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Abstract

The availability of desktop grids and shared computingfplaiis has popularized the use of contributory resources,
such as desktops, as computing substrates for a varietyptitations. However, addressing the exponentially grawin
storage demands of applications, especially in a contabuenvironment, remains a challenging research problem. |
this report, we propose a transparent distributed storagstesm that harnesses the storage contributed by grid partic
pants arranged in a peer-to-peer network to yield a scalafoleust, and self-organizing system. The novelty of oukwor
lies in (i) design simplicity to facilitate actual use; (8upport for easy integration with grid platforms; (iii) iegious
use of striping and error coding techniques to support vargé data files; and (iv) the use of multicast techniques
for data replication. Experimental results through sintidas and an actual implementation show that our system can
provide reliable and efficient storage with large file supdor desktop grid applications.



1 Introduction

In recent years, the modern desktop has become a powerfulresthat has the capability to support far more
complex and demanding applications than typical desktep T$is advancement has paved the way for large-scale
distributed computing systems based on desktop machifesae to as desktop grids. As more and more efficient
desktop grid systems such as Condor [26] and Entropia PG @il 9] are being designed and deployed, their use as
resource providers for modern scientific applications isdmeing increasingly popular [25, 20].

While the focus of the desktop grids has mainly been on pingidomputational resources to execute user sub-
mitted jobs, e.g., Condor [26], addressing the ever-irgirepstorage demands of the applications has largely been
ignored. Multimedia files, high-resolution medical imagesather forecast data, and virtual environment data for
human-computer interaction applications are just a fevhefexamples of large files that can be processed using desk-
top grid resources. The existing 1/0 model of storing all éipplication input/output files on either the job submission
machine, e.g., as in Condor [26], or copying between the sgiam and execution machines, e.g., as in Globus [17],
implies that the submission as well as the execution madtinald have the capacity to store the required files in their
entirety, or the application is explicitly aware of the distited locations of all the data it will access [4]. The kagize
and dynamic nature of data used by modern grid applicati8@kiinplies that neither limiting the size of the data by
available space on a single machine, nor explicitly spéuifgata location, is a feasible approach.

Recently, a number of distributed storage systems [18, 1333, 33, 23, 15, 28, 2, 36, 7] have leveraged peer-to-
peer (p2p) overlay networks to provide scalability, seffanization, and reliability. These systems have showh tha
p2p networks can serve as a suitable communication sub$tralrge-scale storage applications. While the issues of
distribution, location, replica management, and fauléttance are discussed in varying details in these systens fo
variety of target environments, these systems either daddtess how large data files can be stored, or they rely on
complex solutions that result in non-standard interfaddsis makes an easy adaptation of such storage systems into
today’s desktop grids an uphill battle.

In this report, we propose to develop a p2p storage systenptheides an economical and efficient storage solution
for large data files. Our goal is an elegant and simple systsigd [24] that allows for files to be stored on participating
nodes that have joined a p2p overlay network. Our use of pRpanks ensures that the proposed system has the features
of scalability, self-organization, reliability, and cowgability for target environments of various sizes. A udeature
of our system is that instead of storing entire files on irdlixal nodes, it splits the files into varying sized chunks and
then stores these chunks separately on heterogeneous disttémited across a wide-area network. This approach
is inspired by the data striping techniques employed inllac@a RAID [30] clusters. As a result, unlike previously
proposed approaches such as PAST [35], the size of a filedhdie stored in our system is not limited by the capacity
of an individual participating node. Moreover, to protegamst losing data due to losing a chunk of a distributediike,
employ error coding at the granularity of the chunks. Ermdiag also ensures that our system provides fault-toleranc
and data availability despite churn of system participants

Users and applications can access the distributed storpgeted by our system by using its APIs that allow storing
and retrieval of entire as well as portions of files, and owstam can easily be interfaced with existing as well as
new applications. The proposed system supports trandpdisribution, striping, and look up of data files across

participating nodes, and hence can serve as robust andeasg- storage for desktop grids.



The main contributions of this report are as follows:

1. A simple yet efficient storage system design that supsbotsng large data files on participants in a structured
p2p network, and support a rich set of features such as nyohbitid location transparency, self-organization,
load-balancing, and decentralized operation;

2. An innovative adaptation of techniques of striping anthdaror coding in a wide-area p2p-based distributed

storage system to provide fault tolerance;
3. An exploration of multicast techniques for data repliat
4. Animplementation of the proposed system that allows e@degration of our system with applications; and

5. A detailed evaluation of the proposed system via largdessimulations and an implementation study of how it
can be interfaced with Condor [26].

The rest of the report is organized as follows. Section 2gntssa survey of related work and describes the building
blocks used in the design of our system. Section 3 gives th&ation for our design. Section 4 presents the system
design. Section 5 describes our implementation. Sectior$epts the evaluation of our system, and finally Section 7

concludes this report.



2 Survey of Related work

The design of our proposed system is based on the obsertfagibtypical desktop machines in academic and corpo-
rate settings have a large amount of unused disk space [18/7dssume that the owners of the machines are willing to
share their unused storage space along with their compo#dtiesources as part of a desktop grid environment. These
assumptions are in line with those made by other resouraginghsystems [35, 26, 7, 11, 9, 17, 6, 40, 14].

In the following sections, we summarize the related techgiels that serve as building blocks for this work.

2.1 P2P-based storage

Structured p2p overlay networks such as CAN[32], Chord[®8&Istry[34], and Tapestry[41] effectively implement
scalable and fault toleraxistributed hash tableDHTs), where each node in the network has a unique nodeifigent
(nodel d) and each data item stored in the network has a unique keyndtel ds and keys live in the same name
space, and each key is mapped to a unique node in the netwuk.OHTs allow data to be inserted without knowing
where it will be stored and requests for data to be routedawithequiring any knowledge of where the corresponding
data items are stored. The DHTs can be used for transpargribdtion of files on participating nodes in p2p-based
storage systems.

