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Novel Algorithms for Understanding Online Reviews

Tian Shi

(ABSTRACT)

This dissertation focuses on the review understanding problem, which has gained attention
from both industry and academia, and has found applications in many downstream tasks,
such as recommendation, information retrieval and review summarization. In this dissertation,
we aim to develop machine learning and natural language processing tools to understand and
learn structured knowledge from unstructured reviews, which can be investigated in three
research directions, including understanding review corpora, understanding review documents,
and understanding review segments.

For the corpus-level review understanding, we have focused on discovering knowledge from cor-
pora that consist of short texts. Since they have limited contextual information, automatically
learning topics from them remains a challenging problem. We propose a semantics-assisted
non-negative matrix factorization model to deal with this problem. It effectively incorporates
the word-context semantic correlations into the model, where the semantic relationships
between the words and their contexts are learned from the skip-gram view of a corpus. We
conduct extensive sets of experiments on several short text corpora to demonstrate the
proposed model can discover meaningful and coherent topics.

For document-level review understanding, we have focused on building interpretable and
reliable models for the document-level multi-aspect sentiment analysis (DMSA) task, which
can help us to not only recover missing aspect-level ratings and analyze sentiment of customers,
but also detect aspect and opinion terms from reviews. We conduct three studies in this
research direction. In the first study, we collect a new DMSA dataset in the healthcare domain
and systematically investigate reviews in this dataset, including a comprehensive statistical
analysis and topic modeling to discover aspects. We also propose a multi-task learning
framework with self-attention networks to predict sentiment and ratings for given aspects. In
the second study, we propose corpus-level and concept-based explanation methods to interpret
attention-based deep learning models for text classification, including sentiment classification.
The proposed corpus-level explanation approach aims to capture causal relationships between
keywords and model predictions via learning importance of keywords for predicted labels
across a training corpus based on attention weights. We also propose a concept-based
explanation method that can automatically learn higher level concepts and their importance
to model predictions. We apply these methods to the classification task and show that they
are powerful in extracting semantically meaningful keywords and concepts, and explaining
model predictions. In the third study, we propose an interpretable and uncertainty aware
multi-task learning framework for DMSA, which can achieve competitive performance while
also being able to interpret the predictions made. Based on the corpus-level explanation
method, we propose an attention-driven keywords ranking method, which can automatically
discover aspect terms and aspect-level opinion terms from a review corpus using the attention



weights. In addition, we propose a lecture-audience strategy to estimate model uncertainty
in the context of multi-task learning.

For the segment-level review understanding, we have focused on the unsupervised aspect
detection task, which aims to automatically extract interpretable aspects and identify aspect-
specific segments from online reviews. The existing deep learning-based topic models suffer
from several problems such as extracting noisy aspects and poorly mapping aspects discovered
by models to the aspects of interest. To deal with these problems, we propose a self-supervised
contrastive learning framework in order to learn better representations for aspects and review
segments. We also introduce a high-resolution selective mapping method to efficiently assign
aspects discovered by the model to the aspects of interest. In addition, we propose using a
knowledge distillation technique to further improve the aspect detection performance.
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(GENERAL AUDIENCE ABSTRACT)

Nowadays, online reviews are playing an important role in our daily lives. They are also
critical to the success of many e-commerce and local businesses because they can help people
build trust in brands and businesses, provide insights into products and services, and improve
consumers’ confidence. As a large number of reviews accumulate every day, a central research
problem is to build an artificial intelligence system that can understand and interact with
these reviews, and further use them to offer customers better support and services. In order
to tackle challenges in these applications, we first have to get an in-depth understanding of
online reviews.

In this dissertation, we focus on the review understanding problem and develop machine
learning and natural language processing tools to understand reviews and learn structured
knowledge from unstructured reviews. We have addressed the review understanding problem
in three directions, including understanding a collection of reviews, understanding a single
review, and understanding a piece of a review segment. In the first direction, we proposed a
short-text topic modeling method to extract topics from review corpora that consist of primary
complaints of consumers. In the second direction, we focused on building sentiment analysis
models to predict the opinions of consumers from their reviews. Our deep learning models
can provide good prediction accuracy as well as a human-understandable explanation for the
prediction. In the third direction, we develop an aspect detection method to automatically
extract sentences that mention certain features consumers are interested in, from reviews,
which can help customers efficiently navigate through reviews and help businesses identify
the advantages and disadvantages of their products.
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Chapter 1

Introduction

Nowadays, online reviews have influenced many aspects of our daily life, such as shopping,
traveling, dining, housing, education, healthcare, etc. They are also very important to the
success of e-commerce and local business. In recent years, many surveys1 have been conducted
and revealed that (1) most consumers research products and services online before making
purchases or finding local businesses; (2) they also read online reviews for guidance; (3) most
of them have written reviews for these digital or local businesses. Generally speaking, online
reviews can help people build trust in brands and businesses. They can also provide insights
into products and services. In addition, they can improve consumers’ confidence when they
are making choices.

