

•
Spring season

IF both the future weather variables (malnly the dry bulb temperature) and the future load

factor, LF, can be known accurately (i.e., through experts or external predictions to the

system)

THEN the TFA daily energy model with the obtained LF (i.e., Model 8) gives the best 1-day

ahead daily peak prediction.

IF the future weather variables (malnly the dry bulb temperature) can not be known

accurately (i.e., through experts or external predictions to the system)

THEN the TFA daily energy model with predicted LF by the system using TFA (i.e., Model

14) gives the best 1-day ahead daily peak prediction. A close result can also be obtained

with the TFA daily energy model with average load factor (i.e., Model 10).

IF both the future weather variables (malnly the dry bulb temperature) and the future load

factor, LF, can not be known accurately

THEN the UV daily peak model (i.e., Model 4) gives the best 1-day ahead daily peak

prediction.

• Summer season

IF both the future weather variables (malnly the dry bulb temperature) and the future load

factor, LF, can be known accurately (i.e., through experts or external predictions to the

system)

THEN the TFA daily energy model with the obtained LF (i.e., Model 8) gives the best 1-day

ahead daily peak prediction.
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IF the future weather variables (mainly the dry bulb temperature) can be known

accurately (i.e., through experts or external predictions to the system)

THEN the TFA daily energy model with the predicted LF using TFA (i.e, Model 14) gives

the best 1-day ahead daily peak prediction.

IF the future load factor, LF, can be known accurately (i.e., through experts or external

predictions to the system)

THEN the UV daily energy model with the obtained LF (i.e., Model 7) gives the best 1-day

ahead daily peak prediction.

IF both the future weather variables (mainly the dry bulb temperature) and the future load

factor, LF, can not be known accurately.

THEN the UV daily peak model or the TFF daily peak model (i.e., Model 4 and Model 6)

gives the best 1-day ahead daily peak prediction.

•
Fall season

IF the future weather variables (mainly the dry bulb temperature) can be known

accurately (i.e., through experts or external predictions to the system)

THEN the TFA hourly load model (i.e, Model 2) gives the best 1·day ahead daily peak

prediction.

IF the future load factor, LF, can be known accurately (i.e., through experts or external

predictions to the system)

THEN the TFF daily energy model with this LF (i.e, Model 9) gives the best 1-day ahead

daily peak prediction.

IF the future load factor, LF, can not be obtained accurately.
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THEN the TFF daily peak model (i.e., Model 6) gives the best 1-day ahead daily peak

prediction. A closer result can also be obtained using the TFF daily energy with predicted

load factor using the TFF modeling approach (i.e., model 15).

9.3.2 Weekly prediction

For the daily peak load seven day ahead predictions the following rules or conclusions

are established.

•
Winter season.

IF both the future weather variables (mainly the dry bulb temperature) and the future load

factor, LF, can be known accurately (i.e., through experts or external predictions to the

system)

THEN the TFA daily energy model with the obtained LF (i.e., Model 8) gives the best 7-day

ahead daily peak prediction.

IF the future weather variables (mainly the dry bulb temperature) can be known

accurately (i.e., through experts or external predictions to the system)

THEN the TFA daily peak model (i.e., Model 5) gives the best 7-day ahead daily peak

prediction.

IF the future weather variables (mainly the dry bulb temperature) can not be known

accurately

THEN the UV daily energy model with average load factor, LF, (i.e., Model 10) gives the

best 7-day ahead daily peak prediction.

•
Spring season
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IF both the future weather variables (mainly the dry bulb temperature) and the future load

factor, LF, can be known accurately (i.e., through experts or external predictions to the

system)

THEN the TFA daily energy model with the obtained LF (i.e., Model 8) gives the best 7-day

ahead daily peak prediction.

IF both the future weather variables (mainly the dry bulb temperature) and the future load

. factor, LF, can not be known accurately (i.e., through experts or external predictions to the

system)

THEN the UV daily peak model (i.e., Model 4) gives the best 7-day ahead daily peak

prediction.

•
Summer season

IF both the future weather variables (mainly the dry bulb temperature) and the future load

factor, LF, can be known accurately (i.e., through experts or external predictions to the

system)

THEN the TFA daily energy model with the obtained LF (i.e., Model 8) gives the best 7-day

ahead daily peak prediction.

IF the future weather variables (mainly the dry bulb temperature) can be known

accurately (i.e., through experts or external predictions to the system)

THEN the TFA daily energy model with the average LF (i.e, Model 11) gives the best 7-day

ahead daily peak prediction. A closer model to the this model is the TFA daily energy with

LF predicted using also TFA (i.e., Model 14).

IF both the future weather variables (mainly the dry bulb temperature) and the future load

factor, LF, can not be known accurately (i.e., through experts or external predictions to the

system)
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THEN the UV daily energy model with average LF (i.e., Model 10) gives the best 7-day

ahead daily peak prediction. A closer model to this is the UV daily energy with predicted

LF using also a UV model.

•
Fall season

IF the future load factor, LF, can beknown accurately (l.e., through experts or e><ternaI

predictions to the system)

THEN the TFF daily energy model with this LF (i.e, Model 9) gives the best 7-day ahead

daily peak prediction.

IF the future load factor, LF, can not be known accurately

THEN the TFF daily energy model with predicted LF using TFF model (i.e, Model 15) gives

the best 7-day ahead daily peak prediction.

9.4 Adaptive Weekly Predictions

Adaptive knowledge—based load forecasting models were developed for the one-week

ahead daily peak load predictions under the knowledge-based load forecasting system using

two parallel approaches. ln the first approach expert information was used to produce a

weighted average model using different statistical models. The second approach was based

totally on rules derived from the electric utility experts, and was free of any signiticant

statistical computation.
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9.4.1 Statistical modeling

The relationship between load (MW), weather variables, time of day, day types and

seasons can be obtained from load forecast domain experts. These relationships, and hourly

historical Ioads and weather data were then selectively used for various statistical techniques

(e.g., univariate, transfer function and linear regression). Among the models that are

presented in section 9.2.1 and 9.2.2 the models in winter and summer seasons was concluded

to be highly dependent on weather conditions. lt was also concluded that the hourly load

models were not suitable for weekly load predictions. It also has been demonstrated in

chapter 7 that regression models to produce good prediction provided that accurate future

weather variable are provided. Models using the power and energy methods were developed

using the linear regression technique.

The following statistical techniques were applied to the one week daily load predictions.

The models with input variables assumed available accurate future information. These

Techniques are as follows.

•
Univariate (UV) Models;

• Transfer function (TFA) Models; and

•
Regression (LR) Models.

Discussion about the models using the UV and the TF techniques has been presented in

section 9.2.1 and section 9.2.2. For the LR models the following models were developed:

Model 16: Daily peak load model using daily peak load with accurate weather information.

This model is developed using the daily peak load data and accurate dry bulb and dew

point temperature weather variables. The weather variables are assumed to be available

either through experts or predicted accurately external to the load forecasting system.
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Model 17: Daily peak load model using daily energy prediction with accurate weather

information and average load factor.

This model is developed using the daily energy data and accurate dry bulb and dew

point temperature weather variables. The weather variables are assumed to be available

either through experts or predicted accurately external to the load forecasting system. The

daily peak is obtained from the predicted daily energy and the average load factor, LF. The

average load factor is obtained by using the historical data for several similar day types

(Mondays, Tuesdays, etc.) in the season. Note that this average LF is ditferent from the

average LF factor used in the models 10 to 12 which is obtained by simply average the

previous month daily load factors.

Model 18: Daily peak load model using daily energy prediction with accurate weather

information and accurate load factor.

This model is developed using the daily energy data and accurate dry bulb and dew

point temperature weather variables. The weather variables are assumed to be available ·

either through experts or predicted accurately external to the load forecasting system. The

daily peak is obtained from the predicted daily energy and the LF as obtained from experts

or predicted accurately external to the load forecasting system.

Samples showing how some of these models were developed are given in Appendix D.

9.4.2 Weighted Averaging

lt was observed as demonstrated by the prediction results of the models presented in

section 9.2.1 and section 9.2.2 in Appendix E that different statistical techniques and models

performed differently on different days in different seasons. A weighted average load forecast
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was then used which judiciously combined forecasts from these three techniques (l.e, UV,

TFA, and LR). The weights were based on the performance of various techniques under

different weather conditions, and the sensitivity of load to weather. Analysis of the statistical

techniques and discussions with electric utility system operators resulted in the weights

shown in Table 25.

These weights may change from one month to another depending on variations in

weather.

9.4.3 Rule-based modeling

This modeling approach was centered around rules that are derived from electric utility

experts. This rule based forecast model consisted of a 'reference load' and a multiplicative

correction factors. ln some circumstances additive correction factors were needed to rectify

the load forecasts. The model for predicting the 168-hour lead time load forecast and the

1-week lead time daily peak forecasts has been presented in chapter 6 forthe summer season

with detailed discussion. Results of this modeling approach for the one week daily peak

forecasts in presented in the next section.

9.5 Results

Results obtained by applying the knowledge base to the statistical and rule-based

techniques are discussed in the following. Historical load patterns and weather information

in the service area of a major electric utility in Virginia was used for the results presented in

this work.
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Table 25. Welghted Averaging Values for the Statlstlcal Models

Month Univariate Transfer Fn. Regression

Weight % Weight % Weight %

Febraury 10.0

August 15.0
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9.5.1 Statistical modeling

The statistical modeling techniques presented in section 9.4.1 (i.e., UV, TFA, and LR)

have been applied to the three best load models presented in earlier sections. These load

models are as follows:

Model l: Daily peak load

This includes the models 4, 5, and 16 developed using UV, TFA, and LR techniques

respectively.

Model ll: Daily energy and average load factor

This includes the models 10, 11, and 17 developed using UV, TFA, and LR techniques

respectively.

Model lll: Daily energy and actual load factor

This includes the models 7, 8, and 18 developed using UV, TFA, and LR techniques

respectively.

Results that were obtained by using the statistical techniques are presented in Tables

26 through 31. For all cases the model parameters were estimated using January and July

data for February and August forecasts respectively. The MW and per cent numbers represent

the difference between the actual and forecast loads for all days of that particular month. ln

these tables the percentage error is the error with respect to the daily peak load. The

numbers presented at the bottom are the absolute averages for all days of the month.

As the univariate model used only the load (MW) variable the errors are small only

under stable conditions. Major changes in load caused by signilicant variations in weather

could not be captured by this model. On the other hand the model performance was not

subject to the errors in the weather forecast because this information was not used. As the

weather was generally stable (i.e., no signilicant variations in temperature) in February the

average forecast errors for the month ranged between 6% and 8% for the three models.
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The situation was, however, different in August when there were signilicant temperature

variations. The daytime temperature dropped by more than 25°F from the tirst to the second

weekend. The univariate model was obviously unable to capture the effects of these large

temperature variations causing high errors in the forecast during the 13th through the 16th of

the month (see Table 27). The energy models (Model 17,18) generally gave better forecast

than the peak load model (Model 16).

The transfer function model used both load and weather variables to generate the

forecast. Results presented in Tables 28 and 29 were obtained by using accurate weather

conditions in February and August respectively. Transfer function based models also

performed better under stable weather conditions. As it used weather information the transfer

function based forecasts for February (as shown in Table 28) were signiticantly better than

those obtained from the univariate model (see Table 26) for the same month. On the other

hand, due to drastic changes in the weather pattern in August the errors (see Table 29) were

higher in this month than in February for the transfer function model. These errors, however,

were still lower than those seen for August univariate models.

The third case refers to the use of the linear regression model. This model also used

the load and weather information. Forecast errors for February (see Table 30) were somewhat

higher than what were seen for the transfer function models (see Table 28). This suggested

that, under stable weather conditions, the more sensitive transfer function model performed

better than the regression model. On the other hand, when weather conditions became

unstable in August the regression model performed better (see Table 31) than the transfer

function model. (See Table 29).

ln order to present a comprehensive error analysis, percentage errors for all techniques

and models are shown in Table 32. lt ls seen from this table that model 3 using the energy

forecast and the actual load factor gave the best overall forecast. The forecast error obtained

by using the energy forecast and the average load factor (model 17) was also comparable. ln

summary, the transfer function technique worked better under stable weather conditions in
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Table 26. Forecast Errors lor February Uslng Unlvarlate Models

DAY Model 4 Model 10 Model 7

MW °/6 MW °/6 MW °/6

1 363.71 5.55 -69.82 -1.06 -273.89 -4.18
2 -541.50 -9.00 -701.52 -11.66 -634.41 -10.54
3 -197.49 -3.20 -533.43 -8.64 -826.10 -13.39
4 172.35 2.52 -16.89 -.25 95.15 1.39
5 317.18 4.88 89.69 1.38 224.69 3.45
6 833.62 12.89 440.35 6.81 398.97 6.17
7 472.56 6.84 473.71 6.86 575.64 8.34
8 508.01 7.15 599.49 8.43 595.62 8.38
9 1368.18 18.55 957.75 12.99 812.41 11.02

10 1088.67 14.95 957.87 13.16 973.91 13.38
11 692.34 9.26 675.34 9.03 985.66 13.18
12 65.65 .99 69.62 1.04 415.21 6.23
13 -146.14 -2.24 143.43 2.19 248.16 3.80
14 78.79 1.12 233.79 3.33 470.01 6.70
15 -354.63 -5.26 -80.75 -1.20 -157.94 -2.34
16 -801.53 -12.06 -202.52 -3.05 -389.29 -5.86
17 -949.34 -14.88 -480.65 -7.53 -385.00 -6.03
18 -859.13 -13.13 -663.98 -10.15 -750.55 -11.47
19 -929.67 -16.17 -1046.10 -18.19 -973.11 -16.92
20 -1104.60 -20.22 -1072.54 -19.63 -1064.99 -19.49
21 -697.75 -11.18 -666.66 -10.68 -857.62 -13.74
22 -470.44 -7.62 -510.09 -8.26 -852.22 -13.80
23 -548.26 -9.20 -635.34 -10.66 -660.69 -11.09
24 45.65 .72 -254.41 -4.03 -291.56 -4.62
25 172.06 2.62 -110.33 -1.68 36.78 .56
26 536.80 8.50 29.08 .46 114.77 1.82
27 241.13 4.18 -277.03 -4.80 -196.30 -3.40
28 570.99 8.45 340.05 5.03 133.42 1.97

Aver. 540.29 440.45 6.86 514.07 7.97

PERFORMANCE EVALUATION OF THE LOAD FORECASTING SYSTEM 197



Table 27. Forecast Errors for August Uslng Unlvarlate Models

DAY Model 4 Model 10 Model 7

MW °/6 MW % MW °/6

1 731.53 8.97 741.18 9.08 916.94 11.24
2 772.11 9.40 736.36 8.96 784.23 9.55
3 654.11 8.00 602.94 7.37 768.01 9.39
4 653.51 7.95 728.00 8.86 603.71 7.34
5 644.50 7.86 676.01 8.24 528.77 6.45
6 66.27 .87 128.59 1.69 67.58 .89
7 -111.07 -1.49 22.80 .31 -79.99 --1.07
8 1087.95 12.46 998.23 11.43 876.46 10.04
9 1116.75 12.73 999.06 11.39 959.47 10.94

10 309.96 3.89 132.45 1.66 266.13 3.34
11 1261.20 14.14 1281.83 14.37 974.14 10.92
12 -737.59 -10.66 -726.01 -10.50 -453.13 -6.55
13 -2497.44 -49.68 -2483.06 -49.39 -1930.67 -38.41
14 -2847.94 -61.42 -2727.50 -58.82 -2332.91 -50.31
15 -1979.20 -34.17 -2013.88 -34.77 -1742.61 -30.09
16 -1479.29 -23.48 -1611.87 -25.58 -1456.11 -23.11
17 -308.44 -4.23 -455.51 -6.25 -532.89 -7.31
18 -95.69 -1.24 -66.56 -.86 7.96 .10
19 1129.78 13.29 1118.90 13.17 1043.09 12.27
20 1782.95 20.42 1863.65 21.34 1557.70 17.84

‘

21 659.49 8.77 892.27 11.86 914.03 12.15
22 2285.19 24.30 2379.06 25.30 1853.57 19.71
23 708.25 8.92 719.51 9.06 1079.55 13.60
24 -85.44 -1.16 -116.54 -1.58 142.44 1.93
25 -473.97 -6.70 -476.22 -6.73 -520.63 -7.36
26 -699.27 -9.96 -732.45 -10.43 -818.94 -11.67
27 -219.20 -2.90 -198.93 -2.63 -618.21 -8.19
28 -498.70 -7.12 -422.92 -6.04 -483.21 -6.90
29 -39.31 -.50 29.03 .37 57.53 .73
30 499.55 6.17 293.95 3.63 173.54 2.14
31 166.92 2.19 28.79 .38 131.85 1.73

Ave-. 858.15 12.42 851.74 796.00 11.40
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Table 28. Forecast Error for February Uslng Transfer Functlon Models

DAY Moden 11 Moden 6
MW °/o MW % MW °/o

1 373.76 5.70 22.87 .35 -178.35 -2.72
2 45.74 .76 121.28 2.02 180.17 2.99
3 217.09 3.52 609.62 9.88 366.85 5.94
4 126.21 1.85 255.05 3.73 362.64 5.31
5 -5.16 -.08 23.75 .37 160.15 2.46
6 129.57 2.00 212.15 3.28 169.20 2.62
7 312.82 4.53 53.74 .78 162.32 2.35
8 435.88 6.13 308.58 4.34 304.53 4.28
9 639.89 8.68 70.52 .96 -94.92 -1.29

10 402.11 5.52 -259.64 -3.57 -240.51 -3.30
11 398.19 5.32 -460.18 -6.15 -98.08 -1.31
12 70.01 1.05 -454.38 -6.82 -81.33 -1.22
13 24.83 .38 -208.76 -3.19 -98.27 -1.50
14 117.61 1.68 -119.59 -1.71 128.94 1.84
15 186.52 2.77 -109.15 -1.62 -186.66 -2.77
16 -159.78 -2.40 7.33 .11 -173.72 -2.61
17 -316.66 -4.96 -170.31 -2.67 -78.98 -1.24
18 -61.68 -.94 -247.89 -3.79 -329.45 -5.04
19 -300.94 -5.23 -242.60 -4.22 -178.24 -3.10
20 -520.70 -9.53 -315.44 -5.77 -308.77 -5.65 .
21 147.75 2.37 -279.37 -4.47 -459.63 -7.36
22 231.28 3.74 297.28 4.81 -3.55 -.06
23 -360.49 -6.05 298.19 5.00 276.42 4.64
24 10.62 .17 180.42 2.86 145.74 2.31
25 -99.81 -1.52 -34.83 -.53 110.62 1.69
26 111.38 1.76 97.77 1.55 182.52 2.89
27 19.78 .34 -99.26 -1.72 -20.89 -.36 4
28 419.27 6.20 493.72 7.30 292.04 4.32

Aver. 223.05 191.91 2.97
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Table 29. Forecast Error for August Uslng Transfer Functlon Models

DAY Moden 11 Moden 6
MW °/o MW °/o MW °/o

1 -317.11 -3.89 166.57 2.04 355.95 4.36
2 676.29 8.23 544.26 6.63 593.35 7.22
3 553.47 6.77 428.32 5.24 597.20 7.30
4 829.41 10.09 790.39 9.61 667.13 8.11
5 386.69 4.71 635.02 7.74 486.98 5.94
6 356.43 4.68 218.81 2.87 158.53 2.08
7 273.00 3.67 265.84 3.57 166.42 2.24
8 875.04 10.02 487.26 5.58 357.46 4.09
9 -170.91 -1.95 179.93 2.05 136.17 1.55

