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ABSTRACT  
This is the second part of a two-part article. In the first part, a new computational approach for parameter estimation 
was proposed based on the application of the polynomial chaos theory. The maximum likelihood estimates are obtained 
by minimizing a cost function derived from the Bayesian theorem. In this part, the new parameter estimation method is 
illustrated on a nonlinear four-degree-of-freedom roll plane model of a vehicle in which an uncertain mass with an 
uncertain position is added on the roll bar. The value of the mass and its position are estimated from periodic 
observations of the displacements and velocities across the suspensions. Appropriate excitations are needed in order to 
obtain accurate results. For some excitations, different combinations of uncertain parameters lead to essentially the same 
time responses, and no estimation method can work without additional information. Regularization techniques can still 
yield most likely values among the possible combinations of uncertain parameters resulting in the same time responses 
than the ones observed. When using appropriate excitations, the results obtained with this approach are close to the 
actual values of the parameters. The accuracy of the estimations has been shown to be sensitive to the number of terms 
used in the polynomial expressions and to the number of collocation points, and thus it may become computationally 
expensive when a very high accuracy of the results is desired.  However, the noise level in the measurements affects the 
accuracy of the estimations as well. Therefore, it is usually not necessary to use a large number of terms in the 
polynomial expressions and a very large number of collocation points since the addition of extra precision eventually 
affects the results less than the effect of the measurement noise. Possible applications of this theory to the field of 
vehicle dynamics simulations include the estimation of mass, inertia properties, as well as other parameters of interest.     

 

Keywords:  Parameter Estimation, Polynomial Chaos, Collocation, Bayesian Estimation, Hammersley Algorithm, 
Halton Algorithm, Vehicle Dynamics     
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1. INTRODUCTION AND BACKGROUND  

The polynomial chaos theory has been shown to be consistently more efficient than Monte Carlo simulations in order to 
assess uncertainties in mechanical systems [11, 12]. This paper extends the polynomial chaos theory to the problem of 
parameter estimation, and applies it to a four degree of freedom roll plane model of a vehicle with a mass added on the 
roll bar.  Parameter estimation is an important problem, because many parameters simply cannot be measured 
physically with good accuracy, especially in real time applications. The method presented in this paper has the 
advantage of being able to deal with non-Gaussian parametric uncertainties.      

Parameter estimation is a very difficult problem, especially for large systems, and a lot of effort devoted to it 
would be needed. Estimating a large number of parameters often proved to be computationally too expensive. This has 
led to the development of techniques determining which parameters affect the system’s dynamics the most, in order to 
choose the parameters that are important to estimate [17].  Sohns, et al. [17] proposed the use of activity analysis as an 
alternative to sensitivity-based and principal component-based techniques.  Their approach combines the advantages of 
the sensitivity-based techniques (i.e., being efficient for large models) and the sensitivity-based techniques (i.e., keeping 
parameters that can be physically interpreted). Zhang and Lu [22] combined the Karhunen–Loeve decomposition and 
perturbation methods with polynomial expansions in order to evaluate higher-order moments for saturated flow in 
randomly heterogeneous porous media.     

The polynomial chaos method started to gain attraction after Ghanem and Spanos applied it successfully to the study 
of uncertainties in structural mechanics and vibration [4-7] using Wiener-Hermite polynomials. Xiu extended the 
approach to general formulations based on Wiener-Askey polynomials family [19], and applied it to fluid mechanics 
[18, 20, 21]. Authors applied for the first time the polynomial chaos method to multibody dynamic systems [11-14], 
terramechanics [10, 15], and parameter estimation [2, 3].   

The fundamental idea of polynomial chaos approach is that random processes of interest can be approximated by 
sums of orthogonal polynomial chaoses of random independent variables. In this context, any uncertain parameter can 
be viewed as a second order random process (processes with finite variance; from a physical point of view they have 
finite energy). Thus, a second order random process viewed as a function of the random event θ , )10( << θ , can be 
expanded in terms of orthogonal polynomial chaos [4], as detailed in Part I of this article: The Bayesian approach for 
parameter presentation explained in Part I of this article is applied to a roll plane modeling of a vehicle in the next 
section of this article.     

