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(ABSTRACT) 

In this thesis we develop a system for recognition of strings of connected digits that can 

be used in a hands-free telephone system. We present a detailed description of the 

elements of the recognition system, such as an endpoint algorithm, the extraction of 

feature vectors from the speech samples, and the practical issues involved in training and 

recognition, in a Hidden Markov Model (HMM) based speech recognition system. 

We use continuous mixture densities to approximate the observation probability density 

functions (pdfs) in the HMM. While more complex in implementation, continuous 

(observation) HMMs provide superior performance to the discrete (observation) HMMs. 

Due to the nature of the application, ours is a speaker dependent recognition system 

and we have used a single speaker’s speech to train and test our system. From the 

experimental evaluation of the effects of various model sizes on recognition performance, 

we observed that the use of HMMs with 7 states and 4 mixture density components yields 

average recognition rates better than 99% on the isolated digits. The level-building 

algorithm was used with the isolated digit models, which produced a recognition rate of 

better than 90% for 2-digit strings. For 3 and 4-digit strings, the performance was 83 and



64% respectively. These string recognition rates are much lower than expected for 

concatenation of single digits. This is most likely due to uncertainties in the location of the 

concatenated digits, which increases disproportionately with an increase in the number of 

digits in the string.
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1. Introduction 

Speech is the most dominant mode of communication among human beings. It has 

been a part of every civilization that has been discovered. Another mode by which 

complex information is exchanged is by writing. However, since reading and writing 

require literacy, they are less universal than speaking. Lately, with the advent of resources 

such as the internet, communication by typing has been on the increase. Typing and 

writing, however, suffer from the disadvantage that they are much slower means of 

communication than speaking. On the other hand, man-machine communication is 

dominated by typing. This is because, although writing and speaking are potentially more 

efficient modes of man-machine communication, they require the machine to be able to 

recognize handwriting and speech. Research in these areas has not yet reached such a 

high level of maturity. Speech, however, offers the advantage of being the fastest and the 

most natural form of human communication. Man-machine communication through speech 

also promises an environment where the hands and eyes are free; the speaker and listener 

can enjoy unconstrained movement and remote access. These have been the main 

motivation for research into automatic speech recognition. The ultimate goal of automatic 

speech recognition is to build machines that can "hear," "understand," and "act upon" 

spoken input. For this, the machine must be capable of extracting information from a 

speech wave. The information content in a speech wave can vary between the level of 

being just a sound, to the level of being a tone, to the identity of the speaker and to a 
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meaningful communication between humans. This information is stored in the machine’s 

internal model of the speech process. The fundamental problem of modeling speech is that 

it is a continuous stream of sounds with no clear boundaries between the words. Yet, 

humans perceive speech as a sequence of words. Hence, it is necessary to segment this 

continuous stream of sounds into words, subwords and gaps. The large variability in the 

acoustic signals corresponding to the same linguistic unit also complicates the modeling 

process. Speech recognizers can be classified into varying levels of complexity based on 

criteria such as speaker-dependency, nature and size of vocabulary, and continuity of the 

speech. 

In a speaker-dependent system, the utterances of a single speaker are used to model 

the speech process. This process of characterizing speech by models is called “training.” 

The purpose of a speaker-dependent system would be to recognize the speech uttered by 

the person whose speech was used in the training process. A speaker-independent system 

is trained by multiple speakers and is used to recognize the speech uttered by multiple 

speakers, some of who could be outside the training population. Due to larger variability 

involved, a speaker-independent system is less accurate than a speaker-dependent system. 

However, the speaker-dependent system needs to be retrained each time it is to be used 

with a new speaker. 

Based on the size of the vocabulary involved, speech recognition systems can be 

classified as small, medium and large vocabulary systems. Typically, vocabulary sizes of 1- 

99, 100-999, and 1000 or more words are called small, medium, and large vocabularies 
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respectively. The performance and speed of recognition decrease as the vocabulary size 

increases. Moreover, the memory requirements and the number of confusable items in the 

vocabulary increase as the vocabulary size increases. The larger vocabulary recognition 

systems need to employ many complex constraints, such as linguistic constraints, rather 

than train, store and search exhaustively for each word. They also use models of subword 

units rather than of whole words. 

Based on the continuity of the speech involved in the application, speech recognizers 

can be isolated-word, connected-word or continuous speech recognizers. In isolated-word 

recognition, the speech involved is constrained to be uttered with a sufficiently long pause 

(typically 200 msec) between words. With this constraint, techniques such as end-point 

detection can successfully locate the boundaries between the words. This simplifies the 

task of speech recognition. Continuous speech is much more complex to recognize due to 

the absence of any such simplifying constraints. The recognizer must be capable of taking 

care of the large variability in the articulation associated with flowing speech. Moreover, 

the continuous speech recognizer must deal with unknown temporal boundaries in the 

speech. Connected word recognition is a technique to recognize continuous speech. It is 

used in small vocabulary, continuous speech applications. This technique characterizes a 

sentence as a concatenation of models of individual words. 

Let us now briefly look into the history of speech recognition systems. The earliest 

speech recognition systems were based upon the fact that the information required for 

recognizing speech existed in the acoustic signal. This was because different spoken words 
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were observed to give rise to different acoustic patterns. Most of the speech recognition 

systems employed a wide variety of filter banks to divide the speech signal into frequency 

bands. The outputs of the filter banks were then cross-correlated with patterns of spoken 

words obtained by a similar treatment of training utterances. These early systems were 

improved by adjusting the mean level of the speech signal so that loud speech and quiet 

speech have roughly the same intensity. There were also recognition systems that divided 

the speech signal into smaller units such as voiced and unvoiced sounds, fricatives and 

plosives such that a single phoneme was isolated. The recognition was then performed 

based on the combination of the various phonemes present. The early systems, however, 

did not perform very accurately. Further research suggested that the simple matching of 

the acoustic patterns was not enough to achieve high performance speech recognition. The 

same word, spoken by the same person at different times, or by different persons, varied in 

duration, intensity, and frequency content. So researchers began to consider the speech 

recognition problem as a pattern-recognition problem. Recognizers were built that 

attempted to normalize the intensity level, the duration, and the formant frequencies in the 

speech before matching with stored patterns. These methods performed better in terms of 

accuracy and the number of speakers whose speech was recognized. The idea of pattern- 

recognition also motivated researchers to employ artificial neural networks for speech 

recognition. However, all the early speech recognition systems were built to recognize 

small speech units such as vowels and not words or sentences. Later, the employment of 

linguistic constraints enabled development of systems that recognized words and 
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sentences. Recognition systems involved extraction of prosodic features (or the tonal and 

rhythmic aspects of speech) from the speech. This was crucial to the development of 

continuous speech recognition systems. The use of lexical, syntactic, semantic and 

pragmatic knowledge further improved the performance of continuous speech recognition 

systems. More recently, the uses of dynamic programming techniques, such as Dynamic 

Time Warping (DTW) and stochastic modeling, such as hidden Markov modeling, have 

led to encouraging results in the development of isolated and connected word recognition 

systems. 

This thesis attempts to develop a connected-digit speech recognition system that can 

be used in applications like the hands-free telephone. The various issues investigated in 

this thesis include the effects of the model sizes on the recognition performance, the use of 

isolated word patterns for connected speech recognition, and other issues regarding the 

convergence of the training algorithm, such as the initial estimate and the stopping 

conditions. This thesis suggests a method that provides good initial models for the training 

procedure. We also discuss a procedure for obtaining good estimates for the stopping 

conditions involved in the training process. In the connected digit recognition system that 

we have developed in this thesis, we have incorporated the word duration statistics in a 

manner that is different but simpler than in many of the existing techniques. The existing 

techniques use an empirically scaled word duration likelihood [2]. The choice of the scale 

factor is crucial to successful recognition and requires a lot of trials to arrive at a “good” 

scale factor. The technique that we have implemented does not involve any such empirical 
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scale factors and consequently does not require trial and error. The development of this 

connected-digit recognition system involves hidden Markov models (HMM) extensively 

and dynamic programming strategies to a lesser extent. Before proceeding to the details of 

the developed system, the following chapter provides a background on the various 

approaches to speech recognition and the elements of a speech recognition system. 

Chapter 3 discusses the feature extraction block of the recognition system. In Chapter 4, 

we provide the necessary theoretical background about Hidden Markov Models and other 

issues such as training and recognition using HMMs. In Chapter 5 we demonstrate the 

recognition performance that we obtained when we used our system for isolated digit 

recognition. Chapter 6 describes the level-building algorithm that we used to perform 

connected digit recognition and discusses the recognition performance on strings of digits. 
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2. Background 

In this chapter we bring out the various approaches to speech recognition and the 

elements of a typical speech recognition system. 

2.1 Approaches to Speech Recognition 

It is fundamental to speech recognition to extract the information from the speech 

signal. Hence, it becomes necessary to model the speech signal so that the parameters of 

the model characterize the information and discard any redundancy in the speech. The 

various approaches to speech recognition differ largely in the philosophy behind modeling 

of the information in speech. During speech communication, linguistic messages are 

converted into acoustic waveforms and transmitted. These are then received by the 

auditory system and converted back to a linguistic message by the speech perception 

system. Based on these stages of speech communication, we can identify four viewpoints 

of speech recognition. A combination of these four approaches can also be used in the 

development of a speech recognition system. 

2.1.1 Acoustical Signal Approach 

This approach views the speech signal as just another waveform. Therefore, we can 

apply various signal analysis techniques such as Fourier analysis, principal component 

analysis, and other mathematical methods to identify the input to the recognizer. The 
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principal focus of this method is the mathematical representation of the input-output 

characteristic of the recognizer. Each input is compared with the stored examples or 

templates of each class of inputs. The class that is closest to the input (in terms of an 

appropriate distance measure) is chosen as the identity of the input. This is the basis of 

various statistical modeling and pattern recognition schemes. These methods do not 

include any aspects of human speech production or perception. Figure 1 shows a 

simplified block diagram of a recognition system based on the acoustic signal approach. 

  

Speech to be Distance Selection of the "closest" 
recognized, S; measurement ” of the reference patterns 

      

    
Speech collected for trainin Stored 
templates of training ——T2e —_, Reference 
data, S, Templates       

Figure 1. Block Diagram of Acoustical Signal Approach to Speech Recognition 

The reference templates could include more than one example of a message in the 

vocabulary or one single representative obtained as an average of the various training 

utterances of a message. The critical part of the above system is the distance measurement, 

since this is fundamental to template matching. One method to determine a match between 

the input signal and the reference template is to compute the Euclidean distance between 

the two. However, it is important to choose the training data such that representatives of 

two different messages are quite distinct and those of the same message by all speakers, be 

close. Hence, it becomes necessary to collect large amounts of training data. This 
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increases the cost of the system in terms of storage requirements and effort needed to 

collect training data. This method treats every part of the speech wave as if it is equally 

important. However, we can provide different levels of significance to different aspects of 

the waveform. For example, we can provide a higher level of significance to the higher 

signal levels because they are less susceptible to noise. Such differential weighting can be 

achieved by choosing an appropriate distance measure or by extracting certain features (or 

parameters) from the signal and comparing only those features. These features can be 

extracted by many of the signal processing techniques used in waveform analysis. Due to 

differences in the duration of different messages or various utterances of the same 

message, time-warping provides a better method of comparison of the templates. Time 

warping can be achieved either by a simple method of time normalization of the templates 

before matching or by more complex methods such as Dynamic Time Warping (DTW). 

2.1.2 Speech Production Approach 

This approach views the information in the speech wave as a characteristic of the 

manner in which it was produced by the human vocal system. We now suggest a brief 

mechanism by which speech can be produced with the vocal apparatus. To inhale air, the 

rib cage expands and the diaphragm is lowered. This draws air into the lungs. Then the rib 

cage expands and the diaphragm is raised increasing the air pressure in the lungs. The 

increase in pressure forces out air through the wind pipe. In the wind pipe the air passes 

through the larynx, which contains the vocal cords. Due to the Bernoulli effect, the air 
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flow causes a drop in the pressure. This causes the laryngeal muscles to close the glottis, 

thereby interrupting the air flow. This interruption increases the air pressure which in turn 

forces the vocal cords apart. The cycle then repeats, which produces a train of glottal 

pulses. The vocal tract, and the oral and nasal passages pass the harmonics of the glottal 

waveform that are close to their natural resonances while attenuating the others. This 

acoustic wave radiates from the lips as speech. Some sounds such as the consonants are 

produced without involving the glottis. These sounds are produced by constricting the 

vocal tract. The constriction causes a turbulence and the air then flows out through the 

oral and nasal passages resulting in speech. Thus speech is produced by the excitation of 

the vocal tract, and/or the oral and nasal passages. Based on the nature of the excitation, 

speech can be broadly classified into voiced and unvoiced speech. The glottal excitation of 

the vocal tract produces voiced sounds. Vowels are examples of voiced sounds. Sounds 

produced by the constriction of the vocal tract are known as unvoiced sounds, consonants 

for example. When humans convey a linguistic message in the form of speech, they 

construct a phrase or sentence by selecting a set of sounds from a finite collection of 

mutually exclusive sounds. This basic set of sounds consists of the phonemes. However, 

due to various factors, such as accents, gender, and coarticulatory effects, a given 

phoneme will have a different manifestation under different conditions. These 

manifestations of the phonemes of a language are called phones. 

Having provided the basics of speech production, we now go into the aspect of 

modeling speech from the production point of view. Various models have been proposed 
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for modeling speech [1]. Of all these models, a popular model for speech is the Discrete 

Time Model that is shown in Figure 2. 
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Figure 2. Discrete Time Speech Model 

According to this model, the glottal pulse shaping, the human vocal tract, and the lips 

are modeled by the Glottal Pulse Filter G(z), the Vocal Tract Filter H(z), and the Lip 

Radiation Filter R(z), respectively. The voiced sounds are produced as a result of 

excitation by an impulse train at the pitch period and the unvoiced sounds by random noise 

excitation. The random noise excitation is used to model unvoiced speech because it is 

produced as a result of noise-like flow of air through a constriction in the vocal tract. 

