

Autonomous Underwater Vehicle Propulsion Design

Richard S. Duelley

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

In partial fulfillment of the requirements for the degree of

Master of Science

In

Aerospace Engineering

Wayne L Neu

Michael Philen

Craig Woolsey

August 12, 2010

Blacksburg, Virginia

Keywords: AUV, OpenProp, Efficiency, Propulsion, Propeller, NeuMotor

Autonomous Underwater Vehicle Propulsion Design

Richard S Duelley

Abstract

The goal of this design process was to achieve the most efficient propulsive system for the

candidate autonomous underwater vehicle (AUV) as possible. A mathematical approach, using

fundamental motor equations and derived quantities, was used to characterize and select an

efficient brushless electric motor for the propulsion system. A program developed at MIT,

Massachusetts Institute of Technology, called OpenProp versions 1 and 2.3 was utilized to design a

custom propeller that maximizes the efficiency of the system.

A brushless electric motor was selected for the candidate AUV based on a survey of available off the

shelf motors and a mathematical characterization process. In parallel with the motor

characterization a propeller design was optimized using OpenProp v1 to perform a parametric

analysis. OpenProp v2.3 was then used to design a unique propeller for the selected motor. The

propeller design resulted in a final propeller with an efficiency of 79.93%. The motor

characterization process resulted in two candidate motors being selected, the NeuMotor 1925-3Y

and NeuMotor 1521-10.5Y, for in house testing and evaluation. A total propulsive system efficiency

of between 44% and 46% was achieved depending on which motor is selected for the final design.

iii

Contents
Chapter 1 - Introduction ... 1

Chapter 2 - Motor Selection.. 2

2.1 Motor Classification .. 2

2.1.1 Physical .. 2

2.1.2 Mathematical ... 2

Chapter 3 Propeller Design ... 7

3.1 Physical ... 7

3.2 OpenProp v1 Parametric Design ... 8

3.2.1 Inputs ... 8

3.2.2 Results .. 9

3.3 OpenProp v2.3 Unique Propeller Design ... 11

3.3.1 Input File, Rough Propeller Design ... 12

3.3.2 Input File Modifications, Optimized Propeller Design .. 13

3.3.3 Run Script ... 18

3.3.4 Results and Off Design Analysis.. 18

Chapter 4 - Propeller and Motor Optimization ... 23

Chapter 5 – Component Testing ... 25

5.1 Seal and Motor Testing ... 25

5.1.1 Dry Tail Seal Testing ... 25

5.1.2 Oil-Filled Tail Testing .. 29

Chapter 6 Final Propulsion Design .. 32

6.1 Final Motor Selection and Propeller Design for Dry Tail ... 32

Chapter 7 Conclusions .. 38

Works Cited .. 39

iv

List of Figures

Figure 2-1: Interior-Rotor vs Exterior-Rotor [1]... 2

Figure 3-1: Propeller nomenclature [1] ... 7

Figure 3-2: Propeller rake, θ ... 8

Figure 3-3: OpenProp v1 starting screen .. 8

Figure 3-4: OpenProp v1 Input screen .. 9

Figure 3-5: Results after clean up ... 10

Figure 3-6: Results after elimination of undesired results .. 11

Figure 3-7: Second parametric run ... 11

Figure 3-8: Example selection of code from Input m file .. 12

Figure 3-9: Default propeller geometry inputs ... 13

Figure 3-10: Default propeller results 3D blade image ... 13

Figure 3-11: Example 1 chord modification .. 14

Figure 3-12: Example 2 chord modification .. 15

Figure 3-13: Example 3 chord modification .. 15

Figure 3-14: OpenProp thickness option 1 .. 16

Figure 3-15: OpenProp thickness option 4 .. 16

Figure 3-16: Prototype propeller 1 ... 16

Figure 3-17: 2nd Prototype propeller ... 17

Figure 3-18: Graphical report .. 17

Figure 3-19: 2-D blade image .. 20

Figure 3-20: 3-D blade image .. 20

Figure 3-21: Propeller performance curves .. 21

Figure 3-22: Cavitation map .. 22

Figure 5-1: Seal Housings .. 26

Figure 5-2: Pressure Chamber ... 27

Figure 5-3: Seal torque test set up .. 27

Figure 5-4: Prototype BAL seal torque test results, prototype 1 top, prototype 2 bottom 28

Figure 5-5: Oil test chamber ... 29

Figure 5-6: Oil chamber end cap, motor bulkhead and seal adapter .. 30

Figure 5-7: NeuMotor 1925-1Y mounted to motor bulkhead ... 30

Figure 6-1: Final Propeller Prototype .. 33

Figure 6-2: Final AUV 2-D propeller image .. 34

Figure 6-3: Final AUV 3-D propeller image .. 35

Figure 6-4: Final AUV propeller performance curves .. 35

Figure 6-5: Kt and Kq performance curves .. 36

Figure 6-6: Final AUV propeller cavitation map .. 36

v

List of Tables

Table 2-1: Sample motor calculations ... 5

Table 2-2: Off design point calculations .. 6

Table 3-1: Thickness over Chord (t0oc0) profile example 1 .. 16

Table 3-2: 2nd Prototype propeller t0oc0, XCoD and Rake modifications.. 17

Table 3-3: Final Propeller Geometry Inputs .. 18

Table 4-1: Summary of efficiencies ... 23

Table 5-1: Oil filled test results ... 31

Table 6-1: Summary of off motor characteristics .. 32

Table 6-2: Motor off design characteristics .. 32

Table 6-3: Final Propeller Prototype Geometry .. 33

Table 6-4: Motor power consumption summary .. 37

Table 6-5: Summary of propulsion system efficiencies ... 37

Table 6-6: Summary of KT and 10*KQ data points ... 37

Table B-1: Summary of CFD wake calculation ... 45

Table B-2: CFD wake inputs used in OpenProp ... 45

List of Appendices

Appendix A – Input Matlab m File for Final Propeller Design ... 40

Appendix B – CFD Axial Inflow Results [3]... 44

Appendix C – Run Script Code ... 46

Appendix D – NeuMotor Chart ... 48

Appendix E – Input.txt .. 49

Appendix F – Output.txt.. 50

Appendix G – Geometry.txt .. 52

Appendix H – Performance.txt .. 53

Appendix I – Modified Geometry m File ... 54

1

Chapter 1 - Introduction
The process described herein is a continuation and utilization of the process developed by James A

Schultz [1]. This design, however, is not limited to off the shelf components. The motor selection

process is similar to the process described by Schultz but the propeller is a completely custom

design. The goal of this design process was to achieve the most efficient propulsive system

possible. The equations presented by Schultz and confirmed by Hendershot and Miller [5] were

used to characterize and select a brushless electric motor. A program developed at MIT called

OpenProp [2] was utilized to design the custom propeller. First a parametric design was undertaken

with OpenProp v1 to determine a range of design RPM and possible propeller diameters. A max

propeller diameter rule, based on experience with Virginia Tech’s fleet of 475 vehicles, is also

proposed. A unique propeller design was then created using OpenProp v2.3 based on the

parametric propeller results and the motor characterization results. The unique propeller design

and motor selection process are both undertaken in parallel, results from the motor

characterization process are required to complete the unique propeller design and results from the

unique propeller design are required to complete the motor selection process.

This document is meant to be used as a guide for future designs of similar requirements and is

written as such starting with the Motor Selection process below. Throughout this document the

following design criteria for a proposed candidate AUV are referenced and used to make the final

design decisions.

 Vehicle Diameter = 6.9 inches

 Vehicle Trust Required, found by CFD [3] = 8.67 N

 Vehicle Drag, found by CFD [3] = 8.11 N

 Vehicle Speed = 2.0 m/s

2

Chapter 2 - Motor Selection

2.1 Motor Classification
The two most common types of electric motors are brushed and brushless. A brushed motor has

stationary contacts that transfer the electrical energy to the coils as the motor turns. A brushless

motor uses an electronic controller to alternate power to several different groups of coils, called

phases, which are housed within the motor. There are several key advantages to using a brushless

motor design over an equivalent brushed design. A brushless motor is more efficient, lasts longer

(no brushes to wear out) and produces no ionizing sparks when compared to an equivalent brushed

electric motor. The motor selection process presented here was written with brushless motors in

mind.

2.1.1 Physical

There are two main types of brushless electric motors, an interior-rotor and an exterior-rotor. An

exterior-rotor motor consists of a series of magnets that rotate around an internal set of coils. A

motor with an interior-rotor is the exact opposite and instead has a cluster of magnets that rotate

inside the coils as shown below in Figure 2-1. A more detailed discussion of the physical traits of a

wide variety of motors is presented by Shultz [1] and Hendershot and Miller [5]. Both interior and

exterior-rotor motors were considered in the process described below.

Figure 2-1: Interior-Rotor vs Exterior-Rotor [1]

2.1.2 Mathematical

In order to determine if a motor is appropriate for the application in question the motor needs to be

classified mathematically. This mathematical classification is faster and cheaper than acquiring each

motor and testing them individually. Brushless electric motors are classified by their manufacturer

by three motor constants, RPM (rotations per minute) per volt, , the resistance of the motor in

ohms, , and the no load current in amps, . Using these three constants and the fundamental

motor equations the current at max efficiency, , the current at max power, , the

maximum efficiency achievable by the motor, , the RPM at max efficiency and the torque

provided at maximum efficiency, at , can be derived and used to characterize a brushless

electric motor. The standard, fundamental motor equations presented below, Equations 2-1 and 2-

2, were derived from empirical motor data and Ohm’s law [e.g., 5]. In the equations below is the

3

current drawn by the motor in amps, is the voltage input to the motor, and is the torque in

Newton-meters (N-m).

 2-1

 2-2

The quantity is the torque constant in (N-m) per amp and is directly related to . For brushless

electric motors it can be shown that is defined by Equation 2-3 as shown in Hendershot and

Miller [5].

2-3

Equation 2-4 is the definition of power out of a rotational system, Equation 2-5 is the definition of

electrical power and Equation 2-6 is the definition of radial velocity, , where RPS is the rotations

per second.

 2-4

 2-5
 2-6

The above fundamental motor equations can be utilized to derive an expression for the efficiency of

the motor, . The efficiency is defined as the mechanical power out over electrical work in as

shown in Equation 2-7. The RPM and Q appearing in 2-7 can be written in terms of the motor

characteristics, voltage and current using 2-1 and 2-2. Once simplified Equation 2-7 yields the final

definition of the motor efficiency shown in Equation 2-8.

2-7

2-8

In order to find the current at max efficiency, , the derivative of Equation 2-8 was taken with

respect to the current, , set equal to zero, Equation 2-9, and then solved for the current, ,

resulting in Equation 2-10. Equation 2-10 is one of the key equations used in classifying an electric

motor and gives the important motor characteristic current at max efficiency, .

2-9

2-10

4

 The torque at maximum efficiency can then be found using this current in 2-2. By solving Equation

2-5 for the current, , and substituting into Equation 2-8, the same process used to derive Equation

2-10 can be used to derive the equation for the current at maximum power output, , Equation

2-13. is not specifically used in this motor selection process but it can be an important value

if your system is based on maximum power output and not maximum efficiency.

2-11

2-12

2-13

The maximum efficiency attainable by the motor, , is derived by substituting Equation 2-10

into Equation 2-8 which yields Equation 2-14. is found by substituting ,

Equation 2-10, into the fundamental RPM equation, Equation 2-1. The resulting RPM, Equation 2-

15, is the RPM that is used in the unique propeller design process, see Chapter 3.4.

2-14

 2-15

 , Equation 2-3, is another key value and is used to determine if the motor can generate enough

torque to turn the system. Not only must the torque required to turn the propeller be taken into

account but the additional torque in the system caused by bearings, seals or any other external

loads must also be considered. The torque provided by the motor must be calculated at the current

draw of the motor at maximum efficiency, Equation 2-16. Equation 2-16 is derived by substituting

Equation 2-10 into the fundamental motor Equation 2-2.

 in N-m 2-16

A set of example calculations is given below in Table 1, orange cells denote inputs and yellow cells

denote outputs.

5

Table 2-1: Sample motor calculations

Motor Name: NeuMotor 1925 3Y I ,max = 4.83 amp

Rm = 0.18 ohm IP,max = 39.03 amp

Io = 0.3 amp max = 0.8796

V = 14 volt At I ,max RPM = 1785.75

KV = 136 RPM/volt At I ,max Q (N-m) = 0.3181

Kq = 0.07022 (N-m)/amp in-oz = 45.04

It is convenient to program all of these calculations into an Excel spreadsheet. Once the equations

are programmed in it is straight forward to calculate these values and compare a vast array of

electric motors in a relatively short span of time.

No system is perfect, so if the torque provided by the motor exceeds or is less than the required

torque to turn the system the above efficiency calculations will not be accurate. If the motor does

not provide enough torque to turn the system at maximum efficiency all is not lost. The motor may

still be able to turn the system it will just turn said system at a slightly lower RPM and some

efficiency will be lost. This is exactly what was encountered with the NeuMotor 1521-10.5Y, see

Chapter 5.2 for details. Also, if the motor in question provides more torque than required then it

will spin the system slightly faster than the RPM at max efficiency predicts. This off design efficiency

will also provide a less optimistic and more realistic efficiency number for the overall system. Thus

it is also important to be able to analyze the off ideal, or off design point efficiency of a motor. One

does not need to do this for every motor analyzed but it should be done once the preliminary motor

selection is complete and the field of motor candidates has been thinned out. The NeuMotor 1925-

3Y, shown in Table 2-1, will be used to illustrate the process.

The first step is to determine the torque required, , to turn the system, which is the sum of the

torque required to turn the propeller, Chapter 3.3, and any torque added to the system by bearings,

seals, Chapter 5.1, or any other external factors. Then utilize the following equations to determine

the off efficiency of the motor at the specific torque required. Equation 2-9 is a modified form of

Equation 2-8 where is the input current, , in Equation 2-8.

 2-19

 2-20

Sample results are shown in Table 2-2 below based on the 1925-3Y. It is interesting to note that, in

this case, despite the 1925-3Y being oversized for this example scenario the effect on the efficiency

is relatively small with an efficiency reduction of around 3%. The off efficiency RPM was found by

utilizing Equation 2-1 with the found using Equation 2-19.

6

Table 2-2: Off design point calculations

Total Torque Required (in-oz) 21.43

Total Torque Required (N-m) 0.1513

Current Required (amp), 2.456

Watts at 14 volts 34.38

 at above current required at 14V 0.8501

RPM at 14 volts 1843.87

7

Chapter 3 Propeller Design

3.1 Physical
A propeller is defined by several key features. The first is the radius or distance from the center of

the hub to the tip of the blade. The propeller diameter is based on the diameter of the vehicle the

propulsion system is being designed for. It is a good rule of thumb to set the maximum propeller

diameter for a small AUV to be no more than 85% of the diameter of the vehicle itself. So if the

vehicle has a diameter of 6.9 inches the maximum propeller diameter allowed by this rule would be

approximately 5.86 inches. This size restriction is to help mitigate possible ventilation of the

propeller as the AUV dives or operates on the surface. Ventilation is when the propeller blade

draws air from the surface into the blades; this causes a reduced load on the propeller and a

significant reduction in available trust. Ventilation may even cause the AUV to be unable to dive or

maneuver effectively while on the surface. This rule was developed from experience gained with

Virginia Tech’s fleet of 475 AUVs [11]. The minimum diameter depends on the shaft and hub size

and is arbitrary. In general a larger diameter propeller and slower RPM will yield a more efficient

propeller than a smaller high RPM propeller. A compromise needs to be made between efficiency

and practicality, if the propeller is too large it will ventilate near the surface and reduced thrust will

result, which can cause the vehicle to not be able to dive or maneuver effectively on the surface.

The next propeller characteristic is the pitch and is the measure of how far the propeller would

move forward in one revolution if it was moving through a solid. The chord is the distance from the

leading edge to the trailing edge measured with a straight line at a given station along the propellers

radius. The thickness of the propeller is also a defining feature and is an important feature when

the manufacturability of the propeller is in question. Again a compromise needs to be made when

choosing the chord and thickness. From a hydrodynamic standpoint, the ideal propeller would be

infinitely thin. This ideal propeller is impractical and impossible to manufacture. One must

compromise between durability, manufacturability and efficiency.

Figure 3-1: Propeller nomenclature [1]

Rake is the angle the propeller blade makes with the centerline of the hub. This can be a forward or

rearward angle, a rearward rake is shown in Figure 3-2. If ventilation of the propeller is a concern,

like when a small AUV dives for example, adding rearward rake in the propeller can help mitigate

the ventilation.

