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1.1 Preface 

CHAPTER I 

INTRODUCTION 

The purpose of this study is to obtain numerical solutions of 

cavity flow past a two-dimensional roughness element in an open chan-

nel with gravity effects included. For a long time, the use of large 

roughness elements in steep channels to increase resistance to flow 

or the use of baffle blocks in still basins to dissipate energy has 

been found useful. Because of its practical importance for the 

design of hydraulic structures and because this fascinating and com-

plex phenomenon lends itself to theoretical analysis, it has contin-

uously attracted the attention of many investigators (1). Many ex-

perimental studies have been conducted in the past, and the results 

show that the effectiveness of energy dissipation by use of large 

elements depends on the ratio of element height to element spacing. 

In other words, energy dissipation depends on the mutual interfer-

ence of cavities or wakes formed behind the elements. A few empiri-

cal equations have been presented for design purposes. However, 

theoretical simulation and interpretation have not progressed too 

far. Even though cavity flow is an important and extensively studied 

part of hydrodynamics, most of the attention has been focused on the 

prediction of cavity drag force rather than the prediction of the 

relation between cavity length, element height and flow parameters. 

It is the aim of this study to find such a relation. 

1 
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An assumption frequently used in solving cavity flow problems 

is derived from the. so-called "free-streamline theory" which states 

that a free streamline is a line of constant stream function along 

which the velocity and pressure are constant and which separates the 

flow field into regions of different energy. On the basis of this 

assumption the complex cavity flow problems are turned into a rela-

tively simple mixed boundary value problems. The Dirichlet condition 

will hold over the fixed boundaries of the flow, where as the.Neumann 

condition will hold over the free stream line. The analysis of free 

stream line flow, then, can proceed with the aid of the hodograph or 

the logarithmic hodograph and the Schwarz-Christoffel transformation. 

However, when the gravitational effect is significant, the assumption 

of constant velocity is no longer valid, since the velocity has to 

change with elevation, even though the pressure is still a constant. 

And the analytic solution of this problem becomes extremely difficult 

if not impossible. Therefore, numerical solutions become necessary. 

1.2 Method of Solution-Relaxation Method 

A well-known method which speeds up numerical solutions with 

simple iteration is the so-called relaxation method. This method 

was first employed by Gauss in 1823 and later on was greatly ex-

tended and applied by Southwell (2) in the 1940's. Any method in 

which a new approximation is obtained from the previous approximation 

and its residue may be called a relaxation method. The central idea 

of this method is to use the residue as an indicator of the correction 
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to be made for the new approximation. The advantage of using the re-

laxation technique lies in the fact that the numerical process is 

simple and straightforward, yet it can be used to obtain solutions 

for a wide variety of problems which cannot be solved by standard 

methods. For instance, partial differential equations such as the 

Laplace, the Poisson and the biharmonic equations are often encoun-

tered in engineering practice and numerous general solutions have 

been obtained for simple boundary conditions. But, when the boundary 

conditions are complex, general solutions are usually unobtainable 

and the relaxation method becomes particularly valuable since a com-

plex boundary condition can be handled almost as easily as a simple 

one. In the past the resolution of any significant problem by the 

relaxation method would have required extensive hand computation and 

would have been very time-consuming. However, the advent of the 

digital computer has completely eliminated such difficulty and made 

the method extremely powerful. 

1.3 :Basic Asstimptions 

In natural open channels, two dimensional uniform steady flow 

seldom exists. The flow and resistance change from time to time 

and vary from place to place. The analysis of cavity flow is so 

complex that the solution of three dimensional flows is practically 

impossible. In order to simplify the solution and still not lose 

its practical value, the following assumptions are made: 
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(1) The flow is two-dimensional, uniform, and steady, and no 

energy loss occurs throughout the flow field. 

(2) The pressure within the cavity is constant and equal to 

the pressure that exists in the uniform steady flow region. Thus 

by applying Bernoulli's equation to point (1) and (2) (See Figure 1) 

p 
c -= y 

in which h is the water depth, v is the flow velocity, z is the 

channel elevation, Y is the unit weight of fluid and g is the ac-

celeration due to gravity. 

(3) No vorticity exists within the flow region, i.e., the 

flow is irrotational. 

(4) No hydraulic jump is assumed to occur within the flow 

field, since the hydraulic jump would disrupt the continuity of the 

free surface and cause energy losses. Therefore, the flow will be, 

at most, in incipient jump conditions. Based on the above assump-

tions, the complex cavity flow problem in this study can be idealized 

as a two dimensional potential flow problem which can be represented 

by the well known Laplace equation. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Early History of Free Streamline Analysis 

The analysis of cavity flow started early in the nineteenth 

century. Helmholtz in 1868 first introduced his well-known free 

streamline theory to solve discontinuous flow problems which ini-

tiated an important era of ideal fluid analysis and resulted in the 

solution of simple cavity flow problems. His solution of the flow 

into a Borda mouthpiece is representative of his method of solution 

to free jet problems (3). G. Kirchhoff in the following year ana-

lyzed the flow from a plane orifice and that past a normal plate. 

His method is basically an enlargement and extension of Helmholtz's 

solution to jet problems. Lord Rayleigh (1876) extended the free 

streamline analysis to the case of flow past an inclined plate and 

calculated the plane-orifice coefficients for Kirchhoff's solution. 

Max Planck in 1884 introduced the logarithmic hodograph for the solu-

tion of free-streamline problems. In 1890, a major step in the anal-

ysis of free-streamline problems was made by J. H. Michell and N. E. 

Joukowsky. Michell initiated the use of the Schwarz-Christoffel 

transformation to link the auxiliary t plane with the logarithmic 

hydograph and complex potential plane. Thia is the essence of the 

direct, analytic approach to the free streamline problem. By the 

direct method, the applicability of the free streamline analysis 

technique was much enlarged. Joukowsky, on the contrary, greatly 

6 
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extended the use of an indirect method introduced by Planck. He 

recreated the solutions of all the specific problems treated by 

his predecessors and solved many new problems which has presented 

difficulties Ylhen their solution was attempted by the Kirchhoff 

method. 

