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Abstract 

The goal of this design process was to achieve the most efficient propulsive system for the 

candidate autonomous underwater vehicle (AUV) as possible.  A mathematical approach, using 

fundamental motor equations and derived quantities, was used to characterize and select an 

efficient brushless electric motor for the propulsion system.  A program developed at MIT, 

Massachusetts Institute of Technology, called OpenProp versions 1 and 2.3 was utilized to design a 

custom propeller that maximizes the efficiency of the system. 

 

A brushless electric motor was selected for the candidate AUV based on a survey of available off the 

shelf motors and a mathematical characterization process.  In parallel with the motor 

characterization a propeller design was optimized using OpenProp v1 to perform a parametric 

analysis.  OpenProp v2.3 was then used to design a unique propeller for the selected motor.  The 

propeller design resulted in a final propeller with an efficiency of 79.93%.   The motor 

characterization process resulted in two candidate motors being selected, the NeuMotor 1925-3Y 

and NeuMotor 1521-10.5Y, for in house testing and evaluation.  A total propulsive system efficiency 

of between 44% and 46% was achieved depending on which motor is selected for the final design.  
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Chapter 1 - Introduction  
The process described herein is a continuation and utilization of the process developed by James A 

Schultz [1].  This design, however, is not limited to off the shelf components.  The motor selection 

process is similar to the process described by Schultz but the propeller is a completely custom 

design.  The goal of this design process was to achieve the most efficient propulsive system 

possible.  The equations presented by Schultz and confirmed by Hendershot and Miller [5] were 

used to characterize and select a brushless electric motor.  A program developed at MIT called 

OpenProp [2] was utilized to design the custom propeller.  First a parametric design was undertaken 

with OpenProp v1 to determine a range of design RPM and possible propeller diameters.  A max 

propeller diameter rule, based on experience with Virginia Tech’s fleet of 475 vehicles, is also 

proposed.  A unique propeller design was then created using OpenProp v2.3 based on the 

parametric propeller results and the motor characterization results.  The unique propeller design 

and motor selection process are both undertaken in parallel, results from the motor 

characterization process are required to complete the unique propeller design and results from the 

unique propeller design are required to complete the motor selection process. 

 

This document is meant to be used as a guide for future designs of similar requirements and is 

written as such starting with the Motor Selection process below.  Throughout this document the 

following design criteria for a proposed candidate AUV are referenced and used to make the final 

design decisions.   

 Vehicle Diameter = 6.9 inches 

 Vehicle Trust Required, found by CFD [3] = 8.67 N 

 Vehicle Drag, found by CFD [3] = 8.11 N 

 Vehicle Speed = 2.0 m/s 
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Chapter 2 - Motor Selection 

2.1 Motor Classification 
The two most common types of electric motors are brushed and brushless.  A brushed motor has 

stationary contacts that transfer the electrical energy to the coils as the motor turns.  A brushless 

motor uses an electronic controller to alternate power to several different groups of coils, called 

phases, which are housed within the motor.  There are several key advantages to using a brushless 

motor design over an equivalent brushed design.  A brushless motor is more efficient, lasts longer 

(no brushes to wear out) and produces no ionizing sparks when compared to an equivalent brushed 

electric motor.  The motor selection process presented here was written with brushless motors in 

mind.    

 

2.1.1 Physical 

There are two main types of brushless electric motors, an interior-rotor and an exterior-rotor.  An 

exterior-rotor motor consists of a series of magnets that rotate around an internal set of coils.  A 

motor with an interior-rotor is the exact opposite and instead has a cluster of magnets that rotate 

inside the coils as shown below in Figure 2-1.  A more detailed discussion of the physical traits of a 

wide variety of motors is presented by Shultz [1] and Hendershot and Miller [5].  Both interior and 

exterior-rotor motors were considered in the process described below. 

 

Figure 2-1: Interior-Rotor vs Exterior-Rotor [1] 

2.1.2 Mathematical  

In order to determine if a motor is appropriate for the application in question the motor needs to be 

classified mathematically.  This mathematical classification is faster and cheaper than acquiring each 

motor and testing them individually. Brushless electric motors are classified by their manufacturer 

by three motor constants, RPM (rotations per minute) per volt,     , the resistance of the motor in 

ohms,    ,  and the no load current in amps,   .  Using these three constants and the fundamental 

motor equations the current at max efficiency,         , the current at max power,        , the 

maximum efficiency achievable by the motor,      , the RPM at max efficiency and the torque 

provided at maximum efficiency,   at        , can be derived and used to characterize a brushless 

electric motor.  The standard, fundamental motor equations presented below, Equations 2-1 and 2-

2, were derived from empirical motor data and Ohm’s law [e.g., 5].  In the equations below   is the 
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current drawn by the motor in amps,   is the voltage input to the motor, and   is the torque in 

Newton-meters (N-m).  

               2-1 
  

            2-2 

  
The quantity    is the torque constant in (N-m) per amp and is directly related to   .  For brushless 

electric motors it can be shown that    is defined by Equation 2-3 as shown in Hendershot and 

Miller [5]. 

   
  

   
 

2-3 

  
Equation 2-4 is the definition of power out of a rotational system, Equation 2-5 is the definition of 

electrical power and Equation 2-6 is the definition of radial velocity,  , where RPS is the rotations 

per second.   

      2-4 
  

     2-5 
                 2-6 

 

The above fundamental motor equations can be utilized to derive an expression for the efficiency of 

the motor,    .   The efficiency is defined as the mechanical power out over electrical work in as 

shown in Equation 2-7.   The RPM and Q appearing in 2-7 can be written in terms of the motor 

characteristics, voltage and current using 2-1 and 2-2.  Once simplified Equation 2-7 yields the final 

definition of the motor efficiency shown in Equation 2-8.   

  

   
       

     
 
                       

    
 

2-7 

  

   
             

  
 

2-8 

 

In order to find the current at max efficiency,        , the derivative of Equation 2-8 was taken with 

respect to the current,  , set equal to zero, Equation 2-9, and then solved for the current,   , 

resulting in Equation 2-10. Equation 2-10 is one of the key equations used in classifying an electric 

motor and gives the important motor characteristic current at max efficiency,         .   

  
   
  

 
           

   
   

2-9 

  

          
   
  

 
2-10 
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 The torque at maximum efficiency can then be found using this current in 2-2.  By solving Equation 

2-5 for the current,   , and substituting into Equation 2-8, the same process used to derive Equation 

2-10 can be used to derive the equation for the current at maximum power output,        , Equation 

2-13.         is not specifically used in this motor selection process but it can be an important value 

if your system is based on maximum power output and not maximum efficiency.    

            
             

   
 
   

 
 
    

 
 
    

      
 

 
2-11 

  
            

  
  
                   

  
 

2-12 

  

       
       
    

 
2-13 

  
 

The maximum efficiency attainable by the motor,      , is derived by substituting Equation 2-10 

into Equation 2-8 which yields Equation 2-14.                is found by substituting        , 

Equation 2-10, into the fundamental RPM equation, Equation 2-1.  The resulting RPM, Equation 2-

15, is the RPM that is used in the unique propeller design process, see Chapter 3.4. 

 

         
     
 

 

 

 

 
2-14 

  

                               2-15 

  
 

  , Equation 2-3, is another key value and is used to determine if the motor can generate enough 

torque to turn the system.  Not only must the torque required to turn the propeller be taken into 

account but the additional torque in the system caused by bearings, seals or any other external 

loads must also be considered.  The torque provided by the motor must be calculated at the current 

draw of the motor at maximum efficiency, Equation 2-16.  Equation 2-16 is derived by substituting 

Equation 2-10 into the fundamental motor Equation 2-2. 

  

                            in N-m 2-16 

  
A set of example calculations is given below in Table 1, orange cells denote inputs and yellow cells 

denote outputs.   
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Table 2-1: Sample motor calculations 

Motor Name: NeuMotor 1925 3Y I ,max = 4.83 amp 

Rm = 0.18 ohm IP,max = 39.03 amp 

Io = 0.3 amp  max = 0.8796 

V = 14 volt At I ,max RPM = 1785.75 

KV = 136 RPM/volt At I ,max       Q (N-m) = 0.3181 

Kq = 0.07022 (N-m)/amp in-oz = 45.04 

 

It is convenient to program all of these calculations into an Excel spreadsheet.  Once the equations 

are programmed in it is straight forward to calculate these values and compare a vast array of 

electric motors in a relatively short span of time.     

 

No system is perfect, so if the torque provided by the motor exceeds or is less than the required 

torque to turn the system the above efficiency calculations will not be accurate.  If the motor does 

not provide enough torque to turn the system at maximum efficiency all is not lost.  The motor may 

still be able to turn the system it will just turn said system at a slightly lower RPM and some 

efficiency will be lost.  This is exactly what was encountered with the NeuMotor 1521-10.5Y, see 

Chapter 5.2 for details.  Also, if the motor in question provides more torque than required then it 

will spin the system slightly faster than the RPM at max efficiency predicts.  This off design efficiency 

will also provide a less optimistic and more realistic efficiency number for the overall system.   Thus 

it is also important to be able to analyze the off ideal, or off design point efficiency of a motor.  One 

does not need to do this for every motor analyzed but it should be done once the preliminary motor 

selection is complete and the field of motor candidates has been thinned out.  The NeuMotor 1925-

3Y, shown in Table 2-1, will be used to illustrate the process.   

 

The first step is to determine the torque required,     , to turn the system, which is the sum of the 

torque required to turn the propeller, Chapter 3.3, and any torque added to the system by bearings, 

seals, Chapter 5.1, or any other external factors.  Then utilize the following equations to determine 

the off efficiency of the motor at the specific torque required.  Equation 2-9 is a modified form of 

Equation 2-8 where       is the input current,  , in Equation 2-8. 

                  2-19 

  
                                      2-20 

  
Sample results are shown in Table 2-2 below based on the 1925-3Y.  It is interesting to note that, in 

this case, despite the 1925-3Y being oversized for this example scenario the effect on the efficiency 

is relatively small with an efficiency reduction of around 3%.  The off efficiency RPM was found by 

utilizing Equation 2-1 with the      found using Equation 2-19.   
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Table 2-2: Off design point calculations 

Total Torque Required (in-oz) 21.43 

Total Torque Required (N-m) 0.1513 

Current Required (amp),   2.456 

Watts at 14 volts 34.38 

  at above current required at 14V 0.8501 

RPM at 14 volts 1843.87 
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Chapter 3 Propeller Design 

3.1 Physical 
A propeller is defined by several key features.  The first is the radius or distance from the center of 

the hub to the tip of the blade.  The propeller diameter is based on the diameter of the vehicle the 

propulsion system is being designed for.  It is a good rule of thumb to set the maximum propeller 

diameter for a small AUV to be no more than 85% of the diameter of the vehicle itself.  So if the 

vehicle has a diameter of 6.9 inches the maximum propeller diameter allowed by this rule would be 

approximately 5.86 inches.  This size restriction is to help mitigate possible ventilation of the 

propeller as the AUV dives or operates on the surface.  Ventilation is when the propeller blade 

draws air from the surface into the blades; this causes a reduced load on the propeller and a 

significant reduction in available trust.  Ventilation may even cause the AUV to be unable to dive or 

maneuver effectively while on the surface.    This rule was developed from experience gained with 

Virginia Tech’s fleet of 475 AUVs [11].  The minimum diameter depends on the shaft and hub size 

and is arbitrary.  In general a larger diameter propeller and slower RPM will yield a more efficient 

propeller than a smaller high RPM propeller.  A compromise needs to be made between efficiency 

and practicality, if the propeller is too large it will ventilate near the surface and reduced thrust will 

result, which can cause the vehicle to not be able to dive or maneuver effectively on the surface.  

The next propeller characteristic is the pitch and is the measure of how far the propeller would 

move forward in one revolution if it was moving through a solid.  The chord is the distance from the 

leading edge to the trailing edge measured with a straight line at a given station along the propellers 

radius.  The thickness of the propeller is also a defining feature and is an important feature when 

the manufacturability of the propeller is in question.  Again a compromise needs to be made when 

choosing the chord and thickness.  From a hydrodynamic standpoint, the ideal propeller would be 

infinitely thin.  This ideal propeller is impractical and impossible to manufacture.  One must 

compromise between durability, manufacturability and efficiency.   

 
Figure 3-1: Propeller nomenclature [1] 

Rake is the angle the propeller blade makes with the centerline of the hub.  This can be a forward or 

rearward angle, a rearward rake is shown in Figure 3-2.  If ventilation of the propeller is a concern, 

like when a small AUV dives for example, adding rearward rake in the propeller can help mitigate 

the ventilation.  
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Figure 3-2: Propeller rake, θ 

3.2 OpenProp v1 Parametric Design 
OpenProp v1 is the first generation of MITs propeller design MATLAB algorithm that utilizes a 

numerical lifting line theory to predict propeller performance.  A detailed discussion of OpenProp 

can be found in the OpenProp v2.3 Theory Document found in the Reference file included in the 

v2.3 code download [2] or any of the other documents on the main OpenProp Wiki page.  Version 1 

was used for the parametric analysis due to its simple graphical user interface, the more advanced 

capabilities of version 2.3 were not necessary for this aspect of the design process.  Chapter 3.2 is a 

step by step breakdown of how OpenProp v1 was utilized. 

3.2.1 Inputs 

After running OpenProp v1 an intro screen appears, the Parametric Analysis option was utilized for 

this portion of the propeller design process. 

 
Figure 3-3: OpenProp v1 starting screen 

Direction of Travel 
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All length units are in meters and the hub diameter must be at least 15% of the smallest diameter in 

the Propeller Diameter Range. The Water Density is can be changed for a variety of applications like 

fresh water operation or, in this case, sea water operation.  One can also specify the desired 

Number of Blades, Propeller Speed, Required Thrust, Ship Velocity, and the range of Propeller 

Diameters that are being considering.  At this stage all other inputs were left as the OpenProp 

defaults. The numbers entered in Figure 3-4 are applicable to vehicle characteristics provided in the 

Introduction.   Depending on the power of the computer being used and other inputs OpenProp may 

take several minutes to run. 

 
Figure 3-4: OpenProp v1 Input screen 

3.2.2 Results 

The parametric analysis algorithm outputs a figure that shows an estimation of efficiency vs. 

propeller diameter.  At first glance the graph may look hectic; this is usually caused by low, below 

500 RPM, propeller speeds.  To clean up the figure these extraneous results were suppressed using 

MATLAB’s Plot Browser function. 
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Figure 3-5: Results after clean up 

MATLAB reuses colors so it can be difficult to determine which lines correspond to which RPM.  The 

Plot Browser was used to check which lines correspond to which RPM and to eliminate undesirable 

solutions.  Figure 3-5 illustrates that the slower the propeller spins the more efficient it will be but 

again a compromise needs to be made.  It is difficult to find a brushless electric motor that can spin 

efficiently at such low RPMS, which corresponds to low    values, thus the choice of propeller speed 

cannot be based just on the results shown in Figure 3-5 but also must be based on available electric 

motors.  The plot also makes it clear that the efficiency goes up as the propeller increases in 

diameter for the lowest RPM values, below 1000.  After 1000 RPM is exceeded there is a point of 

diminishing returns and then a loss of efficiency as the blade increases in size.  So let’s assume that 

during the search for a motor it was determined that a motor that operated below 1500 RPM and 

above 2000 RPM at its maximum efficiently are impractical for the application in question or simply 

cannot be acquired.  Thus any results not in the above mentioned range can be eliminated as shown 

in Figure 3-6.  Using the vehicle diameter given in Chapter 1 it was determined that the maximum 

propeller diameter would be set to 0.12 meters or approximately 4.73 inches.  This maximum 

diameter was chosen in order to mitigate ventilation of the propeller while on the surface and 

because the parametric plot produced with OpenProp shows the efficiency dropping significantly 

when the propeller diameter exceeds 0.12 meters, Figure 3-6.  Figure 3-6 shows that we can expect 

a propeller efficiency of around 65% to 74%.  It is important to note that this efficiency prediction is 

based on the default propeller geometry provided by OpenProp.  The parametric design was then 

run again, setting the max propeller diameter at 0.12 meters and a much lower minimum propeller 

diameter, the results are shown in Figure 3-7.      
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Figure 3-6: Results after elimination of undesired results 

 
Figure 3-7: Second parametric run 

From the results shown in Figure 3-7 the ideal propeller set up using the default propeller geometry 

is a propeller with a diameter of between 0.11 and 0.12 meters spinning at 1500 RPM. 

3.3 OpenProp v2.3 Unique Propeller Design 
OpenProp v2.3 does not contain a graphical user interface (GUI), like version 1, and is a text based 

program.  The downloadable program files [2] contain several example inputs that one can use to 

develop their own scripts.  Below is a walkthrough and examples of how the code was modified and 
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used is this design process to design the candidate AUV’s propeller.  The final propeller was 

designed to operate at 1850 RPM based on the available NeuMotor 1925-3Y.  Appendix A contains 

the final input m file in its entirety.  