 

2. APPLICATION TO A MORE COMPLEX MECHANICAL SYSTEM    

2.1. Roll Plane Modeling of a Vehicle   
The model used to apply the theory presented in this article is based on the four degree of freedom roll plane model of a 
vehicle used in [16] with the addition of a mass on the roll bar, which is shown in Figure 1.  The difference is that the 
suspension dampers and the suspension springs used in this study are nonlinear and that a mass is added on the roll bar, 
which represents the driver, the passenger, and other objects in the vehicle.  The added mass M  and its position CGd  
away from the left end of the roll bar are assumed to be uncertain. It is assumed that there is a passenger, and apriori 
distribution of the added mass will therefore be centered in the middle of the bar.  This added mass will be represented 
as a point mass for the sake of simplicity.  Measuring the position of the C.G. of the added mass physically is not 
straightforward.  However, if a well defined road input can be used and sensors are available, these two parameters can 
be estimated based on the observed displacements and velocities across the suspensions.      
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Figure 1. Four Degree of Freedom Roll Plane Model (adapted from [16]). 
 

The body of the vehicle is represented as a bar of mass m  (sprung mass) and length l  that has a moment of inertia I . 
The unsprung masses, i.e., the masses of each tire/axle combination, are represented by 1tm  and 2tm .  A mass is added 
on the roll bar, which represents the driver and other objects in the vehicle.  That added mass is represented as a point 
mass of value M  situated at a distance CGd  from the left extremity of the roll bar.        

The motion variables 1x  and 2x  correspond to the vertical position of each side of the vehicle body, while the motion 
variables 1tx  and 2tx  correspond to the position of the tires.   

The inputs to this system are 1y  and 2y , which represent the road profile under each wheel.      

If x is the relative displacement across the suspension spring with a stiffness ik  (i = 1, 2), the force across the 
suspension spring is given by:    

( ) 2,1,3
3, =+= ixkxkxF iiKi

                 (1) 

If v is the relative velocity across the damper with a damping coefficient ic  (i = 1, 2), the force across the damper is 
given by:   

( ))10tanh(2.0)( vcvF iCi
=                 (2) 

For small angles, i.e. for 
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( ) ( ) ( )111111111 11 tttCtKtt xykxxFxxFxm −=−+−+ &&&&               (5) 
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where 
2121

 and , , , CCKK FFFF  are defined in Equations (1) and (2).  

In these equations, the variables are expressed versus their position at equilibrium (if the added mass M is not in the 

middle, we have static deflections).  
STATICL

xx
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ − 12  is relative to the position of the ground, which is fixed.  It has to 

be estimated numerically because of the nonlinearities in the system.   

 

The parameters used in this study are shown in Table 1. They are the parameters used by [16], with the addition of 
nonlinearities and uncertainties for M  and CGd .  For the parameters shown in Table 1, the minimum static angle (i.e.., 
the angle of the roll bar with respect to a fixed reference on the ground) is -1.21 degrees and the maximum static angle 
is 1.21 degrees, which corresponds to m 032.012 =− xx .  These values are obtained for )1,1(),( 21 =ξξ  and 

)1,1(),( 21 −=ξξ , i.e. for the maximum possible value of M  with the added mass as far as possible from the center of 
the bar.         

 

Table 1. Vehicle Parameters  

Parameter Description Value 

 m  Mass of the Roll Bar 580 kg 

1tm , 2tm  Mass of the tire/axle 36.26 kg 

1c , 2c  Damping coefficients 710.70 N s /m 

1k , 2k  Spring constants – linear component 19,357.2 N/m 

3,1k , 3,2k  Spring constants – cubic component 100,000 N/m3 

l  Length of the Roll Bar 1.524 m 

I  Inertia of the Roll Bar 63.3316 kg m2 

1tk , 2tk  Tires vertical stiffnesses 96,319.76 N/m 

M  Added Mass 200 kg  +/-50%, with Beta (1, 1) 
distribution 

CGd  Distance between the C.G. of the mass and the left 
extremity of the roll bar 

0.7620 m  +/-25%, with Beta (1, 1) 
distribution 

    

The uncertainties of 50% and 40% on the values of M  and CGd  can be represented as:      

[ ]1,1),50.01( 11 −∈+= ξξnomMM                  (7) 

[ ]1,1),25.01( 22, −∈+= ξξnomCGCG dd                 (8) 

where nomM  and nomCGd ,  are the nominal values of the vertical stiffnesses of the tires ( kg200=nomM  and 
m7620.0, =nomCGd ).     
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It is assumed that the probability density functions of the values of M  and CGd  can be represented with Beta (1, 1) 
distributions, with uncertainties of +/- 50% and +/- 25%, respectively.  The distributions of the uncertainties related to 
the values of M  and CGd , defined on the interval [ ]1,1− , are represented in Figure 2. They have the following 
Probability Density Functions (PDFs):    