In the early part of this century, two new considerations 

appeared: T. Levi-Civita (1901) suggested that free streamlines 

could start from rounded bodies as well as from sharp-cornered ones, 

and D. Riabouchinsky in 1919 (and Joukowsky in 1890) introduced the 

new idea that the velocity along free streamlines could be permitted 

to exceed that of the approaching stream. This permitted the ob-

taining of more realistic body drags than found by Kirchhoff and 

his successors. There were still many other contributions to the 

free streamline analysis not mentioned here. Those were H. Lamb 

(1879), A. B. Bassit (1888), A. E. H. Love (1891), M. Rethy (1894), 

A. G. Greenhill (1910), R. Von Mises (1917), A. Betz and E. Petersohn 

(1931). All of their contributions have been outlined briefly 

in reference (3). 

2.2 Free Streamline and Relaxation Method 

In the mid 1940's, a new approach to the solution of free 

streamline problems was first developed by Southwell. Southwell 

and his associate Vaisey in 1945, applied the relaxation technique 

to solve free streamline flow problems, such as the flow through a 

Borda mouthpiece, orifice plate in a pipe, wake behind a circular 
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cylinder. By his method, the earlier complex mapping technique was 

replaced by a simple :l.terative process, which enabled the solution 

of diverse practical problems. A more significant contribution of his 

work is that the gravitational effect can be easily taken into account 

without extra manipulation. Two typical examples of their free sur-

face analysis were "Flow under gravity through an orifice plate" and 

"Flow at a free overfall". 

In 1953, McNown, Hsu, and Yih (4) reviewed the application of 

the relaxation method in fluid flow problems. In addition to the de-

tailed review of the relaxation technique in the Z plane (x and y) 

they suggested that for some problems, it was preferable to apply the 

relaxation technique in the W plane (~ ~ ~). Because the region of 

interest in fluid flow can always be bounded by a pair of equipoten-

tial lines and streamlines, no irregular star (in the finite differ-

ence mesh) will be encountered. The practical value of the method 

has been illustrated well by the application of the method to solve 

a variety of problems including flow through boundary transitions, 

flow with a free surface, and seepage problems. They solved the 

following problems: 

(1) flow with cavitation about a head form., 

(2) flow through a two dimensional inlet transition between 

a reservoir and conduit, 

(3) flow over a high weir, 

(4) impingement of a jet on a flat plate and 

(5) seepage through a vertical wall. 
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In 1961, Garrett Birkhoff (5) gave a survey of methods for 

computing three classes of potential flows with free streamlines: 

(1) plane flows having free boundaries and curved fixed 

boundaries without gravity. 

(2) plane flow having free boundaries and straight fixed 

boundaries with gravity and 

(3) axially symmetric flow having free boundaries without 

gravity. 

In his discussion about trial, free streamlines, he concluded that the 

relaxation method suffered from several defects: The shape of the 

free boundary was sensitive to small variations in the velocity, and 

it was hard to achieve accuracy near points of flow separation. Be-

sides, it was tedious. 

In response to Birkhoff 1 s conclusion, Satya Prakash Garg (6) 

remarked that those who have worked with free streamlines notice that 

with a comparatively small adjustment of the boundary, the values of 

the velocity head Y changes by a much greater value. Thus the final v 
solution is a sort of unstable equilibrium condition. To obtain a 

correct profile under such circumstances one has to work more or less 

intuitively, because a plot of the derived velocity head Y , gives v 
only a rough qualitative indication concerning the change to be made 

in the ordinate Y of the profile. In view of this fact, Satya Prakash 

Garg suggested that if the process was reversed, computation of Y 

from an assumed distribution of Yv should lead to a closer approxima-

tion. The application of the new values Y in place of Y would yield v 
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a more satisfactory approximation. He applied the idea to analyse a 

two dimensional efflux with gravitational effects, and the result was 

found to be very satisfactory. 

Markland in 1964 showed that the inverse function x(,,~) and 

y(,,~) might be used to solve potential flow problems and that the 

solution can be obtained in a more direct manner if the proper in-

verse functions are selected for the problems at hand. In his solu-

tion of "Flow at a free overfall", Markland normalized the physical 

plane and then mapped it into the complex plane (W-plane) where the 

relaxation process was performed. The mesh size used in his study 

was a • 1.0 and 1/2 in turn for Froude numbers F • 1, 2, 4, and 8 

with a = 1/4 for F = 1 only. The results were then compared with the 

experimental work presented by Rouse. It was found satisfactory. 

Using the same approach as Markland did Jeppson (8) in 1966 

also successfully solved a number of plane and axisymmetric cavity 

flow problems. His work mainly dealt with problems of seepage 

through porous media and dealt with some problems of jet and cavity 

flow. 

The latest development in free streamline analysis by a relaxa-

tion method could be represented by Mogel and Street (9) (1972). 

Mogel and Street developed a numerical method for steady state cavity 

flows that provided a systematic correction of an initial assumed 

free streamline position. The method developed was based.on an in-

viscid, irrotational and incompressible flowfield, used a. numerical 

finite difference representation with the fluid velocity as a 
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dependent variable, and obtained a solution by successive-over-relaxa-

tion. The key feature of the method is that the Riabouchinsky model 

was employed and the numerical solution was obtained in the physical 

plane. No gravity effects were included in their study. 

2.3 Flow over a Sill 

In early 1960, a different approach in free streamline analysis 

with gravitational effects appeared in connection with the design of 

an end sill for energy dissipation in stilling basins. G. Z. Watters 

and Robert L. Street (10) in 1964 developed a general theory for two 

dimensional flow over sills by means of complex function theory and 

conformal mapping. The theory enables one to calculate the velocity 

and pressure at any point in the flow as well as the location of the 

free surface for an arbitrary local change in the channel bottom. 

The theory is first developed for flow over a simple vertical step 

in the channel bottom and then broadened to apply to the flow over a 

polygonal sill in the channel, and finally it is extended to flow 

over a smooth sill. However, no cavity or wake behind the sill is 

taken into account. 

A most up-to-date and valuable development in cavity flow. anal-

ysis with gravitational effect is seen in the paper "Supercritical 

Flow OVer Sills at Incipient Jump Conditions" by K. S. Karki, A. 

Chander, and R. C. Malhotra (11) in 1972. Based on experimental ob-

servation, they made the following assumptions for their analytical 

study: 
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(1) The pressure head on the upstream face of the sill is 

uniform and is equal to Z + d (see Figure 2). c 
(2) The flow depth at the section of maximum water rise is 

equal to the critical depth for the given discharge. 

(3) The pressure head at the top of the downstream face of 

the sill is d - Z, and varied hydrostatically towards the bottom. c 
Thus, the pressure head at the bottom of the downstream face is d • c 

With the above assumptions and applying the momentum and Ber-

noulli's equations, they obtained equations for calculating the re-

quired sill height that would produce incipient hydraulic jump flow 

conditions, and maximum water depth. 