The use of p2p techniques in providing large-scale, disteith storage for a variety of applications is explored by a
number of works [18, 13, 37, 35, 33, 23, 15, 28, 2, 36, 7]. Tystems provide strong persistence and reliability, and
are complimentary to the design of this work. There has aésnlresearch done in providing applications transparent
access to the p2p-based storage. Systems in this categdugenKosha [7] that provides a Network File System
interface to the p2p storage system, and TFS [12] that pesvitchnsparent access to contributory storage and aims
to contribute maximum disk space with the least effect onldleal file system in terms of performance and capacity.
However, these systems require access/modifications tuotstekernel and may not be suitable in a grid environment.

Our proposed system shares with the above mentioned waelgothl of using peer nodes to establish a participant-
based contributory storage facility, but differ in that auprk targets transparently providing storage for grid aqmpl
tions, utilizes a simple and effective design, and focuselaw large data files can be efficiently stored in the system.
We do not aim to provide a general-purpose file system ratkdéstabuted storage facility that can be easily integrated
into grid applications, and in that avoid the overhead andmexity of supporting a distributed file system abstrattio
Next, we discuss two p2p-storage systems that we have ugen @valuation in more detail.

PAST [35] is a large-scale, Internet-based, storage utilityiclwluses the p2p network provided by Pastry [34] as a
communication substrate. PAST provides scalability, ragailability, persistence and security. Any online maehin
can act as a PAST node by installing the PAST software, amihigithe PAST overlay network. A collection of PAST
nodes forms a distributed storage facility, and stores aafléollows. First, a unique identifier for the file is created
by performing a universal hashing function such as SHA-Iofithe file name. Next, this unique identifier is used as
a key to route a message to a destination node in the undgmastry network. The destination node serves as the
storage point for the file. Similarly, to locate a file, the gquré identifier is created from the file name, and the node
on which the file is stored is determined through Pastry ngutiPAST utilizes the excellent distribution and network
locality properties inherent in Pastry. It also automdljcaegotiates node failures and node additions. PAST epsplo

replication for fault tolerance, and achieves load-balap@mong the participating nodes. Our work builds on the



functions provided by PAST to store and retrieve file chumakel adapts the core PAST functions to better handle large
files.

CFS[15] provides a scalable wide-area storage infrastructoreontent distribution. CFS exports a file system
(hierarchical organization of files) interface to clientsdistributes a file over many servers by chopping every fite i
small (8K) blocks thereby solving the problem of load balagdor the storage and the retrieval of popular big files.
This also results in higher download throughput for big filEee component that stores data is referred to as publisher.
A publisher identifies a data block by a hash of its contemtd,adso makes this hash value known for others. Similarly,
a client uses the identifier hash of a block and Chord [38]inguib locate and retrieve the block. To ensure authenticity
of retrieved data, each block is signed using the publish&€ell known public-key. Also, to maintain data integrity,
blocks can only be updated by their publishers. Finally, @E&s with fault tolerance by replicating each data block on

k successors, where one successor is made in charge of raieg@ew replicas when existing ones fail.
2.2 Erasure codes

A well-established technique for providing high avail#liland reliability in data storage systems is error coding.
Since our proposed system can rely on the underlying netwastocols and hardware to detect and correct simple
errors such asit flips or channel errors, the main task that our design faces isctover lost data that was stored on
a failed participant node. This problem can be addressetjwsasure codes, which are error codes that support data
recovery in the event of the loss of whole blocks of data.

In general, erasure codes break a message or chunk of datseiwdral blocksr() and encode each block. Due to
the addition of redundancy information, the size of the elecbblock is greater than the original block. Thus, encoding
of n blocks results inn + k) encoded blocks, wherieis an overhead due to the redundancy information for all the
n blocks. The value ok depends on the kind of erasure code used. To quantify thidiead the parameteate (r)
is defined as the fraction = 2. The goal is to support recovery of the original data giveraetial subset of the
(n + k) blocks [31]. The minimum size of this subset required foratéog is defined a¢l + ¢)n, where(en) is a
measure of how many extra blocks are required to deeodeginal blocks. There exists optimal erasure codes that
support decoding of the originalblocks using only: encoded blocks, i.e. with= 0. However, the calculation of such
optimal codes is either CPU or memory intensive. To reduisedverhead, there exists sub-optimal erasure codes which
allow for decoding the data using only + ¢)n blocks for some > 0. To summarizey is an indicator of the number of
extra blocks that will be created using an erasure code gwligl an indicator of the number of encoded blocks required
for decoding the original data.

The simplest erasure code is the parity check code, and eydseire code used in RAID level 5 [30]. In parity check
code, for every: input blocks to be encoded, an extra block that contains tDR Xf the input blocks is added. A major
drawback of this scheme is that it is very inefficient and caly tolerate the loss of one encoded block. For example,
ann = 2 parity check code creates three encoded block for everymyatiblocks, which results in a space overhead
of 50% (one extra block for two original blocks). Parity ckaipes have the advantage of being fast due to its simple
coding approach.

Recently, a new class of sub-optimal erasure codes, caltetess erasure codes [27, 31] have been proposed. The

rateless codes allow creation of as many blocks of encodiedaganecessary (not limited te + k) as before) for a



given environment, but still supports data decoding uging ¢)n blocks. There are several implementations of rateless
erasure codes available, but the particular class of ezasudes we have studied in this work is the online code [27].
The online code uses two sub-optimal erasure codes, rdferi@s the outer and inner codes. The online code works by
first applying the outer code to create a predetermined nufgpef auxiliary blocks. Each input block is then XORed
with a pseudo-randomly chosen auxiliary block, and the X@Rlecks are then processed by the inner code to yield
the encoded blocks. Online code has the advantagk bfencode time an@(n) decode time per block.

In the context of our proposed system, the online code haadti#ional advantage that if nodes storing some of the
encoded blocks fail, new encoded blocks can be createdwiithss of the data. Such re-creation of encoded data entails
a processing overhead. However, online code allows encoldelis to be decoded independently and simultaneously,
which implies that a significant portion of the block re-diea overhead can be hidden from the user by overlapping
the re-creation process with retrieval and decoding of rotecks.