10 337.92 4.25 9.92 .12 145.70 1.83
11 -341.68 -3.83 266.60 2.99 -82.00 -.92
12 -160.68 -2.32 -429.43 -6.21 -167.14 -2.42
13 -267.98 -5.33 -731.39 -14.55 -307.84 -6.12
14 -950.42 -20.50 -913.50 -19.70 -616.11 -13.29
15 -1379.18 -23.81 -927.45 -16.01 -693.93 -11.98
16 -814.74 -12.93 -671.39 -10.66 -534.15 -8.48
17 -846.26 -11.61 -397.85 -5.46 -474.66 -6.51
18 -291.11 -3.77 -397.69 -5.15 -319.99 -4.15
19 561.11 6.60 362.75 4.27 279.18 3.29
20 -151.64 -1.74 595.45 6.82 233.01 2.67
21 987.01 13.12 566.94 7.54 589.77 7.84
22 1055.84 11.23 1400.84 14.90 802.17 8.53
23 1509.48 19.01 579.72 7.30 946.73 11.92
24 888.58 12.06 246.03 3.34 492.46 6.69
25 385.80 5.46 319.60 4.52 279.87 3.96
26 -779.55 -11.10 -139.53 -1.99 -219.41 -3.13
27 -224.18 -2.97 133.97 1.77 -267.30 -3.54
28 -449.40 -6.42 -112.13 -1.60 -169.90 -2.43
29 121.41 1.54 -96.14 -1.22 -67.18 -.85
30 -95.05 -1.17 -65.38 -.81 -191.33 -2.36
31 -394.69 -5.17 20.73 .27 123.89 1.62

Aver 7.74 422.61 E
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Table 30. Forecast Error for February Uslng Regresslon Models

DAY Model 16 Model 17 Model 18

MW °/6 MW °/6 MW %

1 114.65 1.75 151.00 2.30 -46.27 -.71
2 70.35 1.17 919.45 15.28 970.37 16.12
3 -83.40 -1.35 804.71 13.04 570.46 9.24
4 -64.05 -.94 -82.38 -1.21 30.73 .45
5 -303.02 -4.66 -351.87 -5.41 -207.57 -3.19
6 -752.07 -11.63 -51.53 -.80 -96.29 -1.49
7 228.44 3.31 304.28 4.41 408.89 5.92
8 290.82 4.09 387.25 5.45 383.24 5.39
9 296.75 4.02 48.15 .65 -117.80 -1.60

10 6.83 .09 105.08 1.44 123.29 1.69
11 -819.38 -10.95 -185.06 -2.47 164.49 2.20
12 -758.29 -11.38 -659.39 -9.90 -275.59 -4.14
13 -1042.93 -15.95 -469.24 -7.18 -354.48 -5.42
14 194.71 2.78 91.97 1.31 333.13 4.75
15 7.36 .11 188.19 2.79 114.04 1.69
16 47.04 .71 139.62 2.10 -37.82 -.57
17 -13.77 -.22 -51.97 -.81 37.71 .59
18 167.29 2.56 -49.63 -.76 -128.82 -1.97
19 -1108.07 -19.27 -466.99 -8.12 -400.22 -6.96
20 -1274.68 -23.33 -582.27 -10.66 -575.29 -10.53
21 -400.50 -6.42 -91.89 -1.47 -266.98 -4.28
22 -57.61 -.93 725.94 11.75 447.04 7.24
23 -272.83 -4.58 495.52 8.32 474.51 7.96
24 -58.57 -.93 117.98 1.87 82.94 1.31
25 -192.74 -2.94 5.90 .09 150.45 2.29
26 275.04 4.35 -106.37 -1.68 -18.84 -.30
27 -454.92 -7.88 -256.55 -4.44 -176.08 -3.05
28 119.01 1.76 737.42 10.91 543.58 8.04

Aver. 338.40 308.13 4.88
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Table 31. Forecast Error for August Uslng Regresslon Models

DAY Model 16 Model 17 Model 18

MW % MW % MW °/6

1 -381.51 -4.68 -182.27 -2.23 15.37 .19
2 -119.92 -1.46 -39.42 -.48 13.42 .16
3 -286.69 -3.51 -187.78 -2.30 -5.47 -.07
4 93.12 1.13 168.87 2.05 35.31 .43
5 -275.24 -3.36 147.67 1.80 -9.90 -.12
6 384.34 5.04 -169.14 -2.22 -232.57 -3.05
7 33.49 .45 -108.67 -1.46 -213.28 -2.87
8 138.22 1.58 405.04 4.64 273.94 3.14
9 -95.07 -1.08 225.34 2.57 181.81 2.07

10 132.40 1.66 -11.05 -.14 125.08 1.57
11 -75.55 -.85 389.12 4.36 45.45 .51
12 56.45 .82 -492.63 -7.12 -228.08 -3.30
13 -1941.45 -38.62 -757.72 -15.07 -332.23 -6.61
14 -1552.78 -33.49 -574.15 -12.38 -294.94 -6.36
15 246.67 4.26 -351.98 -6.08 -138.46 -2.39
16 -228.61 -3.63 -300.39 -4.77 -170.45 -2.71
17 -329.75 -4.52 -211.18 -2.90 -286.12 -3.92
18 -564.17 -7.31 -198.61 -2.57 -122.82 -1.59
19 32.94 .39 -31.27 -.37 -118.89 -1.40
20 328.12 3.76 17.68 .20 -370.50 -4.24
21 -593.26 -7.89 -286.71 -3.81 -261.07 -3.47
22 405.45 4.31 700.82 7.45 49.79 .53

“

23 309.35 3.90 -391.34 -4.93 24.08 .30
24 210.90 2.86 -275.69 -3.74 -11.20 -.15
25 242.75 3.43 292.13 4.13 252.24 3.57
26 -21.82 -.31 142.51 2.03 65.78 .94
27 127.57 1.69 326.42 4.32 -64.44 -.85
28 -580.08 -8.28 -638.88 -9.12 -700.92 -10.01
29 -141.14 -1.79 -162.76 -2.07 -133.56 -1.69
30 302.77 3.74 4.35 .05 -120.52 -1.49
31 -174.56 -2.29 -239.51 -3.14 -132.82 -1.74

Aver. 271.97E 162.27 2.30

PERFORMANCE EVALUATION OF THE LOAD FORECASTING SYSTEM 202



February. but the regression technique had a comparatively better performance under

unstable weather conditions in August.

When forecasts for the three models were averaged according to the weighting factors

presented in section 9.4.2 the model performance was more robust as shown in Tables 33 and

34.

9.5.2 Rule-based modeling

Finally the ruIe—base presented in section 9.4.4 was applied to generate forecasts which

did not depend on statistical techniques. It was pointed out by system operators in electric

utilities that effect of weather on the load might manifest differently based on some inertia

effects. ln order to show these effects the load forecasting algorithm used both the

temperature at the hour of the forecast, and the average temperatures over the 12 and 24

hours prior to the forecast hour.

Results from the rule-based load forecasting model for August are presented on Table

35. It appears that when the 24-hour average temperatures prior to the forecast hour was

used as one of the variables, the forecast error was the least. The 2.79% average error for

the month was somewhat higher than the 2.30% average error obtained using the linear

regression technique (see Table 31). However, the largest single error for the rule-based

technique was 6.44%, whereas that for the linear regression technique was 10.01%. The

rule-based technique was, therefore, more robust.

9.6 Conclusions

The performance of the intelligent load forecasting system presented in chapter 8 is

evaluated in this chapter. Along the application of the new approach of combining both the
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Table 32. Percentage Errors for Various Techniques and Models

Feb Aug Feb Aug Feb Aug

Univariate 8.33 12.42 6.86 12.32 7.97 11.40

Trans. Fn. 3.40 7.74 3.34 5.89 2.97 5.08

Regression 5.36 5.23 4.88 3.89 4.25 2.30
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Table 33. Forecast Error for February Uslng Welghted UV, TF, and LR Models

¤^YMW
% MW % MW °/5

1 282.07 4.30 58.45 .89 -141.68 -2.16
2 -4.37 -.07 318.36 5.29 375.28 6.23
3 70.46 1.14 563.60 9.13 318.82 5.16
4 64.23 .94 109.76 1.60 219.72 3.22
5 -77.18 -1.19 -101.12 -1.55 37.90 .58
6 -108.60 -1.68 142.68 2.20 99.26 1.54
7 299.26 4.33 183.43 2.66 289.95 — 4.20
8 392.32 5.52 365.21 5.14 361.19 5.08
9 592.62 8.04 151.41 2.05 -12.20 -.17

10 332.42 4.56 -10.24 -.14 8.26 .11
11 1.46 .02 -250.34 -3.34 102.19 1.37
12 -220.33 -3.31 -473.73 -7.11 -99.67 -1.50
13 -365.98 -5.60 -264.71 -4.05 -153.30 -2.34
14 140.71 2.01 -10.21 -.15 234.51 3.34
15 69.70 1.04 -2.24 -.03 -78.54 -1.17
16 -151.57 -2.28 32.65 .49 -147.71 -2.22
17 -273.92 -4.29 -159.93 -2.51 -68.74 -1.08
18 -61.29 -.93 -220.11 -3.37 -301.34 -4.61
19 -646.31 -11.24 -401.49 -6.98 -335.42 -5.83
20 -842.98 -15.43 -484.54 -8.87 -477.67 -8.74 °

21 -128.69 -2.06 -252.48 -4.04 -432.00 -6.92
22 60.00 .97 366.57 5.93 69.29 1.12
23 -348.59 -5.85 273.90 4.60 252.04 4.23
24 -10.09 -.16 115.08 1.82 80.03 1.27
25 -105.15 -1.60 -28.12 -.43 117.18 1.79
26 211.20 3.34 19.45 .31 105.27 1.67
27 -124.23 -2.15 -172.09 -2.98 -92.75 -1.61
28 329.35 4.87 563.65 8.34 364.22 5.39

Aver. 225.54E 217.70 3.43 192.00E
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Table 34. Forecast Error for August Uslng Welghted UV, TF, and LR Models

DAY @EIlK—MEIll—
MW °/6 MW °/6 MW °/6

1 -192.01 -2.36 78.34 .96 269.81 3.31
2 292.56 3.56 281.24 3.42 332.02 4.04
3 148.49 1.81 146.46 1.79 321.49 3.93
4 434.88 5.29 470.27 5.72 341.71 4.15
5 94.40 1.15 397.49 4.84 244.81 2.99
6 326.86 4.29 11.30 .15 -50.66 -.66
7 95.63 1.29 42.13 .57 -60.39 -.81
8 538.57 6.17 522.80 5.99 393.55 4.51
9 60.16 .69 325.50 3.71 282.48 3.22

10 230.97 2.90 17.81 .22 153.45 1.93
11 31.82 .36 480.14 5.38 140.15 1.57
12 -138.65 -2.00 -505.52 -7.31 -240.51 -3.48
13 -1439.13 -28.63 -1007.31 -20.04 -563.46 -11.21
14 -1536.23 -33.13 -1015.93 -21.91 -713.04 -15.38
15 -656.26 -11.33 -802.68 -13.86 -573.50 -9.90
16 -621.36 -9.86 -626.96 -9.95 -490.59 -7.79
17 -507.33 -6.96 -313.16 -4.30 -389.12 -5.34
18 -398.33 -5.16 -248.48 -3.22 -172.21 -2.23
19 382.33 4.50 279.16 3.29 194.73 2.29
20 378.43 4.33 496.80 5.69 129.96 1.49 .
21 147.75 1.96 188.91 2.51 212.99 2.83
22 915.05 9.73 1197.56 12.73 583.69 6.21
23 789.23 9.94 115.16 1.45 505.33 6.36
24 403.64 5.48 -69.22 -.94 188.13 2.56
25 185.31 2.62 186.49 2.64 145.98 2.07
26 -388.64 -5.53 -87.45 -1.25 -166.74 -2.38
27 -47.56 -.63 180.26 2.38 -218.51 -2.89
28 -522.14 -7.45 -422.12 -6.03 -482.41 -6.89

E

29 -33.97 -.43 -110.67 -1.41 -81.66 -1.03
30 193.05 2.39 23.38 .29 -101.19 -1.25
31 -200.38 -2.63 -108.18 -1.42 -3.27 -.04

Ave:. 397.78Q 347.06 282.18ß
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Table 35. Forecast Error for August Uslng the Expert System Model

Day 12 HOUR LAG 24 HOUR LAG

MW % MW %

1 -142.82 -1.75 -61.64 -.76
2 181.21 2.21 164.96 2.01
3 -149.58 -1.83 -180.60 -2.21
4 177.38 2.16 184.21 2.24
5 -211.42 -2.58 -120.43 -1.47
6 177.75 2.33 202.19 2.65
7 183.11 2.46 132.62 1.78
8 277.16 3.17 413.07 4.73
9 269.42 3.07 261.98 2.99

10 286.77 3.60 139.35 1.75
11 -287.99 -3.23 -147.37 -1.65
12 -182.49 -2.64 -289.70 -4.19
13 155.95 3.10 56.08 1.12
14 -34.02 -.73 -35.42 -.76
15 -469.91 -8.11 -245.18 -4.23
16 -365.73 -5.80 -310.83 -4.93
17 -392.46 -5.38 -233.49 -3.20
18 -484.45 -6.28 -496.65 -6.44
19 362.93 4.27 387.72 4.56
20 11.35 .13 208.09 2.38
21 716.92 9.53 462.11 6.14
22 13.11 .14 254.43 2.71
23 220.46 2.78 31.61 .40
24 219.05 2.97 178.02 2.42
25 303.99 4.30 262.10 3.71
26 -12.82 -.18 73.03 1.04
27 29.23 .39 197.96 2.62
28 -104.85 -1.50 -45.09 -.64
29 -161.08 -2.04 -256.64 -3.26
30 428.99 5.30 442.05 5.46
31 -161.88 -2.12 -166.27 -2.18

Av EH 2-AA
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statistical and rule-based approaches, new applications of statistical approaches are also

implemented at the same time. This includes the use of energy method for predicting the daily

peak load and an intelligent application to the daily hourly load prediction of regression

techniques with the use of day intervals and indicator variables.

The application of knowledge base to statistical and rule~based load forecasting

techniques is demonstrated. Rules were developed based on long term statistical

relationships, and properties identitied by system operators in the electric utility industry.

These ruI_es and coefticients could be adapted to changing load, weather and load shape

conditions by studylng the historical data for the previous four weeks only. It is thus shown that

fairly simple but accurate statistical models could be developed using only four weeks of

historical data, provided some of the relationships governing the electric load and the

influential variables are predetermined by experts in the industry. Finally, both the statistical

and rule-based techniques which were developed by using rules given by the domain experts

provided accurate and robust forecasts. In conclusion it can be said that the knowledge base

available from the experts was not only useful in the expert system technique, it could also

help in the development of simple but powerful statistical algorithms for load forecasting.
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Chapter X

CONCLUSIONS AND RECOMMENDATIONS

An exhaustive study of the application of statistical (conventional) and knowledge—based

methods to the load·forecast problem has been presented in this study. This has been a

necessary step towards understanding the state of the art of load forecasting, and at the same

time discovering the direction in which this research could contribute to the solution of this

problem. Through this comprehensive study, it has been found that forecast lead times greater

than 24·hour are rarely addressed ever though, such higher lead time forecasts are important

to many electric power system operations that have been shown in Figure 1 and discussed in

Chapter 3. Also, it has been found that the computation burden is high as a result of using

techniques that require heavy calculations and large data bases. And also, most of these

algorithms can deal with forecasts under normal operating conditions. lfthese conditions are

altered (such as large variation in the weather conditions, change of power system operations,

and actions taken by energy management systems), then forecasts are not adaptable to such

new conditions.
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The primary focus of this dissertation was the development of a load forecast model for

up to one week lead time. A new approach of investigating both the statistical and knowledge

based techniques (for this problem) was the core ofthis dissertation. This approach is pursued

in the following:

•
Time series methodologies were investigated to predict the hourly load up to 168-hour

lead time. Models using the univariate and the transfer function modeling approaches

l were built to improve the higher lead time accuracy. These include:(1) building models

that do not include nonseasonal and daily seasonal moving average parts of the model

by introducing equivalent autoregressive parts. (2) Introducing cut off values for the input

variables to improve the effect of the transfer function part in the models built. However,

the higher lead time forecasts suffered i_naccuracy because of the serial built-in error in

predictions. From the accuracy results of the application of time series approach to the

one-week lead-time prediction it has been concluded that one should seek ways of

minimizing the cascading of predictions to improve the weekly prediction accuracy.

•
A rule-base approach was then introduced which was purely based on expertise. For this

technique data were selected for producing the forecasts that were based on weekly

seasonalities. That helped in the construction of the one·week lead time load forecasts

from current and previous days grouped on the basis of day types. The forecasts

generated using this approach is quite satisfactory and more accurate when compared

to those generated using the time series approach. Not only the predictions were more

accurate using this approach, but the model structure is also simple and more adaptive

to variations in weather conditions.

• Several short term load forecasting models using different statistical techniques were

developed. These statistical models, and another model using a rule based approach

based on the work of Rahman and Baba [85,106] were applied to daily load predictions.

Analysis and evaluation ofthese models and their predictions were performed using the
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same data base to understand the characteristics ofthese models, and hence to ünd ways

of making these models more adaptive to weekly load predictions. Evaluation results

conlirmed the tinding that predictions using the rule-based approach are compatible in

the shorter lead time predictions (i.e., daily predictions) to the best statistical modeling

approaches (i.e., time series modeling). Results also indicate that the structure of

regression model is more appropriate to weekly load predictions. This appropriateness

comes from the fact that predictions are minimally affected by previous shorter time

predictions. However, regression models are more sensitive to weather variables and

consequently requires accurate predictions of the future explanatory variables. The

introduction of day time interval in the regression models and day type (i.e., weekday or

weekend) helped to account for different weather variables in these varying time frames

and consequently improved the accuracy of this modeling technique. Also, the

introduction of the indicator variables was proved to improve the performance of the

regression models substantially which made regression models more attractive to weekly

load predictions.

•
An intelligent load forecasting system was introduced. This system is an application of

knowledge-based techniques. This knowledge—based technique could be applied to any

or both of the statistical and knowledge—based approaches. Rules for selecting the

appropriate models for different seasons and lead times were established.

•
A new modeling approach for predicting the daily peak by using the daily energy and the

the daily load factor was introduced. The models developed for the daily energy includes

time series approaches, univariate (UV) and transfer function (TF), and multiple linear

regression. Models developed for the load factor includes UV and TF time series models,

all day and day type load factor averaging, and load factors as obtained from experts.

Accurate results for the weekly daily peak predictions was shown to be in this modeling

approach.
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•
A method of weighting different model predictions to produce a weighted average

prediction was presented. The rules for selecting the models to be weighed and their

weights were obtained from load forecast domain experts. This method gave more robust

prediction results regarding the variability in weighted averaged predictions than the

individual predictions of each model separately.

10.1 Recommendations.

The load forecasting models and techniques discussed in this dissertation were

implemented off-line. It is desirable that these models and techniques be implemented on-line

to make them more valuable. This is especially true for the (knowledge-based) load

forecasting system introduced here. Such an implementation requires the availability of more

resources, data, experience and time. Therefore, more research are recommended in the

following:

• Implementing the (knowledge-based) load forecasting system in an on-line application

mode using a high level language as C or an artificial intelligence language such as

PROLOG.

• Developing the interface necessary between the knowledge-based expert system

language, PROLOG, and the conventional language, FORTRAN or PASCAL, and possibly

a communication language such C language that will enable the collection and the

transfer of data from other sources.

• Developing an operational environment that will enable altering the data base used for

identifying and estimating the set of functions that will be used in issuing the forecasts
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and also the capability of issuing forecasts under altered future conditions. This also

includes the effect of load management on the load forecast.