3.3.1 Input File, Rough Propeller Design 

The input m file, Appendix A, is similar to the GUI of OpenProp v1 and calls for most of the same 

inputs.  Lines 1-33 of the m file or lines 1-36 of Appendix A are the basic inputs like those listed in 

Chapter 3.2 and are self explanatory.  Lines 36-51 of the m file or lines 39-71 of Appendix A are more 

advanced options and contain options for defining the thickness, chord/diameter distribution, axial 

inflow velocities, max thickness/chord distribution and rake/diameter distribution.  Only the options 

that were modified are listed above, the other options provided in the input file were left at the 

default values.  The drag coefficient, line 45 of Figure3-9, of 0.0080 is an OpenProp default value 

that approximates the drag of the various cross sections of the propeller blade.  After reviewing the 

reference material provided on the OpenProp Wiki page [2] it was discovered that the 0.0080 

approximation was acceptable for blade lift coefficients of 0.2 to 0.5.  As can be seen in Appendix H 

the final propeller design only has lift coefficient values that fall into the 0.2-0.5 region over half of 

its length.  In order to determine the effect of this high lift coefficient the drag coefficient values 

from the root to ½ of the radius was doubled and then tripled.  This change in drag coefficient 

resulted in minimal changes in efficiency, ±1%.  Thus it was determined that the XCD has minimal 

effect on the design and was left at its default value.  Lines 64-77of the m file contains several other 

options that were left in the default configuration and were not used in this design process.  

 
Figure 3-8: Example selection of code from Input m file 
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3.3.2 Input File Modifications, Optimized Propeller Design 

In order to achieve the most efficient propeller design possible it is desirable to create a propeller 

with a high aspect ratio.  When OpenProp v2.3 is run with its default chord/diameter or XCoD, the 

code creates a low aspect ratio propeller.  In order to create this high aspect ratio propeller one 

must modify the XCoD matrix, line 44 of the actual m file or lines 54-55 of Appendix A.  OpenProp 

breaks the propeller into 10 stations along its radius, m file line 43 or lines 52-53 in Appendix A.  The 

propeller shape can be defined by changing the appropriate XCoD values.  The inputs used for this 

example are shown below, Figure 3-9, lines 37-51 were left at the default values, and lines 16-33 of 

Figure 3-8 are based on the design criteria listed in Chapter 1.  A 3-D image, which is created with 

OpenProp see Chapter 3.3.4, of the resulting propeller is shown in Figure 3-10.   

 

 
Figure 3-9: Default propeller geometry inputs 

 
Figure 3-10: Default propeller results 3D blade image 

This default propeller result is far from optimized and yields a propeller with an efficiency of 68.9%.  

This efficiency is optimistic because this is the propeller’s open water efficiency but the propeller is 

in fact behind the hull of the AUV and thus does not actually see the full 2 m/s ship speed.  There are 

two ways to take the hull of the vehicle in to account.  One is to use a thrust deduction fraction,  , 

which, along with Equation 3-1, can be used to estimate a new input Ship Velocity.  This ship velocity  
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is more characteristic of what the propeller actually sees and will yield a more realistic propeller 

design and efficiency estimation.  In Equation 3-1,     is the old Ship Velocity of 2 m/s and    is the 

new Ship Velocity to be input into the input m file.  

 

           3-1 
 

The second and most accurate way is to input the axial inflow variation as found by CFD [3] and keep 

the ship velocity at 2 m/s.  OpenProp then uses this inflow variation to effectively model the varying 

velocities seen by the propeller caused by the hull of the vehicle. In order to create a more realistic 

propeller with a less optimistic efficiency estimate this axial inflow variation caused by the wake of 

the vehicle should be taken into account.   The efficiency may drop as much as 5% when the axial 

inflow variation, XVA, is added into the calculation.  For the case above, after the code was run again 

with the axial inflow variation added to the input file the resulting propeller efficiency was 65.7% 

and the resulting propeller looked identical to the one shown in Figure 3-10. In order to improve on 

this efficiency the first geometry input that was modified was the cord to diameter ratio, XCoD.  The 

XCoD basically just changes the blade shape.  By changing the XCoD the propeller efficiency can be 

improved by 10% or more.  For this example we will start by including the CFD axial inflow results for 

the AUV vehicle [3].  Appendix B contains the formula provided by the CFD results and the points 

generated for use in the OpenProp input file.   

 

In order to fully optimize the design the XCoD needs to be altered until a point of diminishing 

returns in efficiency is found.  This was done by a simple trial and error methodology keeping one 

key fact in mind; a slim and smooth propeller will yield the most efficient design as long as cavitation 

is not present.  Below are several iterations that looked promising and are just a small selection of 

geometries that were tested. 

 

 
 

 

Open Prop Points, x/r XCoD 

0.2 0.0800 

0.3 0.0770 

0.4 0.0730 

0.5 0.07180 

0.6 0.0680 

0.7 0.0600 

0.8 0.0500 

0.9 0.0320 

0.95 0.0200 

1 0.0010 

Efficiency 78.73 

 

 

Figure 3-11: Example 1 chord modification 
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Figure 3-12: Example 2 chord modification

 

 

 

Open Prop Points, x/r XCoD 

0.2 0.0530 

0.3 0.0620 

0.4 0.0650 

0.5 0.0660 

0.6 0.0670 

0.7 0.0610 

0.8 0.0500 

0.9 0.0310 

0.95 0.0200 

1 0.0010 

Efficiency 78.83 

Figure 3-13: Example 3 chord modification 

Out of the three propellers shown above example 3, Figure 3-13, had the highest efficiency at 

78.83%.  This increase in efficiency over the starting 65.7% was achieved just by altering the XCoD of 

the input file.  Every time to code is re-run OpenProp re-optimizes the blade section angles and the 

blade thickness profile to achieve an optimize blade shape for the design conditions provided.    

 

The above propellers have succeeded in achieving the goal of high efficiency numbers but there is 

one big problem with them, they are difficult, if not impossible to manufacture as they are.  The 

OpenProp default Thickness profile includes infinitely small, sharp leading and trailing edges.  This 

particular problem is, however, an easy fix.  The default Thickness distribution is option ‘1’ in line 38 

of the m file and line 42 of Appendix A.  Option 1 yields the 2-D cross section with sharp leading and 

trailing edges shown in Figure 3-14.  To set OpenProp v2.3 to design a blade with a leading and 

trailing edge with a radius just change option ‘1’ to option ‘4.’  Option ‘4’ yields the 2-D cross section 

shown in Figure 3-15, this change resulted in no change to the predicted efficiency. 

Open Prop Points, x/r XCoD 

0.2 0.0650 

0.3 0.0770 

0.4 0.0730 

0.5 0.07180 

0.6 0.0680 

0.7 0.0600 

0.8 0.0500 

0.9 0.0320 

0.95 0.0200 

1 0.0010 

Efficiency 78.74 
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Figure 3-14: OpenProp thickness option 1 

 
Figure 3-15: OpenProp thickness option 4 

 

The next problem that needs to be addressed is the thickness of the blades themselves.  The default 

thickness profile yields a thin, structurally unsound propeller that may break and/or bend when 

loaded or handled roughly.  At this stage it is convenient to have access to some type of rapid 

prototyping machine to check the manufacturability and structural integrity of the propeller.  The 

default thickness profile, t0oc0,  was modified and the thickness was increased incrementally until 

an acceptable design was found.  A comparison of the default values and the first iteration of the 

modified propeller thickness profile is shown in Table 3-1.  The values shown in Table 3-1 are 

thickness over chord ratios and are found on lines 66-67 of Appendix A or line 49 of the m file. This 

modified propeller was built on an Alaris30 rapid prototyping machine [6].  The resulting propeller is 

shown in Figure 3-16.  Notice that the left tip of the propeller is drooping slightly, this is not by 

design, and is caused by the lack of significant blade thickness. 

     Table 3-1: Thickness over Chord (t0oc0) profile example 1 

XR Default t0oc0 Modified t0oc0 

0.2 0.2056 0.3056 

0.3 0.1551 0.2551 

0.4 0.1181 0.2181 

0.5 0.0902 0.1902 

0.6 0.0694 0.1694 

0.7 0.0541 0.1541 

0.8 0.0419 0.1419 

0.9 0.0332 0.1332 

0.95 0.0324 0.1324 

1.0 0.0000 0.0000 
 

 
Figure 3-16: Prototype propeller 1 

After learning that the propeller thickness and chord needs to be increased in order to achieve a 

structurally sound design a second prototype propeller was created.  This propeller also 
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incorporates a slight rearward rake, defined as the rake over the diameter.  A comparison of the 

default chord distribution, thickness and rake to the second prototype design is shown in Table 3-2. 

A picture and side profile CAD drawing of the second prototype propeller is provided in Figure 3-17.

Table 3-2: 2nd Prototype propeller t0oc0, XCoD and Rake modifications 

XR  Default t0oc0 2nd Modified t0oc0  Default  XCoD 2nd Prototype XCoD  Rake 

0.2  0.2056 0.3256  0.2056 0.0650  0 

0.3  0.1551 0.2651  0.1551 0.0650  0.005 

0.4  0.1181 0.2251  0.1181 0.0665  0.01 

0.5  0.0902 0.1952  0.0902 0.0660  0.015 

0.6  0.0694 0.1784  0.0694 0.0670  0.02 

0.7  0.0541 0.1591  0.0541 0.0610  0.025 

0.8  0.0419 0.1469  0.0419 0.0500  0.03 

0.9  0.0332 0.1382  0.0332 0.0310  0.035 

0.95  0.0324 0.1374  0.0324 0.0200  0.037 

1.0  0.0000 0.0000  0.0000 0.0010  0.04 

         

 

 

 

Figure 3-17: 2nd Prototype propeller 

The process of adjusting the thickness and chord may require several prototype propellers to be 

created and scrutinized until a satisfactory propeller is developed.  In this case 7 separate propeller 

thickness profiles were manufactured and scrutinized before a propeller was selected.  The 

thickness, chord distribution and rake of the final propeller are provided below.  In order to further 

increase the durability of the final propeller the blades were further thickened and the chord 

distribution of the tip was also increased, these inputs are shown in Table 3-3.  
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Table 3-3: Final Propeller Geometry Inputs 

XR  Final t0oc0 Final XCoD  Rake 

0.2  0.4606 0.0650  0 

0.3  0.4001 0.0650  0.005 

0.4  0.3601 0.0655  0.01 

0.5  0.3302 0.0660  0.015 

0.6  0.3034 0.0670  0.02 

0.7  0.2841 0.0650  0.025 

0.8  0.2719 0.0600  0.03 

0.9  0.2632 0.0450  0.035 

0.95  0.2624 0.0330  0.037 

1.0  0.0000 0.0010  0.04 

3.3.3 Run Script 

The OpenProp v2.3 Run Script is an outline of commands that are used to manipulate the OpenProp 

v2.3 source code.  Appendix C contains the Run Script used for the final propeller design in its 

entirety.  The m-file itself is commented in detail and is straightforward in its use.  Each command is 

discussed in detail in Chapter 3.3.4.  The Run Script described herein is a modified version of the one 

provided by the original examples contained in the OpenProp v2.3 downloadable code package.  

3.3.4 Results and Off Design Analysis 

The following results were taken from one iteration of the propeller design for illustration purposes 

only, and full text files are provided for the final AUV propeller design in Appendix E-H.  This section 

is meant to be a brief overview of the various plots and text files that are generated by OpenProp 

v2.3.  

 

After an input file is constructed and the EppsOptimizer is run there are several options in the Run 

Script that may be used to analyze and obtain visual and statistical representations of the designed 

propeller.  The first option that was used is the ‘Make_Reports(pt)’ command.  This command 

generates three text based reports as well as a MATLAB figure called the Graphical Report that 

summarizes several propeller statistics.  The first generated text file is a summary of the input file 

and is named prefix_Input.txt, where the prefix is defined by the Input.m file, which can be found on 

line 11 of the m file or line 13 of Appendix A under the option ‘filename’.  The next text file is named 

prefix_Output.txt and is a summary of the outputs provided by the OpenProp v2.3 code.  This file 

summarizes all of the propeller constants and other important statistics like the efficiency and 

coefficients of torque, thrust and advance. The last file generated is the prefix_Performance.txt file.  

This file contains many exacting details on the propeller itself including total inflow velocity, section 

lift coefficient, and undisturbed flow angle all  of which are measured along defined stations along 

the radius of the propeller.  Only the Output file was used in this design process, the other 

information is interesting to have but not necessary.  A single figure called ‘Graphical Report’ is also 

produced and is shown in Figure 3-18.  At the top of the figure is a summary of the key propeller 
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constants and the efficiency.  It is important to note that none of the generated figures are 

automatically saved and must be individually saved and named. 

 

The next option in the Run Script is the ‘Geometry_Original(pt)’ command, this runs the default 

geometry script that comes in the OpenProp v2.3 download.  Note that the file was renamed from 

its default name of ‘Geometry.’  This generates several plots and a single text file.  This command 

also generates a Rhino CAD input file as well as a SolidWorks CAD input file.  The text file that is 

generated is named prefix_Geometry.txt and summarizes the physical geometry of the propeller 

including statistics like section pitch/diameter and chord-length/diameter ratios.  This command 

also generates two figures, a 2-D and a 3-D Blade Image as shown in Figures 3-19 and 3-20.  The 2-D 

Blade Image figure shows cross section blade shapes along the radius of the propeller blade.  The 3-

D Blade Image figure is an interactive MATLAB figure where the blade image can be rotated and 

zoomed so the blade can be scrutinized from all angles.  The 3-D image was particularly helpful in 

determining errors in the blade shape, for example odd twists and lumps in the blade were noticed 

in several design iterations.  These errors can be contributed to XCoD input errors. 

 
Figure 3-18: Graphical report 
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Figure 3-19: 2-D blade image 

 
Figure 3-20: 3-D blade image 

There is one geometry option available in the downloadable OpenProp v2.3 code package.  The 

original code is described above and the a second geometry command file named Geometry(pt), 

was created by modifying the original geometry m file.  This m file was modified to produce a series 

of tab delineated text files that can be used with practically any CAD program.  Each file contains a 

series of coordinates that define a single cross sectional profile of one of the propeller blades.  All of 

the files together define a single blade that can then be rotated to generate a propeller with the 
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desired number of blades.  The number of points along the chord and the number of stations used 

along the radius are defined by the Mp and Np values of the Input file, lines 24-25 of the actual m 

file or lines 26-27 of Appendix A.  This modified geometry file is provided in Appendix I.  

 

Once a propeller is developed it is important to also analyze its off design performance in case a 

mission or adverse conditions requires the vehicle run outside of its intended operating point.  

OpenProp v2.3 is able to generate the propeller performance curves that show the off design point 

performance of the propeller design.  The ‘Analyze off-design states’ section in the Run Script, lines 

51-55 of the m file or lines 50-54 of Appendix C, can be used to generate the off design performance 

data.  In order to visualize this data the ‘Plot Off Design Results’ section, lines 58-78 of the m file or 

lines 57-83 of Appendix C, can be used to generate a plot similar to the one shown in Figure 3-21.  In 

order in increase or decrease the range analyzed change the Js_all option to the desired range, line 

52 of the m file or line 51 of Appendix C.  An example of the resulting plot is shown below in Figure 

3-21.  It is important to note that the legend has been modified from its default setting to more 

clearly describe the results.     

 

 
Figure 3-21: Propeller performance curves 

The next check that should be done is a cavitation check.  ‘Cav_CavitationMap(pt)’ was run to 

generate a cavitation map as shown in Figure 3-22.  The green marks on the cavitation map, Figure 

3-22, denote areas with no cavitation while red marks would denote areas that are predicted to 

cavitate at the designated operating point.  OpenProp runs this calculation at the specified center 

shaft depth of 3 meters, which is the OpenProp default value and can be found on line 34 of the 

input m file or line 36 of Appendix A.   In this case no cavitation was predicted.   
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Figure 3-22: Cavitation map 
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Chapter 4 - Propeller and Motor Optimization 
The propeller and motor optimization is an iterative process and both are dependent on each other. 

The motor and propeller process is also dependent on the rest of the system including, seals, 

bearings, shafts and any other electronics that may be required in the system.  Each component can 

be changed independently but are all dependent on one another.  One must be diligent in their 

book keeping to make sure nothing is left out of the system so everything will come together as 

expected and to allow for the highest efficiency value and most accurate possible efficiency 

estimation possible. 

