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Transfer Entropy Analysis of the Interactions of Flying Bats

Nicholas B. Orange

(ABSTRACT)

In this document, a low-cost, portable, non-invasive method of collecting the 3D trajectories
of flying bats is first presented. An array of commercially available camera and light compo-
nents is used alongside a number of well-established calibration and triangulation techniques
to resolve the motion of agents through a 3D volume. It is shown that this system is capable
of accurately capturing the bats’ flight paths in a field experiment. The use of non-visible
illumination ensures that a natural cave environment is disturbed as little as possible for
behavioral experiments.

Following is a transfer entropy analysis approach applied to the 3D paths of bats flying in
pairs. The 3D trajectories are one-dimensionally characterized as inverse curvature time
series to allow for entropy calculations. In addition to a traditional formulation of infor-
mation flow between pair members, a path coupling hypothesis is pursued with time-delay
modifications implemented in such a way as to not change the Markovianity of the process.
With this modification, trends are found that suggest a leader-follower interaction between
the front bat and the rear bat, although statistical significance is not reached due to the
small number of pairs considered.

This work is supported by the National Science Foundation under grant EEC-1342176 and
by the Institute for Critical Technology and Applied Science at Virginia Tech.
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Chapter 1

A Novel, Low-Cost Near-Infrared
Camera System for the 3D Tracking
of Bat Flight in the Field

1.1 Introduction

Tracking the three-dimensional (3D) paths of flying agents is a well-established problem
that has been extensively tackled with multi-camera reconstruction in a variety of cases
from laboratory insects[1] to the tandem flights of cliff swallows in the wild[2]. In these
cases, sufficient day-time light or controlled laboratory lighting makes computer vision de-
tection of these agents possible. With nocturnal animals, such as bats, collecting data in a
non-laboratory environment creates an additional challenge: lack of day-time illumination.
Unfortunately, this challenge cannot be solved simply by using portable, visible-spectrum
lights without influencing animal behavior. Many species of bats are capable of seeing a
range of visible light [3] and using it for orientation [4, 5]. Given this, it would be disruptive
to flood a dark space or cave with visible-spectrum light, as this could lead to upset or
unnatural behavior, making any results unrepresentative of the natural state. Therefore, a
non-visible light solution is necessary if maintaining the sanctity of the natural behavior and
environment is a priority.

Thermal optical systems are the primary non-visible solution addressing this issue and have
been used successfully to track bats in dense swarms [6] and evaluate wingbeat patterns[7].
Unfortunately, obtaining these systems involves a significant cost, as thermal cameras capable
of the high-resolution, high-speed capture necessary to resolve the motion of bats often
cost between $10,000 and $80,000 dollars per camera, based on personal discussions with
established thermal camera companies. This leaves a unique role to be filled by a system
capable of comparable non-intrusive 3D capture performance with a more accessible cost

1
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figure.

To fill this role, a near-infrared solution is developed. Near-infrared light occupies a small
spectrum between short-wave infrared and visible red, typically referring to 650-1050 nm
wavelength light [8]. For this application, the low-frequency end of this spectrum (950 nm
wavelength light) is chosen, which is typically invisible to the human [9] and the bat eye
[10], but behaves similarly to visible light. Most importantly, modern digital image sensors
can detect near-infrared light, though it is conventionally blocked by infrared filters within
the lens to better reflect the spectral response of the human eye [11]. By fully utilizing the
spectral range of commercially available digital cameras, one can exploit the low cost of this
equipment to achieve a novel solution to non-invasive tracking that reduces cost and, as an
added benefit, is extremely portable. To the knowledge of the author, this system is the first
of its kind.

The novelty of this camera system lies in the hardware specifications and setup, rather than
the data processing or calibration strategies, which are based on well-founded 3D tracking
concepts and open-source toolboxes. For this reason, this chapter will detail the selection
and arrangement of the hardware components and briefly discuss the process of turning the
raw video data into 3D paths.

The system’s performance is demonstrated in a mountain cave near Jinan, China. This data
collection was part of a larger project to analyze the interactions of bats in swarms or in
pairs. The population of bats in the cave were primarily of the genus Myotis and would leave
the roosting area of the cave center to feed on insects every night immediately after sunset.
3D data was collected in a hallway-shaped section of the cave near the exit, which provided a
good environment for generating long, distinguishable paths for the entropy analysis shown
in the next chapter. It is found that the camera system performed as expected and was able
to accurately resolve the 3D paths of the bats that flew through the volume of interest.

1.2 Hardware Selection

In order to effectively capture the motion of small, fast moving objects (bats), it was necessary
to use cameras with high spatial resolution and frame rate abilities. The GoPro Hero 3+
Black Edition proved to be an affordable and effective option for meeting those requirements
while shooting at 1920 × 1080 pixel resolution and 60 Hz. The high resolution allowed for
a usable range of roughly 40 meters, inside of which a well-lit bat would be easily visible
to a camera. Given that the bats represented in the data flew with a velocity up to 9 m/s,
a 60 Hz capture rate ensured that each bat traveled no more that 15 centimeters between
frames. In addition to these metrics, the GoPro cameras were preferable due to their small
size, light weight, and waterproofing cases, which made them ideal for field work.

In order to utilize non-visible light, the original GoPro lenses are replaced with IR-Pro
IRP202 Hybrid lenses[12], which permit the passage of a full spectrum of infrared, visible,
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Figure 1.1: Infrared vision image of the field site in Jinan, China. The purple hue repre-
sents the 950 nm near-infrared wavelength interpreted by the GoPro camera’s IR-sensitive
hardware.

and ultraviolet light to the camera sensor while maintaining similar geometry. The stock
GoPro lens has a 2.92 mm focal length and a field of view of 123 degrees, while the IR-Pro
lens has a 2.5 mm focal length with a field of view of 134 degrees. Given that the IR-
Pro lenses are designed to replace the original lens, the replacement process was as simple
as unscrewing the original lens and screwing in the IR-Pro replacement, though manually
focusing the new lens is necessary. The final product here is a full spectrum digital camera
with the performance of the original GoPro. Used in conjunction with Sima SL-100IR 950
nm LED array illuminators, a complete non-visible lighting and capture system was attained.
A sample image of the field site illuminated with 950 nm light taken with a near-IR-modified
GoPro camera is shown in Figure 2.1.