Thus we can model the Z-transform of speech as 

S(z) = E,(z)G(z)H(z)R(z) ; for voiced speech with E,(z) representing an impulse train 

= E,(z)H(z)R(z) __; for unvoiced speech with E,(z) representing noise 

In general, to obtain the above system to model speech, we require an ARMA filter. 

However, the presence of very powerful computational techniques for deriving an all-pole 
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model from speech [3] provides a very good motivation for modeling speech with an all- 

pole transfer function. Moreover, we can obtain an all-pole filter that matches the 

magnitude spectrum of the speech [3]. For the purposes of coding, recognition, and 

synthesis, it has been found that modeling the magnitude spectrum of speech is sufficient. 

2.1.3 Sensory Reception Approach 

Since the sensory reception of spee is an integral part of human speech 

communication, its understanding could provide us with useful clues for developing a 

good speech recognizer. The ear is the sensory reception organ in the human body. It can 

be divided into three regions; the outer ear, the middle ear and the inner ear [1]. The pinna 

in the outer ear receives the speech. It then transmits the speech to the eardrum in the 

middle ear through the meatus. The eardrum is attached to a system that transduces the 

acoustic vibrations to mechanical vibrations. This transducer system consists of the 

malleus, the incus and the stapes that act like a hammer, an anvil, and the stirrup, 

respectively. The mechanical vibrations are set up in the inner ear (cochlea). The cochlea 

is a coil-like structure containing two channels called the scalae. The scalae are filled with 

a liquid called the perilymph. The movement of the stapes sets up a traveling wave in the 

perilymph. This then causes the basilar membrane to vibrate. The basilar membrane is 

about 35 mm long and tapers along its length. Due to this taper, the basilar membrane 

exhibits a resonance property that varies along its length. We can think of the basilar 

membrane as a broad band-pass filter with the successive points on the membrane having 
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an approximately constant Q characteristic. The width of the filter is inversely proportional 

to its resonance frequency. The basilar membrane is attached to the organ of corti. This 

contains the hair cells which transduce the mechanical vibrations to neural impulses. The 

ear thus performs acoustic to neural transduction and broad-band frequency analysis. 

Based on the functions of the ear in speech reception, we can arrive at the auditory 

representations of speech [1, 4]. However, the method by which the human speech 

reception system extracts parameters and classifies patterns is quite complex and difficult 

to duplicate. Hence, the sensory reception approach has not had a great impact on the 

development or improvement of speech recognition systems. 

2.1.4 Speech Perception Approach 

It has been experimentally found that certain features in speech, such as the voice 

onset times, formant transitions, etc., are important to the perception of speech by human 

beings. The speech perception approach suggests that a recognition system could 

duplicate the human perception system in extracting the above features. To achieve this, 

we have to make some sort of a perceptual categorization of the contents of speech. 

Experiments with perception of speech have suggested that the speech signal can be 

broken down into a finite number of discrete message elements [5]. It has been found that 

human beings are very sensitive to differences in the frequency or intensity of the different 

sounds provided to them. However, a listener has been found to have difficulties in 

identifying a single tone in isolation. Hence we can conclude that human beings exhibit 
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different information capacity for differential and absolute discrimination. Experiments 

with speech perception [5] indicate certain cues to identify certain features of speech such 

as consonant voicing, vowel identity, etc. Some of these cues are the voice onset time, 

formant transitions and single equivalent formants. The ability of a listener to identify a 

sound is affected by the time he or she is allowed to "learn" the sound and other linguistic 

constraints. The linguistic constraints help in reducing the set of sounds, from which the 

choice has to be made, for recognition. Although the human perception system has not 

been understood and modeled completely, one view of modeling considers the problem to 

be exactly the same as that of developing an automatic speech recognition system. A block 

diagram of a model based on the above view is shown in Figure 3 [Courtesy J. L. 

Flanagan]. 
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Figure 3. Model of Speech Perception 

Each block of this model attempts to extract some relevant information from the 

speech, thereby reducing the dimensionality of the signal. 
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Having looked at the four philosophies of speech recognition, we now briefly describe 

the elements of a typical speech recognition system. 

2.2 Elements of a Speech Recognition System 

Speech recognition is performed as a consequence of extracting information from a 

speech signal. In a typical speech recognition system, there are various stages of extraction 

of information before a decision about the recognized speech is made. Figure 4 shows the 

basic block diagram of a typical speech recognition system. 

  

    
  

  

          
      

Pattern 

Speech Feature Matching Structural Recognized 
Input Pre-processor Extractor and Unit Composer Message 

Identifier         
Figure 4. A typical Speech Recognition System 

2.2.1. Pre-processor 

The pre-processor consists of a waveform modifier that converts the analog speech 

input into a discrete-time or digital waveform. The pre-processor might clip the high 

amplitude portions of the signal, distort the duration of the signal (for example, to remove 

unwanted silence portions), or perform signal processing, such as filtering or de-emphasis 

of noise. Although the main function of the pre-processor is to make the signal suitable for 

the next block, we can also view it as a stage of redundancy removal. 
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2.2.2 Feature Extraction 

This block extracts certain specific aspects of the speech wave that facilitate 

recognition. This extraction might result in a parametric representation of the speech 

wave. The parameters that are popular in speech recognition systems are the energies in 

frequency bands, the linear prediction coefficients (LPC), the cepstral coefficients, etc. To 

obtain some of these features, the feature extractor splits the speech segment into various 

frames by windowing. The features may also include information such as the fundamental 

frequency of the voice, or the number of zero crossings, or the voicing characteristic of 

the frame of speech. The feature extraction block also achieves data compression, 

resulting in reduced memory requirements. The feature extractor is sometimes called the 

parameter extractor. 

2.2.3. Pattern Matching and Unit Identification 

The pattern matching block attempts to identify certain linguistic units present in the 

speech to be recognized. Typically, the pattern matching block has some models of the 

speech units it is designed to identify. These speech units could be single words or smaller 

units like phonemes or syllables. These models could be simple templates of features of the 

speech units in the vocabulary or stochastic models such as the Hidden Markov Models 

(HMM). These models present in the pattern matching block are constructed as a result of 

a "training" procedure so that they represent the various patterns associated with the 

vocabulary in context. When the features are presented, the pattern matching system 

determines the extent to which each of the models represents the features. For example, in 
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the case of template matching, the test features are compared with the stored reference 

features using techniques like DTW. If HMM is used, the likelihood of generating the 

given features, by each of the models, is computed. The unit identifier chooses the model 

that produces the best match. Before making a decision about the recognized output, the 

unit identifier could use some linguistic constraints or analyze for some of the perceptual 

aspects of speech. 

2.2.4. Structural Composer 

Finally, the structural composer assembles the identified speech units into larger units 

that correspond to a complete message. The structural composer combines the smaller 

speech units with the help of a set of rules. These rules could be a set of syntactic, 

semantic, and/or pragmatic constraints. A structural composer could either combine words 

to form phrases and sentences, or work with words as the subunits. Finally, the message in 

the speech waveform is output. 

We have provided a brief overview of the various approaches to speech recognition 

and the basic building blocks of a speech recognition system. Next we describe in detail 

the various elements of the connected-digit recognition system developed in this thesis 

towards the specific application of hands-free dialing of a telephone. We also present the 

procedures, and other design issues, involved in the training and recognition parts of the 

system. The following chapter provides a description of the feature extraction system. In 

many speech recognition systems, the pre-processor is also assumed to be a part of the 
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feature extractor. We make this assumption and discuss the details regarding pre- 

processing and feature extraction in the following chapter. 
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3. Feature Extraction 

This chapter describes the feature extraction used in the speech recognition system 

developed in this thesis. As mentioned in the previous chapter, the feature extractor 

extracts certain specific aspects of the speech wave that represent information in the 

speech wave. Prior to feature extraction, the analog speech signal is converted to a digital 

waveform. The sampling frequency used is 11025 Hz. This sampling frequency is 

sufficient (greater than the Nyquist frequency) for the bandwidth of speech signals. The 

features extracted are the cepstral coefficients and the delta cepstral (the time derivative of 

the sequence of cepstral coefficients) coefficients. The reasons for choosing the cepstral 

and delta cepstral coefficients are discussed in Section 3.2. Figure 5 shows the block 

diagram of the feature extractor. 
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The basic steps involved in feature extraction are endpoint detection and feature 

analysis. We now go into more detail for each of these steps. 
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3.1 Endpoint Detection 

The endpoint detection unit detects the boundaries of the spoken word. It is 

important to detect the boundary of the spoken word so that we can cut the unwanted 

portions out of the speech signal we have recorded. This removes the redundancies (such 

as silence portions or background noise) so that they do not affect the recognition 

performance of the entire system. Another advantage of endpoint detection is that it 

reduces the amount of subsequent processing. A simple algorithm is used to achieve end- 

point detection [6]. The algorithm is based on two measures: short-time energy and zero- 

crossing rate. The recorded string of digits is first split into m frames of 10 msec each. We 

then compute the energy in each frame by 

n 2 

E(m) = > [Sn(K)] , 1sms<N (3.1) 
k=l 

where 7 is the number of samples in a frame and N is the number of frames. We keep track 

of the frame where the energy exceeds a particular threshold (four times the minimum 

frame energy for this word [6]) and the frame where it falls below the same threshold and 

remains below it for more than 150 ms [6]. For the words we consider, a gap of more than 

150 ms does not occur within the word and hence 150 ms is a reasonably good estimate of 

the duration of the silent portions at the end of the word. For each frame, we also 

compute the number of zero-crossings of the speech signal. As with the frame energies, 
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we obtain an estimate of the boundaries of the word from the number of zero-crossings. 

At this point we have two starting points and two final points. As an estimate of the 

endpoints of the words, we choose the starting point and the final point which yield the 

shortest duration for the word. The use of both criteria (frame energy and number of zero- 

crossings) improves the accuracy of detection [6]. Figure 6 shows the waveforms before 

and after the endpoint detection for the word "two" using both of the criteria mentioned 

above. 
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Figure 6. Plot of the word "TWO" before and after end-point detection. 
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3.2 Feature Analysis 

This is the next step of extracting the relevant (for understanding) information in the 

speech waveform. As discussed in the previous chapter, one of the approaches to speech 

recognition is based on modeling the speech waveform from the speech production point 

of view. The all-pole model or the autoregressive (AR) model can be shown to be an 

appropriate model for speech recognition purposes [3]. The AR modeling of speech 

results in a set of parameters representing the magnitude spectral dynamics in the speech 

waveform. Figure 7 shows the block diagram of the feature analysis unit. 
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Figure 7. Feature Analysis Unit 

First, we perform preemphasis of the speech by passing it through a high pass filter of 

the form l-az", where a = 0.95. Most of the information in speech, for recognition 

purposes, lies in the vocal tract characteristics. Since the speech signal contains the glottal 

pulse characteristics too, we require preemphasis to cancel one of the poles of the glottal 

pulse so that AR modeling of the speech can model the vocal tract characteristics better. 

Another way to look at preemphasis is that it emphasizes the higher frequency portions of 
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the speech spectrum so that the higher frequency formants become more significant than 

before. 

Parameterization of signals frequently calls for the signal to be stationary. However, 

speech is a non-stationary signal. Hence, before we parameterize, we split the speech 

signal into frames wherein the speech is considered to be quasi-stationary. We use 

windowing to split the speech into frames. Associated with windowing, we come across 

two issues: the length of the window and the type of window [3]. A longer window tends 

to produce a better spectral picture of the signal while inside the stationary region, 

whereas a shorter window provides better resolution in time. However, improvements in 

spectral and time resolution are in conflict with each other. Past research suggests that a 

window length of 45 msec is appropriate for speech signals [24]. For a given window 

length, we again have two competing factors in the choice of the window. We need to 

avoid any distortion in the selected points. Also, a window with abrupt transitions at the 

boundary has significantly high sidelobes in its spectrum and, when convolved with the 

signal in the frequency domain, brings a lot of undesirable spectral energy into the 

resulting spectrum. Hence, we need to choose a window that has smoother discontinuities 

at the boundaries. As found appropriate by past research [7], we use a Hamming window 

with 66% overlap. 

After windowing, we obtain the tenth order AR model for the speech frames by using 

the Levinson-Durbin Algorithm for Linear Predictive Coding (LPC) of speech [8]. It has 

been found that the model order of ten is appropriate for speech [3]. The LPC analysis 
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obtains the AR model of speech in the process of determining a filter that predicts a future 

sample of speech from its past samples. In this process of prediction, it achieves data 

compression or removal of redundancies or extraction of the relevant information. 

3.2.1 Cepstral Features 

The set of cepstral features or coefficients is the complex cepstrum of the LP model 

of speech. It has been found that the use of a cepstral technique instead of the LPC 

coefficients improved speech recognition performance [9, 10]. This is because the cepstral 

coefficients derived from the LPC coefficients can be manipulated (for example, weighted) 

so that the feature vector is less affected by the glottal dynamics than the LPC coefficients 

[3]. Another motivation for using the cepstral parameters is that we can use the Euclidean 

metric between two cepstral parameter sets as a reasonably good measure of the spectral 

similarity of the corresponding models [3]. 

We use the following recursions [10] to compute the cepstral coefficients c(/) from 

the LPC coefficients a(z). 

c(1) = -a(1), (3.2) 

c(i) = -a(i) - x (1 _ "lackyet —k),1<i<p (3.3) 
k=1~ =! 
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The variable p is the order of the AR model. The number of cepstral coefficients has to be 

greater than the number of LPC coefficients. We have obtained 12 cepstral coefficients. 

The cepstral coefficients are then weighted by a function given by, 

OQ .{™ 
w,(m) = 1+ "> sin 0. , l<m<sQ (3.4) 

where Q is equal to the number of cepstral coefficients used in (3.3). It has been found 

that weighting reduces the effect of the glottal pulse characteristics on speech modeling 

and thus improves the performance of speech recognition [25]. 

3.2.2. Delta Cepstral Features 

In order to include information about the spectral changes that have occurred since 

the previous frame, we compute another set of features called the delta cepstral features. 