The techniques of striping and error coding used in our systee the hallmark of RAID [30], which uses several
storage devices in parallel to provide reliable storagdifes. However, RAID is generally used in local storage desic
and typically all the devices are similar and the rate of ¢gin the RAID configuration by adding or removing devices
is low. RAID is complementary to this work, and we adapt mahRAID’s concepts in a wide-area distributed setting

where nodes are heterogeneous and highly dynamic.

2.3 Data transfer using multicast

A number of systems such as Bullet [22], Shark [3], and CaBRO] have explored the use of multicast and p2p-
techniques for transferring large amounts of data betwessnuece and a destination. Inspired by these systems, we have
investigated data replication using multicast technicqpfdullet.

Bullet is a multicast system designed for efficiently dlaiiting data on a network of nodes that are arranged in a
logical tree. The root of the tree is the source of the dataetdibtributed, and the leaf nodes of the tree represent
the final receivers of the data. Each node receives data fierpdrent based on a RanSub [21] which consists of
the information regarding a subset of the total nodes and data those nodes have received. Data is transferred in
epochs that consist of a distribute and a collect phase. iBtbdte phase sends messages down the tree to each vertex
until the leaves are reached. These messages consist oattfuBs of the sending node, the parent of the sending
node, and the Ransubs of the other children of the sending.nblde collect phase sends messages up the tree once
the distribute phase is complete. These messages comphat@des RanSub into a smaller subset and send this new
RanSub to its parent. This continues until the root is redchethis way, each node has a subview of the whole tree and
information regarding which nodes have what data. Thisrinftion is useful since each node can use the information
to intelligently distribute the data to where it is neededsin@hen using this information, the root distributes theada
recursively down the tree. Nodes in the tree can not onlyiveagata from their parents but also from sibling nodes;
one of the extra benefits of using Bullet. This is particylarseful when network bottlenecks further up in the tree
cause slow transfer rates down certain paths of the tree. rasudt of using RanSubs, each intermediate node in the
tree has partially overlapping subsets of the data beinglslised to the receiving leaf nodes. In this way, the system
provides some overlap in the data residing at different spdénich allows a node to be able to get the data it wants
from multiple sources as needed. Therefore, the Bulletrétga provides a suitable structure for our need to distebu

replicas intelligently.



3 Motivation

We have discussed a number of p2p-based storage systendionS21. While these systems provide a number of
features necessary for applying a p2p storage system inkéogegrid environment, we observed several shortcomings
in these systems: maximum size of data files that can be stords system limited to storage capacity of individ-
ual contributors [35]; use of simple replication toreplicas, which only provides reliability againktsimultaneous
failures [35, 15, 7] and wastes storage spadei set too large; supporting large files by dividing them irefbxsize
blocks [15], which results in scalability issues as the k$oger file increase directly with the size of the file. This Wwor
aims to address some of these challenges, in particulaatha@ling of large data files.

Several systems such as CFS [15] store large data files usimgrad pool of storage resources by dividing files into
fixed size blocks. However, dividing the file into fixed sizaioks poses a hurdle to the performance and utility of the
system. In systems that do not split stored files, e.g., PASS], pnly a single p2p message is required to locate the
participant that stores a file. In contrast, for CFS the nunabsuch messages is proportional to the number of chunks
and hence the size of the file. This implies that CFS is unlit@kfficiently scale with the size of the files.

A motivation for using fixed size chunks is that given the drsigke of a chunk compared to the file, the probability to
find a node that can store a chunk is higher than that for thieedile. However, we note that due to the heterogeneous
storage capacities of the nodes, some no#&3 Will have little capacity left even if the overall systeatilization is
low. Let the probability of a store to fail because it is magpeE bep. Then the probability of a store to fail in PAST is
simply p, and PAST addresses this problem by incorporating a retgharism that essentially rehashes the file name
with a new salt value and repeats the p2p look-up proceduosv, ets assume thatremains unchanged during the
store of all the chunks of a file in CFS. Then in a simple scenaithout any replication, the probability that the store
of a file withn chunks will fail is given byl — (1 — p)™. This probability of failure is clearly very high, e.qg., farvery
lightly utilized system withp = 0.1%, a store of 4 GB file has a failure probability of 64.1%, whiobreases to 98.3%
for a 16 GB file. CFS does incorporate a retry mechanism penlkchout that does not reduce the number of chunks,
and hence the above discussed problem remains.

The goal of our work is to learn from lessons of these preMioppposed systems, and introduce novel techniques
such as multi-sized chunk striping to overcome large nundbethunks per file, as well as to use error-coding for
improved reliability.



4 Design

In this section, we present the design of our proposed sydtesassumed that a set of participating machines are
available and willing to contribute storage space towah#sgystem-wide shared storage. Moreover, the participants
faithfully implement the underlying communication and firetocols of our system. Similar to PAST [35], our system
also assumes that all files to be stored in the system haveeifilg names.

The design of our system allows users to store and retrictiedites, as well as access portions of files. A portion
is accessed by specifying its length and its offset witheesfo the beginning of the file. In the following sections, we
first give an overview of our system. Next, we give details iffiedent aspects of our system. For this discussion, we

refer to the machines that intend to participate or are giggting in our system as “nodes”.
4.1 Overview

The first step of our system is to establish a pool of sharedg#oresources. We accomplish this task by using the
communication substrate provided by Pastry [34] to arrahgenodes in a p2p overlay network. Our use of structured
p2p networks implies that the proposed system can suppaitiries such as fault-tolerance, resiliency, high-avaitab
and self-organization of participants. Figure 1 illusési new node joining the overlay. Once nodes become part of
the overlay, they can reach each other and utilize and dwério the storage in the system. Hence, the desired pool of
shared storage resources is established and is ready tete us

A key feature of our design is to provide storage for largesfildnose size is larger than the capacity of any individual
node. For this purpose, the system splits a file into churig stores the chunks in the storage pool. When it is desired
to retrieve a file, all the chunks making up the file are locatied assembled together. An advantage of splitting files is
that the system does not have to retrieve an entire file if argprtion of the file is accessed, rather, only the chunk(s)
containing that portion are retrieved. However, a posgibddlem is that the loss of a chunk of a file due to node failures
may result in the entire data in the file becoming useless. Mf@@y erasure codes to address this issue and to provide
fault tolerance.

