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Abstract

The availability of desktop grids and shared computing platforms has popularized the use of contributory resources,

such as desktops, as computing substrates for a variety of applications. However, addressing the exponentially growing

storage demands of applications, especially in a contributory environment, remains a challenging research problem. In

this report, we propose a transparent distributed storage system that harnesses the storage contributed by grid partici-

pants arranged in a peer-to-peer network to yield a scalable, robust, and self-organizing system. The novelty of our work

lies in (i) design simplicity to facilitate actual use; (ii)support for easy integration with grid platforms; (iii) ingenious

use of striping and error coding techniques to support very large data files; and (iv) the use of multicast techniques

for data replication. Experimental results through simulations and an actual implementation show that our system can

provide reliable and efficient storage with large file support for desktop grid applications.
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1 Introduction

In recent years, the modern desktop has become a powerful resource that has the capability to support far more

complex and demanding applications than typical desktop use. This advancement has paved the way for large-scale

distributed computing systems based on desktop machines referred to as desktop grids. As more and more efficient

desktop grid systems such as Condor [26] and Entropia PC Grids [11, 9] are being designed and deployed, their use as

resource providers for modern scientific applications is becoming increasingly popular [25, 20].

While the focus of the desktop grids has mainly been on providing computational resources to execute user sub-

mitted jobs, e.g., Condor [26], addressing the ever-increasing storage demands of the applications has largely been

ignored. Multimedia files, high-resolution medical images, weather forecast data, and virtual environment data for

human-computer interaction applications are just a few of the examples of large files that can be processed using desk-

top grid resources. The existing I/O model of storing all theapplication input/output files on either the job submission

machine, e.g., as in Condor [26], or copying between the submission and execution machines, e.g., as in Globus [17],

implies that the submission as well as the execution machineshould have the capacity to store the required files in their

entirety, or the application is explicitly aware of the distributed locations of all the data it will access [4]. The large size

and dynamic nature of data used by modern grid applications [39] implies that neither limiting the size of the data by

available space on a single machine, nor explicitly specifying data location, is a feasible approach.

Recently, a number of distributed storage systems [18, 13, 37, 35, 33, 23, 15, 28, 2, 36, 7] have leveraged peer-to-

peer (p2p) overlay networks to provide scalability, self-organization, and reliability. These systems have shown that

p2p networks can serve as a suitable communication substrate for large-scale storage applications. While the issues of

distribution, location, replica management, and fault-tolerance are discussed in varying details in these systems for a

variety of target environments, these systems either do notaddress how large data files can be stored, or they rely on

complex solutions that result in non-standard interfaces.This makes an easy adaptation of such storage systems into

today’s desktop grids an uphill battle.

In this report, we propose to develop a p2p storage system that provides an economical and efficient storage solution

for large data files. Our goal is an elegant and simple system design [24] that allows for files to be stored on participating

nodes that have joined a p2p overlay network. Our use of p2p networks ensures that the proposed system has the features

of scalability, self-organization, reliability, and composability for target environments of various sizes. A unique feature

of our system is that instead of storing entire files on individual nodes, it splits the files into varying sized chunks and

then stores these chunks separately on heterogeneous nodesdistributed across a wide-area network. This approach

is inspired by the data striping techniques employed in local-area RAID [30] clusters. As a result, unlike previously

proposed approaches such as PAST [35], the size of a file that can be stored in our system is not limited by the capacity

of an individual participating node. Moreover, to protect against losing data due to losing a chunk of a distributed file,we

employ error coding at the granularity of the chunks. Error coding also ensures that our system provides fault-tolerance

and data availability despite churn of system participants.

Users and applications can access the distributed storage exported by our system by using its APIs that allow storing

and retrieval of entire as well as portions of files, and our system can easily be interfaced with existing as well as

new applications. The proposed system supports transparent distribution, striping, and look up of data files across

participating nodes, and hence can serve as robust and easy-to-use storage for desktop grids.
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The main contributions of this report are as follows:

1. A simple yet efficient storage system design that supportsstoring large data files on participants in a structured

p2p network, and support a rich set of features such as mobility and location transparency, self-organization,

load-balancing, and decentralized operation;

2. An innovative adaptation of techniques of striping and data error coding in a wide-area p2p-based distributed

storage system to provide fault tolerance;

3. An exploration of multicast techniques for data replication;

4. An implementation of the proposed system that allows easyintegration of our system with applications; and

5. A detailed evaluation of the proposed system via large-scale simulations and an implementation study of how it

can be interfaced with Condor [26].

The rest of the report is organized as follows. Section 2 presents a survey of related work and describes the building

blocks used in the design of our system. Section 3 gives the motivation for our design. Section 4 presents the system

design. Section 5 describes our implementation. Section 6 presents the evaluation of our system, and finally Section 7

concludes this report.
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2 Survey of Related work

The design of our proposed system is based on the observationthat typical desktop machines in academic and corpo-

rate settings have a large amount of unused disk space [19, 7]. We assume that the owners of the machines are willing to

share their unused storage space along with their computational resources as part of a desktop grid environment. These

assumptions are in line with those made by other resource sharing systems [35, 26, 7, 11, 9, 17, 6, 40, 14].

In the following sections, we summarize the related technologies that serve as building blocks for this work.

2.1 P2P-based storage

Structured p2p overlay networks such as CAN[32], Chord[38], Pastry[34], and Tapestry[41] effectively implement

scalable and fault tolerantdistributed hash tables(DHTs), where each node in the network has a unique node identifier

(nodeId) and each data item stored in the network has a unique key. ThenodeIds and keys live in the same name

space, and each key is mapped to a unique node in the network. Thus DHTs allow data to be inserted without knowing

where it will be stored and requests for data to be routed without requiring any knowledge of where the corresponding

data items are stored. The DHTs can be used for transparent distribution of files on participating nodes in p2p-based

storage systems.