1 d 
_ _£ {-1 + 
2 dl 

} 

dl de 
d + 0.5 d - 0.5 

c l 

where Z is the sill height as shown in Figure 2. 

Some specific conclusions reached were: 

(1) The flow depth at the point of maximum water rise is 

approximately equal to the critical depth. 

(2) The water jet separates from the boundary at a distance 

equal to 1 to 1 1/4 times the height of the sill ahead of its upstream 

face. It then reattaches to the boundary at a distance equal to six 

to seven times the height of the sill downstream of its upstream face. 

The point of maximum water rise occurs at a distance equal to three 

to four times the sill height from the upstream face. 



Figure 2 Flow Over the Sill . 



CHAPTER III 

FINITE DIFFERENCE WITH RELAXATION METHOD 

3.1 General Description 

Finite-difference formulations have been used for many years. 

The theory and application of the method are given in texts of num-

erical analysis (12). When using finite differences with the relaxa-

tion technique to solve the Laplace equation, a network of grid 

points is first established throughout the region of interest.. Then 

at every grid point, approximate initial values of the stream func-

tion ~ (or velocity potential ~) are assigned. Finally successive 

refinements of these values are made according to finite difference 

formulas representing the Laplace equation and boundary conditions. 

A general relaxation pattern of square grid with irregular stars has 

been derived by Streeter (13). Consider a star as shown in Figure 

3b. By Taylor's expansion, one has, up to terms of the second degree 

in fia, the following relations: 

~1 = 
..,2 2 
/\la 

iJ; -Vi Aa+ip --· 
0 x 1 xx 2 

\ 2 2 
/\2a 

= iJ; +1/J Aa+ip --o x 2 xx 2 

lJI 4 = 

14 

(3 .1) 

(3 .2) 

(3.3) 

(3 .4) 
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Eliminating $ from the first two formulas x 

Similarly, 

Thus the Laplace equation $ + $ = 0 becomes xx yy 

1 1 <AT+ AT> l/J = o 
1 2 3 4 ° 

J.1i\2A3A4 
After multiplication by A i\ + i\ A , the equation again becomes 

1 2 3 4 

(3.5) 

in which 

Dl 
i\2A.3/..4 

D2 ,.. 
A1A3A4 

= (AlA2 + A3i\4)(i\l + ;\.2) ' (J.li\2 + i\3A4)(i\l + i\2) 

i\1 A2A4 i\li\2i\3 
D3 = (i\li\2 + A3A4)(A3 + A4) ' D4 "' (J.li\2 + i\3i\4)C>-3 + i\4) 

The R0 is called residue. At a regular star (4 equal strings) 

Ai> >.. 2 , >..3 , ·\ are all equal to 1. Then n1 = n2 = n3 = n4 "" 1/4, 

and Laplace equation at a regular star becomes 

(3 .6) 
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To satisfy the boundary condition along the free boundary, the 
Ei l/Jo .... ipl 

derivative <an= t:.n ) at the boundary also has to be evaluated. 

Even though the assumption of local linearity approaches the actual 

condition, better results can be obtained by the finite difference 

formula for the derivative based on three ip-values as shown in 

Figure Jc. Again by the Taylor expansion, 

ljJ = ljJ + (a + Aa)ip + $ 
0 2 x xx 

2 (a+Aa) 
2 + •• iii 

(3. 7) 

(3.8) 

Multiplying (3.7) by (a+A.a) 2 b·. (Aa) 2 
2 , (3.8) y 2 and subtracting 

(3.7) from (3.8) 

or 

2 2 2 2 
~~ ljJ _ (Aa+a) ~ = (A.a) ~ _ (A.a+a) $ +[A.a-(A.a+a)] 

2 0 2 0 2 2 2 1 

(),a) 0.a+a) 1/J 
2 x 

(ip1-ip0 )(Aa+a) 

A.a2 

= 

<V>2-1Jlo)Aa 
a (A.a+a) "' - 1/Jx 

1 
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Let r 1 then "" I 

- 2i (tJ>l-iJJo) 
(1 + r) -

(1'12-iJJo) 1 (3. 9) .. ax a a (l+r) 

or 

E.:J!. ( ljlo -1Pi_) 
(1 + r) -

(i./Jo-ip2) 1 (3 .10) "" ax a a (l+r) 

3.2 Relaxation Technique 

A simple iteration technique which is very convenient, when a 

digital computer is employed, has been used for this study. The 

technique mainly consists of the following steps: 

(1) Compute residue Rij for all points within flow boundaries 

in accordance with numerical sequence. 

(2) Raise the value of ipij there by the amount Rij' 

(3) With new value of i./Jij' compute residue Ri,j+l of all 

neighboring points and so on. 

(4) Repeat the process till the residues computed are all 

within an allowable limit. 

A simple illustration is shown in Figure 3d. 

0 0 0 0 0 0 
Rz 2 = lJ>2,1 + ip2,3 + W1,2 + $3,2 - 41'12,2 

' 
1 0 0 

ip2,2 = 1/J2 2 + R2,2 
' 

0 1 0 0 0 0 Rz 3 = Wz,2 + ip2,4 + 1'11,3 + 1'12,3 - 4"'2,3 ' 
1 0 0 

1Pz,3 = lPz.,3 + R2,3 

--------------------------------------------
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Where the superscript is used to indicate the sequence of the approxi-

mation involved in the value at any stage of calculation. 

There are some other modified techniques that are often used 

to speed up the relaxation process, such as over relaxation, under 

relaxation, group and block relaxation. For instance, it could 

happen that every time the largest residue is reduced to zero, the 

other residues are increased. Thus, instead of reducing the largest 

to zero, we may over relax it to less than zero, so that when the 

other residues are relaxed, the last residue will come back to zero. 

This technique is called over-relaxation. By the same token, if by 

reducing one residue, the other residues are also reduced, then 

under-relaxation may be used to advantage. Block relaxation changes 

more than one unknown by the same amount at the same time, whereas 

group relaxation changes more than one unknown by different amounts 

at the same time. All of these would help speed up the numerical 

solution in many occasions when hand calculation is employed. How-

ever, if a digital computer is used, the above technique is no longer 

necessary. Sometimes it might increase computer time and difficulty 

in programming. The simple relaxation process, presented before, 

which reduces the residue in accordance with the numbered order of 

the grid points will be more effective. 