 

After the motor calculations have been done, as in Table 2-1, a few key points are screened before a 

custom propeller design is attempted.  In order to make the system as efficient as possible it is 

desirable for the propeller to spin as slowly as possible, so a low RPM is desirable.  So if two motors 

are compared, Motor 1 spins at 5,000 RPM and Motor 2 spins at 2,000 RPM and their efficiencies 

are similar then Motor 2 would be more desirable because it would lead to a more efficient 

propeller design and thus a more efficient system overall.  The propeller efficiency is not the only 

factor in this decision and every aspect of the propulsion system must be taken into account.  For 

example, it is likely that Motor 2 will generate more torque than Motor 1, if this torque is not 

required then Motor 1 may actually lead to a more efficient system because the system would 

operate closer to Motor 1’s maximum efficiency while Motor 2 would be operating off of its 

designed max efficiency.   Also, if the RPM at max efficiency was 10,000 RPM and the shaft seal 

being utilized in the system is rated to only 5,000 RPM, it is obvious that the proposed motor does 

not meet the desired specifications.  Since the design space is not limited to off the shelf propellers 

the motor selection process is iterative where motors are analyzed and then propellers are designed 

for the specific       RPM result of the specific motor being looked at in order to get an estimate of 

the total propulsive efficiency.  This propeller design is not meant to be an optimized design but is 

instead just a rough estimation using OpenProp’s default settings, see Chapter 3.4.1.  Once an 

estimated propeller is created a total torque required by the system can be estimated.  The motor 

can then be analyzed at this required torque and its actual performance can be determined as per 

the example in Table 2-2.  This off design efficiency is the value that should be used in the final 

efficiency calculation.  Table 4-1 below is a summary of various efficiencies that were used in this 

design process.  Some are rule of thumb values while others are determined through mathematical 

means like the motor efficiency for example. The hull efficiency depends on the wake fraction and 

thrust deduction fraction of the vehicle.  In the case of this design the wake fraction, w, and thrust 

deduction fraction, t, were determined by CFD [3] but were not utilized. 

Table 4-1: Summary of efficiencies 

Electronic Speed Controller,  e 0.97 [8] 

Hull,  H Calculation 

Seal,  seal Experiment 

Propeller,  P OpenProp 

Motor,  M Calculation 
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Equation 4-1 can then be used to determine the hull efficiency,   .  The CFD work determined that 

the value of w is 0.3 and the value of t is 0.06 for the candidate AUV.  If the wake behind the vehicle 

is taken into account during the propeller design, as was done in this study, then this efficiency 

calculation is unnecessary. 

                4-1 
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Chapter 5 – Component Testing  

5.1 Seal and Motor Testing 
In order to validate manufacturer claims and boost confidence in the proposed shaft seals for the 

AUV the seals were thoroughly tested.  The motor shaft seals were tested at a wide variety of 

pressures from running depth, 50psi, to the maximum expected operational depth, 750psi.  The 

original seals provided by BAL [4] were found to have a slow leak at maximum pressure.  This was 

reported to the company and they delivered a handful of redesigned seals for testing.  These were 

put through the same test regime as the previous faulty seals and were found to perform within 

specifications.  Both sets of test results are presented for comparison purposes.   

 

Two different tail designs were considered, a ‘wet’ tail and a ‘dry’ tail.  The dry tail is completely 

sealed off and the components are run in air and there is a pressure differential equal to the water 

pressure at depth.  In the ‘wet’ tail the drive components are isolated from the vehicle and are 

submersed in oil.  A flexible membrane is use to equalize the pressure between the surrounding 

water and the oil inside of the tail.  This effectively leads to no pressure differential across the shaft 

seals of the propulsion system and maneuvering fins.  In the dry configuration the added torque on 

the shaft by the seal increases as the outside pressure increases.  For the wet configuration there is 

no pressure difference so the added torque is constant across all outside pressures and is equivalent 

to the running torque at zero depth. 

5.1.1 Dry Tail Seal Testing 

Four different seals were tested in this experiment.  Each seal company specified high tolerance 

gland dimensions for proper performance of their particular seal.  In order to accommodate the four 

different seals in the same test apparatus multiple interchangeable Seal Housings were 

manufactured, one for each seal, as shown in Figure 5-1. 
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Figure 5-1: Seal Housings 

The American High Performance Seal proved to be too delicate and repeatedly fell apart upon 

installation.  The seal was deemed too fragile for practical use and was removed from testing.  The 

475 Shaft Seal is an off the shelf shaft seal that is currently in use on Virginia Tech's 475 fleet of 

AUVs.  This seal is a standard shaft seal purchased from McMaster-Carr.com part number 13125K65.  

The 475 Fin Seal is also from McMaster-Carr.com and has a part number 13125K63; this seal is also 

the proposed fin seal for the candidate AUV.  The BAL Seal is a custom seal manufactured to the 

candidate AUV operating conditions by a company called BAL Seal Engineering Inc [4].  Two different 

prototype seals were developed by BAL. 

 

A pressure chamber, with gauge and valve system was then manufactured as shown in Figure 5-2.  

The pressure chamber consists of a schedule 40 standard wall aluminum threaded pipe with a 

diameter of 1 inch and a length of 6 inches.  The end that connects the valve and gauge assembly is 

a high-pressure aluminum female reducing coupling that reduces the 1 inch NPT to a ½ inch NPT.  A 

reducing ½ inch to ¼ inch high pressure brass fitting is attached to the aluminum female reducing 

coupling.  A high pressure brass tee fitting was then used to attach the gauge and two way high 

pressure purge valve.  A length of abrasion resistant PTFE hose rated to 3000psi was used to connect 

the pressure chamber to an air cylinder and regulator that was used to set the pressure of the 

system during testing. 
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Figure 5-2: Pressure Chamber  

 

Figure 5-3: Seal torque test set up 

 Figure 5-3 shows the completed experimental set up.  The pressure chamber was mounted to a V-

Block that was then mounted to a custom aluminum base plate via C-clamps that allowed precise 

alignment of the shaft protruding from the pressure chamber and the shaft of the Vibrac 50 in-oz 

torque transducer.  The Series 1 Vibrac torque transducer is rated to a maximum torque of 50 in-oz 
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and is capable of surviving a 100% overload without failure.  The accuracy of Vibrac transducer is +/- 

1% of the span and is capable of handling up to 10,000 RPM [9].  A power supply was initially used to 

power the drive motor but it was discovered that it could not provide adequate amperage to the 

motor at the higher test pressures.  A Lithium Polymer battery was used instead of the power supply 

for the duration of the experiment.  The motor used was a brushless Hyperion Z-2213-24 exterior-

rotor. 

 

The test results for the first prototype BAL seal are shown in the upper plot in Figure 5-4.  The 

breakaway torque for the existing 475 fin seal is also included in Figure 5-4. All tests were run at 

2000 RPM.  Breakaway torque is the impulse required to start the shaft turning and the running 

torque is the measured torque after the system has reached a steady state at 2000 RPM. 

 

 
Figure 5-4: Prototype BAL seal torque test results, prototype 1 top, prototype 2 bottom 

The second prototype BAL seal was tested using the same experimental set up as the first but this 

seal was found to add more torque to the system than the first prototype seal.  The original motor 
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used in the testing setup was unable to turn the system at the higher test pressures.  Modifications 

to the test stand were manufactured in order to mount a larger motor.  A NeuMotor 1925-1Y was 

used to complete the testing.  The torque results are shown in the bottom plot in Figure 5-4.  The 

second prototype BAL seal running torque was found to be 8.3 in-oz, at the most, at the expected 

average operating depth of 10 meters.  In order to provide a factor of safety in the system the 50psi 

results were used in all calculations.   

5.1.2 Oil-Filled Tail Testing 

The next experimental test that was undertaken was to determine the possible losses caused by an 

oil filled tail.  Since an oil-filled tail equalizes with the outside pressure there is effectively no 

pressure difference across the shaft seal.  Thus no pressure chamber was required and the test was 

run at atmospheric pressure.  A simple PVC pipe chamber was manufactured to house the oil and 

motor components.  Power and communication wires are allowed to pass out of the chamber 

through two vertical protruding pieces.  The chamber and its components are shown in Figure 5-5 

through 5-7.  A NeuMotor 1925-1Y interior-rotor and a Hyperion Z-2213-24 exterior-rotor motors 

were used in the test.  The results of the testing are summarized in Table 5-1.  The exterior-rotor 

style motor was shown to have significant losses caused by the oil and significant stirring of the oil 

was observed while.  The losses of the interior-rotor motor were much less and no stirring of the oil 

was observed.  The oil used was Carnation Light Mineral Oil, the product number is 1067-6 [10].  

This oil is the exact oil that would be used in an actual oil filled tail configuration.  The 1925-1Y is 

also dimensional identical to the proposed 1925-3Y. 

 
Figure 5-5: Oil test chamber 
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Figure 5-6: Oil chamber end cap, motor bulkhead and seal adapter 

 
Figure 5-7: NeuMotor 1925-1Y mounted to motor bulkhead 
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Table 5-1: Oil filled test results 
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Chapter 6 Final Propulsion Design 

6.1 Final Motor Selection and Propeller Design for Dry Tail 
At the time of writing two motors have been selected and ordered from the company NeuMotor [7], 

the 1925-3Y (now called the 1924-3Y by NeuMotor) and the 1521-10.5Y.  The 1521 series motor is 

not listed on the NeuMotor website and was discovered after requesting a chart that outlined what 

custom motors they could wind using the 1500 series chassis.  The chart provided by NeuMotor is 

provided in Appendix D.  These two motors were analyzed as per Chapter 2, the results of this 

analysis are summarized in Tables 6-1 and 6-2.  Both motor selections recommended are capable of 

turning the system at all pressure values measured and shown in Chapter 5 Figure 5-5.  The torque 

required used for these off efficiency calculations was 21.43 in-oz.  The torque required was found 

by adding the torque imparted to the shaft by the seal, 8.3 in-oz, to the torque required to turn the 

final propeller design, 13.13 in-oz.  We are assuming the 8.3 in-oz added by the seal will be correct 

even though the experiment was run at 2000 RPM and the actual system is turning at around 1850 

RPM. 

Table 6-1: Summary of off motor characteristics 

Motor Rm Io Kv Max Eff Q Max Eff RPM Max Eff 

1521-10.5Y 0.689 0.19 149 81.595 16.11 1884.29 

1925-3Y 0.18 0.3 136 87.965 45.05 1785.75 

 

 

Table 6-2: Motor off design characteristics 

Motor RPM Off Eff Motor Off Eff 

1521-10.5Y 1823.99 80.93 

1925-3Y 1843.87 85.01 

The proposed motors have nearly identical performance characteristics for the proposed 

application.  The 1925 is about 4% more efficient than the 1521 but the 1521 is a smaller motor and 

would remove about 5 oz off of the total system weight.  In order to select a final motor both 

motors were ordered for in house testing and evaluation, which is ongoing.  Conveniently both 

motors have identical mounting options. 

 

The final AUV prototype propeller is shown in Figure 6-1.  The final propeller design was made at a 

diameter of 0.12 meters and included an increased tip chord and thickness to help mitigate tip 

flexion when the propeller is under load.  In order to validate the diameter chosen the propeller was 

redesigned using a diameter of 0.13, 0.11, and 0.10 meters.  All alternative diameters yielded a 

propeller with efficiency lower than that of the final propeller designed with a diameter of 0.12 

meters.  A 3-D drawing of the final propeller is provided in Figure 6-3.  The final propellers thickness, 

chord distribution and rake inputs are shown in Table 6-3, the input file is shown in Appendix A in its 

entirety.   
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Figure 6-1: Final Propeller Prototype 

Table 6-3: Final Propeller Prototype Geometry 

XR  Final t0oc0 Final XCoD  rake0 

0.2  0.4606 0.0650  0 

0.3  0.4001 0.0650  0.005 

0.4  0.3601 0.0655  0.010 

0.5  0.3302 0.0660  0.015 

0.6  0.3034 0.0670  0.050 

0.7  0.2841 0.0650  0.025 

0.8  0.2719 0.0600  0.030 

0.9  0.2632 0.0450  0.035 

0.95  0.2624 0.0330  0.037 

1.0  0.0000 0.0010  0.040 

The propeller performance curves and other OpenProp v2.3 outputs, as described in Section 3.3.4, 

are shown below in Figures 6-2 through 6-7.  The various output text files are provided, in their 

entirety, in Appendix E through H.   

 

 From the tests described in Chapter 5 the running torque of the seal at the candidate AUV’s 

operating pressure of 50psi was found to be 8.3 in-oz at 2000 RPM.  Using this result the power 

absorbed by the seal was determined to be 11.31 watts for the 1925-3Y and 11.19 watts for the 

1521-10.5Y using Equation 6-1 where   is the rotations per second of the system and   is the 

torque.

       
6-1

The power into the propeller can also be found by using Equation 6-1.  We know from OpenProp 

that the torque required to turn the propeller is 13.13 in-oz and that the design point was 1850 
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RPM.  Using these quantities the power into the propeller was found to be 17.97 watts.  We also 

know that, at this design point, the 1925-3Y requires 34.38 watts and the 1521-10.5 requires 35.73 

watts to turn the system.  Assuming that the controller has an efficiency of 97% [8] the total power 

into the system is 35.44 watts for the 1925-3Y and 36.83 watts for the 1521-10.5Y.     

 

We know that the vehicle has a drag of 8.11 Newtons at 2 meters per second.  Using Equation 6-2, 

where   is the drag in this case and   is the velocity of the vehicle, it was determined that the 

effective power is 16.22 watts for the vehicle to travel at 2 meters per second.  

      6-2

By dividing this effective power by the total power into the system the total efficiency of the system 

can be calculated to be 45.76% for the 1925-3Y and 44.03% for the 1521-10.5Y.  

 

A summary of the final predicted propulsive efficiency and other statistics is provided in Table 6-4 

and 6-5.  Table 6-6 is a summary of the data points used to create the KT and KQ plots in Figures 6-4 

and 6-5.  Figure 6-6 shows no cavitation to be predicted for the propeller at this design point. 

 
Figure 6-2: Final AUV 2-D propeller image
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Figure 6-3: Final AUV 3-D propeller image 

 

Figure 6-4: Final AUV propeller performance curves 
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Figure 6-5: Kt and Kq performance curves 

 

 

Figure 6-6: Final AUV propeller cavitation map  
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Table 6-4: Motor power consumption summary 

Motor RPM Max Eff RPM Off Eff Motor Off Eff Watts at 14V Current Drawn, amp 

1521-10.5Y 1884.2 1823.99 80.93 35.73 2.55 

1925-3Y 1785.75 1843.87 85.01 34.38 2.45 

Table 6-5: Summary of propulsion system efficiencies 

Component Efficiency 

Electronic Speed Controller,  e 0.97 [8] 

Propeller,  P 0.7993 

Motor,  M 1925-3Y 0. 8501 

Motor,  M 1521-10.5Y 0.8093 
  

Total Efficiency with 1925-3Y 0.4576 

Total Efficiency with 1521-10.5Y 0.4403 

 

Table 6-6: Summary of KT and 10*KQ data points 

X Value KT 10*KQ 

0.10 0.06058 0.04650 

0.45 0.05470 0.04413 

0.50 0.04857 0.04124 

0.55 0.04244 0.03796 

0.60 0.03610 0.03417 

0.65 0.02940 0.02973 

0.70 0.02255 0.02469 

0.75 0.01559 0.01902 

0.80 0.008554 0.01275 

0.85 0.001502 0.005974 
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Chapter 7 Conclusions 
A mathematical motor characterization process was proposed to characterize a brushless electric 

motor based on the three basic motor constants,    ,    , and    provided by the manufacturer of 

the motors.  A wide variety of electric motors were characterized using the proposed method and 

the field was narrowed down by using results from the motor characterization process along with 

the RPM range obtained from the parametric propeller analysis.  Prototype propellers were then 

created to yield the highest efficiency possible based on the RPM range obtainable by the candidate 

motors and the RPM and diameter range predicted by the parametric propeller analysis.  Once a 

unique propeller blade shape was finalized the manufacturability of the blade was taken into 

account.  The chord distribution and thickness was then altered and prototype propellers were 

manufactured on an Alaris30 3D printer.  This propeller prototyping process was repeated until a 

structurally acceptable propeller blade was created.  A variety of seals were tested and the results, 

combined with the torque required to turn the propeller obtained from OpenProp, were used to 

determine the torque required to turn the candidate AUV's propulsion system.  This result was then 

used to determine the off design motor characteristics of the candidate motors and a final motor 

selection was made.  A final efficiency prediction was then made based on the predicted total power 

consumed by the system and the predicted effective power required.     