The use of p2p techniques in providing large-scale, distributed storage for a variety of applications is explored by a

number of works [18, 13, 37, 35, 33, 23, 15, 28, 2, 36, 7]. Thesesystems provide strong persistence and reliability, and

are complimentary to the design of this work. There has also been research done in providing applications transparent

access to the p2p-based storage. Systems in this category include Kosha [7] that provides a Network File System

interface to the p2p storage system, and TFS [12] that provides transparent access to contributory storage and aims

to contribute maximum disk space with the least effect on thelocal file system in terms of performance and capacity.

However, these systems require access/modifications to thehost kernel and may not be suitable in a grid environment.

Our proposed system shares with the above mentioned works the goal of using peer nodes to establish a participant-

based contributory storage facility, but differ in that ourwork targets transparently providing storage for grid applica-

tions, utilizes a simple and effective design, and focuses on how large data files can be efficiently stored in the system.

We do not aim to provide a general-purpose file system rather adistributed storage facility that can be easily integrated

into grid applications, and in that avoid the overhead and complexity of supporting a distributed file system abstraction.

Next, we discuss two p2p-storage systems that we have used inour evaluation in more detail.

PAST [35] is a large-scale, Internet-based, storage utility, which uses the p2p network provided by Pastry [34] as a

communication substrate. PAST provides scalability, highavailability, persistence and security. Any online machine

can act as a PAST node by installing the PAST software, and joining the PAST overlay network. A collection of PAST

nodes forms a distributed storage facility, and stores a fileas follows. First, a unique identifier for the file is created

by performing a universal hashing function such as SHA-1 [1]on the file name. Next, this unique identifier is used as

a key to route a message to a destination node in the underlying Pastry network. The destination node serves as the

storage point for the file. Similarly, to locate a file, the unique identifier is created from the file name, and the node

on which the file is stored is determined through Pastry routing. PAST utilizes the excellent distribution and network

locality properties inherent in Pastry. It also automatically negotiates node failures and node additions. PAST employs

replication for fault tolerance, and achieves load-balancing among the participating nodes. Our work builds on the
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functions provided by PAST to store and retrieve file chunks,and adapts the core PAST functions to better handle large

files.

CFS [15] provides a scalable wide-area storage infrastructurefor content distribution. CFS exports a file system

(hierarchical organization of files) interface to clients.It distributes a file over many servers by chopping every file into

small (8K) blocks thereby solving the problem of load balancing for the storage and the retrieval of popular big files.

This also results in higher download throughput for big files. The component that stores data is referred to as publisher.

A publisher identifies a data block by a hash of its contents, and also makes this hash value known for others. Similarly,

a client uses the identifier hash of a block and Chord [38] routing to locate and retrieve the block. To ensure authenticity

of retrieved data, each block is signed using the publisher’s well known public-key. Also, to maintain data integrity,

blocks can only be updated by their publishers. Finally, CFSdeals with fault tolerance by replicating each data block on

k successors, where one successor is made in charge of regenerating new replicas when existing ones fail.

2.2 Erasure codes

A well-established technique for providing high availability and reliability in data storage systems is error coding.

Since our proposed system can rely on the underlying networkprotocols and hardware to detect and correct simple

errors such asbit flips or channel errors, the main task that our design faces is to recover lost data that was stored on

a failed participant node. This problem can be addressed using erasure codes, which are error codes that support data

recovery in the event of the loss of whole blocks of data.

In general, erasure codes break a message or chunk of data into several blocks (n) and encode each block. Due to

the addition of redundancy information, the size of the encoded block is greater than the original block. Thus, encoding

of n blocks results in(n + k) encoded blocks, wherek is an overhead due to the redundancy information for all the

n blocks. The value ofk depends on the kind of erasure code used. To quantify this overhead the parameterrate (r)

is defined as the fractionr = n

n+k
. The goal is to support recovery of the original data given a partial subset of the

(n + k) blocks [31]. The minimum size of this subset required for decoding is defined as(1 + ǫ)n, where(ǫn) is a

measure of how many extra blocks are required to decoden original blocks. There exists optimal erasure codes that

support decoding of the originaln blocks using onlyn encoded blocks, i.e. withǫ = 0. However, the calculation of such

optimal codes is either CPU or memory intensive. To reduce this overhead, there exists sub-optimal erasure codes which

allow for decoding the data using only(1+ ǫ)n blocks for someǫ > 0. To summarize,r is an indicator of the number of

extra blocks that will be created using an erasure code, while ǫ is an indicator of the number of encoded blocks required

for decoding the original data.

The simplest erasure code is the parity check code, and is theerasure code used in RAID level 5 [30]. In parity check

code, for everyn input blocks to be encoded, an extra block that contains the XOR of the input blocks is added. A major

drawback of this scheme is that it is very inefficient and can only tolerate the loss of one encoded block. For example,

ann = 2 parity check code creates three encoded block for every two input blocks, which results in a space overhead

of 50% (one extra block for two original blocks). Parity check does have the advantage of being fast due to its simple

coding approach.

Recently, a new class of sub-optimal erasure codes, called rateless erasure codes [27, 31] have been proposed. The

rateless codes allow creation of as many blocks of encoded data as necessary (not limited to(n + k) as before) for a
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given environment, but still supports data decoding using(1+ ǫ)n blocks. There are several implementations of rateless

erasure codes available, but the particular class of erasure codes we have studied in this work is the online code [27].

The online code uses two sub-optimal erasure codes, referred to as the outer and inner codes. The online code works by

first applying the outer code to create a predetermined number (q) of auxiliary blocks. Each input block is then XORed

with a pseudo-randomly chosen auxiliary block, and the XORed blocks are then processed by the inner code to yield

the encoded blocks. Online code has the advantage ofO(1) encode time andO(n) decode time per block.

In the context of our proposed system, the online code has theadditional advantage that if nodes storing some of the

encoded blocks fail, new encoded blocks can be created without loss of the data. Such re-creation of encoded data entails

a processing overhead. However, online code allows encodedblocks to be decoded independently and simultaneously,

which implies that a significant portion of the block re-creation overhead can be hidden from the user by overlapping

the re-creation process with retrieval and decoding of other blocks.