CHAPTER IV 

CAVITY FLOW AND CAVITY MODEL 

4.1 Formation of Cavity 

When an obstacle or barrier is placed in a fast moving liquid, 

the flow usually separates from the obstacle along separating stream-

lines and the liquid between these separating streamlines constitutes 

a wake. As the flow velocity increases, the wake becomes gaseous, 

such a wake is called a cavity~ Further increase in velocity or re-

duction of ambient pressure leads to a large vapor-filled cavity. 

The formation of gaseous or vapor-filled cavity is of great concern 

to hydraulic engineers. For instance, a proper selection of spacing 

and height of artificial roughness elements on the channel bottom 

will produce effective patterns and shapes of cavities which amplify 

the form drag and increase flow resistance. Cavity flows possess 

two important features. First, the cavity surface must always be con-

cave with respect to the center of the cavity. Second, the density 

p of the main fluid must be much larger than the density p' of the 

mixture of vapor and gases in the cavity. The most important param-

eter governing the form of the cavity and the flow as a whole is 

the so called cavitation number 

K • 
p - p 

0 c 
1 v 2 2 p 0 

v 2 
= _c_ - l 

v 2 
0 

21 
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where P is the ambient pressure of the approaching flow, P is 
0 c 

the cavity pressure, v0 is the velocity of undisturbed approaching 

flow and V is the velocity along the cavity. For instance, Kirch-c 
hoff's flow represents only the limiting case of a cavity flow 

with K m 0. In this flow the cavity extends to infinity. The 

mathematical and physical properties of steady cavity flows with 

K ~ 0 are not well established. If K < 0 the velocity on the free 

streamline is less than that in the undisturbed flow, and it is 

presumably necessary for the point of detachment of a free stream-

line from the body to be in the low-velocity region at the rear of 

the body. A numerical solution for two-dimensional cavity flow 

with K < 0 was obtained by Southwell and Vaisey as shown in Figure 

4a. Cavities for which K > 0 are of real physical interest, because 

a steady cavity which forms in order to avoid the occurrence of a ten-

sion zone in the fluid is necessarily one in which the pressure in 

the cavity is a minimum in the flow field. If K increases the cavity 

shape becomes more finite as shown in Figure 4b obtained from 

"Fluid Dynamics" by Batchelor (14). 

4.2 Cavity Models 

In the analysis of cavity flow problems, four types of models 

are frequently used. These are the Helmholtz-Kirchhoff model; re-

entrant jet model, Riabouchinsky's mirror-image model and .the 

notched hodograph model. All of the models are based on 

the assumption of free streamline theory. For the Helmholtz-
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Figure 4a Cusped Wake Model (From Ref. (2)) 
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Figure 4b Influence of Cavitation Number on Cavity (From Ref. (14)) 
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Kirchhoff model, the free streamline velocity V is assumed equal 

to that of approaching undisturbed flow V , i.e., V • K'V , where 
CIO C CIO 

K' ~ 1 for Helmholtz-Kirchhoff model. The deficiency of this model 

lies in the fact that the cavity pressure P is taken to be the c 
same as that in the oncoming flow which leads to a predicted wake 

of infinite length. The predicted drag force of a normally-placed 

flat plate is about half that found experimentally. This situation 

would not occur if the velocity along the free streamline is per-

mitted to exceed that of the approaching flow and a negative base 

pressure coefficient is allowed. The other three models overcome 

this difficulty by allowing K' > 1.0. The drag and the location of 

the free streamline in the Helmholtz-Kirchhoff model are found as 

4,!: "' 0.88 is called the drag coefficient of the plate. And, 

x - -c 
2 a n+4 (cosacota - tncot 2) 

~ • n!t. (csc a + :> 
'rt' with a varying between 2 and 0 as x and y increase (see Figure 4c). 

One of the most successful cavity models is the Efros reentrant jet 

model as shown in Figure 4d. This model allows the free streamline 

to turn inwards and to produce a jet moving toward the p~te. This 

model is intended to give a correct representation of the flow in 

front of the flat plate, and is based on the assumption that the 



25 

flow picture at the end of the cavity has a small influence on the 

velocity field in the vicinity of the body. The dimensions of the 

cavity region for the model are determined as follows: the cavity 

length a is the distance from the plate to that point of the cavity 

surface with a vertical surface, and the cavity width b is the dis-

tance between the points of the ca~ity surface with horizontal tan-

gents. 

The Riabouchinsky "mirror-image" model is shown in Figure 4c. 

This model, as does the reentrant jet. model, allows calculation of 

not only the drag forces acting on the body, but also the order of 

magnitude of the cavity dimension. Riabouchinsky assumed that .the 

whole flow field is symmetrical about transverse plane, and that in 

effect an image plate exists at a certain distance downstream from 

the first plate. The second plate takes care of the cumulative ef-

fects of friction and eddy motion in the wake behind the body. The 

pressure in the region between the plates is below that in the ap-

proaching stream. Since the free streamline velocity is greater than 

V , the maximum length of the wake is now finite. This model like 
Q) 

the reentrant jet model also has improved the prediction of drag 

force and base pressure. A suitable choice of the plate spacing led 

to a satisfactory result, and the flow picture ahead of the mid-plane 

appeared reasonable. 

The length of the cavity is obtained as 

a • 
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and the width of the cavity is 

b = 

where K and E are the complete elliptic integrals of the first and 

second kind with modulus k1 as shown in the text of Gurevich (15). 

The other improved hodograph flow model is the notched model 

presented in Figure 4f. In this model the free streamline velocity 

V along CD and PQ is larger than the approaching velocity V , and 
00 

after D and Q the velocity is decreased slowly to the magnitude V • 
<XI 

The decrease of V to V is due to dissipation of energy. 
00 

For all these models no gravitational effect is considered. 

The cavity model used in this study is primarily based on Helmholtz-

K.irchhoff 's model (P = P ) with gravitational effects included. It c <XI 

is expected that with gravitational effects, the cavity surface will 

be pulled down to form a finite cavity shape as shown in Figure 4g. 

The cavity model is then modified with P > P and P < P , and c ~ c ~ 

also P = d as shown in Reference {11). c c 
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CHAPTER V 

MATHEMATICAL MODEL FORMULATION 

5.1 Statement of the Problems 

As mentioned before, the primary aim of this study is to use 

the realxation method to solve the cavity flow problem including 

gravitational effects. With the assumptions made before, this 

study reduces to finding the solution of the Laplace equation with 

the specified boundary conditions. Referring to Figure Sa, we see 

that the Laplace equation 

must be satisfied everywhere within the boundary. While 

and 

l/J • const. 

lJI • const. 