There are many review platforms, some of which are integrated with e-commerce (e.g.,
Amazon and eBay), while others are independent professional review systems (e.g., Yelp and
TripAdvisor) for consumers to share their opinions. Traditionally, most of these platforms only
collect reviews and overall ratings from customers. Then, they show the collected reviews and
distributions of overall ratings to customers. For most platforms, there are also question and
answer systems which allow customers to ask product-related questions and get answers from
other customers and businesses. Nowadays, due to the rapid increase in the number of reviews,
many new features are needed to help customers navigate through reviews effectively. For
example, in the recent few years, aspect-level information (e.g., location, cleanliness, service
and value for a hotel) has gained increasing attention in a number of online review platforms,
such as Amazon, Best Buy, TripAdvisor, BeerAdvocate, and RateMDs. These platforms
request users to provide aspect-level feedback in their reviews, e.g., aspect/feature-level
ratings, which can benefit digital stores in a variety of ways: (1) They can quickly identify
defects of products and provide feedback to their manufacturers. For example, Sound Quality,
Picture Quality, Smart Features, and Remote Control are important features/aspects for
televisions in Amazon product reviews. A low aspect-level rating implies potential problems
for the corresponding features. (2) Platforms can build profiles of customers and products

1For example, https://www.brightlocal.com/research/local-consumer-review-survey/
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based on aspect-level information, which can be very useful for personalized recommender
systems. For instance, Camera, Flying, Picture Quality, Video Quality, and Ease of Use are
pros mentions for “DJI - Mavic 2 Pro Quadcopter” in the Best Buy review platform; therefore,
it is feasible to recommend this product to users who are looking for quadcopters that are easy
to control and carry high-resolution cameras. (3) Customers can choose products that meet
their needs more efficiently without reading too many reviews. For example, for the same
quadcopter, cons mentions are App, Control from phone, Instructions, Obstacle avoidance,
Loud, which are linked to corresponding reviews. If customers have more concerns about
Control from phone, they can read those reviews and decide if this defect is acceptable.

1.1 Motivation

There are many research opportunities and challenges related to online reviews. First,
several studies have found that customers are less motivated to give aspect-level feedback
[125, 163], which makes it difficult to analyze their preference, and it takes a lot of time
and effort for human experts to manually annotate them. Automatic rating prediction
and sentiment analysis grounded on textual reviews have been used to solve this problem
[163, 167, 74, 169, 125]. Second, traditional collaborative filtering (CF) based recommender
systems primarily rely on overall ratings (binary or integers) and meta-data of users and
items [120]. Recently, recommender systems, which also consider using customer reviews
to build representations of users and items, have been widely studied due to advances of
deep learning models [13]. On the one hand, review content provides richer contextual
information of users and items [76, 175, 93], which can alleviate the sparsity problem in
CF based systems and improve the prediction accuracy of recommender systems. On the
other hand, review texts can be used to explain and justify recommendations [102, 172, 3].
In these applications, aspect-level information can help models to efficiently capture users’
preferences and important features (pros and cons) of items. Third, automatic summarization
of advantages and disadvantages of a product has become a promising research direction.
However, due to the lack of annotated summarization data, it is difficult to train deep
learning models in a supervised manner. Several studies have attempted to solve this problem
in unsupervised and self-supervised manners [21, 1, 136]. In order to achieve this goal,
aspect-specific review segments, i.e., segments that mention certain aspects of products, have
to be extracted first. For example, to summarize advantages of a quadcopter, such as its
camera, we have to extract segments related to camera from its reviews. There are also many
other applications and tasks, for example, building question-answering systems to answer
product-related questions using reviews.

In order to develop machine learning models to tackle challenges in these applications, we have
to have a deep understanding of online reviews. In this dissertation, we focus on the review
understanding problem, and develop machine learning and natural language processing (NLP)
tools to understand reviews and learn structured knowledge from unstructured textual reviews.
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Generally speaking, the review understanding problem can be studied along three research
directions, including understanding a collection of reviews (corpus-level), a single review
(document-level), and a piece of review segment (segment-level): (1) Corpus-level review
understanding focuses on extracting topics from a review corpus (topic modeling), which helps
us understand general concerns of customers and features of products. It can benefit many
tasks, such as recommendation systems and review summarization [94]. (2) There are several
NLP tasks related to document-level review understanding. For example, sentiment analysis
[103, 77, 104] aims to predict rating scores and opinion polarities of review documents. As a
fine-grained sentiment analysis task, document-level multi-aspect sentiment analysis (DMSA)
aims to predict opinion polarities and ratings with respect to given aspects [163, 74, 167].
Aspect mention detection aims to discover which aspects have been mentioned in reviews
[108]. These tasks can provide us more detailed information about the sentiment of customers
and their primary concerns in a review. (3) When talking about segment-level (sentence-level)
review understanding, we have to discuss the well-known aspect-based sentiment analysis
semantic evaluation tasks (including SemEval-2014 Task 4 [110], SemEval-2015 Task 12 [109],
and SemEval-2016 Task 5 [108]), which have received extensive attention from both industry
and academia. In these tasks, there are many sub-tasks, such as aspect category and opinion
polarity classification, and aspect and opinion term extraction, which can help us learn
structured knowledge from unstructured textual reviews.

1.2 Research Questions and Hypothesis

The primary research question for this dissertation is: how to develop novel algorithms that
can automatically discover and analyze aspect and opinion related knowledge from a review
corpus, so that we can utilize the discovered knowledge to better understand reviews at different
levels? This research question can be further decomposed into the following sub-questions.