 

The proposed design process is applicable to a variety of surface and under water propulsion design 

applications.  Future work could be done to validate the process described by designing, building 

and testing a system and then comparing the predicted efficiency results with measured efficiency 

results from the prototype propulsion system.      
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Appendix A – Input Matlab m File for Final Propeller Design 
 

Due to text wrapping the line numbers are slightly off when compared to the m-file.
% --------------------------------------------------------- Example_input.m 1 
% Created: 5/28/09, Brenden Epps, bepps@mit.edu 2 
% Modified: 2010, Richard Duelley, nifty@vt.edu, additional comments and  3 
% organization 4 
% This script creates an "input." data structure for use in OpenProp. 5 
% 6 
% To design a propeller using these inputs, run:  design = 7 
EppsOptimizer(input) 8 
% 9 
% ------------------------------------------------------------------------- 10 
clear, close all, clc 11 
  12 
filename   = 'Run 1';       % filename prefix 13 
notes      = '';            % design notes 14 
  15 
% ------------------------------------------------------- Design parameters 16 
Z         = 2;              % number of blades  17 
D         = .12;            % propeller diameter [m] = [ft] * [0.3048 m/ft] 18 
Dhub      = .018 ;          % hub diameter [m] = [ft] * [0.3048 m/ft] 19 
  20 
Vs        = 2.0;            % ship speed [m/s] = [ft/s] * [0.3048 m/ft] 21 
N         = 1850;           % propeller speed [RPM] 22 
  23 
THRUST    = 8.66916;        % required thrust [N] = [lbf] * [4.448 N/lbf] 24 
  25 
Mp        = 20;             % number of vortex panels over the radius 26 
Np        = 28;             % number of points along the chord 27 
ITER      = 10;             % number of iterations in wake alignment 28 
Rhv       = 1;              % hub vortex radius / hub radius 29 
  30 
  31 
rho       = 1025;           % water density [kg/m^3] = [slug/ft^3] * (515.38 32 

[kg/m^3]/[slug/ft^3]) 33 
H         = 3;              % Shaft centerline depth [m] = [ft] * [0.3048 34 

m/ft] 35 
dV        = .3;             % Inflow variation [m/s] 36 
  37 
  38 
% --------------------------------------------- Blade 2D section properties 39 
Meanline   = 'NACA a=0.8';           % Meanline type  (1 == NACA a=0.8, 2 ==  40 

parabolic) 41 
Thickness  = 4;           % Number 4 gives a nice rounded leading and  42 
     trailing edge(1 == NACA 65A010, 2 ==  43 
     elliptical, 3 == parabolic, 4 == NACA 65A010 44 

(modified)) 45 
alphaI     = 1.54;        % [deg] ideal angle of attack  (should match with 46 

Meanline type) 47 
CLI        = 1.0;        % [ ],  ideal lift coefficient (should match with 48 

Meanline type) 49 
  50 
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  51 
XR         = [0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    0.95   52 
1.0];    % radius / propeller radius 53 
XCoD       = [0.065 0.065 0.0655 0.0660 0.0670 0.065 0.060 0.045 0.033 54 
0.0010]; % chord / diameter 55 
XCD        = [0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 56 
0.0080]; % section drag coefficient 57 
XVA        = [0.336624      0.550666      0.70672      0.79875      0.857008      58 
0.887554      0.902496      0.913942      0.922138      0.934     ]; % axial 59 
inflow velocity / ship velocity, See AUVPropInFlowData Excel Sheet: By 60 
Richard Duelley 61 
XVT        = [0      0      0      0      0      0      0      0      0      62 
0     ]; % tangential inflow velocity / ship velocity 63 
%f0oc0    = [0.0174 0.0195 0.0192 0.0175 0.0158 0.0143 0.0133 0.0125 0.0115 64 
0.0000]; % max section camber    / chord 65 
t0oc0      = [0.4606 0.4001 0.3601 0.3302 0.3034 0.2841 0.2719 0.2632 0.2624 66 
0.0000]; % max section thickness / chord 67 
skew0      = [0      0      0      0      0      0      0      0      0      68 
0     ]; % skew [deg] 69 
rake0      = [0      0.005      0.01      0.015      0.02      0.025      70 
0.03      0.035      0.037      0.04     ]; % rake / diameter 71 
 72 
         73 
% ------------------------------------------------------------------- Flags 74 
Propeller_flag  = 1;      % 0 == turbine, 1 == propeller 75 
  Viscous_flag  = 1;      % 0 == viscous forces off (CD = 0), 1 == viscous 76 

forces on 77 
      Hub_flag  = 1;      % 0 == no hub, 1 == hub 78 
     Duct_flag  = 0;      % 0 == no duct, 1 == duct 79 
     Wake_flag  = 0;      % 0 == Horseshoe(...,Wrench(...)), 1 ==  80 
     Wake_Horseshoe(...) 81 
     Plot_flag  = 0;      % 0 == do not display plots, 1 == display plots 82 
    Chord_flag  = 0;      % 0 == do not optimize chord lengths, 1 == optimize 83 

chord lengths 84 
Optimizer_flag  = 2;      % 1 == Lerbs optimizer, 2 == Epps optimizer 85 
 Lagrange_flag  = 0;      % 0 == do not fix Lagrange multiplier, 1 == fix 86 

Lagrange multiplier 87 
  88 
Make2Dplot_flag = 1; % 0 == do not make a 2D plot of the results, 1 == make 89 

plot 90 
Make3Dplot_flag = 1; % 0 == do not make a 3D plot of the results, 1 == make 91 

plot 92 
Make_Rhino_flag = 1; % 0 == do not make Rhino files, 1 == make Rhino files 93 
  94 
% ---------------------------------------------- Compute derived quantities 95 
n       = N/60;                        % revolutions per second [rps] 96 
R       = D/2;                         % propeller radius [m] 97 
Rhub    = Dhub/2;                      % hub radius [m] 98 
Rhub_oR = Rhub/R; 99 
Js      = Vs/(n*D);                    % advance coefficient 100 
L       = pi/Js;                       % tip-speed ratio 101 
CTDES   = THRUST/(0.5*rho*Vs^2*pi*R^2);  % CT thrust coefficient required           102 
     103 
dVs     = dV/Vs;                       % axial inflow variation / Vs 104 
CDoCL   = mean(XCD)/CLI; 105 
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  106 
ALPHAstall = 8*pi/180;  % [rad], stall angle of attack - ideal angle of 107 

attack 108 
  109 
% =========================================================================        110 
% ================================================= Pack up input variables 111 
input.filename   = filename;    % filename prefix for output files 112 
input.date       = date;        % today's date 113 
  114 
input.part1      = '------ Performance inputs ------'; 115 
input.Z          = Z;           % [1 x 1], [ ] number of blades 116 
input.N          = N;           % propeller speed [RPM] 117 
input.D          = D;           % propeller diameter [m]   118 
input.Vs         = Vs;          % [1 x 1], [m/s] ship speed 119 
input.Js         = Js;          % [1 x 1], [ ] advance coefficient, Js = 120 
Vs/nD = pi/L 121 
input.L          = L;           % [1 x 1], [ ] tip speed ratio, L = omega*R/V 122 
input.THRUST     = THRUST;      % required thrust [N] 123 
input.CTDES      = CTDES;       % [1 x 1], [ ] desired thrust coefficient 124 
  125 
input.part2      = '------ Geometry inputs ------'; 126 
input.Mp         = Mp;          % [1 x 1], [ ] number of blade sections 127 
input.Np         = Np;          % [1 x 1], [ ] number of points along the 128 

chord 129 
input.R          = R;           % [1 x 1], [m] propeller radius 130 
input.Rhub       = Rhub;        % [1 x 1], [m] hub radius 131 
input.XR         = XR;          % [length(XR) x 1], [ ] input 132 

radius/propeller radius 133 
input.XVA        = XVA;         % [length(XR) x 1], [ ] input axial inflow 134 

velocity  at XR 135 
input.XVT        = XVT;         % [length(XR) x 1], [ ] input swirl inflow 136 

velocity  at XR 137 
input.XCD        = XCD;         % [length(XR) x 1], [ ] input drag 138 

coefficient       at XR 139 
input.XCoD       = XCoD;        % [length(XR) x 1], [ ] input chord / 140 

diameter       at XR 141 
input.t0oc0      = t0oc0;       % [length(XR) x 1], [ ] input thickness / 142 

chord      at XR  143 
input.skew0      = skew0;       % [length(XR) x 1], [ ] input skew  [deg] 144 

      at XR  145 
input.rake0      = rake0;       % [length(XR) x 1], [ ] input rake X/D       146 
at XR  147 
input.Meanline   = Meanline;    % 2D section meanline  flag 148 
input.Thickness  = Thickness;   % 2D section thickness flag  149 
input.ALPHAstall = ALPHAstall;  % [rad], stall angle of attack - ideal angle 150 

of attack 151 
input.alphaI     = alphaI;      % [1 x 1], [deg] input ideal angle of attack 152 

at XR  153 
input.CLI        = CLI;         % [1 x 1], [ ] input ideal lift coefficient 154 

at XR 155 
input.CDoCL      = CDoCL;       % [1 x 1], [ ] blade section drag coefficient 156 

/ lift coefficient 157 
  158 
input.part3      = '------ Computational inputs ------'; 159 
input.ITER            = ITER;           % [ ] number of iterations 160 
input.Propeller_flag  = Propeller_flag; % 0 == turbine, 1 == propeller 161 
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input.Viscous_flag    = Viscous_flag;   % 0 == viscous forces off (CD = 0),  162 
1 == viscous forces on 163 

input.Hub_flag        = Hub_flag;       % 0 == no hub, 1 == hub 164 
input.Duct_flag       = Duct_flag;      % 0 == no duct, 1 == duct 165 
input.Plot_flag       = Plot_flag;      % 0 == do not display plots,  166 

1 = display plots 167 
input.Chord_flag      = Chord_flag;     % 0 == do not optimize chord lengths, 168 

1 == optimize chord lengths 169 
input.Wake_flag       = Wake_flag;      % 0 == Horseshoe(...,Wrench(...)),  170 

1== Wake_Horseshoe(...) 171 
input.Optimizer_flag  = Optimizer_flag; % 1 == Lerbs optimizer, 2 == Epps 172 
optimizer 173 
input.Lagrange_flag   = Lagrange_flag;  % 0 == do not fix Lagrange 174 

 multiplier, 1 == fix Lagrange multiplier  175 
input.Make2Dplot_flag = Make2Dplot_flag; 176 
input.Make3Dplot_flag = Make3Dplot_flag; 177 
input.Make_Rhino_flag = Make_Rhino_flag; 178 
nput.Rhv              = Rhv;         % [1 x 1], [ ] hub vortex radius / hub 179 
radius 180 
  181 
input.part4      = '------ Cavitation inputs ------'; 182 
input.rho        = rho;         % [1 x 1], [kg/m^3] fluid density 183 
input.dVs        = dVs;         % [1 x 1], [ ] ship speed variation / ship 184 

speed 185 
input.H          = H;           % [1 x 1] 186 
  187 
input.part5      = '------ Duct inputs ------'; 188 
  189 
% ---------------------------- Pack up propeller/turbine data structure, pt 190 
pt.name     = filename; % (string) propeller/turbine name 191 
pt.date     = date;     % (string) date created 192 
pt.notes    = notes;    % (string or cell matrix)   notes 193 
pt.input    = input;    % (struct) input parameters 194 
pt.design   = [];       % (struct) design conditions 195 
pt.geometry = [];       % (struct) design geometry 196 
pt.states   = [];       % (struct) off-design state analysis 197 
  198 
% --------------------------------------------------------- Save input data 199 
save OPinput pt input 200 
  201 
clear, clc, load OPinput 202 
  203 
input 204 
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Appendix B – CFD Axial Inflow Results [3] 

 
Model: AUV Speed: 2 m/s 
Measurement Location: 1.90 m from nose of AUV, 1:30 (45°) and 4:30 (135°) 
Max Radius: 0.06 m 
Cells: ~2.5E6 
Turbulence Model: SA (1st order)

y = 2.0182x3 - 5.0188x2 + 4.2664x - 0.3323
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Table B-1:Summary of CFD wake calculation results 

Position in Disc[r] 
(m)-point 1 (m) % Radius 

1:30 Location, V 
(m/s) 

1:30 Location, 
V/Uinf 

4:30 Location, 
V (m/s) 

4:30 Location, 
V/Uinf 

Average, 
V/Uinf 

0.06012 100.2% 1.8515 0.9257 1.8650 0.9325 0.9291 

0.05659 94.3% 1.8379 0.9189 1.8552 0.9276 0.9233 

0.05659 94.3% 1.8379 0.9189 1.8552 0.9276 0.9233 

0.04951 82.5% 1.8082 0.9041 1.8372 0.9186 0.9113 

0.04243 70.7% 1.7627 0.8813 1.8031 0.9015 0.8914 

0.03892 64.9% 1.6952 0.8476 1.7413 0.8706 0.8591 

0.03534 58.9% 1.6714 0.8357 1.71697 0.8584 0.8470 

0.02822 47.0% 1.5189 0.7594 1.5570 0.7785 0.7690 

0.02480 41.3% 1.3964 0.6982 1.4224 0.7112 0.7047 

0.02140 35.7% 1.3045 0.6522 1.3114 0.6557 0.6539 

0.01775 29.6% 1.1422 0.5711 1.1348 0.5674 0.5692 

0.01430 23.8% 0.9325 0.4662 0.9282 0.4641 0.4651 

0.0072164 12.0% -0.06695 -0.03347 0.1928 0.09640 0.03146 

0.003931 6.6% -0.2775 -0.13876 -0.1472 -0.07363 -0.1062 

0.002170 3.6% -0.2441 -0.12205 -0.2441 -0.1220 -0.12205 

 

Table B-2: CFD wake inputs used in OpenProp 

Open Prop Points   Axial Inflow Velocity (From Formula) 

0.2 0.3366 

0.3 0.5506 

0.4 0.7006  

0.5 0.7987 

0.6 0.8570 

0.7 0.8875 

0.8 0.9024 

0.9 0.9139 

0.95 0.9221 

1 0.9340 
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Appendix C – Run Script Code 
Due to text wrapping the line numbers are slightly off when compared to the m-file. 
%% 1 
%Modified and Additional Descriptive Comments: 2010, Richard Duelley  2 
%Run the following commands to execute a single propeller design with 3 
% OpenProp. 4 
% Simply highlight desired operation and press F9 5 
%%  6 
addpath ../SourceCode 7 
  8 
%%  9 
% Single propeller design example: 10 
clear, close all, clc, 11 
  12 
% Load inputs: 13 
Run1_input 14 
  15 
pause(0.01) 16 
  17 
  18 
%% 19 
% Perform design optimization 20 
pt.design = EppsOptimizer(input) 21 
  22 
%Unsure of what this plot shows, not used in my design process 23 
figure,  24 
    plot(pt.design.RC,pt.design.G,'.-b') 25 
    axis([0 1 0 0.03]) 26 
    xlabel('r/R'), ylabel('G') 27 
  28 
pause(0.01) 29 
  30 
  31 
%% 32 
% Create graphical and text reports, Creates an Input.txt, Output.txt, 33 
% Performance.txt, and a Graphical Report 34 
Make_Reports(pt) 35 
%% 36 
% Determine propeller geometry: Produces a series of tab delineated text 37 
% files that can be imported to practically any CAD program.  Each file contains 38 
% a series of coordinates that define a single cross sectional profile of 39 
% one of the propeller blades. 40 
pt.geometry = Geometry(pt) 41 
  42 
%The modifications I did to the Geometry script in order to output text files for 43 
%CAD drawings broke the 3D propeller model.  Just rerun using the original 44 
%scrip to generate the 3D model if desired.  Make sure to save all files to 45 
%another folder before running because it will overwrite any duplicate 46 
%files. 47 
pt.geometry = Geometry_Original(pt) 48 
%% 49 
% Analyze off-design states 50 
Js_all= [1.05:-0.05:0.5]; % advance coefficient,  This defines the x axis of the  51 
                          %"Off-Design Results" plots below 52 
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LAMBDAall = pi./Js_all;           % tip-speed ratio 53 
pt.states = Analyze(pt,LAMBDAall) 54 
  55 
%% 56 
%Plot Off-Design Results 57 
figure, hold on, 58 
    % Efficiency (green squares) 59 
            plot(pt.states.Js,pt.states.EFFY,'-','LineWidth',2,'Color',[0 0.8 0]) 60 
    Heffy = 61 
plot(pt.states.Js,pt.states.EFFY,'sk','MarkerSize',14,'LineWidth',1,'MarkerFaceCo62 
lor',[0 0.8 0]);  63 
            64 
    % Thrust coefficient (blue diamonds) 65 
            plot(pt.states.Js,pt.states.KT,'b-','LineWidth',2) 66 
    Hkt   = 67 
plot(pt.states.Js,pt.states.KT,'dk','MarkerSize',14,'LineWidth',1,'MarkerFaceColo68 
r','b'); 69 
     70 
    % Torque coefficient (red circles) 71 
          plot(pt.states.Js,10*pt.states.KQ,'r-','LineWidth',2)     72 
    Hkq = 73 
plot(pt.states.Js,10*pt.states.KQ,'ok','MarkerSize',12,'LineWidth',1,'MarkerFaceC74 
olor','r'); 75 
    76 
    % Design point 77 
    plot(pt.design.Js*[1 1],[0 2],'k--','LineWidth',1); 78 
     79 
    xlabel('Js','Fontsize',24), ylabel('KT, 10*KQ, EFFY','Fontsize',24) 80 
    axis([0.4 1.2 0 0.9]) 81 
    set(gca,'Fontsize',20) 82 
    box on      83 
  84 
%% 85 
% Pefrorm cavitation analysis:  86 
%%% Red indicates Cavitation, Blue indicates NO Cavitation. 87 
Cav_CavitationMap(pt); 88 
  89 
VLMbucket90 
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Appendix D – NeuMotor Chart  
This chart was provided, upon request, by the NeuMotor engineers.  It summarizes all of the 
possible wind variations of the 1500 series of motors.  The chart is preserved here for future 
reference. 
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Appendix E – Input.txt 
Run 1_Input.txt  

OpenProp Input Table 

 

Date and time: 2010-07-20 14:02:04 

 

20   Number of Vortex Panels over the Radius 

10   Max. Iterations in Wake Alignment 

1   Hub Image Flag: 1=YES, 0=NO 

0   Duct Flag:      1=YES, 0=NO 

0.000  Duct Diameter 

0.5   Hub Vortex Radius/Hub Radius 

2   Number of Blades 

0.541  Advance Coefficient Based on Ship Speed, Js 

0.374  Desired Thrust Coefficient, Ct 

1.000  Desired Thrust Ratio, tau 

0.000  Duct Section Drag Coefficient, CDd 

0   Hub Unloading Factor: 0 = optimum 

0   Tip Unloading Factor: 1 = Reduced Loading 

1   Swirl Cencellation Factor: 1 = No Cancellation 

 

r/R       C/D     XCD     Va/Vs  Vt/Vs 

0.20000  0.06500  0.00800    0.34  0.0000 

0.30000  0.06500  0.00800    0.55  0.0000 

0.40000  0.06550  0.00800    0.71  0.0000 

0.50000  0.06600  0.00800    0.80  0.0000 

0.60000  0.06700  0.00800    0.86  0.0000 

0.70000  0.06500  0.00800    0.89  0.0000 

0.80000  0.06000  0.00800    0.90  0.0000 

0.90000  0.04500  0.00800    0.91  0.0000 

0.95000  0.03300  0.00800    0.92  0.0000 

1.00000  0.00100  0.00800    0.93  0.0000 

 

r/R   [ ], input radial position / propeller radius. 

c/D   [ ], input section chord-length / propeller diameter. 