( ) 2,1,1
4
3)( 2 =−= iw ii ξξ                    (9) 

 

 
           (a)                (b)     

Figure 2. Beta (1, 1) Distribution; (a) for Value of the Mass,  (b) for Value of the Position of the C.G. of the Mass  
   

2.2. Collocation Points     
The generalized polynomial chaos theory is explained in [11] in which direct stochastic collocation is proposed as a 

less expensive alternative to the traditional Galerkin approach. The collocation approach consists of imposing that the 
equation system holds at a given set of collocation points. If the polynomial chaos expansions contain 15 terms for 
instance, then at least 15 collocation points are needed in order to have at least 15 equations for 15 unknown polynomial 
chaos coefficients. It is desirable to have more collocation points than polynomial coefficients to solve for. In that case a 
least-squares algorithm is used to solve the system with more equations than unknowns.   

Unless otherwise specified, the polynomial chaos expansions of M  and CGd  will use 15 terms. All the other 
variables affected by the uncertainties on M  and CGd  will be modeled by a polynomial chaos expansion using 15 
terms as well. The collocation approach is the one used in this study. It requires at least 15 collocation points to derive 
the coefficients associated to each of the 15 terms of the different polynomial chaos expansions.   

Unless otherwise specified, 30 collocation points will be used to derive the coefficients associated to each of the 15 
terms of the different polynomial chaos expansions. The collocation points used in this study are obtained using an 
algorithm based on the Halton algorithm [8], which is similar to the Hammersley algorithm [9]. These collocation points 
for a uniform distribution are shown in Figure 3 (a).  

One of the advantages of the Hammersley/Halton points used in this study is that when the number of points is 
increased, the new set of points still contains all the old points. We therefore know that more points should result in a 
better approximation. The collocation points for a Beta (1, 1) distribution, which is used in this study, are shown in 
Figure 3 (b).    

The transformation from the collocation points for a uniform distribution to the points for a Beta (1, 1) distribution 
is achieved by applying the inverse Cumulative Distribution Function of the Beta (1, 1) distribution. Let’s note that 
there is no collocation point at the boundary, i.e., no point associated with an uncertainty equal to -1 or 1, which is 
needed in order to avoid having a cost function equal to infinity.  
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Figure 3. Halton Collocation Points (2-Dimensions, 30 Points: (a) for Uniform Distribution; (b) for Beta (1, 1) 
Distribution   

 

2.3. Experimental Setting – Road Input     
In order to assess the efficiency of the polynomial chaos theory for parameter estimation, M  and CGd  will be 

estimated using observations of four motion variables obtained for a given road input: the displacements across the 
suspensions ( 11 txx −  and 22 txx − ), and their corresponding velocities ( 11 txx && −  and 22 txx && − ). The road profile is shown 
in Figure 4, and the road input is obtained assuming the vehicle has a constant speed of 16 km/h (10 mph). The road 
profile can be seen as a long speed bump. The first tire is subjected to a ramp at t = 0, and reaches a height of 10 cm (4”) 
for a horizontal displacement of 1m, then stays at the same height for 1m, and goes back down to its initial height.  The 
second tire is subjected to the same kind of input, but with a time delay of 20% and it reaches a maximum height of only 
8 cm.      

 

Figure 4. Road Profile  
 

The four motion variables are plotted from 0=t  to seconds 3=t  using kg  26.223=refM  and m 6882.0=ref
CGd  

(i.e., 2326.01 =refξ  and 3875.02 −=refξ ) and assuming these values can only be measured with a sampling rate of 
s .30 .    

However, for the proof of concept of the parameter estimation method presented in this paper, we pretend we do 
not know the values of M  and CGd , the objective being to estimate those values based on the plot of the four motion 
variables shown in Figure 5. Let’s note that 3 seconds of data correspond to a horizontal displacement of 13.33 meters. 
The end of the speed bump occurs at  s 675.0=t .    

The excitation signal is supposed to be perfectly known.  In other words, the road profile shown in Figure 4 is 
supposed to be exactly known and the speed of the vehicle is supposed to be exactly 16 km/h at all time, which enables 
us to use any desired sampling rate for the input signal.  However, only 10 measurement points are used for the output 
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displacements and velocities (not counting the measurements at t = 0, which give no useful information in order to 
estimate the unknown parameter).  It is always better to take a number of measurement points as large as possible when 
computational time is not an issue and precision is very important.  However, using a lower number of measurements 
can be useful when an answer is needed quickly, which does not prevent from continuing to process the extra 
information later on if needed, knowing that the extra measurements will generally yields more precision. Adding more 
measurement points does not usually add much precision to the estimations, as will be shown later in this article.   

