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In this chapter we describe the solid model and the finite element analysis of the 

propeller.  In order to reduce the computational cost, we have done modal condensation 

on the finite element model of the propeller. We present the theory of modal 

condensation and the calculation of the steady state response. Finally, the method 

developed for the calculation of the second order statistics of the response of a linear 

system subjected to CS excitations is extended to the case of modal condensation.  

 

5.1 Propeller Model and Finite Element Analysis Using I-DEAS 

  

 Propeller geometry has undergone considerable changes during the last two 

decades. The use of wider blades with increasing skewback made the older beam and 

shell theories inadequate for static and dynamic strength calculation. On the other hand, 

finite element method (FEM) has become a powerful tool for such static and dynamic 

analysis because of its successful applications. (Politis, 1984). We use I-DEASTM for the 

modeling and the finite element analysis (FEA) of the propeller. Data of the propeller is 

provided by David Taylor Model Basin and is shown in Appendix A. Figure 5.1 shows 

the points and the lines joining those points to construct the hydrofoils. These hydrofoils 

were joined to make a blade. Constructing three blades of identical shape and size, we 

joined them with a cylindrical hub to construct the model of the propeller. Figure 5.2 

shows the wire-frame geometry of the propeller blade and hub. The solid model was 

meshed using TET-10 elements (Beek, 1978). It has the shape of tetrahedron and implies 

10 nodes of which 4 are located at the vertices and 6 in the center of the edges (Fig. 5.3). 

Each node has three degrees of freedom and consequently the element stiffness matrix 
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contains 30 × 30 components. We select TET-10 element  because 1) the smooth 

curvature of a propeller blade enables a fair approximation by means of flat-sided 

tetrahedrons 2) the root section of the blade and hub are relatively thick and 3-D elements 

are suited for that, and 3) the TET-10 element solution contains stresses, that vary 

linearly in all directions, so the predominant blade bending is represented easily. The 

numerical results of FEA of propeller are presented in chapter 6. 

 

5.2 Modal Condensation 

 

The governing system of equation for the propeller response can be given by 
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where, [M]n×n, [C]n×n, and [K]n×n are mass, damping, and stiffness matrices, respectively. 

These matrices are obtained by the FEA of the propeller. [X]n×1 and [F]n×1 are the 

displacement and force vectors. F is obtained using the expression for lift and drag 

developed in chapter 4. To calculate the mode shapes, we construct the undamped free 

vibration problem as 
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Putting {X} = {P}ejωt in Eq. 5-2, we get 
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Eq. 5-3 can be rewritten as 
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where λ = -ω2 and λ = M-1 K. Nontrivial solution of Eq. 5-4 implies 

 

0=+− AIλ           (5-5) 

 

Equation 5-5 is the eigenvalue problem resulting to n eigenvalues λ1, λ2, … λn 

and n eigenvectors �1, �2, … �n. We are not considering the case of the repeated 

eigenvalues. In general, for an accurate estimate of the response X(t), we need large 

number of elements in the model and hence the large number of modes. The disadvantage 

of such complicated model is that it makes the calculation of second order statistics of the 

response computationally very expensive. While a large number of modes are 

computationally expensive, it may not be also needed in some cases. Frequency domain 

analysis of forcing function sometimes shows that the magnitude of the forces 

corresponding to frequency above a certain level is not significant and hence modes of 

the structure, whose frequencies are much higher than this, will not be significant in the 

analysis.  For these reasons, it is beneficial to reduce the dimensions of the matrices in 

Eq. 5-1. A full modal analysis would include all the eigenvectors, but for the above-

mentioned reasons, we will consider only from 1 to m (< n) eigenvectors. Constructing 

the modal matrix � consisting of eigenvectors �1, �2, … �m, we get 
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Let 
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where N(t) is response vector in principal coordinate system. 
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Putting X(t) from Eq. 5-7 into 5-1, we get 
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Pre-multiplying Eq. 5-8 by the �T i.e., transpose of �, we obtain 
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We assume here a special case of viscous damping such that [�]T[C][�] is 

diagonal, called modal damping matrix. This assumption is adequate in representing the 

damping of the structure if the damping is small which is the case for a propeller. To 

obtain it we set rth diagonal coefficient Cr of the modal damping matrix equal to 2ξrωr, 

where ξr is the damping ratio and ωr is natural frequency corresponding to mode r. At 

this point, we replace [�]T[M][�] by [M’], called modal mass matrix, [�]T[K][�] by 

[K’], called modal stiffness matrix, [�]T[C][�] by [C’], the modal damping matrix., and 

[�]T[F] by [F’], called modal force vector. Thus all the modal matrices are m × m 

diagonal matrices, modal force vector has a dimension of m × 1, and Eq. 5-9 a system of 

m decoupled linear equations given by 
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    (5-10) 

 

Equation 5-10 can be solved to obtain the displacements, N(t), in principal coordinate 

system and the displacement in the physical coordinate system can be obtained using Eq. 

5-7. 

 

5.2.1 Steady State Response 
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As mentioned earlier, Eq. 5-10 is system of decoupled linear equation. To obtain 

the steady state response we set {F} = {Fo} cos Ω t, where elements of {Fo} are fro’s, in 

Eq. 5-10, we get 
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and the natural frequencies ωr is given by  
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and modal damping factor ξr is  
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where Cr, Kr , and Mr is the element from rth row and rth column of the diagonal damping, 

stiffness and mass matrices, respectively. 

 

Eq. 5-11 gives the solution 
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where 
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and  
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5.2.2 Modal Condensation and Input-Output Problem 

 

 As mentioned earlier, to reduce the dimension of the matrices involved in Eq. 5-1 

and hence to reduce the computational cost, the modal condensation method can be 

adopted and the number of modes considered in the final calculation will depend upon 

the frequency content of the excitations. In this section we develop a method to calculate 

the response of a linear system subjected to CS excitation if the dimension of the system 

has been reduced using modal condensation. Without loss of any generality, we assume 

that the means of the excitations are zero. This implies that the means of the responses 

are also zero. Correlation matrix of the response X(t) in terms of N(t) can be written as 
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Taking the constants � and �T out of the expectation sign, we get 
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Where RNN(t1, t2) can be obtained using Eq. 5-10 and the method to calculate the 

correlation matrix of the response developed in chapter 2. However, we need a relation, 

which will relate the correlation matrix of the forces in the physical coordinate system to 

the correlation matrix of the forces in the principal coordinate system. Taking the steps 

similar to the above, we write the correlation matrix of F’ as 
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Taking the constants �T and � out of the expectation sign, we get 
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For a given problem, we know the correlation matrix of the forces RFF(t1, t2) and then 

using Eq. 5-20, we calculate the correlation matrix of the forces in principal coordinate 

system RF’F’(t1, t2), which is then used in the calculation of correlation matrix of the 

response using the matrices involved in Eq. 5-10 and the method to calculate the second 

order statistics of the response developed in chapter 4. 

 