It should be noted that both the cameras and illuminators are powered by internal, recharge-
able lithium-ion batteries, meaning that all components can function for a reasonable du-
ration in the field. The GoPro cameras were found to record continuously for around 1.5
hours, while the illuminators would begin to dim after 2.5 hours. In order to achieve longer
recording times, small, external 2200 mA USB power supplies could be connected to the
cameras to double their life.

For data storage, each GoPro’s built-in SD card slot is used to write to a 32 Gb SD card
(SanDisk Ultra Micro SDHC). At 1080p and 60 fps, 32 Gb allowed us to record for roughly
2.5 hours uninterrupted. This internal storage capability gave a significant advantage in
portability by making additional capture hardware unnecessary.

Additional equipment needed for a functional setup included lightweight SLIK F143 tripods,
a Samsung SM-T320 Galaxy Tab Pro tablet, and a 5 mW green laser pointer. By combining
various accessory mounting pieces with basic hardware, tripod mounts were constructed that
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Figure 1.2: A fully constructed tripod includes one modified GoPro camera, one illuminator,
and one external battery.
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Figure 1.3: All camera system components fit into a 42cm × 33.1cm × 17.4cm pelican case
for transport.

would securely hold, in any orientation, a GoPro camera, illuminator, and battery pack.
These snapped into the tripods, providing a simple, lightweight structure for each camera.
A single camera setup on a tripod is shown in Figure 1.2. The tablet was needed to preview
each camera’s vision in order to ensure proper alignment. This was done by connecting the
official GoPro app installed on the tablet to each camera’s built-in Wi-Fi network. The laser
pointer was capped with a piece of cellophane tape to create an approximate point light
source and was used in the later steps of calibration.

By carefully selecting the cost-effective, portable components described, a fully functional six
camera setup with 15 illuminators (including an additional back-up camera, not including
tripods) could be fit into a 42cm × 33.1cm × 17.4cm Pelican case (Model 1450) for safe
transport, shown in Figure 1.3. The total cost of the full system with all components is only
$4539 and weighs a total of 12 kg, including tripods. This mass figure makes the system
highly mobile, such that a single person can comfortably carry and setup all necessary
components.
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Figure 1.4: Mean 2D reprojection error for the six camera setup computed by the Svoboda
multi-camera self-calibration toolbox. Error bars show one standard deviation.

1.3 Setup and Calibration

Assembly, placement, calibration, and systems check take approximately one hour. At the
Jinan field site, the cameras were arranged in a rectangular pattern, allowing the capture
of the 12m × 6m × 5m hallway formed by the cave, while maximizing the orthogonality of
the camera lines of sight. Because the GoPro cameras have no method of external syncing,
temporal syncing was performed by flashing the laser pointer in view of all cameras and
extracting the exact frame of the flash after the recording. This method creates a timing
error of +/- 0.5 frames, which is manageable given the high frame rate. It should be noted
that this temporal sync issue can be addressed by syncing the audio tracks, which sample
at a much higher rate of 44 kHz, and interpolating tracked 2D paths to achieve sub-frame
accuracy. This effectively eliminates the timing error. This process may or may not be
necessary to achieve good results depending on the velocity of the object being tracked and
the frame rate used. In this project, sub-frame interpolation was not needed to achieve
positive results.

3D calibration was performed in accordance with the Svoboda Multi-Camera Self-Calibration
MATLAB toolbox [13]. The taped laser pointer was walked through the capture volume and
recorded on all cameras. After recording, the sets of 2D points from each camera view were
used to extract the extrinsic 3D information of the camera positions. An assessment of
calibration success is made by the 2D reprojection error of the tracked laser points[14]. For
this camera system, the cameras were calibrated in four different configurations and it was
consistently found that the mean 2D reprojection error over the six cameras was less than
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Figure 1.5: Example plot of image processing and 2D tracking results from verified automatic
method in MATLAB. The green and orange paths represent the time histories of the leading
and following bats respectively.

0.8 pixels. In particular, for the camera setup in the exemplary experiment discussed in this
chapter, the statistics for the 2D reprojection error from each camera is given in Figure 1.4;
the mean 2D reprojection error over the six cameras in this case is 0.77 pixels.

As a component of this calibration, an intrinsic 2D distortion adjustment is made by the
Caltech Camera Calibration MATLAB toolbox [15]. This adjustment is made for each cam-
era lens separately and is fed into the 3D Svoboda calibration by setting the intrinsic camera
properties. This step is necessary to resolve the significant distortion present in wide-angle
lenses. The final component of calibration is relating the arbitrarily scaled environment pro-
duced by the Svoboda toolbox to real-world dimensions[14]. This requires a single, physical
length scale to apply to the final 3D environment, which can be obtained from the triangu-
lation of a set of real points, or by measuring the distances between the cameras. In this
setup, the distances between cameras was used for this scaling.

1.4 Processing

Image processing is performed after the data is collected using a background subtraction
method. In this method, a representative average image is subtracted from each frame.
Pixel groups that differ significantly from the background are cut out with a binary mask
and traced with a Moore-Neighbor algorithm from the MATLAB Image Processing toolbox.
The presence of a bat is determined by comparing each pixel group with nearby candidates (a
set of similar pixel groups within a certain distance) in the frames before and after and, from
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these, determining if a valid time evolution of the group is present based on the smoothness of
the path generated by the pixel group moving between the three frames. This use of motion
information allows for both a double-check of the validity of a detected object, as well as
the distinction of high-level noise from dimly-lit bats, which can be necessary if lighting is
insufficient or inconsistent.