As explained in the first part of this article, the quality of the maximum likelihood estimate is related to the shape of 
the Bayesian cost function, with a sharp minimum indicating an accurate estimate. Inaccurate estimates can be caused 
by different factors, including a sampling rate below the Nyquist frequency, non-identifiability, non-observability, and 
an excitation signal that is not rich enough.   

The parameters are non-identifiable when different parameter values lead to identical system outputs. In this case 
the Bayesian cost function has an entire region of minima (e.g., a valley), with each parameter value in the region being 
equally likely. A regularization approach based on increasing the weight of the apriori information can be used to select 
reasonable estimates.       

For identifiable and observable systems accurate estimates can be obtained in most cases even if the output signal is 
sampled below the Nyquist rate. In the worst case, however, sampling below the Nyquist rate cannot guarantee that 
sufficient information is extracted from the output. In this worst case the apriori information becomes important and the 
estimate is biased toward the apriori most likely value.      

 

 
       (a)             (b)      

Figure 5. Observed States - Displacements and Velocities:  (a) Measured; (b) For Nominal Values ( 01 =ξ , 02 =ξ )  

   

The measurements shown in Figure 5 (a) are synthetic measurements obtained from a reference simulation with the 
reference value of the uncertain parameter 2326.01 =refξ  and 3875.02 −=refξ .  Parameters estimation is performed 
using the Bayesian approach. In order to work with a realistic set of measurements, a Gaussian measurement noise with 
zero mean and 1% variance is added to the observations shown in Figure 5 (for the relative displacements and 
velocities) before performing parameter estimation.  

The state of the system at future times depends on the random initial velocity and can be represented by    
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If we assume that only the displacements across the suspensions ( 11 txx −  and 22 txx − ), and their corresponding 
velocities ( 11 txx && −  and 22 txx && − ) can be measured, then   
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and the measurements yield    
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Measurement errors at different times are independent random variables.  The measurement noise kε is assumed to be 
Gaussian with a zero mean and a variance 1% (or 0.01% when indicated) of the value of )(tx .  The diagonal elements 

of the covariance matrix of the uncertainty associated with the measurements will still be set to at least 1210−  when 
necessary so that 1−

kR  can always be computed.  Therefore, the covariance of the uncertainty associated with the 
measurements is     
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where      
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As explained in the first part of this article, the maximum likelihood estimate is obtained by minimizing the Bayesian 
cost function  
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For this particular example, the joint probability density function ( )ξρ  is   

( ) ( )2
2

2 1
4
31

4
3)( ξξξρ −×−= i             (19) 

 

The value of the cost function can be visualized, as shown in Figure 6. A simple Matlab code can estimate the values of 
1ξ  and 2ξ  (and thus the values of M  and CGd ) corresponding to the minimum value of the cost function.    
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Figure 6. Cost Function Using the Bayesian Approach – 10 time points   (Noise = 1%)    
 

The estimated values of 1ξ  and 2ξ  obtained using the Bayesian approach are 2236.01 =estξ  and 4024.02 −=estξ , i.e., 

kg 36.222estM  and m 6853.0=est
CGd . The actual values were 2326.01 =refξ  and 3875.02 −=refξ , i.e., 

kg  26.223=refM  and m 6882.0=ref
CGd . It seems to be a good estimation since there is noise associated to the 

measurements. With a Gaussian measurement noise with zero mean and 0.01% variance the results would be 
2237.01 =estξ  and 3992.02 −=estξ , i.e., kg  37.222=estM  and m 6860.0=est

CGd . It shows that the effects of a 
Gaussian measurement noise with zero mean and 1% variance cannot be completely neglected.      

Figure 7 shows the cost function that would be obtained if the motion variables could be measured with a sampling rate 
of 0.03 s, for a noise level of 1%.  It can be observed that the extra measurement point do not change the shape of the 
cost function by much.  The fact that the cost function had a well defined minimum value with 10 measurement points 
told us that we had enough information in order to obtain a precise estimation that can be trusted.  Using 100 
measurement points will add more accuracy, but not so much considering the computing time will be 10 times greater.     