8

Figure 3-2: Propeller rake, θ

3.2 OpenProp v1 Parametric Design
OpenProp v1 is the first generation of MITs propeller design MATLAB algorithm that utilizes a

numerical lifting line theory to predict propeller performance. A detailed discussion of OpenProp

can be found in the OpenProp v2.3 Theory Document found in the Reference file included in the

v2.3 code download [2] or any of the other documents on the main OpenProp Wiki page. Version 1

was used for the parametric analysis due to its simple graphical user interface, the more advanced

capabilities of version 2.3 were not necessary for this aspect of the design process. Chapter 3.2 is a

step by step breakdown of how OpenProp v1 was utilized.

3.2.1 Inputs

After running OpenProp v1 an intro screen appears, the Parametric Analysis option was utilized for

this portion of the propeller design process.

Figure 3-3: OpenProp v1 starting screen

Direction of Travel

9

All length units are in meters and the hub diameter must be at least 15% of the smallest diameter in

the Propeller Diameter Range. The Water Density is can be changed for a variety of applications like

fresh water operation or, in this case, sea water operation. One can also specify the desired

Number of Blades, Propeller Speed, Required Thrust, Ship Velocity, and the range of Propeller

Diameters that are being considering. At this stage all other inputs were left as the OpenProp

defaults. The numbers entered in Figure 3-4 are applicable to vehicle characteristics provided in the

Introduction. Depending on the power of the computer being used and other inputs OpenProp may

take several minutes to run.

Figure 3-4: OpenProp v1 Input screen

3.2.2 Results

The parametric analysis algorithm outputs a figure that shows an estimation of efficiency vs.

propeller diameter. At first glance the graph may look hectic; this is usually caused by low, below

500 RPM, propeller speeds. To clean up the figure these extraneous results were suppressed using

MATLAB’s Plot Browser function.

10

Figure 3-5: Results after clean up

MATLAB reuses colors so it can be difficult to determine which lines correspond to which RPM. The

Plot Browser was used to check which lines correspond to which RPM and to eliminate undesirable

solutions. Figure 3-5 illustrates that the slower the propeller spins the more efficient it will be but

again a compromise needs to be made. It is difficult to find a brushless electric motor that can spin

efficiently at such low RPMS, which corresponds to low values, thus the choice of propeller speed

cannot be based just on the results shown in Figure 3-5 but also must be based on available electric

motors. The plot also makes it clear that the efficiency goes up as the propeller increases in

diameter for the lowest RPM values, below 1000. After 1000 RPM is exceeded there is a point of

diminishing returns and then a loss of efficiency as the blade increases in size. So let’s assume that

during the search for a motor it was determined that a motor that operated below 1500 RPM and

above 2000 RPM at its maximum efficiently are impractical for the application in question or simply

cannot be acquired. Thus any results not in the above mentioned range can be eliminated as shown

in Figure 3-6. Using the vehicle diameter given in Chapter 1 it was determined that the maximum

propeller diameter would be set to 0.12 meters or approximately 4.73 inches. This maximum

diameter was chosen in order to mitigate ventilation of the propeller while on the surface and

because the parametric plot produced with OpenProp shows the efficiency dropping significantly

when the propeller diameter exceeds 0.12 meters, Figure 3-6. Figure 3-6 shows that we can expect

a propeller efficiency of around 65% to 74%. It is important to note that this efficiency prediction is

based on the default propeller geometry provided by OpenProp. The parametric design was then

run again, setting the max propeller diameter at 0.12 meters and a much lower minimum propeller

diameter, the results are shown in Figure 3-7.

11

Figure 3-6: Results after elimination of undesired results

Figure 3-7: Second parametric run

From the results shown in Figure 3-7 the ideal propeller set up using the default propeller geometry

is a propeller with a diameter of between 0.11 and 0.12 meters spinning at 1500 RPM.

3.3 OpenProp v2.3 Unique Propeller Design
OpenProp v2.3 does not contain a graphical user interface (GUI), like version 1, and is a text based

program. The downloadable program files [2] contain several example inputs that one can use to

develop their own scripts. Below is a walkthrough and examples of how the code was modified and

12

used is this design process to design the candidate AUV’s propeller. The final propeller was

designed to operate at 1850 RPM based on the available NeuMotor 1925-3Y. Appendix A contains

the final input m file in its entirety.

3.3.1 Input File, Rough Propeller Design

The input m file, Appendix A, is similar to the GUI of OpenProp v1 and calls for most of the same

inputs. Lines 1-33 of the m file or lines 1-36 of Appendix A are the basic inputs like those listed in

Chapter 3.2 and are self explanatory. Lines 36-51 of the m file or lines 39-71 of Appendix A are more

advanced options and contain options for defining the thickness, chord/diameter distribution, axial

inflow velocities, max thickness/chord distribution and rake/diameter distribution. Only the options

that were modified are listed above, the other options provided in the input file were left at the

default values. The drag coefficient, line 45 of Figure3-9, of 0.0080 is an OpenProp default value

that approximates the drag of the various cross sections of the propeller blade. After reviewing the

reference material provided on the OpenProp Wiki page [2] it was discovered that the 0.0080

approximation was acceptable for blade lift coefficients of 0.2 to 0.5. As can be seen in Appendix H

the final propeller design only has lift coefficient values that fall into the 0.2-0.5 region over half of

its length. In order to determine the effect of this high lift coefficient the drag coefficient values

from the root to ½ of the radius was doubled and then tripled. This change in drag coefficient

resulted in minimal changes in efficiency, ±1%. Thus it was determined that the XCD has minimal

effect on the design and was left at its default value. Lines 64-77of the m file contains several other

options that were left in the default configuration and were not used in this design process.

Figure 3-8: Example selection of code from Input m file

13

3.3.2 Input File Modifications, Optimized Propeller Design

In order to achieve the most efficient propeller design possible it is desirable to create a propeller

with a high aspect ratio. When OpenProp v2.3 is run with its default chord/diameter or XCoD, the

code creates a low aspect ratio propeller. In order to create this high aspect ratio propeller one

must modify the XCoD matrix, line 44 of the actual m file or lines 54-55 of Appendix A. OpenProp

breaks the propeller into 10 stations along its radius, m file line 43 or lines 52-53 in Appendix A. The

propeller shape can be defined by changing the appropriate XCoD values. The inputs used for this

example are shown below, Figure 3-9, lines 37-51 were left at the default values, and lines 16-33 of

Figure 3-8 are based on the design criteria listed in Chapter 1. A 3-D image, which is created with

OpenProp see Chapter 3.3.4, of the resulting propeller is shown in Figure 3-10.

Figure 3-9: Default propeller geometry inputs

Figure 3-10: Default propeller results 3D blade image

This default propeller result is far from optimized and yields a propeller with an efficiency of 68.9%.

This efficiency is optimistic because this is the propeller’s open water efficiency but the propeller is

in fact behind the hull of the AUV and thus does not actually see the full 2 m/s ship speed. There are

two ways to take the hull of the vehicle in to account. One is to use a thrust deduction fraction, ,

which, along with Equation 3-1, can be used to estimate a new input Ship Velocity. This ship velocity

14

is more characteristic of what the propeller actually sees and will yield a more realistic propeller

design and efficiency estimation. In Equation 3-1, is the old Ship Velocity of 2 m/s and is the

new Ship Velocity to be input into the input m file.

 3-1

The second and most accurate way is to input the axial inflow variation as found by CFD [3] and keep

the ship velocity at 2 m/s. OpenProp then uses this inflow variation to effectively model the varying

velocities seen by the propeller caused by the hull of the vehicle. In order to create a more realistic

propeller with a less optimistic efficiency estimate this axial inflow variation caused by the wake of

the vehicle should be taken into account. The efficiency may drop as much as 5% when the axial

inflow variation, XVA, is added into the calculation. For the case above, after the code was run again

with the axial inflow variation added to the input file the resulting propeller efficiency was 65.7%

and the resulting propeller looked identical to the one shown in Figure 3-10. In order to improve on

this efficiency the first geometry input that was modified was the cord to diameter ratio, XCoD. The

XCoD basically just changes the blade shape. By changing the XCoD the propeller efficiency can be

improved by 10% or more. For this example we will start by including the CFD axial inflow results for

the AUV vehicle [3]. Appendix B contains the formula provided by the CFD results and the points

generated for use in the OpenProp input file.

In order to fully optimize the design the XCoD needs to be altered until a point of diminishing

returns in efficiency is found. This was done by a simple trial and error methodology keeping one

key fact in mind; a slim and smooth propeller will yield the most efficient design as long as cavitation

is not present. Below are several iterations that looked promising and are just a small selection of

geometries that were tested.

Open Prop Points, x/r XCoD

0.2 0.0800

0.3 0.0770

0.4 0.0730

0.5 0.07180

0.6 0.0680

0.7 0.0600

0.8 0.0500

0.9 0.0320

0.95 0.0200

1 0.0010

Efficiency 78.73

Figure 3-11: Example 1 chord modification

15

Figure 3-12: Example 2 chord modification

Open Prop Points, x/r XCoD

0.2 0.0530

0.3 0.0620

0.4 0.0650

0.5 0.0660

0.6 0.0670

0.7 0.0610

0.8 0.0500

0.9 0.0310

0.95 0.0200

1 0.0010

Efficiency 78.83

Figure 3-13: Example 3 chord modification

Out of the three propellers shown above example 3, Figure 3-13, had the highest efficiency at

78.83%. This increase in efficiency over the starting 65.7% was achieved just by altering the XCoD of

the input file. Every time to code is re-run OpenProp re-optimizes the blade section angles and the

blade thickness profile to achieve an optimize blade shape for the design conditions provided.

The above propellers have succeeded in achieving the goal of high efficiency numbers but there is

one big problem with them, they are difficult, if not impossible to manufacture as they are. The

OpenProp default Thickness profile includes infinitely small, sharp leading and trailing edges. This

particular problem is, however, an easy fix. The default Thickness distribution is option ‘1’ in line 38

of the m file and line 42 of Appendix A. Option 1 yields the 2-D cross section with sharp leading and

trailing edges shown in Figure 3-14. To set OpenProp v2.3 to design a blade with a leading and

trailing edge with a radius just change option ‘1’ to option ‘4.’ Option ‘4’ yields the 2-D cross section

shown in Figure 3-15, this change resulted in no change to the predicted efficiency.

Open Prop Points, x/r XCoD

0.2 0.0650

0.3 0.0770

0.4 0.0730

0.5 0.07180

0.6 0.0680

0.7 0.0600

0.8 0.0500

0.9 0.0320

0.95 0.0200

1 0.0010

Efficiency 78.74

16

Figure 3-14: OpenProp thickness option 1

Figure 3-15: OpenProp thickness option 4

The next problem that needs to be addressed is the thickness of the blades themselves. The default

thickness profile yields a thin, structurally unsound propeller that may break and/or bend when

loaded or handled roughly. At this stage it is convenient to have access to some type of rapid

prototyping machine to check the manufacturability and structural integrity of the propeller. The

default thickness profile, t0oc0, was modified and the thickness was increased incrementally until

an acceptable design was found. A comparison of the default values and the first iteration of the

modified propeller thickness profile is shown in Table 3-1. The values shown in Table 3-1 are

thickness over chord ratios and are found on lines 66-67 of Appendix A or line 49 of the m file. This

modified propeller was built on an Alaris30 rapid prototyping machine [6]. The resulting propeller is

shown in Figure 3-16. Notice that the left tip of the propeller is drooping slightly, this is not by

design, and is caused by the lack of significant blade thickness.

 Table 3-1: Thickness over Chord (t0oc0) profile example 1

XR Default t0oc0 Modified t0oc0

0.2 0.2056 0.3056

0.3 0.1551 0.2551

0.4 0.1181 0.2181

0.5 0.0902 0.1902

0.6 0.0694 0.1694

0.7 0.0541 0.1541

0.8 0.0419 0.1419

0.9 0.0332 0.1332

0.95 0.0324 0.1324

1.0 0.0000 0.0000

Figure 3-16: Prototype propeller 1

After learning that the propeller thickness and chord needs to be increased in order to achieve a

structurally sound design a second prototype propeller was created. This propeller also

17

incorporates a slight rearward rake, defined as the rake over the diameter. A comparison of the

default chord distribution, thickness and rake to the second prototype design is shown in Table 3-2.

A picture and side profile CAD drawing of the second prototype propeller is provided in Figure 3-17.

Table 3-2: 2nd Prototype propeller t0oc0, XCoD and Rake modifications

XR Default t0oc0 2nd Modified t0oc0 Default XCoD 2nd Prototype XCoD Rake

0.2 0.2056 0.3256 0.2056 0.0650 0

0.3 0.1551 0.2651 0.1551 0.0650 0.005

0.4 0.1181 0.2251 0.1181 0.0665 0.01

0.5 0.0902 0.1952 0.0902 0.0660 0.015

0.6 0.0694 0.1784 0.0694 0.0670 0.02

0.7 0.0541 0.1591 0.0541 0.0610 0.025

0.8 0.0419 0.1469 0.0419 0.0500 0.03

0.9 0.0332 0.1382 0.0332 0.0310 0.035

0.95 0.0324 0.1374 0.0324 0.0200 0.037

1.0 0.0000 0.0000 0.0000 0.0010 0.04

Figure 3-17: 2nd Prototype propeller

The process of adjusting the thickness and chord may require several prototype propellers to be

created and scrutinized until a satisfactory propeller is developed. In this case 7 separate propeller

thickness profiles were manufactured and scrutinized before a propeller was selected. The

thickness, chord distribution and rake of the final propeller are provided below. In order to further

increase the durability of the final propeller the blades were further thickened and the chord

distribution of the tip was also increased, these inputs are shown in Table 3-3.

18

Table 3-3: Final Propeller Geometry Inputs

XR Final t0oc0 Final XCoD Rake

0.2 0.4606 0.0650 0

0.3 0.4001 0.0650 0.005

0.4 0.3601 0.0655 0.01

0.5 0.3302 0.0660 0.015

0.6 0.3034 0.0670 0.02

0.7 0.2841 0.0650 0.025

0.8 0.2719 0.0600 0.03

0.9 0.2632 0.0450 0.035

0.95 0.2624 0.0330 0.037

1.0 0.0000 0.0010 0.04

3.3.3 Run Script

The OpenProp v2.3 Run Script is an outline of commands that are used to manipulate the OpenProp

v2.3 source code. Appendix C contains the Run Script used for the final propeller design in its

entirety. The m-file itself is commented in detail and is straightforward in its use. Each command is

discussed in detail in Chapter 3.3.4. The Run Script described herein is a modified version of the one

provided by the original examples contained in the OpenProp v2.3 downloadable code package.

3.3.4 Results and Off Design Analysis

The following results were taken from one iteration of the propeller design for illustration purposes

only, and full text files are provided for the final AUV propeller design in Appendix E-H. This section

is meant to be a brief overview of the various plots and text files that are generated by OpenProp

v2.3.

After an input file is constructed and the EppsOptimizer is run there are several options in the Run

Script that may be used to analyze and obtain visual and statistical representations of the designed

propeller. The first option that was used is the ‘Make_Reports(pt)’ command. This command

generates three text based reports as well as a MATLAB figure called the Graphical Report that

summarizes several propeller statistics. The first generated text file is a summary of the input file

and is named prefix_Input.txt, where the prefix is defined by the Input.m file, which can be found on

line 11 of the m file or line 13 of Appendix A under the option ‘filename’. The next text file is named

prefix_Output.txt and is a summary of the outputs provided by the OpenProp v2.3 code. This file

summarizes all of the propeller constants and other important statistics like the efficiency and

coefficients of torque, thrust and advance. The last file generated is the prefix_Performance.txt file.

This file contains many exacting details on the propeller itself including total inflow velocity, section

lift coefficient, and undisturbed flow angle all of which are measured along defined stations along

the radius of the propeller. Only the Output file was used in this design process, the other

information is interesting to have but not necessary. A single figure called ‘Graphical Report’ is also

produced and is shown in Figure 3-18. At the top of the figure is a summary of the key propeller

19

constants and the efficiency. It is important to note that none of the generated figures are

automatically saved and must be individually saved and named.

The next option in the Run Script is the ‘Geometry_Original(pt)’ command, this runs the default

geometry script that comes in the OpenProp v2.3 download. Note that the file was renamed from

its default name of ‘Geometry.’ This generates several plots and a single text file. This command

also generates a Rhino CAD input file as well as a SolidWorks CAD input file. The text file that is

generated is named prefix_Geometry.txt and summarizes the physical geometry of the propeller

including statistics like section pitch/diameter and chord-length/diameter ratios. This command

also generates two figures, a 2-D and a 3-D Blade Image as shown in Figures 3-19 and 3-20. The 2-D

Blade Image figure shows cross section blade shapes along the radius of the propeller blade. The 3-

D Blade Image figure is an interactive MATLAB figure where the blade image can be rotated and

zoomed so the blade can be scrutinized from all angles. The 3-D image was particularly helpful in

determining errors in the blade shape, for example odd twists and lumps in the blade were noticed

in several design iterations. These errors can be contributed to XCoD input errors.