With the 2D locations of every bat determined, any number of 2D/3D tracking strategies
can be implemented. With consistent and continuous 2D data, a fully automatic system
can be implemented, following the well-founded, well-documented techniques in[16, 17, 18,
19]. If less-than-desirable lighting conditions exist, the results of 2D tracking may become
inconsistent, leading to problems with 3D correlation depending on the technique employed.
In this situation, a verified automatic or purely manual tracking approach may be deemed
best.

A user-verified automatic 2D tracking method that merged with a simple 3D reconstruction
algorithm was elected for this implementation. Within a user-interface, a bat is selected for
tracking from one camera view and a 2D extrapolative motion tracker extracts the path of the
bat while the user watches the progress and makes corrections as necessary. This tracking is
performed on data from all cameras with a view of the bat. An example of this process from
one camera view is shown in Figure 1.5. The 3D reconstruction algorithm collects the 2D
information from each camera and projects the lines of sight into 3D space. To best resolve
the final 3D position of the converging lines of sight, a least squares regression formulation is
used to minimize the orthogonal distance of each line from the final 3D point. Additionally,
though the intrinsic distortion of the lens is adjusted for, the outer edges of the camera
view are still to be considered less reliable. As such, the regression includes weighting that
considers the centered-ness of a camera view.

After tracking and triangulation, a first-order locally weighted smoothing method is applied
to the 3D path data. This method eliminates residual tracking error and oscillatory motion
of the bat’s centroid resulting from wing beat, while best considering the fundamental linear
momentum of a flying bat.

For this project, all image processing, 2D tracking, 3D reconstruction, and analysis were
performed in MATLAB. The Caltech toolbox provided routines for distortion adjustment
and MATLAB toolboxes and built-in functions were used in tracing, smoothing, and mini-
mization. The remainder of the processing was performed with custom MATLAB codes.

1.5 Results

10 pairs of bats flying in proximity were collected, a sample of which is shown in Figure
2.2. As a complete validation of the reconstruction, the inverse problem is performed and
the 3D points are reprojected back onto the camera views. Samples of this validation in
two camera views of a single path are shown in Figure 1.7. The mean reprojection error
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Figure 1.6: Plot of final 3D path reconstructions of two bats flying as a pair. Camera
positions, orientations, and fields of view are also shown.

of these samples, calculated between the smoothed 3D points and the 2D tracked points in
both cameras, is 5.01 pixels, a reasonable figure when considering the high resolution and
wide-angle distortion of the cameras. With this validation it is determined that the system
is capable of accurately tracking the 3D location of bats within the collection volume.

1.6 Discussion

Successful experimental design is centered around the use of reliable, accurate equipment
for data collection which often creates a necessity for science-grade or professional hardware.
The cost advantage of the system described in this chapter fundamentally lies in its use of
commercially available, consumer-grade hardware rather than science-grade hardware. This
factor allowed the cost goals of the project to be met. The use of GoPro cameras had
additional advantages in that they are very small, very light, and self-contained, making the
final system extremely efficient for field work. However, some noticeable drawbacks to using
the GoPro cameras exist which are quintessential issues with consumer-grade hardware in
general. These drawbacks are addressed in the following discussion.

The most significant drawback is the lack of synchronization control or an external trigger,
which creates a temporal error of ± 0.5 frames, leading to increased 3D error as the velocity
of the tracked object increases. It was discussed how this can be addressed by using the
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Figure 1.7: Example plot of final 2D reprojection validations. Red diamonds indicate 2D
tracked points, and white circles final 3D points. The mean reprojection error is 5.01 pixels.
Source images have been cropped to better show path points.



Nicholas B. Orange Chapter 1 11

camera audio tracks to sync with sub-frame accuracy, but this issue would be entirely avoided
with an external trigger, a standard feature in most science-grade cameras and even some
consumer-grade cameras.

Lossy compression presents another concern. The GoPro camera output is a .mp4 codec
which uses compression to achieve reasonable file sizes for extended high-definition recording.
This compression can result in information loss either by reducing the overall signal to noise
ratio of the data or by smoothing out small, non-distinct pixel groups that may represent
bats. In general, this is not an issue in well-lit, high-contrast environments, but it can create
detrimental effects when filming in low-light conditions. This places an added importance
on achieving good lighting conditions with near-infrared illumination. If proper lighting is
unattainable, a camera capable of uncompressed video output should be used to ensure the
best possible result.

Lastly, it was found that the GoPro cameras were occasionally subject to shutting down as
a result of high temperatures reached during long recordings. This issue was encountered
primarily in the lab during testing, where ambient airflow was not as present. It was deter-
mined that reducing the internal battery load is the best method for avoiding this problem,
which can be done by turning off Wi-Fi functionality or using an external battery pack. The
next generation of GoPro cameras available as of 2015 will likely not be subject to this issue,
though this has not been confirmed.

By using commercially available GoPro cameras, it is inevitable that some amount of accu-
racy, functionality, and reliability is traded for cost savings and improved portability. This
represents a typical and rather intuitive issue with equipment selection. In this case, a lack of
external triggering, compression concerns, and over-heating issues were encountered. How-
ever it was shown that these issues can be resolved and 3D tracking results can be achieved
that are comparable to the results of systems with 10 times the cost. This point serves to sug-
gest that commercial hardware, especially commercial video cameras, shouldn’t be ignored
when cost metrics are of importance and sufficient time for system testing is available.

Potential ultrasonic signature of the system is also addressed. Because bats use ultrasonic
pulses to echolocate, any ultrasonic noise created by electronics or other sources would be
unacceptable for a non-invasive field setup. To ensure that this system was not producing
an ultrasonic signature, a Wildlife Acoustics Song Meter SM2BAT+ ultrasonic recorder
with a SMX-UT microphone was used to monitor the system components while reproducing
a typical data collection process. Waveform data was analyzed in MATLAB and it was
confirmed that no ultrasonic noise was being generated.