 

 

Figure 7. Cost Function Using the Bayesian Approach – 100 time points  (Noise = 1%)   
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With 100 sample points and a noise level of 1%, which corresponds to the cost function shown in Figure 7, the 
estimated values of 1ξ  and 2ξ  obtained using the Bayesian approach are 2339.01 =estξ  and 3662.02 −=estξ , i.e., 

kg  39.223=estM  and m 6922.0=est
CGd .  The estimation of 1ξ  (i.e., of the added mass) is more accurate than 10 

measurement points, but the estimation of 2ξ  is not more accurate in this case.   With a Gaussian measurement noise of 

0.01% variance, the results would be 2341.01 =estξ  and 3736.02 −=estξ , i.e., kg  41.223=estM  and 

m 6908.0=est
CGd , which also yields a more accurate estimation of the added mass when compared with the results 

obtained with 10 measurement points.  As a conclusion, adding more measurements points adds accuracy.  However, 
the shape of the cost function indicated that the estimation using only 10 measurement points was already quite 
accurate.  Adding more measurement points is not the only thing that affects the results.  Table 2 shows that the results 
of the estimation process are also affected by the number of terms used in the polynomial chaos approximation and by 
the number of collocation points.  Adding more measurement point is desirable if the computational cost is not already 
high, which also depends on the complexity of the system.  If the computational time is an issue and the cost function 
yields a clear minimum, not adding more measurements might be a good idea then.   

 

Table 2. Effect of the Polynomial Chaos Approximation for the Bayesian Approach (with 10 time points and a 
Gaussian measurement noise with zero mean and 1% variance)     

Number of 
Collocation 

Points 
10 terms 15 terms 21 terms 

10 0.2305, -0.3864   

15 0.2249, -0.3793 0.2307, -0.3790  

21 0.2218, -0.3918 0.2307, -0.3885 0.2239, -0.5036 

30 0.2224, -0.3869 0.2236, -0.4024 0.2279, -0.4012 

40   0.2275, -0.4004 

45  0.2257, -0.4006  

60   0.2270, -0.3972 

Actual 
Values 

0.2326, -0.3875 0.2326, -0.3875 0.2326, -0.3875 

 

Table 2 shows that the estimations obtained with 15 terms become similar to the observations obtained with 21 terms as 
the number of collocation points gets larger.  Therefore, working with 15 terns in the polynomial chaos expansions and 
with 30 collocation points seems to be a good comprise.  Adding more terms and more collocation points would 
increase the precision of the estimation, but the extra precision would eventually become small compared with the effect 
of the noise, and would come at a great computational cost.       

It can be noticed that when using the minimum number of collocation points required to perform the estimation, i.e., a 
number of collocation points equal to the number of terms, increasing the number of terms results in poorer estimations.  
This is something that has been observed on other test cases.  For this case, it becomes very noticeable when using 21 
terms and 21 collocation points.  This makes sense since solving a system with more unknowns is more complicated, 
and adding extra information into a least squares algorithm becomes more valuable as the system becomes more 
complex.         

The fact that the estimation performed with 10 collocations for 10 terms seems to be due to a very favorable random 
choice of the collocation points. Using 10 terms in the polynomial chaos expressions results in approximations.  Using 
only 10 collocation points also results in less precision.  However, many approximations can still lead to an accurate 
result when they cancel out each other by chance.         



A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part II   

Blanchard E., Sandu A., and Sandu C.  11/21/2007  11 

 

2.4. Results for a Chirp Input         
In this section, linear swept-frequency sine input signals are used from 0=t  to seconds 3=t  with frequencies ranging 
from 0 Hz at 0=t  to 2 Hz at seconds 3=t , as shown as in Figure 8.  The amplitude of the input signals is 5 cm.  The 
reason why the highest frequency of the chirp input used in this study is 2 Hz is that it is when the dampers start being 
in saturation mode for a very significant percentage of the time due to higher velocities, which will be shown later.  
When the dampers saturate, there is no one-to-one relationship between the relative velocities across the dampers and 
the fore they produce, which can leads to non-identifiability.       