Figure 3-18: Graphical report

20

Figure 3-19: 2-D blade image

Figure 3-20: 3-D blade image

There is one geometry option available in the downloadable OpenProp v2.3 code package. The

original code is described above and the a second geometry command file named Geometry(pt),

was created by modifying the original geometry m file. This m file was modified to produce a series

of tab delineated text files that can be used with practically any CAD program. Each file contains a

series of coordinates that define a single cross sectional profile of one of the propeller blades. All of

the files together define a single blade that can then be rotated to generate a propeller with the

21

desired number of blades. The number of points along the chord and the number of stations used

along the radius are defined by the Mp and Np values of the Input file, lines 24-25 of the actual m

file or lines 26-27 of Appendix A. This modified geometry file is provided in Appendix I.

Once a propeller is developed it is important to also analyze its off design performance in case a

mission or adverse conditions requires the vehicle run outside of its intended operating point.

OpenProp v2.3 is able to generate the propeller performance curves that show the off design point

performance of the propeller design. The ‘Analyze off-design states’ section in the Run Script, lines

51-55 of the m file or lines 50-54 of Appendix C, can be used to generate the off design performance

data. In order to visualize this data the ‘Plot Off Design Results’ section, lines 58-78 of the m file or

lines 57-83 of Appendix C, can be used to generate a plot similar to the one shown in Figure 3-21. In

order in increase or decrease the range analyzed change the Js_all option to the desired range, line

52 of the m file or line 51 of Appendix C. An example of the resulting plot is shown below in Figure

3-21. It is important to note that the legend has been modified from its default setting to more

clearly describe the results.

Figure 3-21: Propeller performance curves

The next check that should be done is a cavitation check. ‘Cav_CavitationMap(pt)’ was run to

generate a cavitation map as shown in Figure 3-22. The green marks on the cavitation map, Figure

3-22, denote areas with no cavitation while red marks would denote areas that are predicted to

cavitate at the designated operating point. OpenProp runs this calculation at the specified center

shaft depth of 3 meters, which is the OpenProp default value and can be found on line 34 of the

input m file or line 36 of Appendix A. In this case no cavitation was predicted.

22

Figure 3-22: Cavitation map

23

Chapter 4 - Propeller and Motor Optimization
The propeller and motor optimization is an iterative process and both are dependent on each other.

The motor and propeller process is also dependent on the rest of the system including, seals,

bearings, shafts and any other electronics that may be required in the system. Each component can

be changed independently but are all dependent on one another. One must be diligent in their

book keeping to make sure nothing is left out of the system so everything will come together as

expected and to allow for the highest efficiency value and most accurate possible efficiency

estimation possible.

After the motor calculations have been done, as in Table 2-1, a few key points are screened before a

custom propeller design is attempted. In order to make the system as efficient as possible it is

desirable for the propeller to spin as slowly as possible, so a low RPM is desirable. So if two motors

are compared, Motor 1 spins at 5,000 RPM and Motor 2 spins at 2,000 RPM and their efficiencies

are similar then Motor 2 would be more desirable because it would lead to a more efficient

propeller design and thus a more efficient system overall. The propeller efficiency is not the only

factor in this decision and every aspect of the propulsion system must be taken into account. For

example, it is likely that Motor 2 will generate more torque than Motor 1, if this torque is not

required then Motor 1 may actually lead to a more efficient system because the system would

operate closer to Motor 1’s maximum efficiency while Motor 2 would be operating off of its

designed max efficiency. Also, if the RPM at max efficiency was 10,000 RPM and the shaft seal

being utilized in the system is rated to only 5,000 RPM, it is obvious that the proposed motor does

not meet the desired specifications. Since the design space is not limited to off the shelf propellers

the motor selection process is iterative where motors are analyzed and then propellers are designed

for the specific RPM result of the specific motor being looked at in order to get an estimate of

the total propulsive efficiency. This propeller design is not meant to be an optimized design but is

instead just a rough estimation using OpenProp’s default settings, see Chapter 3.4.1. Once an

estimated propeller is created a total torque required by the system can be estimated. The motor

can then be analyzed at this required torque and its actual performance can be determined as per

the example in Table 2-2. This off design efficiency is the value that should be used in the final

efficiency calculation. Table 4-1 below is a summary of various efficiencies that were used in this

design process. Some are rule of thumb values while others are determined through mathematical

means like the motor efficiency for example. The hull efficiency depends on the wake fraction and

thrust deduction fraction of the vehicle. In the case of this design the wake fraction, w, and thrust

deduction fraction, t, were determined by CFD [3] but were not utilized.

Table 4-1: Summary of efficiencies

Electronic Speed Controller, e 0.97 [8]

Hull, H Calculation

Seal, seal Experiment

Propeller, P OpenProp

Motor, M Calculation

24

Equation 4-1 can then be used to determine the hull efficiency, . The CFD work determined that

the value of w is 0.3 and the value of t is 0.06 for the candidate AUV. If the wake behind the vehicle

is taken into account during the propeller design, as was done in this study, then this efficiency

calculation is unnecessary.

 4-1

25

Chapter 5 – Component Testing

5.1 Seal and Motor Testing
In order to validate manufacturer claims and boost confidence in the proposed shaft seals for the

AUV the seals were thoroughly tested. The motor shaft seals were tested at a wide variety of

pressures from running depth, 50psi, to the maximum expected operational depth, 750psi. The

original seals provided by BAL [4] were found to have a slow leak at maximum pressure. This was

reported to the company and they delivered a handful of redesigned seals for testing. These were

put through the same test regime as the previous faulty seals and were found to perform within

specifications. Both sets of test results are presented for comparison purposes.

Two different tail designs were considered, a ‘wet’ tail and a ‘dry’ tail. The dry tail is completely

sealed off and the components are run in air and there is a pressure differential equal to the water

pressure at depth. In the ‘wet’ tail the drive components are isolated from the vehicle and are

submersed in oil. A flexible membrane is use to equalize the pressure between the surrounding

water and the oil inside of the tail. This effectively leads to no pressure differential across the shaft

seals of the propulsion system and maneuvering fins. In the dry configuration the added torque on

the shaft by the seal increases as the outside pressure increases. For the wet configuration there is

no pressure difference so the added torque is constant across all outside pressures and is equivalent

to the running torque at zero depth.

5.1.1 Dry Tail Seal Testing

Four different seals were tested in this experiment. Each seal company specified high tolerance

gland dimensions for proper performance of their particular seal. In order to accommodate the four

different seals in the same test apparatus multiple interchangeable Seal Housings were

manufactured, one for each seal, as shown in Figure 5-1.

26

Figure 5-1: Seal Housings

The American High Performance Seal proved to be too delicate and repeatedly fell apart upon

installation. The seal was deemed too fragile for practical use and was removed from testing. The

475 Shaft Seal is an off the shelf shaft seal that is currently in use on Virginia Tech's 475 fleet of

AUVs. This seal is a standard shaft seal purchased from McMaster-Carr.com part number 13125K65.

The 475 Fin Seal is also from McMaster-Carr.com and has a part number 13125K63; this seal is also

the proposed fin seal for the candidate AUV. The BAL Seal is a custom seal manufactured to the

candidate AUV operating conditions by a company called BAL Seal Engineering Inc [4]. Two different

prototype seals were developed by BAL.

A pressure chamber, with gauge and valve system was then manufactured as shown in Figure 5-2.

The pressure chamber consists of a schedule 40 standard wall aluminum threaded pipe with a

diameter of 1 inch and a length of 6 inches. The end that connects the valve and gauge assembly is

a high-pressure aluminum female reducing coupling that reduces the 1 inch NPT to a ½ inch NPT. A

reducing ½ inch to ¼ inch high pressure brass fitting is attached to the aluminum female reducing

coupling. A high pressure brass tee fitting was then used to attach the gauge and two way high

pressure purge valve. A length of abrasion resistant PTFE hose rated to 3000psi was used to connect

the pressure chamber to an air cylinder and regulator that was used to set the pressure of the

system during testing.

27

Figure 5-2: Pressure Chamber

Figure 5-3: Seal torque test set up

 Figure 5-3 shows the completed experimental set up. The pressure chamber was mounted to a V-

Block that was then mounted to a custom aluminum base plate via C-clamps that allowed precise

alignment of the shaft protruding from the pressure chamber and the shaft of the Vibrac 50 in-oz

torque transducer. The Series 1 Vibrac torque transducer is rated to a maximum torque of 50 in-oz

28

and is capable of surviving a 100% overload without failure. The accuracy of Vibrac transducer is +/-

1% of the span and is capable of handling up to 10,000 RPM [9]. A power supply was initially used to

power the drive motor but it was discovered that it could not provide adequate amperage to the

motor at the higher test pressures. A Lithium Polymer battery was used instead of the power supply

for the duration of the experiment. The motor used was a brushless Hyperion Z-2213-24 exterior-

rotor.

The test results for the first prototype BAL seal are shown in the upper plot in Figure 5-4. The

breakaway torque for the existing 475 fin seal is also included in Figure 5-4. All tests were run at

2000 RPM. Breakaway torque is the impulse required to start the shaft turning and the running

torque is the measured torque after the system has reached a steady state at 2000 RPM.

Figure 5-4: Prototype BAL seal torque test results, prototype 1 top, prototype 2 bottom

The second prototype BAL seal was tested using the same experimental set up as the first but this

seal was found to add more torque to the system than the first prototype seal. The original motor

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800

Q
, i

n
-o

z

Pressure, PSI

BAL Running

BAL Break Away

475 Fin Break Away

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800

Q
, i

n
-o

z

Pressure, PSI

29

used in the testing setup was unable to turn the system at the higher test pressures. Modifications

to the test stand were manufactured in order to mount a larger motor. A NeuMotor 1925-1Y was

used to complete the testing. The torque results are shown in the bottom plot in Figure 5-4. The

second prototype BAL seal running torque was found to be 8.3 in-oz, at the most, at the expected

average operating depth of 10 meters. In order to provide a factor of safety in the system the 50psi

results were used in all calculations.

5.1.2 Oil-Filled Tail Testing

The next experimental test that was undertaken was to determine the possible losses caused by an

oil filled tail. Since an oil-filled tail equalizes with the outside pressure there is effectively no

pressure difference across the shaft seal. Thus no pressure chamber was required and the test was

run at atmospheric pressure. A simple PVC pipe chamber was manufactured to house the oil and

motor components. Power and communication wires are allowed to pass out of the chamber

through two vertical protruding pieces. The chamber and its components are shown in Figure 5-5

through 5-7. A NeuMotor 1925-1Y interior-rotor and a Hyperion Z-2213-24 exterior-rotor motors

were used in the test. The results of the testing are summarized in Table 5-1. The exterior-rotor

style motor was shown to have significant losses caused by the oil and significant stirring of the oil

was observed while. The losses of the interior-rotor motor were much less and no stirring of the oil

was observed. The oil used was Carnation Light Mineral Oil, the product number is 1067-6 [10].

This oil is the exact oil that would be used in an actual oil filled tail configuration. The 1925-1Y is

also dimensional identical to the proposed 1925-3Y.

Figure 5-5: Oil test chamber

30

Figure 5-6: Oil chamber end cap, motor bulkhead and seal adapter

Figure 5-7: NeuMotor 1925-1Y mounted to motor bulkhead

31

Table 5-1: Oil filled test results

32

Chapter 6 Final Propulsion Design

6.1 Final Motor Selection and Propeller Design for Dry Tail
At the time of writing two motors have been selected and ordered from the company NeuMotor [7],

the 1925-3Y (now called the 1924-3Y by NeuMotor) and the 1521-10.5Y. The 1521 series motor is

not listed on the NeuMotor website and was discovered after requesting a chart that outlined what

custom motors they could wind using the 1500 series chassis. The chart provided by NeuMotor is

provided in Appendix D. These two motors were analyzed as per Chapter 2, the results of this

analysis are summarized in Tables 6-1 and 6-2. Both motor selections recommended are capable of

turning the system at all pressure values measured and shown in Chapter 5 Figure 5-5. The torque

required used for these off efficiency calculations was 21.43 in-oz. The torque required was found

by adding the torque imparted to the shaft by the seal, 8.3 in-oz, to the torque required to turn the

final propeller design, 13.13 in-oz. We are assuming the 8.3 in-oz added by the seal will be correct

even though the experiment was run at 2000 RPM and the actual system is turning at around 1850

RPM.

Table 6-1: Summary of off motor characteristics

Motor Rm Io Kv Max Eff Q Max Eff RPM Max Eff

1521-10.5Y 0.689 0.19 149 81.595 16.11 1884.29

1925-3Y 0.18 0.3 136 87.965 45.05 1785.75

Table 6-2: Motor off design characteristics

Motor RPM Off Eff Motor Off Eff

1521-10.5Y 1823.99 80.93

1925-3Y 1843.87 85.01

The proposed motors have nearly identical performance characteristics for the proposed

application. The 1925 is about 4% more efficient than the 1521 but the 1521 is a smaller motor and

would remove about 5 oz off of the total system weight. In order to select a final motor both

motors were ordered for in house testing and evaluation, which is ongoing. Conveniently both

motors have identical mounting options.

The final AUV prototype propeller is shown in Figure 6-1. The final propeller design was made at a

diameter of 0.12 meters and included an increased tip chord and thickness to help mitigate tip

flexion when the propeller is under load. In order to validate the diameter chosen the propeller was

redesigned using a diameter of 0.13, 0.11, and 0.10 meters. All alternative diameters yielded a

propeller with efficiency lower than that of the final propeller designed with a diameter of 0.12

meters. A 3-D drawing of the final propeller is provided in Figure 6-3. The final propellers thickness,

chord distribution and rake inputs are shown in Table 6-3, the input file is shown in Appendix A in its

entirety.

33

Figure 6-1: Final Propeller Prototype

Table 6-3: Final Propeller Prototype Geometry

XR Final t0oc0 Final XCoD rake0

0.2 0.4606 0.0650 0

0.3 0.4001 0.0650 0.005

0.4 0.3601 0.0655 0.010

0.5 0.3302 0.0660 0.015

0.6 0.3034 0.0670 0.050

0.7 0.2841 0.0650 0.025

0.8 0.2719 0.0600 0.030

0.9 0.2632 0.0450 0.035

0.95 0.2624 0.0330 0.037

1.0 0.0000 0.0010 0.040

The propeller performance curves and other OpenProp v2.3 outputs, as described in Section 3.3.4,

are shown below in Figures 6-2 through 6-7. The various output text files are provided, in their

entirety, in Appendix E through H.

 From the tests described in Chapter 5 the running torque of the seal at the candidate AUV’s

operating pressure of 50psi was found to be 8.3 in-oz at 2000 RPM. Using this result the power

absorbed by the seal was determined to be 11.31 watts for the 1925-3Y and 11.19 watts for the

1521-10.5Y using Equation 6-1 where is the rotations per second of the system and is the

torque.

6-1

The power into the propeller can also be found by using Equation 6-1. We know from OpenProp

that the torque required to turn the propeller is 13.13 in-oz and that the design point was 1850

34

RPM. Using these quantities the power into the propeller was found to be 17.97 watts. We also

know that, at this design point, the 1925-3Y requires 34.38 watts and the 1521-10.5 requires 35.73

watts to turn the system. Assuming that the controller has an efficiency of 97% [8] the total power

into the system is 35.44 watts for the 1925-3Y and 36.83 watts for the 1521-10.5Y.

We know that the vehicle has a drag of 8.11 Newtons at 2 meters per second. Using Equation 6-2,

where is the drag in this case and is the velocity of the vehicle, it was determined that the

effective power is 16.22 watts for the vehicle to travel at 2 meters per second.

 6-2

By dividing this effective power by the total power into the system the total efficiency of the system

can be calculated to be 45.76% for the 1925-3Y and 44.03% for the 1521-10.5Y.

A summary of the final predicted propulsive efficiency and other statistics is provided in Table 6-4

and 6-5. Table 6-6 is a summary of the data points used to create the KT and KQ plots in Figures 6-4

and 6-5. Figure 6-6 shows no cavitation to be predicted for the propeller at this design point.