The SLIK F143 tripods used are designed to be lightweight rather than to maximize sta-
bility and rigidity. Indeed, heavier, professional tripods can provide a sturdier base for the
cameras which may better prevent error created by post-calibration movement. However,
there a number of factors that reduce this advantage of heavier tripods and support the
use the existing lightweight tripod setup. Because of the Svoboda calibration method used,
no physical contact with the camera is made after the calibration phase until the end of
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the recording period. This means that, excluding an extreme scenario where a camera is
deliberately jostled or struck by a bat, only infinitesimal movement of the camera can occur,
possibly as a result of temperature changes or wind pressure. These infinitesimal movements
would create error only noticeable on systems where less than sub-pixel error is critical; it
would not significantly effect the output of this system. As such, the use of lightweight
tripods was found to be prudent.

There are some routes to consider towards improving the performance of this system. Most
viable is the potential use of rectilinear (flat) lenses which would decrease the field of view of
the camera but entirely eliminate lens distortion, which is the biggest contributor to spatial
error. With some brief testing of the modified fields of view and adjustments to setup
geometry, this small change would likely show a large reduction in error. Conveniently, IR-
Pro has recently made available a similar full spectrum GoPro lens product that is fully
rectilinear[20].

Another potential improvement is increasing the capture rate to 120 Hz or more, as made pos-
sible by the newest generation of GoPros or other cameras. An increased capture rate would
be most helpful for the implementation of an automatic tracking algorithm applied to dense
groups, where smaller time steps can help better distinguish the motion of individuals[18].
Increased capture rate would also provide more samples of any given 3D trajectory, however
this proves to be rather non-valuable. Based on the wingbeat rate estimated from the video
data and the smoothness of the paths observed during maneuvers, there seems to be a func-
tional limit as to how sharp a bat can turn, and a 60 Hz capture rate is sufficient for even
the most drastic motion observed. If a higher sample rate is desired, a spline fit through the
60 Hz data can be resampled for a sufficiently identical result.

Finally, a brief discussion of non-visible illumination is warranted. Working with near-
infrared lighting is uniquely difficult in that it is absolutely critical to the system performance
while being total invisible by conventional means. Given this, it is essential to gain experience
with infrared illumination before attempting to collect data in the field. If possible, the exact
film site should be visited beforehand and testing should be done to check that objects moving
through the zone of interest are effectively illuminated. A modified GoPro, monitored with
a tablet, serves as an effective means for surveying the illuminated space. More powerful
illuminators than the small illuminators used in this paper should be considered for filming
in larger spaces. If shooting against a dark background is possible, this improves results
significantly.



Chapter 2

Transfer Entropy Analysis of
Leader-Follower Interactions in Flying
Bats

2.1 Introduction

Bat navigation and group dynamics represent a rich subject area of potential study. Highly
evolved collective motion utilizing active sensory echolocation creates numerous avenues of
exploration that can benefit our understanding of swarming mechanics, consensus modeling
[21], collective robotics [22, 23], and optimization strategy [24, 25]. In recent years, significant
progress has been made in capturing the fundamental phenomena involved in these natural
systems, as is detailed below.

Evidence of frequency modulation capabilities [26, 27] clearly show that bats have evolved
echolocation behaviors to mediate their interactions with conspecifics. Similar behaviors
include vocalization cessation [28], which can allow bats to switch from active to passive
sensing, and even offensive jamming during feeding competition [29]. With these behaviors
in mind, it is clear that bats act differently together than alone and, in many situations, this
can benefit their survival.

Modern agent-based swarm modeling and consensus modeling can provide some additional
insight towards understanding the complexity of bat group motion. Particularly salient
lessons are the importance of goal-orientation and leadership [30, 31]. While we can observe
and understand the navigational goals of bat agents, such as feeding or energy conservation,
clearly defining navigational leadership roles, even relative ones, in real bat systems is a chal-
lenge. Particularly, a quantitative assessment of navigational leadership within bat groups
appears to be an entirely untouched area of study. Given the broadcast nature of bio-sonar,
the active sensing of one individual can directly influence the motions of others, making the

13
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directionality of leadership unclear.

In this chapter, a contribution is made towards the understanding of navigational leadership
in bats. The exploration of this area is refined by focusing efforts on pairs of bats and
pursuing a method of analysis involving the application of transfer entropy.

Transfer entropy is a measure of directional information transfer between random processes.
Centered around the concept of Shannon entropy [32, 33], transfer entropy allows simul-
taneous time series to be assessed in terms of the strength and direction of their coupling
[34, 35, 36] by measuring the reduction in uncertainty of one time series when knowledge
of the other time series is gained. With rapidly increasing interest, transfer entropy has
been successfully applied to a large variety of subject areas including neuroscience [37], eco-
nomics [38], and social media [39]. Particularly, entropy approaches have been developed for
assessing animal behavior [40, 41, 42] and information transfer in swarm models [43].

This wide base of work provides an excellent foundation with which to structure a novel
approach to the problem of bat navigational leadership. The core concept here is to apply
a transfer entropy analysis to characteristic kinematic time series representing the 3D paths
of bats flying in pairs. Differing values of directional transfer entropies between members of
each pair are expected to function as good indicators of potential leadership roles.

3D trajectories of wild bats flying in pairs are collected and examined; qualitative evidence
is found that a coupling between their paths often appears. Given that the cave environment
site of data collection is controlled to be consistent through time and that a large variety
of path shapes are displayed, it is highly compelling that the paths of the bats within
a pair are qualitatively similar. Thus, the hypothesis of a path coupling within pairs is
conceived. A cursory examination of the simultaneous inverse curvature plots also supports
this hypothesis. Strong curvature equivalency can be detected in many pairs, though the
equivalency occurs across a significant time delay, a phenomena that is thoroughly described
later in this chapter.