The techniques of striping and error coding used in our system are the hallmark of RAID [30], which uses several

storage devices in parallel to provide reliable storage forfiles. However, RAID is generally used in local storage devices

and typically all the devices are similar and the rate of change in the RAID configuration by adding or removing devices

is low. RAID is complementary to this work, and we adapt many of RAID’s concepts in a wide-area distributed setting

where nodes are heterogeneous and highly dynamic.

2.3 Data transfer using multicast

A number of systems such as Bullet [22], Shark [3], and CoBlitz [29] have explored the use of multicast and p2p-

techniques for transferring large amounts of data between asource and a destination. Inspired by these systems, we have

investigated data replication using multicast techniquesof Bullet.

Bullet is a multicast system designed for efficiently distributing data on a network of nodes that are arranged in a

logical tree. The root of the tree is the source of the data to be distributed, and the leaf nodes of the tree represent

the final receivers of the data. Each node receives data from his parent based on a RanSub [21] which consists of

the information regarding a subset of the total nodes and what data those nodes have received. Data is transferred in

epochs that consist of a distribute and a collect phase. The distribute phase sends messages down the tree to each vertex

until the leaves are reached. These messages consist of the RanSubs of the sending node, the parent of the sending

node, and the Ransubs of the other children of the sending node. The collect phase sends messages up the tree once

the distribute phase is complete. These messages compact each nodes RanSub into a smaller subset and send this new

RanSub to its parent. This continues until the root is reached. In this way, each node has a subview of the whole tree and

information regarding which nodes have what data. This information is useful since each node can use the information

to intelligently distribute the data to where it is needed most. Then using this information, the root distributes the data

recursively down the tree. Nodes in the tree can not only receive data from their parents but also from sibling nodes;

one of the extra benefits of using Bullet. This is particularly useful when network bottlenecks further up in the tree

cause slow transfer rates down certain paths of the tree. As aresult of using RanSubs, each intermediate node in the

tree has partially overlapping subsets of the data being distributed to the receiving leaf nodes. In this way, the system

provides some overlap in the data residing at different nodes, which allows a node to be able to get the data it wants

from multiple sources as needed. Therefore, the Bullet algorithm provides a suitable structure for our need to distribute

replicas intelligently.
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3 Motivation

We have discussed a number of p2p-based storage systems in Section 2.1. While these systems provide a number of

features necessary for applying a p2p storage system in a desktop grid environment, we observed several shortcomings

in these systems: maximum size of data files that can be storedin the system limited to storage capacity of individ-

ual contributors [35]; use of simple replication tok replicas, which only provides reliability againstk simultaneous

failures [35, 15, 7] and wastes storage space ifk is set too large; supporting large files by dividing them in fixed size

blocks [15], which results in scalability issues as the blocks per file increase directly with the size of the file. This work

aims to address some of these challenges, in particular the handling of large data files.

Several systems such as CFS [15] store large data files using ashared pool of storage resources by dividing files into

fixed size blocks. However, dividing the file into fixed size chunks poses a hurdle to the performance and utility of the

system. In systems that do not split stored files, e.g., PAST [35], only a single p2p message is required to locate the

participant that stores a file. In contrast, for CFS the number of such messages is proportional to the number of chunks

and hence the size of the file. This implies that CFS is unlikely to efficiently scale with the size of the files.

A motivation for using fixed size chunks is that given the small size of a chunk compared to the file, the probability to

find a node that can store a chunk is higher than that for the entire file. However, we note that due to the heterogeneous

storage capacities of the nodes, some nodes (E’s) will have little capacity left even if the overall systemutilization is

low. Let the probability of a store to fail because it is mapped toE bep. Then the probability of a store to fail in PAST is

simply p, and PAST addresses this problem by incorporating a retry mechanism that essentially rehashes the file name

with a new salt value and repeats the p2p look-up procedure. Now, lets assume thatp remains unchanged during the

store of all the chunks of a file in CFS. Then in a simple scenario without any replication, the probability that the store

of a file withn chunks will fail is given by1 − (1 − p)n. This probability of failure is clearly very high, e.g., fora very

lightly utilized system withp = 0.1%, a store of 4 GB file has a failure probability of 64.1%, which increases to 98.3%

for a 16 GB file. CFS does incorporate a retry mechanism per chunk, but that does not reduce the number of chunks,

and hence the above discussed problem remains.

The goal of our work is to learn from lessons of these previously proposed systems, and introduce novel techniques

such as multi-sized chunk striping to overcome large numberof chunks per file, as well as to use error-coding for

improved reliability.
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4 Design

In this section, we present the design of our proposed system. It is assumed that a set of participating machines are

available and willing to contribute storage space towards the system-wide shared storage. Moreover, the participants

faithfully implement the underlying communication and theprotocols of our system. Similar to PAST [35], our system

also assumes that all files to be stored in the system have unique file names.

The design of our system allows users to store and retrieve entire files, as well as access portions of files. A portion

is accessed by specifying its length and its offset with respect to the beginning of the file. In the following sections, we

first give an overview of our system. Next, we give details of different aspects of our system. For this discussion, we

refer to the machines that intend to participate or are participating in our system as “nodes”.

4.1 Overview

The first step of our system is to establish a pool of shared storage resources. We accomplish this task by using the

communication substrate provided by Pastry [34] to arrangethe nodes in a p2p overlay network. Our use of structured

p2p networks implies that the proposed system can support features such as fault-tolerance, resiliency, high-availability

and self-organization of participants. Figure 1 illustrates a new node joining the overlay. Once nodes become part of

the overlay, they can reach each other and utilize and contribute to the storage in the system. Hence, the desired pool of

shared storage resources is established and is ready to be used.

A key feature of our design is to provide storage for large files whose size is larger than the capacity of any individual

node. For this purpose, the system splits a file into chunks, and stores the chunks in the storage pool. When it is desired

to retrieve a file, all the chunks making up the file are locatedand assembled together. An advantage of splitting files is

that the system does not have to retrieve an entire file if onlya portion of the file is accessed, rather, only the chunk(s)

containing that portion are retrieved. However, a possibleproblem is that the loss of a chunk of a file due to node failures

may result in the entire data in the file becoming useless. We employ erasure codes to address this issue and to provide

fault tolerance.