•
Developing an accurate medium-term load forecast for the daily peak load (one to several

weeks) using any or both ofthe previously mentioned approaches or any other technique

proved suitable for such lead times.
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Appendix A

TIME SERIES WEEKLY LOAD PREDICTIONS

The results of the prediction using the time series approach discussed in chapter 5 has

been displayed for the summer season. The results of prediction for the other three seasons

are shown in Figure 29 through Figure 34.
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Figure 29. Actual and Forecasted (seasonal ARIMA) Hourly Load Data 1or Fall Model (17-23
October 1983)
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Appendix B

This Appendix contains the one week lead time absolute percent load forecast error

distributions using the knowledge~base approach presented in chapter 6. These distributions

are shown in Table 36 through Table 43. for the four best lag time temperature effect (.i.e, 12,

16, 20, and 24 hours). Tables 36 to 39 show these error distributions as calculated with respect
·

to the hourly load while Tables 40 to 43 show these results as calculated with respect to the

daily peak.
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Table 36. One·Week Lead Tlme Absolute Percent Forecast Error (wrt Hourly Load) Dlstrlbutlon
with 12-hour Lag Time Temperature Effect

0<= 1<= 2<= 3<= a<= 5<= 6<= 7<= 8<= 10<= 12<= 15<= >=20

DAY 7 7 7 7 7 7 7 7 7 7 7 7 7
<1 <2 <3 <4 <5 <6 <7 <8 <10 <12 <l5 <20

1 6 S 6 S 1 1 0 0 0 0 0 0 0
2 4 4 3 7 5 1 0 0 0 0 0 0 0
3 13 7 2 2 0 0 0 0 0 0 0 0 0
4 2 8 10 3 1 0 0 0 0 0 0 0 0
5 10 6 5 1 1 1 0 0 0 0 0 0 0
6 6 6 8 3 1 0 0 0 0 0 0 0 0
7 4 7 S 1 2 3 1 1 0 0 0 0 0
8 2 5 7 6 2 2 0 0 0 O 0 0 0
9 7 5 4 6 2 0 0 0 0 0 0 0 0

10 3 5 3 5 5 0 3 0 0 0 0 0 0
11 10 8 4 1 0 1 0 0 0 0 0 0 0
12 3 5 6 6 4 0 0 0 0 0 0 0 0
13 2 4 4 7 2 0 4 0 1 0 0 0 0
14 6 0 5 3 3 1 1 1 2 1 1 0 0
15 3 2 1 1 2 1 1 4 4 3 0 2 0
16 5 2 1 2 6 4 0 0 4 0 0 0 0
17 3 4 2 4 6 4 1 0 0 0 0 0 0
18 0 1 1 10 4 4 2 1 1 0 0 0 0
19 2 2 3 4 9 3 0 1 0 0 0 0 0

. 20 6 S 5 S 3 0 0 0 0 0 0 0 0
21 0 1 1 0 4 3 5 6 4 0 0 0 0
22 5 6 8 2 3 0 0 0 0 0 0 0 0
23 5 5 6 6 2 0 0 0 0 0 0 O 0
24 4 16 3 1 0 0 0 0 0 0 0 0 0
25 6 6 5 2 2 3 0 0 0 0 0 0 0
26 11 4 3 4 0 0 0 1 1 0 0 0 0
27 9 4 6 4 1 0 0 0 0 0 _0 0 0
28 5 2 1 9 3 2 2 0 0 0 0 0 0
29 1 4 3 8 6 0 1 1 0 0 0 0 0
30 S 5 2 1 2 5 3 1 0 0 0 0 0
31 11 8 2 2 0 0 1 0 0 0 0 0 0·

TOTAL 159 152 125 121 82 39 25 17 17 4 1 2 0

X 21.4 20.4 16.8 16.3 11.0 5.2 3.4 2.3 2.3 0.5 0.1 0.3 0

CUMM. 21.4 41.8 58.6 74.9 85.9 91. 1 94.5 96.8 99. 1 99.6 99.7 100. 100.
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Table 37. One-Week Lead Tlme Absolute Percent Forecast Error (wrt Hourly Load) Dlstrlbutlon
wlth 16-hour Leg Time Temperature Effect

()<= 1<= 2<= 3<= 4<= 5<= 6<= 7<= 8<= 10<= 12<= ].5<= >=2O

DAY 7 7 7 7 7 7 7 7 7 7 7 7 7
<1 <2 <3 <4 <5 <6 <7 <8 <lO <12 <15 <20

1 9 3 5 6 0 1 0 0 0 0 0 0 0

2 3 5 4 9 2 1 0 0 0 0 0 0 0

3 9 7 5 3 0 0 0 0 0 0 0 0 0

4 4 8 7 4 1 0 0 0 0 0 0 0 0

5 6 10 2 4 2 0 0 0 0 0 0 0 0

6 3 9 7 3 2 0 0 0 0 0 0 0 0

7 4 9 4 1 1 3 2 0 0 0 0 0 0

8 1 4 8 5 2 4 0 0 0 0 0 0 0

9 6 6 4 6 1 1 0 0 0 0 0 0 0

10 6 1 7 6 1 2 1 0 0 0 0 0 0

11 11 8 2 2 0 1 0 0 0 0 0 0 0

12 7 4 4 6 2 1 0 0 0 0 0 0 0

13 2 8 5 6 1 0 2 0 0 0 0 0 0

14 5 1 6 2 1 3 1 1 1 2 1 · 0 0

15 3 5 0 1 1 5 1 2 1 3 0 2 0

16 3 4 2 6 3 2 2 2 0 0 0 0 0

17 3 4 4 S 7 1 0 0 0 0 0 0 0

18 0 0 3 7 8 2 1 2 1 0 0 0 0

19 1 5 5 7 5 0 0 1 0 0 0 0 0

20 2 5 9 5 2 1 0 0 0 0 0 0 0

21 1 0 1 2 6 3 5 4 2 0 0 0 0

22 3 6 8 1 3 3 0 0 O 0 0 0 0

23 11 4 5 2 2 0 0 0 0 0 0 0 0

24 6 8 7 3 0 0 0 0 O 0 0 0 0

25 4 7 6 1 4 2 0 0 0 0 0 0 0

26 10 7 1 3 1 0 0 1 1 0 0 0 0

27 8 6 8 2 0 0 0 0 0 0 0 0 0

28 4 3 2 6 5 2 2 0 0 0 0 0 0

29 3 3 4 3 9 1 0 1 0 0 0 0 0

30 6 2 4 1 2 5 2 2 0 0 0 0 0

31 11 5 5 2 0 0 1 0 0 0 0 0 0

TOTAL 155 157 144 120 74 44 20 16 6 5 1 2 0

X 20.8 22.6 20.3 14.0 10.8 5.1 2.8 1.5 1.2 0.5 0.1 0.3 0

CUMM. 20.8 43.4 63.7 77.7 88.5 93.6 96.4 97.9 99.1 99.6 99.7 100. 100.
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Table 38. One-Week Lead Tlme Absolute Percent Forecast Error (wrt Hourly Load) Dlstrlbutlon

wlth 20-hour Lag Tlme Temperature Effect

0<= 1<= 2<= 3<= 4<= S<= 6<= 7<= 8<= 10<= 12<= 15<= >=20

DAY 7 7 7 7 7 7 7 7 7 7 7 7 7
<1 <2 <3 <4 <5 <6 <7 <8 <1O <12 <l5 <20

1 10 5 3 2 4 0 0 0 0 0 0 0 0

2 S 5 6 5 2 1 0 0 0 0 0 O 0

3 10 6 6 2 0 0 0 0 0 0 0 0 0

4 5 9 4 5 1 0 0 O 0 0 0 0 0

5 2 11 5 4 2 0 0 0 0 0 0 0 0
6 5 6 7 4 1 1 0 0 0 0 0 0 0

7 5 10 2 1 3 1 2 0 0 0 0 0 0

8 1 4 3 9 3 2 2 0 0 0 0 0 0

9 6 6 S 4 2 1 0 0 0 0 0 0 0

10 5 5 5 6 2 1 0 0 0 0 0 0 0

11 9 9 5 0 0 1 0 0 0 0 0 0 0

12 7 5 4 2 4 2 0 0 0 0 0 0 0

13 8 5 6 3 1 0 1 0 0 0 0 0 0

14 6 2 5 2 1 0 4 0 2 1 1 0 0

15 2 6 1 2 5 0 2 0 1 3 0 2 0

16 2 4 6 2 2 6 0 1 1 0 0 0 0

17 2 9 4 5 4 O 0 0 0 0 0 0 0

18 0 0 6 5 7 2 1 2 1 0 0 0 0

19 1 6 9 2 5 0 1 0 0 0 0 0 0

20 1 3 8 7 5 0 0 0 0 0 0 O 0

21 1 0 2 5 6 3 2 3 2 0 0 0 0

22 2 3 11 2 2 2 2 0 0 0 0 0 0

23 11 6 3 1 1 2 0 0 0 0 0 0 0

24 5 9 3 S 2 0 0 0 0 0 0 0 0

25 4 7 5 2 4 2 0 0 0 0 0 O 0

26 8 6 6 1 1 0 0 1 1 0 0 0 0

27 7 8 7 2 O 0 0 0 0 0 0 0 0

28 4 3 3 6 3 2 2 1 0 0 0 0 0

29 4 2 3 6 4 4 O 0 1 0 0 0 0
30 6 2 4 1 2 4 2 3 O 0 0 0 0

31 11 6 4 1 1 1 0 0 0 0 0 0 0

TOTAL 155 168 151 104 80 38 21 11 9 4 1 2 0

X 21.9 21.4 20.4 14.4 9.7 4.4 4.0 1.4 1.6 0.4 0.3 0.1 0

CUMM. 21.9 43.3 63.7 78.2 87.9 92.3 96.3 97.6 99.2 99.6 99.9 100. 100.
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Table 39. One-Week Lead Tlme Absolute Percent Forecast Error (wrt Hourly Load) Dlstrlbutlon

wlth 24-hour Lag Tlme Temperature Effect

Y

()<=
]_<:

2<= 3<= 4<= 5<= 5<:
‘]<=

3<= ]_()<=
]_2<=

1$<= >=20

DAY 7 7 7 7 7 7 7 7 7 7 7 7 7

<1 <2 <3 <4 <S <6 <7 <8 <10 <12 <1S <20

1 11 4 1 2 4 2 0 0 0 0 0 0 0

2 7 7 1 7 1 1 0 0 0 0 0 0 0

3 11 S 7 1 0 0 0 0 0 0 0 0 0

4 7 9 4 3 1 0 0 0 0 0 0 0 0

5 1 9 9 3 2 0 0 0 0 0 0 0 0

6 4 4 8 6 1 1 0 0 0 O 0 0 0

7 5 11 1 2 2 2 1 0 0 0 0 0 0

Ä
1 4 3 6 6 0 4 0 0 0 0 0 0
6 3 6 6 2 0 1 0 0 0 0 0 0

10 5 8 7 1 2 1 0 0 0 0 0 0 0

11 8 9 5 1 1 0 0 0 0 0 0 0 0

12 5 5 4 3 4 3 0 0 0 0 0 0 0

13 8 6 4 S 0 0 1 0 0 0 0 0 0

14 6 3 7 0 0 1 3 0 2 1 1 0 0

15 1 6 1 3 5 0 2 1 1 2 1 1 0

16 2 3 5 3 3 5 1 1 1 O 0 0 0

17 5 7 3 5 4 0 0 0 0 0 0 0 0

18 0 3 6 3 7 1 1 2 1 0 0 0 0

19 1 5 7 7 3 0 1 0 0 0 0 0 0

20 1 3 8 7 3 2 0 0 0 0 0 0 0

21 1 0 2 9 4 3 2 0 3 0 0 0 0

22 3 4 10 0 2 2 1 2 0 0 0 0 0

23 10 6 1 3 1 1 2 0 0 0 0 0 0

24 5 5 8 2 3 1 0 0 0 0 0 0 0

25 7 2 7 4 1 2 1 0 0 0 0 0 0

26 7 7 7 0 1 0 1 0 1 0 0 0 0

27 11 6 4 2 1 0 0 0 0 0 0 0 0

28 4 3 S 6 2 1 2 1 0 0 0 0 0

29 4 3 3 5 3 3 2 0 1 0 0 0 0

30 5 3 4 1 2 0 4 3 2 0 0 0 0

31 11 6 4 1 1 1 0 0 0 0 0 0 0

TOTAL 163 159 152 107 72 33 30 10 12 3 2 1
‘ 0

X 21.9 21.4 20.4 14.4 9.7 4.4 4.0 1.3 1.6 0.4 0.3 0.1 0

CUMM. 21.9 43.3 63.7 78.2 87.9 92.3 96.3 97.6 99.2 99.6 99.9 100. 100.
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Table 40. One-Week Lead Tlme Absolute Percent Forecast Error (wrt Oalfy Peak) Dlstrlbutlon wlth
12-hour Lag Tlme Temperatura Effect

O<= 1<= 2<= 3<= l;<= S<= 6<= 7<: 8<: ]_Q(= ]_2<: 15<: >:2O

DAY 7 7 7 7 7 7 7 7 7 7 7 7 7
<1 <2 <3 <4 <5 <6 <7 <8 <10 <12 <15 <20

1 6 7 8 2 0 1 0 0 0 0 0 0 0
2 S 7 6 4 1 1 0 0 0 0 0 O 0
3 13 9 2 0 0 0 0 0 0 0 0 0 0
4 4 11 7 2 0 0 0 O 0 0 0 O 0
5 13 8 0 1 2 0 0 0 0 0 0 0 O
6 10 7 4 2 1 0 0 0 0 0 O 0 0
7 7 6 3 2 1 3 2 0 0 0 0 0 0
8 3 8 5 4 2 2 0 O 0 0 0 O 0
9 10 3 7 3 1 0 0 0 0 0 0 0 0

10 6 3 3 6 3 1 2 0 0 0 0 0 0
11 13 7 2 1 O 1 0 0 0 0 0 0 0
12 5 8 5 6 0 0 0 0 0 0 0 0 O
13 3 5 3 8 0 0 4 O 1 0 0 0 0
14 6 2 5 2 4 1 2 1 1 0 0 0 0
15 3 3 1 2 2 2 1 4 3 1 2 0 0
16 7 1 3 2 3 S 1 2 0 0 0 O 0
17 5 3 4 S 4 2 1 0 0 O 0 0 0
18 0 3 8 4 5 1 2 0 1 0 0 0 0
19 3 3 6 9 1 2 0 0 0 0 O 0 0
20 8 6 8 2 O 0 O 0 0 0 0 O 0
21 1 1 1 3 4 6 1 3 4 0 0 0 0
22 8 9 3 3 1 0 O 0 0 0 0 0 0
23 S 8 6 4 1 0 O 0 O 0 0 0 0
24 11 10 2 1 0 0 0 0 0 0 0 0 0
25 6 8 4 3 1 2 0 0 0 0 0 0 0
26 15 1 6 0 1 0 1 0 0 0 0 0 0
27 11 9 3 1 0 0 0 0 0 0 0 0 O
28 5 3 8 3 5 0 0 0 0 0 0 0 0
29 2 5 9 6 2 0 0 0 0 0 0 0 0
30 7 3 4 5 1 2 2 0 0 0 0 O 0
31 14 6 2 1 0 1 0 0 0 0 O 0 0

TOTAL 215 173 138 97 46 33 19 10 10 1 2 0 0

X 28.9 22.3 18.5 13.0 6.2 4.4 2.6 1.3 1.3 0.1 0.3 0 O

CUMM. 28.9 52.2 70. 7 83. 7 89.9 94.4 97.0 98.3 99.6 99. 7 100.0 100. 100.
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Table 41. One·Week Lead Tlme Absolute Percent Forecast Error (wrt Dally Peak) Dlstrlbutlon wlth
16-hour Lag Tlme Temperature Ellect

Q(= ]_<=
2<= 3<= ß<: 5<: 6<: 7<= 8<= 1Q<= 12<= 1S<= >=2O

DAY 7 7 7 7 7 7 7 7 7 7 7 7 7
<1 <2 <3 <4 <5 <6 <7 <8 <10 <l2 <15 <20

1 9 6 6 2 1 0 0 0 0 0 0 0 O
2 4 10 4 4 2 0 0 0 0 0 0 0 0
3 14 6 3 1 0 0 0 0 0 0 0 0 0
4 6 8 8 1 1 0 0 0 0 0 O 0 0
5 9 9 3 3 0 0 0 0 0 0 0 0 0
6 8 8 6 1 1 0 0 0 0 0 0 0 0
7 8 6 3 1 1 3 2 0 0 0 0 0 O
8 4 6 5 4 3 2 0 0 V 0 0 0 0 0
9 10 3 7 3 1 0 0 0 0 0 0 0 0

10 6 4 5 5 1 3 0 0 0 0 0 0 0
11 14 6 2 1 0 1 0 0 0 0 0 0 0
12 8 3 7 3 3 0 0 0 0 0 0 0 0
13 2 9 6 4 1 0 2 0 0 0 0 0 0
14 5 3 5 2 5 0 1 1 1 1 0 0 0
15 4 4 1 1 3 4 3 0 2 0 2 0 0
16 4 5 3 3 3 4 2 0 0 0 0 0 0

17 7 2 8 4 2 1 0 0 0 0 0 0 0

18 0 3 8 4 5 1 1 1 1 0 0 0 0
19 4 6 7 4 2 1 0 0 0 0 0 0 0
20 3 10 9 1 1 O 0 0 0 0 0 0 0
21 1 1 4 3 5 3 3 2 2 0 0 0 0
22 5 11 3 1 3 1 0 0 0 0 0 0 0

23 11 5 6 2 0 0 0 0 0 0 0 0 0

24 8 10 6 0 0 0 0 0 0 0 0 0 0
25 7 7 4 3 2 1 0 0 0 0 0 0 0

26 13 5 4 0 1 0 1 0 0 0 0 0 0

27 9 10 S 0 0 0 0 0 0 0 0 0 0

28 5 2 9 3 4 1 0 0 0 0 0 0 0
29 3 3 10 4 4 0 0 0 0 0 0 0 0
30 6 4 5 3 2 2 2 0 0 0 0 0 0

31 14 6 2 1 0 1 0 0 0 0 0 0 0

TOTAL 211 181 164 72 57 29 17 4 6 1 2 0 0

X 28.4 24.3 22.0 9.7 7.7 3.8 2.3 0.5 0.8 0.1 0.3 0 0

CUMM. 28.4 52.7 74.7 84.4 92.1 96.0 98.3 98.8 99.6 99.7 100. 100. 100.
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Table 42. One·Week Lead Tlme Absolute Percent Forecast Error (wrt Dally Peak) Dlstrlbutlon wlth

20-hour Lag Tlme Temperature Effect

o<= 1<= z<= 3<= 4<= 5<= 6<= 7<= 8<= 10<= 12<= 15<= >=20

DAY 7 7 7 7 7 7 7 7 7 7 7 7 7

<1 <2 <3 <4 <5 <6 <7 <8 <10 <12 <15 <20

1 12 4 6 1 1 0 0 0 0 0 0 0 0

2 7 8 2 5 2 0 0 0 0 0 0 0 0

3 12 8 3 1 0 0 0 0 0 0 · 0 0 0

4 9 6 6 2 1 0 0 0 0 0 0 0 0

5 6 10 5 3 0 0 0 0 0 0 0 0 0

6 7 8 4 4 0 1 0 0 0 0 0 0 0

7 9 6 2 2 2 1 2 0 0 0 0 0 0

8 4 4 6 3 3 2 2 0 0 0 0 0 0

9 9 4 7 3 1 0 0 0 0 0 0 0 0

10 7 6 3 5 2 1 0 0 0 0 0 0 0

11 11 9 3 0 0 1 0 0 0 0 0 0 0

12 7 6 5 3 3 0 0 0 0 0 0 0 0

13 9 8 3 2 1 0 1 0 0 0 0 0 0

14 6 2 6 2 2 2 1 0 2 1 0 0 0

15 4 5 1 3 5 0 2 0 2 1 1 0 0

16 4 4 6 0 2 8 0 0 0 0 0 0 0

17 7 5 6 3 3 0 0 0 0 0 0 0 0

18 0 3 8 3 6 1 1 1 1 0 0 0 0

19 3 7 7 4 3 0 0 0 0 0 0 0 0

20 2 7 9 6 0 0 0 0 0 0 0 0 0 ·

21 1 1 5 6 2 5 2 2 0 0 0 0 0

22 5 7 7 0 3 1 1 0 0 0 0 0 0

23 12 7 2 2 1 0 0 0 0 0 0 0 0

24 6 9 6 3 0 0 0 0 0 0 0 0 0

25 7 6 5 4 1 1 0 0 0 0 0 0 0

26 10 7 5 0 1 0 1 0 0 0 0 0 0

27 12 7 4 1 0 0 0 0 0 0 0 0 0

28 5 2 8 5 3 1 0 0 0 0 0 0 0

29 4 4 6 8 1 1 0 0 0 0 0 0 0

30 6 4 2 5 3 2 2 0 0 0 0 0 0

31 13 7 2 1 0 1 0 0 0 0 0 0 0

TOTAL 216 181 150 90 52 29 15 3 5 2 1 0 0

X 29.0 24.3 20.2 12.1 7.0 3.9 2.0 0.4 0.7 0.3 0.1 0 0

CUMM. 29.0 53.3 73.5 85.6 92.6 96.5 98.5 98.9 99.6 99.9 100. 100. 100.
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Table 43. One-Week Lead Tlme Absolute Percent Forecast Error (wrt Dally Peak) Dlstrlbutlon wlth
24-hour Lag Tlme Temperature Effect