Cd   [ ], input section drag coefficient. 

Va   [ ], input axial inflow velocity / ship velocity. 

Vt   [ ], input tangential inflow velocity / ship velocity. 
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Appendix F – Output.txt 
Run 1_Output.txt  

OpenProp Output Table 

 

Date and time: 2010-07-20 14:02:04 

 

Js  = 0.5405 

Ct  = 0.3739 

Cq  = 0.0667 

Kt  = 0.0429 

Kq  = 0.0038 

Cp  = 0.3876 

VMIV  = 0.8286 

Eff  = 0.7993 

Tau  = 1.0000 

Duct Circulation  = 0.0000 

 

Output at the control points for the propeller  

 

r/R   G    Va  Vt   Ua    Ua(ring)     Ut     Beta  BetaI   c/D  Cd 

0.17099  0.030310  0.26417  0.0000  0.29950  0.00000  -0.17373  14.886  34.503  0.06500  0.00800 

0.21296  0.030718  0.36771  0.0000  0.26510  0.00000  -0.15597  16.546  30.327  0.06500  0.00800 

0.25494  0.030630  0.46201  0.0000  0.23559  0.00000  -0.13526  17.318  27.389  0.06500  0.00800 

0.29691  0.029916  0.54506  0.0000  0.21044  0.00000  -0.11449  17.529  25.123  0.06500  0.00800 

0.33889  0.028743  0.61863  0.0000  0.18912  0.00000  -0.09580  17.437  23.319  0.06512  0.00800 

0.38086  0.027273  0.68262  0.0000  0.17110  0.00000  -0.07906  17.139  21.800  0.06539  0.00800 

0.42284  0.025716  0.73180  0.0000  0.15587  0.00000  -0.06568  16.582  20.361  0.06561  0.00800 

0.46481  0.024179  0.77133  0.0000  0.14289  0.00000  -0.05529  15.935  19.059  0.06580  0.00800 

0.50679  0.022695  0.80356  0.0000  0.13155  0.00000  -0.04705  15.260  17.881  0.06605  0.00800 

0.54877  0.021276  0.83105  0.0000  0.12111  0.00000  -0.04027  14.605  16.823  0.06657  0.00800 

0.59074  0.019945  0.85310  0.0000  0.11203  0.00000  -0.03480  13.954  15.854  0.06698  0.00800 

0.63272  0.018723  0.86917  0.0000  0.10540  0.00000  -0.03071  13.298  14.963  0.06670  0.00800 

0.67469  0.017584  0.88176  0.0000  0.10020  0.00000  -0.02750  12.673  14.154  0.06572  0.00800 

0.71667  0.016513  0.89068  0.0000  0.09692  0.00000  -0.02515  12.070  13.417  0.06447  0.00800 

0.75864  0.015473  0.89711  0.0000  0.09660  0.00000  -0.02362  11.501  12.767  0.06264  0.00800 

0.80062  0.014387  0.90258  0.0000  0.10031  0.00000  -0.02259  10.977  12.220  0.05995  0.00800 

0.84259  0.013160  0.90734  0.0000  0.10907  0.00000  -0.02190  10.497  11.777  0.05507  0.00800 

0.88457  0.011663  0.91195  0.0000  0.12396  0.00000  -0.02155  10.059  11.439  0.04790  0.00800 

0.92654  0.009671  0.91794  0.0000  0.14600  0.00000  -0.02153  9.674  11.220  0.03965  0.00800 

0.96852  0.006673  0.92605  0.0000  0.17625  0.00000  -0.02184  9.342  11.122  0.02415  0.00800 
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The propeller does not have a duct. 

 

Js   [ ], advance coefficient. 

Ct   [ ], required thrust coefficient. 

Cp   [ ], power coefficient. Cp = Cq*pi/J. 

Kt   [ ], thrust coefficient. Kt = Ct*Js^2*pi/8. 

Kq   [ ], torque coefficient. Kq = Cq*Js^2*pi/16. 

VMIV   [ ], volumetric mean inflow velocity / ship velocity. 

Eff   [ ], efficiency = Ct*VMIV/Cp. 

Tau   [ ], thrust ratio = propeller thrust / total thrust. 

 

r/R   [ ], radial position of control points / propeller radius. 

G    [ ], section circulation / 2*pi*R. 

Va   [ ], axial inflow velocity / ship velocity. 

Vt   [ ], tangential inflow velocity / ship velocity. 

Ua   [ ], induced axial velocity / ship velocity. 
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Appendix G – Geometry.txt  
Run 1_Geometry.txt  

Propeller Geometry Table 

 

Date and time: 20-Jul-2010 

 

Propeller Diameter   = 0.1200 m 

Number of Blades   = 2 

Propeller Speed   = 1850 RPM 

Propeller Hub Diameter   = 0.0180 m 

Meanline  Type: NACA a=0.8 

Thickness Type: NACA 65A010 (modified) 

  

 r/R      P/D   Skew   Xs/D   c/D         f0/c   t0/c 

0.1710  0.4356  0.0000  -0.0015  0.0650  0.1999  0.4818 

0.2130  0.4509  0.0000  0.0006  0.0650  0.1609  0.4516 

0.2549  0.4698  0.0000  0.0027  0.0650  0.1326  0.4245 

0.2969  0.4882  0.0000  0.0048  0.0650  0.1103  0.4016 

0.3389  0.5058  0.0000  0.0069  0.0651  0.0923  0.3828 

0.3809  0.5216  0.0000  0.0090  0.0654  0.0774  0.3668 

0.4228  0.5326  0.0000  0.0111  0.0656  0.0655  0.3526 

0.4648  0.5410  0.0000  0.0132  0.0658  0.0560  0.3401 

0.5068  0.5474  0.0000  0.0153  0.0661  0.0481  0.3283 

0.5488  0.5523  0.0000  0.0174  0.0666  0.0414  0.3164 

0.5907  0.5557  0.0000  0.0195  0.0670  0.0360  0.3055 

0.6327  0.5581  0.0000  0.0216  0.0667  0.0317  0.2963 

0.6747  0.5600  0.0000  0.0237  0.0657  0.0284  0.2882 

0.7167  0.5613  0.0000  0.0258  0.0645  0.0257  0.2817 

0.7586  0.5633  0.0000  0.0279  0.0626  0.0234  0.2764 

0.8006  0.5673  0.0000  0.0300  0.0600  0.0216  0.2718 

0.8426  0.5743  0.0000  0.0322  0.0551  0.0205  0.2673 

0.8846  0.5851  0.0000  0.0343  0.0479  0.0199  0.2638 

0.9265  0.6002  0.0000  0.0360  0.0396  0.0190  0.2628 

0.9685  0.6240  0.0000  0.0380  0.0241  0.0206  0.2148 

 

r/R   [ ], radial position of control points / propeller radius. 

P/D   [ ], section pitch / diameter. 

c/D   [ ], section chord-length / diameter. 

fo/C   [ ], section camber / section chord-length. 

to/C   [ ], section thickness / section chord-length.
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Appendix H – Performance.txt  
Run 1_Performance.txt  

OpenProp Performance Table 

 

Date and time: 2010-07-20 14:02:04 

 

 r/R   V*   beta  betai  Gamma   CL         Sigma  dBetai 

0.171  1.99  14.89  34.50  0.0229  2.944  63.335  11.76 

0.213  2.51  16.55  30.33  0.0232  2.369  39.920  10.35 

0.255  3.03  17.32  27.39  0.0231  1.953  27.262  9.14 

0.297  3.56  17.53  25.12  0.0226  1.625  19.793  8.16 

0.339  4.08  17.44  23.32  0.0217  1.359  15.050  7.35 

0.381  4.60  17.14  21.80  0.0206  1.140  11.855  6.69 

0.423  5.10  16.58  20.36  0.0194  0.965  9.624  6.14 

0.465  5.60  15.94  19.06  0.0182  0.825  7.990  5.68 

0.507  6.09  15.26  17.88  0.0171  0.709  6.751  5.28 

0.549  6.58  14.60  16.82  0.0160  0.610  5.784  4.94 

0.591  7.07  13.95  15.85  0.0150  0.530  5.015  4.63 

0.633  7.55  13.30  14.96  0.0141  0.467  4.392  4.36 

0.675  8.03  12.67  14.15  0.0133  0.419  3.880  4.12 

0.717  8.51  12.07  13.42  0.0125  0.378  3.453  3.90 

0.759  8.99  11.50  12.77  0.0117  0.345  3.093  3.71 

0.801  9.48  10.98  12.22  0.0108  0.318  2.785  3.53 

0.843  9.96  10.50  11.78  0.0099  0.301  2.521  3.36 

0.885  10.45 10.06  11.44  0.0088  0.293  2.291  3.21 

0.927  10.94 9.67   11.22  0.0073  0.280  2.090  3.07 

0.969  11.43 9.34   11.12  0.0050  0.304  1.913  2.94 

 

r/R    [ ], radial position of control points / propeller radius. 

V*    [m/s], total inflow velocity. 

beta    [deg], undisturbed flow angle. 

betai  [deg], hydrodynamic Pitch angle. 

Gamma  [m^2/s], vortex sheet strength. 

CL    [ ], section lift coefficient. 

Sigma  [ ], cavitation number. 

d_alpha   [deg], inflow variation bucket width. 
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Appendix I – Modified Geometry m File 
% ========================================================================= 
% =================================== Determine Propeller Geometry Function     
% 
% This function determines the geometry of the propeller.  It outputs 
% the geometry as a 2D image, 3D image, and Rhino CAD file. 
% 
% Modified by: Richard S Duelley to output tab delineated text files for 
% use in CAD drawings, this modification broke the 3-D image plot. 
% 
% Reference:  
%   J.S. Carlton, "Marine Propellers & Propulsion", ch. 3, 1994. 
% 
%   Abbott, I. H., and Von Doenhoff, A. E.; Theory of Wing Sections.  
%   Dover, 1959.  
% 
% ------------------------------------------------------------------------- 
% Input Variables: 
% 
%   filename            file name prefix for all output files 
%   Date_string         time and date to print on reports 
%   Make2Dplot_flag     flag for whether to make 2D geometry plot 
%   Make3Dplot_flag     flag for whether to make 3D geometry plot 
%   Make_Rhino_flag     flag for whetehr to make a Rhino output file 
%   Meanline            flag for choice of meanline  form 
%   Thickness           flag for choice of thickness form 
% 
%   XR          [ ],    input radii / propeller radius 
%   f0oc0       [ ],    input camber    / chord at each radius 
%   t0oc0       [ ],    input thickness / chord at each radius 
%   skew0       [deg],  input skew              at each radius 
%   rake0       [ ],    input rake / diameter   at each radius 
% 
%   RC          [ ],    control point radii / propeller radius 
%   CL          [ ],    section lift coefficients 
%   Beta_c      [deg],  Beta  at the control points 
%   BetaI_c     [deg],  BetaI at the control points 
%   alphaI      [deg],  ideal angle of attack 
% 
%   D           [m],    propeller diameter 
%   Z           [ ],    number of blades 
%   N           [RPM],  propeller speed 
%   Dhub        [m],    hub diameter 
%   Rhub        [m],    hub radius 
% 
%   CoD         [ ],    chord / diameter at each control point radius 
%   R           [m],    propeller radius 
%   Mp          [ ],    number of radial 2D cross-sections 
%   Np          [ ],    number of points in each 2D section 
%   Js          [ ],    advance coefficient based on ship speed 
% 
% Output Variables: 
% 
% The function has graphical and file outputs, in addition to the geometry  
% data structure. 
% 
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% ------------------------------------------------------------------------- 

  
function [geometry] = Geometry(pt) 
%% 
% -------------------------------------------------------- Unpack variables 
Date_string     = pt.date; 

  
filename        = pt.input.filename; 
Make2Dplot_flag = pt.input.Make2Dplot_flag; 
Make3Dplot_flag = pt.input.Make3Dplot_flag; 
Make_Rhino_flag = pt.input.Make_Rhino_flag; 
Hub_flag        = pt.input.Hub_flag;       % 0 == no hub, 1 == hub 
Duct_flag       = pt.input.Duct_flag;      % 0 == no duct, 1 == duct 
Chord_flag      = pt.input.Chord_flag;     % 0 == do not optimize chord 

lengths, 1 == optimize chord lengths 

  
Meanline        = pt.input.Meanline; 
Thickness       = pt.input.Thickness; 

  
XR              = pt.input.XR; 
t0oc0           = pt.input.t0oc0; 
XCoD            = pt.input.XCoD; 
skew0           = pt.input.skew0;  % [deg] 
rake0           = pt.input.rake0; 

  
Z               = pt.input.Z; 
Js              = pt.input.Js; 
Vs              = pt.input.Vs;     % [m/s] 
R               = pt.input.R;      % [m] 
Rhub            = pt.input.Rhub;   % [m] hub radius 

  
Mp              = pt.input.Mp; 
Np              = pt.input.Np; 

  
RC              = pt.design.RC; 
RV              = pt.design.RV; 
CL              = pt.design.CL; 
Beta_c          = atand(pt.design.TANBC);  % [deg] 
BetaI_c         = pt.design.BetaIC*180/pi; % [deg] 
CoD             = pt.design.CoD; 
t0oc            = pt.design.t0oc; 
TANBIV          = pt.design.TANBIV; 

  

     
D       = 2*R;    % [m] 
Dhub    = 2*Rhub; % [m] 
Rhub_oR = Rhub/R; 
N       = 60*Vs/(Js*D); % [RPM] 

  

  
% ------------------------------------------------------------------------- 
% % ---------------- Interpolate input geometry at selected radial sections 
% RG = [0.9*Rhub_oR,RV(2:end-1),1]; 
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% Interpolate input geometry at sections with cosine spacing along the span 
RG = 0.9*Rhub_oR + (1-0.9*Rhub_oR)*(sin((0:Mp)*pi/(2*Mp)));  % [0.9*Rhub_oR : 

1] 

  
CL      = interp1(RC,CL     ,RG,'pchip','extrap');  
t0oc    = interp1(RC,t0oc   ,RG,'pchip','extrap'); 
BetaI_c = interp1(RC,BetaI_c,RG,'pchip','extrap');  

  
skew = pchip(XR,skew0,RG);       % [deg], angular translation along mid-chord 

helix 
rake = pchip(XR,rake0,RG)*D;     % [m],   translation along propeller axis 

(3D X-axis) 

  

  
if Chord_flag == 1 
    CoD  =  interp1(RC,CoD,RG,'pchip','extrap'); 
else 
    CoD  = pchip(XR,XCoD,RG); 
end 

  
c = CoD.*D;                          % section chord at the RG sections [m] 
r = RG.*R;                           % radius of        the RG sections [m] 

  
% ------------------------------------------------------------------------- 

  
% 
% ---------------------------------------- Lay out the 2D coordinate system 
% 
% xN   [ ], x/c coordinate in 2D NACA foil tables 
%               At the Leading  Edge: xN = 0, x1 =  c/2, x0 = 0 
%               At the Trailing Edge: xN = 1, x1 = -c/2, x0 = 1 
% x0   [ ], x/c distance along mid-chord line to interpolate NACA foil table 

data. 
% x1   [m], x   distance along mid-chord line to evaluate elliptical or 

parabolic formulae. 
%               By definition, x1 == c/2 - c*x0. 
% 
% x2D  [m], x   position in 2D space on upper (x2D_u) and lower (x2D_l) foil 

surfaces 
% y2D  [m], y   position in 2D space on upper (x2D_u) and lower (x2D_l) foil 

surfaces 
% x2Dr [m], x   position in 2D space after rotation for pitch angle 
% y2Dr [m], y   position in 2D space after rotation for pitch angle 
% 

  
xN = [0 .5 .75 1.25 2.5 5 7.5 10 15 20 25 30 35 40 45 50 ... 
     55 60 65 70 75 80 85 90 95 100]./100; 

  
x0 = zeros(1,Np); 
x1 = zeros(Mp+1,Np); 
% % Even spacing along the chord 
% % for i = 1:Mp                     % for each radial section along the span 
% for i = 1:Mp+1                     % for each radial section along the span 
%     for j = 1:Np                   % for each point          along the 

chord 
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%         x0(1,j)      =               (j-1)/(Np-1);  % [0   :    1] 
%         x1(i,j)      = c(i)/2 - c(i)*(j-1)/(Np-1);  % [c/2 : -c/2] 
%     end 
% end 