To manage storing and retrieval of chunks in the system, we utilize the Pastry’s DHT abstraction of the nodes to

map the chunks to nodes. To store a chunk from a nodeS, a unique identifier (UID) for the chunk is first calculated by

(b)

(a)
p2p overlay

Figure 1. A node joining the participant overlay. (a) The
new node (shown on the left) sends a message to one of
the participating nodes (shown on the right). (b) The new
node becomes part of the overlay and starts contributing
storage.

filename_chunk1_p0

SHA−1

(1)

(2)
(3)

store(0xAB1...)

p2p overlay

Figure 2. A chunk is stored in the system from the
shaded node. (1)lookUpmessage. (2) Acknowledgment
with IP address of the target node. (3) Actual store of the
chunk (over IP network).
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performing SHA-1 [1] hash on the chunk name. The UID is then used as a key to send out alookUp message in the

overlay. The DHT guarantees that the message will be received at some target nodeT in the overlay. Upon receipt of

thelookUp message,T replies with an acknowledgment message that contains the IPaddress ofT. WhenS receives

the acknowledgment fromT, the instance of our system onSconcludes that the chunk should be stored onT. Note that

the actual store of the chunk is done directly over the IP network and does not involve the overlay. Similarly, to retrieve

a stored chunk, alookUp message is used to determine the target node that stores the chunk, and the actual retrieval is

done over the IP network. An example of this process is shown in Figure 2.

4.2 Chunk storage and error coding

In this section, we discuss how our system stores chunks of a file. For this discussion we assume that the sizes of

chunks of a file are known, in the next section we will present how these chunk sizes are determined.

Each chunk is named asfilenameChunkNo, e.g.,testImageFile2 represents the second chunk of the filetestImage-

File. This naming convention is chosen as a means for determiningthe name of the file a chunk belongs to, and alleviates

the need for maintaining mappings of chunks to files and vice versa. A drawback of this naming convention is that it

complicates renaming of a file as all chunks belonging to the file should be renamed (and possibly moved based on

new DHT-mapping). However, we argue that the targeted largefiles such as medical images are named based on their

contents, and a rename is a rare operation.

To ensure file availability in the face of node failures, we employ error coding. We considered two options regarding

the granularity at which the error coding should be applied.One is to perform error coding across chunks, i.e.,n chunks

are encoded intom chunks and stored in the system. The main issue with this option is that, in the case of a failure,

recovering a chunk requires accessing at leastn encoded chunks. The size of then chunks is the size of the stored file,

and given that we are dealing with very large files, such a recovery mechanism is very expensive in terms of both time

and resources consumed. An alternative that we have opted for is to encode each chunk individually as described next.

A chunk to be encoded is passed to an error coding algorithm that divides the chunk inton equal size blocks,

calculates erasure codes across the blocks, and generatesm encoded blocks. The encoded blocks for the chunkX are

namedfilenameX ECB, whereECB is the error coded block number and ranges from1 to m. The error coded blocks

are stored in the system similar to the storing of chunks as described in the previous section. Since the names of the

encoded blocks are different from each other, with a high probability they are stored on different nodes and thus are less

prone to simultaneous failures. Due to the built-in redundancy of erasure codes, our system can retrieve the original

chunk even if some of them encoded blocks are lost due to failures.

A disadvantage of using varying size chunks is that there is no direct mapping between a file offset and the chunk that

stores the offset. This is remedied by maintaining a chunk allocation table. Each row in this table represents a chunk

and lists the portion of the file contained in that chunk expressed as minimum and maximum offset values. Our system

creates the chunk allocation table when a file is stored, and stores it in the p2p storage under the namefilename.CAT.

Figure 3 shows an exampleCATfile. To look up a file, the system locates thefilename.CATfile, and uses its contents to

retrieve all or some of the file’s chunks as requested by the user.

In summary, the following sequence of events happen when a file is stored. The file is first split into chunks. Each

chunk is then divided inton blocks and error coded to givem encoded blocks. Finally, the encoded blocks are stored
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(1) 0,5242880
(2) 5242880,26083328
(3) 26083327,52297728
(4) 52297729,86114304
(5) 86114305,86114304
(6) 86114305,104856576

Figure 3. Example contents of a
CAT file. Each line represents a
chunk. There are six chunks in the
file, and the total size of the file is
about 100 MB. Chunk #5 is empty.

Data File

Nodes

Splitter Encoder

Get capacity from the nodes

x Chunks

x*m Error coded blocks

chunk
m blocks/

n blocks/
chunk

Figure 4. The various steps of storing a file in our system.

in the shared storage pool. The associatedCAT file for the file is also created and stored in the system. Similarly,

retrieval of an entire file or a portion of the file involves thefollowing sequence of events. The system first retrieves the

associatedCAT file and determines the number of the chunk to retrieve and thename of the required encoded blocks

using our naming convention. Next, enough blocks are retrieved to allow decoding of the chunk. The process is repeated

until the desired number of chunks is retrieved. These chunks are then assembled into the file and returned to the user.

For example, to retrieve an entire filemyTestFilethat contains three chunks under an XOR coding scheme that requires

two encoded blocks to decode a chunk, our system will locate the encoded blocks:myTestF ile x y; 0 ≤ x < 3, y any

two in {0, 1, 2}.