(~) 2 - 2 d an 0 g c 

} 

} 

(5 .2) 

(S.3) 

must be satisfied along the free surface and the cavity surface, respec-

tively. Y is the vertical distance between the energy line and the free 

surf ace and d is the vertical distance 'between the cavity surf ace and c 
the channel bottom· as shown in Figur.e Sa· •. 

29 
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5.2 Dimensionless Expression of Governing Equations 

The reduction of Laplace's equation into a dimensionless form 

is very convenient. Since numerical values of the dimensionless 

stream function ~ can be selected at will in terms of the flow 

characteristic either upstream or downstream from the obstacle, a 

lot of work in preparing the computer input can be saved. Let ·us 

assume: 

X = X'D~ y = y'D, n = n'D, h = h'D, de= dc'D, ~ = ~'F0/2gD3 

where D is some representative dimension of the fixed boundary. 

Then 

similarly, 

:':11/1 ,.,,,' 
!!i = F /2gD .£L.. ay o ay' ' 

~ (F l2gD) a , o n 

or 
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The Laplace equation in dimensionless form becomes 

or 

Along the free surface, the boundary conditions in dimensionless 

form are 

1/J • 1/J'~ J 2gD3 • K • const. 
0 

or 

"1' • k' 

where 

k' • const. • K 

ro}2gnl 

and 

c!Y!>2 - (Fo{2gD)2(~!:)2 • 2gy'D Cln 

therefore 

(~)2 - L. 
an' F 2 

0 

Equation (5.2) thus becomes 

1'>' - canst. 
} (5.4) 
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Along the cavity surface, the dimensionless boundary conditions 

become: 

therefore 

d ' c 
- F 2 

0 

Equation (5.3) thus becomes 

;j1Jtl 2 2 
(-!:.::t: ..... ) (F f2gD) - 2g d 'D an' 0 0 c 

d ' c 
- F 2 

0 

} (5 .5) 

If we choose D = h0/2, where h0 is the water depth at an upstream 

uniform section, then h0 ' • h0/D = 2 and 

v = V' F0./2gD = v' F0./sh0 

or 

V' v v ... ... 
F 0 /ghO 

v 
0 

where 

v 
F 0 (Froude Number) = 0 
~ 0 
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At upstream sections where uniform flow conditions exist 

v 

therefore 

V' 

The ~' values at free surface will be 

= V'h' = 1 x 2 = 2 
0 0 

5.3 Method of Solution 

A computer program was written to solve the dimensionless form 

of Laplace's equation with different boundary conditions specified. 

The method of solution developed in this program consists of the 

following steps: 

(1) Define all flow boundaries including fixed and free boun-

daries: In the analysis of free streamline flow problems the loca-

tion of the free streamline must first be assumed. If the assumed 

location is far from the true one the solution might not converge. 

Therefore, reasonable locations and surface profiles must be assumed. 

To determine upstream and downstream boundaries, one must locate both 

boundaries far away from the point of the disturbance where uniform 

flow conditions 
Ll 

ratios EH = 20 

exist. Referring to 
L2 

and EH = 20 for the 

Figure Sb, we selected the 

first trial. The ratios are 

then gradually increased till a further increase in the ratios would 

not effect the surface profiles and the cavity length. The sections 
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are then fixed for the final solution. The same principle is applied 

for the determination of mesh sizes. The grid spacing is based on 

the assumption that a linear variation of properties exists be-

tween two neighboring points. Th~refore, whenever the assumption 

of linearity is violated the mesh size would be reduced. 

(2) Assign initial values of 1jJ within the flow field: 

~ = 0 along channel bottom and 1jJ = 2 along free surface are speci-

fied. The ~ values within the flow field are then obtained by 

linear interpolation between the value on the free surface and 

that on the channel bottom. 

(3) Successive reduction of residues by relaxation process: 

Following the assignment of initial $ values, the residues at 

every point except at the boundary are computed throughout the 

whole region. The residues are then reduced successively from 

the lower left corner to the upper right corner, and the process 

is repeated till the required accuracy is obtained. The allowable 

error for residue R0 is limited to less than 0.005 ~0 • 

(4) When the relaxation process is completed, the velocities 

along the free surface as well as the cavity surface are computed. 

Since 

it = 21. cos e an ax + 2..11?. sin a ay (5 .6) 
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Ei • Ei cos a ... H sin a as ay ax (5. 7) 

(see Figure Sc). Thus, when~• O, from equation (5.7), we obtain 

~ cos a - ~ sin_ a ' 

Substitute in equation (5.~) 

H • H cote ax ay 

* • * cot 0 CO'S 0 + ~ sin 0 

multiply both sides by sin a 

H H 2 .!! 2 a111: 2 2 sin a an • ay cos a + ay sin a • ~ (cos e + sin 9) 

therefore 

H 1 .!! • an sin e ay 

similarly 

H 1 .!! an • cos e ax 

(5.8) 

(5.9) 

The last two equations are used to find velocity along the free 

surface and the cavity surface. The computed velocities are then 

used to check with boundary conditions specified, i.e., equations: 

(5.4) and (5.5). 

(5) Adjust location of free boundaries if boundary· con-

ditions for both surfaces are not satisfied. Let 



and 

f.tEf 

llE c = 

{(~~:)2 - f 2 } 
0 
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1 

d I 

- __£___} 
F 2 

0 

where AEf is the percent error for free surf ace and ti.Ee is the 

percent error for cavity surface. 

or jAE I is greater than 0.01 the locations of c 

free streamlines have to be adjusted. The amount of adjustment is 

based on the sign and magnitude of AE. For instance, if l.IEf is 

positive, the elevation of free surface must be decreased; if nega-

tive, it must be increased. As to cavity surface, the opposite is 

true. If l.IE is positive the elevation must be increased, while c 

if negative it must be decreased. 