• How can we develop topic models that can automatically discover aspect and opinion
knowledge from corpora that consist of short summaries of reviews?

• How can we associate the knowledge (i.e., aspect and opinion related topics) discovered
by topic models to aspect categories and ratings in automatically collected review corpora
with customer-provided aspect ratings, namely DMSA corpora?

• How can we incorporate the knowledge discovered by topic models into DMSA models
to improve sentiment prediction accuracy?

• How can we develop algorithms that can automatically discover aspect and opinion
knowledge that is salient to aspect categories and ratings in DMSA corpora?

• How can we use the aspect and opinion knowledge discovered by topic models and new
algorithms to interpret deep sentiment analysis and DMSA models, and get deep insight
into review corpora?
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• How can we develop algorithms that can automatically discover aspect knowledge and
extract aspect specific segments from reviews?

This thesis covers five problems in the three aforementioned directions (i.e., corpus-level,
document-level, and segment-level review understanding) to answer these research questions.
Accordingly, the central hypothesis of this research is that the proposed novel algorithms
and methods will make us better understand review corpora with minimal human supervision,
and discovered knowledge will benefit both downstream model development and practical
applications.

1.3 Research Issues

Although a large number of machine learning and NLP models have been developed to deal
with different problems in review understanding, there are still many challenges: (1) Some
review platforms, such as Amazon and Yelp, request customers to write a short summary (in
a few words) in each review. From these summaries, we can analyze the primary concerns of
customers, however, they have been less investigated. Due to their length, they have limited
contextual information and are sparse, noisy and ambiguous. Therefore, it is difficult to
apply traditional topic models [6] to extract topics from these short summaries [122]. (2)
Another challenge is related to document-level multi-aspect sentiment analysis. In recent few
years, many online review platforms, such as Amazon, Best Buy and TripAdvisor, have begun
to request users to provide aspect-level feedback. However, recent studies have found that
users are less motivated to give aspect-level ratings [163, 167], thus it is difficult to analyze
their preference, and it takes a lot of time and effort for human annotators to manually
annotate them. Document-level multi-aspect sentiment analysis, which aims to detect aspect
mentions from reviews and predict the ratings/sentiment at an individual aspect level, can
be used to predict missing aspect-level ratings and analyze review documents. Currently,
different multi-task learning frameworks have been developed for this task, however, they
suffer from several different problems. For example, they make use of hand-crafted keywords
to determine aspects in rating prediction, which makes the model less interpretable and more
biased. They do not detect aspect mentions before predicting aspect ratings, which makes
the model unreliable. (3) The third challenge is related with aspect-based sentiment analysis
(ABSA) semantic evaluation tasks. Although a large number of models have been developed
for different sub-tasks in ABSA, most of them are supervised and have been tested only
on Restaurant and Laptop corpora, which have been previously annotated [108, 109, 110].
Therefore, their applications have been limited to these domains with a lot of annotated
samples. In this dissertation, we focus on dealing with the above mentioned challenges in
review understanding. The detailed statement of research issues are presented in the following
sections.
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1.3.1 Short-Text Topic Modeling for Review Understanding

Being a prevalent form of social communications on the Internet, billions of short texts are
generated every day. Discovering knowledge from them has gained a lot of interest from
both industry and academia. The short texts have limited contextual information, and
they are sparse, noisy and ambiguous, and hence, automatically learning topics from them
remains an important challenge. To tackle this problem, we propose a semantics-assisted
non-negative matrix factorization (SeaNMF) model to discover topics from short texts. It
effectively incorporates the word-context semantic correlations into the model, where the
semantic relationships between the words and their contexts are learned from the skip-gram
view of a corpus. The SeaNMF model is solved using a block coordinate descent algorithm.
We also develop a sparse variant of the SeaNMF model which can achieve a better model
interpretability [122].

1.3.2 Multi-aspect Sentiment Analysis for Review Understanding

DMSA for Online Reviews of Medical Experts

In the era of big data, online doctor review platforms, which enable patients to give feedback
to their doctors, have become one of the most important components in healthcare systems.
On the one hand, they help patients to choose their doctors based on the experience of others.
On the other hand, they help doctors to improve the quality of their service. Moreover,
they provide important sources for us to discover common concerns of patients and existing
problems in clinics, which potentially improve current healthcare systems. In this study, we
systematically investigate the dataset from one such review platform, namely, ratemds.com,
where each review for a doctor comes with an overall rating and ratings of four different
aspects. A comprehensive statistical analysis is conducted first for reviews, ratings, and
doctors. Then, we explore the content of reviews by extracting latent topics related to
different aspects with unsupervised topic modeling techniques. We also propose a multi-task
learning framework for the document-level multi-aspect sentiment classification. This task
helps us to not only recover missing aspect-level ratings and detect inconsistent rating scores
but also identify aspect-keywords for a given review based on ratings. The proposed model
takes both features of doctors and aspect-keywords into consideration [125].

