A Comparison of Artificial Neural Network Classifiers for Analysis of CT Images for the Inspection of Hardwood Logs

by Jing He

Thesis submitted to the Faculty of the Bradley Department of Electrical and Computer Engineering of Virginia Polytechnic Institute and State University in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering

APPROVED:

Dr. A. Lynn Abbott, Chairman

Dr. Daniel L. Schmoldt

Dr. Hugh F. VanLandingham

September, 1997 Blacksburg, Virginia

A Comparison of Artificial Neural Network Classifiers for Analysis of CT Images for the Inspection of Hardwood Logs

Jing He

(Abstract)

This thesis describes an automatic CT image interpretation approach that can be used to detect hardwood defects. The goal of this research has been to develop several automatic image interpretation systems for different types of wood, with lower-level processing performed by feed forward artificial neural networks. In the course of this work, five single-species classifiers and seven multiple-species classifiers have been developed for 2-D and 3-D analysis. These classifiers were trained with back-propagation, using training samples of three species of hardwood: cherry, red oak and yellow poplar. These classifiers recognize six classes: heartwood (clear wood), sapwood, knots, bark, splits and decay. This demonstrates the feasibility of developing general classifiers that can be used with different types of hardwood logs. This will help sawmill and veneer mill operators to improve the quality of products and preserve natural resources.

Acknowledgements

I would like to express my sincere appreciation to my advisor, Professor A. Lynn Abbott, for his support and guidance during the course of this study and the writing of the thesis. Special thanks is due to Dr. Daniel L. Schmoldt for his helpful advice and support in this study. I would also like to extend my thanks to Professor Hugh F. VanLandingham for taking the time to review my work and serve on my committee.

This work was supported by the U.S.D.A. Forest Service.

Finally, I would like to dedicate this thesis to my husband, Xiaoqing Liang, and my parents. Without their love and support I would never have come this far.

Table of Contents

List of Figures

List of Tables

1.	Introduction1
	1.1. Background1
	1.2. Justification for Work
	1.3. Contributions
	1.4. Organization of Thesis
2.	Previous Work
	2.1. Literature Review
	2.2. Objective
3.	Methodology
	3.1. Basic Knowledge10
	3.1.1. Wood Defects
	3.1.2. Principles of CT Scanning and Image Displaying
	3.1.3. Artificial Neural Network
	3.2. General Approach
	3.2.1. The Preprocessing Module
	3.2.2. Neural Network Classifier
	3.2.2.1. Feature Extraction
	3.2.2.2. Neural Network Classifiers
	3.2.3 Post-processing
	3.3. Software Development

	3.4. Data Base	40
4.	Results	45
	4.1. Species-Dependent Classifiers	45
	4.1.1. Red Oak Classifiers	45
	4.1.2. Cherry Classifiers	
	4.1.3. Yellow Poplar Classifiers	51
	4.2. Species-Independent Classifiers	56
	4.2.1. RO_YP Classifiers	56
	4.2.2. RO_CH Classifiers	59
	4.2.3. CH_YP Classifiers	
	4.2.4. CH_RO_YP Classifiers	64
	4.3. 10-Fold Cross-Validation Results	67
	4.4. Statistical Analysis	70
5.	Conclusions and Future Work	74
Refe	erences	77
Арре	endix A 10-Fold Cross Validation Accuracy	79
Appe	endix B Confusion Matrices of the Classifiers	80
Арре	endix C Software User's Guide	
Vita		

List of Figures

Figure 3.1	Sample CT image of a red oak log with clear wood	13
Figure 3.2	Sample CT image of a red oak log with decay	14
Figure 3.3	Sample CT image of a cherry log with size 512×512	15
Figure 3.4	Sample CT image of a yellow poplar log with sapwood	16
Figure 3.5	Sample CT image of a yellow poplar log with clear wood	17
Figure 3.6	Attenuation of monochromatic radiation by a non-homogeneous material	19
Figure 3.7	The basic structure of a processing element	21
Figure 3.8	A typical back-propagation neural network	22
Figure 3.9	Two kinds of transfer functions for back-propagation network	23
Figure 3.10	A mapping illustration of a 2-D neighborhood window	30
Figure 3.11	A mapping illustration of a 3-D neighborhood window	30
Figure 3.12	The shape of a structuring element	32
Figure 3.13	Comparison of different post-processing method	34
Figure 3.14	The flow chart of the data-location package	36
Figure 3.15	The flow chart of the package for extracting features	37
Figure 3.16	The flow chart of the 2-D classifier module	38
Figure 3.17	The flow chart of the 3-D classifier module	39
Figure 4.1	Two examples of CT images of red oak log detected by the 2-D	
	and 3-D classifier	47
Figure 4.2	The results of the <i>cherry_170.des</i> classifiers	49
Figure 4.3	The results of the <i>cherry_512.des</i> classifiers	50
Figure 4.4	Examples of yellow poplar logs detected by the first 3-D classifier	52
Figure 4.5	Examples of the second 3-D classifier with five outputs for yellow poplar	53
Figure 4.6	Examples of the updated 3-dimention classifier for yellow poplar	54

Figure 4.7	Examples of the 2-dimention classifier for yellow poplar	55
Figure 4.8	Examples of the 2-D RK-YP combined classifier	57
Figure 4.9	Examples of the 3-D RK-YP combined classifier	58
Figure 4.10	Examples of the 2-D CH-RK combined classifier	50
Figure 4.11	Examples of the 3-D CH-RK combined classifier	51
Figure 4.12	Examples of <i>cherry_170.des</i> logs detected by CH_YP classifiers	52
Figure 4.13	Examples of the yellow poplar images detected by the CH_YP classifiers	53
Figure 4.14	Examples of the 2-dimention CH_RK_YP classifier	65
Figure 4.15	Examples of the 3-dimention CH_RK_YP classifier	66
Figure 4.16	The graphic of average classification rate	58
Figure 4.17	The accuracy graphic of 10-fold cross validation classifications	69

List of Tables

Table 3.1	Distribution of training samples of <i>cherry_170.des</i> logs40
Table 3.2	Distribution of training samples of <i>cherry_512.des</i> logs41
Table 3.3	Distribution of training samples of red oak logs42
Table 3.4	Distribution of training samples of yellow poplar logs43
Table 4.1	The final accuracy of each classifiers46
Table 4.2	A confusion matrix of the three-species combined classifier for 2-D analysis69
Table 4.3	A confusion matrix of the three-species combined classifier for 3-D analysis70
Table 4.4	A matrix of pair-wise T-test probability values for different classification rates of
	two groups71
Table 4.5	A matrix of pair-wise T-test probability values for the classification rates of
	cherry, red oak and yellow poplar single classifiers72
Table 4.6	A matrix of pair-wise T-test probability values for the classification rates of
	cherry, red oak and yellow poplar multiple classifiers73
Table 4.7	A matrix of pair-wise T-test probability values for the classification rates of
	cherry, cherry_512, red oak and yellow poplar single classifiers73