The delta cepstral coefficients are the derivative of the cepstral coefficients. We compute 

the delta cepstral coefficients by considering a window of several frames and calculating 

the difference in the cepstral coefficients from one frame to another within the window. 

The delta cepstral coefficients are computed using 

L 

Ac,(m) = >, key_;,(m) G, l<m<Q (3.5) 

k=-L 
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where (2£+1) is the length of the window. We have chosen L=2. G is a gain chosen such 

that the variances of the delta cepstral coefficients and the cepstral coefficients are 

approximately equal. We include the gain to ensure that one set of parameters does not 

dominate over the other when using the Euclidean metric on the final feature vector 

formed by appending the set of delta cepstral coefficients to the set of cepstral 

coefficients. This feature vector is such that it has fewer redundancies than the speech 

waveform we started with. 

We next present the Hidden Markov Model (HMM) and other issues, such as the 

training and the recognition algorithm used. We have used the HMM as the model for 

each word for the purposes of pattern matching and unit identification. 
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4, The Hidden Markov Model 

As mentioned earlier, one of the elements of a speech recognition system is the 

pattern matching block which identifies the presence of certain linguistic units present in 

the speech. Fundamental to speech pattern matching is representing the patterns in speech 

as models. Knowledge of the structure of speech together with many reference tokens 

(multiple utterances of the same speech) of the speech are used to obtain appropriate 

models. We can then compare unknown patterns of speech against these models to 

determine how well the available models match them. The models have to be generated 

from the reference data such that they accommodate the inherent variability of speech and 

are able to recognize speech patterns that have not been observed previously. The 

simplest model is a set of templates formed by storing the parameterized form (cepstral 

coefficients) of an utterance of each word in the vocabulary. One or more templates can 

be used to model each word in the vocabulary. Unknown utterances can be matched 

against these templates through techniques such as dynamic time warping (DTW) [11]. 

DTW is a good scheme to compare tokens (utterances of the same speech) of different 

durations. However, DTW uses the speech data in a deterministic way. Although it has 

been used in many practical systems, DTW requires a large number of templates to 

account for the large variability associated with speech. This increases the computational 

cost of searching to inconvenient proportions. If templates of subword units are used, the 

number of templates used can be decreased. However, in the presence of coarticulatory 
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effects, as encountered in connected-speech recognition, standardization of the subword 

units becomes difficult. Intuitively, a stochastic model can accommodate acoustic 

variability in a better way than simple template based approaches. Research in stochastic 

modeling of speech patterns has proceeded in two directions: the Hidden Markov Models 

and the Artificial Neural Networks (ANN). Hidden Markov Models were first studied by 

statisticians and were applied to characterize stochastic processes for which incomplete 

observations were available. In the mid 70s, researchers looked into applying the HMM to 

model speech for recognition purposes [12, 13]. Although the HMM was adapted to the 

speech recognition problem rather slowly (3 decades), it has had a great impact on the 

speech recognition schemes that have been incorporated into practical systems. In 

contrast, the application of ANN techniques has had lesser impact on speech recognition 

because research in this direction is very young. The fundamental aim of ANN techniques 

is to explore computing architectures that resemble the massively parallel computing found 

in biological neural systems. The following section introduces the HMM and provides the 

various notations used in this thesis. 

4.1. Introduction 

As mentioned above the HMM is applied to characterize random processes for which 

incomplete observations are available. The HMM is a means to model the problem as an 

observable stochastic process produced as a result of an underlying unobservable (hidden) 

stochastic process. In this sense, the HMM is a doubly embedded stochastic process. The 
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HMM is used to model speech utterances as a stochastic finite state automaton which 

generates the speech utterances as a result of generating a "hidden" state sequence which 

can be observed through an observation sequence. Typically, in small vocabulary systems 

the HMM models a whole word and in large vocabulary systems, the HMM models a 

subword unit. Since the connected digit recognition system developed in this thesis is a 

small vocabulary system, we have used the HMMs to model whole words. 

We recall that HMM is used in the pattern matching unit and the speech utterance at 

this point is a string of feature vectors (in our case, the feature vector is formed by the 

cepstral features concatenated with the delta cepstral features). In this chapter, we will 

treat the string of feature vectors as an observation sequence. We denote an observation 

sequence as follows: 

yi), y(2), vB), . , W(t), ..... , X(T). 

where y(.) is a feature vector, ¢ is the frame index, and 7 is the total number of 

observations in the sequence. 

An HMM is always associated with an observation sequence which it is more likely to 

generate than any other HMM. The likelihood that a given HMM generates a given 

observation sequence is a quantitative measure of how well the observation sequence 

"matches" the HMM. In the pattern matching block of the speech recognition system, we 

have the HMMs representing each word in the vocabulary. Given a word (or a string of 

feature vectors) to recognize, we compute the likelihood that each of the HMMs available 

would have generated the string. We find the recognized word as the one whose HMM 
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produces the maximum likelihood. Usually, the highest likelihood is significantly (>107) 

larger than the next highest likelihood. Since the highest likelihood “stands out” 

prominently, we can expect the correct model to yield the highest likelihood, even if the 

speech to be recognized were a little noisy. The HMM corresponding to each word in the 

vocabulary is formed by a process of "training," by which many utterances of a word are 

used to obtain the statistical makeup of the observations associated with that word. 

Figure 8. A typical 3-state HMM 

Figure 8 shows an example of a 3-state HMM. The numbers indicate the states and 

the arrow heads indicate the allowable state transitions. We can imagine an HMM to be a 

finite state machine that generates the observation sequence by producing an observation 

from each state and then transiting from one state to the next until the final observation in 

the sequence is generated. These state transitions occur according to state transition 

probabilities. We denote the probability of making the transition from state j to state 7 by 

aj;. For an S-state HMM we have the state transition matrix as 
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a1 a2 . . . a S-1 as 

    | as 4 a5 2 . . as S-1 as 8 | 

We assume the state transition probabilities to be stationary in time, i.e., aj; is not a 

function of time. We also assume that a transition must take place at any time. Therefore, 

any column of A should sum to unity. 

As mentioned above, the state sequence is the hidden random process and we denote 

it by x with random variables x(f). Therefore, for an arbitrary 4, we have 

a; ; = P(x(2) = i|x(¢ - 1) = j) (4.1) 

We make the simplifying assumption that the state transition at time t is independent of the 

history of the state sequence prior to time t-1. Such a random sequence is called a first- 

order Markov process. The random variables x(t) assume only integer values and hence 

the state sequence x is called a Markov chain. 

We define the state probability vector at time t to be 
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| (x(t) =1) | 
P{x(*) = 2) 

    
n(t) = (4.2) 

P (x(7 )= ). 

Therefore, 

n(t) = An(t —1) = A*'x(1) (4.3) 

The second stochastic process in the HMM is the observation sequence, which we 

denote by y with random variables y(t). An observation is generated at a particular time 

t, after entering a state i, according to the observation probability density function 

Sy pixce)(Elé) . y() and € are D-dimensional feature vectors, where D is the dimension of 

the feature vectors. To simplify, we assume that the random process y has independent 

and identically distributed random variables. This implies that Fyre(El) is independent of 

time. With this, we have defined the parameters that completely define a HMM. We define 

a HMM as 

m={S,n(1),A,{ fe(Elisi ssl} (4.4) 
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We can realize two issues regarding the use of HMM for speech recognition. Firstly, 

we have to obtain the parameters of the HMM from a series of training observations. This 

is the problem of training the HMM to model a given word. Secondly, we have to 

compute the likelihood that a particular HMM produced the given speech observation 

sequence. This is the problem of recognition. 

4.2 Discrete and Continuous Hidden Markov Models 

Depending upon the form of the observation pdf's, we have two types of HMMs that 

can be used for speech recognition: discrete (observation) HMM and continuous 

(observation) HMM. The discrete observation HMM uses a discrete pdf for the 

observation pdf. This means that only a finite set of observations is allowed. After the 

feature extraction stage, the feature vectors have to be vector quantized to one of the 

permissible set of (say K) observation vectors. Since only K vectors are allowed, it is 

possible to assign to every observation vector a scalar and, consequently, the random 

process y becomes a scalar random variable with scalar random variables y(t) which can 

take only integer values in [1, K]. The observation pdf, being a discrete pdf, is completely 

specified by the set of weights on the impulses forming the pdf or, in other words, the 

probabilities of the K possible observations. The observation probability is given by 

b(kli) = P(y(4) = klx(4) =?) (4.5) 
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The codebook, { yylsks K} is a characteristic of a discrete HMM and consequently we 

can define an observation probability matrix, 

bil) B(j2) . eS -1) BAIS) 

B= | b(k\i) | (4.6) 

b(K|l) b(K(2) . . , B(K |S — 1) b(K|S) 

The mathematical specification of a discrete HMM takes the form 

m = {S,n(1), A,B, {y,,1<k < K}} | (4.7) 

The continuous HMM represents the more general case in which the observations are 

continuous-valued feature vectors. The observation pdf is a multivariate continuous 

function. Although the observation pdf can be any continuous function (that can be a pdf), 

certain simplifying assumptions are usually made for the nature of these functions. For 

speech recognition purposes, it has been found that a finite mixture of (say M) Gaussian 

pdf's is a reasonably good approximation for the continuous observation pdf [14]. The 

continuous observation HMM takes the form, 
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m= {s, n(1), A, { Fyx(Eli),1 <i < s} (4.8) 

The following section provides details of the continuous HMM used in this thesis with 

respect to issues such as training and recognition. 

4.3 The Continuous Hidden Markov Model 

In this thesis, the continuous HMM is used with the observation pdf approximated by 

a mixture (sum) of M multivariate Gaussian functions. The observation pdf is of the form 

Fye(Elé) = Ye mE ims Cim (4.9) 

where Cim iS the coefficient for the mth component of the mixture for state 7, N(.) is a 

multivariate Gaussian pdf with mean sj», and covariance matrix Cj, The mixture 

coefficients are non-negative and satisfy the constraint 

Sm = 1, 1<i<S (4.10) 

For simplicity of notation we define a likelihood function 
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b(Eli) = Fy (El) (4.11) 

Having provided the necessary introduction to HMM, we now present the details 

regarding the training of the HMM and recognition using the HMM. Of these two 

problems, the recognition problem is easier and the concepts therein serve as a convenient 

background to understanding the training problem. Hence, we deal with the recognition 

problem first. 

4.3.1. Recognition 

Given an observation sequence, the recognition problem deals with computing the 

likelihood that the models available (as a result of training) produce that observation 

sequence. We define some notation that will help in understanding and establishing the 

concepts of recognition. 

We denote a partial sequence of observations in time as 

Ve = {y(4),9(4 + 1), v(t, + 2),.... ¥(t)} (4.12) 

The particular sequence of observations 

¥{ = {y(1),9(2),.... 91D} (4.13) 

is called the forward partial sequence of observations at time t and 
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yee {y(¢ +1), y(t + 2),..-,(T)} (4.14) 

is called the backward partial sequence of observations at time t. The complete sequence 

of observations is 

yt ={y(1),9(2),--.9(Z)} (4.15) 

and, for the sake of simplicity of notation, we define 

y=yp (4.16) 

We proceed to discuss the computation of the likelihood that a given model produces a 

given observation sequence. 

4.3.1.1 Forward-Backward Method 

The Forward-Backward (F-B) method to compute the likelihood is also called the 

"any path" method because it computes the likelihood that the observations could have 

been produced using any state sequence through the given model. Let us consider a 

particular state sequence of length T to be J = {i, bh, . . ., ir}. The likelihood of the 

observation sequence being produced from this state sequence is 
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L(y|3,M) = b(y(1)\A,).5(9(2)Ii2)..---2(v(D iz) (4.17) 

Since we use the functional values of the pdf, the left hand side of (4.17) is a likelihood. 

The likelihood of the state sequence is 

£(3|M) = n(i Jain, i la(i;,2y).....a(i7,ip_)) (4.18) 

Therefore, 

L(y, 3M) = b(y(Dli, )O((2)lé)....-(v(Dlir) 
oe yn , (4.19) 

xX (i )a(is, i, a(iz,1,).....a(iz,i7_)) 

The sum of the above likelihood over all possible sequences provides the likelihood of the 

given model producing the observation sequence through any state sequence as 

£(y|m) = >> 2(y,3|M) (4.20) 
all 3 

Equation (4.20) gives a "brute force" method to compute (y|M). It has been found 

that this approach requires a prohibitively high amount of computation [3]. The forward- 

backward algorithm developed by Baum computes the above likelihood in an efficient 

recursive manner. The forward-backward algorithm uses a "forward-going" and a 

"backward-going" likelihood. We define these likelihoods as 
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o( y{.i) = 2(yt = vf.x() = am) | (4.21) 

B(vfvilé) = 2(¥7,, = yalx(s) = i,m) (4.22) 

respectively. In equations (4.21) and (4.22), y? denotes a partial sequence of random 

variables. Since the observation sequence could have reached state i at time ¢ from any of 

the S possible states at time ¢-/, we have 

S 

a(yt.i)= a(y{, jay, (x!) (4.23) 
J=1 

Clearly, (4.23) provides a recursive algorithm for computing the a's with the algorithm 

initiated by 

a(x. i) = n()B(y(1)LJ) i<j<S (4.24) 

Similarly, the backward recursion can be defined as 

B(yzal) = 5 8(yZal/}a,,0(9( +1)/) (4.25) 
j=l 
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with the recursion initiated by the fictitious partial sequence Vous used in 

1, ifiisalegal final state T |: 
= 4.26 

B(yrsa) i. otherwise ( ) 

where a legal final state is one at which a path through the model may end. 

With the definitions of a and B we have, for a particular state i, 

Ay, x(t) =11m) = of yf 7)B( v7) (4.27) 

Therefore, 

- T (ym) = Yo »f,7)B( yal) (4.28) 
i=] 

The likelihood in (4.28) can be computed at any time slot, ¢. If we operate at the final 

time, t = 7, we obtain 

¢(y|m) = Ya(y? JA)B(y7 sil) (4.29) 
i=l 
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Using (4.26) in (4.29) we obtain 

Aym= Y — alyzi) (4.30) 
alllegal finali 

It can be shown that the forward-backward algorithm considerably reduces the 

number of computations to obtain the desired likelihood as compared to the brute force 

method of (4.20) [3]. The following section describes the Viterbi approach to estimating 

the likelihood that a particular model generated a given observation sequence. 