Corpus-level and Concept-based Explanations for Interpretable Document Clas-
sification

Using attention weights to identify information that is important for models’ decision making
is a popular approach to interpret attention-based neural networks. This is commonly realized
in practice through the generation of a heat-map for each single document based on attention
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weights. However, this interpretation method is fragile and it is easy to find contradictory
examples. In this study, we propose a corpus-level explanation approach, which aims to
capture causal relationships between keywords and model predictions via learning importance
of keywords for predicted labels across a training corpus based on attention weights. Based
on this idea, we further propose a concept-based explanation method that can automatically
learn higher level concepts and their importance to model prediction tasks. Our concept-
based explanation method is built upon a novel Abstraction-Aggregation Network, which
can automatically cluster important keywords during an end-to-end training process. We
apply these methods to the document classification task and show that they are powerful in
extracting semantically meaningful keywords and concepts. Our consistency analysis results
based on an attention-based Näıve Bayes classifier also demonstrate these keywords and
concepts are important for model predictions [128].

Interpretable and Uncertainty Aware Multi-Task Framework for DMSA

In recent years, several online platforms have seen a rapid increase in the number of review
systems that request users to provide aspect-level feedback. Document-level Multi-aspect
Sentiment Classification (DMSC), where the goal is to predict the ratings/sentiment from
a review at an individual aspect level, has become a challenging problem. To tackle this
challenge, we propose a deliberate self-attention based deep neural network model, named
as FEDAR, for the DMSC problem, which can achieve competitive performance while also
being able to interpret the predictions made. As opposed to the previous studies, which make
use of hand-crafted keywords to determine aspects in rating predictions, our model does not
suffer from human bias issues since aspect keywords are automatically detected through a
self-attention mechanism. FEDAR is equipped with a highway word embedding layer to
transfer knowledge from pre-trained word embeddings, an RNN encoder layer with output
features enriched by pooling and factorization techniques, and a deliberate self-attention
layer. In addition, we also propose an attention-driven keywords ranking method, which
can automatically discover aspect keywords and aspect-level opinion keywords from a review
corpus based on the attention weights. These keywords are significant for rating predictions
by FEDAR. Since crowdsourcing annotation can be an alternate way to recover missing
ratings of reviews, we propose a lecture-audience strategy to estimate model uncertainty in
the context of multi-task learning, so that valuable human resources can focus on the most
uncertain predictions [127].

1.3.3 Unsupervised Aspect Detection for Review Understanding

Unsupervised aspect detection aims at automatically extracting interpretable aspects and
identifying aspect-specific segments, such as sentences, from online reviews. However, recent
deep learning-based topic models, specifically aspect-based autoencoders, suffer from several
problems such as extracting noisy aspects and poorly mapping aspects discovered by models
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to the aspects of interest. To tackle these challenges, we first propose a self-supervised
contrastive learning framework and an attention-based model equipped with a novel smooth
self-attention module for the aspect detection task in order to learn better representations
for aspects and review segments. Secondly, we introduce a high-resolution selective mapping
method to efficiently assign aspects discovered by the model to the aspects of interest. We
also propose using a knowledge distillation technique to further improve the aspect detection
performance [124].

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows.

In Chapter 2, we review literature of short-text topic modeling, multi-aspect sentiment
analysis, concept-based model interpretation, uncertainty estimation, and aspect detection.

In Chapter 3, we propose a semantics-assisted non-negative matrix factorization model to
discover topics for the short texts. We also develop a sparse variant of the model which can
achieve a better model interpretability.

In Chapter 4, we systematically analyze a dataset for document-level multi-aspect sentiment
analysis from a healthcare-related review platform, namely, ratemds.com, where each review
for a doctor comes with an overall rating and ratings of four different aspects. We also
propose a multi-task learning framework for the multi-aspect sentiment classification task.

In Chapter 5, we propose a corpus-level explanation approach, which aims to capture causal
relationships between keywords and model predictions via learning importance of keywords for
predicted labels across a training corpus based on attention weights, to interpret self-attention
based deep document classification models. We further propose a concept-based explanation
method that can automatically learn higher level concepts and their importance to the model
prediction task.

In Chapter 6, we propose a deliberate self-attention based deep neural network model for the
document-level multi-aspect sentiment analysis problem. We further propose an attention-
driven keywords ranking method, which can automatically discover aspect keywords and
aspect-level opinion keywords from a review corpus based on the attention weights. We also
propose a lecture-audience strategy to estimate model uncertainty in the context of multi-task
learning.

In Chapter 7, we propose a self-supervised contrastive learning framework and an attention-
based model equipped with a novel smooth self-attention module for the unsupervised aspect
detection task. We also introduce a high-resolution selective mapping method to efficiently
assign aspects discovered by the model to the aspects of interest. In addition, we propose
using a knowledge distillation technique to further improve the aspect detection performance.

In Chapter 8, we summarize our study and discuss future directions.



Chapter 2

Literature Review

2.1 Short-Text Topic Modeling

This section reviews related work on short-text topic modeling. Topic modeling for short texts
is a challenging research area and many models have been proposed to overcome the lack of
contextual information. Most of the current studies are based on the generative probabilistic
model, i.e., LDA [6]. Basically, there are three strategies to tackle the problem. The first
strategy can capture the cross-document word co-occurrence via aggregating short texts to
pseudo-documents. To aggregate the documents, some studies leverage the rich auxiliary
contextual information, like authors, time, locations, etc. [51, 152]. For example, in [51],
tweets posted by the same user are aggregated into a pseudo-document. However, this method
cannot be applied to corpora without auxiliary information. To overcome this disadvantage,
another aggregation method is proposed, where the so-called latent pseudo-document is
generated using the short texts according to their own topics [179, 112].