To adjust the position of free surfaceJ the following steps 

are employed: First, equation (5.9) is used to compute the 

velocity along free surf ace, and then the percent error l.IEf is 

computed. If the error is greater than the allowable, the position 

of the surface must be corrected, the correction will be 

= 0 
Y .• + Ct.E. j i,J i, 

where C is a constant used to limit the amount of adjustment, 

Yi1 . is the revised location and Y01 . is the present location. ,J ,J 
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1 1 If Yi,j < Yi,l and Yi,j+l > Yi,l (see Figure 5d) the free surface 

must intersect with the horizontal string between column ~i,j) and 

column (i,j+l). Therefore, the position of the intersection point 

must be computed, the position of the point will be 

x. ·+1 -l. ,J 

1 
Y. ·+1 A 1,J 

uX l 
Yi,i+l 

2.0 

obtained by linear interpolation. 

then 

yi+l,j 
1 

and 1/Ji+l ,j 2.0 "" y. j * l., 

similarly, if Y. l' 
1 

< Yi,1' then < y .• 
1- l. ,J 

Y. j 
1 and ip i ,j 2.0 = Yi,j = 

l.' 

the same principle is applied for the cavity surfaces but the dif-
1 

ference is that if Yi,l : Yi,j < Yi+l,l 

y •. l and 'Vi . 0 ... y. . ' "" l. ,J J. ,J ,J 

and if yi-1,1 
1 

< y 1' then < Yi,j i, 

y. 1 . 
1 and w1_1 0 "" Yi ., "" . 

J.- ,J ,J 

The boundary conditions for the separation point are the same 

as that of the cavity surface, (see Equation (5 .3)). The value of the 
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stream function o/ at the separation point remains constant and 

always equals zero (~ = 0), Since the separation point is a 

fixed boundary point, no residue is computed or distributed to that 

point. 

The difficulty in developing a sys~ematic method of adjust-

ment arises from the fact that mutual interference exists between 

the adjustments of free surface and cavity surface. Thus it is 

necessary to find the correlation of their interference. The fol-

lowing different approaches were attempted to find a desirable 

method of adjustment. 

(i) Assume cavity surface as a fixed boundary. Adjustments 

are made repeatedly for free surface only. When the boundary con-

ditions for free surface are satisfied, the free surface is then 

fixed, and begin adjusting the cavity surface. Reverse the process 

till boundary conditions for both surfaces are satisfied. 

(ii) The second approach is a modification of the first one. 

Fix cavity surface first, and adjust free surface only. If the ad-

justment of free surface will reduce both errors 6Ef and 6Ec' then 

continuous adjustments are made for free surface only. If the ad-

justment of free surface will result in increasing error in cavity 

surface, the free surface will be fixed and begin adjusting the 

cavity surface. While if the adjustment of cavity surface results 

in the increase of error in free surface the cavity surface will 

be fixed again. Repeat the process till the errors for both sur-

faces are satisfied. 
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(iii) Adjust both surfaces at the same time with the same 

amount of adjustment. The errors for both surfaces are computed 

and summed up. The amount of adjustment is made equally for both 

surfaces in accordance with the error summed up. 

(iv) Adjust both surfaces at the same time with different 

amounts of adjustment. The amount of adjustment for each surface 

is made in accordance to its own error computed. 



CHAPTER VI 

RESULTS 

6.1 Computer Results 

Sixteen primary cases with cavity pressure Pc = P0 were inves-

tigated. The element heights used were EH = 0.4, 1.8, 1.2 and 1.6. 

For each element height, four flow conditions (Froude Number NF = 
2, 4, 6 and 8) were applied. The cavity and free surface profiles 

are shown in Figure 6a to 6d, and several additional cases, Pc ~ P0 

and Pc > P0 , are also included. From the plots, the following re-

sults are observed. 

(1) Cavity surfaces for all 16 primary cases are all convex 

with respect to the center of cavity, and no finite length of cavity 

can be obtained. 

(2) The effect of Froude Number NF, the major concern in this 

study, cannot be distinguished. 

(3) At the point of separation where a weak singularity exists, 

the error is large and cannot be eliminated. The error ~E computed c 

at the point of separation is equal to 1.35 on the average. Similar 

difficulties have also been reported by others, (See References 8 

and 9). Street pointed out that the free streamline error always 

had a large value near the separation point. 

(4) The cavity length would become finite if P > P • c 00 
How-

ever, the cavity shape would be even more cusped and the correct 

free surface profile may not be obtained, 

(5) If the cavity pressure P ~ 0.0 or P < 0.0, the cavity c c 

42 
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shape would become concave with respect to its center. Neverthe-

less, no apparent inflexion point can be found to determine the 

cavity length. 

(6) Maximum water surface elevation occurs at downstream 

side of elements with distances equal to three to five times ele-

ment height, and the effect of Froude Number on free surface ele-

vation again cannot be distinguished, (see Figure 6f). 

(7) The last approach of method of adjustment mentioned in 

Chapter V has a faster speed of convergence in relaxation soiution 

and was used here. 

(8) The mesh size a = 0.4 was found small enough for present 

study; a finer mesh was not found necessary. 

(9) The upstream boundary located at the distance LF from 
L 

h 1 . h . 1 t e e ement wit ratio EH = 20 is found far enough for all the 
. L 

cases. Further increase in ~ ratio is not necessary. For the 

downstream boundary the ratio E~ increases where the NF increases. 
L2 

But EH = 30 is good enough for all the cases. 

(10) The boundary errors DE(j) computed for the jth boundary 

point is not necessarily the true amount of error to be corrected. 

It merely is a qualitative indication and adjustment of 1/10 of 

its amount each time is suitable. 

(11) The computer processor time required for each run was 

about three minutes. The average core storage needed was about 

20,000 words. The number of iterations for convergence was limited 

to 30. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The cavity model presented in this study was found unsuccess-

ful, because neither the real shape nor a finite length of cavity 

could be obtained. The reason is that the effect of gravity is far 

less than the effect of cavity pressure assumed. The effect of grav-

ity would become more dominant if the channel bottom were sloped. 

This study proves the fact that if P < P , regardless of whether it 
c "" 

is a free stream line or a free surface problem, no finite length of 

cavity can be obtained. And if the downstream boundary is not fixed, 

the more the cavity pressure is reduced the wider will be the opening 

of the cavity. 

This study also confirms the fact that the only way to obtain a 

finite length of cavity is by use of a cusped wake model, as Southwell 

did, which requires P > P . Nevertheless, the cusped wake model is c 00 

physically impossible, since the cavity pressure should be the minimum 

pressure within a given flow field. Besides, the true free surface 

profile can never be obtained because of the unrealistic cavity shape. 