  
% Cosine spacing along the chord 
for i = 1:Mp+1                     % for each radial section along the span 
    for j = 1:Np                   % for each point          along the chord 
        x1(i,j)      = c(i)/2 - 0.5*c(i)*(1-cos(pi*(j-1)/(Np-1)));  % [c/2 : 

-c/2] 
    end 
end 
x0 = 0.5-x1(1,:)/c(1); 

  
% ------------------ Find meanline and thickness profiles (at x1 positions) 
% 
% foc    = camber / chord ratio (NACA data at xN positions) 
% dfdxN  = slope of camber line (NACA data at xN positions) 
% fscale = scale to set max camber    ratio to f0oc for each section 
% tscale = scale to set max thickness ratio to t0oc for each section 
% f      = camber               at x1 positions 
% dfdx   = slope of camber line at x1 positions 
% t      = thickness            at x1 positions 

  
t    = zeros(Mp+1,Np); 
f    = zeros(Mp+1,Np); 
dfdx = zeros(Mp+1,Np); 

  

  
if Meanline==0 | strcmp(Meanline,'NACA a=0.8 (modified)')  % -------------- 

Use NACA a=0.8 (modified) meanline 
    Meanline = 'NACA a=0.8 (modified)'; 

     
    foc = [0 0.281 0.396 0.603 1.055 1.803 2.432 2.981 3.903 4.651 5.257 ... 
             5.742 6.120 6.394 6.571 6.651 6.631 6.508 6.274 5.913 5.401 ... 
             4.673 3.607 2.452 1.226 0  ]./100; 

  
    dfdxN = [0 0.47539  0.44004  0.39531  0.33404  0.27149  0.23378  0.20618 

0.16546 ... 
               0.13452  0.10873  0.08595  0.06498  0.04507  0.02559  0.00607 

... 
              -0.01404 -0.03537 -0.05887 -0.08610 -0.12058 -0.18034 -0.23430 

... 
              -0.24521 -0.24521 -0.24521]; 

           
    CLI       = 1.00;     % NACA data ideal lift coefficient 
    alphaItilde    = 1.40;     % [deg] 
    fscale    = CL / CLI; 
    f0octilde = max(foc);               % f0/c of NACA data with CLI == 1     
    f0oc      = f0octilde * CL / CLI;   % f0/c, scaled for CL at RG     

     

     
    dfdxLE = 0.47539*fscale;      % slope at leading edge 
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    % for i = 1:Mp                     % for each radial section along the 

span 
    for i = 1:Mp+1                     % for each radial section along the 

span 
        for j = 1:Np 
            f(i,:)    = pchip(xN,foc  .*fscale(i).*c(i),x0); 
            dfdx(i,:) = pchip(xN,dfdxN.*fscale(i)      ,x0); 
        end 
    end 

  
    % alphaItilde = 1.40 

     
elseif Meanline==1 | strcmp(Meanline,'NACA a=0.8')           % --------------

----------- Use NACA a=0.8 meanline 
    Meanline = 'NACA a=0.8'; 

     
    foc = [0 .287 .404 .616 1.077 1.841 2.483 3.043 3.985 4.748 ... 
           5.367 5.863 6.248 6.528 6.709 6.790 6.770 6.644 6.405  ... 
           6.037 5.514 4.771 3.683 2.435 1.163 0]./100; 

  
    dfdxN = [0 .48535 .44925 .40359 .34104 .27718 .23868 .21050 ... 
             .16892 .13734 .11101 .08775 .06634 .04601 .02613 ... 
             .00620 -.01433 -.03611 -.06010 -.08790 -.12311   ... 
             -.18412 -.23921 -.25583 -.24904 -.20385]; 

     
    CLI       = 1.00;     % NACA data ideal lift coefficient 
    alphaItilde    = 1.54;     % [deg] 
    fscale    = CL / CLI; 
    f0octilde = max(foc);               % f0/c of NACA data with CLI == 1     
    f0oc      = f0octilde * CL / CLI;   % f0/c, scaled for CL at RG     

     
    dfdxLE = 0.48535*fscale;      % slope at leading edge 

     
    % for i = 1:Mp                     % for each radial section along the 

span 
    for i = 1:Mp+1                     % for each radial section along the 

span 
        for j = 1:Np 
            f(i,:)    = pchip(xN,foc  .*fscale(i).*c(i),x0); 
            dfdx(i,:) = pchip(xN,dfdxN.*fscale(i)      ,x0); 
        end 
    end 

     
    % alphaItilde = 1.54 

  
elseif Meanline==2 | strcmp(Meanline,'parabolic')       % -------------------

------- Use parabolic meanline 
    Meanline = 'parabolic'; 

     
    % For parabolic meanline: alphaItilde == 0, CLI == 4*pi*f0oc  
    % However, set CLI and f0octilde such that f0oc == f0octilde * CL / CLI 
    alphaItilde = 0; 
    CLI         = 1;  
    f0octilde   = 1  / (4*pi); 
    f0oc        = CL / (4*pi); % == f0octilde * CL / CLI; 
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    % for i = 1:Mp                     % for each radial section along the 

span 
    for i = 1:Mp+1                     % for each radial section along the 

span 
        for j = 1:Np 
            f(i,j)    =    f0oc(i)*c(i)*(1-(2*x1(i,j)/c(i))^2); 
            dfdx(i,j) = -8*f0oc(i)*x1(i,j)/c(i); 
        end 
    end 
end 

  
if Thickness==1 | strcmp(Thickness,'NACA 65A010')          % ----------------

-- Use NACA 65A010 thickness form 
    Thickness = 'NACA 65A010';  

     
    toc_65 = [0 .765 .928 1.183 1.623 2.182 2.65 3.04 3.658 4.127 ... 
              4.483 4.742 4.912 4.995 4.983 4.863 4.632 4.304     ... 
              3.899 3.432 2.912 2.352 1.771 1.188 .604 .021]./100; 

  
    tscale = t0oc / max(toc_65); 

  

     
    rLE    = 0.00639*c.*tscale; % leading edge radius 

         
    % for i = 1:Mp                     % for each radial section along the 

span 
    for i = 1:Mp+1                     % for each radial section along the 

span 
        for j = 1:Np 
            t(i,:) = pchip(xN,toc_65.*tscale(i).*c(i),x0); 
        end 
    end 

  
elseif Thickness==2 | strcmp(Thickness,'elliptical')     % ------------------

- Use elliptical thickness form 
    Thickness = 'elliptical'; 

     
    % for i = 1:Mp                     % for each radial section along the 

span 
    for i = 1:Mp+1                     % for each radial section along the 

span 
        for j = 1:Np 
            t(i,j) = t0oc(i)*c(i)*real(sqrt(1-(2*x1(i,j)/c(i))^2)); 
        end 
    end 

     
    rLE = 0; % leading edge radius 

  
elseif Thickness==3 | strcmp(Thickness,'parabolic')     % -------------------

- Use parabolic thickness form 
    Thickness = 'parabolic'; 
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    % for i = 1:Mp                     % for each radial section along the 

span 
    for i = 1:Mp+1                     % for each radial section along the 

span 
        for j = 1:Np 
            t(i,j) = t0oc(i)*c(i)*(1-(2*x1(i,j)/c(i))^2); 
        end 
    end 

     
    rLE = 0; % leading edge radius 

     

     

  

  
elseif Thickness==4 | strcmp(Thickness,'NACA 65A010 (modified)')     % ------

-------------- Use modified NACA 65A010 thickness form 
    Thickness = 'NACA 65A010 (modified)'; 

     
    xx65mod = [0    0.005000000000000   0.007500000000000   0.012500000000000 

... 
                0.025000000000000   0.050000000000000   0.075000000000000   

0.100000000000000 ... 
                0.150000000000000   0.200000000000000   0.250000000000000   

0.300000000000000 ... 
                0.350000000000000   0.400000000000000   0.471204188481675   

0.523560209424084 ... 
                0.575916230366492   0.628272251308901   0.680628272251309   

0.732984293193717 ... 
                0.785340314136126   0.837696335078534   0.890052356020942   

0.942408376963351 ... 
                0.968586387434555   0.981675392670157   0.989528795811518   

0.994764397905759 ... 
                0.997382198952880   1.000000000000000]; 
    tt65mod = [0    0.007650000000000   0.009280000000000   0.011830000000000 

... 
                0.016230000000000   0.021820000000000   0.026500000000000   

0.030400000000000 ... 
                0.036580000000000   0.041270000000000   0.044830000000000   

0.047420000000000 ... 
                0.049120000000000   0.049950000000000   0.049830000000000   

0.048630000000000 ... 
                0.046320000000000   0.043040000000000   0.038990000000000   

0.034320000000000 ... 
                0.029120000000000   0.023520000000000   0.017710000000000   

0.011880000000000 ... 
                0.008960000000000   0.007499530848329   0.006623639691517   

0.006040000000000 ... 
                0.004049015364794   0.000210000000000];     

   
    tscale = t0oc / max(tt65mod); 

  

     
    rLE    = 0.00639*c.*tscale; % leading edge radius 
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    % for i = 1:Mp                     % for each radial section along the 

span 
    for i = 1:Mp+1                     % for each radial section along the 

span 
        for j = 1:Np 
            t(i,:) = pchip(xx65mod,tt65mod.*tscale(i).*c(i),x0); 
        end 
    end         

         
end 

  
% 
% ------------------------------------------------------------------------- 
% ------------------------------------- Find 2D unroatated section profiles 
% x2D  [m], x   position in 2D space on upper (x2D_u) and lower (x2D_l) foil 

surfaces 
% y2D  [m], y   position in 2D space on upper (x2D_u) and lower (x2D_l) foil 

surfaces 
x2D_u = zeros(Mp+1,Np);     x2D_l = zeros(Mp+1,Np); 
y2D_u = zeros(Mp+1,Np);     y2D_l = zeros(Mp+1,Np); 

  
for i = 1:Mp+1                           % for each section along the span 
    for j = 1:Np                         % for each point   along the chord 
        x2D_u(i,j) = x1(i,j) + (t(i,j)/2)*sin(atan(dfdx(i,j))); % 2D upper 

surface x 
        x2D_l(i,j) = x1(i,j) - (t(i,j)/2)*sin(atan(dfdx(i,j))); % 2D lower 

surface x 
        y2D_u(i,j) =  f(i,j) + (t(i,j)/2)*cos(atan(dfdx(i,j))); % 2D upper 

surface y 
        y2D_l(i,j) =  f(i,j) - (t(i,j)/2)*cos(atan(dfdx(i,j))); % 2D lower 

surface y 
    end 
end 

  

  

  
% % -------------------------------------- Compute leading edge radius points 
% phiLEC = atan(dfdxLE); 
% NLE    = 3; % must be odd to capture leading edge point 
% phiLEs = 3*pi/8; 
% phiLE  = phiLEs:(pi-2*phiLEs)/(NLE-1):pi-phiLEs;  
% xLEC  = x1(:,1)' - rLE.*cos(phiLEC); 
% yLEC  =            rLE.*sin(phiLEC); 
%  
% xLE = zeros(Mp+1,NLE); 
% yLE = zeros(Mp+1,NLE); 
%  
% for i = 1:Mp+1                           % for each section along the span 
%     xLE(i,:) = xLEC(i) + rLE(i)*sin(phiLE+phiLEC(i)); 
%     yLE(i,:) = yLEC(i) - rLE(i)*cos(phiLE+phiLEC(i)); 
% end 

  

  
% ----------------------------------------- Put all the numbers in one list 
% % Nose -> suctioin side -> tail -> pressure side -> nose 
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% x2D(:,   1:Np   ) = x2D_u(:,1:Np);     % The first Np values are the upper 

surface (suction side), 
% x2D(:,1+Np:Np+Np) = x2D_l(:,Np:-1:1);  % and the second Np values are the 

lower surface (pressure side). 
% y2D(:,   1:Np   ) = y2D_u(:,1:Np); 
% y2D(:,1+Np:Np+Np) = y2D_l(:,Np:-1:1); 

   
% % j = 1          == tail 
% % j = 1:Np       == suction side 
% % j = Np         == nose 
% % j = Np + 1     == nose 
% % j = Np+ 1:2*Np == pressure side 
% % j = 2*Np       == tail 
% % Tail -> suctioin side -> nose, nose -> pressure side -> tail 
x2D(:,   1:Np   ) = x2D_u(:,Np:-1:1);   % The first Np values are the upper 

surface (suction side), 
x2D(:,Np+1:Np+Np) = x2D_l(:,1:Np);      % and the second Np values are the 

lower surface (pressure side). 
y2D(:,   1:Np   ) = y2D_u(:,Np:-1:1); 
y2D(:,Np+1:Np+Np) = y2D_l(:,1:Np); 

  

  
% % % Arrange points as follows: 
% % %     Tail -> suctioin side -> leading edge (with radius and nose) -> 

pressure side -> tail 
% % % j = 1                               == [1         point ] tail 
% % % j = 1              : Np-1           == [Np-1      points] suction side 

(tail to point aft of leading edge radius) 
% % % j = Np-1+1         : Np-1+(NLE-1)/2 == [(NLE-1)/2 points] suction side 

along leading edge radius 
% % % j = Np+(NLE-1)/2                    == [1         point ] nose 
% % % j = Np+(NLE-1)/2+1 :    Np-1+NLE    == [(NLE-1)/2 points] pressure side 

along leading edge radius 
% % % j = Np-1+NLE+1     : 2*(Np-1)+NLE   == [Np-1      points] pressure side 

(point aft of leading edge radius to tail) 
% % % j = 2*(Np-1)+NLE                    == [1         point ] tail 
% % % 
% % % j =            1   : Np+(NLE-1)/2   == suction  side (tail to nose) 
% % % j = Np+(NLE-1)/2   : 2*(Np-1)+NLE   == pressure side (nose to tail) 
% %  
% % x2D(:,1              :    Np-1     ) = x2D_u(:,Np:-1:2); % [Np-1 points] 

suction  side (tail to point aft of leading edge radius) 
% % x2D(:,Np-1+1         :    Np-1 +NLE) =   xLE(:,NLE:-1:1);     % [NLE  

points] leading edge radius   
% % x2D(:,Np-1+NLE+1     : 2*(Np-1)+NLE) = x2D_l(:,2:Np);    % [Np-1 points] 

pressure side (point aft of leading edge radius to tail) 
% %  
% % y2D(:,1              :    Np-1     ) = y2D_u(:,Np:-1:2); % [Np-1 points] 

suction  side (tail to point aft of leading edge radius) 
% % y2D(:,Np-1+1         :    Np-1 +NLE) =   yLE(:,NLE:-1:1);     % [NLE  

points] leading edge radius   
% % y2D(:,Np-1+NLE+1     : 2*(Np-1)+NLE) = y2D_l(:,2:Np);    % [Np-1 points] 

pressure side (point aft of leading edge radius to tail) 
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% %--------------------------------------- plot unrotated blade 
%  Fig2_S = figure('units','normalized','position',[0.31 .06 .4 

.3],'name',... 
%         'Blade Image','numbertitle','off'); 
%     style=['r' 'g' 'b' 'm' 'k']; 
%     str_prefix = {'r/R = '}; 
%     flag=1; 
%     for i = 1:ceil(Mp/5):Mp     % for five radial sections from root to tip 
%         plot(x2D(i,:)*39.37,y2D(i,:)*39.37,style(flag)); 
%         str_legend(flag)=strcat(str_prefix,num2str(RC(i))); 
%         hold on; 
%         flag = flag+1; 
%     end 
%     legend(str_legend,'location','northwest'); 
%     axis equal;     grid on; 
%     title('2D Blade Image');  xlabel('X (2D) [m]');  ylabel('Y (2D) [m]'); 
% %--------------------------------------- 

  

  
% ---------------------------------------------- Find pitch angle and pitch 
theta    = BetaI_c + alphaItilde.*CL/CLI; % Nose-tail pitch angle, [deg] 
PoD      = tand(theta).*pi.*RG;           % Pitch / propeller diameter, [ ] 
theta_Z  = 0:360/Z:360;                   % angle between blades [deg] 

  

  

  
% --------------------------------------- Find 2D roatated section profiles 
% x2Dr [m], x position in 2D space after rotation for pitch angle 
% y2Dr [m], y position in 2D space after rotation for pitch angle 
% x2Dr = zeros(Mp+1,2*(Np-1)+NLE); 
% y2Dr = zeros(Mp+1,2*(Np-1)+NLE); 
x2Dr = zeros(Mp+1,2*Np); 
y2Dr = zeros(Mp+1,2*Np); 
% for i = 1:Mp        % for each section along the span 
for i = 1:Mp+1        % for each section along the span 
    x2Dr(i,:) = x2D(i,:)*cosd(theta(i)) - y2D(i,:)*sind(theta(i)); % rotated 

2D upper and lower surface x 
    y2Dr(i,:) = x2D(i,:)*sind(theta(i)) + y2D(i,:)*cosd(theta(i)); % rotated 