The second strategy considers the word semantic information from external corpora, like
Wikipedia and Google News [156, 114, 72]. It benefits a lot from the recently developed word
embedding approaches based on neural networks [96, 95], which are efficient in uncovering
the syntactic and semantic information of the words. For example, Xun et al. [156] train
the word embeddings upon Wikipedia and use the semantic information as supplementary
sources for their topic model. The third strategy directly makes use of word co-occurrence
patterns in documents, i.e., short texts. It is also known as the Biterm model [157], since
word-pairs co-occurring in the same short text are extracted during the topic modeling. All
of the above strategies have been demonstrated to be useful in discovering topics for short
texts.

Although the Non-negative Matrix Factorization (NMF) based methods have been successfully
applied to topic modeling [19, 20, 59], very few of them are designed to discover topics for
short texts. In [158], Yan et al. propose a NMF model to learn topics for short texts by
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directly factorizing a symmetric term correlation matrix. However, since they formulate a
quartic non-convex loss function, the algorithm proposed in the work is not reliable nor stable.
The recently proposed SymNMF [65, 66] can overcome this problem. However, it does not
provide any good intuition for topic modeling. In addition, we cannot get the document
representation from SymNMF directly.

2.2 Multi-Aspect Sentiment Analysis

This section reviews related work of document-level multi-aspect sentiment analysis. The
sentiment analysis, also known as opinion mining [77], aims to determine the attitude of a
person via analyzing polarity (e.g., positive, neutral, or negative) of given text [104, 142].
Document-level sentiment classification is a fundamental problem of sentiment analysis
and opinion mining, which intends to determine the sentiment polarity of documents and
online reviews. Many recent studies in this field are based on deep neural networks with
hierarchical structures [138, 12, 161]. The document-level multi-aspect sentiment classification,
which takes aspect categories and ratings into consideration, can be seen as an extension
of document-level sentiment classification (single aspect). Early studies on this topic rely
on feature engineering to extract features (e.g., n-gram features) corresponding to different
aspects and use regression approaches (e.g., Support Vector Regression [130]) to predict
multi-aspect ratings [85, 94, 147]. Recently, Yin et al. [163] proposed a multi-task learning
framework where each aspect is viewed as a task. For each single task, a hierarchical attention
module, which includes input encoders and iterative attention modules, has been used to
encode documents for classification. This model requires pre-generated pseudo-questions to
perform iterative attention and has only been tested on two small-scale datasets1. In [74], Li
et al. proposed incorporating users’ information, overall ratings and aspect keywords into their
model, which is also based on a multi-task learning framework. However, it is not suitable for
our problem, because, in the ratemds dataset, reviews are written anonymously by patients
due to privacy concerns. In other words, user information is not available. In addition,
overall ratings are calculated by averaging aspect-level ratings, thus we cannot use overall
ratings as the input. Zeng et al. [167] introduced a variational approach to weakly supervised
sentiment analysis. Another area, known as aspect-based sentiment classification [110, 108],
is also related to our study. It consists of several fine-grained sentiment classification tasks,
including aspect term extraction, aspect term polarity, aspect category detection, and aspect
category polarity. There are many research studies in this area [146, 151, 139]. For example,
Tang et al. [139] introduced a deep memory network for aspect-level sentiment classification.
These models usually focus on sentence-level sentiment classification. Moreover, aspect terms,
categories, and entities in this problem need to be carefully annotated by human experts.

1Both datasets only keep reviews with different aspect-level ratings [69].
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2.3 Concept-Based Model Interpretation

This section reviews related work of concept-based model interpretation methods which are
beyond per-sample features. Increasing interpretability on machine learning models has
become an important topic of research in recent years. Most prior studies [38, 78, 86] focus
on interpreting models via feature-based explanations, which alters individual features such
as pixels and word-vectors in the form of either deletion [117] or perturbation [137]. However,
these methods usually suffer from reliability issues when adversarial perturbations [36] or
even simple shifts occur in the input [62]. Moreover, the feature-based approaches explain the
model behavior locally [117] for each data sample without a global explanation [58, 37] on
how the models make their decisions. In addition, feature-based explanation is not necessarily
the most effective way for human understanding.

To alleviate the issues of feature-based explanation models, some research has focused on
explaining the model results in the form of high-level human concepts [176, 140, 24, 16, 154, 8,
165]. Unlike assigning the importance scores to individual features, the concept-based methods
use the corpus-level concepts as the interpretable units. For instance, the concept “wheels”
can be used for detecting the vehicle images and the concept “Olympic Games” for identifying
the sports documents. However, most of the existing concept-based approaches require human
supervision in providing hand-labeled examples of concepts, which is labor intensive and
some human bias can be introduced in the explanation process [58]. Recently, automated
concept-based explanation methods [162, 9] are proposed to identify higher-level concepts
that are meaningful to humans. However, they have not shown semantically meaningful
concepts on text data. In the text classification area, most of the existing approaches focus
on improving the classification performance, but ignore the interpretability of the model
behaviors [161]. Liu et al. [78] utilize the feature attribution method to help users interpret
the model behavior. Bouchacourt et al. [9] propose a self-interpretable model through
unsupervised concept extraction. However, it requires another unsupervised model to extract
concepts.