Figure 6-2: Final AUV 2-D propeller image

35

Figure 6-3: Final AUV 3-D propeller image

Figure 6-4: Final AUV propeller performance curves

36

Figure 6-5: Kt and Kq performance curves

Figure 6-6: Final AUV propeller cavitation map

37

Table 6-4: Motor power consumption summary

Motor RPM Max Eff RPM Off Eff Motor Off Eff Watts at 14V Current Drawn, amp

1521-10.5Y 1884.2 1823.99 80.93 35.73 2.55

1925-3Y 1785.75 1843.87 85.01 34.38 2.45

Table 6-5: Summary of propulsion system efficiencies

Component Efficiency

Electronic Speed Controller, e 0.97 [8]

Propeller, P 0.7993

Motor, M 1925-3Y 0. 8501

Motor, M 1521-10.5Y 0.8093

Total Efficiency with 1925-3Y 0.4576

Total Efficiency with 1521-10.5Y 0.4403

Table 6-6: Summary of KT and 10*KQ data points

X Value KT 10*KQ

0.10 0.06058 0.04650

0.45 0.05470 0.04413

0.50 0.04857 0.04124

0.55 0.04244 0.03796

0.60 0.03610 0.03417

0.65 0.02940 0.02973

0.70 0.02255 0.02469

0.75 0.01559 0.01902

0.80 0.008554 0.01275

0.85 0.001502 0.005974

38

Chapter 7 Conclusions
A mathematical motor characterization process was proposed to characterize a brushless electric

motor based on the three basic motor constants, , , and provided by the manufacturer of

the motors. A wide variety of electric motors were characterized using the proposed method and

the field was narrowed down by using results from the motor characterization process along with

the RPM range obtained from the parametric propeller analysis. Prototype propellers were then

created to yield the highest efficiency possible based on the RPM range obtainable by the candidate

motors and the RPM and diameter range predicted by the parametric propeller analysis. Once a

unique propeller blade shape was finalized the manufacturability of the blade was taken into

account. The chord distribution and thickness was then altered and prototype propellers were

manufactured on an Alaris30 3D printer. This propeller prototyping process was repeated until a

structurally acceptable propeller blade was created. A variety of seals were tested and the results,

combined with the torque required to turn the propeller obtained from OpenProp, were used to

determine the torque required to turn the candidate AUV's propulsion system. This result was then

used to determine the off design motor characteristics of the candidate motors and a final motor

selection was made. A final efficiency prediction was then made based on the predicted total power

consumed by the system and the predicted effective power required.

The proposed design process is applicable to a variety of surface and under water propulsion design

applications. Future work could be done to validate the process described by designing, building

and testing a system and then comparing the predicted efficiency results with measured efficiency

results from the prototype propulsion system.

39

Works Cited
[1] Schultz, J., “Anutonomous Underwater Vehicle (AUV) Propulsion System Analysis and Optimization,”

MS Thesis (Online), Department of Aerospace and Ocean Engineering, Virginia Tech, 2009.

And can be found at: http://scholar.lib.vt.edu/theses/available/etd-05252009230302/

unrestricted/Schultz_James_Thesis.pdf

[2] OpenProp (Online)

http://openprop.mit.edu/~openprop/wiki/index.php?title=Main_Page

[3] R. Coe, Personal Communication, March 23, 2010

[4] BAL Seal Engineering Inc

http://www.balseal.com/home

[5] J.R. Hendershot Jr and Miller, Design of Brushless Permanent-Magnet Motors. Magna Physics

 Publishing and Clarendon Press, Oxford New York, 1994.

[6] Alaris30 Rapid Prototype Machine (Online)

http://www.objet.com/3D-Printer/Alaris30/

[7] NeuMotor (Online)

http://www.neumotors.com/Site/Welcome.html

[8] Scorpion Calc v3.37 (Online)

http://www.scorpionsystem.com/downloads/

[9] Vibrac Torque Transducers (Online)

 http://www.vibrac.com/products/transducers.aspx

[10] Ruger Chemical Product Catalog (Online)

https://www.echempax.com/ruger/dsp/pub/products/ProductCatalogSearch.dsp?pageType=Pr

oduct&category=EE4X&type=&ctl_st=description_ASC

[11] Virginia Tech 475 AUV (Online)

 http://www.ascl.ece.vt.edu/475AUV.html

40

Appendix A – Input Matlab m File for Final Propeller Design

Due to text wrapping the line numbers are slightly off when compared to the m-file.
% --- Example_input.m 1
% Created: 5/28/09, Brenden Epps, bepps@mit.edu 2
% Modified: 2010, Richard Duelley, nifty@vt.edu, additional comments and 3
% organization 4
% This script creates an "input." data structure for use in OpenProp. 5
% 6
% To design a propeller using these inputs, run: design = 7
EppsOptimizer(input) 8
% 9
% --- 10
clear, close all, clc 11
 12
filename = 'Run 1'; % filename prefix 13
notes = ''; % design notes 14
 15
% --- Design parameters 16
Z = 2; % number of blades 17
D = .12; % propeller diameter [m] = [ft] * [0.3048 m/ft] 18
Dhub = .018 ; % hub diameter [m] = [ft] * [0.3048 m/ft] 19
 20
Vs = 2.0; % ship speed [m/s] = [ft/s] * [0.3048 m/ft] 21
N = 1850; % propeller speed [RPM] 22
 23
THRUST = 8.66916; % required thrust [N] = [lbf] * [4.448 N/lbf] 24
 25
Mp = 20; % number of vortex panels over the radius 26
Np = 28; % number of points along the chord 27
ITER = 10; % number of iterations in wake alignment 28
Rhv = 1; % hub vortex radius / hub radius 29
 30
 31
rho = 1025; % water density [kg/m^3] = [slug/ft^3] * (515.38 32

[kg/m^3]/[slug/ft^3]) 33
H = 3; % Shaft centerline depth [m] = [ft] * [0.3048 34

m/ft] 35
dV = .3; % Inflow variation [m/s] 36
 37
 38
% --- Blade 2D section properties 39
Meanline = 'NACA a=0.8'; % Meanline type (1 == NACA a=0.8, 2 == 40

parabolic) 41
Thickness = 4; % Number 4 gives a nice rounded leading and 42
 trailing edge(1 == NACA 65A010, 2 == 43
 elliptical, 3 == parabolic, 4 == NACA 65A010 44

(modified)) 45
alphaI = 1.54; % [deg] ideal angle of attack (should match with 46

Meanline type) 47
CLI = 1.0; % [], ideal lift coefficient (should match with 48

Meanline type) 49
 50

41

 51
XR = [0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 52
1.0]; % radius / propeller radius 53
XCoD = [0.065 0.065 0.0655 0.0660 0.0670 0.065 0.060 0.045 0.033 54
0.0010]; % chord / diameter 55
XCD = [0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 56
0.0080]; % section drag coefficient 57
XVA = [0.336624 0.550666 0.70672 0.79875 0.857008 58
0.887554 0.902496 0.913942 0.922138 0.934]; % axial 59
inflow velocity / ship velocity, See AUVPropInFlowData Excel Sheet: By 60
Richard Duelley 61
XVT = [0 0 0 0 0 0 0 0 0 62
0]; % tangential inflow velocity / ship velocity 63
%f0oc0 = [0.0174 0.0195 0.0192 0.0175 0.0158 0.0143 0.0133 0.0125 0.0115 64
0.0000]; % max section camber / chord 65
t0oc0 = [0.4606 0.4001 0.3601 0.3302 0.3034 0.2841 0.2719 0.2632 0.2624 66
0.0000]; % max section thickness / chord 67
skew0 = [0 0 0 0 0 0 0 0 0 68
0]; % skew [deg] 69
rake0 = [0 0.005 0.01 0.015 0.02 0.025 70
0.03 0.035 0.037 0.04]; % rake / diameter 71
 72
 73
% --- Flags 74
Propeller_flag = 1; % 0 == turbine, 1 == propeller 75
 Viscous_flag = 1; % 0 == viscous forces off (CD = 0), 1 == viscous 76

forces on 77
 Hub_flag = 1; % 0 == no hub, 1 == hub 78
 Duct_flag = 0; % 0 == no duct, 1 == duct 79
 Wake_flag = 0; % 0 == Horseshoe(...,Wrench(...)), 1 == 80
 Wake_Horseshoe(...) 81
 Plot_flag = 0; % 0 == do not display plots, 1 == display plots 82
 Chord_flag = 0; % 0 == do not optimize chord lengths, 1 == optimize 83

chord lengths 84
Optimizer_flag = 2; % 1 == Lerbs optimizer, 2 == Epps optimizer 85
 Lagrange_flag = 0; % 0 == do not fix Lagrange multiplier, 1 == fix 86

Lagrange multiplier 87
 88
Make2Dplot_flag = 1; % 0 == do not make a 2D plot of the results, 1 == make 89

plot 90
Make3Dplot_flag = 1; % 0 == do not make a 3D plot of the results, 1 == make 91

plot 92
Make_Rhino_flag = 1; % 0 == do not make Rhino files, 1 == make Rhino files 93
 94
% -- Compute derived quantities 95
n = N/60; % revolutions per second [rps] 96
R = D/2; % propeller radius [m] 97
Rhub = Dhub/2; % hub radius [m] 98
Rhub_oR = Rhub/R; 99
Js = Vs/(n*D); % advance coefficient 100
L = pi/Js; % tip-speed ratio 101
CTDES = THRUST/(0.5*rho*Vs^2*pi*R^2); % CT thrust coefficient required 102
 103
dVs = dV/Vs; % axial inflow variation / Vs 104
CDoCL = mean(XCD)/CLI; 105

42

 106
ALPHAstall = 8*pi/180; % [rad], stall angle of attack - ideal angle of 107

attack 108
 109
% === 110
% === Pack up input variables 111
input.filename = filename; % filename prefix for output files 112
input.date = date; % today's date 113
 114
input.part1 = '------ Performance inputs ------'; 115
input.Z = Z; % [1 x 1], [] number of blades 116
input.N = N; % propeller speed [RPM] 117
input.D = D; % propeller diameter [m] 118
input.Vs = Vs; % [1 x 1], [m/s] ship speed 119
input.Js = Js; % [1 x 1], [] advance coefficient, Js = 120
Vs/nD = pi/L 121
input.L = L; % [1 x 1], [] tip speed ratio, L = omega*R/V 122
input.THRUST = THRUST; % required thrust [N] 123
input.CTDES = CTDES; % [1 x 1], [] desired thrust coefficient 124
 125
input.part2 = '------ Geometry inputs ------'; 126
input.Mp = Mp; % [1 x 1], [] number of blade sections 127
input.Np = Np; % [1 x 1], [] number of points along the 128

chord 129
input.R = R; % [1 x 1], [m] propeller radius 130
input.Rhub = Rhub; % [1 x 1], [m] hub radius 131
input.XR = XR; % [length(XR) x 1], [] input 132

radius/propeller radius 133
input.XVA = XVA; % [length(XR) x 1], [] input axial inflow 134

velocity at XR 135
input.XVT = XVT; % [length(XR) x 1], [] input swirl inflow 136

velocity at XR 137
input.XCD = XCD; % [length(XR) x 1], [] input drag 138

coefficient at XR 139
input.XCoD = XCoD; % [length(XR) x 1], [] input chord / 140

diameter at XR 141
input.t0oc0 = t0oc0; % [length(XR) x 1], [] input thickness / 142

chord at XR 143
input.skew0 = skew0; % [length(XR) x 1], [] input skew [deg] 144

 at XR 145
input.rake0 = rake0; % [length(XR) x 1], [] input rake X/D 146
at XR 147
input.Meanline = Meanline; % 2D section meanline flag 148
input.Thickness = Thickness; % 2D section thickness flag 149
input.ALPHAstall = ALPHAstall; % [rad], stall angle of attack - ideal angle 150

of attack 151
input.alphaI = alphaI; % [1 x 1], [deg] input ideal angle of attack 152

at XR 153
input.CLI = CLI; % [1 x 1], [] input ideal lift coefficient 154

at XR 155
input.CDoCL = CDoCL; % [1 x 1], [] blade section drag coefficient 156

/ lift coefficient 157
 158
input.part3 = '------ Computational inputs ------'; 159
input.ITER = ITER; % [] number of iterations 160
input.Propeller_flag = Propeller_flag; % 0 == turbine, 1 == propeller 161

43

input.Viscous_flag = Viscous_flag; % 0 == viscous forces off (CD = 0), 162
1 == viscous forces on 163

input.Hub_flag = Hub_flag; % 0 == no hub, 1 == hub 164
input.Duct_flag = Duct_flag; % 0 == no duct, 1 == duct 165
input.Plot_flag = Plot_flag; % 0 == do not display plots, 166

1 = display plots 167
input.Chord_flag = Chord_flag; % 0 == do not optimize chord lengths, 168

1 == optimize chord lengths 169
input.Wake_flag = Wake_flag; % 0 == Horseshoe(...,Wrench(...)), 170

1== Wake_Horseshoe(...) 171
input.Optimizer_flag = Optimizer_flag; % 1 == Lerbs optimizer, 2 == Epps 172
optimizer 173
input.Lagrange_flag = Lagrange_flag; % 0 == do not fix Lagrange 174

 multiplier, 1 == fix Lagrange multiplier 175
input.Make2Dplot_flag = Make2Dplot_flag; 176
input.Make3Dplot_flag = Make3Dplot_flag; 177
input.Make_Rhino_flag = Make_Rhino_flag; 178
nput.Rhv = Rhv; % [1 x 1], [] hub vortex radius / hub 179
radius 180
 181
input.part4 = '------ Cavitation inputs ------'; 182
input.rho = rho; % [1 x 1], [kg/m^3] fluid density 183
input.dVs = dVs; % [1 x 1], [] ship speed variation / ship 184

speed 185
input.H = H; % [1 x 1] 186
 187
input.part5 = '------ Duct inputs ------'; 188
 189
% ---------------------------- Pack up propeller/turbine data structure, pt 190
pt.name = filename; % (string) propeller/turbine name 191
pt.date = date; % (string) date created 192
pt.notes = notes; % (string or cell matrix) notes 193
pt.input = input; % (struct) input parameters 194
pt.design = []; % (struct) design conditions 195
pt.geometry = []; % (struct) design geometry 196
pt.states = []; % (struct) off-design state analysis 197
 198
% --- Save input data 199
save OPinput pt input 200
 201
clear, clc, load OPinput 202
 203
input 204

44

Appendix B – CFD Axial Inflow Results [3]

Model: AUV Speed: 2 m/s
Measurement Location: 1.90 m from nose of AUV, 1:30 (45°) and 4:30 (135°)
Max Radius: 0.06 m
Cells: ~2.5E6
Turbulence Model: SA (1st order)

y = 2.0182x3 - 5.0188x2 + 4.2664x - 0.3323
R² = 0.993

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0%

X
-A

xi
s

V
el

o
ci

ty
 (

V
/U

in
f)

Percent Radius (Rd = 0.06m)

AUV Averaged Prop Inflow

45

Table B-1:Summary of CFD wake calculation results

Position in Disc[r]
(m)-point 1 (m) % Radius

1:30 Location, V
(m/s)

1:30 Location,
V/Uinf

4:30 Location,
V (m/s)

4:30 Location,
V/Uinf

Average,
V/Uinf

0.06012 100.2% 1.8515 0.9257 1.8650 0.9325 0.9291

0.05659 94.3% 1.8379 0.9189 1.8552 0.9276 0.9233

0.05659 94.3% 1.8379 0.9189 1.8552 0.9276 0.9233

0.04951 82.5% 1.8082 0.9041 1.8372 0.9186 0.9113

0.04243 70.7% 1.7627 0.8813 1.8031 0.9015 0.8914

0.03892 64.9% 1.6952 0.8476 1.7413 0.8706 0.8591

0.03534 58.9% 1.6714 0.8357 1.71697 0.8584 0.8470

0.02822 47.0% 1.5189 0.7594 1.5570 0.7785 0.7690

0.02480 41.3% 1.3964 0.6982 1.4224 0.7112 0.7047

0.02140 35.7% 1.3045 0.6522 1.3114 0.6557 0.6539

0.01775 29.6% 1.1422 0.5711 1.1348 0.5674 0.5692

0.01430 23.8% 0.9325 0.4662 0.9282 0.4641 0.4651

0.0072164 12.0% -0.06695 -0.03347 0.1928 0.09640 0.03146

0.003931 6.6% -0.2775 -0.13876 -0.1472 -0.07363 -0.1062

0.002170 3.6% -0.2441 -0.12205 -0.2441 -0.1220 -0.12205

Table B-2: CFD wake inputs used in OpenProp

Open Prop Points Axial Inflow Velocity (From Formula)