0<= 1<= 2<= 3<= 4<= 5<= 6<= 7<= 8<= 10<= 12<= 15<= >=20
DAY 7 7 7 7 7 7 7 7 7 7 7 7 7

<l <2 <3 <4 <5 <6 <7 <8 <10 <12 <15 <20

1 11 S 3 3 1 1 0 0 0 0 0 0 0
2 9 6 3 4 2 0 0 0 0 0 0 0 0
3 12 8 3 1 0 0 0 0 0 0 0 0 0
4 10 6 5 2 1 0 0 0 0 0 0 0 0
5 4 11 7 1 1 0 0 0 0 0 0 0 0
6 4 11 6 2 1 0 0 0 0 0 0 0 0
7 11 5 1 2 2 3 0 0 0 0 0 0 0
8 4 4 5 3 4 2 2 0 0 0 0 0 0
9 7 5 8 3 1 0 0 0 0 0 0 0 0

10 8 7 5 1 3 0 0 0 0 0 0 0 0
11 14 6 3 0 1 0 0 0 0 0 0 0 0
12 7 3 5 S 4 0 0 0 0 0 0 0 0
13 8 8 S 2 0 0 1 0 0 0 0 0 0
14 6 4 6 1 1 3 0 2 0 1 0 0 0
15 2 S 3 4 4 0 2 0 2 2 0 0 0
16 4 5 4 1 2 8 0 0 0 0 0 0 0
17 10 3 4 5 2 0 0 0 0 0 0 0 0
18 2 3 7 4 4 1 1 1 1 0 0 0 0
19 5 4 6 6 3 0 0 0 0 0 0 O 0
20 2 8 6 4 4 0 0 0 0 0 0 0 O
21 1 2 8 3 4 2 3 1 0 0 0 0 0
22 5 7 5 2 2 1 2 0 0 0 0 0 0
23 11 6 3 2 2 0 0 0 0 0 0 0 0
24 8 4 7 4 1 0 0 0 0 0 0 0 0
25 7 6 7 1 2 1 0 0 0 0 0 0 0
26 8 9 S 0 1 0 1 0 0 0 0 0 0
27 12 7 4 0 1 0 0 0 0 0 0 0 0
28 5 5 7 3 2 2 0 0 0 0 0 0 0
29 4 3 8 S 3 0 1 0 0 0 0 0 0
30 6 4 2 3 5 1 3 0 0 0 0 0 0
31 13 6 3 1 0 1 0 0 0 0 0 0 0

TOTAL 220 176 154 78 64 26 16 4 3 3 O 0 0

X 29.6 23.7 20.7 10.5 8.6 3.4 2.2 0.5 0.4 0.4 0 0 0

CUMM. 29.6 53.2 73.9 84.4 93.0 96.5 98.7 99.2 99.6 100. 100. 100. 100.
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Appendix C

ASSUMPTIONS USED FOR DIFFERENT LOAD

MODELING TECHNIQUES

Signilicant assumptions in implementing these various modeling techniques are

summarized in the following. The forecasting techniques to which these assumptions are

applied are noted in parenthesis.

• The serial correlation among the load data is negligible (MLR).

• The relationship in each interval between the load and its explanatory variables is

linear (MLR).

• The base load in each interval is constant for all weekdays in the period considered

(MLR).
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• The effect of load inertia can be obtained through a tixed relationship (namely the

difference of the average of the previous 24 hours from that lagged by 3 hours)

(MLR).

• The effect of the explanatory variables will stay the same during the modeling

interval (MLR).

• The considered process is linear (STS, GES, SS).

• The considered process is stationary or can be transformed into stationary process

by differencing (STS, SS).

•
The noise series (or model error) is of zero mean and constant unknown variance

and its observations are uncorrelated with each other (MLR, STS, GES, SS).

• The weekly seasonality is negligible (GES, SS).

• Small order model (up to 3 terms) is sufticient for building the load model (SS).

• The effect of the load control on the load forecast is neglected (MLR, STS, GES, SS,

KBES).

• Accurate weather forecasts are available (MLR, KBES).

• The self-learning aspect of the expert system was tested on one year's data (KBES).
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Appendix D

The models that were developed using statistical techniques are demonstrated

here for the UV, TF, and LR analysis.

Univariate analysis (UV)

The univaraite time series approach was applied to model the daily peak load, y(t), and

the daily energy , elt), for both summer and winter seasons. Four weeks of data for the

daily peak and the daily energy were used in the development of these models in each

season. The daily peak univariate model for the winter season was modeled as:

(1 — 0.2438 + 0.30782)(1 — 0.48087)V1y(t) = a(t) (D1)

For the summer season, the daily peak univariate model was identitied and its

parameters estimated using the centered series, }7 (t), as:
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(1 —- 0.806B))7(t) = a(t) (D2)

The daily energy univariate models for both winter and summer seasons were identllied

and their parameters estimated, using four weeks of data for the centered series, é‘(t).

The winter and summer models are shown by equations (D3) and (D4) respectively,

(1 — O.842B)€(t) = a(t) (D3)

and

(1 — 1.201B — 0.466B2)€(t) = a(t) (D4)

Transfer function anlysis (TF)

The TF time series models were also identilied and their parameters estimated using

four weeks of data in each season. The input variables that were used with these models

are: (1) dry bulb temperature, x(t), with the daily peak models & (2) average of daily dry

bulb temperature with the energy models. These are modeled as centered series as

followsz

(i) winter daily peak
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N N t
y(t) = ( -38.27 + 20.878 +18.2482)x(t)+ (D5)

(1 + 0.2948 )(1 -0.7458 )

(ii) summer daily peak

N N a(t)
y(t) = 133.43 x(t) +-;--7 (D6)

(1 — 769B)(1— 0.8138 )

(iii) winter daily energy A

N N a(t)
e(t) = 120.75 x(t) +--;-7- (D7)

(1 - 0.7788)(1 — 0.7998 )

(iv) summer daily energy

N _ N a(t)
e(t) - (-43.96 + 26.498)x (t) +

—-———i·· (D8)
(1 - 0.9078 )

Linear regression analysis (LR)

Multiple linear regression was used to develop models for the daily peak and energy using

weather input(s)-both current and time—delayed (lag) responses. Like the other two models

the database for these models is four-week long. These models are presented for the daily

energy (for summer and winter seasons). Similar models for the daily peak were developed.

SAMPLES OF LOAD MODELS 240



For the winter season the daily energy model, e(t), was developed using the average daily dry

bulb temperature, T(t), with the day type history as:

e(t) = 4358 + 0.574 e(t — 7) — 80.98 T(t) + 28.29 T(t — 7) (D9)

The summer daily energy model was developed using the dry bulb temperature (DBT) and the

dew point temperature (DPT) which form the temperature humidity index (THI) as shown

below. The temperatures are in degree Fahrenheit.

THI = 0.55 x DBT + 0.2 x DPT +17.5 (D10)

Using this index, the summer daily energy model can be expressed as:

e(t) = 0.672 e(t — 7) + 153.27 THI(t) + 36.70 TH/(t — 1) — 161.63 THl(t — 7) (D11)
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Appendix E

DAILY PEAK PREDICTIONS USING ALL MODELS

This Appendix contains the results of the models discussed in sections 9.4.1 through

9.4.3. The results are for the daily peak for both the one day and the seven day ahead

predictions using all 15 models.
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Table 44. One~Day Lead Time Daily Peak Forecast Error Uslng Hourly Load Unlvarlate Model

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/0 MW % MW %

1 23.79 .36 146.73 3.13 122.71 1.50 -102.89 -2.14
2 -432.60 -7.19 403.32 7.29 342.99 4.18 -158.61 -3.44
3 363.67 5.89 126.34 2.33 -27.00 -.33 593.11 10.45
4 416.88 6.10 -328.64 -6.34 129.36 1.57 361.60 6.12
5 -103.60 -1.59 98.94 1.93 226.65 2.76 312.01 5.17
6 537.74 8.32 56.47 1.11 -100.74 -1.32 -202.77 -3.64
7 -92.68 -1.34 -129.24 -2.86 -471.23 -6.33 -64.61 -1.25
8 -7.31 -.10 -298.08 -6.87 904.61 10.36 -328.42 -6.83
9 261.38 3.54 217.74 4.21 63.59 .72 -340.63 -7.55

10 49.34 .68 -19.50 -.37 53.18 .67 71.93 1.35
11 72.83 .97 89.12 1.73 633.22 7.10 172.65 3.08
12 -418.29 -6.28 33.47 .66 -1196.75 -17.30 144.42 2.49
13 -73.58 -1.13 -7.26 -.15 -1780.06 -35.41 375.56 6.25
14 -188.35 -2.69 35.72 .76 -1118.74 -24.13 -488.94 -9.36
15 -443.80 -6.58 86.44 1.80 -401.35 -6.93 -174.43 -3.70
16 4.71 .07 233.62 4.28 42.58 .68 -222.60 -4.84
17 -112.64 -1.77 48.61 .93 754.50 10.35 261.40 4.85
18 -182.37 -2.79 33.06 .65 13.71 .18 79.70 1.45
19 -48.89 -.85 -2.74 -.05 1010.47 11.89 115.99 2.08
20 -177.28 -3.24 339.54 6.40 1729.40 19.81 -25.40 -.45
21 -92.47 -1.48 -281.62 -5.64 -940.76 -12.51 267.86 4.84
22 170.25 2.76 -146.21 -3.11 2237.57 23.79 -384.36 -7.74
23 27.84 .47 524.12 9.18 -1116.06 -14.06 -46.11 -.96
24 54.10 .86 -93.29 -1.75 -286.02 -3.88 233.09 4.28
25 226.49 3.45 73.43 1.41 13.94 .20 239.27 4.20
26 461.06 7.30 120.27 2.27 -54.68 -.78 -180.33 -3.22
27 -212.71 -3.69 -316.47 -6.21 234.35 3.10 168.48 2.88
28 328.99 4.87 -231.98 -5.28 -513.33 -7.33 - -
29 - - -221.32 -5.23 59.06 .75 -

—

30 - - -167.44 -3.51 1182.65 14.61 - -
31 - - 819.37 14.72 45.46 .60 - ·
Av 199.49 184.84 574.41
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Table 45. One-Day Lead Tlme Dally Peak Forecast Error Uslng Hourly Load Transfer Functlon

Model wlth Actual Future Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW °/6 MW %

1 -183.29 -2.79 253.18 5.41 64.92 .80 -105.16 -2.19
2 -243.24 -4.04 592.54 10.71 284.29 3.46 -183.36 -3.98
3 109.98 1.78 -148.30 -2.73 -66.84 -.82 580.07 10.22
4 257.75 3.77 -704.99 -13.60 79.80 .97 366.04 6.20
5 164.86 2.53 130.15 2.54 185.38 2.26 245.95 4.07
6 937.09 14.49 -212.41 -4.18 -139.16 -1.83 -1.40 -.03
7 -279.99 -4.05 113.52 2.51 -486.39 -6.54 -9.92 -.19
8 -302.36 -4.25 -298.52 -6.88 889.52 10.19 -396.52 -8.25
9 386.30 5.24 -241.48 -4.67 70.69 .81 -354.74 -7.86
10 -214.42 -2.95 79.31 1.51 8.13 .10 86.06 1.61
11 -66.63 -.89 240.37 4.67 633.92 7.11 26.42 .47
12 -263.27 -3.95 -22.34 -.44 -1210.29 -17.50 172.60 2.97
13 235.40 3.60 148.16 2.96 -1780.83 -35.43 298.73 4.97
14 -157.06 -2.24 35.86 .76 -1091.19 -23.53 -170.48 -3.26
15 -733.98 -10.89 -49.82 -1.04 -418.86 -7.23 -235.99 -5.00
16 100.74 1.52 43.98 .80 6.08 .10 -279.64 -6.09
17 -213.97 -3.35 -162.25 -3.10 730.56 10.02 197.16 3.66
18 -465.44 -7.11 -18.56 -.37 -23.98 -.31 122.51 2.23
19 11.66 .20 135.91 2.67 1007.86 11.86 170.92 3.07
20 70.37 1.29 311.47 5.87 1704.08 19.52 -39.93 -.71
21 -28.13 -.45 -489.66 -9.80 -918.68 -12.21 220.13 3.97
22 -34.81 -.56 -82.68 -1.76 2182.69 23.21 -445.39 -8.96
23 230.49 3.87 620.54 10.87 -1150.73 -14.49 -158.18 -3.28
24 -218.77 -3.46 -550.77 -10.35 -244.72 -3.32 400.93 7.36
25 246.86 3.76 108.35 2.08 12.00 .17 323.70 5.68
26 287.02 4.54 -23.20 -.44 -47.30 -.67 -127.39 -2.28

27 22.30 .39 -717.82 -14.07 214.81 2.84 189.64 3.24
28 556.38 8.23 11.51 .26 -542.28 -7.74 - -
29 - - -32.40 -.77 77.01 .98 - -
30 - - -324.56 -6.81 1193.53 14.74 -

—

31 - - 896.63 16.11 37.96 .50 - -

Av 3.79 @ 4.86 564.66 7.78 218.85ß
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Table 46. One-Day Lead Tlme Dally Peak Forecast Error Uslng Hourly Load Transfer Function

Model wlth Predlcted Futura Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW % MW °/6

1 -162.89 -2.48 134.45 2.87 30.68 .38 -81.18 -1.69
2 -390.77 -6.49 363.56 6.57 327.22 3.98 -123.38 -2.68

” 3 650.54 10.54 173.02 3.19 -76.75 -.94 623.26 10.98
4 -45.72 -.67 -740.03 -14.28 95.63 1.16 321.33 5.44

5 -437.63 -6.73 -384.22 -7.51 174.72 2.13 238.98 3.96
6 809.49 12.52 667.45 13.13 -127.61 -1.67 -173.74 -3.12
7 172.24 2.49 -458.50 -10.16 -512.85 -6.89 136.65 2.65

8 -167.37 -2.35 286.61 6.61 900.98 10.32 -434.38 -9.03
9 209.28 2.84 -237.07 -4.59 13.42 .15 -431.44 -9.56

10 336.69 4.62 -193.51 _ -3.69 48.76 .61 122.57 2.29
11 -253.56 -3.39 397.15 7.72 600.04 6.73 217.35 3.88
12 -678.31 -10.18 291.72 5.75 -1204.80 -17.42 91.33 1.57
13 247.34 3.78 -359.50 -7.18 -1775.59 -35.32 385.11 6.41
14 167.90 2.39 443.09 9.44 -1096.18 -23.64 -507.76 -9.72
15 -557.97 -8.28 -140.59 -2.93 -416.59 -7.19 127.05 2.69

16 -128.00 -1.93 369.70 6.77 20.05 .32 -323.62 -7.04
17 -9.78 -.15 -604.74 -11.56 712.93 9.78 199.97 3.71
18 -342.39 -5.23 560.38 11.06 -49.87 -.65 35.91 .65
19 -360.03 -6.26 -182.31 -3.58 993.53 11.69 95.55 1.72
20 55.55 1.02 647.63 12.21 1732.02 19.84 80.39 1.43
21 212.31 3.40 -573.40 -11.48 -1021.70 -13.58 243.74 4.40
22 246.00 3.98 -279.84 -5.96 2307.03 24.53 -434.06 -8.74
23 -95.88 -1.61 583.89 10.23 -1216.37 -15.32 -73.70 -1.53
24 -60.51 -.96 229.77 4.32 -218.32 -2.96 163.39 3.00
25 57.60 .88 -549.94 -10.54 33.80 .48 487.95 8.57
26 260.85 4.13 368.59 6.96 -55.42 -.79 -82.89 -1.48
27 -71.98 -1.25 -578.02 -11.33 206.64 2.74 116.06 1.98
28 555.19 8.21 -191.03 -4.35 -538.89 -7.69 — -
29 - - 195.53 4.62 61.21 .78 - -
30 - - -309.43 -6.49 1211.12 14.96 - -
31 - - 764.64 13.74 24.48 .32 - -

Av 276.56 7.77 574.36
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Table 41. One-Week Lead Tlme Dally Peak Forecast Error Uslng Hourly Load Unlvarlate Model

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW % MW °/6

1 451.51 6.88 295.10 6.30 2527.94 30.98 1621.26 33.73
2 -373.41 -6.20 3194.62 57.75 1746.83 21.27 -30.95 -.67
3 -303.36 -4.92 2698.17 49.69 2471.11 30.22 3670.83 64.67
4 -163.89 -2.40 1110.53 21.42 -253.65 -3.09 -291.35 -4.93
5 657.94 10.11 292.93 5.72 -60.36 -.74 874.30 14.48
6 1163.53 18.00 -69.39 -1.37 -1537.52 -20.18 510.76 9.16
7 756.49 10.96 -249.00 -5.52 -1081.73 -14.54 540.91 10.49
8 1171.27 16.48 -21.77 -.50 1008.69 11.55 -916.78 -19.06
9 2069.05 28.06 -961.40 -18.60 -133.59 -1.52 -350.15 -7.76

10 1298.02 17.83 -743.48 -14.17 -587.66 -7.38 -974.81 -18.24
11 217.94 2.91 1443.70 28.08 2960.06 33.19 277.98 4.96
12 168.38 2.53 -36.23 -.71 -937.84 -13.56 -130.56 -2.25
13 125.06 1.91 1057.95 21.13 -2802.05 -55.74 1059.80 17.63
14 -90.54 -1.29 -940.20 -20.03 -3192.16 -68.84 -457.14 -8.75
15 -515.67 -7.65 987.15 20.58 -2922.54 -50.46 -999.45 -21.19
16 -874.41 -13.16 -553.11 -10.12 -780.21 -12.38 -520.23 -11.32
17 -1022.27 -16.02 1164.22 22.26 -1850.71 -25.38 441.18 8.18
18 -1212.96 -18.54 -339.74 -6.71 -510.86 -6.62 210.24 3.83
19 -1270.57 -22.09 211.38 4.16 1980.11 23.30 -724.38 -13.00
20 -1196.65 -21.90 371.75 7.01 4728.99 54.16 -1010.25 -17.92
21 -820.40 -13.14 -359.08 -7.19 2631.38 34.98 965.02 17.42
22 -291.33 -4.72 -72.55 -1.55 5009.11 53.27 -1590.18 -32.00
23 -446.14 -7.49 329.32 5.77 2919.48 36.77 -15.20 -.32
24 -67.69 -1.07 477.88 8.98 23.48 .32 1163.91 21.36
25 440.58 6.71 901.73 17.28 -1483.50 -20.98 1033.25 18.15
26 710.04 11.24 1650.53 31.16 -249.67 -3.56 -1.54 -.03
27 342.79 5.94 -3258.87 -63.90 -4916.35 -65.10 615.51 10.52
28 1039.16 15.37 -975.10 -22.19 423.70 6.05 - -
29 - - -890.95 -21.07 -3560.28 -45.18 - -
30 - - -228.14 -4.78 328.53 4.06 - -
31 - - -508.02 -9.13 891.12 11.67 - -