To manage storing and retrieval of chunks in the system, Wieaithe Pastry’s DHT abstraction of the nodes to
map the chunks to nodes. To store a chunk from a i®deunique identifier (UID) for the chunk is first calculated by

filename_chunk1_p0 ‘ 2 |
p2p overlay ' b overay '
)
SHA-1
——

store(OxAB1...)

Figure 1. A node joining the participant overlay. (a) The

new node (shown on the left) sends a message to one of Figure 2. A chunk is stored in the system from the
the participating nodes (shown on the right). (b) The new shaded node. (1)ookUp message. (2) Acknowledgment
node becomes part of the overlay and starts contributing with IP address of the target node. (3) Actual store of the
storage. chunk (over IP network).



performing SHA-1 [1] hash on the chunk name. The UID is thezduss a key to send outlamokUp message in the
overlay. The DHT guarantees that the message will be redeivsome target nodein the overlay. Upon receipt of
thel ookUp messageT replies with an acknowledgment message that contains thedress off. WhenSreceives
the acknowledgment fror, the instance of our system &toncludes that the chunk should be storedoNote that
the actual store of the chunk is done directly over the IP ngtand does not involve the overlay. Similarly, to retrieve
a stored chunk, hook Up message is used to determine the target node that storelsithk, @and the actual retrieval is

done over the IP network. An example of this process is showrigure 2.

4.2 Chunk storage and error coding

In this section, we discuss how our system stores chunks &f.aFor this discussion we assume that the sizes of
chunks of a file are known, in the next section we will present these chunk sizes are determined.

Each chunk is named ditenameChunkNo e.g.,testimageFile2 represents the second chunk of the fstimage-
File. This naming convention is chosen as a means for determinéingame of the file a chunk belongs to, and alleviates
the need for maintaining mappings of chunks to files and varsa. A drawback of this naming convention is that it
complicates renaming of a file as all chunks belonging to tleesfiould be renamed (and possibly moved based on
new DHT-mapping). However, we argue that the targeted lflgge such as medical images are named based on their
contents, and a rename is a rare operation.

To ensure file availability in the face of node failures, wepdmy error coding. We considered two options regarding
the granularity at which the error coding should be appli@de is to perform error coding across chunks, nechunks
are encoded intan chunks and stored in the system. The main issue with thi®osithat, in the case of a failure,
recovering a chunk requires accessing at leashcoded chunks. The size of thehunks is the size of the stored file,
and given that we are dealing with very large files, such awegomechanism is very expensive in terms of both time
and resources consumed. An alternative that we have optégittbencode each chunk individually as described next.

A chunk to be encoded is passed to an error coding algorittandlvides the chunk inta. equal size blocks,
calculates erasure codes across the blocks, and generaesoded blocks. The encoded blocks for the chiinare
namedfilenameX_ECB, whereEC B is the error coded block number and ranges frbta m. The error coded blocks
are stored in the system similar to the storing of chunks asriteed in the previous section. Since the names of the
encoded blocks are different from each other, with a higlbphility they are stored on different nodes and thus are less
prone to simultaneous failures. Due to the built-in redumayeof erasure codes, our system can retrieve the original
chunk even if some of thew encoded blocks are lost due to failures.

A disadvantage of using varying size chunks is that there @irect mapping between a file offset and the chunk that
stores the offset. This is remedied by maintaining a chuldcation table. Each row in this table represents a chunk
and lists the portion of the file contained in that chunk egpegl as minimum and maximum offset values. Our system
creates the chunk allocation table when a file is stored, tordssit in the p2p storage under the nafitename.CAT
Figure 3 shows an exampleAT file. To look up a file, the system locates fliilename.CATile, and uses its contents to
retrieve all or some of the file’s chunks as requested by the us

In summary, the following sequence of events happen whee &fidtored. The file is first split into chunks. Each

chunk is then divided inta blocks and error coded to give encoded blocks. Finally, the encoded blocks are stored
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(1) 0,5242880
(2) 5242880, 26083328

(3) 26083327, 52297728
(4) 52297729, 86114304
(5) 86114305, 86114304
(6) 86114305, 104856576

Figure 3. Example contents of a e 8
CAT file. Each line represents a x Chunks D o

chunk. There are six chunks in the D "’Q
file, and the total size of the file is x*m Error coded blocks Nodes

about 100 MB. Chunk #5 is empty. .
Figure 4. The various steps of storing a file in our system.

in the shared storage pool. The associa@&d file for the file is also created and stored in the system. Sityil
retrieval of an entire file or a portion of the file involves tfidlowing sequence of events. The system first retrieves the
associatedCAT file and determines the number of the chunk to retrieve anahéimee of the required encoded blocks
using our naming convention. Next, enough blocks are retdéo allow decoding of the chunk. The process is repeated
until the desired number of chunks is retrieved. These chan& then assembled into the file and returned to the user.
For example, to retrieve an entire filey TestFilehat contains three chunks under an XOR coding scheme thaires
two encoded blocks to decode a chunk, our system will lo¢tete@hcoded blocksnyTest Filex_y;0 < x < 3,y any
two in {0, 1, 2}.

4.3 Determining chunk sizes

In this section, we discuss how we determine the size of chifmka file. First, we use the information about the
currently used erasure codes to determine how many encdalgdstwill be created per chunk. This information is static
per erasure code, e.g., a simple (2, 3) XOR code createsehm®led blocks from every two input blocks. Next, we
determine the names of the first set of encoded blocks belgrgithe first chunk. This step is simple given our naming
convention offilenamechunkNQECB. Note that only the names of the encoded blocks are createdhat the actual
chunk or encoded blocks. Then these encoded block nameseddaicreate message keys and speidCapaci ty
messages on the p2p overlay. The messages are receivednaidémethat will later store the encoded blocks. These
nodes reply with the maximum size of an encoded block that #éne willing to store. This size is determined by the
remote nodes’ local policies and can be zero, which indicttiat a remote node is either out of space or unwilling
to store data. The space is simply reported in the replgegbCapaci t y and is not reserved for the block. Upon
receiving the replies, we determine the maximum block dize the remote nodes can store. Using the block size and
the erasure code information, we can determine the maxinizenaos the first chunk. For example, if the maximum
block size returned is 10 MB, under the above (2, 3) XOR cdue chunk size can be 20 MB. Next, the determined
chunk size (or the size of the remaining portion of the filejakiever is less) is used to create a chunk of the file. The
chunk is error coded and stored as discussed in the prevéatiss. The process is repeated until all the data in the file
is stored. Figure 4 shows this process in action.