4.3 Determining chunk sizes

In this section, we discuss how we determine the size of chunks for a file. First, we use the information about the

currently used erasure codes to determine how many encoded blocks will be created per chunk. This information is static

per erasure code, e.g., a simple (2, 3) XOR code creates threeencoded blocks from every two input blocks. Next, we

determine the names of the first set of encoded blocks belonging to the first chunk. This step is simple given our naming

convention offilenamechunkNoECB. Note that only the names of the encoded blocks are created, and not the actual

chunk or encoded blocks. Then these encoded block names are used to create message keys and sendgetCapacity

messages on the p2p overlay. The messages are received at thenodes that will later store the encoded blocks. These

nodes reply with the maximum size of an encoded block that they are willing to store. This size is determined by the

remote nodes’ local policies and can be zero, which indicates that a remote node is either out of space or unwilling

to store data. The space is simply reported in the reply togetCapacity and is not reserved for the block. Upon

receiving the replies, we determine the maximum block size that the remote nodes can store. Using the block size and

the erasure code information, we can determine the maximum size of the first chunk. For example, if the maximum

block size returned is 10 MB, under the above (2, 3) XOR code, the chunk size can be 20 MB. Next, the determined

chunk size (or the size of the remaining portion of the file, whichever is less) is used to create a chunk of the file. The

chunk is error coded and stored as discussed in the previous section. The process is repeated until all the data in the file

is stored. Figure 4 shows this process in action.

There is a possibility that the available space on a remote node is used in the time between the reply to thegetCapacity

message and the actual store of the blocks. If this happens, the system can simply treat the current chunk as a chunk
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of size zero, and continue normally. Also, to reduce the occurrence of this event, a node may choose to only report

a fraction of its actual available capacity pergetCapacity message. This allows the node to serve multiple stores

simultaneously.

The advantage of using varying size chunks is that the numberof chunks are dependent on the capacity of the system

and not the length of the file being stored. Moreover, a systemof retries to guard against failures is built in by allowing

chunks to be of zero size. We do limit the number of consecutive zero-sized chunks in a file to protect against unbounded

retries in case the system utilization is high. If this limitis exceeded, the file store fails and an error is returned to the

user.

4.4 Fault tolerance and security

The primary means of fault tolerance in our system is error coding. As nodes fail, the error coded blocks stored

on them are lost and should be re-created to maintain redundancy. For this purpose, we leverage the Pastry leaf-set

that maintains information about a node’s neighbors in the identifier space, and Pastry’s ability to detect a failure of a

neighbor. Moreover, in Pastry the identifier space that is mapped to a failed node is split between the two immediate

left and right neighbors of the failed node. This implies that a node whose immediate neighbor has failed becomes

responsible for storing some of the blocks originally stored on that neighbor. Each node in our system has a list of

blocks stored on its neighbors, and this list is updated whenfiles are created or removed. When an immediate neighbor

of a node fails, the node examines the list of blocks and determines which of these blocks will now be mapped to it.

For these blocks, the node then uses our naming convention todetermine the associated chunk, and starts the process of

re-creating the lost encoded block using the remaining encoded blocks. Note that the newly created encoded block may

not be exactly the same as the one that has been lost, but it is functionally equal.

An interesting problem arises when a node that stores a largenumber of chunks fails, and its neighbors may not have

the capacity to take over and store those chunks. This can be avoided either through our use of online code that allows us

to simply drop, i.e. not recreate, an encoded chunk on a neighbor node, and create another one at a different location; or

by making a node consult its neighbors before replying togetCapacitymessages and reserving space for potentially

storing a neighbor’s workload. We have adopted the former.

Another point of failure is theCAT file associated with each file. We employ simple replication of these files on

neighbor nodes, and in case of failure of a node, create new replicas. This scheme of replication is similar to that used

in PAST [35] and Kosha [7]. However, our system has the advantage that it can re-create aCATfile in case of loss. This

is done by incrementally looking up chunks of a file and determining their size. In case a particular chunk is not found,

it can either mean a zero-sized chunk or end of the file. Since,we limit the number of consecutive zero-sized chunks,

we can always determine the exact end of the file by continuingsearching for the next chunk up to one more than this

limit. Re-creating aCATfile is a time-consuming process, but given the active replication, it will only be called upon in

rare events.

4.4.1 Managing replicas

In addition to error coding, we have also employed simple replication of encoded blocks on neighboring nodes in the

PastrynodeId space. Instead of choosing a primary node and making it responsible for creating replicas as is the case

10
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in many systems [35, 7, 15], we utilized a multicast scheme tosimultaneously createk replicas.

Once a target node has been selected for storing an encoded chunk using the p2p-mapping, we determinek − 1 of

its neighbors in the identifier space and then leverage Bullet [22] to construct an overlay tree with the node starting the

store as the source and thek selected nodes (the target node and its neighbors) as the leaf nodes. This is illustrated in

Figure 5.

The challenging task is the creation of an effective tree. This can be achieved if a child is as physically close to its

parent as possible. We leveraged the proximity-aware routing table of Pastry to realize this tree. Staring from the source

node, we picked K closest nodes from the routing table as children, and then continued the steps as we moved towards

the identifiers of the target node. As a result, the desired locality-aware tree was created. Note that our greedy approach

does not guarantee that the overall tree follows the shortest path from the source to the destination, but it does provides

strong locality at each step. Once the tree is created, we simply use the Bullet algorithm to multicast the data to thek

replicas.

Finally, wide-area file storage raises issues of trust and consistency. Our system can utilize the multitude of ap-

proaches that have been developed to address these problems, such as encryption [13], agreement protocols [10, 5], and

logs [28]. A detail discussion of such approaches is out of the scope of this report.

4.5 Discussion

The design of our system results in dividing large files into relatively few chunks. However, a number of systems [3,

29] have shown that having a file distributed across a number of nodes (a large number of chunks in the terminology of

this work) can provide better transfer bandwidth when accessing the stored data. So, while large chunk sizes can provide

easy location and reduce p2p-lookup overhead, smaller chunk sizes can provide better transfer bandwidths if portions

of files are accessed by different nodes, and also entail faster regeneration of a lost chunk because of its smaller size.

This leads to trade-offs in the selection of lower and upper bound for chunk sizes. While, we have not explicitly handled

limiting chunk sizes based on such factors, our design allows for selecting chunk sizes according to local node policies,

which can capture such factors. We continue to further investigate these trade-offs.
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5 Implementation

In this section, we discuss our implementation of the proposed system. The design discussed in the previous section

was implemented with about8000 lines of Java code using FreePastry [16] – the publicly available version of the

Pastry API. We do not expect our Java-based implementation to become a performance bottleneck as the Java code

is mainly used for location of remotely stored chunks where any processing delay due to use of Java is expected to

be overshadowed by the network latency. Moreover, any actual transfer of data is done directly between nodes using

standard techniques, and does not involve the p2p overlay.