Av 687.90 851.42 16.61 1822.94 24.74777.70DAILY
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Table 48. One·Week Lead Tlme Dally Peak Forecast Error Uslng Hourly Load Transfer Functlon
Model wlth Actual Future Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW % MW °/6

1 388.57 5.93 -1009.75 -21.56 1707.94 20.93 1770.51 36.84
2 -.94 -.02 4674.94 84.51 559.01 6.81 -626.50 -13.60
3 -385.46 -6.25 3512.52 64.69 1407.76 17.22 3318.11 58.46
4 -682.96 -10.00 1285.87 24.80 -1308.06 -15.91 -497.84 -8.43
5 223.33 3.43 -5.45 -.11 -879.68 -10.73 791.29 13.11
6 1270.89 19.66 -531.19 -10.45 -2277.43 -29.89 408.30 7.32
7 1056.32 15.30 -454.45 -10.07 -1839.80 -24.72 1044.56 20.25
8 973.21 13.69 113.11 2.61 186.53 2.14 -869.54 -18.08
9 1669.12 22.64 -3195.32 -61.82 -695.43 -7.93 120.25 2.67

10 1460.48 20.06 -1901.50 -36.23 -1048.37 -13.17 -797.08 -14.92
11 584.83 7.82 1483.31 28.85 2529.04 28.36 366.16 6.54
12 -113.84 -1.71 214.10 4.22 -1419.52 -20.53 -180.98 -3.12
13 -196.63 -3.01 1535.02 30.66 -3105.12 -61.77 661.47 11.01

14 404.44 5.77 -481.32 -10.26 -3495.02 -75.37 -596.56 -11.42
15 -284.35 -4.22 877.36 18.29 -3116.57 -53.81 -1085.15 -23.01
16 -1101.73 -16.58 1775.59 32.50 -1076.83 -17.09 -228.93 -4.98
17 -916.49 -14.37 1716.17 32.81 -2132.36 -29.25 158.92 2.95
18 -1094.05 -16.72 -916.79 -18.10 -974.40 -12.63 488.44 8.90
19 -1403.93 -24.41 399.93 7.86 1724.64 20.29 -330.63 -5.93 —

20 -1493.85 -27.34 -146.04 -2.75 4406.42 50.46 -198.62 -3.52
21 -752.72 -12.06 -874.34 -17.50 2369.56 31.50 394.90 7.13
22 -91.33 -1.48 -82.06 -1.75 4639.07 49.33 -1589.05 -31.98
23 -358.54 -6.02 303.06 5.31 2742.89 34.55 -368.34 -7.64
24 -224.17 -3.55 596.68 11.21 -145.52 -1.98 1192.94 21.90
25 602.61 9.18 1114.40 21.36 -1557.04 -22.02 914.47 16.06
26 447.82 7.09 793.76 14.99 -460.18 -6.56 58.92 1.05
27 -24.84 -.43 -4001.94 -78.47 -4987.54 -66.04 744.73 12.73
28 1110.46 16.43 -1488.40 -33.87 220.79 3.15 - -
29 - - -888.93 -21.02 -3733.20 -47.37 - -
30 - - -1412.09 -29.61 319.40 3.95 - -
31 - - 280.13 5.03 749.67 9.82 - -

Av 689.93 10.54 1227.92ß 1864.99ß733.45DAILY
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Table 49. One-Week Lead Time Dally Peak Forecaat Error Using Hourly Load Transfer Function
Model with Predicted Future Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW % MW %

1 670.03 10.22 342.44 7.31 1407.49 17.25 1203.47 25.04
2 -361.65 -6.01 3380.74 61.11 557.52 6.79 -617.59 -13.41
3 -479.62 -7.77 1733.43 31.92 1286.41 15.73 3541.41 62.39
4 -329.25 -4.82 2505.31 48.33 -979.48 -11.91 -641.92 -10.87
5 491.80 7.56 -1280.02 -25.01 -997.62 -12.16 1510.47 25.02
6 1336.48 20.67 -258.46 -5.09 -2364.87 -31.04 440.35 7.90
7 649.01 9.40 -1591.41 -35.25 -2069.82 -27.81 970.18 18.81
8 1286.65 18.10 -841.61 -19.41 871.05 9.98 -393.15 -8.18
9 2149.28 29.15 -802.92 -15.53 -714.67 -8.15 -343.90 -7.62

10 1081.04 14.85 -3651.68 -69.58 -997.19 -12.53 -880.63 -16.48
11 199.74 2.67 -2476.76 -48.17 2240.56 25.12 -289.04 -5.16
12 301.39 4.52 5074.00 100.00 -1236.14 -17.87 154.82 2.67
13 170.30 2.60 -2241.93 -44.78 -3409.37 -67.82 2557.82 42.56
14 -228.16 -3.25 3697.17 78.78 -3286.02 -70.87 -1480.90 -28.35
15 -432.88 -6.42 -2000.28 -41.71 -3606.94 -62.27 -1471.31 -31.20
16 -787.93 -11.86 -892.69 -16.34 -769.93 -12.22 -93.21 -2.03
17 -1251.88 -19.62 3410.93 65.21 -2289.32 -31.40 606.03 11.24
18 -1264.82 -19.33 1786.45 35.27 -512.78 -6.64 -276.64 -5.04
19 -1131.87 -19.68 -2762.61 -54.32 1932.56 22.74 -644.99 -11.58
20 -1155.38 -21.15 3303.59 62.28 4748.49 54.38 -1121.14 -19.89 '

21 -971.40 -15.56 -2585.16 -51.74 2272.88 30.22 2954.26 53.33
22 -254.90 -4.13 1086.93 23.16 4629.98 49.23 -2302.11 -46.33
23 -538.35 -9.03 -6165.78 -108.02 2395.85 30.17 -579.72 -12.03
24 -113.14 -1.79 5322.00 100.00 -683.17 -9.27 1099.06 20.17
25 442.57 6.74 -1263.83 -24.23 -1660.43 -23.48 744.08 13.07
26 951.31 15.05 4409.80 83.25 -46.23 -.66 460.96 8.24

27 439.88 7.62 -6111.72 -119.84 -5828.66 -77.18 75.02 1.28 ·
28 917.04 13.57 -1481.59 -33.71 1606.47 22.94 - -
29 - - 554.51 13.12 -4686.13 -59.46 - -
30 - - 1922.59 40.31 1291.77 15.96 - -
31 - - -6159.48 -110.66 1032.48 13.52 - -
Av 728.13 11.18 2616.06 50.76 27.64 1016.82 18.88
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Table 50. One-Day Lead Tlme Dally Peak Forecast Error Uslng Dally Peak Unlvarlate Model

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW °/6 MW °/6

1 182.19 2.78 67.59 1.44 458.73 5.62 -659.32 -13.72
2 -832.17 -13.83 -38.50 -.70 183.07 2.23 -479.12 -10.40
3 174.06 2.82 119.06 2.19 101.72 1.24 757.36 13.34
4 447.50 6.55 6.68 .13 175.56 2.14 103.59 1.75
5 160.57 2.47 -165.61 -3.24 121.07 1.48 47.87 .79
6 483.33 7.48 66.15 1.30 -445.61 -5.85 -520.80 -9.34
7 -106.38 -1.54 -226.58 -5.02 -154.23 -2.07 -560.08 -10.86
8 165.60 2.33 -284.09 -6.55 1279.32 14.65 -564.93 -11.75
9 734.35 9.96 46.08 .89 279.96 3.19 -574.59 -12.73

10 5.93 .08 75.00 1.43 -568.11 -7.14 500.93 9.38
11 -89.32 -1.19 41.40 .81 1050.18 11.77 75.76 1.35

12 -463.51 -6.96 -39.70 -.78 -1727.85 -24.98 67.52 1.16
13 -75.32 -1.15 -67.17 -1.34 -2001.47 -39.81 101.74 1.69
14 171.74 2.45 92.58 1.97 -868.03 -18.72 -851.40 -16.30
15 -376.77 -5.59 236.67 4.93 601.50 10.39 -712.27 -15.10
16 -319.41 -4.81 73.48 1.34 179.01 2.84 -415.02 -9.03
17 -287.15 -4.50 -235.24 -4.50 758.51 10.40 481.60 8.93
18 -99.72 -1.52 -96.86 -1.91 386.10 5.00 -78.59 -1.43
19 -341.33 -5.94 39.92 .78 823.54 9.69 -74.63 -1.34
20 -357.79 -6.55 255.21 4.81 427.68 4.90 -75.96 -1.35
21 257.12 4.12 -12.88 -.26 -971.04 -12.91 -229.12 -4.14
22 7.29 .12 -346.92 -7.39 1886.80 20.06 -719.44 -14.48
23 -243.06 -4.08 434.26 7.61 -1095.00 -13.79 -398.32 -8.26
24 423.34 6.70 -141.60 -2.66 -488.31 -6.63 352.35 6.47
25 108.65 1.66 36.67 .70 -319.39 -4.52 81.31 1.43
26 306.76 4.85 81.95 1.55 -134.28 -1.91 -220.23 -3.94
27 -293.81 -5.09 -332.86 -6.53 439.65 5.82 115.28 1.97
28 438.69 6.49 -521.59 -11.87 -537.39 -7.67 - -
29 - - -103.17 -2.44 781.56 9.92 — -
30 - - -403.92 -8.47 288.27 3.56 - -
31 - - 881.59 15.84 -344.31 -4.51 - -

Av 284.03 179.71 8.88 363.67 7.13
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Table 51. One-Day Lead Tlme Dally Peak Forecast Error Uslng Dally Peak Transfer Functlon

Model with Actual Future Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW % MW °/6 MW °/6

1 137.48 2.10 334.65 7.14 -275.00 -3.37 -1119.86 -23.30
2 -181.49 -3.02 174.66 3.16 850.34 10.35 -772.65 -16.78
3 176.37 2.86 89.18 1.64 -34.77 -.43 -133.70 -2.36
4 -1.99 -.03 -279.94 -5.40 385.82 4.69 -512.08 -8.67
5 -89.67 -1.38 -290.14 -5.67 -200.66 -2.45 -184.99 -3.06
6 132.66 2.05 -100.47 -1.98 73.96 .97 -150.55 -2.70
7 243.98 3.53 -140.51 -3.11 -.25 -.00 -329.63 -6.39
8 238.88 3.36 -349.14 -8.05 621.41 7.12 -694.48 -14.44
9 346.76 4.70 -359.79 -6.96 -708.61 -8.08 -834.18 -18.49

10 -6.10 -.08 -81.08 -1.54 463.81 5.83 630.01 11.79
11 136.03 1.82 175.91 3.42 -540.20 -6.06 153.73 2.74
12 -193.97 -2.91 -26.68 -.53 70.16 1.01 -558.08 -9.61
13 -14.17 -.22 111.01 2.22 -132.66 -2.64 -323.04 -5.38

14 113.61 1.62 134.02 2.86 -744.40 -16.05 -17.60 -.34
15 121.81 1.81 500.34 10.43 -549.58 -9.49 -781.66 -16.57
16 -264.03 -3.97 225.30 4.12 133.14 2.11 -428.18 -9.32

17 -212.84 -3.34 -272.06 -5.20 -146.04 -2.00 212.71 3.94
18 151.48 2.32 -55.88 -1.10 273.75 3.55 -121.05 -2.21
19 -270.43 -4.70 20.52 .40 796.12 9.37 889.74 15.97
20 -325.28 -5.95 359.84 6.78 -604.20 -6.92 370.14 6.57
21 492.77 7.89 35.29 .71 985.28 13.10 297.63 5.37
22 141.07 2.28 -436.94 -9.31 209.52 2.23 -536.62 -10.80
23 -524.40 -8.80 796.47 13.95 718.75 9.05 -457.13 -9.48
24 234.93 3.72 44.03 .83 -295.35 -4.01 338.95 6.22
25 -99.17 -1.51 141.87 2.72 -253.96 -3.59 805.91 14.15
26 162.93 2.58 282.20 5.33 -949.65 -13.53 209.92 3.75
27 -69.05 -1.20 -449.39 -8.81 279.21 3.70 730.32 12.49
28 430.98 6.38 -512.82 -11.67 -120.39 -1.72 - -
29 - - -225.22 -5.33 500.28 6.35 - -
30 - - -573.48 -12.03 -74.16 -.92 - -
31 - - 852.53 15.32 -368.55 -4.83 - -

Av 196.94E 271.98 398.71466.46DAILY

PEAK PREDICTIONS USING ALL MODELS 250



Table 52. One-Day Lead Tlme Daily Peak Forecast Error Uslng Dally Peak Transfer Functlon
Model wlth Predlcted Future Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW % MW °/6 MW °/>

1 -5.90 -.09 82.61 1.76 -895.55 -10.98 -91.50 -1.90
2 -789.42 -13.12 169.61 3.07 481.84 5.87 -1007.49 -21.88
3 527.47 8.55 420.49 7.74 235.76 2.88 492.93 8.68
4 385.02 5.63 180.91 3.49 103.06 1.25 60.34 1.02
5 40.80 .63 -486.63 -9.51 381.15 4.65 -209.59 -3.47
6 437.69 6.77 -350.61 -6.90 -608.91 -7.99 -788.16 -14.13
7 -18.36 -.27 -501.37 -11.11 18.85 .25 -149.80 -2.90
8 266.03 3.74 -290.45 -6.70 1008.99 11.56 -288.60 -6.00
9 750.71 10.18 -95.06 -1.84 135.96 1.55 -721.70 -16.00

10 -201.93 -2.77 -376.19 -7.17 -1225.33 -15.40 343.69 6.43
11 35.84 .48 -340.93 -6.63 1650.44 18.50 285.60 5.10
12 -424.56 -6.37 -155.48 -3.06 -2835.65 -41.00 79.21 1.36
13 -59.01 -.90 176.33 3.52 -457.87 -9.11 -204.27 -3.40
14 68.90 .98 -48.32 -1.03 378.21 8.16 -906.77 -17.36
15 -61.30 -.91 490.49 10.23 -148.75 -2.57 131.21 2.78
16 -470.39 -7.08 300.29 5.50 -582.29 -9.24 -443.41 -9.65
17 -260.89 -4.09 -17.74 -.34 1490.48 20.44 553.52 10.27
18 -21.54 -.33 -219.80 -4.34 -1495.50 -19.38 -11.35 -.21
19 -348.55 -6.06 227.95 4.48 3058.14 35.99 17.85 .32
20 -424.97 -7.78 282.80 5.33 921.74 10.56 620.69 11.01
21 116.08 1.86 211.45 4.23 -2061.04 -27.40 214.96 3.88
22 -363.74 -5.89 -385.66 -8.22 1970.38 20.95 -71.42 -1.44
23 -111.15 -1.87 353.01 6.18 -1740.57 -21.92 -148.48 -3.08
24 634.34 10.04 331.04 6.22 152.62 2.07 14.09 .26
25 -305.52 -4.66 238.34 4.57 -79.62 -1.13 372.12 6.54
26 437.61 6.93 229.40 4.33 -816.48 -11.63 705.19 12.60
27 -371.99 -6.44 -144.72 -2.84 147.57 1.95 518.50 8.86
28 457.44 6.77 -761.07 -17.32 493.23 7.04 - -
29 - - -368.27 -8.71 -1059.08 -13.44 - -
30 - - -455.87 -9.56 1993.42 24.63 - -
31 - - 490.73 8.82 -759.02 -9.94 - -

Av 299.90 4.68 947.9812.24DAILY
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Table 53. One-Week Lead Tlme Dally Peak Forecast Error Uslng Dally Peak Unlvarlate Medel

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/0 MW % MW % MW %

1 363.71 5.55 -308.85 -6.59 731.53 8.97 -1139.71 -23.71
2 -541.50 -9.00 -263.29 -4.76 772.11 9.40 -1296.60 -28.16
3 -197.49 -3.20 -3.82 -.07 654.11 8.00 -414.08 -7.30

° 4 172.35 2.52 76.01 1.47 653.51 7.95 -209.67 -3.55
5 317.18 4.88 -130.09 -2.54 644.50 7.86 -92.29 -1.53
6 833.62 12.89 -33.01 -.65 66.27 .87 -520.49 -9.33
7 472.56 6.84 -226.54 -5.02 -111.07 -1.49 -937.21 -18.17
8 508.01 7.15 -463.91 -10.70 1087.95 12.46 -1167.48 -24.28
9 1368.18 18.55 -297.91 -5.76 1116.75 12.73 -1412.94 -31.32

10 1088.67 14.95 -165.60 -3.16 309.96 3.89 -856.58 -16.03
11 692.34 9.26 -84.19 . -1.64 1261.20 14.14 -656.04 -11.71
12 65.65 .99 -80.38 -1.58 -737.59 -10.66 -484.89 -8.35
13 -146.14 -2.24 -136.76 -2.73 -2497.44 -49.68 -163.93 -2.73
14 78.79 1.12 20.68 .44 -2847.94 -61.42 -842.74 -16.13
15 -354.63 -5.26 291.19 6.07 -1979.20 -34.17 -1261.25 -26.74
16 -801.53 -12.06 286.38 5.24 -1479.29 -23.48 -1306.09 -28.42

17 -949.34 -14.88 -29.91 -.57 -308.44 -4.23 -722.18 -13.39
18 -859.13 -13.13 -125.05 -2.47 -95.69 -1.24 -692.60 -12.62
19 -929.67 -16.17 -48.79 -.96 1129.78 13.29 -662.17 -11.89
20 -1104.60 -20.22 227.69 4.29 1782.95 20.42 -647.22 -11.48
21 -697.75 -11.18 145.85 2.92 659.49 8.77 -543.67 -9.81
22 -470.44 -7.62 -269.56 -5.74 2285.19 24.30 -984.40 -19.81
23 -548.26 -9.20 221.25 3.88 708.25 8.92 -1102.37 -22.87
24 45.65 .72 57.22 1.08 -85.44 -1.16 -678.75 -12.46
25 172.06 2.62 93.03 1.78 -473.97 -6.70 -457.37 -8.03
26 536.80 8.50 146.52 2.77 -699.27 -9.96 -577.65 -10.32
27 241.13 4.18 -257.54 -5.05 -219.20 -2.90 -340.83 -5.83
28 570.99 8.45 -713.71 -16.24 -498.70 -7.12 - -
29 - - -592.94 -14.02 -39.31 -.50 - -
30 - - -909.85 -19.08 499.55 6.17 - -
31 - - 216.01 3.88 166.92 2.19 - -

A8 Ewääläl 858-55E 88888 88-88
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Table 54. One-Week Lead Tlme Load Forecast Error Uslng Dally Peak Load Transfer Functlon

Model wlth Actual Future Input data

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW _ % MW °/8 MW %

1 373.76 5.70 377.16 8.05 -317.11 -3.89 -1201.76 -25.01
2 45.74 .76 342.04 6.18 676.29 8.23 -1456.08 -31.62
3 217.09 3.52 241.46 4.45 553.47 6.77 -1000.33 -17.62
4 126.21 1.85 -171.95 -3.32 829.41 10.09 -1089.57 -18.45
5 -5.16 -.08 -368.59 -7.20 386.69 4.71 -829.62 -13.74
6 129.57 2.00 -265.55 -5.23 356.43 4.68 -645.40 -11.57
7 312.82 4.53 -258.65 -5.73 273.00 3.67 -712.99 -13.82
8 435.88 6.13 -465.69 -10.74 875.04 10.02 -1088.48 -22.63
9 639.89 8.68 -568.14 -10.99 -170.91 -1.95 -1459.88 -32.36