With these observations, it is believed that strong interactions exist within the bat pairs and
that this interaction is demonstrated by path shapes. Though the direction and magnitude of
path coupling was unclear initially, it is hypothesized that one can resolve these properties
using a transfer entropy analysis of the inverse curvature time series or other kinematic
metrics, which is explored in this work.

After applying a well-founded adjusted entropy formulation that allows for the capture of
the time delay inherent with path coupling, directional transfer entropy values are calculated
for each pair. Higher information transfer is found from the bat flying in front to the bat
flying in the rear when the path coupling time delay is considered, as compared to all other
entropy transfer figures (front to rear with no time delay, rear to front, and random pair
shuffling); these trends fail to reach statistical significance due to the small number of bat
pairs considered. Nevertheless, this result provides evidence that relative spatial positioning
plays an important role in navigational leadership and quantifies the amount of path coupling
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Figure 2.1: Infrared vision image of the field site in Jinan, China. The purple hue repre-
sents the 950 nm near-infrared wavelength interpreted by the GoPro camera’s IR-sensitive
hardware.

that occurs within interacting pairs of flying bats.

2.2 Data Collection and Preparation

As detailed in the previous chapter, data is collected in a mountain cave in Jinan, China, in
which, a long, hallway-like portion of the cave was found to be ideal for tracking continuous
paths of small groups of bats. A 3D near-infrared camera system was setup and calibrated
to obtain the 3D paths of bats along a 12 meter portion of the cave “hallway.” This camera
system consisted of 6 modified GoPro cameras filming at 1920× 1080 resolution and 60 Hz.
950 nm LED arrays were used to create artificial illumination that is invisible to the natural
eye, but able to be detected by the modified camera hardware, as shown in Figure 2.1.

Intrinsic camera calibration was performed with the Caltech Camera Calibration Toolbox
for MATLAB[15] and spatial calibration with the Svoboda Multi-Camera Self-Calibration
method[13]. Image processing and 3D reconstruction were performed with custom MAT-
LAB codes following well-established triangulation techniques. A detailed description of the
experimental setup and data processing can be found in the previous chapter.

Ten pairs of bats were tracked as they flew through the volume. Pairs were selected if two
bats coincided in the tracking volume for 50 or more frames and no other bats were in the
tracking volume throughout the duration of the pair’s flight. The purpose of this measure
was to best enforce that the two bats being tracked were only interacting with each other,
rather than surrounding bats. Some bats flew directly through the hallway, while others
made a complete turning maneuver and returned the direction they came. In all cases, the
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Table 2.1: General flight data of bat pairs.
Pair Flight path type Front bat avg vel (m

s ) Rear bat avg vel (m
s ) Avg separation (m) ∆t (s)

1 Straight through 6.28 6.16 2.94 0.48
2 Straight through 5.05 5.93 2.93 0.49
3 Turn back 3.11 2.60 1.13 0.44
4 Straight through 4.00 4.74 4.37 0.92
5 Straight through 4.98 5.48 2.49 0.45
6 Straight through 4.72 5.26 3.48 0.66
7 Straight through 5.76 5.01 3.16 0.63
8 Straight through 6.58 5.90 3.37 0.57
9 Turn back 4.44 5.49 2.69 0.49
10 Straight through 5.33 3.78 3.05 0.81

first bat to enter the tracking volume was labeled as the front bat, and the other, the rear
bat. Details of the tracked paths are shown in Table 2.1.

The 3D path points of each bat were extracted from the video data and a first-order locally
weighted smoothing method was applied. This method eliminates residual tracking error
and oscillatory motion of the bat’s centroid resulting from wing beat, while best considering
the fundamental linear momentum of a flying bat. A sample of these 3D paths is shown in
Figure 2.2.

In order to perform a transfer entropy analysis of these pairs, it was necessary to generate one-
dimensional time series from three-dimensional path data. A number of potential metrics for
representing 1D time series were considered; it was found that an inverse radius of curvature
metric was best for a number of reasons. Primarily, a curvature-based time series would be
reflective of a bat’s steering and thereby provide a good depiction of the 3D navigation of
the bat pairs. Secondarily, an absolute inverse radius of curvature formulation would ensure
the data remains positive and close to zero, making a logarithmic binning strategy possible.
Finally, inverse radius of curvature was sufficiently time-varying to be a good candidate
for entropy analysis without being as chaotic as a higher-order metric, such as kinematic
jerk. As an additional reason, curvature-based metrics are well-founded, in that they are
frequently used to assess the motion of interacting agents, such as in the study of laboratory
insects [1]. Nevertheless, entropy analyses are performed on other metrics, as presented in
the discussion section of this chapter.

To extract the inverse radius of curvature time series, a third-order spline is fit through
the 3D path points and re-sampled in time at the desired sample rate, if different than the
original 60 Hz. The spline is then differentiated twice to generate 3 component velocity (v)
and acceleration (a) vector data at each point. Using Equation (2.1), one can determine the
vector of normal acceleration (an), which is then used by Equation (2.2) to determine the
inverse radius of curvature (1/R). Figure 2.3 shows sample plots of the calculated inverse
curvature time series pairs.
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Figure 2.2: A 3D reconstruction of the complete paths made by Pair 2. The green path rep-
resents the front bat and the yellow path the rear bat. The 6 camera positions, orientations,
and fields of view are also represented. Note the similarity of the path shape. Other pairs
display comparable similarity.

an = a− at = a− a · v
‖v‖2

v (2.1)

1

R
=
‖an‖
‖v‖2

(2.2)

As a validation of this method, a discrete calculation of spatial curvature is performed,
taken from Bergou [44]; it is found that the two methods displayed identical trends but with
different proportional scaling as a result of dimensional differences. The spline-differentiation
method was kept because it retained a 1/m unit scale, which was useful for interpretation.