2D upper and lower surface y 
end 

  
% --------------------------- Invoke skew and rake, and find 3D coordinates 
% X3D [m], X position in 3D space (corresponds to y position in 2D space) 
% Y2D [m], Y position in 3D space 
% Z3D [m], Z position in 3D space 
% X3D = zeros(Mp+1,2*(Np-1)+NLE,Z); 
% Y3D = zeros(Mp+1,2*(Np-1)+NLE,Z); 
% Z3D = zeros(Mp+1,2*(Np-1)+NLE,Z); 
X3D = zeros(Mp+1,2*Np,Z); 
Y3D = zeros(Mp+1,2*Np,Z); 
Z3D = zeros(Mp+1,2*Np,Z); 
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%%%%%%%%%%%%ADDED 39.37007874 TO CONVERT FROM METERS TO INCHES FOR Nx 3D 
%%%%%%%%%%%%MODEL 

  

  

  
% for i = 1:Mp        % for each section along the span 
for i = 1:Mp+1        % for each section along the span 
%     for j = 1:2*(Np-1)+NLE    % for each point   along the upper and lower 

surfaces 
    for j = 1:2*Np    % for each point   along the upper and lower surfaces 
        for k = 1:Z   % for each blade 
            X3D(i,j,k) = (- rake(i) - r(i)*(pi*skew(i)/180)*tand(theta(i)) + 

y2Dr(i,j))*39.37007874; 

             
            Y3D(i,j,k) = (r(i)*sind(skew(i) - (180/pi)*x2Dr(i,j)/r(i) - 

theta_Z(k)))*39.37007874; 
            Z3D(i,j,k) = (r(i)*cosd(skew(i) - (180/pi)*x2Dr(i,j)/r(i) - 

theta_Z(k)))*39.37007874; 
        end 
    end 
end 

  

  

  

  

  

  

  

  

  

  

  
% ========================================================================= 
% ============================= Pack up geometry data at the control points 
CL      = pt.design.CL; 
BetaI_c = pt.design.BetaIC*180/pi;          % [deg] 
CoD     = pt.design.CoD;                    % [ ],   c/D 
t0oc    = pt.design.t0oc;                   % [ ],   t0/c 
skew    = pchip(XR,skew0,RC);               % [deg],  
rake    = pchip(XR,rake0,RC)*D;             % [m],    
f0oc    = f0octilde   * CL/CLI;             % [ ],    
alphaI  = alphaItilde * CL/CLI;             % [deg], ideal angle of attack 
alpha   = alphaItilde * CL/CLI;             % [deg], blade angle of attack 
theta   = BetaI_c + alphaI;                 % [deg], Nose-tail pitch angle 
PoD     = tand(BetaI_c + alphaI).*pi.*RC;   % [ ],   pitch / D 
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geometry.Meanline  = Meanline; 
geometry.Thickness = Thickness; 

  
geometry.Z         = Z; 
geometry.D         = D;                          % [m] 
geometry.Dhub      = Dhub;                       % [m] 
geometry.N         = N;                          % [RPM] 

  
geometry.RC        = RC;                         % r/R 
geometry.CoD       = pt.design.CoD;   
geometry.t0oc      = t0oc;            
geometry.skew      = skew;% [deg] angular translation along mid-chord helix 
geometry.rake      = rake;% [m] translation along propeller axis, 3D X-axis 
geometry.f0oc      = f0oc;       
geometry.alphaI    = alphaI; 
geometry.alpha     = alpha;  
geometry.theta     = theta; 
geometry.PoD       = PoD;  
% ========================================================================= 
% ========================================================================= 
% =========================================== Create plots and text outputs 
%% 
% ----------------------------------------- Create 2D Propeller Blade Image 
if Make2Dplot_flag 
    Fig2_S = figure('units','normalized','position',[0.31 .06 .4 

.3],'name',... 
        'Blade Image','numbertitle','off'); 
    style=['r' 'g' 'b' 'm' 'k']; 
    str_prefix = {'r/R = '}; 
    flag=1; 
    for i = 1:ceil(Mp/5):Mp     % for five radial sections from root to tip 
        plot(x2Dr(i,:),y2Dr(i,:),style(flag)); 
        str_legend(flag)=strcat(str_prefix,num2str(RC(i))); 
        hold on; 
        flag = flag+1; 
    end 
    legend(str_legend,'location','northwest'); 
    axis equal;     grid on; 
    title('2D Blade Image');  xlabel('X (2D) [m]');  ylabel('Y (2D) [m]'); 

  
%     filename_2D = strcat(filename,'_2D_Blade_Image'); 
%     saveas(gcf,filename_2D,'jpg') 
end 

  
%% 
% ----------------------------------------------- Create 3D Propeller Image 
if Make3Dplot_flag 
%%     
    Fig3_S = figure('units','normalized','position',[.61 .06 .4 .3],... 
                    'name','Propeller Image','numbertitle','off'); 
    hold on; 

  
    % ------------------------------------------ Plot the propeller surface 
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    for k = 1:Z 
        surf(X3D(:,:,1),Y3D(:,:,k),Z3D(:,:,k)); 
    end 

  
    colormap gray; 
    shading interp; 
    grid on; 
    if Duct_flag == 0 
        axis([-R/2 R -1.1*R 1.1*R -1.1*R 1.1*R]); 
    else 
        axis([-R R -1.5*R 1.5*R -1.5*R 1.5*R]);       %modified for duct 
    end 
    axis equal; 
    xlabel('X (3D) [m]','FontSize',12); 
    ylabel('Y (3D) [m]','FontSize',12); 
    zlabel('Z (3D) [m]','FontSize',12); 
    title('3D Propeller Image','FontSize',16); 

  
    % -------------------------------------------------------- Plot the hub 
    Lhub = Dhub; 

     
    tick = 90:-15:0; 
    [yh0,zh0,xh0] = cylinder(Rhub*sind(tick),50); 
    xh0 = -Lhub/4*xh0 - Rhub; 
    surf(xh0,yh0,zh0); 

  
    [yh1,zh1,xh1] = cylinder(Rhub,50); % xh1 = [0,1] 
    xh1 = Lhub*xh1 - Rhub;           % xh1 = [-Rhub,c(1)-Rhub] 
    surf(xh1,yh1,zh1); 

  

     

     
    % ----------------- Plot the suction side (green) & pressure side (red) 
    for i = 1:Mp+1          % for each section along the span 
        for k = 1:Z       % for each blade 
            plot3(X3D(i,1:Np,1),     Y3D(i,1:Np,k),     Z3D(i,1:Np,k),     

'g','Linewidth',1); % suction surface 
            

plot3(X3D(i,Np+1:2*Np,1),Y3D(i,Np+1:2*Np,k),Z3D(i,Np+1:2*Np,k),'r','Linewidth

',1); % pressure surface 
        end 
    end 

  
    for j = 1:Np          % for each point along the chord 
        for k = 1:Z       % for each blade 
            plot3(X3D(:,j,1),   Y3D(:,j,k),   Z3D(:,j,k),   

'g','Linewidth',1); % suction surface 
            

plot3(X3D(:,j+Np,1),Y3D(:,j+Np,k),Z3D(:,j+Np,k),'r','Linewidth',1); % 

pressure surface 
        end 
    end 

     
    % -------------------------------------------------- Plot the tip black 
    i = Mp+1; % tip section 
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    for k = 1:Z 
        for j = 1:Np-2 
                plot3([X3D(i,1+j,k), X3D(i,2*Np-j,k)],... 
                      [Y3D(i,1+j,k), Y3D(i,2*Np-j,k)],... 
                      [Z3D(i,1+j,k), Z3D(i,2*Np-j,k)],'k','Linewidth',1); % 

tip surface         
        end 
    end 

  
    % --------------------------------- Plot the leading and trailing edges 
    for k = 1:Z           % for each blade 
        plot3(X3D(:,1,1), Y3D(:,1,k), Z3D(:,1,k), 'b','Linewidth',2); % 

leading edge 
        plot3(X3D(:,Np,1),Y3D(:,Np,k),Z3D(:,Np,k),'k','Linewidth',2); % 

trailing edge 
    end 

  
    % ------------------------------------------ Plot the coordinate system 
    % Axes 
    plot3([0 R],[0 0],[0 0],'y','LineWidth',2), 
    plot3([0 0],[0 R],[0 0],'r','LineWidth',2), 
    plot3([0 0],[0 0],[0 R],'b','LineWidth',2), 

  
    % Circle at the X = 0 location on the hub 
    phi = 0:0.01:2*pi; 
    Xhc =   zeros(size(phi)); 
    Yhc = - Rhub * sin(phi); 
    Zhc =   Rhub * cos(phi); 
    plot3(Xhc,Yhc,Zhc,'y','LineWidth',2), 

  
    % Propeller reference line (i.e. the directrix) 
    for k = 1:Z 
        PRL(:,k) = [1,                0,                 0; ... 
                    0, cosd(theta_Z(k)), -sind(theta_Z(k)); ... 
                    0, sind(theta_Z(k)),  cosd(theta_Z(k))]*[0; 0; R]; 

  
        plot3([0, PRL(1,k)],[0, PRL(2,k)],[0, PRL(3,k)],'y--','LineWidth',1) 
    end 

  
    % ---------------------------------------------- Plot propeller helices 
    % Advance coefficient helix 0, black 
    phi = 0:0.01:pi/4; 
    thetaH = atan((Js/pi)*(R/Rhub)); 
    Xh0 =   Rhub * phi * tan(thetaH); 
    Yh0 = - Rhub * sin(phi); 
    Zh0 =   Rhub * cos(phi); 

  
    % Beta angle helix 1, red 
    phi = 0:0.01:pi/4; 
    thetaH = Beta_c(1)*pi/180; 
    Xh1 =   Rhub * phi * tan(thetaH); 
    Yh1 = - Rhub * sin(phi); 
    Zh1 =   Rhub * cos(phi); 
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    % BetaI angle helix 2, green 
    phi = 0:0.01:pi/4; 
    thetaH = BetaI_c(1)*pi/180; 
    Xh2 =   Rhub * phi * tan(thetaH); 
    Yh2 = - Rhub * sin(phi); 
    Zh2 =   Rhub * cos(phi); 

  
    % Pitch angle helix 3, blue 
    phi = 0:0.01:pi/4; 
    thetaH = theta(1)*pi/180; 
    Xh3 =   Rhub * phi * tan(thetaH); 
    Yh3 = - Rhub * sin(phi); 
    Zh3 =   Rhub * cos(phi); 

  
    plot3(Xh0,Yh0,Zh0,'k','LineWidth',2), 
    plot3(Xh1,Yh1,Zh1,'r','LineWidth',2), 
    plot3(Xh2,Yh2,Zh2,'g','LineWidth',2), 
    plot3(Xh3,Yh3,Zh3,'b','LineWidth',2), 

    
% % ---------------------------------------------- Plot the trailing vortices     
%     % Beta angle helix at each votex point (each trailing vortex) 
%     BetaI_v = atand(TANBIV); 
%      
%     for m = 1:Mp+1 
%         phi = 0:0.01:2*pi; 
%         thetaH = BetaI_v(m)*pi/180; 
%         Xh4 = - RV(m)*R * phi * tan(thetaH); 
%         Yh4 =   RV(m)*R * sin(phi); 
%         Zh4 =   RV(m)*R * cos(phi); 
%          
%         plot3(Xh4,Yh4,Zh4,'g','LineWidth',2), 
%     end      
% %      
% %     % Beta angle image helix for each spanwise section 
% %     for m = 1:Mp+1 
% %         RVW   = Rhub_oR^2/RV(m); 
% %         TANBW = TANBIV(1)*RV(1)/RVW; 
% %         phi = 0:0.01:2*pi; 
% %         thetaH = atand(TANBW)*pi/180; 
% %         Xh4 = - RVW*R * phi * tan(thetaH); 
% %         Yh4 =   RVW*R * sin(phi); 
% %         Zh4 =   RVW*R * cos(phi); 
% %          
% %         plot3(Xh4,Yh4,Zh4,'--r','LineWidth',2), 
% %     end  
% %      
% % --------------------------------------------- Plot the horseshoe vortices     
%     % Beta angle helix at each votex point (each trailing vortex) 
%     BetaI_v = atand(TANBIV); 
%     dR = 0.005*R; 
%      
%     for m = 1:Mp 
%         phi = 0:0.01:2*pi; 
%         thetaH = BetaI_v(m)*pi/180; 
%         Xh4 = - (RV(m)+dR)*R * phi * tan(thetaH); 
%         Yh4 =   (RV(m)+dR)*R * sin(phi); 
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%         Zh4 =   (RV(m)+dR)*R * cos(phi); 
%          
%         plot3(Xh4,Yh4,Zh4,'g','LineWidth',2), 
%          
%         thetaH = BetaI_v(m+1)*pi/180; 
%         Xh4 = - (RV(m+1)-dR)*R * phi * tan(thetaH); 
%         Yh4 =   (RV(m+1)-dR)*R * sin(phi); 
%         Zh4 =   (RV(m+1)-dR)*R * cos(phi); 
%          
%         plot3(Xh4,Yh4,Zh4,'g','LineWidth',2), 
%     end      

     
%     % Beta angle image helix for each spanwise section 
%     for m = 1:Mp+1 
%         RVW   = Rhub_oR^2/RV(m); 
%         TANBW = TANBIV(1)*RV(1)/RVW; 
%         phi = 0:0.01:2*pi; 
%         thetaH = atand(TANBW)*pi/180; 
%         Xh4 =   RVW*R * phi * tan(thetaH); 
%         Yh4 = - RVW*R * sin(phi); 
%         Zh4 =   RVW*R * cos(phi); 
%          
%         plot3(Xh4,Yh4,Zh4,'--r','LineWidth',2), 
%     end      

  
% ---------------------------------------------- Plot duct 
    if Duct_flag == 1 
        Duct_Ang=0; 
        %ductPlot(vrRad,c,fo,to,alpha,ductRef) 
        %shading interp 
        colormap(jet) 
        ductPlot(0.5*D,0.5*D,0,0,Duct_Ang*pi/180,0.5) 
% %         ductPlot(0.5*D,0.5*D,-.04,.13,10*pi/180,0.5) 
        %axis equal 
    end 

     
    view(-50,30) 
    set(gca,'XTickLabel',{''},'YTickLabel',{''},'ZTickLabel',{''}) 
    set(gca,'TickLength',[0 0]) 
    xlabel(''), ylabel(''), zlabel(''), title('') 
    grid off, axis off 
%% 
%     % ------------------------------------------------------ Save the image 
%     view(2) 
%     saveas(gcf,[filename,'_3D_Propeller_Image','1'],'jpg') 
%  
%     view(3) 
%     saveas(gcf,[filename,'_3D_Propeller_Image','2'],'jpg') 

  
end                                              % (END IF Make3Dplot_flag) 

  

  
%% 
% % SolidWorks_v14 and prior 
% Make_SWrks_flag = 1; 
% % --------------------------------------------------- Make SolidWorks files 
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% if Make_SWrks_flag 
%     % Make SolidWorks Curve_n.txt files, with coordinates for a single 

blade 
%      
%     % -------------------------------- Blade geometry: 
%     % X3D(i,j,k) [m], X position in 3D space 
%     % Y2D(i,j,k) [m], Y position in 3D space 
%     % Z3D(i,j,k) [m], Z position in 3D space 
%     % 
%     % i = 1:Mp+1      % for each section along the span 
%     % j = 1:2*Np      % for each point   along the upper and lower surfaces 
%     % k = 1:Z         % for each blade 
%      
%     filename_SolidWorks = strcat(filename,'_SolidWorks.txt'); 
%     fid = fopen(filename_SolidWorks,'w'); 
%      
%     % Prop Parameters at beginning of file 
%     fprintf(fid,'%g, ' ,Np);  
%     fprintf(fid,'%g, ' ,Mp); 
%     fprintf(fid,'%g,\n',Z); 
% %     fprintf(fid,'%g, ' ,Z); 
% %     fprintf(fid,'%g,\n',NLE); 
%      
%     % Output curves defining each 2D section along the span 
%     % for each section along the span 
%     for i = 1:Mp+1        
%         fprintf(fid,strcat('SectionCurve',num2str(i),',\n')); 
%          
%         % for each point along the suction and pressure surfaces 
%         % (trailing edge -> leading edge -> trailing edge, close the curve) 
% %         for j = [1:Np,Np+2:2*Np,1] % (2*Np   points) does not double 

print the leading edge but does double print the trailing edge to close the 

curves         
% %         for j = [1:Np,Np+2:2*Np-1,1] % (2*Np-1 points) does not double 

print the leading edge but does double print the trailing edge to close the 

curves                     
%         for j = [1:Np,Np+2:2*Np] % (2*Np-1 points) does not double print 

the leading edge 
% %         for j = 1:2*(Np-1)+NLE % each curve contains (2*(Np-1)+NLE) 

points 
%             fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%         end 
%     end 
%      
%     
%     % Make guide curves 
%     n = 0;    
%     % for 7 points along the chord 
%     for j = [1 floor(Np/3) floor(2*Np/3) Np floor(4*Np/3) floor(5*Np/3) 