4.3.1.2 Viterbi Method 

Unlike the "any path" method described above, the Viterbi approach to recognition is 

based on computing the likelihood that a particular HMM generated the given observation 

sequence through the best possible state sequence. The best state sequence is the one of 

all possible state sequences that produces the maximum likelihood. Hence the Viterbi 

approach seeks £(y,J |12) such that, 

3” = argmax £(y, 5M) (4.31) 
J 
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where J is any possible state sequence. Although this method involves the added 

complexity of determining the best state sequence, it reduces the number of computations 

required to estimate the desired likelihood. 

The problem of determining the best possible state sequence can be solved efficiently 

within the framework of dynamic programming (DP). Towards this end, consider a grid as 

shown in Figure 9, where the observations (from a sequence of observations) are laid out 

on the abscissa, and the states along the ordinate. Each point in the grid indexed by the 

time, state index pair (¢, i). The best possible state sequence is determined as a 

consequence of grid searches for the path that results in an optimal objective cost function 

subject to some constraints. 

The observations and the states are laid out along the abscissa and the ordinate 

respectively. The constraints are 

1. Every path must advance in time by one, and only one, step for each path 

segment. 

2. The final grid points on any path must be of the form (T,ig) where ig is a legal final 

state in the model. 

We can assign two kinds of costs as we traverse along any path in the grid. They are 

1. Type N cost to any node: dy(t,i)= b(y(t)\i) (4.32) 

2. Type T cost to any transition: dr|(t,i\(¢ ~1, j)| za; ;t>l (4.33) 
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Figure 9. Grid for the HMM viewed within DP framework 

The accumulated cost associated with any transition from (f-/,/) to (47) is 

d|(ti(t —1, jl = dr|(t,\(¢ - 1 Ajay 3) 41>] (4.34) 
=a; > y(t)i) 

| 

For simplicity of notation we assume that all the paths originate from a fictitious costless 

node (0,0). All paths make a transition from (0,0) with a transition cost m(7) and arrive at 

(1,/). Therefore for ¢ = 1, the accumulated cost is 
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a (1,)\(0,0)] = dy[(1,4)\(0,0)]ay/(1,) 

= x(i)0(¥(")) 
(4.35) 

Given an observation sequence between ¢ = 1 and ¢ = 7 and a particular HMM, the 

joint likelihood of the observation sequence and a particular state sequence J, of the same 

length, is the product of the accumulated costs of all the nodes in the path. The total cost 

of a path is of the form 

T 

D=JJal(t.i Me -L4-)] 
t=] 

T 

= [Ta 5, Ari) (4.36) 
t=1 

= L(y, 3|m) 

where 

Qj, 5, = %,,0 = Mi) (4.37) 

The best state sequence J’ is the one that produces the maximum cost D’. 

The cost of the paths in (4.34)-(4.36) takes the form of a product of likelihoods, 

which in many instances becomes a very small number, which can lead to numerical 

problems. By using negative logarithms, we can convert these products to a process of 
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summation. In addition to reducing the numerical problems, a summation is 

computationally less expensive than a multiplication. Taking the negative logarithm 

converts (4.34)-(4.36) respectively to 

d{(d(t-1,7)] =4r[(c(t-1L. A] + ay (t1) 
4.38 

= [-log(a; ,)] + [-log((»(t)\/))] C88) 

a[(1,7(0,0)| = 4r[(1,1)1(0,0)] + ay(1) faq (4.39) 

=[-log(x(i))]+[-log((y(A)] | 

D=S [Gi i(t- Li.) (4.40) 
t=] 

We note that by taking the negative logarithm the cost function becomes a negative 

likelihood and the objective of the DP converts to finding the path that produces the 

lowest cost function. We now describe the use of DP to determine the path resulting in the 

lowest objective cost function (negative likelihood). 

Let 

Dmin(t,i,) = distance from (0,0) to (4,4) over the best path. (4.41) 
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Using Bellman's Optimality principle [3], we have 

Drin(ti)= , min {Pain - Lips) +4[(Ci)(t-Lia)]}s t> 1 (4.42) 
(t-1,i,., 

Equation (4.42) uses the fact that the only legal predecessor nodes to (¢,i,) are of the form 

(t-1,i;1). Moreover, all legal predecessors to (47,) come from the same time slot, (f-1). 

Therefore, (4.42) is essentially a minimization over only the previous states and hence 

Denin(tsi¢) = min{ Drrn( - Liga) +4[(4it- Lind}; > 1 (4.43) 

Using (4.38) in (4.43) 

Dyrin(tyi) = min Daunl 11-1) +]-loe(q, ,,,)] +[-loa(vi)} (4.44) 

with 

Dmin(0,0)=0 ; fort=1 (4.45) 

The search ends resulting in the quantity 
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D’ = min| Dain(7 it)} 
'r (4.46) 

= —log(z(y,2 |) 

where 

ip = argmin{ Dyin( 7 sip) (4.47) 
egal i, 

Equation (4.46) provides the negative logarithm of the joint likelihood of occurrence 

of the observation sequence and the best state sequence. The negative logarithm of the 

likelihood can be used for comparisons between various models just as well as the 

likelihood itself. As we will discuss later, in Section 4.3.2, describing training, it is 

sometimes required to obtain the state sequence that results in the least cost function. We 

can obtain this state sequence by backtracking from the best last state in the DP grid. Let 

w(+,i,) = the best last state on the optimal partial path ending at (¢,i,) 

= arin Daal —1,i,_,)+ |-los(a, i ) + [-loa( (oii) (4.48) 

apie a) 
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The best state sequence can be obtained by backtracking from v(Z , it) 

This method of determining the likelihood using DP is known as the Viterbi 

Algorithm, since it was first suggested by A. J. Viterbi. It can be shown that the Viterbi 

method is computationally less expensive than the forward-backward approach [15]. It 

should be noted that the best state sequence as obtained through the Viterbi method is 

only an estimate of the underlying state sequence because there is no way of accurately 

obtaining the hidden state sequence. 

Having provided the theory behind the recognition process, we now present the 

theory behind the training process before describing the implementation of these two 

processes. 

4.3.2. Training 

While the recognition problem dealt with computing the likelihood that a particular 

model produces a given observation sequence, there is the need to come up with a model 

which will represent its designated word. In other words, we have to obtain models that 

will have a greater likelihood of generating the modeled word than any other model. This 

is the process of training. To train an HMM for a particular word, we need many strings 

of feature vectors extracted from training utterances of the word. Let these training 

feature strings be of the form y = y/ = { y(]),..., 9(T )}. The problem of training deals with 

using these training utterances of a word to obtain the state transition matrix A, and the 
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observation pdfs in the HMM for that word. Although there is no analytical way to obtain 

the HMM parameters, an iterative procedure exists to estimate them. The forward- 

backward algorithm (also known as Baum-Welch Reestimation) developed by Baum et al, 

which we introduced in Section 4.3.1.1, can be extended to provide a method that 

iteratively converges to a model such that the likelihood 2(y|M) is locally maximized [16]. 

Similarly, an extension of the Viterbi approach to recognition also provides an efficient 

method for estimating the parameters of an HMM. In both methods, the training 

procedure starts from an arbitrary initial model and recursively uses the training utterances 

of a word to "reestimate" or update the model until the model converges to a local 

optimum of the likelihood that it produces the observation sequence. 

4.3.2.1. Baum-Welch Reestimation 

Without going into the details of its theoretical development, we now describe the 

Baum-Welch Reestimation algorithm [16]. Towards this end, we introduce some notation 

that is needed to understand the procedure. We begin by using a single observation 

sequence for the reestimation. Let u be a random process, with random variables u(t), 

that models the state transitions at time ¢ with 

uj; = label for transition from state 7 to state 7 (4.49) 

u,, = set of transitions entering state j (4.50) 

uy = set of transitions exiting state / (4.51) 
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Let y 5 1<j<8&, be a random process with random variables y (2) modeling the 

observations emitted from state j at time ¢. We start with an arbitrary model, 17. For a 

given training observation sequence, y= ye , we compute the following likelihoods: 

E(i, jt) = 2(u(t) = u,,| y,m) 

_ i(u(t) = Uy \y ,m) 4.52 Aylm) (4.52) 

a( yl ia, b(y(t + DL)B(ys2L/) 
2(y|m) 
  , t=,....,T-1 

other ¢ 

where a, @, and £ are defined in (4.1), (4.21), and (4.22) respectively and 5 is defined in 

(4.11) where the continuous-valued pdf takes the form in (4.9). 

VGH = Au(t) euyly, m) 

- 2st jt) (4.53) 

a yf,i) B(y/\) 

ay) 
3 prereg 
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vi; t, 2) = 4(x(#) = il, [y(4) produced due to mixture density i) 

  

(4.54) 

__ Ay )Blyiall) en(Estusy) 
Die A)B(ViilZ)  DoeimM(Es Hin>Cin) 

We derive the following from (4.52)-(4.54): 

T-1 
(i, 7:) = (ul) =uyly,M) = YEGI (4.55) 

t=1 

-1 
vi) = Au(>) Euyly, m) = Vy(ét) (4.56) 

Vi; 2) = 4(x() = i|m,[y© produced due to mixture density /]) 

(4.57) 
- > vn) 

With these definitions, the HMM parameters for the new model, ™ are reestimated as 

_ Expected number of transitions from state / to state 

Expected number of transitions from state i 

E(i, js) 
v(G,) 

  

Ji 

(4.58) 

Chapter 4 51



( Expected number of times the path is in) 
state 7 using /th mixture component 
  CG; = 

i!” Expected number of times the path is in state i 
(4.59) 

__ Wa!) eat 

Dim) 
m=] 

weighted time average of observation vectors 

_ __| weighted according to the likelihood of their 

Ba having been produced by mixture density / in 

state I. 

(4.60) 
T 

VEDIO 
_ t=1 

vis /) 

r T 
DME DVO - Bally - Ba] 

C, = (4.61)   

Vis.) 

Usually, a particular state is designated as the initial state for the model and consequently 

there is no need to estimate the initial state probabilities. It can be shown that the new 

model ™ is such that £(y|%)2>2(y|M)[17]. The reestimated models can be used 

iteratively in equations (4.58)-(4.61) until a local maximum is reached. Since 2(y|M) is a 

highly nonlinear function of many parameters, it may have many local maxima. 
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Consequently, for the training procedure to result in a good model, it is necessary to 

perform the iterations from different initial conditions and choose the model that 

corresponds to the largest of all the local maxima for £( y|™). 

We recall that, in the above reestimation procedure, we have used only one training 

observation sequence. However, it is insufficient to model just one observation sequence. 

It is essential to train a HMM with many utterances of the same word so that the statistical 

variations present across utterances are more completely modeled. We denote each of the 

I 
multiple (say, Z) observation sequences as y) = | yf ) where the superscript / indicates 

the /th observation sequence. We recall that in (4.58)-(4.61) the numerators and 

denominators represent an average number of certain events. Hence, it is appropriate to 

extend (4.58)-(4.61) to the multiple observation case by summing the events over all 

observations. The reestimation formulas for the multiple observation case then are 

E t 

YeOGs) 
l=1 

L 

YG.) 
{=1 

aa (4.62) 

L 
» W(i:.,n) 

Cn = = ———_ (4.63) 

Pe) 
[= Lm=1 
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LT 

LEwWE.IMO 
py = Le! . (4.64) L 

yw) 
l=1 

  

L To TY 

ew (iy (1) - wy [> (t)- Ha 
C, = =e! 7 

WED 
[=] 

  (4.65) 

A basic problem associated with the forward-backward algorithm, as we have seen 

with recognition and training, is that the intermediate variables (a, B, &, y and v) involve a 

large number of multiplications of numbers less than unity. This could lead to underflow 

problems during computation. One way to circumvent this numerical problem is by scaling 

the forward and backward variables (a and 8). The scaling is done so that the HMM 

parameter values are not affected throughout the reestimation procedure. We multiply 

ar( yi i) and B(yia ) by a scaling factor 

c(t) = — (4.66) 

ol) 

so that 
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a(y{./) = al yf ‘) x e(t) | (4.67) 

B( vial) = Bl yest) x (2) (4.68) 

where B and & are the scaled versions of 6B and a respectively. It can be shown that the 

use of these scaled values in the reestimation does not affect the HMM parameter values 

as the scale factors cancel out in the reestimation formulas [3]. Another drawback with the 

Baum-Welch reestimation method is that the maximum-likelihood estimates of the means, 

yl, are very sensitive to the initial estimate [14]. In the following section, we describe the 

Viterbi reestimation procedure which is simpler than the Baum-Welch procedure yet 

equally efficient. 

4.3.2.2 Viterbi Reestimation 

The Viterbi reestimation is based on the Viterbi decoding approach to recognition. 