There is a possibility that the available space on aremade isused in the time between the reply todgle¢ Capaci t y

message and the actual store of the blocks. If this happeasystem can simply treat the current chunk as a chunk



of size zero, and continue normally. Also, to reduce the getice of this event, a node may choose to only report
a fraction of its actual available capacity ppet Capaci t y message. This allows the node to serve multiple stores
simultaneously.

The advantage of using varying size chunks is that the nuoflrunks are dependent on the capacity of the system
and not the length of the file being stored. Moreover, a systeratries to guard against failures is built in by allowing
chunks to be of zero size. We do limit the number of conseeutiro-sized chunks in a file to protect against unbounded
retries in case the system utilization is high. If this linsitexceeded, the file store fails and an error is returneddo th

user.
4.4 Fault tolerance and security

The primary means of fault tolerance in our system is erratimg. As nodes fail, the error coded blocks stored
on them are lost and should be re-created to maintain redcwydd-or this purpose, we leverage the Pastry leaf-set
that maintains information about a node’s neighbors in ttemiifier space, and Pastry’s ability to detect a failure of a
neighbor. Moreover, in Pastry the identifier space that ipmed to a failed node is split between the two immediate
left and right neighbors of the failed node. This impliestthanode whose immediate neighbor has failed becomes
responsible for storing some of the blocks originally stboe that neighbor. Each node in our system has a list of
blocks stored on its neighbors, and this list is updated villesare created or removed. When an immediate neighbor
of a node fails, the node examines the list of blocks and deters which of these blocks will now be mapped to it.
For these blocks, the node then uses our naming conventietéomine the associated chunk, and starts the process of
re-creating the lost encoded block using the remaining @ed®dlocks. Note that the newly created encoded block may
not be exactly the same as the one that has been lost, butiitéidnally equal.

An interesting problem arises when a node that stores a famyder of chunks fails, and its neighbors may not have
the capacity to take over and store those chunks. This cavdigea either through our use of online code that allows us
to simply drop, i.e. not recreate, an encoded chunk on a beigiode, and create another one at a different location; or
by making a node consult its neighbors before replyingad Capaci t y messages and reserving space for potentially
storing a neighbor’s workload. We have adopted the former.

Another point of failure is theCAT file associated with each file. We employ simple replicatibthese files on
neighbor nodes, and in case of failure of a node, create nglicas. This scheme of replication is similar to that used
in PAST [35] and Kosha [7]. However, our system has the adgnthat it can re-create@AT file in case of loss. This
is done by incrementally looking up chunks of a file and deteimg their size. In case a particular chunk is not found,
it can either mean a zero-sized chunk or end of the file. Siwvedjmit the number of consecutive zero-sized chunks,
we can always determine the exact end of the file by contins@agching for the next chunk up to one more than this
limit. Re-creating a&CATfile is a time-consuming process, but given the active rafibo, it will only be called upon in
rare events.

4.4.1 Managingreplicas

In addition to error coding, we have also employed simpléicafion of encoded blocks on neighboring nodes in the

Pastrynodel d space. Instead of choosing a primary node and making it ressiple for creating replicas as is the case
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Figure 5. An example multicast tree structure for simul-

taneously creating replicas on nod&sof a chunk from Figure 6. Interfacing with applications. The dotted line
sources. shows the 1/O as perceived by the application.

in many systems [35, 7, 15], we utilized a multicast schenstrtmltaneously createreplicas.

Once a target node has been selected for storing an encodek aking the p2p-mapping, we determine- 1 of
its neighbors in the identifier space and then leverage B[#®] to construct an overlay tree with the node starting the
store as the source and theselected nodes (the target node and its neighbors) as thedéas. This is illustrated in
Figure 5.

The challenging task is the creation of an effective treeis Tan be achieved if a child is as physically close to its
parent as possible. We leveraged the proximity-awaremgugble of Pastry to realize this tree. Staring from the seur
node, we picked K closest nodes from the routing table aslehil and then continued the steps as we moved towards
the identifiers of the target node. As a result, the desiredlity-aware tree was created. Note that our greedy approac
does not guarantee that the overall tree follows the shiquegh from the source to the destination, but it does pravide
strong locality at each step. Once the tree is created, welginse the Bullet algorithm to multicast the data to the
replicas.

Finally, wide-area file storage raises issues of trust antsistency. Our system can utilize the multitude of ap-
proaches that have been developed to address these probleinss encryption [13], agreement protocols [10, 5], and

logs [28]. A detail discussion of such approaches is out@fitope of this report.

4.5 Discussion

The design of our system results in dividing large files irgatively few chunks. However, a number of systems [3,
29] have shown that having a file distributed across a numbmoaes (a large number of chunks in the terminology of
this work) can provide better transfer bandwidth when asiogsthe stored data. So, while large chunk sizes can provide
easy location and reduce p2p-lookup overhead, smallerkchigrs can provide better transfer bandwidths if portions
of files are accessed by different nodes, and also entadrfesjeneration of a lost chunk because of its smaller size.
This leads to trade-offs in the selection of lower and uppert for chunk sizes. While, we have not explicitly handled
limiting chunk sizes based on such factors, our design alfmwselecting chunk sizes according to local node poljcies
which can capture such factors. We continue to further ifgate these trade-offs.
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5 Implementation

In this section, we discuss our implementation of the predaystem. The design discussed in the previous section
was implemented with abo@®000 lines of Java code using FreePastry [16] — the publicly atéél version of the
Pastry API. We do not expect our Java-based implementatiddetome a performance bottleneck as the Java code
is mainly used for location of remotely stored chunks wharg processing delay due to use of Java is expected to
be overshadowed by the network latency. Moreover, any htrarssfer of data is done directly between nodes using
standard techniques, and does not involve the p2p overlay.