To achieve the discretized time series data necessary for entropy analysis, a straight-forward
logarithmic binning strategy was employed. Bins ranges were logarithmically spaced from
10−1.3 to 100.4 m−1, these values being representative of typical minima and maxima of the
data set. Exceptional points that were less than 10−1.3 m−1 were grouped into the lowest bin.
A plot depicting this binning strategy is shown in Figure 2.4 and the resulting probability
distributions used in entropy calculations are shown in Figure 2.5.
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Figure 2.3: Sample pair-wise inverse curvature time series occurring in real time, as per the
camera frame number. The green curve represents the front bat and the yellow curve the
rear bat. It is critical to note, again, the similarity in shape. The time-delay, demonstrated
by the x-axis displacement between each curve pair, can be accounted for with the modified
transfer entropy formulation.
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2.3 Transfer Entropy Approach and Hypothesis Prov-

ing

To prove the hypothesis of path coupling, a transfer entropy analysis of the inverse curva-
ture data is performed. With a one-dimensional, discretized time series, a straightforward
Shannon transfer entropy formulation [32, 45] is first applied. Shannon entropy, conditional
entropy and free information are given by Equations (2.3), (2.4) and (2.5) respectively.

H(x) = −
∑
x∈A

p(x) log p(x) (2.3)

H(x|xp) = −
∑

x,xp∈A

p(x,xp) log p(x|xp) (2.4)

H(x|xp,yp) = −
∑

x,xp,yp∈A

p(x,xp,yp) log p(x|xp,yp) (2.5)

The set A represents the possible discrete values of x and y, as determined by the number
of bins k, such that A = {a1, a2, ...ak}. The vector x = {x1, x2, ...xN} represents any of
the potential discrete values along t = {t1, t2, ...tN} of the curvature signal receiving entropy,
while xp represents any value preceding a specific x(t) in the previous timestep. Similarly,
yp represents any value preceding a specific x(t) in the previous timestep, but from the
entropy source curvature signal.

The function p(x) represents the probability distribution of x, determined by the frequency
of a symbol (ai ∈ A) appearing in the x time series. The distributions p(x,xp) and p(x|xp)
represent the digram and transitional probability distributions, respectively, of the x time se-
ries. Similarly, p(x,xp,yp) and p(x|xp,yp) represent the digram and transitional probability
distributions, respectively, of the x time series, with knowledge of the y time series.

In this way, conditional entropy indicates the total information of x given the previous values
of x, while free information represents the information of x given the previous values of x
and y. Thus, transfer entropy can be calculated in Equation (2.6), where transfer entropy
is the information of x coming from previous values of y but not previous values of x.

TE(y→ x) = H(x|xp)−H(x|xp,yp) (2.6)

Inherent in this formulation is the assumption of a 1st order Markov process [32], in which
current values of a signal are only affected by the values of one time step prior. In accordance
with the properties of this assumption, a number of important concepts are developed.
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First, curvature data must be intelligently sampled such that a stimulus-response cycle can
occur within a single timestep. If the bats are not capable of observing and adjusting their
trajectory within a single timestep, positive results cannot be expected. This is resolved
with a characteristic time scale argument later in this chapter.

Secondly, if interaction is delayed (in that a bat is capable of making a trajectory adjustment
in a single timestep, but waits until later timesteps to do so), a traditional 1st order Markov
formulation will not produce positive results. Based on the path coupling hypothesis and
the time delay seen in the simultaneous inverse curvature plots, an interaction delay of this
kind is anticipated. This led to the development of a method for addressing and capturing
this potential phenomena.

Hence, a modified 1st order Markov process is proposed. The calculation of free information
in Equation (2.6) is adjusted such that yp can encapsulate not just the value of the entropy
source signal corresponding with the preceding time step (t−1), but a time step further back
(t − n, where n ≥ 1). This formulation maintains the Markovianity of the process because
the entropy recipient can still only refer to a single previous state of the entropy source,
though that state is now n time steps preceding, instead of just one time step preceding.
Conceptually, this is equivalent to a bat detecting an important change in his partner’s path
immediately, but consistently waiting until a later time step to incorporate that change, as
would be the case for a bat that is attempting to follow another bat that is substantially ahead
(in front). The final process is similar to methods for studying time-delayed dependencies
that have been developed in well-established literature [35]. Figure 2.4 serves to illuminate
the function of the modified Markov process. Additionally, a plot of the effect of n on a
single transfer entropy calculation is shown in Figure 2.6.

With this modified formulation, an additional variable is created in the calculation of transfer
entropy, n. To visualize the interactions of all three variables (number of bins, sample rate,
and n shift value), one can plot a 2D transfer entropy map that varies sample rate and n
shift. These maps can be generated for any number of bins, any pair, and any direction of
interaction. Some samples of these maps are shown in Figure 2.7.

This huge array of transfer entropy data can be hazardous. Because results can depend
strongly on the interpretation used, there are many opportunities for spurious conclusions
to be reached [46]. In order to compose a supportable argument, physical reasonable sample
rate, number of bins, and time delay values are selected , such that they could be considered
characteristic scales of the system. By doing this, one eliminates regimes of results that do
not have physical meaning and the bias of selecting regimes that artificially provide the most
positive results is avoided. This form of interpretation argument is generally well-founded
and can be demonstrated in the analysis performed by Butail on fish-robot interactions [40].