2.4 Uncertainty Estimation

This section reviews related work of uncertainty estimation of deep learning models. Model
uncertainty of deep neural networks (NNs) is another research topic related to this study.
Bayesian NNs, which learn a distribution over weights, have been studied extensively and
achieved competitive results for measuring uncertainty [7, 101, 84]. However, they are often
difficult to implement and computationally expensive compared with standard deep NNs.
Gal and Ghahramani [32] proposed using Monte Carlo dropout to estimate uncertainty by
applying dropout [133] at testing time, which can be interpreted as a Bayesian approximation
of the Gaussian process [115]. This method has gained popularity in practice [56, 92] since
it is simple to implement and computationally more efficient. Recently, Zhang et al. [170]
applied dropout-based uncertainty estimation methods to text classification.
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2.5 Aspect Detection

This section reviews related work of aspect detection for online reviews. Aspect detection is
an important problem of aspect-based sentiment analysis [168, 125]. Existing studies attempt
to solve this problem in several different ways, including rule-based, supervised, unsupervised,
and weakly supervised approaches. Rule-based approaches focus on lexicons and dependency
relations, and utilize manually defined rules to identify patterns and extract aspects [111, 81],
which require domain-specific knowledge or human expertise. Supervised approaches usually
formulate aspect extraction as a sequence labeling problem that can be solved by hidden
Markov models (HMM) [54], conditional random fields (CRF) [73, 99, 159], and recurrent
neural networks (RNN) [149, 80]. These approaches have shown better performance compared
to the rule-based ones, but require large amounts of labeled data for training. Unsupervised
approaches do not need labeled data. Early unsupervised systems are dominated by Latent
Dirichlet Allocation (LDA)-based topic models [10, 174, 17, 34, 122, 49]. Wang et al. [148]
proposed a restricted Boltzmann machine (RBM) model to jointly extract aspects and
sentiments. Recently, deep learning based topic models [132, 87, 43] have shown strong
performance in extracting coherent aspects. Specifically, aspect-based autoencoder (ABAE)
[43] and its variants [87] have also achieved competitive results in detecting aspect-specific
segments from reviews. The main challenge is that they need some human effort for aspect
mapping. Tulkens et al. [141] propose a simple heuristic model that can use nouns in the
segment to identify and map aspects, however, it strongly depends on the quality of word
embeddings, and its applications have so far been limited to restaurant reviews. Weakly-
supervised approaches usually leverage aspect seed words as guidance for aspect detection
[1, 55, 177] and achieve better performance than unsupervised approaches. However, most of
them rely on human annotated data to extract high-quality seed words and are not flexible
enough to discover new aspects from a new corpus.



Chapter 3

Short-Text Topic Modeling with
SeaNMF

This chapter introduces a semantics-assisted non-negative matrix factorization (SeaNMF)
model to discover topics for the short texts. A sparse variant of this model, namely SSeaNMF,
which can achieve a better model interpretability, has also been developed. The introduction
of this chapter is first presented in Section 3.1. The proposed SeaNMF model, SSeaNMF
model and parameter inference solutions are presented in Section 3.2. In Section 3.3, we
introduce the datasets used in our experiments, comparison methods, evaluation methods,
and implementation details, as well as analyze experimental results. Section 3.4 concludes
the discussion of this study.

3.1 Background and Motivation

Every day, large amounts of short texts are generated, such as tweets, search queries, questions,
image tags, ad keywords, headlines, and others. They have played an important role in our
daily lives. Discovering knowledge from them becomes an interesting yet challenging research
task which has gained a lot of attention [131, 152, 173, 157, 51]. Since short texts have only
a few words, they can be arbitrary, noisy and ambiguous. All these factors make it difficult
to effectively represent short texts and discover knowledge from them. Traditionally, topic
modeling has been widely used to automatically uncover the hidden thematic information
from the documents with rich content [6, 50, 25]. Generally speaking, there are two groups
of topic models, i.e., generative probabilistic models, such as latent Dirichlet allocation
(LDA) [6], and non-negative matrix factorization (NMF) [68]. The NMF-based models learn
topics by directly decomposing the term-document matrix, which is a bag-of-word matrix
representation of a text corpus, into two low-rank factor matrices. The NMF based models
have shown outstanding performance in dimension reduction and clustering [20, 66, 64] for
high-dimensional data.

12
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Figure 3.1: The overview of the proposed SeaNMF model for learning topics from short
text corpora, which is represented by a bi-relational matrix with both word-document and
word-context correlations.

Although the conventional topic models have achieved great success for regular-sized docu-
ments, they do not work well on short text collections. Since a short text only contains a few
meaningful keywords, the word co-occurrence information is difficult to be captured [173, 51].
In the last few years, many efforts have been dedicated to tackle this challenge. A popular
strategy is to aggregate short texts to pseudo-documents and uncover the cross-document
word co-occurrence [152, 51, 179, 112]. However, the topics discovered by these models may
be biased by the pseudo-documents generated heuristically. More specifically, many irrelevant
short texts may be aggregated into the same pseudo-document.