To allow userspace programs to access the system’s AP| wtitequiring any special changes to the source code
or recompilation, we developed a library that interpossslitbetween the application and the standard libraried, an
redirects the application’s I/O as shown in Figure 6. Thealip consists o259 lines of C code and utilizes standard
techniques for redirecting library calls.

The interposition is achieved through th®_PRELOAD environment variable available in Linux. Setting of this
variable allows runtime loading of specific libraries priorloading the standard libraries, which provides a means
for overriding any standard library function. Using thisafere, we overrode thepen, r ead, wi t e, andcl ose
functions in the GCC default libraries. The overriding ftinos use an RPC-based protocol to notify the local instance
of our system when 1/O requests are issued. The local instdren takes charge of performing the appropriate data
location actions in the participant network.

The process starts when the application issuesgen 1/O call to a file. Instead of sending the 1/O to the local
machine, the interposed library passes it to@kupmodule. The task of this module is to determine the chunk that
contains the portion of the file being accessed, and locatadke in the shared storage pool which stores that chunk.
For this purpose, thlbokupmodule first consults a local cache to determine if it hasmgdandled an access to the
chunk. The cache contains a file descriptor number and theteenode on which the file is stored. If the storing node
of the chunk is already known, the 1/O is redirected to thatenand the process completes. If the storing node is not
known, or the 1/O to the chunk fails due to stale cache datacfwis possible due to churn of participants), thekup
module determines the storing node using the p2p overlagsaitbed in Section 4.1. Once the storing node is known,
the system assigns a file descriptor for the file, and updagesache with the nodes’ information, and finally sends the
I/O request to the node. Foraad call, the system performslaookup to determine the required block(s) and node(s)
that contain the block(s) for the requested data. This médion is then passed back to the library along with an error
code and the library returns fronead in the same manner as the original POSIX compliadd function is returned.
Thewr i t e function is handled in a similar manner. The overriding & th ose function is done simply to clear the
state of the file descriptor so it can be reused later. In tlaig wur implementation is able to transparently redire@sl/

from applications to distributed storage nodes.

12



6 Evaluation

In this section, first, we evaluate our system through lacgde simulations to determine its capabilities in storing
large files. Second, we investigate the fault tolerance ofgstem through measuring file availability, performante o
error coding, and effects of participant churn. Third, weetlmine the feasibility of multicast-based replica manatece.

Finally, we present implementation results of using outesysin an an example desktop grid system, Condor [26].
6.1 Simulations results

This section presents results from simulating a large nurobeodes that implement the proposed design.

Methodology:

We utilized the simulator mode of Pastry [34] to create a 1866de directly connected network, where each
simulated node runs an instance of our code. This simulafproach has been used in a number of Pastry-based
projects [34, 35, 8, 40]. Moreover, to compare our systenhwthers, we adapted CFS [15] and PAST [35] to run in
our simulated environment.

We assigned the storage capacities of our simulated notlesiftg the recommendations of recent studies regarding
available disk space on typical desktop grid nodes [19, AchEsimulated node was assigned a capacity based on a
normal distribution with a mean and variance of 45 GB and 10 @Bpectively, resulting in a total simulated capacity
of 439.1 TB.

To drive our simulations, we collected a file system tracenfk@rious video hosting websites, Linux mirror websites
that serve distribution images, as well from various deparital servers. Since our system is designed for large files,
we filtered all files smaller than 50 MB. Our choice of 50 MB as iaimum size was also based on large files used in
works such as [29]. The resulting trace contained inforaratdr about 1.2 million files, with mean size of 243 MB and
the standard deviation in size of 55 MB. The total storage sgjuired to store all the files in the trace is 278.7 TB.

For the purpose of these simulations, the limit on conseewero-sized chunks in our system was sef.tal'he
replication factor in PAST and CFS was sefiiand no error coding was used in our system. For the case afstem,
the nodes reported their entire capacity in response tgétéCapaci t y messages. The authors of CFS have used a
fixed chunk size of 8 KB [15] in their evaluation, but given thege size of the files we used in our simulations we set
the chunk size to 4 MB to reduce unnecessary DHT look-ups. &ksidered a file insertion a success only if all the
chunks of the files were successfully stored.

Finally, given the randormodel d assignment in our simulations, each case was simulatednes;tthe results

presented in the following represents the average (at eatehpaint).

Results:

In the first set of experiments, we measured the number oesséd file stores as files from the trace were inserted
into the system. Figure 7 shows the results for the threescaSBAST, CFS, and the proposed system. Initially, the
system is underutilized and the three schemes behave ddiynti However, as the system utilization increases, the
remaining space on many nodes become less than the sizefdé#hieeing inserted. As a result, the number of failed
stores in PAST starts to increase, and it fails to store 36@0%e total files. This is of particular concern given that
the total data to be inserted compared to the total availedmcity, i.e., the expected utilization, is less than 64%.
Similarly, CFS splits the files into blocks, and is therefalde to perform better than PAST by failing for 15.2% of the
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inserted, under the three scenarios, expressed as a percent files are inserted, under the three scenarios, expressed as a

age of total files inserted. percentage of total size of the data inserted.
Scheme Number of Size of
chunks chunks
avg sd avg sd
CFS 61.25| 13.8 4 MB 0
Our System|| 3.72 | 3.1 | 81.28 MB | 19.9 MB

Table 1. Average and standard deviation of the number and size ofkshereated under CFS and our system.

total files, however, this is still a large number of failurd$he performance of CFS is expected to worsen further per
our discussion of Section 3. Finally, our system is able toady the ill-effects of both PAST and CFS, and results in
only 5.2% failures; an improvement by a factor of 7.0 and 28pared to PAST and CFS, respectively.

Next, we measured the size of data that each of the threensyd#dled to store. Figure 8 shows the results. Here,
we observe that PAST and CFS are unable to store as much & 38®22.0% of the data, respectively. In contrast
our system was able to store almost all the data until abddit 8&s were inserted, only after that did it failed to store
some files, with total amount of data that failed to be stotel?a7%. This is an improvement by a factor of 3.1 and 1.7
compared to PAST and CFS, respectively.