0.2 0.3366

0.3 0.5506

0.4 0.7006

0.5 0.7987

0.6 0.8570

0.7 0.8875

0.8 0.9024

0.9 0.9139

0.95 0.9221

1 0.9340

46

Appendix C – Run Script Code
Due to text wrapping the line numbers are slightly off when compared to the m-file.
%% 1
%Modified and Additional Descriptive Comments: 2010, Richard Duelley 2
%Run the following commands to execute a single propeller design with 3
% OpenProp. 4
% Simply highlight desired operation and press F9 5
%% 6
addpath ../SourceCode 7
 8
%% 9
% Single propeller design example: 10
clear, close all, clc, 11
 12
% Load inputs: 13
Run1_input 14
 15
pause(0.01) 16
 17
 18
%% 19
% Perform design optimization 20
pt.design = EppsOptimizer(input) 21
 22
%Unsure of what this plot shows, not used in my design process 23
figure, 24
 plot(pt.design.RC,pt.design.G,'.-b') 25
 axis([0 1 0 0.03]) 26
 xlabel('r/R'), ylabel('G') 27
 28
pause(0.01) 29
 30
 31
%% 32
% Create graphical and text reports, Creates an Input.txt, Output.txt, 33
% Performance.txt, and a Graphical Report 34
Make_Reports(pt) 35
%% 36
% Determine propeller geometry: Produces a series of tab delineated text 37
% files that can be imported to practically any CAD program. Each file contains 38
% a series of coordinates that define a single cross sectional profile of 39
% one of the propeller blades. 40
pt.geometry = Geometry(pt) 41
 42
%The modifications I did to the Geometry script in order to output text files for 43
%CAD drawings broke the 3D propeller model. Just rerun using the original 44
%scrip to generate the 3D model if desired. Make sure to save all files to 45
%another folder before running because it will overwrite any duplicate 46
%files. 47
pt.geometry = Geometry_Original(pt) 48
%% 49
% Analyze off-design states 50
Js_all= [1.05:-0.05:0.5]; % advance coefficient, This defines the x axis of the 51
 %"Off-Design Results" plots below 52

47

LAMBDAall = pi./Js_all; % tip-speed ratio 53
pt.states = Analyze(pt,LAMBDAall) 54
 55
%% 56
%Plot Off-Design Results 57
figure, hold on, 58
 % Efficiency (green squares) 59
 plot(pt.states.Js,pt.states.EFFY,'-','LineWidth',2,'Color',[0 0.8 0]) 60
 Heffy = 61
plot(pt.states.Js,pt.states.EFFY,'sk','MarkerSize',14,'LineWidth',1,'MarkerFaceCo62
lor',[0 0.8 0]); 63
 64
 % Thrust coefficient (blue diamonds) 65
 plot(pt.states.Js,pt.states.KT,'b-','LineWidth',2) 66
 Hkt = 67
plot(pt.states.Js,pt.states.KT,'dk','MarkerSize',14,'LineWidth',1,'MarkerFaceColo68
r','b'); 69
 70
 % Torque coefficient (red circles) 71
 plot(pt.states.Js,10*pt.states.KQ,'r-','LineWidth',2) 72
 Hkq = 73
plot(pt.states.Js,10*pt.states.KQ,'ok','MarkerSize',12,'LineWidth',1,'MarkerFaceC74
olor','r'); 75
 76
 % Design point 77
 plot(pt.design.Js*[1 1],[0 2],'k--','LineWidth',1); 78
 79
 xlabel('Js','Fontsize',24), ylabel('KT, 10*KQ, EFFY','Fontsize',24) 80
 axis([0.4 1.2 0 0.9]) 81
 set(gca,'Fontsize',20) 82
 box on 83
 84
%% 85
% Pefrorm cavitation analysis: 86
%%% Red indicates Cavitation, Blue indicates NO Cavitation. 87
Cav_CavitationMap(pt); 88
 89
VLMbucket90

48

Appendix D – NeuMotor Chart
This chart was provided, upon request, by the NeuMotor engineers. It summarizes all of the
possible wind variations of the 1500 series of motors. The chart is preserved here for future
reference.

49

Appendix E – Input.txt
Run 1_Input.txt

OpenProp Input Table

Date and time: 2010-07-20 14:02:04

20 Number of Vortex Panels over the Radius

10 Max. Iterations in Wake Alignment

1 Hub Image Flag: 1=YES, 0=NO

0 Duct Flag: 1=YES, 0=NO

0.000 Duct Diameter

0.5 Hub Vortex Radius/Hub Radius

2 Number of Blades

0.541 Advance Coefficient Based on Ship Speed, Js

0.374 Desired Thrust Coefficient, Ct

1.000 Desired Thrust Ratio, tau

0.000 Duct Section Drag Coefficient, CDd

0 Hub Unloading Factor: 0 = optimum

0 Tip Unloading Factor: 1 = Reduced Loading

1 Swirl Cencellation Factor: 1 = No Cancellation

r/R C/D XCD Va/Vs Vt/Vs

0.20000 0.06500 0.00800 0.34 0.0000

0.30000 0.06500 0.00800 0.55 0.0000

0.40000 0.06550 0.00800 0.71 0.0000

0.50000 0.06600 0.00800 0.80 0.0000

0.60000 0.06700 0.00800 0.86 0.0000

0.70000 0.06500 0.00800 0.89 0.0000

0.80000 0.06000 0.00800 0.90 0.0000

0.90000 0.04500 0.00800 0.91 0.0000

0.95000 0.03300 0.00800 0.92 0.0000

1.00000 0.00100 0.00800 0.93 0.0000

r/R [], input radial position / propeller radius.

c/D [], input section chord-length / propeller diameter.

Cd [], input section drag coefficient.

Va [], input axial inflow velocity / ship velocity.

Vt [], input tangential inflow velocity / ship velocity.

50

Appendix F – Output.txt
Run 1_Output.txt

OpenProp Output Table

Date and time: 2010-07-20 14:02:04

Js = 0.5405

Ct = 0.3739

Cq = 0.0667

Kt = 0.0429

Kq = 0.0038

Cp = 0.3876

VMIV = 0.8286

Eff = 0.7993

Tau = 1.0000

Duct Circulation = 0.0000

Output at the control points for the propeller

r/R G Va Vt Ua Ua(ring) Ut Beta BetaI c/D Cd

0.17099 0.030310 0.26417 0.0000 0.29950 0.00000 -0.17373 14.886 34.503 0.06500 0.00800

0.21296 0.030718 0.36771 0.0000 0.26510 0.00000 -0.15597 16.546 30.327 0.06500 0.00800

0.25494 0.030630 0.46201 0.0000 0.23559 0.00000 -0.13526 17.318 27.389 0.06500 0.00800

0.29691 0.029916 0.54506 0.0000 0.21044 0.00000 -0.11449 17.529 25.123 0.06500 0.00800

0.33889 0.028743 0.61863 0.0000 0.18912 0.00000 -0.09580 17.437 23.319 0.06512 0.00800

0.38086 0.027273 0.68262 0.0000 0.17110 0.00000 -0.07906 17.139 21.800 0.06539 0.00800

0.42284 0.025716 0.73180 0.0000 0.15587 0.00000 -0.06568 16.582 20.361 0.06561 0.00800

0.46481 0.024179 0.77133 0.0000 0.14289 0.00000 -0.05529 15.935 19.059 0.06580 0.00800

0.50679 0.022695 0.80356 0.0000 0.13155 0.00000 -0.04705 15.260 17.881 0.06605 0.00800

0.54877 0.021276 0.83105 0.0000 0.12111 0.00000 -0.04027 14.605 16.823 0.06657 0.00800

0.59074 0.019945 0.85310 0.0000 0.11203 0.00000 -0.03480 13.954 15.854 0.06698 0.00800

0.63272 0.018723 0.86917 0.0000 0.10540 0.00000 -0.03071 13.298 14.963 0.06670 0.00800

0.67469 0.017584 0.88176 0.0000 0.10020 0.00000 -0.02750 12.673 14.154 0.06572 0.00800

0.71667 0.016513 0.89068 0.0000 0.09692 0.00000 -0.02515 12.070 13.417 0.06447 0.00800

0.75864 0.015473 0.89711 0.0000 0.09660 0.00000 -0.02362 11.501 12.767 0.06264 0.00800

0.80062 0.014387 0.90258 0.0000 0.10031 0.00000 -0.02259 10.977 12.220 0.05995 0.00800

0.84259 0.013160 0.90734 0.0000 0.10907 0.00000 -0.02190 10.497 11.777 0.05507 0.00800

0.88457 0.011663 0.91195 0.0000 0.12396 0.00000 -0.02155 10.059 11.439 0.04790 0.00800

0.92654 0.009671 0.91794 0.0000 0.14600 0.00000 -0.02153 9.674 11.220 0.03965 0.00800

0.96852 0.006673 0.92605 0.0000 0.17625 0.00000 -0.02184 9.342 11.122 0.02415 0.00800

51

The propeller does not have a duct.

Js [], advance coefficient.

Ct [], required thrust coefficient.

Cp [], power coefficient. Cp = Cq*pi/J.

Kt [], thrust coefficient. Kt = Ct*Js^2*pi/8.

Kq [], torque coefficient. Kq = Cq*Js^2*pi/16.

VMIV [], volumetric mean inflow velocity / ship velocity.

Eff [], efficiency = Ct*VMIV/Cp.

Tau [], thrust ratio = propeller thrust / total thrust.

r/R [], radial position of control points / propeller radius.

G [], section circulation / 2*pi*R.

Va [], axial inflow velocity / ship velocity.

Vt [], tangential inflow velocity / ship velocity.

Ua [], induced axial velocity / ship velocity.

52

Appendix G – Geometry.txt
Run 1_Geometry.txt

Propeller Geometry Table

Date and time: 20-Jul-2010

Propeller Diameter = 0.1200 m

Number of Blades = 2

Propeller Speed = 1850 RPM

Propeller Hub Diameter = 0.0180 m

Meanline Type: NACA a=0.8

Thickness Type: NACA 65A010 (modified)

 r/R P/D Skew Xs/D c/D f0/c t0/c

0.1710 0.4356 0.0000 -0.0015 0.0650 0.1999 0.4818

0.2130 0.4509 0.0000 0.0006 0.0650 0.1609 0.4516

0.2549 0.4698 0.0000 0.0027 0.0650 0.1326 0.4245

0.2969 0.4882 0.0000 0.0048 0.0650 0.1103 0.4016

0.3389 0.5058 0.0000 0.0069 0.0651 0.0923 0.3828

0.3809 0.5216 0.0000 0.0090 0.0654 0.0774 0.3668

0.4228 0.5326 0.0000 0.0111 0.0656 0.0655 0.3526

0.4648 0.5410 0.0000 0.0132 0.0658 0.0560 0.3401

0.5068 0.5474 0.0000 0.0153 0.0661 0.0481 0.3283

0.5488 0.5523 0.0000 0.0174 0.0666 0.0414 0.3164

0.5907 0.5557 0.0000 0.0195 0.0670 0.0360 0.3055

0.6327 0.5581 0.0000 0.0216 0.0667 0.0317 0.2963

0.6747 0.5600 0.0000 0.0237 0.0657 0.0284 0.2882

0.7167 0.5613 0.0000 0.0258 0.0645 0.0257 0.2817

0.7586 0.5633 0.0000 0.0279 0.0626 0.0234 0.2764

0.8006 0.5673 0.0000 0.0300 0.0600 0.0216 0.2718

0.8426 0.5743 0.0000 0.0322 0.0551 0.0205 0.2673

0.8846 0.5851 0.0000 0.0343 0.0479 0.0199 0.2638

0.9265 0.6002 0.0000 0.0360 0.0396 0.0190 0.2628

0.9685 0.6240 0.0000 0.0380 0.0241 0.0206 0.2148

r/R [], radial position of control points / propeller radius.

P/D [], section pitch / diameter.

c/D [], section chord-length / diameter.

fo/C [], section camber / section chord-length.

to/C [], section thickness / section chord-length.

53

Appendix H – Performance.txt
Run 1_Performance.txt

OpenProp Performance Table

Date and time: 2010-07-20 14:02:04

 r/R V* beta betai Gamma CL Sigma dBetai

0.171 1.99 14.89 34.50 0.0229 2.944 63.335 11.76

0.213 2.51 16.55 30.33 0.0232 2.369 39.920 10.35

0.255 3.03 17.32 27.39 0.0231 1.953 27.262 9.14

0.297 3.56 17.53 25.12 0.0226 1.625 19.793 8.16

0.339 4.08 17.44 23.32 0.0217 1.359 15.050 7.35

0.381 4.60 17.14 21.80 0.0206 1.140 11.855 6.69

0.423 5.10 16.58 20.36 0.0194 0.965 9.624 6.14

0.465 5.60 15.94 19.06 0.0182 0.825 7.990 5.68

0.507 6.09 15.26 17.88 0.0171 0.709 6.751 5.28

0.549 6.58 14.60 16.82 0.0160 0.610 5.784 4.94

0.591 7.07 13.95 15.85 0.0150 0.530 5.015 4.63

0.633 7.55 13.30 14.96 0.0141 0.467 4.392 4.36

0.675 8.03 12.67 14.15 0.0133 0.419 3.880 4.12

0.717 8.51 12.07 13.42 0.0125 0.378 3.453 3.90

0.759 8.99 11.50 12.77 0.0117 0.345 3.093 3.71

0.801 9.48 10.98 12.22 0.0108 0.318 2.785 3.53

0.843 9.96 10.50 11.78 0.0099 0.301 2.521 3.36

0.885 10.45 10.06 11.44 0.0088 0.293 2.291 3.21

0.927 10.94 9.67 11.22 0.0073 0.280 2.090 3.07

0.969 11.43 9.34 11.12 0.0050 0.304 1.913 2.94

r/R [], radial position of control points / propeller radius.

V* [m/s], total inflow velocity.

beta [deg], undisturbed flow angle.

betai [deg], hydrodynamic Pitch angle.

Gamma [m^2/s], vortex sheet strength.

CL [], section lift coefficient.

Sigma [], cavitation number.

d_alpha [deg], inflow variation bucket width.

54

Appendix I – Modified Geometry m File
% ===
% =================================== Determine Propeller Geometry Function
%
% This function determines the geometry of the propeller. It outputs
% the geometry as a 2D image, 3D image, and Rhino CAD file.
%
% Modified by: Richard S Duelley to output tab delineated text files for
% use in CAD drawings, this modification broke the 3-D image plot.
%
% Reference:
% J.S. Carlton, "Marine Propellers & Propulsion", ch. 3, 1994.
%
% Abbott, I. H., and Von Doenhoff, A. E.; Theory of Wing Sections.
% Dover, 1959.
%
% ---
% Input Variables:
%
% filename file name prefix for all output files
% Date_string time and date to print on reports
% Make2Dplot_flag flag for whether to make 2D geometry plot
% Make3Dplot_flag flag for whether to make 3D geometry plot
% Make_Rhino_flag flag for whetehr to make a Rhino output file
% Meanline flag for choice of meanline form
% Thickness flag for choice of thickness form
%
% XR [], input radii / propeller radius
% f0oc0 [], input camber / chord at each radius
% t0oc0 [], input thickness / chord at each radius
% skew0 [deg], input skew at each radius
% rake0 [], input rake / diameter at each radius
%
% RC [], control point radii / propeller radius
% CL [], section lift coefficients
% Beta_c [deg], Beta at the control points
% BetaI_c [deg], BetaI at the control points
% alphaI [deg], ideal angle of attack
%
% D [m], propeller diameter
% Z [], number of blades
% N [RPM], propeller speed
% Dhub [m], hub diameter
% Rhub [m], hub radius
%
% CoD [], chord / diameter at each control point radius
% R [m], propeller radius
% Mp [], number of radial 2D cross-sections
% Np [], number of points in each 2D section
% Js [], advance coefficient based on ship speed
%
% Output Variables:
%
% The function has graphical and file outputs, in addition to the geometry
% data structure.
%

55

% ---

function [geometry] = Geometry(pt)
%%
% -- Unpack variables
Date_string = pt.date;

filename = pt.input.filename;
Make2Dplot_flag = pt.input.Make2Dplot_flag;
Make3Dplot_flag = pt.input.Make3Dplot_flag;
Make_Rhino_flag = pt.input.Make_Rhino_flag;
Hub_flag = pt.input.Hub_flag; % 0 == no hub, 1 == hub
Duct_flag = pt.input.Duct_flag; % 0 == no duct, 1 == duct
Chord_flag = pt.input.Chord_flag; % 0 == do not optimize chord

lengths, 1 == optimize chord lengths

Meanline = pt.input.Meanline;
Thickness = pt.input.Thickness;

XR = pt.input.XR;
t0oc0 = pt.input.t0oc0;
XCoD = pt.input.XCoD;
skew0 = pt.input.skew0; % [deg]
rake0 = pt.input.rake0;