Given that an average wing-beat frequency for bats of the size observed is 10 Hz [7] and that
one can reasonably assume a bat is capable of making trajectory adjustments four times per
wing-beat, 40 Hz is selected as a best guess of a physical characteristic time scale. This also
addresses the issue of insufficient stimulus-response cycle time, mentioned previously.
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Figure 2.4: Depiction of modified Markov process. The top plot displays the original cur-
vature time series from Figure 2.3, having been down-sampled (sub-frame timing is applied
as necessary) and placed on a log scale. The lower plot displays the truncated and shifted
time series with respect to the locally defined time step. In both plots, the green dot signal
represents front bat and the yellow dot signal the rear bat. The signal highlighted in red is
the entropy recipient, x, for which the entropy values are being calculated; in this case, the
entropy recipient is the rear bat. The non-highlighted signal is the entropy source, y. Blue
horizontal lines represent the minimum of each binning zone, eight in total. The lowest line
is dashed since the lowest bin includes all values below its stated minimum. The unused
bins have no effect on entropy calculations and are used by other pairs. The probability
distributions generated by this example are shown in Figure 2.5. Looking at the entropy
recipient, the red vertical line marks the final value of x, while the black vertical lines mark
the first and last value of xp. Similarly, looking at the entropy source, the black vertical lines
mark the first and last value of yp, given the imposed n. Moving from the top plot to the
bottom, the black vertical lines line up in time, indicating that these previously separated
points (and all points in between) are being correlated in the calculation of free information
H(x|xp,yp), as per the modified formulation. All data presented here is sourced from Pair 6
at a sample rate of 40 Hz, n = 30 time steps. Though it is not relevant to the final analysis,
for clarity, calculated entropy outputs for this example are included in the bar plot on the
right.
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Figure 2.5: Sample plot of the probability distributions generated by the fixed logarithmic
binning strategy employed on the curvature data, to be used in the calculation of Shannon
Entropy. The red and white bars are the probability distributions of the x and y time series
used in Figure 2.4.

Figure 2.6: Sample plot of the general effect of n on transfer entropy. Generated from Pair
8 at 40 Hz with ten bins. The blue line represents the TE value of this data at n = 24, the
n shift value calculated with the ∆t = 0.57 value for Pair 8, using Equation (2.7).
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Figure 2.7: Sample of 2D transfer entropy maps. With axes of n shift and sample rate,
variables such as pair number, directionality, and number of bins can be varied. Here,
number of bins is varied from 9 to 11 considering both directions of information transfer in
Pair 4. The thin white lines represent the ∆t value for Pair 4 projected onto the front to
rear maps using Equation (2.7). The three red circles indicate entropy values used in the
final analysis. Plot areas of zero TE lack sufficient points for entropy analysis. Front to rear
direction plots cover a broader plot area because n shift increases the number of common
points between each signal in this case; the opposite is true for the rear to front direction.
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Number of bins was selected as to allow a bat to easily move between bins within one time
step[40], as well as to guarantee the performance envelope of the bat could be well captured.
Ten bins was considered sufficient and thereby chosen.

For the n shift values, transfer entropy is first calculated with the conventional n = 1
to see the standard values. However, as previously mentioned, a time delay phenomenon
correlating with path coupling is hypothesized. To capture this, a differential time factor
(∆t) is calculated for each pair by dividing the average distance between the front and rear
bat by the average velocity of the rear bat. This differential time factor represents the
average time lag between when the rear bat sees the front bat at a particular location and
when the rear bat achieves an equivalent location along its own path. Effectively, this delay
incorporates path information from the front path at an equivalent point in space, rather
than the previous point in time. If an increased value of transfer entropy is seen using this
shift, it will serve as evidence for a path-coupling behavior from the front bat to the rear bat
and a leader-follower interaction.

Precise differential time values are given in Table 2.1 and can be converted into n shift values
with Equation (2.7), where SR is the chosen sample rate and rnd(•) rounds real numbers to
the nearest integer.

n = rnd(∆t · SR) + 1 (2.7)

It is critical to note that this delay factor is inherently directional from the front bat to the
rear. Given that the front bat is exclusively in front of the rear bat and cannot perceive
stimuli from future time steps, imposing this same shift for the rear to front interaction
would be entirely non-physical and would require using a negative n value.

Based on these properties, it is proposed that the front bat is only able to receive and
incorporate path information from the rear bat based on the previous time step, as per
a traditional 1st order Markov formulation, where as the rear bat can incorporate path
information from front bat based on the previous time step or an equivalent point in space
as per the ∆t→ n shift. This may seem to provide an unfair advantage to the rear bat, but
this advantage appears to be inherent with nature of the system.

With all state variables decided, the final transfer entropies for each pair with each of these
interaction modes are calculated to evaluate their respective presences. To clarify, the modal-
ities considered are: RFn=1, entropy from the rear to the front bat with n = 1, FRn=1,
entropy from the front to the rear bat with n = 1, and FR∆t, entropy from the front to the
rear bat with n determined by ∆t.

In addition to these three modalities, a fourth value is added, representing a control condition,
Modality Sh. Because there can be some amount of calculable information transfer between
two time series that are entirely independent, calculated is a level of entropy present between
curvature time series of bats that cannot possibly be interacting since they occupy the
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Figure 2.8: Final transfer entropy results for all pairs in each modality at a sample rate
of 40 Hz and with ten bins. Red bars represent sample means and black brackets indicate
standard error. N = 10 pairs are used for the first three modalities and N = 1000 samples
for the shuffled control modality. No significant differences in means are present.

tracking volume at vastly different times . This is accomplished by randomly selecting 1000
sets of curvature time series, each set having an entropy recipient and source from different
pairs, and calculating directional transfer entropy with a random n shift value. Ideally, this
method can add validity to the results by representing a “background” level entropy that is
systemic with the data and that other entropy levels can be compared to. Most importantly,
matched pair modalities (RFn=1, FRn=1, and FR∆t) need to exhibit higher levels of transfer
entropy than the unmatched shuffled pair modality (Sh) in order to be considered significant.

2.4 Results

The results of this analysis can be seen in Figure 2.8. As evidenced by the figure, the
mean value of the front to rear with imposed delay modality (FR∆t) is higher than all other
modalities, which are roughly equal. Using JMP 11 software, a one-way analysis of variance
is performed to test the statistical significance of these trends. Using a typical significance
level of p < 0.05, unfortunately, no main effect of modality on the mean transfer entropies
is found.