10 402.11 5.52 -334.82 -6.38 337.92 4.25 -232.51 -4.35
11 398.19 5.32 27.53 .54 -341.68 -3.83 29.05 .52
12 70.01 1.05 -13.38 -.26 -160.68 -2.32 -536.07 -9.23
13 24.83 .38 105.39 2.11 -267.98 -5.33 -637.13 -10.60
14 117.61 1.68 181.52 3.87 -950.42 -20.50 -387.02 -7.41
15 186.52 2.77 582.54 12.15 -1379.18 -23.81 -993.28 -21.06
16 -159.78 -2.40 486.41 8.90 -814.74 -12.93 -995.82 -21.67

17 -316.66 -4.96 -54.80 -1.05 -846.26 -11.61 -394.27 -7.31
18 -61.68 -.94 -80.94 -1.60 -291.11 -3.77 -358.89 -6.54
19 -300.94 -5.23 -15.50 -.30 561.11 6.60 691.27 12.41
20 -520.70 -9.53 352.54 6.65 -151.64 -1.74 788.54 13.99
21 147.75 2.37 192.08 3.84 987.01 13.12 765.83 13.82
22 231.28 3.74 -353.01 -7.52 1055.84 11.23 -62.15 -1.25
23 -360.49 -6.05 638.21 11.18 1509.48 19.01 -482.93 -10.02
24 10.62 .17 329.68 6.19 888.58 12.06 46.99 .86

25 -99.81 -1.52 289.12 5.54 385.80 5.46 836.91 14.70
26 111.38 1.76 411.10 7.76 -779.55 -11.10 683.37 12.21
27 19.78 .34 -267.27 -5.24 -224.18 -2.97 1126.12 19.25
28 419.27 6.20 -632.16 -14.38 -449.40 -6.42 - ·
29 - - -505.68 -11.96 121.41 1.54 - -
30 - - -801.85 -16.81 -95.05 -1.17 - -
31 - - 494.70 8.89 -394.69 -5.17 - -

Av- @E¤@lEl@ 7-74 722-42 IEE
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Table 55. One-Week Lead Tlme Dally Peak Forecast Error Uslng Dally Peak Transfer Functlon
Model wlth Predlcted Future Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW °/> MW °/6 MW %

1 -79.71 -1.22 -335.30 -7.16 225.94 2.77 -1072.66 -22.32
2 -892.04 -14.82 -296.34 -5.36 462.67 5.63 -1339.71 -29.09
3 -370.81 -6.01 -.92 -.02 483.07 5.91 -418.79 -7.38
4 -11.02 -.16 126.51 2.44 538.44 6.55 -285.77 -4.84
5 264.31 4.06 -392.58 -7.67 695.40 8.48 -96.60 -1.60
6 751.12 11.62 -275.92 -5.43 -215.05 -2.82 -463.82 -8.32
7 395.81 5.73 -618.34 -13.70 -201.02 -2.70 -717.48 -13.91
8 589.98 8.30 -690.46 -15.92 1193.20 13.66 -1330.37 -27.66
9 1260.47 17.09 -502.38 -9.72 853.14 9.72 -1646.17 -36.48

10 767.30 10.54 -398.41 -7.59 -137.74 -1.73 -874.21 -16.36
11 452.53 6.05 -344.09 -6.69 847.48 9.50 -737.99 -13.17
12 92.30 1.39 -313.82 -6.18 -1310.15 -18.94 -613.06 -10.56
13 62.25 .95 -136.75 -2.73 -2581.39 -51.35 -153.60 -2.56
14 175.04 2.50 -3.62 -.08 -2824.65 -60.92 -818.04 -15.66
15 -203.71 -3.02 111.12 2.32 -2719.35 -46.95 -1376.61 -29.19
16 -500.67 -7.53 10.22 .19 -2417.55 -38.37 -1495.35 -32.54
17 -571.53 -8.96 -114.92 -2.20 -78.93 -1.08 -659.57 -12.23
18 -646.81 -9.89 -68.43 -1.35 -1459.80 -18.92 -634.09 -11.55
19 -700.74 -12.18 50.77 1.00 2391.69 28.14 -722.16 -12.96 -
20 -916.59 -16.78 96.32 1.82 3145.50 36.02 -674.65 -11.97
21 -466.57 -7.47 246.72 4.94 1262.64 16.79 -367.32 -6.63
22 -583.95 -9.45 -436.16 -9.29 2247.93 23.90 -1002.69 -20.18
23 -584.16 -9.80 -24.49 -.43 961.62 12.11 -1128.63 -23.42
24 -40.79 -.65 -192.07 -3.61 -562.89 -7.64 -581.24 -10.67
25 -107.09 -1.63 186.31 3.57 -457.85 -6.47 -367.88 -6.46
26 296.68 4.70 90.69 1.71 -1767.20 -25.17 -270.53 -4.84
27 -47.91 -.83 -342.72 -6.72 -1380.46 -18.28 -15.63 -.27
28 385.50 5.70 -789.87 -17.97 311.32 4.44 - -
29 - - -812.41 -19.21 -1485.19 -18.85 - -
30 - - -934.37 -19.59 1094.34 13.52 - -
31 - - -126.44 -2.27 -62.02 -.81 - -
Av 436.34 6.75 1173.41 16.72 735.73 E
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Table 56. One-Day Lead Tlme Dally Peak Forecast Error Uslng Dally Energy Unlvarlate Model and
Actual Load Factor

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW °/6 MW °/6

1 -15.85 -.24 -223.98 -4.78 747.92 9.17 -717.57 -14.93
2 -532.03 -8.84 140.32 2.54 -54.83 -.67 -554.93 -12.05
3 -157.20 -2.55 296.50 5.46 163.27 2.00 733.10 12.92
4 727.81 10.65 -128.63 -2.48 13.39 .16 69.30 1.17
5 -189.35 -2.91 -69.56 -1.36 32.89 .40 95.49 1.58
6 186.21 2.88 -121.91 -2.40 -420.81 -5.52 -339.89 -6.10
7 165.68 2.40 -127.73 -2.83 -94.00 -1.26 -423.36 -8.21
8 92.33 1.30 -245.05 -5.65 1179.00 13.50 -666.39 -13.86
9 418.77 5.68 52.45 1.01 203.04 2.31 -575.95 -12.76

10 300.70 4.13 -47.13 -.90 -478.28 -6.01 463.39 8.67
11 121.59 1.63 107.38 2.09 745.57 8.36 85.18 1.52
12 -261.84 -3.93 -26.22 -.52 -1206.69 -17.45 106.67 1.84
13 170.66 2.61 -8.45 -.17 -1678.59 -33.39 148.02 2.46
14 355.33 5.07 -80.01 -1.70 -723.73 -15.61 -657.62 -12.59
15 -630.97 -9.36 167.30 3.49 623.99 10.77 -750.00 -15.90
16 -5.89 -.09 116.97 2.14 112.77 1.79 -500.04 -10.88
17 -29.49 -.46 -154.83 -2.96 588.50 8.07 522.24 9.69
18 -450.77 -6.89 -20.26 -.40 652.46 8.45 -93.39 -1.70
19 -256.83 -4.47 41.97 .83 655.70 7.72 -49.00 -.88
20 -270.03 -4.94 203.68 3.84 77.09 .88 -9.59 -.17 °

21 -10.72 -.17 -42.76 -.86 -548.36 -7.29 -133.91 -2.42
22 -254.21 -4.12 -226.21 -4.82 1221.74 12.99 -644.58 -12.97
23 -93.85 -1.57 446.02 7.81 -285.53 -3.60 -453.70 -9.41
24 124.38 1.97 -79.36 -1.49 -616.31 -8.37 355.67 6.53
25 125.01 1.91 -19.48 -.37 -444.00 -6.28 67.47 1.18
26 -47.50 -.75 26.70 .50 -178.76 -2.55 -105.15 -1.88
27 -294.54 -5.10 -341.90 -6.70 126.01 1.67 130.28 2.23 ·
28 435.42 6.44 -374.51 -8.52 -159.87 -2.28 - -
29 - - -131.94 -3.12 805.87 10.23 - -
30 - - -553.97 -11.62 31.83 .39 - -
31 - - 794.56 14.28 -200.90 -2.63 - -

Av. 240.18E 174.77 3.47 486.18
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Table 57. One-Day Lead Tlme Dally Peak Forecast Error Uslng Dally Energy Transfer Functlon

Model wlth Actual Input Data and Actual Load Factor

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW % MW °/6

1 -178.35 -2.72 83.68 1.79 252.97 3.10 -883.26 -18.38
2 180.17 2.99 547.84 9.90 247.19 3.01 -205.49 -4.46
3 366.85 5.94 474.15 8.73 122.31 1.50 175.55 3.09

4 362.64 5.31 -369.14 -7.12 201.97 2.46 -108.01 -1.83
5 160.15 2.46 -357.48 -6.98 -10.82 -.13 -278.75 -4.62
6 169.20 2.62 -321.66 -6.33 -204.88 -2.69 29.43 .53
7 162.32 2.35 -174.15 -3.86 62.88 .84 166.87 3.24
8 304.53 4.28 -254.99 -5.88 271.72 3.11 211.26 4.39
9 -94.92 -1.29 -616.82 -11.93 -99.17 -1.13 -559.83 -12.41

10 -240.51 -3.30 -407.61 -7.77 63.03 .79 400.73 7.50
11 -98.08 -1.31 196.65 3.82 -164.03 -1.84 277.39 4.95
12 -81.33 -1.22 53.89 1.06 -109.33 -1.58 -415.52 -7.16
13 -98.27 -1.50 142.43 2.85 -214.48 -4.27 -322.85 -5.37
14 128.94 1.84 203.81 4.34 -365.32 -7.88 543.27 10.40
15 -186.66 -2.77 487.09 10.16 -153.51 -2.65 18.12 .38
16 -173.72 -2.61 225.66 4.13 4.10 .07 316.18 6.88
17 -78.98 -1.24 -292.59 -5.59 -33.23 -.46 297.24 5.51
18 -329.45 -5.04 8.78 .17 7.58 .10 -37.15 -.68
19 -178.24 -3.10 137.66 2.71 514.32 6.05 931.10 16.71

20 -308.77 -5.65 468.18 8.83 -34.34 -.39 582.25 10.33
21 -459.63 -7.36 77.05 1.54 352.76 4.69 290.69 5.25

22 -3.55 -.06 -295.28 -6.29 270.88 2.88 -24.16 -.49
23 276.42 4.64 895.60 15.69 388.35 4.89 -503.71 -10.45
24 145.74 2.31 313.99 5.90 -265.20 -3.60 -111.84 -2.05

25 110.62 1.69 64.39 1.23 -110.46 -1.56 1306.19 22.94
26 182.52 2.89 155.66 2.94 -349.70 -4.98 248.10 4.43
27 -20.89 -.36 -596.63 -11.70 -95.02 -1.26 879.25 15.03
28 292.04 4.32 -504.06 -11.47 87.62 1.25 - -
29 - - -149.94 -3.55 108.87 1.38 - -
30 - - -684.05 -14.34 -65.34 -.81 - -
31 - - 752.36 13.52 221.75 2.90 - -

Av 191.91 2.97 332.69E 175.91 374.97 7.02
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Table 58. One-Day Lead Tlme Dally Peak Forecast Error Uslng Dally Energy Transfer Functlon

Model wlth Predlcted Input Data and Actual Load Factor

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW % MW % MW %

1 -95.77 -1.46 -8.33 -.18 -241.77 -2.96 -226.41 -4.71
2 -694.53 -11.54 325.94 5.89 237.63 2.89 -769.21 -16.70
3 -8.36 -.14 742.65 13.68 183.94 2.25 486.73 8.58
4 868.81 12.71 114.09 2.20 -94.90 -1.15 -49.37 -.84
5 371.63 5.71 -325.50 -6.36 265.21 3.23 -12.73 -.21
6 446.40 6.90 -396.61 -7.80 -296.69 -3.89 -597.91 -10.72
7 190.56 2.76 -303.07 -6.71 -155.72 -2.09 -147.81 -2.87
8 342.09 4.81 -312.88 -7.22 751.42 8.61 128.33 2.67
9 926.52 12.56 -52.23 -1.01 66.90 .76 124.55 2.76

10 300.38 4.13 -595.97 -11.36 -845.90 -10.63 -197.49 -3.70
11 -236.19 -3.16 -195.49 -3.80 1220.45 13.68 358.20 6.39
12 -15.44 -.23 87.20 1.72 -1814.97 -26.24 277.19 4.77
13 117.17 1.79 64.41 1.29 -631.68 -12.57 -80.97 -1.35
14 125.50 1.79 79.68 1.70 124.60 2.69 -952.19 -18.23
15 -423.00 -6.27 415.13 8.66 -103.74 -1.79 421.91 8.95
16 -432.70 -6.51 399.77 7.32 12.96 .21 135.20 2.94
17 -316.67 -4.96 -19.82 -.38 1000.89 13.73 718.47 13.32
18 -775.02 -11.85 -182.98 -3.61 -595.59 -7.72 -70.68 -1.29
19 -497.58 -8.65 65.62 1.29 1607.25 18.91 -31.08 -.56
20 -517.18 -9.47 306.69 5.78 799.75 9.16 827.11 14.67
21 -646.99 -10.36 268.30 5.37 -977.98 -13.00 802.87 14.49
22 -451.33 -7.31 -146.24 -3.12 924.92 9.84 -150.33 -3.03
23 -16.27 -.27 289.15 5.07 -586.85 -7.39 -21.72 -.45
24 332.10 5.26 453.13 8.51 -494.95 -6.72 -219.92 -4.04
25 253.65 3.87 292.36 5.60 -419.65 -5.93 -40.06 -.70
26 278.94 4.41 88.80 1.68 -113.08 -1.61 993.52 17.76
27 -1.80 -.03 -229.25 -4.50 290.15 3.84 421.15 7.20
28 234.48 3.47 -662.98 -15.08 166.05 2.37 - -
29 -323.39 -7.65 -231.79 -2.94 - -
30 -630.95 -13.23 425.94 5.26 - -
31 599.35 10.77 67.33 .88 - -

289.61 5.76 508.09 6.61 343.08
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Table S9. One-Week Lead Tlme Dally Peak Foracast Error Uslng Dally Energy Unlvarlate Model
and Actual Load Factor

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW °/6 MW % MW °/6

1 -273.89 -4.18 -498.63 -10.65 916.94 11.24 -1071.51 -22.30
2 -634.41 -10.54 -202.82 -3.67 784.23 9.55 -1318.2 -28.63
3 -826.10 -13.39 216.90 3.99 768.01 9.39 -470.52 -8.29
4 95.15 1.39 45.46 .88 603.71 7.34 -292.19 -4.95
5 224.69 3.45 -51.65 -1.01 528.77 6.45 -105.35 -1.75
6 398.97 6.17 -168.88 -3.32 67.58 .89 -373.83 -6.70
7 575.64 8.34 -221.24 -4.90 -79.99 -1.07 -685.31 -13.29
8 595.62 8.38 -386.48 -8.91 876.46 10.04 -1070.5 -22.26
9 812.41 11.02 -230.55 -4.46 959.47 10.94 -1321.4 -29.29

10 973.91 13.38 -237.27 -4.52 266.13 3.34 -795.81 -14.89
11 985.66 13.18 -46.70 -.91 974.14 10.92 -579.17 -10.34
12 415.21 6.23 -52.42 -1.03 -453.13 -6.55 -385.16 -6.63
13 248.16 3.80 -34.96 -.70 -1930.67 -38.41 -82.36 -1.37
14 470.01 6.70 -93.47 -1.99 -2332.91 -50.31 -621.68 -11.90

15 -157.94 -2.34 121.80 2.54 -1742.61 -30.09 -1108.0 -23.50
16 -389.29 -5.86 197.08 3.61 -1456.11 -23.11 -1284.9 · -27.96
17 -385.00 -6.03 -13.03 -.25 -532.89 -7.31 -624.03 -11.57

18 -750.55 -11.47 -38.92 -.77 7.96 .10 -624.14 -11.37
19 -973.11 -16.92 16.76 .33 1043.09 12.27 -581.55 -10.44

20 -1064.99 -19.49 216.37 4.08 1557.70 17.84 -514.06 -9.12

21 -857.62 -13.74 120.53 2.41 914.03 12.15 -389.05 -7.02
22 -852.22 -13.80 -155.57 -3.31 1853.57 19.71 -783.25 -15.76
23 -660.69 -11.09 325.57 5.70 1079.55 13.60 -986.38 -20.46
24 -291.56 -4.62 160.34 3.01 142.44 1.93 -574.32 -10.54
25 36.78 .56 95.12 1.82 -520.63 -7.36 -380.46 -6.68
26 114.77 1.82 91.35 1.72 -818.94 -11.67 -398.47 -7.12
27 -196.30 -3.40 -294.75 -5.78 -618.21 -8.19 -192.78 -3.30
28 133.42 1.97 -573.71 -13.05 -483.21 -6.90 - -
29 - - -517.19 -12.23 57.53 .73 - -
30 - - -975.89 -20.46 173.54 2.14 - -
31 - - 119.76 2.15 131.85 1.73 - -

Av. 514.07 7.97 796.00 12.87
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Table 60. One-Week Lead Tlme Dally Peak Forecast Error Uslng Dally Energy Transfer Functlon
Model with Actual Input Data and Actual Load Factor

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW °/o MW %

1 -178.35 -2.72 194.60 4.15 355.95 4.36 -943.10 -19.62
2 180.17 2.99 633.42 11.45 593.35 7.22 -837.78 -18.19

' 3 366.85 5.94 754.39 13.89 597.20 7.30 -386.12 -6.80
4 362.64 5.31 -25.62 -.49 667.13 8.11 -347.59 -5.89
5 160.15 2.46 -370.71 -7.24 486.98 5.94 -496.75 -8.23
6 169.20 2.62 -494.03 -9.72 158.53 2.08 -293.38 -5.26
7 162.32 2.35 -394.70 -8.74 166.42 2.24 -24.75 -.48
8 304.53 4.28 -439.11 -10.13 357.46 4.09 243.30 5.06
9 -94.92 -1.29 -816.43 -15.79 136.17 1.55 -387.18 -8.58

10 -240.51 -3.30 -780.88 _ -14.88 145.70 1.83 132.38 2.48
11 -98.08 -1.31 -150.91 -2.93 -82.00 -.92 370.62 6.62
12 -81.33 -1.22 -12.47 -.25 -167.14 -2.42 -156.25 -2.69
13 -98.27 -1.50 138.04 2.76 -307.84 -6.12 -427.44 -7.11
14 128.94 1.84 268.62 5.72 -616.11 -13.29 259.11 4.96
15 -186.66 -2.77 613.18 12.79 -693.93 -11.98 180.46 3.83
16 -173.72 -2.61 502.41 9.19 -534.15 -8.48 469.61 10.22
17 -78.98 -1.24 -66.06 -1.26 -474.66 -6.51 583.84 10.83
18 -329.45 -5.04 -21.35 -.42 -319.99 -4.15 336.49 6.13
19 -178.24 -3.10 127.75 2.51 279.18 3.29 1176.29 21.11
20 -308.77 -5.65 526.44 9.93 233.01 2.67 1371.74 24.33
21 -459.63 -7.36 319.89 6.40 589.77 7.84 1157.27 20.89
22 -3.55 -.06 -152.76 -3.25 802.17 8.53 735.86 14.81
23 276.42 4.64 825.23 14.46 946.73 11.92 -24.85 -.52
24 145.74 2.31 683.20 12.84 492.46 6.69 -145.07 -2.66
25 110.62 1.69 373.17 7.15 279.87 3.96 1212.04 21.29
26 182.52 2.89 326.65 6.17 -219.41 -3.13 985.57 17.62
27 -20.89 -.36 -448.36 -8.79 -267.30 -3.54 1501.87 25.68
28 292.04 4.32 -702.58 -15.99 -169.90 -2.43 - -
29 - - -466.99 -11.05 -67.18 -.85 - -
30 - - -908.90 -19.06 -191.33 -2.36 - -
31 - - 343.40 6.17 123.89 1.62 - -