Since the need for using multiple observations was mentioned in the previous section, the 

following discussion of Viterbi reestimation uses multiple observations. As with the Baum- 

Welch reestimation, we start with an arbitrary initial model 1!) and Z training sequences 

l 
yp) = yf My <1< ZL corresponding to L utterances of a particular word. We segment 

each of these Z observation sequences into S states using the model 7, and Viterbi 
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decoding and backtracking as described in Section 4.3.1.2. As a result, we determine the 

following numbers: 

nu si) = number of transitions uj, (4.69) 

n(u,) = number of transitions exiting state i (4.70) 

From (4.69)-(4.70) estimates of the state transition probabilities are 

. i 4.71 i , (4.71) Al
 Tl 

Also, for each of the S states, we have a set of observations (from the L training 

sequences) that occur within the state. Alternatively, at this point we have the histogram 

of the observations that occur within each state from which we can obtain estimates of the 

parameters in the observation pdf of the state. To this end we use a segmental k-means 

procedure to cluster the observation vectors, occurring within a single state, into M@ 

clusters. As a result, we obtain / clusters for each of the S states [18, 19]. Estimates of 

the observation pdf parameters from these clusters are 

a, = number of vectors in cluster & of the jth state 

ik “number of vectors observed in the /th state 
  (4.72) 
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Hj, = sample mean of the vectors in cluster k of jth state (4.73) 

Cr = sample covariance matrix of the vectors in cluster & of jth state (4.74) 

Instead of using the sample means and covariance matrices, it is possible to use other 

methods of statistical data analysis to provide estimates for the means and covariance 

matrices of the HMM [20]. The resulting model is then compared with the previous 

model ™ in terms of a distance measure that reflects the statistical similarity of the 

HMMs. One such distance measure is [21] 

D'(m,M) = [log £(y|m) - log 2(17)| (4.75) 

my
] 

— 

where jis a length 7 observation sequence generated by %. It should be noted that D' 

doesnt conform to the requirements of a metric, since it is an asymmetric distance measure 

in the sense that 

D'(m,M) # D'(Hi,M) (4.76) 

To obtain a distance which is symmetric with respect to the models, we use 
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D'(i,m) + D'(m,M) 
2 
  D(m,M) = (4.77) 

If the model distance at the end of an iteration is greater than a threshold, then we replace 

the old model ™ with the new model 7 and repeat the process of reestimation until the 

distance falls below the threshold, at which point model convergence is assumed. The 

Viterbi reestimation using the segmental k-means method is faster than the Baum-Welch 

reestimation method. Although it is possible to use Viterbi reestimation to provide a 

"good" initial model for the Baum-Welch reestimation, it has been found that the HMMs 

resulting from both reestimation methods mentioned here yield almost the same 

likelihoods [2]. In this sense, we can circumvent the drawbacks of the Baum-Welch 

method by the exclusive use of the Viterbi reestimation method. 

Having discussed the theory behind training and recognition using HMMs, in the next 

section we present the implementation of the training and recognition algorithms for the 

HMMs used in our recognition system. 

_ 4.4 Implementation 

The implementation of the training and recognition procedures, described in the 

previous sections, and as applied to our recognition system, deals with various issues. 

These include assumptions regarding the structure of the HMM, the initial guesses for the 

models, and appropriate stopping conditions for checking convergence of the models. 
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4.4.1 Structure of the HMM 

The structure of the HMM includes the pattern of allowable state transitions, the 

number of states, and the number of mixture densities used in the HMM. An ergodic 

model as introduced in Section 4.1 is one which allows unconstrained state transitions. 

Since the main motivation for using the HMM is to model the underlying acoustic 

phenomena, there is the need for the so called /eft-to-right model to represent the 

sequential ordering of events associated with speech utterances which vary in time from 

left to right [22]. For the case where there is a repetition of events in time, we can use 

more number of states and still use the left-to-right model. If the states are numbered 

sequentially from left to right, then the left-to-right model that we have used satisfies the 

constraints 

a, ,;=0, foralli<j, andfori>j+1 (4.78) 

In other words, we allow transitions from state j only to itself or to state j+1. We also 

make the following assumptions regarding the initial and final states: 

ag 5 =1 (4.79) 

1 fori=1 
‘\— 4.80 

n(i) ‘ forl<i<S ( ) 
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The assumption in (4.80) removes the need for estimating the initial state probabilities as 

parameters for the HMM. Apart from the propriety of the assumptions made here 

regarding the state transition probabilities, we have reduced the number of non-trivial 

entries in the state transition matrix, A. This provides a computational advantage. We have 

approximated the observation pdfs by Gaussian mixture densities, as in (4.9). 

When continuous (observation) HMMs are used to model whole words, it is typical 

to use one state per analysis frame [3]. We have obtained HMMs using various numbers 

of states. We have also investigated the use of different numbers of states for the different 

digits. The number of mixture densities in (4.9) has been constrained to be a power of two 

to simplify the clustering algorithm used in the segmental k-means method. Various 

numbers of mixture densities have been used to study the effect of the number of mixture 

densities on recognition performance. Chapter 6 deals with the results of comparison 

between models with different numbers of states and different numbers of mixture density 

components. 

4.4.2 Training 

After the decision regarding the structure and the size of the HMM to be used in the 

implementation, we need to obtain "good" models to represent the words in our 

vocabulary, which are the nine digits for now. As mentioned in Section 4.3.2, we use 

multiple recordings of each word to provide the multiple observation sequences for the 
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training of the HMMs. Although it is possible to use more than one HMM, we have used 

only one HMM to model each word [3]. The Viterbi reestimation procedure was used 

extensively in the training algorithm. Figure 10 shows the block diagram of the 

implementation of the training algorithm. Although the Viterbi reestimation procedure is 

found to work well with a wide range of initial guesses, we derive the initial model from 

the training data with the hope of obtaining a "good" initial guess [18]. For the initial 

guess of the observation pdf parameters corresponding to each word, we first assume that, 

for all the observation sequences of the word, the different states occur an almost equal 

number of times. We segment all the observation sequences into state sequences based on 

the above assumption. 
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Figure. 10 Block diagram of the training algorithm 
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As a result, we have a set of observations that occur within each state. As mentioned 

in Section 4.3.2.2, we use the segmental k-means method to cluster the observations that 

occur within each state. From each cluster of vectors, we obtain a set of estimates 

(say, é, pand C) for the observation pdf parameters of the state using (4.72)-(4.74). We 

use these estimates as a seed for generating random initial guesses according to 

C=C (4.81) 

aS tri 
(4.82) 

C= La r€ (4.83) 

where r is random scalar variable, uniformly distributed between 0 and 1, used to generate 

the different initial guesses. 

For the initial estimate for the state transition probabilities, we have used random 

values satisfying the constraints in Section 4.4.1 and the constraint that the entries of the 

state transition matrix must add up to unity along every column. 

In order to obtain a solution as close as possible to the global optimum during the 

iterations, we start the reestimation from 25 different initial conditions. As a result we 

have, at the end of the iterations, 25 candidates (7; 1<ks<25) for the final estimate of the 

HMM for a particular word. As the best candidate, we choose the model that provides the 
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"best" average (over all training sequences) likelihood of producing the training sequences 

according to the following equation 

toe -(»0r,) 
m =argmin| 7 1<k<25 (4.84) 

My 

  

where Z is the total number of training observation sequences available for each word. 

To check for model convergence, we have used the distance measure given in (4.77). 

We found that the model distance does not decrease monotonically with each iteration. 

However, the distance goes below a particular value and remains below it for a significant 

number of successive iterations. We choose this value as the threshold for stopping the 

iterations. Since there is scope for model distances to increase after some iterations, it is 

crucial to fix a suitable threshold. We have chosen a model distance of 0.1, calculated 

according to (4.77), between the models of two successive iterations as the stopping 

condition, based on experimental evaluation of the performance of the various models. 

The final model 1" is then chosen to represent the word during recognition. 

4.4.3 Recognition 

At the end of the training process, we have a model for each word in the vocabulary. 

If we have a total of W words in the vocabulary, we end up with W HMMs at the end of 
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training. Figure 11 shows the block diagram of the implementation of the recognizer. To 

recognize an incoming word, we pass it through the endpoint detector and feature 

extraction blocks, as outlined in Sections 3.1 and 3.2. We determine the likelihood that 

each of the available models produced this incoming observation sequence. We then 

choose the model that yields the least negative log likelihood and the corresponding word 

as the recognized word. 
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Figure 11. Block diagram of the recognition algorithm 

With this, we come to the end of our discussion of the HMM and its use in 

recognizing the isolated words in the vocabulary. The next chapter deals with the tests 

conducted with the HMMs and the effects of various parameters on recognition 

performance. 
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5. Testing of the Recognition System 

Having discussed the various aspects of the speech recognition system developed in 

this thesis, such as feature extraction and HMM training and recognition, in this chapter 

we present the results of the tests conducted with the training and the recognition 

algorithms. While the tests conducted on the training process were used to provide 

insights into the nature of the convergence of the training algorithm, the results of 

recognition can be used to discuss the effects of the number of states and the number of 

mixture components on the performance of the overall recognition system. 

5.1 Results on Known Models 

Due to the lack of knowledge of the true HMMs for the digits, we used simplified, 

known models to initially test the training algorithm. These known models were used to 

generate observation sequences based on the following procedure [14]: 

i) The state index is initialized to 7 = 1 and the time index to t = 1. 

ii) The unit interval is partitioned proportional to Cj, 1<m<M. A random number, 

uniform on [0, 1], is generated and a mixture density component, 7 1s selected 

according to the subinterval in which the random number falls. 

iii) A D-dimensional normal deviate, y, of zero mean and covariance Cj, is generated. 

iv) The observation O, = y + py. 
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v) A unit interval is partitioned proportional to az, 1< & < S.A random number uniform 

on [0, 1] is generated and the next state, 7, is selected according to the subinterval in 

which the random number falls. | 

vi) The time index, ¢, is incremented to ¢+1. 

vii) Steps ii through vi are repeated until a maximum allowable ¢ is reached or the final 

state is generated for the maximum allowable number of times. 

For a test case, the following model parameters were assumed. 

S=3 M=2 D=1 

08 0 0 

A=|02 03 0 

0 07 1 

p,.=[1 19] p,.=[7 25] u,,=[13 31] 

The covariance matrix was taken to be a diagonal matrix containing the variances of the 

observation vector elements, and all the variances were taken to be equal to 2. 

0.7 03 

c=|05 O05 

0.2 08 

The above model was used to generate 100 observation sequences that were used as 

training data. This training data was then used as input to the training procedure. The 

training procedure was started from arbitrary initial models and we observed the distance 

between the models (according to (4.77)), out of two successive iterations for a number of 
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iterations. Figure 12 shows the plot of the model distances, computed according to (4.77), 

between successive iterations for 3 different starting models. 
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Figure 12. Model distances for successive iterations 

As we see from Figure 12, there is a tendency for the model distance curve to 

flatten after a certain number of iterations. After this point, the model distance remains 

more or less constant with subsequent iterations. Thus, it can be observed that for every 

initial model, after a certain number of iterations, the models converge in the sense that the 

subsequent models are statistically similar. 
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For the test case used in Figure 12, the model distance converges to a value of zero. 

However, we found that with real speech data, due to the larger dimensions of the 

problem, it takes a prohibitively long time for the iterations to reach a model distance of 

zero. Hence, we have attempted to arrive at a convenient threshold for assuming 

convergence and stopping the iterations. The plots in Figure 12 show a general tendency 

for the model distance to decrease with successive iterations. After a number of iterations 

with the simple, known models it was decided that, for speech data, a threshold of 0.1 for 

the model distances could be used as a reasonable stopping condition for assuming 

convergence. As we will see from the results discussed in the next section, this threshold is 

quite reasonable from a recognition performance point of view. 

The training with the 100 observation sequences (generated from the known HMMs), 

resulted in the following estimates for the various model parameters (5, M, and D were 

assumed to be the same as the true S, M, and D respectively): 

§ =3 M=2 D=l1 

077 0 O 

A=|023 034 0 

0 066 1 

~ 

fi, =[108 188] fi, =[69 25] p,=[126 31] 

07 03 
é=(049 051 

0.19 081 

C.=[16 18] C,=[23 18] C,=(21 23] 
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Since the observation sequences have been generated for testing purposes, we have 

knowledge of the true statistics of the generated data and consequently we have the true 

histograms of the observations produced in each state. Figures 13-15 show the true 

histogram and the histogram of the observations based on Viterbi decoding for the three 
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Observations truly in state 
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From the histograms in Figures 13-15, we see that the observations assigned to the 

states through Viterbi decoding are almost the same as those truly generated in the states. 

Hence, Viterbi decoding can be used for estimating the parameters of the observation pdf. 

Figures 16-18 show plots of the true pdf and the reestimated observation pdf (shown by 

the continuous curve) for the three states. 
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Figure 17. True (*) and Reestimated Observation PDFs for State 2 
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Figures 16-18 show that, for a model with "distinct" Gaussian mixture density 

components, the reestimation procedure results in a model that is very similar to the true 

model. However, similar tests conducted for a model with "overlapping" Gaussian mixture 

density components suggested that the reestimated model was farther away from the true 

model and a larger amount of training data was required to obtain a "good" reestimated 

model. Appendix A shows the result of the test with a model with "overlapping" Gaussian 

mixture density components. 

To test the recognition system, we generated 5 different models. Let these models be 

Mm, 1<i<S and let them correspond to 5 "dummy" words W,; 1<i<5S. We let each 

model generate 100 observation sequences. These 500 dummy words form the input to 

the recognition system and the results of the recognition are shown in Table 1. The input 

words are along the rows and the recognized word along the columns. Each entry in Table 

1 is the number of times the word, corresponding to the row containing the entry, is 

selected as the recognized word. 

Table 1. Recognition rates for the dummy words. 

  

  

  

  

  

  

  

Input words for recognition 

Output W, W, W; W, W; 

WwW, 100 | 0 0 0 0 

Ww? 0 | 100} 0 0 0 

W;3 0 0 | 100] 0 0 

W, 0 0 0 | 100 0 

Ws 0 0 0 0 100               
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We observe that, for the test case, the recognition system successfully recognizes all 

the "dummy" observation sequences. Thus, if the true models corresponding to the 

observation sequences are available, the recognition system is capable of successful 

recognition. 

Thus, the results of the tests on known models provide the proof of concept for the 

implementations of the training and the recognition algorithms. We now present the results 

of recognition with the words in the vocabulary, which are the digits 0 through 9, in our 

case. 

5.2 Results on Words 

Since the objective of this thesis is to develop a speaker dependent recognition 

system, we recorded two sets of 50 utterances of each digit, by a single speaker, on two 

different days. In order to include the variability of the recorded words, for each digit we 

formed the training set of 50 utterances using 25 recordings each from the two sets. Thus 

we have a training set of 50 utterances per digit and a testing set of 50 utterances per 

digit. The training sets were used to train the HMMs for the 10 digits in the vocabulary. 

The results of recognition on the words help us to evaluate the performance of the 

recognition system and to study the effects of the number of states and the number of 

mixture density components on recognition performance. 