To allow userspace programs to access the system’s API without requiring any special changes to the source code

or recompilation, we developed a library that interposes itself between the application and the standard libraries, and

redirects the application’s I/O as shown in Figure 6. The library consists of259 lines of C code and utilizes standard

techniques for redirecting library calls.

The interposition is achieved through theLD PRELOAD environment variable available in Linux. Setting of this

variable allows runtime loading of specific libraries priorto loading the standard libraries, which provides a means

for overriding any standard library function. Using this feature, we overrode theopen, read, write, andclose

functions in the GCC default libraries. The overriding functions use an RPC-based protocol to notify the local instance

of our system when I/O requests are issued. The local instance then takes charge of performing the appropriate data

location actions in the participant network.

The process starts when the application issues anopen I/O call to a file. Instead of sending the I/O to the local

machine, the interposed library passes it to alookupmodule. The task of this module is to determine the chunk that

contains the portion of the file being accessed, and locate the node in the shared storage pool which stores that chunk.

For this purpose, thelookupmodule first consults a local cache to determine if it has recently handled an access to the

chunk. The cache contains a file descriptor number and the remote node on which the file is stored. If the storing node

of the chunk is already known, the I/O is redirected to that node and the process completes. If the storing node is not

known, or the I/O to the chunk fails due to stale cache data (which is possible due to churn of participants), thelookup

module determines the storing node using the p2p overlay as described in Section 4.1. Once the storing node is known,

the system assigns a file descriptor for the file, and updates the cache with the nodes’ information, and finally sends the

I/O request to the node. For aread call, the system performs alookup to determine the required block(s) and node(s)

that contain the block(s) for the requested data. This information is then passed back to the library along with an error

code and the library returns fromread in the same manner as the original POSIX compliantread function is returned.

Thewrite function is handled in a similar manner. The overriding of theclose function is done simply to clear the

state of the file descriptor so it can be reused later. In this way, our implementation is able to transparently redirect I/Os

from applications to distributed storage nodes.
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6 Evaluation

In this section, first, we evaluate our system through large-scale simulations to determine its capabilities in storing

large files. Second, we investigate the fault tolerance of our system through measuring file availability, performance of

error coding, and effects of participant churn. Third, we determine the feasibility of multicast-based replica maintenance.

Finally, we present implementation results of using our system in an an example desktop grid system, Condor [26].

6.1 Simulations results

This section presents results from simulating a large number of nodes that implement the proposed design.

Methodology:

We utilized the simulator mode of Pastry [34] to create a 10000-node directly connected network, where each

simulated node runs an instance of our code. This simulationapproach has been used in a number of Pastry-based

projects [34, 35, 8, 40]. Moreover, to compare our system with others, we adapted CFS [15] and PAST [35] to run in

our simulated environment.

We assigned the storage capacities of our simulated nodes following the recommendations of recent studies regarding

available disk space on typical desktop grid nodes [19, 7]. Each simulated node was assigned a capacity based on a

normal distribution with a mean and variance of 45 GB and 10 GB, respectively, resulting in a total simulated capacity

of 439.1 TB.

To drive our simulations, we collected a file system trace from various video hosting websites, Linux mirror websites

that serve distribution images, as well from various departmental servers. Since our system is designed for large files,

we filtered all files smaller than 50 MB. Our choice of 50 MB as a minimum size was also based on large files used in

works such as [29]. The resulting trace contained information for about 1.2 million files, with mean size of 243 MB and

the standard deviation in size of 55 MB. The total storage size required to store all the files in the trace is 278.7 TB.

For the purpose of these simulations, the limit on consecutive zero-sized chunks in our system was set to5. The

replication factor in PAST and CFS was set to1, and no error coding was used in our system. For the case of oursystem,

the nodes reported their entire capacity in response to thegetCapacity messages. The authors of CFS have used a

fixed chunk size of 8 KB [15] in their evaluation, but given thelarge size of the files we used in our simulations we set

the chunk size to 4 MB to reduce unnecessary DHT look-ups. We considered a file insertion a success only if all the

chunks of the files were successfully stored.

Finally, given the randomnodeId assignment in our simulations, each case was simulated ten times; the results

presented in the following represents the average (at each data point).

Results:

In the first set of experiments, we measured the number of successful file stores as files from the trace were inserted

into the system. Figure 7 shows the results for the three cases of PAST, CFS, and the proposed system. Initially, the

system is underutilized and the three schemes behave identically. However, as the system utilization increases, the

remaining space on many nodes become less than the size of thefiles being inserted. As a result, the number of failed

stores in PAST starts to increase, and it fails to store 36.0%of the total files. This is of particular concern given that

the total data to be inserted compared to the total availablecapacity, i.e., the expected utilization, is less than 64%.

Similarly, CFS splits the files into blocks, and is thereforeable to perform better than PAST by failing for 15.2% of the
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Figure 7. Total number of failed file stores as files are
inserted, under the three scenarios, expressed as a percent-
age of total files inserted.
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Figure 8. Total size of data that failed to be stored as
files are inserted, under the three scenarios, expressed as a
percentage of total size of the data inserted.

Scheme Number of Size of
chunks chunks

avg sd avg sd
CFS 61.25 13.8 4 MB 0

Our System 3.72 3.1 81.28 MB 19.9 MB

Table 1. Average and standard deviation of the number and size of chunks created under CFS and our system.

total files, however, this is still a large number of failures. The performance of CFS is expected to worsen further per

our discussion of Section 3. Finally, our system is able to remedy the ill-effects of both PAST and CFS, and results in

only 5.2% failures; an improvement by a factor of 7.0 and 2.9 compared to PAST and CFS, respectively.