Another strategy is to use the internal semantic relationships of the words to overcome
the problem of lacking word co-occurrence. This strategy is proposed due to the fact that
semantic information of words can be effectively captured by word embedding techniques,
such as word2vec [95] and GloVe [106]. Several attempts [156, 114, 72] have been made
to discover topics for short texts via leveraging semantic information of the words from
the existing sources, such as the word embeddings based on GoogleNews1 and Wikipedia2.
However, since there are many differences between Wikipedia articles and target short texts,
such word semantic representations may introduce noise and bias into the topics.

Generally speaking, the word embedding can be useful for short text topic modeling because
the words with similar semantic attributes are projected into the same region in the continuous
vector space which will improve the clustering performance of the topic models. However, we
find another way to boost the performance of the topic models using the skip-gram model
with the negative sampling (SGNS). It is well known that SGNS can successfully capture the
relationships between a word and its context in a small sliding window [96, 95]. Interestingly,
for a short text corpus, each document can naturally be selected as a window. Therefore, the
word-context semantic correlations will be effectively captured by SGNS. These correlations
can be viewed as an alternative form of the word co-occurrence. It potentially overcomes the
problem that arises due to data sparsity.

1https://github.com/mmihaltz/word2vec-GoogleNews-vectors
2http://nlp.stanford.edu/projects/glove/
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There are a few recent studies which show that the SGNS algorithm is equivalent to factorizing
a term correlation matrix [70, 71]. Thus, we raise some natural questions: 1) Can we convert
the matrix factorization problem to a non-negative matrix factorization problem? 2) Can
we incorporate this result into the conventional NMF for term-document matrix? 3) Will
the proposed model perform well on discovering topics for short texts? Motivated by these
questions, we propose a novel semantics-assisted NMF (SeaNMF) model for short-text topic
modeling which is outlined in Fig. 3.1. In this figure, the documents, words and contexts
are denoted as Di, wi and ci, respectively. The proposed SeaNMF model can capture the
semantics from a short text corpus based on word-document and word-context correlations,
and our objective function combines the advantages of both the NMF model for topic modeling
and the skip-gram model for capturing word-context semantic correlations. In Fig. 3.1, H,
Wc and W are the vector representations of documents, contexts and words in the latent
space. Each column of W represents a topic. We use a block coordinate descent algorithm to
solve the optimizations. To achieve better interpretability, we also introduce a sparse version
of the SeaNMF model.

The proposed models are compared with the other state-of-the-art methods on four real-world
short text datasets. The quantitative experiments demonstrate the superiority of our models
over several other existing methods in terms of topic coherence and document classification
accuracy. The stability and consistency of SeaNMF are verified by parameter sensitivity
analysis. Finally, we design an experiment to investigate the interpretability of the SeaNMF
model. By visualizing the top keywords of different topics and analyzing their networks, we
demonstrate that the topics discovered by SeaNMF are meaningful and their representative
keywords are more semantically correlated. Hence, the proposed SeaNMF is an effective topic
model for short texts.

3.2 Proposed Methods

In this section, we will first provide some preliminaries along with the block coordinate
descent method and its applications in NMF for topic modeling. Then, we will propose our
SeaNMF model, and a block-coordinate descent algorithm to estimate latent representations
of terms and short documents.

3.2.1 Notations and Preliminaries

The frequently used notations in this section are summarized in Table 3.1.
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Table 3.1: Notations used in this study.

Name Description
A Term-document (word-document) matrix.
S Word-context (semantic) correlation matrix.
W Latent factor matrix of words.
Wc Latent factor matrix of contexts.
H Latent factor matrix of documents.
−→w j Vector representation of word wj.−→c j Vector representation of context cj.
R+ Non-negative real numbers.
N Number of documents in a corpus.
M Number of distinct words in the vocabulary.

NMF for Topic Modeling

The NMF method has been successfully applied to topic modeling, due to its superior perfor-
mance in clustering high-dimensional data [20, 19, 64]. Given a corpus with N documents
and M distinct words/terms/keywords in the vocabulary V, we can use a term-document
matrix A ∈ RM×N

+ to represent it, where R+ denotes non-negative real numbers. Each column
vector A(:,j) ∈ RM×1

+ corresponds to a bag-of-word representation of document j in terms of
M keywords. The term-document matrix can be approximated by two lower-rank matrices
W ∈ RM×K

+ and H ∈ RN×K
+ , i.e., A ≈ WHT , where K � min(M,N) is the number of latent

factors (i.e., topics). Usually, this approximation can be formulated as follows:

min
W,H≥0

‖A−WHT‖2F . (3.1)

In topic models, the column vector W(:,k) ∈ RM×1
+ represents the k-th topic in terms of M

keywords, and its elements are the weights of the corresponding keywords. The row vector
H(j,:) ∈ R1×K

+ is the latent representation for document j in terms of K topics. Similarly, we
can view the row vector W(i,:) ∈ R1×K

+ as the latent semantic representation of word i. It is
worth mentioning that there are other divergence measures, which can be found in [22].

Problem Statement

Due to the data sparsity, the short texts are too short for the conventional topic models to
effectively capture document-level word co-occurrence, which leads to poor performance in
topic learning. To tackle this problem, we first investigate the algorithms for estimating the
factor matrices in NMF. For example, in the block coordinate descent (BCD) algorithm [60],
the updating rules for W and H are shown as follows:
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• Update W .