As with the dummy words, the results of recognition on the training and the testing 

sets are presented in the form of tables, where the input words are along the columns and 
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the recognized words along the rows. Each entry in the table is the number of times the 

word, corresponding to the row containing the entry, is selected as the recognized word. 

We varied the number of states between 5, 6, and 7, and the number of mixture density 

components between 1, 2, and 4. We also attempted to use 8 mixture density components. 

However, the segmental k-means clustering that we use for Viterbi reestimation resulted in 

many clusters being empty. This indicates that using 8 mixture density components leads 

to over-parameterization. Moreover, since the Viterbi reestimation method obtains the 

statistics of each mixture density component from each of the clusters, empty clusters lead 

to numerical problems during reestimation. We first present the results of recognition for 

the models with 7 states (S = 7) and 4 mixture density components (M = 4). The results 

with the models with other values of S and M are provided in Appendix B. We use these 

results to discuss the effects of S and M on performance. As an alternative to using the 

same number of states and mixture density components in the models for all the words in 

the vocabulary, we have also used different values for S and M for different words. Since 

it is customary to use as many states as the average number of frames in a word, for the 

case with a different number of states for the different digits, for each word, we have 

chosen the number of states to be equal to the number of frames in the shortest training 

utterance of that word. The results of recognition, for models with different values for S 

and M for different words, are also provided in Appendix B. 

We have associated a figure of merit with each recognition table. The figure of merit 

is the sum of the elements of the diagonal in the tables. This figure of merit gives an idea 
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of the average percentage of correct recognition (figure of merit divided by 5) for all the 

words in the vocabulary. 

Table 2 shows the recognition rates for the training utterances for M = 4 and S = 7. 

The figure of merit for Table 2 is 500 and corresponds to an average recognition rate of 

100%. We can expect such a high recognition rate for the training data, as the models 

have been trained to "tune" to the training utterances. Table 3 shows the recognition rates 

for the testing utterances for M = 4 and S = 7. The figure of merit for Table 3 is 496 and 

corresponds to an average recognition rate of 99.2%. The recognition rate for the testing 

set can be expected to be less than that for the training set, as the representative models 

may not be tuned to some of the variability in the testing set. Hence, as expected, the 

trained models are a poorer representative of the testing set than of the training set. From 

Tables 2 and 3 and Appendix B, we see that it is possible to decrease the error rate 

associated with the recognition of any one word by changing the value of © and S. 

However, the overall recognition rate as indicated by the figure of merit, as we have 

chosen, depends on all the models being "good" and this figure of merit has to be 

observed, to arrive at a suitable value for S and M/ for the recognition system. 

To study the effects of S and M on recognition performance, we next generalize the 

results obtained using 5, 6, 7, and a varying number of states. Figure 19 shows the average 

error percentages across the digits for the training and the testing data sets. We observe 

the downward trend in the error percentages with varying a number of mixture density 

components for a particular number of states. 
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Table 2. Recognition rates for M = 4, S = 7 (training set). 

  

  

  

  

  

  

  

  

  

  

  

  

Input words for recognition 

Output | 0 1 2 3 4 5 6 7 8 9 
0 50 | 0 0 0 0 0 0 0 0 0 
1 0 | 50} 0 0 0 0 0 0 0 0 

2 0 0 | 50] 0 0 0 0 0 0 0 
3 0 0 0 |} 50 j 0 0 0 0 0 0 

4 0 0 0 0 | 50; 0 0 0 0 0 

5 0 0 0 0 0 | 50} 0 0 0 0 

6 0 0 0 0 0 0; 50 { 0 0 0 

7 0 0 0 0 0 0 0 | 50] 0 0 

8 0 0 0 0 0 0 0 0 | 50 | 0 

9 0 0 0 0 0 0 0 0 0 | 50                           

Figure of merit = 500 

Table 3. Recognition rates for M = 4, S = 7 (testing set). 

  

  

  

  

  

  

  

  

  

  

  

  

Input words for recognition 

Output | 0 1 2 3 4 5 6 7 8 9 
0 50 | 0 0 0 0 0 0 0 0 0 

1 QO | 49 l 0 0 0 0 0 0 0 

2 0 0 | 48 | 0 0 0 0 0 0 0 

3 0 0 0 50 | 0 0 0 0 0 0 

4 0 1 0 0 | 50 | 0 0 0 0 0 

5 0 0 0 0 0 50 | 0 0 0 0 

6 0 0 0 0 0 0 | 50; 0 0 0 

7 0 0 0 0 0 0 0 | 50} 0 0 

8 0 0 1 0 0 0 0 0 50 1 
9 0 0 0 0 0 0 0 0 0 | 49                         
  

Figure of merit = 496 
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The curves marked by 'S = X' represent the models with a different number of states 

for the different digits. We see that an increase in the number of mixture components 

generally decreases the error rates, for each of the different number of states. Figure 20 

shows the trend in the average error percentages across the digits for the training and the 

testing data sets, with a varying number of states for a particular number of mixture 

density components. Although the error percentage decreases monotonically with an 

increase in the number of states for the testing set, there is no such trend with the training 

set. However, in general, an increase in the number of states seems to decrease the error 

rates. However, after a particular point, an increase in the number of states adversely 

affects the performance because, due to the larger number of parameters involved, the 

training algorithm may not converge to very "good" models. 

We see that the decrease in error percentages with changes in the number of mixture 

density components is more pronounced than that with changes in the number of states. 

Tables 4 and 5 indicate that the trends of the recognition performance in the testing set, 

with changes in S and M, more or less follow the pattern in the training set. In Table 5, we 

see that the error rate increases when we change from using 7 states to a varying number 

of states. This is because, in general, in the models for the case S = X, the number of 

states used by each digit is more than 7. Hence, the increase in the number of states has 

increased the number of parameters to be reestimated. Since an increase in the number of 

parameters tends to increase the variance involved with each of the parameters, the 
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reestimation method may not result in good representative models when the number of 

Results for the Training Set 

parameters is larger than necessary. 
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Results for the Training Set 
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Table 4. Error rates in recognition (training set). 

  

  

  

  

  

    

Number of Error rates in 

States percentage 
1 mixture 2 mixture 4 mixture 

density density density 

component components | components 
5 1.2 0.8 0.4 

6 1.2 0.2 0 
7 1.8 0.4 0 

XxX 1.0 0 0         

Table 5. Error rates in recognition (testing set). 

  

  

  

  

  

    

Number of Error rates in 

States percentage 

1 mixture 2 mixture 4 mixture 

density density density 

component components | components 

5 2.4 2.0 1.4 

6 2.0 1.8 1.0 

7 2.0 1.0 0.8 

xX 2.0 1.6 1.4         

  

  
With the results observed in the testing set, we conclude that HMMs with 7 states and 

4 mixture density components sufficiently represent the digits used in our case and result 

in a recognition rate of better than 99%. 
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6. Connected Digit Recognition 

In the last two chapters, we presented the design of an isolated word recognition 

algorithm and demonstrated the recognition of the ten digits 0 through 9. The focus of this 

thesis was to develop a system that is capable of recognizing strings of digits, as in a 

"hands-free" telephone system. In this chapter, we present the implementation of a 

connected digit recognition algorithm and discuss the results of recognition on strings of 

digits. 

6.1 Introduction 

As mentioned in Chapter 1, connected digit recognition is a technique used to 

recognize continuous speech in a small-vocabulary application. In connected digit 

recognition, a string of digits is modeled as a concatenation of the models built from 

isolated digits. Since we use HMMs to model the isolated digits, the connected digit 

recognition system attempts to select the string of models that best matches the string of 

digits in a maximum likelihood sense. The most popular method to find the optimum set of 

models is a method known as the level-building (LB) method [3]. The main challenge 

behind finding an optimum set of digits is to determine the boundary between the words in 

the string. In continuous speech, this boundary is not distinct. Hence there is a need to 

incorporate the statistics regarding the duration of individual words, into the HMMs. It 

has been found in past research that a simple Gaussian duration model can be assumed for 
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each word in the vocabulary [23]. That is, the probability density P,(D) of duration D of 

the gth word is 

  

P,(D) = faa, (6.1) 

where the D, and co, are the mean and standard deviation respectively. The mean and 

standard deviation can be estimated as the sample mean and standard deviation of the 

training data used to find the isolated word models. So, for the purpose of connected digit 

recognition, the word duration pdfs are included in the HMMs used to model the isolated 

digits. We now present the level building algorithm that we implemented to recognize a 

string of digits [23]. 

6.2 Recognition of a String using the LB Algorithm 

We recall that, at this point, we have the individual word models 1,; O< 7 <9 for 

each word in our vocabulary. Given a sequence of observations ye , how corresponding 

to a sequence of L digits, the aim of the LB algorithm is to select the best concatenation of 

models {mi May -- Map - tr} that matches with the observation sequence in the 
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sense that the joint probability of the observation sequence and the state sequence is 

maximized. 

Figure 21 helps us understand the LB decoding of the observation sequence into an 

optimal string of digits. 

  

i=] 
  

HMM Model 

parameters to find 
likelihood of 
observation ; _ 1 

sequence 

LEVELS 

  

        

Test Frame, tf 

Figure 21. Implementation of LB based on HMMs for each isolated word 

In Figure 21, the number of levels is equal to the number of digits in the input string. A 

“level” can be visualized to represent the boundary of each digit in the string. In other 

words, the /th level corresponds to the /th digit in the input string. Each node in the grid 

Chapter 6 85



represents a state index, frame index pair (i,f). Each line (or a set of lines) represent a path 

through a set of nodes in the grid. We begin at the level / = 1. At each level, we match 

every model 17/1, corresponding to the digit g in the vocabulary, to the observation 

sequence y, using the Viterbi decoding method similar to the one discussed in Section 

4.3.1.2. To do this match at / = 1, we use the following steps: 

i. Initialization - 5,(1) = b4( y(1)il), where 5,(/) is the joint probability of partial state 

and observation sequences, P(yf ,x(1).. x(1)|M,y) and 5b7is the observation 

probability using 1, . Also, 

5\(/)=0, j=2,3,...,8. | (6.2) 

li. Recursion - for 2<¢t<7,1<j<S 

5,(/) = max{3,-(i)49,|6%(»(U) (6.3) 

iii. Termination - P(/,t,q)=5,(S), l1<t<T (6.4) 

The array P is a function of the level number /, frame number ¢, and the vocabulary 

word g. At level / = 1, we repeat the steps i-iii for all the words in the vocabulary. After 

this, we form the following arrays 
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P(t) = max{ P(/,1,4)] (6.5) 

W(i,t) = argmax| P(/, t, q)| (6.6) 4 

Equation (6.5) gives the best probability P at the present level and at all times 1<¢<T, 

and equation (6.6) gives the best word (one that yields maximum likelihood) that could be 

the /th digit in the string and end at the ‘th frame index. 

For the Viterbi matching at higher levels (/ > 1), we follow the following steps: 

i. Initialization - 5,(1) =0 (6.7) 

5,(1) = max| P(!-1,¢-1), 5,-s()a},|xd%(y(Mn), 2<¢<T (6.8) 

li. Recursion - for 2<t<7,2<j<S 

6,(j) = max 8 ,-1()a9,[6%(y()L/) (6.9) 

iii. Termination - P(/,t,q)=5,(S), 1<t<T (6.10) 

For the higher levels, we need to begin the Viterbi match from where the previous 

level ended. Hence, for the levels / > 1, each frame could either succeed a frame in the 

previous level or succeed a frame in the same level. The initialization equations (6.7) and 
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(6.8) let the level pick up at the most appropriate (of the above two possibilities) place 

from the previous level. We repeat steps i-iii for all the words in the vocabulary and then 

form the following arrays 

P(t) = max] P(/,t,4)| (6.11) 

W (i,t) = argmax| P(/,1,q)| (6.12) 
q 

for all the levels, 1</<LZ, where L is the total number of levels which equals the 

expected number of digits in the observation string. 

After we reach the highest level, Z, we have W , which is the array containing the best 

estimate of the digit ending at a particular frame, for all the frames and for all the levels. 

We have to obtain estimates of the boundaries of the digits corresponding to the various 

levels. We begin with the first level / = 1. We assume that all the digits in the string are 

equally long. Based on this assumption, we can obtain an initial estimate of the boundaries 

of the first digit in the string. This provides an estimate of the temporal region occupied by 

the level. We then examine the array W and determine the digit which occurs the 

maximum number of times within the boundaries that we have estimated. We have the 

mean and the standard deviation of the statistics of the duration of this digit. We now 

change the estimate of the temporal region occupied by the level to vary between the 

frames D, —3o, and D, +3o,. The array W is again examined for the digit that occurs 
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the maximum number of times. This process (of searching for the digit that occurs a 

maximum number of times within the present boundary estimates) is repeated until the 

digits selected for two successive boundary estimates are the same. 

Once the digit for level / is chosen, we let the initial estimate of the lower boundary 

(in terms of the frame index) of the next higher level (/+1) be the frame D, . where qd is 

the digit estimated to occupy level 1. We then proceed to examine W and select the digit 

for the next level, 7+ 1 in a manner similar to that for level /. 

After we go through all the levels, we have an estimate of the string of digits 

corresponding to the input observation sequence. In the next section, we discuss the 

results of recognition on test strings. 

Let us look at an example of choosing the digits in the string from the array W . Let 

us consider a string of 2 digits. Hence, we use 2 levels (LZ = 2). For a test case, we have 

chosen the digit string “one two", to be recognized. The string we have chosen is 24 

frames long. At the end of the LB algorithm, we have the following array 

pary-|? °° SO EEE EEE EERE EEE EEE 

“10 000003333321188727222222 

We begin with level 1. We first assume that the first digit (level 1) is 12 frames long. So 

our initial boundary estimates for the 1st digit of the string are the frames 1 and 12. 