Z = pt.input.Z;
Js = pt.input.Js;
Vs = pt.input.Vs; % [m/s]
R = pt.input.R; % [m]
Rhub = pt.input.Rhub; % [m] hub radius

Mp = pt.input.Mp;
Np = pt.input.Np;

RC = pt.design.RC;
RV = pt.design.RV;
CL = pt.design.CL;
Beta_c = atand(pt.design.TANBC); % [deg]
BetaI_c = pt.design.BetaIC*180/pi; % [deg]
CoD = pt.design.CoD;
t0oc = pt.design.t0oc;
TANBIV = pt.design.TANBIV;

D = 2*R; % [m]
Dhub = 2*Rhub; % [m]
Rhub_oR = Rhub/R;
N = 60*Vs/(Js*D); % [RPM]

% ---
% % ---------------- Interpolate input geometry at selected radial sections
% RG = [0.9*Rhub_oR,RV(2:end-1),1];

56

% Interpolate input geometry at sections with cosine spacing along the span
RG = 0.9*Rhub_oR + (1-0.9*Rhub_oR)*(sin((0:Mp)*pi/(2*Mp))); % [0.9*Rhub_oR :

1]

CL = interp1(RC,CL ,RG,'pchip','extrap');
t0oc = interp1(RC,t0oc ,RG,'pchip','extrap');
BetaI_c = interp1(RC,BetaI_c,RG,'pchip','extrap');

skew = pchip(XR,skew0,RG); % [deg], angular translation along mid-chord

helix
rake = pchip(XR,rake0,RG)*D; % [m], translation along propeller axis

(3D X-axis)

if Chord_flag == 1
 CoD = interp1(RC,CoD,RG,'pchip','extrap');
else
 CoD = pchip(XR,XCoD,RG);
end

c = CoD.*D; % section chord at the RG sections [m]
r = RG.*R; % radius of the RG sections [m]

% ---

%
% -- Lay out the 2D coordinate system
%
% xN [], x/c coordinate in 2D NACA foil tables
% At the Leading Edge: xN = 0, x1 = c/2, x0 = 0
% At the Trailing Edge: xN = 1, x1 = -c/2, x0 = 1
% x0 [], x/c distance along mid-chord line to interpolate NACA foil table

data.
% x1 [m], x distance along mid-chord line to evaluate elliptical or

parabolic formulae.
% By definition, x1 == c/2 - c*x0.
%
% x2D [m], x position in 2D space on upper (x2D_u) and lower (x2D_l) foil

surfaces
% y2D [m], y position in 2D space on upper (x2D_u) and lower (x2D_l) foil

surfaces
% x2Dr [m], x position in 2D space after rotation for pitch angle
% y2Dr [m], y position in 2D space after rotation for pitch angle
%

xN = [0 .5 .75 1.25 2.5 5 7.5 10 15 20 25 30 35 40 45 50 ...
 55 60 65 70 75 80 85 90 95 100]./100;

x0 = zeros(1,Np);
x1 = zeros(Mp+1,Np);
% % Even spacing along the chord
% % for i = 1:Mp % for each radial section along the span
% for i = 1:Mp+1 % for each radial section along the span
% for j = 1:Np % for each point along the

chord

57

% x0(1,j) = (j-1)/(Np-1); % [0 : 1]
% x1(i,j) = c(i)/2 - c(i)*(j-1)/(Np-1); % [c/2 : -c/2]
% end
% end

% Cosine spacing along the chord
for i = 1:Mp+1 % for each radial section along the span
 for j = 1:Np % for each point along the chord
 x1(i,j) = c(i)/2 - 0.5*c(i)*(1-cos(pi*(j-1)/(Np-1))); % [c/2 :

-c/2]
 end
end
x0 = 0.5-x1(1,:)/c(1);

% ------------------ Find meanline and thickness profiles (at x1 positions)
%
% foc = camber / chord ratio (NACA data at xN positions)
% dfdxN = slope of camber line (NACA data at xN positions)
% fscale = scale to set max camber ratio to f0oc for each section
% tscale = scale to set max thickness ratio to t0oc for each section
% f = camber at x1 positions
% dfdx = slope of camber line at x1 positions
% t = thickness at x1 positions

t = zeros(Mp+1,Np);
f = zeros(Mp+1,Np);
dfdx = zeros(Mp+1,Np);

if Meanline==0 | strcmp(Meanline,'NACA a=0.8 (modified)') % --------------

Use NACA a=0.8 (modified) meanline
 Meanline = 'NACA a=0.8 (modified)';

 foc = [0 0.281 0.396 0.603 1.055 1.803 2.432 2.981 3.903 4.651 5.257 ...
 5.742 6.120 6.394 6.571 6.651 6.631 6.508 6.274 5.913 5.401 ...
 4.673 3.607 2.452 1.226 0]./100;

 dfdxN = [0 0.47539 0.44004 0.39531 0.33404 0.27149 0.23378 0.20618

0.16546 ...
 0.13452 0.10873 0.08595 0.06498 0.04507 0.02559 0.00607

...
 -0.01404 -0.03537 -0.05887 -0.08610 -0.12058 -0.18034 -0.23430

...
 -0.24521 -0.24521 -0.24521];

 CLI = 1.00; % NACA data ideal lift coefficient
 alphaItilde = 1.40; % [deg]
 fscale = CL / CLI;
 f0octilde = max(foc); % f0/c of NACA data with CLI == 1
 f0oc = f0octilde * CL / CLI; % f0/c, scaled for CL at RG

 dfdxLE = 0.47539*fscale; % slope at leading edge

58

 % for i = 1:Mp % for each radial section along the

span
 for i = 1:Mp+1 % for each radial section along the

span
 for j = 1:Np
 f(i,:) = pchip(xN,foc .*fscale(i).*c(i),x0);
 dfdx(i,:) = pchip(xN,dfdxN.*fscale(i) ,x0);
 end
 end

 % alphaItilde = 1.40

elseif Meanline==1 | strcmp(Meanline,'NACA a=0.8') % --------------

----------- Use NACA a=0.8 meanline
 Meanline = 'NACA a=0.8';

 foc = [0 .287 .404 .616 1.077 1.841 2.483 3.043 3.985 4.748 ...
 5.367 5.863 6.248 6.528 6.709 6.790 6.770 6.644 6.405 ...
 6.037 5.514 4.771 3.683 2.435 1.163 0]./100;

 dfdxN = [0 .48535 .44925 .40359 .34104 .27718 .23868 .21050 ...
 .16892 .13734 .11101 .08775 .06634 .04601 .02613 ...
 .00620 -.01433 -.03611 -.06010 -.08790 -.12311 ...
 -.18412 -.23921 -.25583 -.24904 -.20385];

 CLI = 1.00; % NACA data ideal lift coefficient
 alphaItilde = 1.54; % [deg]
 fscale = CL / CLI;
 f0octilde = max(foc); % f0/c of NACA data with CLI == 1
 f0oc = f0octilde * CL / CLI; % f0/c, scaled for CL at RG

 dfdxLE = 0.48535*fscale; % slope at leading edge

 % for i = 1:Mp % for each radial section along the

span
 for i = 1:Mp+1 % for each radial section along the

span
 for j = 1:Np
 f(i,:) = pchip(xN,foc .*fscale(i).*c(i),x0);
 dfdx(i,:) = pchip(xN,dfdxN.*fscale(i) ,x0);
 end
 end

 % alphaItilde = 1.54

elseif Meanline==2 | strcmp(Meanline,'parabolic') % -------------------

------- Use parabolic meanline
 Meanline = 'parabolic';

 % For parabolic meanline: alphaItilde == 0, CLI == 4*pi*f0oc
 % However, set CLI and f0octilde such that f0oc == f0octilde * CL / CLI
 alphaItilde = 0;
 CLI = 1;
 f0octilde = 1 / (4*pi);
 f0oc = CL / (4*pi); % == f0octilde * CL / CLI;

59

 % for i = 1:Mp % for each radial section along the

span
 for i = 1:Mp+1 % for each radial section along the

span
 for j = 1:Np
 f(i,j) = f0oc(i)*c(i)*(1-(2*x1(i,j)/c(i))^2);
 dfdx(i,j) = -8*f0oc(i)*x1(i,j)/c(i);
 end
 end
end

if Thickness==1 | strcmp(Thickness,'NACA 65A010') % ----------------

-- Use NACA 65A010 thickness form
 Thickness = 'NACA 65A010';

 toc_65 = [0 .765 .928 1.183 1.623 2.182 2.65 3.04 3.658 4.127 ...
 4.483 4.742 4.912 4.995 4.983 4.863 4.632 4.304 ...
 3.899 3.432 2.912 2.352 1.771 1.188 .604 .021]./100;

 tscale = t0oc / max(toc_65);

 rLE = 0.00639*c.*tscale; % leading edge radius

 % for i = 1:Mp % for each radial section along the

span
 for i = 1:Mp+1 % for each radial section along the

span
 for j = 1:Np
 t(i,:) = pchip(xN,toc_65.*tscale(i).*c(i),x0);
 end
 end

elseif Thickness==2 | strcmp(Thickness,'elliptical') % ------------------

- Use elliptical thickness form
 Thickness = 'elliptical';

 % for i = 1:Mp % for each radial section along the

span
 for i = 1:Mp+1 % for each radial section along the

span
 for j = 1:Np
 t(i,j) = t0oc(i)*c(i)*real(sqrt(1-(2*x1(i,j)/c(i))^2));
 end
 end

 rLE = 0; % leading edge radius

elseif Thickness==3 | strcmp(Thickness,'parabolic') % -------------------

- Use parabolic thickness form
 Thickness = 'parabolic';

60

 % for i = 1:Mp % for each radial section along the

span
 for i = 1:Mp+1 % for each radial section along the

span
 for j = 1:Np
 t(i,j) = t0oc(i)*c(i)*(1-(2*x1(i,j)/c(i))^2);
 end
 end

 rLE = 0; % leading edge radius

elseif Thickness==4 | strcmp(Thickness,'NACA 65A010 (modified)') % ------

-------------- Use modified NACA 65A010 thickness form
 Thickness = 'NACA 65A010 (modified)';

 xx65mod = [0 0.005000000000000 0.007500000000000 0.012500000000000

...
 0.025000000000000 0.050000000000000 0.075000000000000

0.100000000000000 ...
 0.150000000000000 0.200000000000000 0.250000000000000

0.300000000000000 ...
 0.350000000000000 0.400000000000000 0.471204188481675

0.523560209424084 ...
 0.575916230366492 0.628272251308901 0.680628272251309

0.732984293193717 ...
 0.785340314136126 0.837696335078534 0.890052356020942

0.942408376963351 ...
 0.968586387434555 0.981675392670157 0.989528795811518

0.994764397905759 ...
 0.997382198952880 1.000000000000000];
 tt65mod = [0 0.007650000000000 0.009280000000000 0.011830000000000

...
 0.016230000000000 0.021820000000000 0.026500000000000

0.030400000000000 ...
 0.036580000000000 0.041270000000000 0.044830000000000

0.047420000000000 ...
 0.049120000000000 0.049950000000000 0.049830000000000

0.048630000000000 ...
 0.046320000000000 0.043040000000000 0.038990000000000

0.034320000000000 ...
 0.029120000000000 0.023520000000000 0.017710000000000

0.011880000000000 ...
 0.008960000000000 0.007499530848329 0.006623639691517

0.006040000000000 ...
 0.004049015364794 0.000210000000000];

 tscale = t0oc / max(tt65mod);

 rLE = 0.00639*c.*tscale; % leading edge radius

61

 % for i = 1:Mp % for each radial section along the

span
 for i = 1:Mp+1 % for each radial section along the

span
 for j = 1:Np
 t(i,:) = pchip(xx65mod,tt65mod.*tscale(i).*c(i),x0);
 end
 end

end

%
% ---
% ------------------------------------- Find 2D unroatated section profiles
% x2D [m], x position in 2D space on upper (x2D_u) and lower (x2D_l) foil

surfaces
% y2D [m], y position in 2D space on upper (x2D_u) and lower (x2D_l) foil

surfaces
x2D_u = zeros(Mp+1,Np); x2D_l = zeros(Mp+1,Np);
y2D_u = zeros(Mp+1,Np); y2D_l = zeros(Mp+1,Np);

for i = 1:Mp+1 % for each section along the span
 for j = 1:Np % for each point along the chord
 x2D_u(i,j) = x1(i,j) + (t(i,j)/2)*sin(atan(dfdx(i,j))); % 2D upper

surface x
 x2D_l(i,j) = x1(i,j) - (t(i,j)/2)*sin(atan(dfdx(i,j))); % 2D lower

surface x
 y2D_u(i,j) = f(i,j) + (t(i,j)/2)*cos(atan(dfdx(i,j))); % 2D upper

surface y
 y2D_l(i,j) = f(i,j) - (t(i,j)/2)*cos(atan(dfdx(i,j))); % 2D lower

surface y
 end
end

% % -------------------------------------- Compute leading edge radius points
% phiLEC = atan(dfdxLE);
% NLE = 3; % must be odd to capture leading edge point
% phiLEs = 3*pi/8;
% phiLE = phiLEs:(pi-2*phiLEs)/(NLE-1):pi-phiLEs;
% xLEC = x1(:,1)' - rLE.*cos(phiLEC);
% yLEC = rLE.*sin(phiLEC);
%
% xLE = zeros(Mp+1,NLE);
% yLE = zeros(Mp+1,NLE);
%
% for i = 1:Mp+1 % for each section along the span
% xLE(i,:) = xLEC(i) + rLE(i)*sin(phiLE+phiLEC(i));
% yLE(i,:) = yLEC(i) - rLE(i)*cos(phiLE+phiLEC(i));
% end

% --- Put all the numbers in one list
% % Nose -> suctioin side -> tail -> pressure side -> nose

62

% x2D(:, 1:Np) = x2D_u(:,1:Np); % The first Np values are the upper

surface (suction side),
% x2D(:,1+Np:Np+Np) = x2D_l(:,Np:-1:1); % and the second Np values are the

lower surface (pressure side).
% y2D(:, 1:Np) = y2D_u(:,1:Np);
% y2D(:,1+Np:Np+Np) = y2D_l(:,Np:-1:1);

% % j = 1 == tail
% % j = 1:Np == suction side
% % j = Np == nose
% % j = Np + 1 == nose
% % j = Np+ 1:2*Np == pressure side
% % j = 2*Np == tail
% % Tail -> suctioin side -> nose, nose -> pressure side -> tail
x2D(:, 1:Np) = x2D_u(:,Np:-1:1); % The first Np values are the upper

surface (suction side),
x2D(:,Np+1:Np+Np) = x2D_l(:,1:Np); % and the second Np values are the

lower surface (pressure side).
y2D(:, 1:Np) = y2D_u(:,Np:-1:1);
y2D(:,Np+1:Np+Np) = y2D_l(:,1:Np);

% % % Arrange points as follows:
% % % Tail -> suctioin side -> leading edge (with radius and nose) ->

pressure side -> tail
% % % j = 1 == [1 point] tail
% % % j = 1 : Np-1 == [Np-1 points] suction side

(tail to point aft of leading edge radius)
% % % j = Np-1+1 : Np-1+(NLE-1)/2 == [(NLE-1)/2 points] suction side

along leading edge radius
% % % j = Np+(NLE-1)/2 == [1 point] nose
% % % j = Np+(NLE-1)/2+1 : Np-1+NLE == [(NLE-1)/2 points] pressure side

along leading edge radius
% % % j = Np-1+NLE+1 : 2*(Np-1)+NLE == [Np-1 points] pressure side

(point aft of leading edge radius to tail)
% % % j = 2*(Np-1)+NLE == [1 point] tail
% % %
% % % j = 1 : Np+(NLE-1)/2 == suction side (tail to nose)
% % % j = Np+(NLE-1)/2 : 2*(Np-1)+NLE == pressure side (nose to tail)
% %
% % x2D(:,1 : Np-1) = x2D_u(:,Np:-1:2); % [Np-1 points]

suction side (tail to point aft of leading edge radius)
% % x2D(:,Np-1+1 : Np-1 +NLE) = xLE(:,NLE:-1:1); % [NLE

points] leading edge radius
% % x2D(:,Np-1+NLE+1 : 2*(Np-1)+NLE) = x2D_l(:,2:Np); % [Np-1 points]

pressure side (point aft of leading edge radius to tail)
% %
% % y2D(:,1 : Np-1) = y2D_u(:,Np:-1:2); % [Np-1 points]

suction side (tail to point aft of leading edge radius)
% % y2D(:,Np-1+1 : Np-1 +NLE) = yLE(:,NLE:-1:1); % [NLE

points] leading edge radius
% % y2D(:,Np-1+NLE+1 : 2*(Np-1)+NLE) = y2D_l(:,2:Np); % [Np-1 points]

pressure side (point aft of leading edge radius to tail)