Av- IHEII 2-67 IEIEI 674-77E 562-47 IEZZI
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Table 61. One-Week Lead Time Dally Peak Forecast Error Uslng Dally Energy Transfer Functlon

Model with Predlcted Input Data and Actual Load Factor

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW g °/6 MW % MW %

1 -477.29 -7.28 -496.72 -10.60 749.09 9.18 -771.68 -16.06
2 -794.01 -13.19 -324.21 -5.86 817.94 9.96 -896.19 -19.46
3 -832.80 -13.50 337.92 6.22 661.11 8.08 -382.65 -6,74
4 13.83 .20 96.36 1.86 480.28 5.84 -288.84 -4.89
5 469.08 7.21 -121.36 -2.37 417.87 5.09 90.29 1.50
6 914.60 14.15 -356.02 -7.01 -101.93 -1.34 103.95 1.86
7 513.38 7,43 -379.57 -8.41 -243.75 -3.28 -355.67 -6.90
8 391,04 5.50 -519.63 -11.98 717.67 8.22 -926.26 -19.26
9 915.86 12.42 -392.69 -7.60 733.20 8.36 -681.90 -15.11

10 572.41 7.86 -404.16 -7.70 -153.46 -1.93 -735.27 -13.76
11 152.67 2.04 -378.95 -7.37 703.05 7.88 -613.44 -10.95
12 483.20 7.25 -203.63 -4.01 -894.56 -12.93 -481.18 -8.29
13 678.94 10.38 -109.77 -2.19 -2072.08 -41.22 445.16 7.41
14 565.11 8.06 -60.84 -1.30 -2300.82 -49.62 -17.10 -.33
15 -344.57 -5.11 134.55 2.81 -2343.36 -40.46 -637.43 -13.52
16 -613.25 -9.23 -141.07 -2.58 -2015.48 -31.99 -949.27 -20.66
17 -458.47 -7.19 -12.30 -,24 -405.94 -5.57 -266.00 -4.93
18 -912.00 -13.94 28.62 ,57 -891.71 -11.56 -490.62 -8.94
19 -688.90 -11.98 -5.51 -.11 1780.66 20.95 -889.09 -15.96
20 -629.29 -11.52 217.39 4.10 2671.73 30.60 -599.47 -10.63
21 -744.72 -11.93 187.17 3.75 1512.94 20.11 615.54 11.11
22 -781.57 -12.65 -151.30 -3.22 1924.06 20.46 -209.54 -4.22
23 -740.78 -12.43 -91.10 -1.60 1033.06 13.01 -442.89 -9.19

24 -363.70 -5.76 -56.91 -1.07 -365.74 -4.97 -460.13 -8.45
25 47.88 .73 182.02 3.49 -973.44 -13.76 -279.54 -4.91
26 306.35 4.85 116.14 2.19 -1495.82 -21.31 -33.92 -.61
27 160.22 2.78 -223.56 -4.38 -1356,14 -17.96 -56.41 -.96
28 329.95 4.88 -643.88 -14.65 -135.06 -1.93 - -
29 - - -659.80 -15.61 -683.98 -8.68 - -
30 - - -1055.68 -22.14 122.59 1.51 - -
31 - - -147.11 -2.64 133.88 1.75 - -

Av. @ 8.27 265.68 5.47 996.53 14.18 471.09E
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Table 62. One-Day Lead Tlme Dally Peak Forecaat Error Uslng Dally Energy Unlvarlate Model and
Average Load Fcator

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW °/6 MW % MW %

1 204.60 3.12 -73.35 -1.57 547.84 6.71 -815.25 -16.96
2 -575.62 -9.56 156.76 2.83 -24.11 -.29 -553.71 -12.02
3 95.52 1.55 158.69 2.92 103.72 1.27 751.03 13.23
4 739.29 10.82 -245.40 -4.73 101.82 1.24 122.97 2.08
5 -351.37 -5.40 -214.97 -4.20 171.49 2.09 96.18 1.59
6 70.73 1.09 -174.56 -3.43 -352.10 -4.62 -514.72 -9.23
7 88.87 1.29 -259.50 -5.75 -102.40 -1.38 -693.06 -13.44
8 122.99 1.73 -257.71 -5.94 1276.27 14.62 -769.85 -16.01
9 595.94 8.08 -12.07 -.23 332.52 3.79 -653.61 -14.49

10 269.14 3.70 -103.84 -1.98 -500.22 -6.29 436.78 8.17
11 -89.65 -1.20 -27.17 -.53 1017.85 11.41 51.75 .92
12 -664.23 -9.97 -193.99 -3.82 -1526.56 -22.07 41.75 .72
13 -99.69 -1.52 -160.31 -3.20 -2207.56 -43.91 51.45 .86
14 146.90 2.10 -124.34 -2.65 -1112.09 -23.98 -926.88 -17.74

15 -520.95 -7.73 237.98 4.96 423.67 7.31 -908.22 -19.26
16 192.71 2.90 123.13 2.25 52.23 .83 -532.15 -11.58
17 -132.94 -2.08 -226.58 -4.33 751.19 10.30 450.27 8.35

18 -241.97 -3.70 -227.96 -4.50 543.97 7.05 -144.11 -2.63
19 -338.12 -5.88 -170.62 -3.35 717.85 8.45 -114.36 -2.05 .

20 -422.40 -7.73 67.37 1.27 450.08 5.15 -127.25 -2.26
21 185.65 2.97 -81.19 -1.63 -696.28 -9.26 -322.89 -5.83
22 81.93 1.33 -297.58 -6.34 1770.93 18.83 -868.25 -17.47
23 -50.18 -.84 369.06 6.47 -629.83 -7.93 -563.57 -11.69
24 147.03 2.33 -253.83 -4.77 -782.38 -10.62 265.62 4.88
25 99.72 1.52 -208.50 -4.00 -442.14 -6.25 2.72 .05
26 -152.52 -2.41 -101.64 -1.92 -115.47 -1.64 -270.84 -4.84
27 -532.70 -9.23 -404.06 -7.92 510.42 6.76 -15.86 -.27
28 661.01 9.78 -547.25 -12.45 -208.67 -2.98 - -
29 - - -299.66 -7.09 761.19 9.66 - -
30 - - -528.89 -11.09 234.53 2.90 - -
31 - - 759.87 13.65 -193.14 -2.53 - -

Av. 227.99 4.57 8.46409.82DAILY
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Table 63. 0ne~Day Lead Tlme Dally Peak Forecast Error Uslng Dally Energy Transfer Functlon

Models wlth Actual Input Data and Average Load Factor

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW % MW °/6

1 47.55 .73 224.87 4.80 39.53 .48 -983.87 -20.47

2 141.32 2.35 563.04 10.18 276.79 3.37 -204.35 -4.44
3 598.65 9.70 341.12 6.28 62.46 .76 195.51 3.44

4 374.80 5.49 -491.20 -9.48 288.37 3.51 -52.71 -.89
5 6.59 .10 -510.96 -9.98 128.51 1.57 -278.02 -4.61
6 53.41 .83 -376.34 -7.41 -138.02 -1.81 -134.48 -2.41

7 85.47 1.24 -307.23 -6.81 54.66 .73 -74.31 -1.44
8 334.27 4.70 -267.67 -6.17 380.68 4.36 124.38 2.59
9 95.34 1.29 -689.78 -13.34 34.87 .40 -637.24 -14.12

10 -274.52 -3.77 -468.19 -8.92 42.50 .53 373.77 7.00
11 -315.62 -4.22 64.48 1.25 138.55 1.55 245.12 4.38
12 -473.23 -7.10 -111.24 -2.19 -385.99 -5.58 -486.38 -8.38
13 -380.04 -5.81 -4.86 -.10 -627.96 -12.49 -427.17 -7.11

14 -86.57 -1.23 162.12 3.45 -727.72 -15.69 328.99 6.30

15 -83.27 -1.24 552.88 11.53 -383.96 -6.63 -117.87 -2.50
16 29.88 .45 231.70 4.24 -57.50 -.91 289.22 6.29

17 -183.23 -2.87 -366.17 -7.00 144.55 1.98 221.95 4.12

18 -124.28 -1.90 -197.73 -3.90 -110.80 -1.44 -87.36 -1.59

19 -258.48 -4.49 -70.90 -1.39 577.59 6.80 877.14 15.74

20 -462.17 -8.46 338.94 6.39 343.46 3.93 476.92 8.46
‘

21 -249.16 -3.99 39.53 .79 221.36 2.94 115.85 2.09

22 319.49 5.17 -367.66 -7.83 883.90 9.40 -223.12 -4.49

23 317.42 5.33 825.21 14.46 72.26 .91 -614.62 -12.75

24 168.31 2.66 152.23 2.86 -423.97 -5.76 -210.17 -3.86

25 85.27 1.30 -121.61 -2.33 -108.68 -1.54 1255.69 22.05

26 81.29 1.29 30.45 .57 -284.90 -4.06 92.67 1.66

27 -248.31 -4.30 -661.70 -12.97 300.83 3.98 752.25 12.86 -
28 522.74 7.73 -681.49 -15.51 40.51 .58 - -
29 - - -318.36 -7.53 59.79 .76 - -
30 - - -658.36 -13.80 139.81 1.73 - -
31 - - 717.36 12.89 229.09 3.00 - -

Av 228.60 6.98 248.70 365.97 6.89
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Table 64. One-Day Lead Tlme Dally Peak Forecast Error Uslng Dally Energy Transfer Functlon

Model wlth Predlcted Input and Average Load Factor Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW % MW °/6

1 127.37 1.94 135.68 2.90 -468.57 -5.74 -315.41 -6.56
2 -739.21 -12.28 341.82 6.18 267.26 3.25 -767.94 -16.68
3 238.42 3.86 616.82 11.36 124.55 1.52 505.56 8.91
4 880.03 12.88 2.65 .05 -5.30 -.06 5.39 .09
5 223.19 3.43 -478.09 -9.34 399.87 4.88 -12.03 -.20
6 335.70 5.19 -452.05 -8.90 -229.04 -3.01 -780.36 -13.99
7 114.03 1.65 -439.81 -9.74 -164.19 -2.21 -404.20 -7.84

8 371.66 5.23 -325.73 -7.51 854.20 9.78 39.88 .83
9 1090.75 14.79 -118.06 -2.28 198.44 2.26 57.58 1.28

10 268.82 3.69 -658.56 -12.55 -868.80 -10.92 -227.71 -4.26
11 -457.70 -6.12 -338.14 -6.58 1476.91 16.56 326.42 5.83
12 -403.52 -6.06 -76.84 -1.51 -2158.80 -31.21 214.21 3.69
13 -155.46 -2.38 -85.24 -1.70 -1078.06 -21.45 -181.31 -3.02
14 -90.13 -1.29 36.84 .78 -202.31 -4.36 -1234.93 -23.64
15 -316.09 -4.69 482.02 10.05 -332.27 -5.74 297.61 6.31
16 -221.36 -3.33 405.61 7.42 -48.56 -.77 107.10 2.33
17 -424.76 -6.66 -89.76 -1.72 1153.56 15.82 649.40 12.04
18 -556.54 -8.51 -397.32 -7.84 -723.24 -9.37 -121.19 -2.21
19 -582.13 -10.12 -145.97 -2.87 1661.86 19.56 -96.23 -1.73
20 -676.11 -12.37 173.14 3.26 1141.60 13.07 726.88 12.89
21 -430.64 -6.90 232.24 4.65 -1133.76 -15.07 645.10 11.64
22 -104.89 -1.70 -216.45 -4.61 1494.04 15.89 -354.31 -7.13
23 26.84 .45 209.90 3.68 -943.76 -11.89 -122.59 -2.54

24 354.00 5.60 295.86 5.56 -658.50 -8.94 -320.16 -5.88

25 228.87 3.49 114.59 2.20 -417.80 -5.91 -106.05 -1.86
26 179.30 2.84 -38.03 -.72 -50.37 -.72 859.76 15.37
27 -228.47 -3.96 -290.13 -5.69 666.06 8.82 282.43 4.83

28 467.23 6.91 -846.16 -19.25 119.48 1.71 - -
29 - - -498.49 -11.79 -283.02 -3.59 —

-
30 - - -605.51 -12.70 618.74 7.64 - -
31 - - 563.24 10.12 74.83 .98 - -

Av. 367.62 E 313.25 6.31 645.73 8.47 ß 6.80
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Table 65. One-Week Lead Tlme Daily Peak Forecast Error Using Dally Energy Unlvarlate Model
and Average Load Fcator

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW °/6 MW °/>

1 -44.79 -.68 -339.58 -7.25 721.43 8.84 -1175.45 -24.46
2 -678.69 -11.28 -185.33 -3.35 811.83 9.88 -1316.87 -28.60
3 -546.66 -8.86 76.96 1.42 712.96 8.72 -448.22 -7.90
4 107.81 1.58 -67.49 -1.30 685.78 8.34 -235.19 -3.98
5 72.69 1.12 -196.56 -3.84 658.95 8.03 -104.63 -1.73
6 287.40 4.45 -222.00 -4.37 132.11 1.73 -549.67 -9.86

7 503.49 7.29 -355.66 -7.88 -88.38 -1.19 -967.67 -18.76
8 624.08 8.78 -399.52 -9.21 977.63 11.20 -1181.67 -24.57
9 979.55 13.28 -298.64 -5.78 1077.52 12.28 -1410.46 -31.26

10 945.40 12.99 -296.02 -5.64 246.12 3.09 -829.29 -15.52
11 799.23 10.68 -185.37 -3.61 1238.80 13.89 -616.63 -11.01
12 52.16 .78 -221.05 -4.36 -743.33 -10.75 -455.67 -7.85
13 -18.91 -.29 -187.62 -3.75 -2479.53 -49.32 -182.73 -3.04
14 265.17 3.78 -137.93 -2.94 -2837.85 -61.20 -889.29 -17.02
15 -54.98 -.82 193.17 4.03 -2034.66 -35.13 -1276.68 -27.07
16 -179.25 -2.70 203.14 3.72 -1532.00 -24.31 -1321.98 -28.77
17 -494.19 -7.75 -82.88 -1.58 -342.98 -4.70 -712.93 -13.22

18 -532.79 -8.14 -247.38 -4.88 -110.42 -1.43 -679.69 -12.39
19 -1064.10 -18.50 -196.90 -3.87, 1102.17 12.97 -653.10 -11.72
20 -1238.48 -22.67 80.40 1.52 1866.89 21.38 -642.23 -11.39
21 -634.66 -10.17 83.35 1.67 792.92 10.54 -586.52 -10.59
22 -484.83 -7.85 -225.92 -4.81 2360.36 25.10 -1012.45 -20.38
23 -612.93 -10.29 246.85 4.32 792.38 9.98 -1107.35 -22.97
24 -267.38 -4.23 -6.39 -.12 -7.85 -.11 -680.83 -12.50
25 11.14 .17 -89.77 -1.72 -518.75 -7.34 -450.37 -7.91
26 12.42 .20 -35.43 -.67 -750.02 -10.68 -572.69 -10.24
27 -430.60 -7.46 -356.37 -6.99 -195.28 -2.59 -347.18 -5.94
28 369.78 5.47 -753.66 -17.15 -534.20 -7.63 - -
29 - - -699.74 -16.55 8.12 .10 - -
30 - - -948.82 -19.90 372.68 4.60 - -
31 - - 80.17 1.44 139.28 1.82 - -

Av. 439.77 6.87 248.39 866.87 755.83 14.84
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Table 66. One-Week Lead Tlme Daily Peak Forecast Error Using Dally Energy Transfer Functlon

Models with Actual Input Data and Average Load Factor

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW °/6 MW °/6

1 47.55 .73 332.38 7.10 145.29 1.78 -1044.77 -21.74
2 141.32 2.35 648.36 11.72 621.67 7.57 -836.49 -18.16
3 598.65 9.70 628.87 11.58 540.88 6.61 -364.12 -6.42
4 374.80 5.49 -140.13 -2.70 748.52 9.10 -290.08 -4.91
5 6.59 .10 -524.57 -10.25 617.88 7.53 -495.99 -8.22
6 53.41 .83 -550.45 -10.83 222.29 2.92 -466.84 -8.37
7 85.47 1.24 -534.04 -11.83 158.31 2.13 -275.19 -5.34
8 334.27 4.70 -452.30 -10.43 465.31 5.33 157.03 3.27
9 95.34 1.29 -891.90 -17.25 266.66 3.04 -461.95 -10.24

10 -274.52 -3.77 -845.46 -16.11 125.38 1.58 103.96 1.95
11 -315.62 -4.22 -292.36 -5.69 217.85 2.44 338.92 6.05
12 -473.23 -7.10 -179.79 -3.54 -446.08 -6.45 -224.16 -3.86
13 -380.04 -5.81 -9.38 -.19 -728.68 -14.50 -533.49 -8.88
14 -86.57 -1.23 227.53 4.85 -996.67 -21.49 31.82 .61
15 -83.27 -1.24 677.04 14.12 -945.34 -16.32 49.17 1.04
16 29.88 .45 508.12 9.30 -601.02 -9.54 443.61 9.65
17 -183.23 -2.87 -136.62 -2.61 -286.16 -3.92 512.78 9.51
18 -124.28 -1.90 -229.08 -4.52 -443.41 -5.75 289.68 5.28
19 -258.48 -4.49 -81.22 -1.60 344.32 4.05 1125.18 20.20
20 -462.17 -8.46 398.75 7.52 599.28 6.86 1282.86 22.75
21 -249.16 -3.99 284.23 5.69 462.72 6.15 1011.30 18.25
22 319.49 5.17 -223.07 -4.75 1379.53 14.67 567.19 11.41
23 317.42 5.33 753.82 13.21 654.01 8.24 -125.79 -2.61
24 168.31 2.66 533.37 10.02 349.46 4.74 -243.99 -4.48

25 85.27 1.30 198.32 3.80 281.55 3.98 1160.46 20.38
26 81.29 1.29 205.60 3.88 -155.75 -2.22 851.59 15.22
27 -248.31 -4.30 -511.73 -10.03 137.46 1.82 1390.78 23.78
28 522.74 7.73 -887.20 -20.19 -218.76 -3.12 - -
29 - - -647.60 -15.32 -117.38 -1.49 - -
30 - - -882.15 -18.50 16.98 .21 - -
31 - - 305.43 5.49 131.33 1.72 - -

Av. 228.60E 442.61 8.86 433.09 543.67 10.10
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Table 67. One-Week Lead Tlme Dally Peak Forecast Error Uslng Dally Energy Transfer Functlon