The reason why the Helmholtz Kirchhoff model was used instead 

of the other two types of models, the Riabouchinsky and the reentrant 

jet models, is that the former has the simplest boundary conditions, 

which can be solved easily by the relaxation method. If a reentrant 

jet model is used, a portion q1 of the discharge Q would flow back-

50 
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ward towards the element, and the value of ~ along the channel bottom 

downstream of the element would become ~ = Vchl = q1 • This is an un-

known and would have to be assumed at first. If after relaxation, 

the computed reentrant jet depth is equal to h1 , then the assumed 

value of q1 is correct. If not, it has to be changed. Also, the 

same problem would be encountered here as in the previous model, i.e., 

the singularity at the separation point. The adjustment of the sur-

face of the reentrant jet would also complicate the program. Numeri-

cal solutions can also be obtained if the Riabouchinsky model is used, 

but the iteration process might be more complicated than that of the 

Helmholtz-Kirchhoff model. Referring to Figure 7b, if the Riabouchin-

sky model is used, the cavity length has to be assumed first. Then 

relaxation proceeds and the surface is adjusted repeatedly until the 

boundary errors for both the free surface as well as cavity surface 

are all within an allowable limit. If the error cannot be reduced 

in a fixed number of iterations, the cavity length must be changed 

and the process restarted. Even when the errors are allowable, the 

cavity length still needs to be changed repeatedly until a further 

change in the length would not result in any reduction of boundary 

errors. The correct cavity length should be the one which has the 

minimum boundary errors. Since for every change in cavity length 

the same solution process needed by Helmholtz-Kirchhoff model must 

be used, the computer time would become extravagant. This. is the 

reason why the Riabouchinsky model was not used. 
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7.2 Reconunendations 

To find the solution of cavity flows with free surfaces, the 

relaxation technique can be applied. The success of the method de-

pends on the kind of model used. This study confirms that the Helm-

holtz-Kirchhoff model is not applicable. Therefore, the other two 

models (reentrant jet model and Riabouchinsky model) must be consider-

ed. If any attempt to obtain a numerical solution is made using the 

reentrant jet model, it is advised that the transformed plane (' ~ ~) 

be used, since at least, the adjustment of cavity surface would be 

much easier in the transformed plane than in the physical plane. 

The model to be recommended here is the Riabouchinsky model, be-

cause it has a reasonable cavity shape and also has simple boundary 

conditions which can be handled easily with the relaxation method. 

If the whole model (see Figure 7b) is used, one would encounter a 

large iteration process and need considerable computer time for the 

numerical solution. However, if it is assumed that the maximum free 

surf ace elevation occurs at the same position (along x-axis) as the 

cavity surface does (see Figure 7c), we can use a half model to reduce 

the numerical computation and save computer time. The maximum water 

depth, as well as the cavity length, obtained by this half model 

could be good enough for design purposes. The solution can be ob-

tained either in a physical plane or in a transformed plane. The ad-

vantage of using the physical plane is that because of its.direct 

approach to the solution, the complex nature of mapping technique 

can be avoided, and if any errors occur during the computer process, 
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they are easier to detect in the physical plane than in any other 

transformed plane. The disadvantage, however, is that because of the 

existence of irregular strings aro~nd the free boundaries, a simple 

effective adjustment of the boundary locations is difficult. Besides, 

whenever an extension of the flow region is found necessary, it is 

more difficult to extend the flow region with irregular strings than 

with regular strings. The opposite is true for the transformed planes. 

But it might be more interesting to attempt a numerical solution in 

transformed planes because it is a more elegant mathematical tech-

nique. 
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APPENDIX 

COMPUTER FLOW DIAGRAM 

The computer program is written in IBM FORTRAN language and has 

been run on the Burrough 6700 computer. It consists of a main 

program and four subroutines, COEF, CAVITY, SURFAC, and SABO. The 

main variables used in the program are described below: 

Program Symbol 

(Main) 

DEL 

DC(J) 

DF(J) 

EH 

F 

HO 

II 

IS 

K 

KT 

Definition 

Number of subdivisions to be made in 
an original grid. 

Percentage error measured for a 
boundary point on cavity surf ace at 
jth column. 

Percentage error measured for a 
boundary point on free. surface at j th 
column. 

Element height. 

Froude Number. 

Total head. 

Iteration counter for adjustment of 
free boundaries. 

Row number at uppermost bound of sub-
grid system. 

Row number for free surface at uniform 
flow section. 

Row number at uppermost bound of main 
grid system. 
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LB 

LF 

LL 

MOC 

MOS 

NT 

p 

R(I ,J) 

SAL 

S(I,J) 

VB(J) 

VS(J) 

X(J) 

xx 

Y(I,J) 

YB(J) 

YS(J) 

61 

Column number at left edge of sub-
grid system. 

Column number at right edge of sub-
grid system. 

Column number at which element sited. 

A counter indicating the total number 
of m;id points on cavity surface, 
which satisfy the boundary conditions. 

A counter indicating the total number 
of grid points on free surface, which 
satisfy the boundary conditions. 

Column number at right edge of main 
grid system. 

Pressure within cavity. 

Value of Residue at it jth point. 

Increment of ~ value. 

Value of ~ at i, jth point. 

Velocity along cavity surface at 
jth column. 
Velocity along free surf ace at 
jth column. 

Coordinate of a grid point along X-axis. 

Increment of grid spacing. 

Coordinate of a grid point along Y-axis. 

Location of a point on free surf ace 
at j th column. 

Location of a point on free surface 
at jth column. 



(Subroutine COEF) 

ITM 

SA 

62 

Distribution factor for left string at 
i, jth point. 

Distribution factor for right string at 
i, j th point. 

Distribution factor for lower string 
at i, jth point. 

Distribution factor for upper string 
at i, jth point. 

Iteration counter for relaxation process. 

Allowable error for residue. 

(Subroutines CAVITY and SURFAC) 

AA 

DE(J) 

SS(J) 

TMAX 

(Subroutine SABD) 

IP 

IN 

ITT 

SFF 

XA 

Amount of adjustment to be made on 
location of free boundaries. 

Error measured for a point on cavity 
surface at jth column. 

Error measured for a point on free 
surface at jth column. 

Max. error measured at free boundaries. 

Row number at upper most bound of sub-
grid system equivalent to IS in original 
grid system. 

Column number at right edge of sub-grid 
system equivalent to LB in original grid 
system. 

Iteration counter for relaxation process 
in sub-grid system. 

Increment of ~ value in sub-grid system. 