Next, we measured the size of data that each of the three systems failed to store. Figure 8 shows the results. Here,

we observe that PAST and CFS are unable to store as much as 39.2% and 22.0% of the data, respectively. In contrast

our system was able to store almost all the data until about 800k files were inserted, only after that did it failed to store

some files, with total amount of data that failed to be stored at 12.7%. This is an improvement by a factor of 3.1 and 1.7

compared to PAST and CFS, respectively.

Next, we determined the average number and size of chunks created under CFS and our system for these simulations.

The results are shown in Table 1. Since the size of a chunk is fixed in CFS, it results in the files being split into a large

number of chunks, which on average is about a factor of 16.5 more than the number of chunks in our system. The

reduced number of chunks enables our system to avoid an unnecessarily large number of p2p look-ups and to provide

performance similar to that of PAST but with the added capability to store large files.

In the next set of experiments, we determined the overall system capacity utilization under each of the three schemes

studied. Figure 9 shows that all three schemes behave similarly in the beginning when the system is about 15% utilized.

However, as more files are added, the utilization curves diverge. PAST and CFS are unable to store many of the files

that are inserted as shown in earlier results, and as a result, under-utilize the system by 30.4% and 10.7% compared to

our system, respectively. This shows that our system can efficiently utilize the system storage capacity more efficiently

than the compared systems even at higher utilization.
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Figure 10. The number of unavailable files as nodes fail
with and without error coding.

6.2 Fault tolerance

This section evaluates the fault tolerance characteristics of our system by studying the number of available files under

node failures, and the performance overhead of error coding. We also study how participant churn will affect the system.

File availability:

In order to determine the effectiveness of error coding in our system, we distributed the files from our trace to the

10000 simulated nodes, and counted the total number of available files in the system as 1000 randomly chosen nodes

fail one-by-one. For this experiment we used a (2,3) XOR code, as well as an online code that could tolerate two

simultaneous failures per chunk. We counted a file as available only if all the chunks of the file could be retrieved. We

repeated this experiment for the cases of no error code, XOR code, and online code. Figure 10 shows the percentage

of total files that became unavailable as nodes failed. The use of error coding resulted in 23% and 32% less failures

for XOR code and online code, respectively, when 1000 nodes failed. The overall number of failures for online code

was negligible (1.48%), and almost zero for up to 866 failed nodes. Moreover, these failures can be further reduced

if encoded block re-creation is employed as described in Section 4.4. Hence, error coding is an effective means for

ensuring fault tolerance in our system.

Performance of error coding schemes:

We studied two erasure codes that can be used in our system, namely XOR and online code, and compared them

against a NULL code that simply copies the input data to the output. For XOR code, we set the parametern = 2 so that

the number of blocks encoded per parity block is 2. The particular online code that we have used follows the suggestions

in [27], and has the tuning parameters ofq = 3 andǫ = .01. For these runs, we used a chunk size of 4 MB, and used

4096 encoded blocks per chunk.

Table 2 shows the size of encoded blocks and time taken for encoding and decoding averaged over 10 runs. XOR

encoding and decoding is a factor of3.3 and19.7 faster than that of the online code, respectively. However,although

the online code is slower, the decoding can be started as soona block becomes available and can be overlapped with
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Erasure Encoded size Encoding time
code size (MB) ovrhd. time ovrhd.
Null 4 0% 11 0%
XOR 6 50% 79 618 %

Online 4.12 3% 264 2300%

Table 2. Time consumed, and size of encoded
data, in storing a 4 MB chunk. Overheads are with
respect to the NULL code.

Nodes failed Data lost Data regenerated
(percentage total total average sd

of total) (GB) (GB) (GB) (GB)
10 percent 0 28044.35 28.04 78.95
20 percent 142.18 58625.78 29.31 80.02

Table 3. Data lost and regenerated after 10% and 20% nodes
have failed. The average and standard deviation for regenerated
data reported here is calculated for each failure.

retrieval of other blocks. Moreover, online code has far less storage overhead as seen in the table, and therefore is a good

candidate for use in our system.

Effects of participant churn:

In this experiment, we determined the effect of participantchurn on our system. In particular, we studied the amount

of data that is regenerated from other replicas/error-coded chunks as nodes leave the system due to failure. Upon failure

of a node, its immediate neighbors spring into action. Theseneighbors identify the chunks of files which will now be

mapped to them by the DHT, and start the recovery and chunk regeneration process. For this simulation, we failed up to

20% of the total participating nodes without any node recovery. After each node failure, we introduced a delay before

the node’s data is recovered on a neighboring node. This delay is proportional to the size of the data being recovered

and serves to simulate the time it would take the data to be recovered in a real system. This delay also enables us

to determine how the system would behave under multiple consecutive failures where data recovery due to a previous

failure is not yet complete. For each failure, we logged the size of data that needs to be regenerated as well as the total

size of data that has become unavailable.

Table 3 shows the results. We observed that for the traces used, an average of 29.3 GB of data was regenerated per

failure after up to 20% of the nodes had failed, with a total of58625.8 GB being regenerated. The experiment also

showed that only 142.2 GB of data was lost even when 20% of the total nodes had failed. Finally, compared to the total

data size of 278.7 TB, the data recreated per failure is quitesmall, i.e., 0.01%. This shows that our system can handle

participant churn well.

6.3 Multicast-based replica management

This section evaluates the feasibility of using the Bullet [22] algorithm for disseminating replicas in our system.

For this test we simulated how one source node will distribute an encoded chunk to a number of replicas (32 in this

simulation). We used a binary tree with a height of five with the source node as the root for the tree and the recipient

nodes at the leaf nodes. The setup included a total of 63 nodes. This simulation corresponds to an extreme case of

creating 32 replicas, where in reality we expect the number of replicas to be small (about 3). For these experiments we

divided a chunk into 1000 packets.

Our first experiment tested the replica creation time using different values of the RanSub set size in the Bullet

algorithm. Figure 11 shows the average number of packets received through the duration of the simulation for the values

of RanSub set size ranging from 3% to 16% of the total nodes in the tree. It is observed that as the RanSub size is

increased, its effect decreases, and begins to stabilize around 8 percent. This shows that the RanSub size only effects the
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Figure 12. Average, minimum, and maximum number
of packets received per node for a RanSub size of 16%.

distribution time up to a certain point and then the distribution time becomes independent. This gives us an idea of what

RanSub value should be chosen for our system in real applications.