Next, we determined the average number and size of chunateckrender CFS and our system for these simulations.
The results are shown in Table 1. Since the size of a chunkead fix CFS, it results in the files being split into a large
number of chunks, which on average is about a factor of 16.tertiean the number of chunks in our system. The
reduced number of chunks enables our system to avoid an esserdy large number of p2p look-ups and to provide
performance similar to that of PAST but with the added caligho store large files.

In the next set of experiments, we determined the overalksysapacity utilization under each of the three schemes
studied. Figure 9 shows that all three schemes behave dimilahe beginning when the system is about 15% utilized.
However, as more files are added, the utilization curvesrgazePAST and CFS are unable to store many of the files
that are inserted as shown in earlier results, and as a resuléer-utilize the system by 30.4% and 10.7% compared to
our system, respectively. This shows that our system cacieffly utilize the system storage capacity more efficientl

than the compared systems even at higher utilization.
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age of total available storage in the system. with and without error coding.

6.2 Fault tolerance

This section evaluates the fault tolerance charactesisfiour system by studying the number of available files under

node failures, and the performance overhead of error codifegalso study how participant churn will affect the system.
File availability:

In order to determine the effectiveness of error coding insystem, we distributed the files from our trace to the
10000 simulated nodes, and counted the total number ofadlaifiles in the system as 1000 randomly chosen nodes
fail one-by-one. For this experiment we used a (2,3) XOR c@dewell as an online code that could tolerate two
simultaneous failures per chunk. We counted a file as avaitaddy if all the chunks of the file could be retrieved. We
repeated this experiment for the cases of no error code, X@iR,cand online code. Figure 10 shows the percentage
of total files that became unavailable as nodes failed. Tkeofigrror coding resulted in 23% and 32% less failures
for XOR code and online code, respectively, when 1000 noaiésdf The overall number of failures for online code
was negligible (1.48%), and almost zero for up to 866 failedes. Moreover, these failures can be further reduced
if encoded block re-creation is employed as described ini@ed.4. Hence, error coding is an effective means for

ensuring fault tolerance in our system.
Performance of error coding schemes:

We studied two erasure codes that can be used in our systenelynXOR and online code, and compared them
against a NULL code that simply copies the input data to thpwduFor XOR code, we set the parametet 2 so that
the number of blocks encoded per parity block is 2. The padimnline code that we have used follows the suggestions
in [27], and has the tuning parametersgof 3 ande = .01. For these runs, we used a chunk size of 4 MB, and used
4096 encoded blocks per chunk.

Table 2 shows the size of encoded blocks and time taken fardémg and decoding averaged over 10 runs. XOR
encoding and decoding is a factor®8 and19.7 faster than that of the online code, respectively. Howesl#pugh

the online code is slower, the decoding can be started asabtick becomes available and can be overlapped with
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Erasure Encoded size Encoding time Nodes failed|| Data lost Data regenerated
code || size (MB) | ovrhd. | time | ovrhd. (percentage total total average| sd
Null 4 0% 11 0% of total) (GB) (GB) (GB) | (GB)
XOR 6 50% 79 618 % 10 percent 0 28044.35| 28.04 | 78.95

Online 4.12 3% | 264 | 2300% 20 percent || 142.18 | 58625.78| 29.31 | 80.02

Table 2. Time consumed, and size of encoded Table 3. Data lost and regenerated after 10% and 20% nodes
data, in storing a 4 MB chunk. Overheads are with  have failed. The average and standard deviation for regesbr
respect to the NULL code. data reported here is calculated for each failure.

retrieval of other blocks. Moreover, online code has fas let®rage overhead as seen in the table, and therefore isla goo
candidate for use in our system.

Effects of participant churn:

In this experiment, we determined the effect of participamirn on our system. In particular, we studied the amount
of data that is regenerated from other replicas/error-datieinks as nodes leave the system due to failure. Upondailur
of a node, its immediate neighbors spring into action. Thesighbors identify the chunks of files which will now be
mapped to them by the DHT, and start the recovery and churdnergtion process. For this simulation, we failed up to
20% of the total participating nodes without any node recavAfter each node failure, we introduced a delay before
the node’s data is recovered on a neighboring node. Thiy delaroportional to the size of the data being recovered
and serves to simulate the time it would take the data to bevezed in a real system. This delay also enables us
to determine how the system would behave under multipleerrisve failures where data recovery due to a previous
failure is not yet complete. For each failure, we logged tlae ef data that needs to be regenerated as well as the total
size of data that has become unavailable.

Table 3 shows the results. We observed that for the traces aseaverage of 29.3 GB of data was regenerated per
failure after up to 20% of the nodes had failed, with a totab8625.8 GB being regenerated. The experiment also
showed that only 142.2 GB of data was lost even when 20% obtiaériodes had failed. Finally, compared to the total

data size of 278.7 TB, the data recreated per failure is guitall, i.e., 0.01%. This shows that our system can handle
participant churn well.

6.3 Multicast-based replica management

This section evaluates the feasibility of using the Bull2][algorithm for disseminating replicas in our system.
For this test we simulated how one source node will distéan encoded chunk to a number of replicas (32 in this
simulation). We used a binary tree with a height of five wite #ource node as the root for the tree and the recipient
nodes at the leaf nodes. The setup included a total of 63 nofiEs simulation corresponds to an extreme case of
creating 32 replicas, where in reality we expect the numbegpglicas to be small (about 3). For these experiments we
divided a chunk into 1000 packets.