2*Np]; 
% %     for j = [1 floor(1*(2*(Np-1)+NLE)/6) floor(2*(2*(Np-1)+NLE)/6) ... 
% %                floor(3*(2*(Np-1)+NLE)/6) floor(4*(2*(Np-1)+NLE)/6) ... 
% %                floor(5*(2*(Np-1)+NLE)/6) floor(6*(2*(Np-1)+NLE)/4)];    
%         n = n + 1; 
%          
%          
%         fprintf(fid,strcat('GuideCurve',num2str(n),',\n')); 
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% %         for i = 1:Mp  % for each section along the span except the last 

one 
%         for i = 1:Mp+1  % for each section along the span 
%              
% %             if i == Mp+1 && j == 2*Np 
% %                 fprintf(fid,'%f,%f,%f',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
% %                 continue 
% %             end 
%              
%                 
% %         plot3(X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1),'.b','markersize',20) 
% %         pause, 
%              
%             fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%         end 
%          
%     end 
%      
%  
%      
%     % Output duplicate trailing edge guide curves:     
%     % Guide curve 1: 
%     fprintf(fid,'TEGuideCurve1,\n');     
%         j = 1; 
%     for i = 1:Mp+1  % for each section along the span         
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%     end 
%  
%     % Guide curve 7: 
%     fprintf(fid,'TEGuideCurve7,\n');     
%         j = 2*Np; 
%     for i = 1:Mp+1  % for each section along the span         
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%     end     
%      
%      
%     % Output duplicate tip section profile: 
%     i = Mp+1; 
%     fprintf(fid,strcat('TipSectionCurve',num2str(i),',\n'));         
%     % for each point along the suction and pressure surfaces 
%     % (trailing edge -> leading edge -> trailing edge) 
%     for j = [1:Np,Np+2:2*Np] % (2*Np-1 points) does not double print the 

leading edge 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%     end     
%      
%     % Output tip curves 
%     for j = 1:Np-2 
% %     for j = 1:(Np-1+(NLE-1)/2-1) 
%         fprintf(fid,strcat('TipCurve',num2str(j),',\n')); 
%         i=Mp+1; 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,   1+j,1),Y3D(i,   1+j,1),Z3D(i,   

1+j,1)); 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,2*Np-j,1),Y3D(i,2*Np-

j,1),Z3D(i,2*Np-j,1)); 
% %         fprintf(fid,'%f,%f,%f,\n',X3D(i,             1+j,1),Y3D(i,             

1+j,1),Z3D(i,             1+j,1)); 
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% %         fprintf(fid,'%f,%f,%f,\n',X3D(i,(2*(Np-1)+NLE)-j,1),Y3D(i,(2*(Np-

1)+NLE)-j,1),Z3D(i,(2*(Np-1)+NLE)-j,1)); 
%     end 
%      
%      
%     % Output duplicate root section profile: 
%     i = 1; 
%     fprintf(fid,strcat('RootSectionCurve',num2str(i),',\n'));         
%     % for each point along the suction and pressure surfaces 
%     % (trailing edge -> leading edge -> trailing edge) 
%     for j = [1:Np,Np+2:2*Np] % (2*Np-1 points) does not double print the 

leading edge 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%     end 
%      
%      
%     % Output root curves 
%     for j = 1:Np-2 
% %     for j = 1:(Np-1+(NLE-1)/2-1) 
%         fprintf(fid,strcat('RootCurve',num2str(j),',\n')); 
%         i=1; 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,   1+j,1),Y3D(i,   1+j,1),Z3D(i,   

1+j,1)); 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,2*Np-j,1),Y3D(i,2*Np-

j,1),Z3D(i,2*Np-j,1)); 
% %         fprintf(fid,'%f,%f,%f,\n',X3D(i,             1+j,1),Y3D(i,             

1+j,1),Z3D(i,             1+j,1)); 
% %         fprintf(fid,'%f,%f,%f,\n',X3D(i,(2*(Np-1)+NLE)-j,1),Y3D(i,(2*(Np-

1)+NLE)-j,1),Z3D(i,(2*(Np-1)+NLE)-j,1)); 
%     end 
%      
%      
%     % Output trailing edge curves for each 2D section along the span 
%     for i = 1:Mp+1          
%         fprintf(fid,strcat('TECurve',num2str(i),',\n')); 
%         j=1; 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%         j=2*Np; 
% %         j = 2*(Np-1)+NLE; 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%     end     
%  
%     fclose(fid); 
% end                                              % (END IF Make_SWrks_flag) 
%% 
% SolidWorks_v18 

  
Make_SWrks_flag = 1; 
% --------------------------------------------------- Make SolidWorks files 
if Make_SWrks_flag 
    % Make SolidWorks.txt files, with coordinates for a single blade 

     
    % -------------------------------- Blade geometry: 
    % X3D(i,j,k) [m], X position in 3D space 
    % Y2D(i,j,k) [m], Y position in 3D space 
    % Z3D(i,j,k) [m], Z position in 3D space 
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    % 
    % i = 1:Mp+1      % for each section along the span 
    % j = 1:2*Np      % for each point   along the upper and lower surfaces 
    % k = 1:Z         % for each blade 

     
    filename_SolidWorks = strcat(filename,'_SolidWorks.txt'); 
    fid = fopen(filename_SolidWorks,'w'); 

     
    % Prop Parameters at beginning of file 
    fprintf(fid,'%g, ' ,Np);  
    fprintf(fid,'%g, ' ,Mp); 
    fprintf(fid,'%g,\n',Z); 

     
    % Output curves defining each 2D section along the span 
    % for each section along the span 
    for i = 1:Mp+1        
        fprintf(fid,strcat('SectionCurve',num2str(i),',\n')); 

         
        % for each point along the suction and pressure surfaces 
        % (trailing edge -> leading edge -> trailing edge, close the curve) 
        for j = [1:Np,Np+2:2*Np-1,1] % (2*Np-1 points) does not double print 

the leading edge 
            fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
        end 
    end 

     

    
    % Make guide curves 
    n = 0;    
    % for 7 points along the chord 
    for j = [1 floor(Np/3) floor(2*Np/3) Np floor(4*Np/3) floor(5*Np/3) 2*Np-

1]; 
        n = n + 1; 

         
        fprintf(fid,strcat('GuideCurve',num2str(n),',\n')); 
        for i = 1:Mp+1  % for each section along the span 
            fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
        end 

         
    end 

     
%     % Output duplicate trailing edge guide curves:     
%     % Guide curve 1: 
%     fprintf(fid,'TEGuideCurve1,\n');     
%         j = 1; 
%     for i = 1:Mp+1  % for each section along the span         
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%     end 
%  
%     % Guide curve 7: 
%     fprintf(fid,'TEGuideCurve7,\n');     
%         j = 2*Np; 
%     for i = 1:Mp+1  % for each section along the span         
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%     end     
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    % Output duplicate tip section profile: 
    i = Mp+1; 
    fprintf(fid,strcat('TipSectionCurve',num2str(i),',\n'));         
    for j = [1:Np,Np+2:2*Np-1,1] % (2*Np-1 points) does not double print the 

leading edge 
        fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
    end     

     
    % Output tip curves 
    for j = 1:Np-2 
        fprintf(fid,strcat('TipCurve',num2str(j),',\n')); 
        i=Mp+1; 
        fprintf(fid,'%f,%f,%f,\n',X3D(i,   1+j,1),Y3D(i,   1+j,1),Z3D(i,   

1+j,1)); 
        fprintf(fid,'%f,%f,%f,\n',X3D(i,2*Np-j,1),Y3D(i,2*Np-j,1),Z3D(i,2*Np-

j,1)); 
    end 

     

     
    % Output duplicate root section profile: 
    i = 1; 
    fprintf(fid,strcat('RootSectionCurve',num2str(i),',\n'));         
    % for each point along the suction and pressure surfaces 
    % (trailing edge -> leading edge -> trailing edge) 
    for j = [1:Np,Np+2:2*Np-1,1] % (2*Np-1 points) does not double print the 

leading edge 
        fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
    end 

     

     
    % Output root curves 
    for j = 1:Np-2 
        fprintf(fid,strcat('RootCurve',num2str(j),',\n')); 
        i=1; 
        fprintf(fid,'%f,%f,%f,\n',X3D(i,   1+j,1),Y3D(i,   1+j,1),Z3D(i,   

1+j,1)); 
        fprintf(fid,'%f,%f,%f,\n',X3D(i,2*Np-j,1),Y3D(i,2*Np-j,1),Z3D(i,2*Np-

j,1)); 
    end 

     

     
%     % Output trailing edge curves for each 2D section along the span 
%     for i = 1:Mp+1          
%         fprintf(fid,strcat('TECurve',num2str(i),',\n')); 
%         j=1; 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%         j=2*Np; 
%         fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1)); 
%     end     

  
    fclose(fid); 
end                                              % (END IF Make_SWrks_flag) 
%% 
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% -------------------------------------------------------- Make Rhino files 
% Modified: 9/25/09 by Jordan Stanway and Brenden Epps 
%  
% This code makes a script that you can run in Rhino.  Here are the steps: 
%   1) At the Command: prompt, type "ReadCommandFile" 
%           -- Locate the script file, e.g. OpenProp_RhinoProp.txt  
%   2) When the Document Properties window opens, set: 
%           -- Model Units: meters 
%           -- Absolute tolerance: 0.00001 
%           -- Relative tolerance: 0.1 
%           -- Angle    tolerance: 0.1 
%   3) Watch as Rhino reads in all the points, makes each section, fills  
%      the tip section, lofts the remaining sections, joins the surfaces, 
%      makes Z blades from the key blade, and makes the hub 
%   4) If your propeller does not loft or join automatically, then try 
%      increasing or decreasing the tolerance values. 
%  
if Make_Rhino_flag 
    % Make _RhinoBlade.txt, with coordinates for a single blade and 
    % commands to make Z blades 

         
    %%%%%%fprintf(fid,'!_SetActiveViewport Perspective\n'); 

     
    % In order for the surface to loft correctly, you probably will 
    % need to manually set the "absolute precision" of Rhino to be 
    % "10^-5 units" and manually change the "model units" to meters.   
    % Note: the coordinates output from OpenProp are in meters. 
    % This command should pause the script fro 
    %%%%%%fprintf(fid,'_DocumentPropertiesPage Units \n'); 

           
    % Define Rhino curve type (choose one) 
    % curve_cmd   = 'Curve \n'; 
    %%%%%%curve_cmd   = 'InterpCrv \n'; 

     
    % Compute where the blade tip should be 
    tip_x = -rake(end) - R*pchip(XR,skew0,1)*(pi/180); 
    tip_y =         R*sind(pchip(XR,skew0,1)); 
    tip_z =         R*cosd(pchip(XR,skew0,1)); 
    tip = [tip_x, tip_y, tip_z];     
   % Initialize file   
  filename_Rhino = strcat('0','_RhinoProp.txt'); 
    fid = fopen(filename_Rhino,'w');  

     
    for i = 1:Mp+1 % For each section along the span 

                                                   
        % For each point along the upper and lower surfaces: 
        for j = [1:Np,Np+2:2*Np] % (2*Np-1 points) does not double print the 

leading edge 
            fprintf(fid,'%.9f\t%.9f\t%.9f\n',X3D(i,j),Y3D(i,j),Z3D(i,j));  % 

print to file with 9 decimal places 
        end 

         
        % If the first and last points in the section are identical, then  
        % do nothing, else close the curve by adding another point the  
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        % same as the first one. 
        if strcmp(sprintf('%.9f\t%.9f\t%.9f\n',X3D(i,1)  ,Y3D(i,1)  

,Z3D(i,1)),... 
                  

sprintf('%.9f\t%.9f\t%.9f\n',X3D(i,end),Y3D(i,end),Z3D(i,end))) 
            % disp(sprintf('%i start and end are identical, not adding point 

to close', i)); 
        else 
            fprintf(fid,'%.9f\t%.9f\t%.9f\n',X3D(i,1),Y3D(i,1),Z3D(i,1)); 
        end 
        % Close the file: 
    fclose(fid); 
    file = sprintf('%.0f.txt',i); 
    filename_Rhino = strcat(file); 
    fid = fopen(filename_Rhino,'w');  
    end 

     
    fclose(fid);  
end 
% Extrude the tip section curve to the "tip" point 
    %fprintf(fid,'SelNone\n'); 
    %fprintf(fid,'SelLast\n'); 
    %fprintf(fid,'ExtrudeCrv Mode=ToPoint \n'); 
    %fprintf(fid,'%.9f\t%.9f,%\t9f\n',tip(1),tip(2),tip(3)); 
    %fprintf(fid,'enter\n'); 

  
    % Loft the other sections to the tip section 
    %fprintf(fid,'SelNone\n'); 
    %fprintf(fid,'SelClosedCrv\n'); 
    %fprintf(fid,'-Loft Type=Tight Simplify=None \n'); 
    %fprintf(fid,'enter\n'); 
    %fprintf(fid,'enter\n'); 
    %fprintf(fid,'enter\n'); 
    %fprintf(fid,'SelNone\n'); 
    %fprintf(fid,'SelSrf\n'); 
    %fprintf(fid,'Join\n'); 
    %fprintf(fid,'SelNone\n'); 
    %fprintf(fid,'Zoom All Extents\n'); 
    %fprintf(fid,'enter\n'); 

  

     
    % ---------- Commands to make Z blades: 
    %fprintf(fid,'SelPolysrf\n'); 
    %fprintf(fid,'Rotate3D\n'); 
    %fprintf(fid,'0,0,0\n'); 
    %fprintf(fid,'1,0,0\n'); 
    %fprintf(fid,'Copy=Yes\n'); 
    % copy blades 
    %for k=2:Z 
    %    fprintf(fid,'%f\n',(k-1)*(360/Z)); 
    %end 
    %fprintf(fid,'enter\n'); 

     

     
    % ----------- Commands to make hub 
    %fprintf(fid,'Circle Vertical 0,0,0 \n'); 
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    %fprintf(fid,'%f \n',Rhub); 
    %fprintf(fid,'0,0,%f\n',Rhub); 
    %fprintf(fid,'0,%f,0\n',Rhub); 
    % to choose direction of the circle 
        % ** this doesn't seem to work all the time... :-( 
    %fprintf(fid,'SelNone\n'); 
    %fprintf(fid,'SelLast\n'); 
    %fprintf(fid,'ExtrudeCrv BothSides=Yes Cap=Yes DeleteInput=Yes \n'); 
    %Lhub = 2*R; 
    %fprintf(fid,'%f \n',Lhub); 
    %fprintf(fid,'Zoom All Extents\n'); 
    %fprintf(fid,'enter\n'); 

     

     

     

    
                                            % (END IF Make_Rhino_flag) 
%% 
% ---------------------------------------------- Make OpenProp_Geometry.txt 
filename_geometry = strcat(filename,'_Geometry.txt'); 
fid = fopen(filename_geometry,'w'); 

  
fprintf(fid,'\t\t\t\t\t %s \n\n',filename_geometry); 
fprintf(fid,'\t\t\t\t\t Propeller Geometry Table\n\n'); 
fprintf(fid,'Date and time: %s\n\n',Date_string); 

  
fprintf(fid,'Propeller Diameter \t = %.4f m\n',    D); 
fprintf(fid,'Number of Blades \t = %.0f\n',        Z); 
fprintf(fid,'Propeller Speed \t = %.0f RPM\n',     N); 
fprintf(fid,'Propeller Hub Diameter \t = %.4f m\n',Dhub); 

  
fprintf(fid,['Meanline  Type: ',Meanline,'\n']); 
fprintf(fid,['Thickness Type: ',Thickness,'\n']); 

  
% if Meanline==1 
%     fprintf(fid,['Meanline Type:  NACA a=0.8\n'); 
% elseif Meanline==2 
%     fprintf(fid,'Meanline Type:  Parabolic\n'); 
% end 
%  
% if Thickness==1 
%     fprintf(fid,'Thickness Type: NACA 65A010\n\n'); 
% elseif Thickness==2 
%     fprintf(fid,'Thickness Type: Elliptical\n\n'); 
% elseif Thickness==3 
%     fprintf(fid,'Thickness Type: Parabolic\n\n'); 
% end 

  
fprintf(fid,' \n'); 
fprintf(fid,' \n'); 

  
fprintf(fid,' r/R\t P/D\t Skew\t Xs/D\t  c/D\t  f0/c\t  t0/c\n'); 
for i = 1:Mp 
    fprintf(fid, '%.4f\t %.4f\t %.4f\t %.4f\t %.4f\t %.4f\t %.4f\n'... 
    ,RC(i),PoD(i),skew(i),rake(i)/D,CoD(i),f0oc(i),t0oc(i)); 
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end 

  
fprintf(fid,' \n'); 
fprintf(fid,'\nr/R \t [ ], radial position of control points / propeller 

radius.\n'); 
fprintf(fid,'P/D \t [ ], section pitch / diameter.\n'); 
fprintf(fid,'c/D \t [ ], section chord-length / diameter.\n'); 
fprintf(fid,'fo/C \t [ ], section camber / section chord-length.\n'); 
fprintf(fid,'to/C \t [ ], section thickness / section chord-length.\n'); 

  
fclose(fid); 

  
% =============================== END Determine Propeller Geometry Function 
% ========================================================================= 
 

 

 
 