The inputs signals are:    
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Figure 8. Chirp Input going from DC to 2 Hz in 3 seconds     

 

Parameters estimation is performed using the Bayesian approach.  In order to work with a realistic set of measurements, 
a Gaussian measurement noise with zero mean and 1% variance is added to the observed relative displacements and 
velocities before performing parameter estimation.  Figure 9 shows the cost function obtained with a sampling rate of 
0.1 s, for a noise level of 1%. Since the maximum frequency in the chirp input is 2 Hz, using 30 measurement points is 
enough in order to respect the Nyquist criterion.      
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Figure 9. Cost Function for the Chirp Input with 30 Time Points and 1% Measurement Noise       

 

The estimated values of 1ξ  and 2ξ  obtained using the Bayesian approach are 2381.01 =estξ  and 3868.02 −=estξ , i.e., 

kg 81.223estM  and m 6883.0=est
CGd .  The actual values were 2326.01 =refξ  and 3875.02 −=refξ , i.e., 

kg  26.223=refM  and m 6882.0=ref
CGd .  Using a chirp signal is therefore a good way to estimate the value of the 

mass and its position, as long as it doesn’t contain frequencies where the dampers are in saturation mode most of the 
time.  The cost function has a clear minima, but it can be seen that this minima is in a region of low values along the 
line.  Adding higher frequency content in the input signal would start preventing us from obtaining a clear minima along 
this line.  This is illustrated in the next section.      

 

2.5. Relationship Between Quality of Estimation and the Frequency of the Input Signal        
In order to assess the efficiency of the polynomial chaos theory for parameter estimation, M  and CGd  will be 

estimated using a plot of four motion variables: the displacements across the suspensions ( 11 txx −  and 22 txx − ), and 
their corresponding velocities ( 11 txx && −  and 22 txx && − ).  The estimations will be performed for different harmonic inputs, 
ranging from 0.33 Hz to 25 Hz, with amplitudes of +/- 0.05 m for 1y  and 2y .  The input signals are still supposed to be 
rich enough, i.e., they are supposed to be exactly known, which enables us to use any desired sampling rate for the input 
signal.  Figure 10 shows the harmonic inputs that will be used at 1 Hz.   
 

 
Figure 10. Road Input at 1 Hz 
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The estimations are performed using 15 terns in the polynomial chaos expansions and 30 collocation points.  Figure 11 
shows the estimated values of M  and CGd , obtained using the Bayesian approach for harmonic inputs with frequencies 
ranging from 0.33 Hz to 25 Hz. It is still assumed that measurements can only be obtained at a sampling rate of 0.3 s 
and that the Gaussian measurement noise has a zero mean and 1% variance. It can be observed that good estimation are 
obtained for frequencies lower than or equal to 1.33 Hz, but the quality of the estimations is clearly poorer for 
frequencies higher than or equal to 1.66 Hz.   

 

 
Figure 11. Bayesian Estimation of the Added Mass and the Position of the Mass at Different Frequencies Using 10 

Time Points and a 1% Noise   

 

One might wonder if increasing the sampling rate of the measurement and being able to work with an extremely low 
measurement noise level would improve the results.  Figure 12 shows the estimated values of  M  and CGd  obtained 
with a sampling rate of 0.3 s (i.e., 10 time points) for the Bayesian approach when the Gaussian measurement noise has 
a 0.01% variance instead of a 1%.  It can be observed that even though the estimations can be different, the same 
problems remain for estimating M  (i.e. 1ξ ) at frequencies higher than or equal to 2 Hz estimated values of   However, 
the estimation of CGd  (i.e. 2ξ )  yields much better results at frequencies higher than or equal to 2 Hz.     

 

 
Figure 12. Bayesian Estimation of the Added Mass and the Position of the Mass at Different Frequencies Using 10 

Time Points and a 0.01% Noise 

 



A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part II   

Blanchard E., Sandu A., and Sandu C.  11/21/2007  14 

One might wonder if being able to increase the sampling rate of the measurement instead of being able to work with an 
extremely low measurement noise level would improve the results.  Figure 13 shows the estimated values of  M  and 

CGd  obtained with a sampling rate of 0.02 s (i.e., 150 time points) for the Bayesian approach when the Gaussian 
measurement noise has a 1% variance.  It can be observed that the results are very similar than the results obtained with 
10 time points and a 0.01% noise.  Being able to increase the sampling rate and being to lower the noise level both have 
the same effect on the quality of the estimations.  The same problems remain for estimating M  (i.e. 1ξ ) at frequencies 
higher than or equal to 2 Hz      

 

 
Figure 13. Bayesian Estimation of the Added Mass and the Position of the Mass at Different Frequencies Using 150 

Time Points and a 1% Noise      

 

One might wonder if increasing the sampling rate of the measurement while still being able to work with an extremely 
low measurement noise level would improve the results.  Figure 14 shows the estimated values of  M  and CGd  
obtained with a sampling rate of 0.02 s (i.e., 150 time points) for the Bayesian approach when the Gaussian 
measurement noise has a 0.01%.  It can be observed that even though the estimations can be different, the same problem 
remains for frequencies higher than or equal to 2 Hz.  It can be observed that the results are still very similar than for the 
previous two configurations and that the same problems remain for estimating M  (i.e. 1ξ ) at frequencies higher than or 
equal to 2 Hz.  When the noise level is extremely low, adding extra measurement points does not yield better results.      