Our first experiment tested the replica creation time usiiffpreént values of the RanSub set size in the Bullet
algorithm. Figure 11 shows the average number of packetsvett through the duration of the simulation for the values
of RanSub set size ranging from 3% to 16% of the total nodekeéntree. It is observed that as the RanSub size is

increased, its effect decreases, and begins to stabilizedi8 percent. This shows that the RanSub size only effeets t
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Figure 11. Average number of packets received per Figure 12. Average, minimum, and maximum number
node with different values of RanSub over a period of time.  of packets received per node for a RanSub size of 16%.

distribution time up to a certain point and then the distiifau time becomes independent. This gives us an idea of what
RanSub value should be chosen for our system in real apiplisat

In the next experiment, we examined how evenly the tree igat#d with the packets, i.e., how evenly the Bullet
algorithm distributes the replica packets. This experintem the same setup as the previous experiment but with the
Ransub value fixed at 16% of the total nodes in the tree. Asr&iy shows, the distribution of the replica data is close
to linear for the maximum, average, and minimum number ofkdéger node. This shows the even distribution of data
over time, and that the Bullet algorithm can indeed be usedffective replica creation in our system.

6.4 Case study: Interfacing with Condor

In this section, we discuss how we interfaced our propossigeywith Condor [26], a well-established cycle-sharing
system that enables high throughput computing using effstielf cost-effective components. For this case study, we
used our library implementation of Section 5 to redirect ¢4lls. Moreover, all participating nodes run Condor Vensio
6.4.7, and we can start and stop client-side Condor 1/0 dasroa any of the machines to which 1/O calls will be
redirected.

For this study, we created a simple Condor applicatibrgCopy, that in essence creates a copy of a specified file.
We use this application to compare the working and perfocear a CFS-like system that uses fixed chunks sizes, our
proposed system, and the original Condor. We utilized 32ratory machines at our department to set up a Condor
pool connected using a 100 MB/s Ethernet, where each noderhbgel Pentium 4 3.0 GHz processor, 1 GB RAM,
40 GB hard disk, and contributed storage space based on@mndlistribution between 2 GB and 15 GB, with mean
and standard deviation of 10 GB and 3 GB, respectively. kneRperiment, no error coding was employed, and enough
retries were made for all three cases to store a chunk so astwesthat all blocks can be stored.

Table 4 shows the results of this experiment, where each covesponds to a run dfi gCopy with increasing file
sizes ranging from 1 GB to 128 GB. For each run, we startedhfbgsdeleting all the files from the previous run, and
creating a file with the stated size on a different machina tha 32 machines in the setup. Next, we bargCopy

through Condor to create a copy of the file. The table showshenehe copying succeeded, and how long it took for
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File Time taken (s)

size || Whole file | Fixed size chunks| Varying size chunks

(GB) (overhead) (overhead)
1 151.0 169.0 (11.9 %) 176.4 (16.8 %)
2 277.1 330.8 (19.4 %) 302.4 (9.2 %)
4 529.1 654.6 (23.7 %) 554.5 (4.8 %)
8 1051.2 | 1320.0 (25.6 %) 1076.6 (2.4 %)
16 N/A 2637.0 (N/A) 2086.2 (N/A)
32 N/A 5243.9 (N/A) 4156.4 (N/A)
64 N/A 10441.8 (N/A) 8217.7 (N/A)
128 N/A 20881.5 (N/A) 16425.8 (N/A)

Table 4. Comparison of the proposed storage system and fixed stovagidn scheme using a simple Condor application.
The presented overhead is with respect to the whole file sehem

the process.

As expected, we observe that both fixed and varying-sizensehavork for smaller file sizes, but the use of DHT
introduces an overhead. There are two components of thihead: a fixed component due to I/O redirection and code
interposition, and a variable overhead due to p2p look-wgratmons to determine the locations of the chunks. While we
expect the fixed overhead to be implementation dependenvattiable overhead is directly proportional to the number
of chunks created, which is very large in a system that uses fze chunks, but is dependent on node capacities in
our system. For this experiment, since the entire file wasss®x, the variable overhead grows with file size. However,
this scenario presents the worst case, and typically ontiyqees of a large file are accessed at a time, in which case the
overhead is expected to be much less. Finally, as the fildsinereased the advantage of our system becomes evident;
it is able to find storage for the copy whereas the originaésah of storing on a single node fails due to unavailability
of space. Moreover, note that as the file size increases thlditoe to runbi gCopy is dominated by the transfer time.
As a result, the relative overhead introduced by our systamtrénsferring large files becomes very small (under 2.5%
for a 8 GB file).

This experiment shows that our system is effective in stplarge files with an acceptable overhead, and implies
that it can be used in practical desktop grid scenarios, evties file sizes are larger than the capacity of individual

participating nodes.
6.5 Summary

Our experiments have shown that our proposed system caidpraveliable and robust distributed storage system
for modern scientific applications. In particular, our siations have shown that compared to PAST, for large files,
our system reduced the number and size of file store failwesfactor of 7.0 and 3.1, respectively, and improved the
overall system utilization by 30.4%. Our system also redube number of chunks created compared to CFS by a factor
of 16.5 allowing fewer p2p look-ups and leading to perforg®eimilar to PAST. Our experiments with error coding
showed that the fault tolerance and data availability néddiea desktop grid system can be achieved with our system
through the use of error coding. The system also handlegjpamt churn well with only 0.01% of data regenerated per
failure for the traces used. We also examined the use of casltfor replica maintenance and found that this technique
can be effectively used in our system. Moreover, our casdystéiinterfacing the system as an 1/O library with Condor

proves that the system can be used in practical desktopagithsios with acceptable overhead.
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7 Conclusion

In this report, we have presented the design and evaluatiarcontributory storage system. Our system uses p2p
overlay networks to establish robust, scalable, and rdidistributed storage. It employs the techniques of sigpi
and error coding to support transparent storage of veneldata files across multiple distributed nodes, and exports
a simple yet effective interface to users and applicatidfs. evaluated our system through trace-driven 10000-node
simulations and showed that it performs better than exjstirstems, achieves better than 99% file availability, amd ca
store files that are larger than the capacity of individuatipants. Additionally, the proposed system also regfson
well to participant churn with the amount of data regenetater node failure being less than 0.01% of the total data
in the traces used. These results indicate that the promystein gives acceptable performance in a dynamic setting.
We have also proposed the use of multicast for replica ma@mtee and believe that such an approach can be used in
the target environments. The efficient and simple desigruofapproach implies that it can be readily deployed and

interfaced with different applications, and therefore sarve as a storage system for today’s desktop grid envirotenme
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