Between frame indices 1 and 12, we look for the digit of maximum occurrence. That is the 
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digit "one" (in the lst row of W). We also know that the mean duration of the digit "one" 

is 15 frames and the standard deviation is approximately 3 frames. So we modify the 

boundary estimates for the Ist digit as the 6th (D, —3o0,) and the 24th frame 

(D, +30, ). We again search for the digit of maximum occurrence within frames 6 and 

24. We can see that it is still the digit "one". Hence we conclude that the Ist digit of the 

string is "one". Therefore, we now have | (i.e. Z-1) digits remaining in the string, and yet 

to be recognized. For the next level, /; we start the search from frame 15 (i.e. D. ). We 
i-i 

assume that the remaining (Z-1) digits of the string are equally long. Hence, we choose the 

initial boundaries of the second digit as 15 and 24 and we repeat the process. We look for 

the digit of maximum occurrence. That is the digit "two" (in the 2nd row of W). We also 

know that the mean duration of the digit "two" is 15 frames and the standard deviation is 

approximately 5 frames. According to the LB algorithm, we modify the boundary 

estimates (to search for the digit of maximum occurrence) for the 2nd digit to 

D, . +D,—30, and D, . +D,+3o,. However, since the maximum frame index is 24, 
i-l i-1 

and the length of the first digit is 15 frames, we modify the boundary estimates for the 2nd 

digit as the 15th and the 24th frame and search for the digit of maximum occurrence. We 

see that it is still the digit “two". Hence we conclude that the 2nd digit of the string is 

"two". Thus, we see that the string “one two” is correctly recognized. 

It should be noted that knowledge of the number of digits in the string is extremely 

crucial to the connected digit algorithm that we have implemented. However, the HMMs, 
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when used within the framework of DP, have a self normalization feature [3] in the sense 

that irrespective of the number of levels in the LB algorithm, the length of the search path 

is always equal to the number of frames in the input string. This allows us to execute the 

LB algorithm on the same string using different values of Z and choosing the set of HMMs 

that result in the best overall likelihood of having produced the input string. However, due 

to the larger amount of variability involved as compared to the situation where knowledge 

of the number of digits in the input string is available, we can expect the speech 

recognition system to yield poorer performance when the number of digits in the string is 

not available. 

6.3 Results of recognition of strings 

We now present the recognition rates observed with the recognition of strings of 2, 3, 

and 4 digits. We form the test strings by concatenating the observation sequences 

corresponding to isolated digits. We recall that we have 100 recordings of each digit 

(including training and testing sets). For each string length (number of digits in a string), 

we formed a testing set of 100 strings by randomly choosing the digits of the string from 

the recordings of isolated digits. 

For each string length, we present the results where the isolated digit HMMs 

containing 1, 2, and 4 mixture density components, and 5, 6, and 7 states and a different 

number of states for different digits. Tables 6, 7 and 8 provide the string recognition rates 
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for 2, 3, and 4 digit length strings respectively. In Tables 6-8, 'X' indicates the case where 

different digit models use different numbers of states. 

Chapter 6 

Table 6. Recognition rates for 2-digit strings. 

  

  

  

  

  

    

Number of Recognition rates in 

States percentage 

1 mixture 2 mixture 4 mixture 

density density density 

component | components | components 

5 70 76 83 

6 79 81 88 

7 78 82 91 

X 78 82 89         
  

Table 7. Recognition rates for 3-digit strings. 

  

  

  

  

  

    

Number of Recognition rates in 
States percentage 

1 mixture 2 mixture 4 mixture 

density density density 

component | components | components 
5 61 68 77 

6 66 71 80 
7 69 74 83 

XxX 71 74 81         
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Table 8. Recognition rates for 4-digit strings. 

  

  

  

  

  

    

Number of Recognition rates in 
States ercentage 

1 mixture 2 mixture 4 mixture 

density density density 

component | components | components 
5 49 54 58 
6 53 58 61 

7 53 60 64 
x 51 57 63           

From Tables 6-8, we observe that the trends in the recognition rates are similar to the 

trends observed with isolated digits, as seen in Tables 4-5. As the number of mixture 

density components is increased, keeping the number of states constant, the recognition 

rates increase significantly. Although such a trend is not very clear with an increase in the 

number of states, in general, a higher number of states tends to yield better performance. 

However, the recognition rates are significantly lower than those observed with the 

isolated digits. For a 2-digit string, we obtain a maximum recognition rate of 91% 

corresponding to models with S = 7 and M = 4. This is significantly lower than the 99.2% 

recognition rate observed for isolated digit recognition. Moreover, the recognition rates 

fall drastically for 4-digit strings, with the best (for S = 7, Af = 4) recognition rate of only 

64%. However, we see that models with 7 states and 4 mixture density components 

consistently provide the best results as far as the recognition rate of strings is concerned. 

The lowering of the recognition rates is probably because, due to the lack of knowledge 
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regarding the individual digit boundaries (unlike in isolated digit recognition), some 

observations belonging to adjacent digits may be included in the process of determining 

the best word at each level. This can lead to a wrong digit being picked to be a part of the 

string; it certainly would make recognition worse than for the correct individual digit. 

Further more, uncertainty about the boundaries of digits increases faster, relative to those 

on either absolute end of the string, for digits in between digits with uncertain locations. 

The increased uncertainty in the boundaries cannot but worsen the recognition rates for 

the nested digits. The consequence is a string recognition rate that is much less than for a 

concatenation of isolated digits with known boundaries (Based on our results: (0.99)” for 

an L-digit string). 
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7. Conclusions and Further Research 

The motivation for this thesis has been to develop a speaker dependent speech 

recognition system that can be used to recognize strings of digits; for example, to be 

employed in an environment with a hands-free telephone system. In Chapters 3-6 we 

presented the theoretical background, the implementation, and the performance results of 

the recognition system. In Chapter 3, we discussed feature extraction. Chapter 4 delved 

into the theory behind the HMM and its application to the problem of speech recognition. 

We also discussed the various issues involved in the implementation of the training and the 

recognition algorithms in Chapter 4. In Chapter 5 we presented the results of recognition 

with isolated digits and discussed the effects of the number of states and the number of 

mixture density components on the recognition performance and error rates. 

Based on the results presented in Chapter 5 and Appendix B, we concluded in 

Chapter 5 that HMMs with 7 states and 4 mixture density components resulted in the 

highest recognition rates as far as isolated digit recognition is concerned. We obtained a 

better than 99% recognition rate on the test data which were not used in the training 

process. This is significantly higher than the recognition rates obtained using a discrete 

HMM approach [26]. K. A. Rangarajan [26] has employed the FB algorithm and Baum- 

Welch reestimation for recognition and training respectively. However, to extend this 

system to a speaker independent or a larger vocabulary system, a larger amount of training 

data is needed. In such a case, although the basic structure of the recognition system can 

be maintained as it is here, some linguistic constraints may have to be included to achieve 
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similar performance. Chapter 7 details the implementation of the level-building algorithm 

to recognize strings of more than one digit. While we obtained better than 90% 

recognition rates for 2-digit strings, for a 4-digit string the recognition rates were no 

better than 64%. Thus, the system implemented here can be used as an isolated word 

recognizer, providing very high recognition rates, or it can be used to recognize 2-digit 

strings, at moderately high recognition rates. 

To use the system for situations involving longer strings we have to involve some 

additional aspects into the word models. For example, the training data for each digit can 

be obtained from strings containing the digit [2]. As an extension to the system 

implemented in this thesis, to improve performance, different state and word duration 

models can be experimented with and employed [23]. In addition to state and word 

duration models, the HMMs can include models for the word energies. The latter has also 

been found to improve recognition performance to some extent [2]. 

Although other techniques that use empirical constraints to determine the boundaries 

between the digits in a string yield higher string recognition rates, the manner in which the 

digits are selected at the various levels is simpler in our system [2, 23]. 

In view of future real time implementation of the recognition system we observed, 

using MATLAB for a 10-digit vocabulary using 7 state and 4 mixture density component 

HMMs, that the number of flops required to perform recognition of a single isolated digit 

is approximately 10 million. To recognize a 3-digit string approximately 13 million 

operations are needed. Hence, if a Digital Signal Processor such as the ADSP-2181 (a 32 

Chapter 7 96



MIPS processor) is used, a 3-digit string can be recognized in approximately a third of a 

second and an isolated digit in less time. This is reasonably fast for the recognition system 

to be useful in many real-time applications. The memory requirement of the recognition 

system using 7 states and 4 mixture densities is for approximately 14000 words (16 bit). 
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APPENDIX A 

We now present the results with a known model with "overlapping" mixture 

density components. The model parameters are assumed to be 

S=3 M=2 D=1 

08 0 0 

A=|02 07 O 

0 03 1 

w=[1 5] b= [3 7] Hs =[5 9] 

The covariance matrix was taken to be a diagonal matrix containing the variances of the 

observation vector elements, and all the variances were taken to be equal to 2. 

0.7 03 

c=105 O5 

0.2 08 

This model was used to generate 100 training observation sequences which were 

used in the training process. The reestimated parameters are 

0802 0 0 

A=|0198 0701 0 

0 0299 1 

,=[055 4.21] p,, =[3.25 655] p,,=[656 9.62] 

0.65 0.35 

c=|051 0.49 

0.42 058 
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C,=[238 122] 9 C, =[131 127] C,.=[107 2.24] 

Figures 22-24 show the plots of the true pdf and the reestimated observation pdf (shown 

by the continuous curve) for all three states. We observe that the reestimated pdf is 

significantly different from the true pdf. Figures 25-27 show the true histogram and the 

histogram of the observations based on Viterbi decoding for the three states. We see that 

the histogram based on Viterbi decoding is reasonably similar to the true hisogram. Yet 

the estimated pdfs in Figures 22-24 are quite different from the true pdfs. This indicates 

that, although the observations have been assigned to the appropriate states, due to the 

overlapping mixture density components, the sample mean and sample variance may not 

be good estimates for the mean and variance of the mixture density components. 

  0.25 ™— — 
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Figure 22. True (*) and Reestimated Observation PDFs for State 1 
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APPENDIX B 

We now present all the results obtained during testing of the performance of our 
recognition system. The results presented are for the training set and the testing set. 

Table 9. Recognition rates for M = 1, S = 5 (training set). 

  

  

  

  

  

  

  

  

  

  

  

                        

Input words for recognition 

Output | 0 1 2 3 4 5 6 7 8 9 
0 49 | 0 0 0 0 0 0 0 0 0 

1 0 | 49 1 0 0 0 0 0 0 0 

2 0 0 | 48 { 0 0 0 0 0 0 0 
3 0 0 0 50 | 0 0 0 0 0 0 

4 0 0 0 0 50 | 0 0 0 0 0 

5 0 0 0 0 0 49 |} 0 0 0 0 

6 0 0 0 0 0 0 50 | 0 0 0 

7 0 0 0 0 0 0 0 50 | 0 0 

8 1 1 1 0 0 1 0 0 50 1 
9 0 0 0 0 0 0 0 0 Oo | 49     

Figure of merit = 494 

Table 10. Recognition rates for M = 1, S = 5 (testing set). 

  

  

  

  

  

  

  

  

  

  

  

                        

Input words for recognition 

Output | 0 1 2 3 4 5 6 7 8 9 

0 49 0 0 0 0 0 0 0 0 0 

1 0 47 1 0 0 0 0 0 0 0 

2 0 1 46 0 0 0 0 0 0 0 

3 0 0 0 50 0 0 0 0 0 0 

4 0 2 2 0 49 0 0 0 0 0 

5 0 0 0 0 0 50 0 0 0 0 

6 0 0 0 0 0 0 49 0 0 0 

7 0 0 0 0 0 0 0 50 0 0 

8 1 0 1 0 1 0 1 0 50 2 

9 0 0 0 0 0 0 0 0 0 48   
  

Appendix B 

Figure of merit = 488 
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5 (training set). © =2,S= Table 11. Recognition rates for M 
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5 (testing set). =2,S= Table 12. Recognition rates for M 
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= 5 (training set). =4,S Table 13. Recognition rates for M 
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=4,S= Table 14. Recognition rates for M 
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6 (training set). Table 15. Recognition rates for M = 1, S 
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6 (testing set). Table 16. Recognition rates for M = 1, S 
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Appendix B 

Table 17. Recognition rates for M = 2, S = 6 (training set). 

  

Input words for recognition 
  

  

  

  

  

  

  

  

  

  

                      

Output | 0 1 2 3 4 5 6 7 8 9 

0 50 0 0 0 0 0 0 0 0 0 

1 0 50 0 0 0 0 0 0 0 0 

2 0 0 50 0 0 0 0 0 0 0 

3 0 0 0 50 0 0 0 0 0 0 

4 0 0 0 0 50 0 0 0 0 0 

5 0 0 0 0 0 50 | 0 0 0 0 

6 0 0 0 0 0 0 50 0 0 0 

7 0 0 0 0 0 0 0 50 0 0 

8 0 0 0 0 0 0 0 0 50 1 

9 0 0 0 0 0 0 0 0 0 49       

Figure of merit = 499 

Table 18. Recognition rates for M = 2, S = 6 (testing set). 

  

Input words for recognition 
  

  

  

  

  

  

  

  

  

  

    

Output | 0 1 2 3 4 5 6 7 8 9 
0 49 0 0 0 0 0 0 0 0 0 

1 0 49 2 0 0 0 0 0 0 0 

2 0 0 45 0 0 0 0 0 0 0 

3 0 1 0 350 | 0 0 0 0 0 0 

4 0 0 2 0 50 0 0 0 0 0 

5 0 0 0 0 0 50 | 0 0 0 0 

6 0 0 0 0 0 0 50 | 0 0 0 

7 0 0 0 0 0 0 0 50 0 0 

8 1 0 1 0 0 0 0 0 50 2 

9 0 0 0 0 0 0 0 0 0 48                       
  

Figure of merit = 491 
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6 (training set). =4,S= Table 19. Recognition rates for M 
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Figure of merit = 500 

= 6 (testing set). =4,8 Table 20. Recognition rates for M 
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7 (training set). Table 21. Recognition rates for M= 1, S 
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7 (testing set). Table 22. Recognition rates for M= 1, S 
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Appendix B 

Table 23. Recognition rates for M = 2, S = 7 (training set). 