63

% %--------------------------------------- plot unrotated blade
% Fig2_S = figure('units','normalized','position',[0.31 .06 .4

.3],'name',...
% 'Blade Image','numbertitle','off');
% style=['r' 'g' 'b' 'm' 'k'];
% str_prefix = {'r/R = '};
% flag=1;
% for i = 1:ceil(Mp/5):Mp % for five radial sections from root to tip
% plot(x2D(i,:)*39.37,y2D(i,:)*39.37,style(flag));
% str_legend(flag)=strcat(str_prefix,num2str(RC(i)));
% hold on;
% flag = flag+1;
% end
% legend(str_legend,'location','northwest');
% axis equal; grid on;
% title('2D Blade Image'); xlabel('X (2D) [m]'); ylabel('Y (2D) [m]');
% %---------------------------------------

% -- Find pitch angle and pitch
theta = BetaI_c + alphaItilde.*CL/CLI; % Nose-tail pitch angle, [deg]
PoD = tand(theta).*pi.*RG; % Pitch / propeller diameter, []
theta_Z = 0:360/Z:360; % angle between blades [deg]

% --------------------------------------- Find 2D roatated section profiles
% x2Dr [m], x position in 2D space after rotation for pitch angle
% y2Dr [m], y position in 2D space after rotation for pitch angle
% x2Dr = zeros(Mp+1,2*(Np-1)+NLE);
% y2Dr = zeros(Mp+1,2*(Np-1)+NLE);
x2Dr = zeros(Mp+1,2*Np);
y2Dr = zeros(Mp+1,2*Np);
% for i = 1:Mp % for each section along the span
for i = 1:Mp+1 % for each section along the span
 x2Dr(i,:) = x2D(i,:)*cosd(theta(i)) - y2D(i,:)*sind(theta(i)); % rotated

2D upper and lower surface x
 y2Dr(i,:) = x2D(i,:)*sind(theta(i)) + y2D(i,:)*cosd(theta(i)); % rotated

2D upper and lower surface y
end

% --------------------------- Invoke skew and rake, and find 3D coordinates
% X3D [m], X position in 3D space (corresponds to y position in 2D space)
% Y2D [m], Y position in 3D space
% Z3D [m], Z position in 3D space
% X3D = zeros(Mp+1,2*(Np-1)+NLE,Z);
% Y3D = zeros(Mp+1,2*(Np-1)+NLE,Z);
% Z3D = zeros(Mp+1,2*(Np-1)+NLE,Z);
X3D = zeros(Mp+1,2*Np,Z);
Y3D = zeros(Mp+1,2*Np,Z);
Z3D = zeros(Mp+1,2*Np,Z);

64

%%%%%%%%%%%%ADDED 39.37007874 TO CONVERT FROM METERS TO INCHES FOR Nx 3D
%%%%%%%%%%%%MODEL

% for i = 1:Mp % for each section along the span
for i = 1:Mp+1 % for each section along the span
% for j = 1:2*(Np-1)+NLE % for each point along the upper and lower

surfaces
 for j = 1:2*Np % for each point along the upper and lower surfaces
 for k = 1:Z % for each blade
 X3D(i,j,k) = (- rake(i) - r(i)*(pi*skew(i)/180)*tand(theta(i)) +

y2Dr(i,j))*39.37007874;

 Y3D(i,j,k) = (r(i)*sind(skew(i) - (180/pi)*x2Dr(i,j)/r(i) -

theta_Z(k)))*39.37007874;
 Z3D(i,j,k) = (r(i)*cosd(skew(i) - (180/pi)*x2Dr(i,j)/r(i) -

theta_Z(k)))*39.37007874;
 end
 end
end

% ===
% ============================= Pack up geometry data at the control points
CL = pt.design.CL;
BetaI_c = pt.design.BetaIC*180/pi; % [deg]
CoD = pt.design.CoD; % [], c/D
t0oc = pt.design.t0oc; % [], t0/c
skew = pchip(XR,skew0,RC); % [deg],
rake = pchip(XR,rake0,RC)*D; % [m],
f0oc = f0octilde * CL/CLI; % [],
alphaI = alphaItilde * CL/CLI; % [deg], ideal angle of attack
alpha = alphaItilde * CL/CLI; % [deg], blade angle of attack
theta = BetaI_c + alphaI; % [deg], Nose-tail pitch angle
PoD = tand(BetaI_c + alphaI).*pi.*RC; % [], pitch / D

65

geometry.Meanline = Meanline;
geometry.Thickness = Thickness;

geometry.Z = Z;
geometry.D = D; % [m]
geometry.Dhub = Dhub; % [m]
geometry.N = N; % [RPM]

geometry.RC = RC; % r/R
geometry.CoD = pt.design.CoD;
geometry.t0oc = t0oc;
geometry.skew = skew;% [deg] angular translation along mid-chord helix
geometry.rake = rake;% [m] translation along propeller axis, 3D X-axis
geometry.f0oc = f0oc;
geometry.alphaI = alphaI;
geometry.alpha = alpha;
geometry.theta = theta;
geometry.PoD = PoD;
% ===
% ===
% === Create plots and text outputs
%%
% --- Create 2D Propeller Blade Image
if Make2Dplot_flag
 Fig2_S = figure('units','normalized','position',[0.31 .06 .4

.3],'name',...
 'Blade Image','numbertitle','off');
 style=['r' 'g' 'b' 'm' 'k'];
 str_prefix = {'r/R = '};
 flag=1;
 for i = 1:ceil(Mp/5):Mp % for five radial sections from root to tip
 plot(x2Dr(i,:),y2Dr(i,:),style(flag));
 str_legend(flag)=strcat(str_prefix,num2str(RC(i)));
 hold on;
 flag = flag+1;
 end
 legend(str_legend,'location','northwest');
 axis equal; grid on;
 title('2D Blade Image'); xlabel('X (2D) [m]'); ylabel('Y (2D) [m]');

% filename_2D = strcat(filename,'_2D_Blade_Image');
% saveas(gcf,filename_2D,'jpg')
end

%%
% --- Create 3D Propeller Image
if Make3Dplot_flag
%%
 Fig3_S = figure('units','normalized','position',[.61 .06 .4 .3],...
 'name','Propeller Image','numbertitle','off');
 hold on;

 % -- Plot the propeller surface

66

 for k = 1:Z
 surf(X3D(:,:,1),Y3D(:,:,k),Z3D(:,:,k));
 end

 colormap gray;
 shading interp;
 grid on;
 if Duct_flag == 0
 axis([-R/2 R -1.1*R 1.1*R -1.1*R 1.1*R]);
 else
 axis([-R R -1.5*R 1.5*R -1.5*R 1.5*R]); %modified for duct
 end
 axis equal;
 xlabel('X (3D) [m]','FontSize',12);
 ylabel('Y (3D) [m]','FontSize',12);
 zlabel('Z (3D) [m]','FontSize',12);
 title('3D Propeller Image','FontSize',16);

 % -- Plot the hub
 Lhub = Dhub;

 tick = 90:-15:0;
 [yh0,zh0,xh0] = cylinder(Rhub*sind(tick),50);
 xh0 = -Lhub/4*xh0 - Rhub;
 surf(xh0,yh0,zh0);

 [yh1,zh1,xh1] = cylinder(Rhub,50); % xh1 = [0,1]
 xh1 = Lhub*xh1 - Rhub; % xh1 = [-Rhub,c(1)-Rhub]
 surf(xh1,yh1,zh1);

 % ----------------- Plot the suction side (green) & pressure side (red)
 for i = 1:Mp+1 % for each section along the span
 for k = 1:Z % for each blade
 plot3(X3D(i,1:Np,1), Y3D(i,1:Np,k), Z3D(i,1:Np,k),

'g','Linewidth',1); % suction surface

plot3(X3D(i,Np+1:2*Np,1),Y3D(i,Np+1:2*Np,k),Z3D(i,Np+1:2*Np,k),'r','Linewidth

',1); % pressure surface
 end
 end

 for j = 1:Np % for each point along the chord
 for k = 1:Z % for each blade
 plot3(X3D(:,j,1), Y3D(:,j,k), Z3D(:,j,k),

'g','Linewidth',1); % suction surface

plot3(X3D(:,j+Np,1),Y3D(:,j+Np,k),Z3D(:,j+Np,k),'r','Linewidth',1); %

pressure surface
 end
 end

 % -- Plot the tip black
 i = Mp+1; % tip section

67

 for k = 1:Z
 for j = 1:Np-2
 plot3([X3D(i,1+j,k), X3D(i,2*Np-j,k)],...
 [Y3D(i,1+j,k), Y3D(i,2*Np-j,k)],...
 [Z3D(i,1+j,k), Z3D(i,2*Np-j,k)],'k','Linewidth',1); %

tip surface
 end
 end

 % --------------------------------- Plot the leading and trailing edges
 for k = 1:Z % for each blade
 plot3(X3D(:,1,1), Y3D(:,1,k), Z3D(:,1,k), 'b','Linewidth',2); %

leading edge
 plot3(X3D(:,Np,1),Y3D(:,Np,k),Z3D(:,Np,k),'k','Linewidth',2); %

trailing edge
 end

 % -- Plot the coordinate system
 % Axes
 plot3([0 R],[0 0],[0 0],'y','LineWidth',2),
 plot3([0 0],[0 R],[0 0],'r','LineWidth',2),
 plot3([0 0],[0 0],[0 R],'b','LineWidth',2),

 % Circle at the X = 0 location on the hub
 phi = 0:0.01:2*pi;
 Xhc = zeros(size(phi));
 Yhc = - Rhub * sin(phi);
 Zhc = Rhub * cos(phi);
 plot3(Xhc,Yhc,Zhc,'y','LineWidth',2),

 % Propeller reference line (i.e. the directrix)
 for k = 1:Z
 PRL(:,k) = [1, 0, 0; ...
 0, cosd(theta_Z(k)), -sind(theta_Z(k)); ...
 0, sind(theta_Z(k)), cosd(theta_Z(k))]*[0; 0; R];

 plot3([0, PRL(1,k)],[0, PRL(2,k)],[0, PRL(3,k)],'y--','LineWidth',1)
 end

 % -- Plot propeller helices
 % Advance coefficient helix 0, black
 phi = 0:0.01:pi/4;
 thetaH = atan((Js/pi)*(R/Rhub));
 Xh0 = Rhub * phi * tan(thetaH);
 Yh0 = - Rhub * sin(phi);
 Zh0 = Rhub * cos(phi);

 % Beta angle helix 1, red
 phi = 0:0.01:pi/4;
 thetaH = Beta_c(1)*pi/180;
 Xh1 = Rhub * phi * tan(thetaH);
 Yh1 = - Rhub * sin(phi);
 Zh1 = Rhub * cos(phi);

68

 % BetaI angle helix 2, green
 phi = 0:0.01:pi/4;
 thetaH = BetaI_c(1)*pi/180;
 Xh2 = Rhub * phi * tan(thetaH);
 Yh2 = - Rhub * sin(phi);
 Zh2 = Rhub * cos(phi);

 % Pitch angle helix 3, blue
 phi = 0:0.01:pi/4;
 thetaH = theta(1)*pi/180;
 Xh3 = Rhub * phi * tan(thetaH);
 Yh3 = - Rhub * sin(phi);
 Zh3 = Rhub * cos(phi);

 plot3(Xh0,Yh0,Zh0,'k','LineWidth',2),
 plot3(Xh1,Yh1,Zh1,'r','LineWidth',2),
 plot3(Xh2,Yh2,Zh2,'g','LineWidth',2),
 plot3(Xh3,Yh3,Zh3,'b','LineWidth',2),

% % -- Plot the trailing vortices
% % Beta angle helix at each votex point (each trailing vortex)
% BetaI_v = atand(TANBIV);
%
% for m = 1:Mp+1
% phi = 0:0.01:2*pi;
% thetaH = BetaI_v(m)*pi/180;
% Xh4 = - RV(m)*R * phi * tan(thetaH);
% Yh4 = RV(m)*R * sin(phi);
% Zh4 = RV(m)*R * cos(phi);
%
% plot3(Xh4,Yh4,Zh4,'g','LineWidth',2),
% end
% %
% % % Beta angle image helix for each spanwise section
% % for m = 1:Mp+1
% % RVW = Rhub_oR^2/RV(m);
% % TANBW = TANBIV(1)*RV(1)/RVW;
% % phi = 0:0.01:2*pi;
% % thetaH = atand(TANBW)*pi/180;
% % Xh4 = - RVW*R * phi * tan(thetaH);
% % Yh4 = RVW*R * sin(phi);
% % Zh4 = RVW*R * cos(phi);
% %
% % plot3(Xh4,Yh4,Zh4,'--r','LineWidth',2),
% % end
% %
% % --- Plot the horseshoe vortices
% % Beta angle helix at each votex point (each trailing vortex)
% BetaI_v = atand(TANBIV);
% dR = 0.005*R;
%
% for m = 1:Mp
% phi = 0:0.01:2*pi;
% thetaH = BetaI_v(m)*pi/180;
% Xh4 = - (RV(m)+dR)*R * phi * tan(thetaH);
% Yh4 = (RV(m)+dR)*R * sin(phi);

69

% Zh4 = (RV(m)+dR)*R * cos(phi);
%
% plot3(Xh4,Yh4,Zh4,'g','LineWidth',2),
%
% thetaH = BetaI_v(m+1)*pi/180;
% Xh4 = - (RV(m+1)-dR)*R * phi * tan(thetaH);
% Yh4 = (RV(m+1)-dR)*R * sin(phi);
% Zh4 = (RV(m+1)-dR)*R * cos(phi);
%
% plot3(Xh4,Yh4,Zh4,'g','LineWidth',2),
% end

% % Beta angle image helix for each spanwise section
% for m = 1:Mp+1
% RVW = Rhub_oR^2/RV(m);
% TANBW = TANBIV(1)*RV(1)/RVW;
% phi = 0:0.01:2*pi;
% thetaH = atand(TANBW)*pi/180;
% Xh4 = RVW*R * phi * tan(thetaH);
% Yh4 = - RVW*R * sin(phi);
% Zh4 = RVW*R * cos(phi);
%
% plot3(Xh4,Yh4,Zh4,'--r','LineWidth',2),
% end

% -- Plot duct
 if Duct_flag == 1
 Duct_Ang=0;
 %ductPlot(vrRad,c,fo,to,alpha,ductRef)
 %shading interp
 colormap(jet)
 ductPlot(0.5*D,0.5*D,0,0,Duct_Ang*pi/180,0.5)
% % ductPlot(0.5*D,0.5*D,-.04,.13,10*pi/180,0.5)
 %axis equal
 end

 view(-50,30)
 set(gca,'XTickLabel',{''},'YTickLabel',{''},'ZTickLabel',{''})
 set(gca,'TickLength',[0 0])
 xlabel(''), ylabel(''), zlabel(''), title('')
 grid off, axis off
%%
% % -- Save the image
% view(2)
% saveas(gcf,[filename,'_3D_Propeller_Image','1'],'jpg')
%
% view(3)
% saveas(gcf,[filename,'_3D_Propeller_Image','2'],'jpg')

end % (END IF Make3Dplot_flag)

%%
% % SolidWorks_v14 and prior
% Make_SWrks_flag = 1;
% % --- Make SolidWorks files

70

% if Make_SWrks_flag
% % Make SolidWorks Curve_n.txt files, with coordinates for a single

blade
%
% % -------------------------------- Blade geometry:
% % X3D(i,j,k) [m], X position in 3D space
% % Y2D(i,j,k) [m], Y position in 3D space
% % Z3D(i,j,k) [m], Z position in 3D space
% %
% % i = 1:Mp+1 % for each section along the span
% % j = 1:2*Np % for each point along the upper and lower surfaces
% % k = 1:Z % for each blade
%
% filename_SolidWorks = strcat(filename,'_SolidWorks.txt');
% fid = fopen(filename_SolidWorks,'w');
%
% % Prop Parameters at beginning of file
% fprintf(fid,'%g, ' ,Np);
% fprintf(fid,'%g, ' ,Mp);
% fprintf(fid,'%g,\n',Z);
% % fprintf(fid,'%g, ' ,Z);
% % fprintf(fid,'%g,\n',NLE);
%
% % Output curves defining each 2D section along the span
% % for each section along the span
% for i = 1:Mp+1
% fprintf(fid,strcat('SectionCurve',num2str(i),',\n'));
%
% % for each point along the suction and pressure surfaces
% % (trailing edge -> leading edge -> trailing edge, close the curve)
% % for j = [1:Np,Np+2:2*Np,1] % (2*Np points) does not double

print the leading edge but does double print the trailing edge to close the

curves
% % for j = [1:Np,Np+2:2*Np-1,1] % (2*Np-1 points) does not double

print the leading edge but does double print the trailing edge to close the

curves
% for j = [1:Np,Np+2:2*Np] % (2*Np-1 points) does not double print

the leading edge
% % for j = 1:2*(Np-1)+NLE % each curve contains (2*(Np-1)+NLE)

points
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end
% end
%
%
% % Make guide curves
% n = 0;
% % for 7 points along the chord
% for j = [1 floor(Np/3) floor(2*Np/3) Np floor(4*Np/3) floor(5*Np/3)