 

 
Figure 14. Bayesian Estimation of the Added Mass and the Position of the Mass at Different Frequencies Using 150 

Time Points and a 0.01% Noise      
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Therefore, the mass cannot be estimated when using inputs at frequency higher than or equal to 2 Hz even with 
measurements of very good quality.  The reason the estimations are not accurate for input frequencies of 2 Hz and 
above is a problem of non-identifiability: different values of M  and CGd  can result in the same time response for the 
displacements and velocities across the suspensions.  For instance, if we look at the cost function at 1 Hz with 10 time 
points and a 0.01% measurement noise added to the observations, as shown in Figure 15, we can see that the cost 
function has a clear minimum.  If we look at the cost function at 2 Hz, as shown in Figure 16, we can see that the cost 
function has minima along a curve.  Those minima correspond to several combinations ( M , CGd ) yielding the same 

time response for the 2 Hz input.  The estimated values ( 2707.01 =estξ  and 3890.02 −=estξ ) and the actual values 

( 2326.01 =refξ  and 3875.02 −=refξ ) are both on this curve containing the minima.  Figure 17 shows he cost function at 
3 Hz, which yields no clear minimum as well.   

 

 
Figure 15. Cost Function at 1 Hz with 10 Time Points and 0.01% Measurement Noise        

 

 
Figure 16. Cost Function at 2 Hz with 10 Time Points and 0.01% Measurement Noise   
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Figure 17. Cost Function at 3 Hz with 10 Time Points and 0.01% Measurement Noise   

 

Figure 18 shows the time responses at 1 Hz for the nominal values )0,0(),( 21 =ξξ  and for values that were used 

)3875.0,2326.0(),( 21 −=ξξ , which were estimated very well by the Bayesian approach .  It can be noticed that the 
curves are quite distinct.    
 

  

  
Figure 18. Time Responses at 1 Hz   
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Figure 19 shows the time responses at 2 Hz for the nominal values )0,0(),( 21 =ξξ , for the values that were used 

)3875.0,2326.0(),( 21 −=ξξ , for the estimated values )3890.0,2707.0(),( 21 −=ξξ . It shows that the estimated values 
yield the same time response than the actual values at 2Hz, which is why no estimation technique can work.  Also, the 
observed time response is more similar to the nominal time response than it was at 1 Hz, which is why estimating 
uncertainties gets more difficult in a more general sense.        

 

  

  
Figure 19. Time Responses at 2 Hz   

 
Figure 20 shows the time responses at 3 Hz for the nominal values )0,0(),( 21 =ξξ , for the values that were used 

)3875.0,2326.0(),( 21 −=ξξ , for the values that were used )3690.0,5188.0(),( 21 −=ξξ . It shows that the estimated 
values yield the same time response than the actual values at 3Hz, which is why no estimation technique can work.  
Also, the observed time response and the nominal time response are getting even more similar. At frequency higher than 
3 Hz, which are not shown in the time plots, the relative velocities across the suspension start decreasing as the 
frequency is increased: 3 Hz is close a resonance across the suspensions.      
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Figure 20. Time Responses at 3 Hz     

 

Let’s remind that if v is the relative velocity across the damper with a damping coefficient ic  (i = 1, 2), the force across 
the damper is given by: ( ))10tanh(2.0)( vcvF iCi

= .  The dampers can therefore be considered to be saturating at 
speeds higher than 0.2 m/s.  At high frequency, the velocities get higher and the dampers are in saturation regime more 
often.  When the dampers saturate, different velocities can yield the same force across the damper, which makes  the 
system is non-identifiable at high frequencies.       