In the next experiment, we examined how evenly the tree is saturated with the packets, i.e., how evenly the Bullet

algorithm distributes the replica packets. This experiment had the same setup as the previous experiment but with the

Ransub value fixed at 16% of the total nodes in the tree. As Figure 12 shows, the distribution of the replica data is close

to linear for the maximum, average, and minimum number of blocks per node. This shows the even distribution of data

over time, and that the Bullet algorithm can indeed be used for effective replica creation in our system.

6.4 Case study: Interfacing with Condor

In this section, we discuss how we interfaced our proposed system with Condor [26], a well-established cycle-sharing

system that enables high throughput computing using off-the-shelf cost-effective components. For this case study, we

used our library implementation of Section 5 to redirect I/Ocalls. Moreover, all participating nodes run Condor Version

6.4.7, and we can start and stop client-side Condor I/O daemons on any of the machines to which I/O calls will be

redirected.

For this study, we created a simple Condor application,bigCopy, that in essence creates a copy of a specified file.

We use this application to compare the working and performance of a CFS-like system that uses fixed chunks sizes, our

proposed system, and the original Condor. We utilized 32 laboratory machines at our department to set up a Condor

pool connected using a 100 MB/s Ethernet, where each node hasan Intel Pentium 4 3.0 GHz processor, 1 GB RAM,

40 GB hard disk, and contributed storage space based on a uniform distribution between 2 GB and 15 GB, with mean

and standard deviation of 10 GB and 3 GB, respectively. In this experiment, no error coding was employed, and enough

retries were made for all three cases to store a chunk so as to ensure that all blocks can be stored.

Table 4 shows the results of this experiment, where each row corresponds to a run ofbigCopy with increasing file

sizes ranging from 1 GB to 128 GB. For each run, we started fresh by deleting all the files from the previous run, and

creating a file with the stated size on a different machine than the 32 machines in the setup. Next, we ranbigCopy

through Condor to create a copy of the file. The table shows whether the copying succeeded, and how long it took for
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File Time taken (s)
size Whole file Fixed size chunks Varying size chunks
(GB) (overhead) (overhead)

1 151.0 169.0 (11.9 %) 176.4 (16.8 %)
2 277.1 330.8 (19.4 %) 302.4 (9.2 %)
4 529.1 654.6 (23.7 %) 554.5 (4.8 %)
8 1051.2 1320.0 (25.6 %) 1076.6 (2.4 %)
16 N/A 2637.0 (N/A ) 2086.2 (N/A)
32 N/A 5243.9 (N/A ) 4156.4 (N/A)
64 N/A 10441.8 (N/A ) 8217.7 (N/A)
128 N/A 20881.5 (N/A ) 16425.8 (N/A)

Table 4. Comparison of the proposed storage system and fixed storage location scheme using a simple Condor application.
The presented overhead is with respect to the whole file scheme.

the process.

As expected, we observe that both fixed and varying-size schemes work for smaller file sizes, but the use of DHT

introduces an overhead. There are two components of this overhead: a fixed component due to I/O redirection and code

interposition, and a variable overhead due to p2p look-up operations to determine the locations of the chunks. While we

expect the fixed overhead to be implementation dependent, the variable overhead is directly proportional to the number

of chunks created, which is very large in a system that uses fixed size chunks, but is dependent on node capacities in

our system. For this experiment, since the entire file was accessed, the variable overhead grows with file size. However,

this scenario presents the worst case, and typically only portions of a large file are accessed at a time, in which case the

overhead is expected to be much less. Finally, as the file sizeis increased the advantage of our system becomes evident;

it is able to find storage for the copy whereas the original scheme of storing on a single node fails due to unavailability

of space. Moreover, note that as the file size increases the total time to runbigCopy is dominated by the transfer time.

As a result, the relative overhead introduced by our system for transferring large files becomes very small (under 2.5%

for a 8 GB file).

This experiment shows that our system is effective in storing large files with an acceptable overhead, and implies

that it can be used in practical desktop grid scenarios, where the file sizes are larger than the capacity of individual

participating nodes.

6.5 Summary

Our experiments have shown that our proposed system can provide a reliable and robust distributed storage system

for modern scientific applications. In particular, our simulations have shown that compared to PAST, for large files,

our system reduced the number and size of file store failures by a factor of 7.0 and 3.1, respectively, and improved the

overall system utilization by 30.4%. Our system also reduced the number of chunks created compared to CFS by a factor

of 16.5 allowing fewer p2p look-ups and leading to performance similar to PAST. Our experiments with error coding

showed that the fault tolerance and data availability needed for a desktop grid system can be achieved with our system

through the use of error coding. The system also handles participant churn well with only 0.01% of data regenerated per

failure for the traces used. We also examined the use of multicast for replica maintenance and found that this technique

can be effectively used in our system. Moreover, our case study of interfacing the system as an I/O library with Condor

proves that the system can be used in practical desktop grid scenarios with acceptable overhead.
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7 Conclusion

In this report, we have presented the design and evaluation of a contributory storage system. Our system uses p2p

overlay networks to establish robust, scalable, and reliable distributed storage. It employs the techniques of striping

and error coding to support transparent storage of very large data files across multiple distributed nodes, and exports

a simple yet effective interface to users and applications.We evaluated our system through trace-driven 10000-node

simulations and showed that it performs better than existing systems, achieves better than 99% file availability, and can

store files that are larger than the capacity of individual participants. Additionally, the proposed system also responds

well to participant churn with the amount of data regenerated per node failure being less than 0.01% of the total data

in the traces used. These results indicate that the proposedsystem gives acceptable performance in a dynamic setting.

We have also proposed the use of multicast for replica maintenance and believe that such an approach can be used in

the target environments. The efficient and simple design of our approach implies that it can be readily deployed and

interfaced with different applications, and therefore canserve as a storage system for today’s desktop grid environments.
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