2*Np];
% % for j = [1 floor(1*(2*(Np-1)+NLE)/6) floor(2*(2*(Np-1)+NLE)/6) ...
% % floor(3*(2*(Np-1)+NLE)/6) floor(4*(2*(Np-1)+NLE)/6) ...
% % floor(5*(2*(Np-1)+NLE)/6) floor(6*(2*(Np-1)+NLE)/4)];
% n = n + 1;
%
%
% fprintf(fid,strcat('GuideCurve',num2str(n),',\n'));

71

% % for i = 1:Mp % for each section along the span except the last

one
% for i = 1:Mp+1 % for each section along the span
%
% % if i == Mp+1 && j == 2*Np
% % fprintf(fid,'%f,%f,%f',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% % continue
% % end
%
%
% % plot3(X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1),'.b','markersize',20)
% % pause,
%
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end
%
% end
%
%
%
% % Output duplicate trailing edge guide curves:
% % Guide curve 1:
% fprintf(fid,'TEGuideCurve1,\n');
% j = 1;
% for i = 1:Mp+1 % for each section along the span
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end
%
% % Guide curve 7:
% fprintf(fid,'TEGuideCurve7,\n');
% j = 2*Np;
% for i = 1:Mp+1 % for each section along the span
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end
%
%
% % Output duplicate tip section profile:
% i = Mp+1;
% fprintf(fid,strcat('TipSectionCurve',num2str(i),',\n'));
% % for each point along the suction and pressure surfaces
% % (trailing edge -> leading edge -> trailing edge)
% for j = [1:Np,Np+2:2*Np] % (2*Np-1 points) does not double print the

leading edge
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end
%
% % Output tip curves
% for j = 1:Np-2
% % for j = 1:(Np-1+(NLE-1)/2-1)
% fprintf(fid,strcat('TipCurve',num2str(j),',\n'));
% i=Mp+1;
% fprintf(fid,'%f,%f,%f,\n',X3D(i, 1+j,1),Y3D(i, 1+j,1),Z3D(i,

1+j,1));
% fprintf(fid,'%f,%f,%f,\n',X3D(i,2*Np-j,1),Y3D(i,2*Np-

j,1),Z3D(i,2*Np-j,1));
% % fprintf(fid,'%f,%f,%f,\n',X3D(i, 1+j,1),Y3D(i,

1+j,1),Z3D(i, 1+j,1));

72

% % fprintf(fid,'%f,%f,%f,\n',X3D(i,(2*(Np-1)+NLE)-j,1),Y3D(i,(2*(Np-

1)+NLE)-j,1),Z3D(i,(2*(Np-1)+NLE)-j,1));
% end
%
%
% % Output duplicate root section profile:
% i = 1;
% fprintf(fid,strcat('RootSectionCurve',num2str(i),',\n'));
% % for each point along the suction and pressure surfaces
% % (trailing edge -> leading edge -> trailing edge)
% for j = [1:Np,Np+2:2*Np] % (2*Np-1 points) does not double print the

leading edge
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end
%
%
% % Output root curves
% for j = 1:Np-2
% % for j = 1:(Np-1+(NLE-1)/2-1)
% fprintf(fid,strcat('RootCurve',num2str(j),',\n'));
% i=1;
% fprintf(fid,'%f,%f,%f,\n',X3D(i, 1+j,1),Y3D(i, 1+j,1),Z3D(i,

1+j,1));
% fprintf(fid,'%f,%f,%f,\n',X3D(i,2*Np-j,1),Y3D(i,2*Np-

j,1),Z3D(i,2*Np-j,1));
% % fprintf(fid,'%f,%f,%f,\n',X3D(i, 1+j,1),Y3D(i,

1+j,1),Z3D(i, 1+j,1));
% % fprintf(fid,'%f,%f,%f,\n',X3D(i,(2*(Np-1)+NLE)-j,1),Y3D(i,(2*(Np-

1)+NLE)-j,1),Z3D(i,(2*(Np-1)+NLE)-j,1));
% end
%
%
% % Output trailing edge curves for each 2D section along the span
% for i = 1:Mp+1
% fprintf(fid,strcat('TECurve',num2str(i),',\n'));
% j=1;
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% j=2*Np;
% % j = 2*(Np-1)+NLE;
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end
%
% fclose(fid);
% end % (END IF Make_SWrks_flag)
%%
% SolidWorks_v18

Make_SWrks_flag = 1;
% --- Make SolidWorks files
if Make_SWrks_flag
 % Make SolidWorks.txt files, with coordinates for a single blade

 % -------------------------------- Blade geometry:
 % X3D(i,j,k) [m], X position in 3D space
 % Y2D(i,j,k) [m], Y position in 3D space
 % Z3D(i,j,k) [m], Z position in 3D space

73

 %
 % i = 1:Mp+1 % for each section along the span
 % j = 1:2*Np % for each point along the upper and lower surfaces
 % k = 1:Z % for each blade

 filename_SolidWorks = strcat(filename,'_SolidWorks.txt');
 fid = fopen(filename_SolidWorks,'w');

 % Prop Parameters at beginning of file
 fprintf(fid,'%g, ' ,Np);
 fprintf(fid,'%g, ' ,Mp);
 fprintf(fid,'%g,\n',Z);

 % Output curves defining each 2D section along the span
 % for each section along the span
 for i = 1:Mp+1
 fprintf(fid,strcat('SectionCurve',num2str(i),',\n'));

 % for each point along the suction and pressure surfaces
 % (trailing edge -> leading edge -> trailing edge, close the curve)
 for j = [1:Np,Np+2:2*Np-1,1] % (2*Np-1 points) does not double print

the leading edge
 fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
 end
 end

 % Make guide curves
 n = 0;
 % for 7 points along the chord
 for j = [1 floor(Np/3) floor(2*Np/3) Np floor(4*Np/3) floor(5*Np/3) 2*Np-

1];
 n = n + 1;

 fprintf(fid,strcat('GuideCurve',num2str(n),',\n'));
 for i = 1:Mp+1 % for each section along the span
 fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
 end

 end

% % Output duplicate trailing edge guide curves:
% % Guide curve 1:
% fprintf(fid,'TEGuideCurve1,\n');
% j = 1;
% for i = 1:Mp+1 % for each section along the span
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end
%
% % Guide curve 7:
% fprintf(fid,'TEGuideCurve7,\n');
% j = 2*Np;
% for i = 1:Mp+1 % for each section along the span
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end

74

 % Output duplicate tip section profile:
 i = Mp+1;
 fprintf(fid,strcat('TipSectionCurve',num2str(i),',\n'));
 for j = [1:Np,Np+2:2*Np-1,1] % (2*Np-1 points) does not double print the

leading edge
 fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
 end

 % Output tip curves
 for j = 1:Np-2
 fprintf(fid,strcat('TipCurve',num2str(j),',\n'));
 i=Mp+1;
 fprintf(fid,'%f,%f,%f,\n',X3D(i, 1+j,1),Y3D(i, 1+j,1),Z3D(i,

1+j,1));
 fprintf(fid,'%f,%f,%f,\n',X3D(i,2*Np-j,1),Y3D(i,2*Np-j,1),Z3D(i,2*Np-

j,1));
 end

 % Output duplicate root section profile:
 i = 1;
 fprintf(fid,strcat('RootSectionCurve',num2str(i),',\n'));
 % for each point along the suction and pressure surfaces
 % (trailing edge -> leading edge -> trailing edge)
 for j = [1:Np,Np+2:2*Np-1,1] % (2*Np-1 points) does not double print the

leading edge
 fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
 end

 % Output root curves
 for j = 1:Np-2
 fprintf(fid,strcat('RootCurve',num2str(j),',\n'));
 i=1;
 fprintf(fid,'%f,%f,%f,\n',X3D(i, 1+j,1),Y3D(i, 1+j,1),Z3D(i,

1+j,1));
 fprintf(fid,'%f,%f,%f,\n',X3D(i,2*Np-j,1),Y3D(i,2*Np-j,1),Z3D(i,2*Np-

j,1));
 end

% % Output trailing edge curves for each 2D section along the span
% for i = 1:Mp+1
% fprintf(fid,strcat('TECurve',num2str(i),',\n'));
% j=1;
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% j=2*Np;
% fprintf(fid,'%f,%f,%f,\n',X3D(i,j,1),Y3D(i,j,1),Z3D(i,j,1));
% end

 fclose(fid);
end % (END IF Make_SWrks_flag)
%%

75

% -- Make Rhino files
% Modified: 9/25/09 by Jordan Stanway and Brenden Epps
%
% This code makes a script that you can run in Rhino. Here are the steps:
% 1) At the Command: prompt, type "ReadCommandFile"
% -- Locate the script file, e.g. OpenProp_RhinoProp.txt
% 2) When the Document Properties window opens, set:
% -- Model Units: meters
% -- Absolute tolerance: 0.00001
% -- Relative tolerance: 0.1
% -- Angle tolerance: 0.1
% 3) Watch as Rhino reads in all the points, makes each section, fills
% the tip section, lofts the remaining sections, joins the surfaces,
% makes Z blades from the key blade, and makes the hub
% 4) If your propeller does not loft or join automatically, then try
% increasing or decreasing the tolerance values.
%
if Make_Rhino_flag
 % Make _RhinoBlade.txt, with coordinates for a single blade and
 % commands to make Z blades

 %%%%%%fprintf(fid,'!_SetActiveViewport Perspective\n');

 % In order for the surface to loft correctly, you probably will
 % need to manually set the "absolute precision" of Rhino to be
 % "10^-5 units" and manually change the "model units" to meters.
 % Note: the coordinates output from OpenProp are in meters.
 % This command should pause the script fro
 %%%%%%fprintf(fid,'_DocumentPropertiesPage Units \n');

 % Define Rhino curve type (choose one)
 % curve_cmd = 'Curve \n';
 %%%%%%curve_cmd = 'InterpCrv \n';

 % Compute where the blade tip should be
 tip_x = -rake(end) - R*pchip(XR,skew0,1)*(pi/180);
 tip_y = R*sind(pchip(XR,skew0,1));
 tip_z = R*cosd(pchip(XR,skew0,1));
 tip = [tip_x, tip_y, tip_z];
 % Initialize file
 filename_Rhino = strcat('0','_RhinoProp.txt');
 fid = fopen(filename_Rhino,'w');

 for i = 1:Mp+1 % For each section along the span

 % For each point along the upper and lower surfaces:
 for j = [1:Np,Np+2:2*Np] % (2*Np-1 points) does not double print the

leading edge
 fprintf(fid,'%.9f\t%.9f\t%.9f\n',X3D(i,j),Y3D(i,j),Z3D(i,j)); %

print to file with 9 decimal places
 end

 % If the first and last points in the section are identical, then
 % do nothing, else close the curve by adding another point the

76

 % same as the first one.
 if strcmp(sprintf('%.9f\t%.9f\t%.9f\n',X3D(i,1) ,Y3D(i,1)

,Z3D(i,1)),...

sprintf('%.9f\t%.9f\t%.9f\n',X3D(i,end),Y3D(i,end),Z3D(i,end)))
 % disp(sprintf('%i start and end are identical, not adding point

to close', i));
 else
 fprintf(fid,'%.9f\t%.9f\t%.9f\n',X3D(i,1),Y3D(i,1),Z3D(i,1));
 end
 % Close the file:
 fclose(fid);
 file = sprintf('%.0f.txt',i);
 filename_Rhino = strcat(file);
 fid = fopen(filename_Rhino,'w');
 end

 fclose(fid);
end
% Extrude the tip section curve to the "tip" point
 %fprintf(fid,'SelNone\n');
 %fprintf(fid,'SelLast\n');
 %fprintf(fid,'ExtrudeCrv Mode=ToPoint \n');
 %fprintf(fid,'%.9f\t%.9f,%\t9f\n',tip(1),tip(2),tip(3));
 %fprintf(fid,'enter\n');

 % Loft the other sections to the tip section
 %fprintf(fid,'SelNone\n');
 %fprintf(fid,'SelClosedCrv\n');
 %fprintf(fid,'-Loft Type=Tight Simplify=None \n');
 %fprintf(fid,'enter\n');
 %fprintf(fid,'enter\n');
 %fprintf(fid,'enter\n');
 %fprintf(fid,'SelNone\n');
 %fprintf(fid,'SelSrf\n');
 %fprintf(fid,'Join\n');
 %fprintf(fid,'SelNone\n');
 %fprintf(fid,'Zoom All Extents\n');
 %fprintf(fid,'enter\n');

 % ---------- Commands to make Z blades:
 %fprintf(fid,'SelPolysrf\n');
 %fprintf(fid,'Rotate3D\n');
 %fprintf(fid,'0,0,0\n');
 %fprintf(fid,'1,0,0\n');
 %fprintf(fid,'Copy=Yes\n');
 % copy blades
 %for k=2:Z
 % fprintf(fid,'%f\n',(k-1)*(360/Z));
 %end
 %fprintf(fid,'enter\n');

 % ----------- Commands to make hub
 %fprintf(fid,'Circle Vertical 0,0,0 \n');

77

 %fprintf(fid,'%f \n',Rhub);
 %fprintf(fid,'0,0,%f\n',Rhub);
 %fprintf(fid,'0,%f,0\n',Rhub);
 % to choose direction of the circle
 % ** this doesn't seem to work all the time... :-(
 %fprintf(fid,'SelNone\n');
 %fprintf(fid,'SelLast\n');
 %fprintf(fid,'ExtrudeCrv BothSides=Yes Cap=Yes DeleteInput=Yes \n');
 %Lhub = 2*R;
 %fprintf(fid,'%f \n',Lhub);
 %fprintf(fid,'Zoom All Extents\n');
 %fprintf(fid,'enter\n');

 % (END IF Make_Rhino_flag)
%%
% -- Make OpenProp_Geometry.txt
filename_geometry = strcat(filename,'_Geometry.txt');
fid = fopen(filename_geometry,'w');

fprintf(fid,'\t\t\t\t\t %s \n\n',filename_geometry);
fprintf(fid,'\t\t\t\t\t Propeller Geometry Table\n\n');
fprintf(fid,'Date and time: %s\n\n',Date_string);

fprintf(fid,'Propeller Diameter \t = %.4f m\n', D);
fprintf(fid,'Number of Blades \t = %.0f\n', Z);
fprintf(fid,'Propeller Speed \t = %.0f RPM\n', N);
fprintf(fid,'Propeller Hub Diameter \t = %.4f m\n',Dhub);

fprintf(fid,['Meanline Type: ',Meanline,'\n']);
fprintf(fid,['Thickness Type: ',Thickness,'\n']);

% if Meanline==1
% fprintf(fid,['Meanline Type: NACA a=0.8\n');
% elseif Meanline==2
% fprintf(fid,'Meanline Type: Parabolic\n');
% end
%
% if Thickness==1
% fprintf(fid,'Thickness Type: NACA 65A010\n\n');
% elseif Thickness==2
% fprintf(fid,'Thickness Type: Elliptical\n\n');
% elseif Thickness==3
% fprintf(fid,'Thickness Type: Parabolic\n\n');
% end

fprintf(fid,' \n');
fprintf(fid,' \n');

fprintf(fid,' r/R\t P/D\t Skew\t Xs/D\t c/D\t f0/c\t t0/c\n');
for i = 1:Mp
 fprintf(fid, '%.4f\t %.4f\t %.4f\t %.4f\t %.4f\t %.4f\t %.4f\n'...
 ,RC(i),PoD(i),skew(i),rake(i)/D,CoD(i),f0oc(i),t0oc(i));

78

end

fprintf(fid,' \n');
fprintf(fid,'\nr/R \t [], radial position of control points / propeller

radius.\n');
fprintf(fid,'P/D \t [], section pitch / diameter.\n');
fprintf(fid,'c/D \t [], section chord-length / diameter.\n');
fprintf(fid,'fo/C \t [], section camber / section chord-length.\n');
fprintf(fid,'to/C \t [], section thickness / section chord-length.\n');

fclose(fid);

% =============================== END Determine Propeller Geometry Function
% ===