For a linearized system, i.e., with  vcvF iCi
=)(   for the dampers and 03, =ik  for the suspension springs (i = 1, 2), the 

system become identifiable for all frequencies from 0.33 Hz to 25 Hz, as shown in Figure 21.  The estimation is still 
sensitive to numerical approximations (e.g., in running the ODE’s) and the polynomial chaos approximation, which 
explains why the estimation of the added mass is not always perfect.   
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Figure 21. Bayesian Estimation for the Linearized System Using 150 Time Points and a 0.01% Noise   

 

2.6. Regularization        
When several combinations of values for the uncertain parameters result in the same behavior of the system, 
regularization techniques [1] can be used in order to find the most likely values among the values resulting in a 
minimum, based on our apriori knowledge of the system.  It consists of multiplying the apriori part by a coefficient so 
that the new total cost function has a clear minimum value along the possible values.  This is illustrated in Figure 22, 
where the cost function at 2 Hz is shown for different regularization coefficients.   

The cost function will look like its mismatch part when the regularization coefficient is very low and it will look like its 
apriori part when the regularization coefficient is very high.  As the regularization coefficient gets larger, the line of 
possible minima becomes an ellipse, which starts moving away from the location of the original line of minima while 
becoming more and more like a circle.  Eventually, it becomes a circle centered at (0, 0), like the apriori part of the cost 
function.  When the line becomes an ellipse with a well defined center, the regularization coefficient is large enough and 
it is not desirable to continue to increase its value since the ellipse will start moving away from its original location 
while becoming a center.  In this case, 710  seems to be a good regularization coefficient and it results in the following 
estimation: )39.0,05.0(),( 21 −=ξξ        

When the cost function has a region of possible minimum values that cannot be differentiated, e.g. when dealing with a 
non-identifiability issue, using regularization techniques will yield better results on average. However, there is no 
guarantee that it will yield a value closer to the actual values of the uncertain parameters for any given problem.  For 
instance, 2 Hz is not a very relevant example, because the “plain” cost function almost finds the right result. I would 
need to recomputed everything at a higher frequency where the results is way off, but it will take time   
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Figure 22. Regularization at 2 Hz    

 

Figure 23 shows the cost function at 3 Hz for different regularization coefficients.  In this case, 910  seems to be a good 
regularization coefficient and it results in the following estimation: )37.0,26.0(),( 21 −=ξξ .  Regularization techniques 
are more valuable at 3 Hz than at 2 Hz since the estimation was still working approximately at 2 Hz, but was not 
accurate at all anymore at 3 Hz for estimating M  (i.e. 1ξ ).      

 

 
Figure 23. Regularization at 3 Hz     
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3. SUMMARY AND CONCLUSIONS  

The first part of this paper applies the polynomial chaos theory to the problem of parameter estimation, using direct 
stochastic collocation.  The maximum likelihood estimates are obtained by minimizing a cost function derived from the 
Bayesian theorem. The second part of this paper applies this new computational approach to a mechanical system.  
Parameter estimation is performed on a nonlinear four degree of freedom roll plane model of a vehicle, in which an 
uncertain mass with an uncertain position is added on the roll bar.  Uncertainties on the values of the added mass and its 
position are assumed to have a Beta (1, 1) distribution.  The value of the mass and its position are estimated from 
periodic observations of the displacements and velocities across the suspensions.  Appropriate excitations are needed in 
order to obtain accurate results.  For some excitations, different combinations of uncertain parameters lead to essentially 
the same time responses, and no estimation method can work without additional information. Regularization techniques 
can still yield most likely values among the possible combinations of uncertain parameters resulting in the same time 
responses than the ones observed.  When using appropriate excitations, the results obtained with this approach are close 
to the actual values of the parameters.  The proposed estimation procedure can work with noisy measurements.      

The accuracy of the estimations has been shown to be sensitive to the number of terms used in the polynomial 
expressions and to the number of collocation points, and thus it may become computationally expensive when a very 
high accuracy of the results is desired.  However, the noise level in the measurements affects the accuracy of the 
estimations as well. Therefore, it is usually not necessary to use a large number of terms in the polynomial expressions 
and a very large number of collocation points since the addition of extra precision eventually affects the results less than 
the effect of the measurement noise.    

The proposed method has several advantages. Simulations using Polynomial Chaos methods are much faster than 
Monte Carlo simulations. Another advantage of this method is that it is optimal; it can treat non-Gaussian uncertainties 
since the Bayesian approach is not tailored to any specific distribution. The cost function can have multiple local 
minima, which can affect the estimates when dealing with large measurement noise. The proposed estimation procedure 
can benefit from regularization techniques in order to find a most likely value among these minima based on our apriori 
knowledge of the system.      

Future work will address the estimation problem in the Bayesian framework when both the input excitation and the 
output signal are reconstructed from. We plan to apply the proposed technique to identify parameters of a real 
mechanical system for which laboratory measurements are available.   
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