Increment of grid spacing in sub-grid system. 
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START 

READ ROW AND COL 
NUMBERS WHICit 
DEFINE THE MAIN 
GRID SYSTEM 

READ 6$, NF, HO 
EH, XX, LL, P c 

GENERATE COORDI-
NATES OF THE MAI 
GRID SYSTEM AND . 
ASSIGN Rij , , 1fl ij 

NO 
READ LOCATION OF 
GRID POINTS YBj ON =>------- CAVITY SURFACE 

YES 

COMPUTE LOCATION 
OF GRID POINTS YBj 
ON CAVITY SURFACE 
FROM ASSUMED CURVE 
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x 
~S==O NO 

r~::~ 
COMPUTE COORDI- f 

NATES OF GRID~·. 
POINTS ON FREE 

I SURFACE FROM 
~?~UMED_~:tJRV~ 

I 
I 
7 

READ LOCATION OF 
GRID POINTS YS.1 
ON FREE SURFACE 
ASSUMED 

OF YBj, YSj IN TWO.._.. ______ _ ~FrNo---CooR.nrNATEs 

DIMENSIONAL.GRID 
SYSTEM Yij 

~~-· L __ 
~:~~:~~1:_:~ 
......----1 __ 

CALL SUBROUTINE 
..--.---.i .... i COEF TO PROCEED 

RELAXATION PROCESS -- -
/J......_ 

<;TM> 3~ YES 
--~·--······-... ~/ 

I 
NO J 

j~~~u:o~~: I 
I AND ADJUST 1 
L CAVI~FAC1£. .. _ 

----···--··----·-~7 WRITE RELAXATION 
NOT CONVERGE IN 

30 ITERATION 



NO 

YES 
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CALL· SUBROUTINE 
SURFAC TO CHECK 
AND ADJUST FREE 
SURFACE 

YES 

CALL SUBROUTINE 
SARB TO RE-REFINE 
MESH SIZES AROUND 
THE POINT OF SEPA-
RATION 

WRITE 
RESULTS 

END 



~~i-~i- ~-v-i;_Y_j_+i)l 
SURFACE, COMPUTE I 
IRREGULAR LEFT -----c 

YES 

STRING D1 

66 

I POINT AT (i)j-1) 1-·---------·-01 
!rs ON FREE SUR-

FACE, COMPUTE 
IRREGULAR LEFT 
STRING D1 
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G 
1 

I 
r···-····~-·-_J ____ _ 
jCOMPUTER DISTRIBU-
ITION FACTORS ci,j-1 

~!Ci ,j+l' Ci-1,j , 
Ci+l ,j FOR T. HE POINT 
AT (i,j) 

--~-L_J-· 
ITM = 0 

. -·- ··-·---·· 

COMPUTE & RELAX 
RESIDUE AT EACH 
POINT WITHIN 
.BOUNDARIES 

i-q..-----1 !TM = ITM + !l 
NO 

ITM>/ 
YES 

RETURN 



1jJ -
V = 1 O (l+r) y !J.x 

'+'2-1JJ0 l 
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(SUBROUTINE 
\..___!:_AV I TY 

J 
TMAX = 0 

DL == 0.0001 *AX 

COMPUTE 

DB"" 
ipi+l - ipi-1,j 

1 fix. 

1 
COMPUTE 

ljii+l j-1/Ji-l j 
DB = ' ' 2 llX 

I 

J 
COMPUTE !J.Y 

!J.Y =Yi . - Y. l j 
,J 1- ' 

lcOMPUTE ANG~- j 
e = tan :=,/.... 

!J.x l -1 /!.v 

YES 

AxL_'_·lv. Y__y__ 
cos 



NO 

69 

COMPUTE PERCEN-
TAGE ERROR DF . 
AT BOUNDARY. 
POINT 

YES 

>----·NO 

COUNT NUMBER OF 
POINTS WHICH 
SATISFY BOUND~Y 
CONDITIONS . 
MOC • MOC + 1 

YES 

TMAX == TA 

•. 
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DETERMINE AMOU~T OF 
ADJUSTMENT TO BE MADE IF 
TMAX < 1.0 
AA= 0.4 * /J.X * DF., 
IF TMAX > 3.0 J 
AA= 0.75 * 6X * DFj/TMAX 
OTHERWISE 
AA= 0.25 * 6X * DF. 

l 
= YB. 

J 

READJUST LOCATION 
OF SURFACE POINTS 
IF THE SURFACE 
CURVE IS NOT SMOOTH 

I 
FIND COORDINATES 
OF YBj IN TWO 
DIMENSIONAL GRID 
SYSTEM 
Yij = YBj 

RETURN 
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SUBROUTINE 
SABD 

COMPUTE ROW AND 
COLUMN NUMBERS 
WHICH BOUND 
SUB-GRID 
SYSTEM 

GENERATE 
COORDINATES OF 
SUB-GRID SYSTEM 

FIND ~ VALUES ON 
BOUNDARIES OF SUB-
GRID SYSTEM BY 
LINEAR INTERPRETATION 
FROM VALUES IN 
ORIGINAL GRID 
SYSTEM 

IDENTIFY YBj IN 
SUBGRID SYSTEM 
AND FIND ITS 
COORDINATE Yi,j 

COMPUTE INITIAL ~ 
VALUES WITHIN 
BOUNDARIES BY 
LINEAR INTER-
POLATION 

- 7 
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er 
I 

---· . __ J .. _ ·----
CALI. SUBROUTINE 
COEF TO PROCEED 

.--------~ RELAXATION 

YES 

PROCESS --1 
__ _.._'{_ __ ____ 

CALL SUBROUTINE 
CAVITY TO CHECK 
AND ADJUST 
CAVITY SURFACE 

WRITE 
RESULTS 

JYBS 
-------------'RETURN 

NOTE: THE FLOW CHART FOR SUBROUTINE SURFAC IS THE SAME AS THAT OF 
SUBROUTINE CAVITY. THEREFORE IT WOULD NOT BE REPEATED HERE. 
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CAVITY FLOW PAST AN OBSTACLE 

INCLUDING GRAVITY EFFECTS 

by 

Chao-yung Ou 

(ABSTRACT) 

The object of this study was to use the relaxation method to 

find the solution of cavity flow past a two-dimensional roughness 

element in an open channel with gravity effect included. The method 

developed is based on an inviscid, irrotational and incompressible 

flowfield, using a finite-difference representation with stream 

functions as dependent variables. A computer program is developed 

to adjust free boundaries systematically and to facilitate numerical 

computation. The Helmholtz-Kirchhoff cavity model is used in this 

study, with sixteen primary cases analyzed. The computer results 

are plotted and the computer listing is given. From the results, it 

is found that the Helmholtz-Kirchhoff model is not applicable be-

cause no finite length of cavity can be obtained. Finally, the use 

of the Riabouchinsky model is recommended. 
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