With a Tukey-Kramer HSD test performed for post-hoc, pairwise tests (JMP 11), tests
comparing Modality FR∆t to Modalities RFn=1, FRn=1, and Sh have lower p values (0.30,
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0.38, 0.44, respectively) than all other pairs (0.77 for Sh to FRn=1, 0.87 for Sh to RFn=1, and
0.99 for RFn=1 to FRn=1). Although these tests fail to indicate statistical significance, the
trend suggests that Modality FR∆t is the most dominant modality of directional information
transfer in the system. This is to say, one finds highest information transfer from the
bat flying in front to the bat flying in the rear while considering the path coupling time
delay. This serves as reasonable evidence for a number of critical points: 1) relative spatial
positioning plays an important role in navigational leadership, 2) the front bat in particular
fulfills a leadership role for the pair as a whole, and 3) the rear bat displays path coupling
behavior with the leading bat.

2.5 Discussion

Given the statistical non-significance of these results, one cannot conclusively determine the
dominant leadership structure of the bats observed. Despite this, the general conclusions
reached mesh very well with predictions drawn from literature. Given our understanding
of cessation in bat echolocation [28] and information cascades in swarming simulations [43],
a position-based leadership structure with path coupling appears highly probable, lending
some legitimacy to these conclusions. It is suspected that in future studies with a larger
sample size of pairs, the lack of significance encountered may be rectified and a leadership
structure can be clearly defined.

As mentioned in earlier parts of this chapter, transfer entropy analyses are performed on
tangential acceleration and total acceleration metrics, alternatives to the inverse curvature
metric focused on. Though the data preparation section of this chapter detailed why these
metrics are not the best representations of bat motion or the best candidates for entropy
calculations, the analyses of these metrics are fundamentally identical to the analysis of the
inverse curvature metric; the only difference is a centered, linearly-spaced binning strategy
for the alternative metrics rather than a fixed logarithmic strategy. Results for the tangential
acceleration and total acceleration metrics are shown in Figure 2.9. It is found that TE values
are consistently lower and trends are less noticeable than in Figure 2.8, making these results
less useful in addition to being less reliable. Given these observations, focus is rightfully put
on the application and results of the inverse curvature metric.

Given the nature of transfer entropy calculations, the method employed for discretizing a
continuous variable can have significant effects on the final output. In particular, results are
often highly sensitive to the number of bins used to discretize. The Data Collection and
Preparation section of this chapter detailed how curvature data is discretized with a fixed
logarithmic binning strategy and the Transfer Entropy Approach and Hypothesis Proving
section detailed the reasoning behind the choice of ten bins. However, it remains to be seen
if the final results of our analysis (given by Figure 2.8) are sensitive to the selection of bin
number. To resolve the uncertainty created by this concern, the final four-mode results using
10 bins are plotted against that of using 8, 9, 11, and 12 bins, shown in Figure 2.10. Given
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Figure 2.9: Final transfer entropy results using alternative metrics. Conditions are identical
those of Figure 2.8: all pairs and modalities have a sample rate of 40 Hz and ten bins. Red
bars represent sample means and black brackets indicate standard error. N = 10 pairs are
used for the first three modalities and N = 1000 samples for the shuffled control modality.
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Figure 2.10: Binning sensitivity plot for transfer entropy calculations using curvature data
at 40 Hz. Though average transfer entropy tends to increase with an increased number of
bins, the inter-modal trends are quite stable. This provides good evidence that sensitivity
to number of bins is not an issue in the results presented in Figure 2.8.

that the inter-modal trends shown in this plot are stable when we perturb the number of
bins, no evidence is found that suggests the results in Figure 2.8 are sensitive to the number
of bins chosen.

Concerns over the accuracy of the 3D data can be addressed with the details present in
the previous chapter describing the development of the camera system. Additionally, the
effects of small, or even sizable spatial inaccuracies would not have demonstrable effects on
the comparison of kinematic time series. Bats within a pair are tracked through roughly the
same volume of space, so any 3D spatial error entrenched in the camera system would be
present in both time series, thereby being rendered null when comparisons between the time
series are made for entropy analysis.

A significant weakness of this analysis lies in the brevity of the curvature signals. The
mathematics of transfer entropy creates a cardinality issue when time series of very short
length are analyzed. Calculations of free information must be fed signals consisting of a
sufficiently large number of points in order to properly populate all probability distributions
and avoid biased results [45, 47]. Though areas of highly erratic transfer entropy results are
avoided by staying in timing regimes with relatively large series of points and contributions
from anomalous entropy calculations are not seen, it remains arguable that the curvature
time series need to contain more points in order for the transfer entropy analysis to be
considered reliable.

An adaptable Bayesian binning strategy [47] may provide a solution by reducing the number
of bins necessary to capture the behavior of a time series, thereby reducing the cardinality
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and sparseness. Applying a Dirichlet distribution can reduce the effects of sparseness and
regularize the probability distributions, as detailed in [45], though this can come at the cost
of less significant results. More directly, an improved data collection method can serve to
increase the total number of points. Expanding the tracking volume allows for an increased
path length and thereby, more opportunities for interaction and information transfer, as well
as a greater total number of points comprising each time series. In addition, more creative
solutions may exist, such as performing cross-pair stitching to achieve representative front
and rear bat signals while multiplying the total number of points. Future work with these
ideas is likely to improve the validity and significance of results.

Appended to this document as Figures 2.11 through 2.20 are plots of the original 3D data of
the bat trajectory pairs. It is presented for the benefit of the reader in the interest of future
study.
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Figure 2.11: Raw 3D data for Pair 1.
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Figure 2.12: Raw 3D data for Pair 2.
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Figure 2.13: Raw 3D data for Pair 3.
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Figure 2.14: Raw 3D data for Pair 4.
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Figure 2.15: Raw 3D data for Pair 5.
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Figure 2.16: Raw 3D data for Pair 6.
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Figure 2.17: Raw 3D data for Pair 7.
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Figure 2.18: Raw 3D data for Pair 8.
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Figure 2.19: Raw 3D data for Pair 9.
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Figure 2.20: Raw 3D data for Pair 10.
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