  

Input words for recognition 
  

  

  

  

  

  

  

  

  

  

              

Output | 0 1 2 3 4 5 6 7 8 9 

0 50 | 0 0 0 0 0 0 0 0 0 

1 0 350 | 0 0 0 0 0 0 0 0 

2 0 0 50 0 0 0 0 0 0 0 

3 0 0 0 50 0 0 0 0 0 0 

4 0 0 0 0 50 0 0 0 0 0 

5 0 0 0 0 0 49 | 0 1 0 0 

6 0 0 0 0 0 0 50 | 0 0 0 

7 0 0 0 0 0 0 0 49 0 0 

8 0 0 0 0 0 1 0 0 50 0 

9 0 0 0 0 0 0 0 0 0 50               
Figure of merit = 498 

Table 24. Recognition rates for M = 2, S = 7 (testing set). 

  

Input words for recognition 
  

  

  

  

  

  

  

  

  

  

            

Output | 0 1 2 3 4 5 6 7 38 9 
0 50 | 0 0 0 0 0 0 0 0 0 

1 0 49 | 2 0 0 0 0 0 0 0 

2 0 0 47 | 90 0 0 0 0 0 0 

3 0 0 0 50 | 0 0 0 0 0 0 

4 0 0 0 0 50 0 0 0 0 0 

5 0 0 0 0 0 50 | 0 0 0 0 

6 0 0 0 0 0 0 50 | G 0 0 

7 0 1 0 0 0 0 0 50 | 0 0 

8 0 0 ] 0 0 0 0 0 50 1 

9 0 0 0 0 0 0 0 0 0 | 49               
  

Figure of merit = 495 
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Appendix B 

Table 25. Recognition rates for M = 4, S = 7 (training set). 

  

Input words for recognition 
  

  

  

  

  

  

  

  

  

  

    

Outpt | 0 | 1 | 2 [3 1 4[5]6/7/)8 719 
0 sof ofofolf]ofolfotlolfot!lo 
1 o | s50/ofofof]of]of]o0f]o0]0 
2 o{[ofso{fofofofof{olfo [0 
3 ofofofs0/ofofofofoT]o 
4 o[ofofo{sfofot!]ot{o {[o 
5 ofofofolfol]s{ofo!o !{o 
6 o][ofofofofofs0/fofo [| o 
7 o{[ofofojfofolfo]sol[o [ 0 
8 o]|ofofofofol]ot]o =! solo 
9 o[ofofofof{ofotl]ol]o { so                         

Figure of merit = 500 

Table 26. Recognition rates for M = 4, S = 7 (testing set). 

  

Input words for recognition 
  

  

  

  

  

  

  

  

  

  

              

Output| o | 17273 /[4]5]6 [7 {383/19 
0 5o{o0]o]o]ofo]o]o0]o0 | 0 
1 o {| 49{[1]o0]o0fo0fo]o0]{0 1 0 
2 0 {| of[4sfof]ofofol]o!{o{[o 
3 o{[ofofso{lofofol]|{ol]|oT! o 
4 o/1if]ofo0!fs0/o0f]o0fo0fo0]o0 
5 o{f[ofof]ofot{solofo|o lo 
6 o/ofofofofofso]o]{o {| o 
7 o|ofofof{olfotl{o=t!]so{o]|o 
8 o/[of1f{ofof]of]o]oT!{s0{41 
9 o/[ofofofofolfot!lo={o {a9             
  

Figure of merit = 496 

112



Table 27. Recognition rates for M = 1, S = X (training set). 

  

  

  

  

  

  

  

  

  

  

  

                

Input words for recognition 
Output 0 1 2 3 4 5 6 7 8 9 

0 49 | 0 0 0 0 0 0 0 0 0 
1 0 49 1 0 0 0 0 0 0 0 

2 0 0 49 0 0 0 0 0 0 0 

3 0 0 0 50 0 0 0 0 0 0 

4 0 0 0 0 50 0 0 0 0 0 

5 0 0 0 0 0 49 0 0 0 0 

6 0 0 0 0 0 0 50 0 0 0 

7 0 0 0 0 0 0 0 50 0 0 

8 1 1 0 0 0 1 0 0 | 50{ 1 

9 0 0 0 0 0 0 0 0 0 49             

Figure of merit = 495 

Table 28. Recognition rates for M = 1, S = X (testing set). 

  

  

  

  

  

  

  

  

  

  

  

                

Input words for recognition 

Output | 0 1 2 3 4 5 6 7 8 9 

0 49 | 0 0 0 0 0 0 0 0 0 

1 0 | 48 | 2 0 0 0 0 0 0 0 

2 0 0 | 46 1 0 0 0 0 0 0 

3 0 0 0 | 49} 0 0 0 0 0 0 

4 0 2 l 0 | 49 | 0 0 0 0 0 

5 0 0 0 0 0 50 | 0 0 0 0 

6 0 0 0 0 0 0 | 50; 0 0 0 
7 0 0 0 0 1 0 0 50 0 0 

8 1 0 1 0 0 0 0 0 50 1 
9 0 0 0 0 0 0 0 0 0 49           
  

Appendix B 

Figure of merit = 490 
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Appendix B 

Table 29. Recognition rates for M = 2, S = X (training set). 

  

Input words for recognition 
  

  

  

  

  

  

  

  

  

  

                        

Output] 0 | 172/73 14/15 )]6/7+)]8i/19 
0 so{o]ofofofolflofolfoljo 
l o [sol ofofofofotlflofolo 
2 o|ofs0]0fof]ofofofol]o 
3 o{[ofol]so{ofofofofof]o 
4 0 |/o]ofo]|so0]o0]of]ofot!]o 
5 o{|ofofofof{solofofo | o 
6 o[ofolflofolflof{sol[ofol]|o 
7 ofofofofolofot[so[o]o 
8 o{[ofofofolfofo=Z[o [so] o 
9 o[ofofofo]ol]of{fo]|o j 50     

Figure of merit = 500 

Table 30. Recognition rates for M = 2, S = X (testing set). 

  

Input words for recognition 
  

  

  

  

  

  

  

  

  

  

      

Output | 0 | 11273 {[4]s5)]6)]7)8 19 
0 53 /o0f]ofofofoflofofolfo 
1 o|49/2{[ofofo]of]o0]o0]o0 
2 o|o|46/1{[o0]o0]o0]o0][o0T]0 
3 o|oj]of49/ofof]of}otfotlo 
4 o|ofi{of49/o0f]of]ofo!]o 
5 o{|of1{o!ofsolofofo!]{o 
6 o/[of]ofofolflolsolojfofo 
7 o!ofofof1f]ofo/{s0{o [0 
8 o{[1i1f]ofo]o]ofo0]o0]{s50] 1 
9 0/|ofofofofolotlfo=t!|o {a9                     
  

Figure of merit = 492 
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Table 31. Recognition rates for M = 4, S = X (training set). 

  

  

  

  

  

  

  

  

  

  

  

  

Input words for recognition . 

Output {/ 0 {| 1 {2/3 | 4] 5 {[6{7]8 {9 
0 50 | 0 0 0 0 0 0 0 0 0 

1 0 | 50} 0 0 0 0 0 0 0 0 

2 0 0 50 0 0 0 0 0 0 0 

3 0 0 0 | 50 | 0 0 0 0 0 0 
4 0 0 0 0 50 0 0 0 0 0 

5 0 0 0 0 0 | 50] 0 0 0 0 
6 0 0 0 0 0 0 50 0 0 0 

7 0 0 0 0 0 0 0 | 50 | 0 0 
8 0 0 0 0 0 0 0 0 50 0 

9 0 0 0 0 0 0 0 0 0 | 50                         
  

Figure of merit = 500 

Table 32. Recognition rates for M = 4, S = X (testing set). 

  

  

  

  

  

  

  

  

  

  

  

  

Input words for recognition 

Output | 0 1 2 3 4]5 | 6 |7 gs | 9 
0 50/0]0]{0f]0f{]0)]0)]0{]07;0 
1 0 | 49 | 3 0o|ofofot!|o 0 | 0 
2 0|/0]46/]0]0f{]o0/f/0f0]0 {0 
3 0o{o]}] 0 ] 50] 1 0o]}/0;]0]o0;] 0 
4 0 | 0 1 01,49} 0{0]0{0/ 0 
5 0o/o0};0f0]0 {50} 0 | o | 0 |] O 
6 0o/o]o0of]o}o0 {0} 50] 0] 0 {| 0 
7 o/o}o]o0o)]0f0] 0] 50] 0 | Oo 
8 o{oj]of]of]o0f]o0f]0 fo; 50] 1 
9 0 1 0o};o0fofo0fo0]0 1] 0 | 49                           

Figure of merit = 493 

where S = X indicates that different number of states have been used for the different 

digits according to the following table. 

Table 33. Number of States in S = X 

  

Digit 0 1 2 3 4 5 6 7 8 9 

# States 18 7 10 10 10 10 7 7 15 14 
  

                          

Appendix B 115



[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

Bibliography 

J. L. Flanagan, Speech, Analysis Synthesis and Perception, Springer-Verlag, 1983. 

Lawrence R. Rabiner, Jay G. Wilpon, and Frank K. Soong, High Performance 
Connected Digit Recognition Using Hidden Markov Models, TEEE Transactions 

on Acoustics, Speech, and Signal Processing, vol. 37, no. 8, pp. 1214-1225, Aug. 
1989. 

John R. Deller Jr., John G. Proakis, and John H. L. Hansen, Discrete Time 

Processing of Speech Signals, Macmillan, 1993. 

Geoff Bristow, Electronic Speech Recognition, Collins, 1986. 

W. A. Ainsworth, Speech Recognition By Machine, Peter Peregrinus Ltd., 1988. 

L. R. Rabiner and M. R. Sambur, Speech Endpoint Algorithm, Bell System 
Technical Journal, vol. 54, pp. 302-315, Feb. 1975. 

Alan V. Oppenheim and R. W. Schafer, Discrete Time Processing of Signals, 
Prentice Hall, 1975. 

Leland B. Jackson, Digital Filters and Signal Processing, Kluwer Academic 

Publishers, 1996. 

S. B. Davis and P. Mermelstein, Comparison of parametric representations for 
monosyllabic word recognition in continuously spoken sentences, TEEE 
Transactions on Acoustics, Speech, and Signal Processing, vol. 28, pp. 357-366, 

Aug. 1980. 

B. S. Atal, Effectiveness of Linear Prediction characteristics for speech 

recognition, JASA, vol. 55, no. 6, pp. 1304-1312, June 1974. 

C. S. Myers, L. R. Rabiner, and A. E. Rosenberg, Performance tradeoffs in 
dynamic time warping algorithms for isolated word recognition, IEEE 

Transactions on Acoustics, Speech, and Signal Processing, vol. 28, pp. 622-635, 
Dec. 1980. 

J. K. Baker, Stochastic modeling for automatic speech understanding, In D. R. 

Reddy, ed., Speech Recognition, New York: Academic Press, pp. 521-542, 1975. 

Bibliography 116



[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

F. Jelinek, L. R. Bahl, and R. L. Mercer, Design of a linguistic statistical decoder 
for the recognition of continuous speech, IEEE Transactions on Information 
Theory, vol. 21, pp. 250-256, May 1975. 

L. R. Rabiner, B. H. Juang, S. E. Levinson, and M. M. Sondhi, Some properties of 
Continuous Hidden Markov Model Representations, AT&T Technical Journal, 
vol. 64, no. 6, pp. 1251-1270, July-Aug. 1985. 

J. Picone, Continuous speech recognition using hidden Markov Models, IEEE 

Acoustics, Speech, and Signal Processing Magazine, vol. 7, pp. 26-41, July 1990. 

L. E. Baum, T. Petrie, G. Soules, A maximization technique occurring in 

statistical analysis of probabilistic functions of Markov chains, Ann. Math. Stat., 
vol. 41, no. 1, pp. 164-171, 1970. 

L. E. Baum and G. R. Sell, Growth functions for transformations on manifolds, 
Pacific Journal of Mathematics, vol. 27, pp. 211-227, 1968. 

L. R. Rabiner, B. H. Juang, S. E. Levinson, and M. M. Sondhi, Recognition of 
isolated digits using hidden Markov models with continuous mixture densities, 
AT&T Technical Journal, vol. 64, pp. 1211-1234, July-Aug. 1985. 

J. Makhoul, S. Roucos, and H. Gish, Vector quantization in speech coding, 
Proceedings of the IEEE, vol. 73, pp. 1551-1588, Nov. 1985. 

S. S. Rao, Optimization Theory and Applications, Wiley-Eastern Ltd. 1984. 

B. H. Juang and L. R. Rabiner, A probabilistic distance measure for hidden 
Markov models, AT&T System Technical Journal, vol. 64, pp. 391-408, Feb. 
1985. 

R. Bakis, Continuous speech word recognition via centisecond acoustic States, 
Proceedings of the 91st Annual Meeting of the Acoustical Society of America, 
Washington, D.C., 1976. 

L. R. Rabiner and S. E. Levinson, A speaker-independent, syntax-directed, 
connected word recognition system based on hidden Markov models and level 

building, TEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 
ASSP-33, no. 3, pp. 561-573, June 1985. 

L. R. Rabiner, A Tutorial on Hidden Markov Models, TEEE Proceedings, vol. 77, 
pp. 257-285, Feb. 1989. 

Bibliography 117



[25] Y. Tokhura, A weighted cepstral distance measure for speech recognition, TEEE 

Transactions on Acoustics, Speech, and Signal Processing, vol. 35, pp. 1414-1422, 
Oct. 1987. 

[26] K.A. Rangarajan, Discrete HMM isolated digit recognition, M.S. Thesis, Virginia 

Polytechnic Institute and State University, Blacksburg, Virginia 24061, July 1996. 

Bibliography 118



Vita 

Ananth Padmanabhan graduated from the Regional Engineering College, Calicut, India, 

with a Bachelor degree in Electrical Engineering in 1994. He attended Virginia 

Polytechnic Institute and State University in Blacksburg, Virginia, completing a Masters 

of Science in Electrical Engineering specializing in telecommunications in 1996. His 

research interests are in the area of digital signal processing. He is employed as an 

Engineer in the Systems Engineering Division with Qualcomm Inc. located in San Diego, 

California. 

CL 
fhe aataeathe. 

“ 

119