Models wlth Predlcted Input Data and Average Load Fcator

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW °/6 MW °/6

1 -241.37 -3.68 -337.73 -7.21 549.04 6.73 -870.32 -18.11

2 -839.35 -13.95 -306.35 -5.54 845.42 10.29 -894.88 -19.43

' 3 -553.10 -8.96 201.23 3.71 605.26 7.40 -360.67 -6.35

4 26.65 .39 -15.47 -.30 563.67 6.86 -231.87 -3.93
‘

5 323.00 4.97 -268.22 -5.24 549.94 6.70 90.98 1.51

6 812.52 12.57 -411.04 -8.09 -35.95 -.47 -57.76 -1.04

7 440.53 6.38 -518.49 -11.49 -252.32 -3.39 -622.10 -12.06

8 420.40 5.91 -533.04 -12.29 820.89 9.40 -1034.63 -21.51

9 1080.37 14.65 -462.82 -8.95 854.67 9.74 -761.18 -16.87

10 542.08 7.45 -464.70 V -8.85 -174.56 -2.19 -768.42 -14.38

11 -57.67 -.77 -526.50 -10.24 976.75 10.95 -651.11 -11.62

12 124.10 1.86 -377.23 -7.43 -1202.14 -17.38 -552.79 -9.52

13 430.17 6.58 -264.70 -5.29 -2632.10 -52.36 353.48 5.88

14 363.26 5.18 -104.99 -2.24 -2803.43 -60.46 -257.03 -4.92

15 -238.83 -3.54 205.72 4.29 -2658.70 -45.90 -792.39 -16.80

16 -396.53 -5.97 -134.61 -2.46 -2096.84 -33.28 -984.21 -21.42

17 -568.84 -8.92 -82.15 -1.57 -219.12 -3.01 -349.61 -6.48

18 -689.43 -10.54 -177.08 -3.50 -1023.90 -13.27 -544.94 -9.93

19 -776.04 -13.49 -220.10 -4.33 1833.90 21.58 -964.22 -17.31

20 -791.21 -14.48 81.45 1.54 2932.90 33.59 -729.42 -12.94

21 -525.30 -8.41 150.50 3.01 1402.81 18.65 451.53 8.15

22 -417.87 -6.76 -221.59 -4.72 2426.12 25.80 -415.88 -8.37

23 -692.44 -11.62 -175.92 -3.08 743.95 9.37 -552.54 -11.46

24 -339.26 -5.37 -230.66 -4.33 -526.59 -7.15 -564.61 -10.36

25 22.28 .34 .27 .01 -971.44 -13.74 -348.29 -6.12

26 207.16 3.28 -10.03 -.19 -1420.94 -20.24 -197.54 -3.53

27 -60.09 -1.04 -284.37 -5.58 -895.01 -11.85 -207.33 -3.54

28 559.30 8.27 -826.37 -18.80 -183.69 -2.62 - -
29 - - -847.83 -20.05 -738.07 -9.37 - -
30 - - -1028.25 -21.56 323.01 3.99 - -
31 - - -188.65 -3.39 141.32 1.85 - -

Av. 447.83 6.98 1077.56 15.47 541.10 10.50
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Table 68. One-Day Lead Tlme Dally Peak Forecast Error Uslng Dally Energy and Load Factor

Unlvarlate Models

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW °/6 MW °/6

1 204.60 3.12 -34.29 -.73 513.47 6.29 -666.33 -13.86

2 -575.62 -9.56 230.46 4.17 43.28 .53 -485.81 -10.55

3 95.52 1.55 107.67 1.98 94.52 1.16 750.16 13.22

4 739.29 10.82 -255.09 -4.92 120.18 1.46 107.13 1.81

5 -351.37 -5.40 -323.75 -6.33 144.95 1.77 54.71 .91

6 70.73 1.09 -222.01 -4.37 -393.58 -5.17 -515.28 -9.24

7 88.87 1.29 -174.24 -3.86 -122.16 -1.64 -565.50 -10.96

8 122.99 1.73 -249.44 -5.75 1278.76 14.64 -573.69 -11.93

9 595.94 8.08 -95.83 -1.85 299.15 3.41 -581.06 -12.88

10 269.14 3.70 -174.48 -3.32 -539.47 -6.78 492.60 9.22

11 -89.65 -1.20 -114.47 -2.23 1024.10 11.48 74.47 1.33

12 -664.23 -9.97 -225.74 -4.45 -1613.39 -23.33 67.98 1.17

13 -99.69 -1.52 -248.71 -4.97 -2121.60 -42.20 102.20 1.70

14 146.90 2.10 -132.25 -2.82 -976.87 -21.07 -851.44 -16.30

15 -520.95 -7.73 203.65 4.25 539.89 9.32 -720.57 -15.28

16 192.71 2.90 89.01 1.63 125.35 1.99 -422.63 -9.20

17 -132.94 -2.08 -314.41 -6.01 770.65 10.57 473.64 8.78

18 -241.97 -3.70 -333.18 -6.58 490.36 6.35 -82.02 -1.49

19 -338.12 -5.88 -266.70 -5.24 754.20 8.88 -75.70 -1.36

20 -422.40 -7.73 38.38 .72 430.03 4.92 -77.12 -1.37

21 185.65 2.97 -35.65 -.71 -805.91 -10.71 -232.20 -4.19

22 81.93 1.33 -294.16 -6.27 1813.42 19.28 -725.21 -14.59

23 -50.18 -.84 326.60 5.72 -809.15 -10.19 -406.52 -8.43

24 147.03 2.33 -392.12 -7.37 -679.56 -9.23 345.78 6.35

25 99.72 1.52 -347.46 -6.66 -394.71 -5.58 77.62 1.36

26 -152.52 -2.41 -188.52 -3.56 -116.00 -1.65 -220.39 -3.94

27 -532.70 -9.23 -429.05 -8.41 491.44 6.51 109.96 1.88

28 661.01 9.78 -590.13 -13.43 -324.56 -4.63 - -
29 - - -339.28 -8.02 775.97 9.85 - -
30 - - -632.32 -13.26 249.69 3.08 - -
31 - - 654.82 11.76 -253.71 -3.32 - -

Av. 281.23 260.12 5.21 616.45 8.61 365.10 7.16
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Table 69. One-Day Lead Time Dally Peak Forecast Error UsIng Dally Energy and Load Factor

Transfer Functlon Models wlth Actual Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW °/6 MW °/6

1 44.42 .68 267.92 5.72 12.29 .15 -858.25 -17.86

2 68.05 1.13 490.73 8.87 438.46 5.34 -228.44 -4.96

3 585.03 9.48 352.26 6.49 46.15 .56 2.83 .05

4 379.50 5.55 -308.70 -5.95 261.75 3.18 -110.37 -1.87

5 15.24 .23 -513.91 -10.04 -1.73 -.02 -118.06 -1.96

6 133.60 2.07 -218.15 -4.29 -86.77 -1.14 -75.59 -1.36

7 88.89 1.29 -337.45 -7.48 -10.97 -.15 -31.86 -.62

8 366.99 5.16 -269.37 -6.21 445.33 5.10 235.61 4.90

9 66.09 .90 -685.69 -13.27 -204.04 -2.33 -471.62 -10.45

10 -178.19 -2.45 -424.99 -8.10 171.33 2.15 573.63 10.74

11 -360.67 -4.82 90.19 1.75 -230.96 -2.59 344.34 6.15

12 -582.81 -8.75 13.91 .27 -236.13 -3.41 -471.68 -8.12

13 -455.20 -6.96 35.93 .72 -291.96 -5.81 -377.02 -6.27

14 -60.55 -.86 322.13 6.86 -668.32 -14.41 341.84 6.54

15 -150.65 -2.23 542.07 11.30 -322.63 -5.57 -119.49 -2.53

16 .61 .01 237.89 4.35 -117.75 -1.87 370.32 8.06

17 -97.65 -1.53 -363.65 -6.95 40.94 .56 225.54 4.18

18 -99.28 -1.52 -114.30 -2.26 -117.98 -1.53 29.60 .54

19 -272.52 -4.74 118.43 2.33 750.67 8.83 1205.26 21.63 .

20 -522.61 -9.56 506.54 9.55 -46.50 -.53 571.13 10.13

21 -422.10 -6.76 127.77 2.56 328.61 4.37 157.46 2.84

22 239.12 3.87 -354.31 -7.55 429.22 4.56 -201.24 -4.05

23 381.46 6.40 863.19 15.12 306.33 3.86 -338.26 -7.02

24 186.88 2.96 289.88 5.45 -204.13 -2.77 27.23 .50

25 152.10 2.32 26.65 .51 -121.51 -1.72 1242.50 21.82

26 100.93 1.60 149.87 2.83 -478.14 -6.81 104.80 1.87

27 -310.81 -5.38 -560.19 -10.98 55.27 .73 815.36 13.94

28 394.63 5.84 -703.57 -16.01 -35.95 -.51 - -
29 - - -200.94 -4.75 217.42 2.76 - -
30 · · -501.99 -10.53 176.77 2.18 - -
31 - - 744.18 13.37 -36.93 -.48 - -

Av. 239.88 3.75 357.38 6.70
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Table 70. One-Day Lead Time Dally Peak Forecast Error Uslng Dally Energy and Load Factor

Transfer Function Models with Predlcted Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW % MW %

1 92.13 1.40 184.46 3.94 -541.40 -6.64 -151.26 -3.15

2 -740.54 -12.31 232.36 4.20 347.73 4.23 -709.29 -15.40

3 208.40 3.38 588.67 10.84 135.81 1.66 456.73 8.05

4 874.12 12.79 162.41 3.13 15.33 .19 -107.49 -1.82

5 225.08 3.46 -412.16 -8.05 357.71 4.36 -77.30 -1.28

6 339.07 5.24 -319.92 -6.30 -301.04 -3.95 -682.72 -12.24

7 148.98 2.16 -416.19 -9.22 -163.63 -2.20 -245.69 -4.76

8 373.05 5.25 -370.45 -8.54 846.20 9.69 189.22 3.93

9 1103.20 14.96 -71.57 -1.38 174.26 1.99 94.30 2.09

10 257.37 3.54 -563.09 -10.73 -965.94 -12.14 -113.96 -2.13

11 -416.01 -5.56 -318.91 -6.20 1524.07 17.09 420.69 7.51

12 -420.11 -6.31 19.27 .38 -2365.23 -34.20 278.97 4.80

13 -197.03 -3.01 -4.76 -.10 -944.58 -18.79 -131.16 -2.18

14 -121.46 -1.73 140.52 2.99 -13.63 -.29 -1152.82 -22.07
15 -305.45 -4.53 502.03 10.47 -201.27 -3.47 437.47 9.28

16 -248.87 -3.75 390.55 7.15 14.35 .23 134.18 2.92

17 -437.01 -6.85 -72.66 -1.39 1139.78 15.63 663.57 12.31
18 -518.42 -7.92 -310.85 -6.14 -835.83 -10.83 -65.08 -1.19

19 -572.43 -9.95 1.32 .03 1712.62 20.15 -30.08 -.54

20 -681.99 -12.48 330.42 6.23 1151.45 13.19 921.33 16.34
‘

21 -458.25 -7.34 299.04 5.99 -1363.18 -18.12 747.72 13.50

22 -172.23 -2.79 -225.51 -4.80 1604.35 17.06 -234.26 -4.71

23 -6.15 -.10 286.49 5.02 -1298.31 -16.35 -16.04 -.33

24 381.82 6.04 358.39 6.73 -434.85 -5.90 -169.25 -3.11

25 236.69 3.61 304.96 5.85 -336.60 -4.76 46.61 .82

26 205.35 3.25 99.21 1.87 -67.30 -.96 865.91 15.48

27 -220.69 -3.82 -224.32 -4.40 599.85 7.94 394.80 6.75 -
28 440.74 6.52 -822.28 -18.71 -64.16 -.92 - -
29 - - -410.23 -9.70 -247.39 -3.14 - -
30 - - -478.83 -10.04 668.86 8.26 - -
31 - - 629.24 11.31 10.24 .13 - -

Av. 371.52 5.72 308.10659.58DAILY
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Table 71. One-Week Lead Tlme Dally Peak Forecast Error Uslng Dally Energy and Load Factor

Unlvarlate Models

DAY FEBRAURY MAY AUGUST OCTOBER

MW % MW % MW °/6 MW °/6

1 -44.79 -.68 -320.53 -6.84 721.43 8.84 -1146.16 -23.85

2 -678.69 -11.28 -226.25 -4.09 811.83 9.88 -1301.04 -28.25
3 -546.66 -8.86 4.48 .08 712.96 8.72 -415.52 -7.32
4 107.81 1.58 -113.75 -2.19 685.78 8.34 -207.41 -3.51

5 72.69 1.12 -233.07 -4.55 658.95 8.03 -85.18 -1.41
6 287 40 4.45 -221.51 -4.36 132.11 1.73 -520.11 -9.33

7 503.49 7.29 -379.64 -8.41 -88.38 -1.19 -937.15 -18.17

8 624.08 8.78 -438.84 -10.12 977.63 11.20 -1167.02 -24.27
9 979.55 13.28 -267.75 -5.18 1077.52 12.28 -1410.64 -31.26

10 945.40 12.99 -290.18 -5.53 246.12 3.09 -832.40 -15.58

11 799.23 10.68 -123.04 -2.39 1238.80 13.89 -624.59 -11.15

12 52.16 .78 -193.12 -3.81 -743.33 -10.75 -455.79 -7.85

13 -18.91 -.29 -244.18 -4.88 -2479.53 -49.32 -157.45 -2.62
14 265.17 3.78 -143.09 -3.05 -2837.85 -61.20 -848.59 -16.24

15 -54.98 -.82 236.17 4.92 -2034.66 -35.13 -1261.02 -26.74

16 -179.25 -2.70 243.45 4.46 -1532.00 -24.31 -1309.51 -28.50

17 -494.19 -7.75 -31.08 -.59 -342.98 -4.70 -708.32 -13.14

18 -532.79 -8.14 -228.54 -4.51 -110.42 -1.43 -674.51 -12.29
19 -1064.10 -18.50 -144.78 -2.85 1102.17 12.97 -643.29 -11.55
20 -1238.48 -22.67 85.47 1.61 1866.89 21.38 -627.94 -11.14

21 -634.66 -10.17 104.99 2.10 792.92 10.54 -547.87 -9.89

22 -484.83 -7.85 -207.49 -4.42 2360.36 25.10 -988.54 -19.89
23 -612.93 -10.29 297.61 5.21 792.38 9.98 -1102.16 -22.87
24 -267.38 -4.23 54.46 1.02 -7.85 -.11 -668.28 -12.27
25 11.14 .17 -33.90 -.65 -518.75 -7.34 -442.62 -7.77

26 12.42 .20 -18.09 -.34 -750.02 -10.68 -562.74 -10.06

27 -430.60 -7.46 -385.79 -7.56 -195.28 -2.59 -329.34 -5.63
28 369.78 5.47 -755.74 -17.20 -534.20 -7.63 - -
29 - - -676.82 -16.01 8.12 .10 - -
30 - - -867.98 -18.20 372.68 4.60 - -
31 - - 160.19 2.88 139.28 1.82 - -

Av. 439.77 6.87 249.42 5.16 866.87 739.82 14.54
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Table 72. One-Week Lead Tlme Daily Peak Forecast Error Uslng Daily Energy and Load Factor

Transfer Function Models with Actual Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW % MW % MW °/6

1 44.42 .68 335.42 7.16 101.89 1.25 -876.36 -18.23

2 68.05 1.13 652.52 11.80 690.15 8.40 -803.00 -17.44

3 585.03 9.48 648.21 11.94 560.68 6.86 -516.01 -9.09

4 379.50 5.55 -23.45 -.45 710.38 8.64 -440.80 -7.47

5 15.24 .23 -526.11 -10.28 511.49 6.24 -464.39 -7.69

6 133.60 2.07 -459.99 -9.05 279.38 3.67 -382.81 -6.87

7 88.89 1.29 -550.39 -12.19 137.05 1.84 -300.02 -5.82

8 366.99 5.16 -529.83 -12.22 517.70 5.93 59.45 1.24

9 66.09 .90 -942.58 -18.24 95.80 1.09 -452.49 -10.03

10 -178.19 -2.45 -859.89 -16.39 240.36 3.02 299.78 5.61

11 -360.67 -4.82 -299.53 -5.83 -106.74 -1.20 572.98 10.23

12 -582.81 -8.75 -120.94 -2.38 -301.73 -4.36 -54.56 -.94

13 -455.20 -6.96 -21.25 -.42 -422.62 -8.41 -359.15 -5.98

14 -60.55 -.86 319.41 6.81 -979.77 -21.13 144.41 2.76

15 -150.65 -2.23 690.00 14.39 -1048.17 -18.10 -52.20 -1.11

16 .61 .01 558.11 10.21 -805.55 -12.78 328.42 7.15

17 -97.65 -1.53 -104.85 -2.00 -506.13 -6.94 328.49 6.09

18 -99.28 -1.52 -162.80 -3.21 -462.45 -5.99 160.69 2.93

19 -272.52 -4.74 42.44 .83 472.52 5.56 1337.00 24.00

20 -522.61 -9.56 525.50 9.91 297.52 3.41 1500.38 26.61

21 -422.10 -6.76 366.87 7.34 584.80 7.77 1207.49 21.80

— 22 239.12 3.87 -186.37 -3.97 949.09 10.09 661.16 13.31

23 381.46 6.40 775.70 13.59 910.80 11.47 42.81 .89

24 186.88 2.96 638.75 12.00 534.64 7.26 75.35 1.38

25 152.10 2.32 315.82 6.05 284.99 4.03 1285.20 22.57

26 100.93 1.60 292.45 5.52 -343.70 -4.90 848.74 15.17

27 -310.81 -5.38 -431.55 -8.46 -161.73 -2.14 1339.47 22.90

28 394.63 5.84 -902.60 -20.54 -263.67 -3.76 - -
29 - - -610.70 -14.44 7.62 .10 - -
30 - - -799.91 -16.77 82.08 1.01 - -
31 - - 383.32 6.89 -42.86 -.56 - -

Av. 239.88 3.75 454.11 9.07
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Table 73. One-Week Lead Tlme Daily Peak Forecast Error Uslng Dally Energy and Load Factor

Transfer Function Models wlth Predlcted Input Data

DAY FEBRAURY MAY AUGUST OCTOBER

MW °/6 MW °/6 MW % MW °/6

1 -241.25 -3.68 -358.03 -7.60 548.95 6.73 -796.41 -16.57

2 -839.32 -13.95 -356.51 -6.44 845.33 10.29 -857.74 -18.63

3 -552.98 -8.96 137.75 2.54 805.07 7.40 -280.58 -4.94

4 28.84 .39 42.95 .83 583.58 6.88 -188.88 -2.86

5 322.88 4.98 -247.81 -4.84 549.94 6.70 143.88 2.38

8 812.41 12.57 -312.24 -8.14 -36.14 -.47 -13.07 -.23

7 440.33 6.38 -479.57 -10.82 -252.32 -3.39 -585.82 -11.35

8 420.35 5.91 -611.76 -14.11 821.09 9.40 -1027.89 -21.37

9 1080.25 14.85 -476.35 -9.22 854.67 9.74 -772.29 -17.12

10 542.03 7.45 -402.83 -7.88 -174.56 -2.19 -770.84 -14.43

11 -57.64 -.77 -477.84 -9.29 976.85 10.95 -637.70 -11.38

12 124.13 1.86 -317.83 -8.26 -1202.24 -17.38 -522.94 -9.01

13 430.34 8.58 -232.40 -4.64 -2632.10 -52.36 396.20 6.59

14 383.29 5.18 -40.04 -.85 -2803.43 -60.46 -196.35 -3.78

15 -238.79 -3.54 221.08 4.81 -2858.80 -45.90 -781.48 -16.15

18 -398.58 -5.97 -102.13 -1.87 -2098.95 -33.28 -947.80 -20.63

17 -568.64 -8.91 -52.38 -1.00 -219.02 -3.00 -340.84 -8.32

18 -889.48 -10.54 -97.29 -1.92 -1024.12 -13.27 -558.11 -10.13

19 -776.25 -13.50 -129.41 -2.54 1834.15 21.58 -974.89 -17.50

20 -791.33 -14.48 161.90 3.05 2933.26 33.59 -724.15 -12.84

21 -525.27 -8.41 180.31 3.61 1403.11 18.65 498.26 8.99

22 -417.99 -6.77 -262.10 -5.58 2426.38 25.80 -381.19 -7.87

23 -892.49 -11.82 -182.28 -3.19 744.04 9.37 -523.72 -10.87

24 -339.07 -5.37 -199.42 -3.75 -528.89 -7.15 -519.71 -9.54

25 22.31 .34 105.59 2.02 -971.24 -13.73 -312.28 -5.48

28 207.12 3.28 99.29 1.87 -1420.94 -20.24 -187.37 -2.99

27 -80.21 -1.04 -224.38 -4.40 -895.32 -11.86 -213.32 -3.65

28 559.04 8.27 -817.34 -18.60 -183.51 -2.62 - -
29 - - -830.08 -19.83 -738.60 -9.37 - -
30 - - -1009.27 -21.16 323.40 4.00 - -
31 - - -108.81 -1.95 141.41 1.85 - -

Av. 447.81 6.98 299.18 1077.64 15.47 10.13
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