W(:,k) ←
[
W(:,k) +

(AH)(:,k) − (WHTH)(:,k)
(HTH)(k,k)

]
+

(3.2)

• Update H.

H(:,k) ←
[
H(:,k) +

(ATW )(:,k) − (HW TW )(:,k)
(W TW )(k,k)

]
+

(3.3)

where [x]+ = max(x, 0),∀x ∈ R.

From the algorithm, we observe that the following lemma holds.

Lemma 1 For the BCD algorithm, within each iteration:

1. The keyword-vector W t+1
(i,:) is independent of vector W t

(j,:), when 1 ≤ j 6= i ≤M .

2. The document-vector H t+1
(i,:) is independent of vector H t

(j,:), when 1 ≤ j 6= i ≤ N .

where t represents the t-th iteration.

Proof To prove that W t+1
(i,:) is independent of W t

(j,:), ∀j 6= i, we only need to prove that

(WHTH)(i,k) is independent of W(j,:), ∀1 ≤ k ≤ K. To simplify the proof, we use a symmetric
matrix B ∈ RK×K

+ to represent HTH. Thus, we get (WHTH)(i,k) = (WB)(i,k) = W(i,:) ·B(:,k)

which only depends on W(i,:). Hence, W t+1
(i,:) is independent of W t

(j,:),∀j 6= i. Similarly, we can

also prove that H t+1
(i,:) is independent of H t

(j,:).

We also have the same conclusion for the gradient descent (GD) algorithm. Generally speaking,
the relationship between different keywords strongly depends on the documents and vice-
versa (see Fig. 3.1). However, due to the data sparsity, i.e., each document has only several
keywords, the relationships of keywords are biased by a lot of unrelated documents which
results in poor clustering performance. Moreover, the relationships between the keywords
and their contexts, i.e., semantic relationships, are not directly discovered by the BCD or GD
algorithms in NMF. Therefore, a standard NMF model cannot effectively capture the word
co-occurrence for short texts. In this study, we will overcome this drawback by introducing
additional dependence of the keywords on their contexts via neural word embedding (see
Fig. 3.1).

Neural Word Embedding

Word embedding has been demonstrated to be an effective tool in capturing semantic
relationships of the words. Represented by dense vectors, words with similar semantic and
syntactic attributes can be found in the same area in the continuous vector space. One of the
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most successful word embedding methods is proposed by Mikolov et al. [95, 96], known as
Skip-Gram with Negative-Sampling (SGNS). The objective function of SGNS is expressed as:

log σ(−→w · −→c ) + κ · Ecneg∼p(c)[log σ(−−→w · −→c neg)], (3.4)

where w and c represent a word and one of its contexts in a sliding window, respectively.
−→w ∈ RK and −→c ∈ RK are vector representations of them. σ(−→w · −→c ) = 1/(1 + e−

−→w ·−→c ). cneg
is the sampled contexts, known as negative samples, drawn based on a unigram distribution
p(c). κ is the number of negative samples.

Recently, Levy et al. [70] have proven that SGNS is equivalent to factorizing a (shifted) word
correlation matrix:

−→w · −→c = log

(
#(w, c) · D
#(w) ·#(c)

)
− log κ (3.5)

where #(w, c) denotes the number of (w, c) pairs in a corpus. The total number of word-context
pairs is D =

∑
w,c∈V #(w, c). Similarly, #(w) =

∑
c∈V #(w, c) and #(c) =

∑
w∈V #(w, c)

represent the number of times w and c occur in all possible word-context pairs, respec-
tively. p(c) in Eq. (3.4) is expressed as p(c) = #(c)/D. It is worth mentioning that the
log((#(w, c) · D)/(#(w) ·#(c))) is known as the pointwise mutual information (PMI). There-
fore, based on this concern, an alternative word representation method was proposed in [70],
where the positive constraint is applied to the PMI matrix (PPMI), and then it is factorized
by a singular value decomposition method. Eq. (3.5) reveals the internal relationships
between the word and its context, which is critical to overcoming the problem of lacking
word co-occurrence. In this study, we will leverage the word-context semantic relationships
to boost the performance of our models.

3.2.2 The SeaNMF Model

In this section, we propose a novel semantics-assisted NMF (SeaNMF) model to learn topics
from the short texts. Our model incorporates the semantic information using the word
embeddings into the model training, which enable SeaNMF to recover word co-occurrences
from semantic relationships between keywords and their contexts (see Fig. 3.1).

Model Formulation

One challenge of our study is to appropriately introduce the word semantics to NMF. Since the
latent matrix W ∈ RM×K

+ (the elements of W are non-negative), we apply the non-negative
constraints on both word and context vectors. Therefore, −→w ∈ RK

+ and −→c ∈ RK
+ hold.

Given a keyword wi ∈ V, we set W(i,:) = −→w i. To reveal the semantic relationships between
the keywords and their context, a matrix Wc is defined for the words in contexts. Thus,
Wc(j, :) = −→c j for cj ∈ V.
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With the word and context representations, we can define a semantic (word-context) correla-
tion matrix S which reveals relationships between the keywords and their contexts. Hence,
we have

S ≈ WW T
c . (3.6)

The matrix S can be obtained from the skip-gram view of the corpus. Here, we define each
element Sij as follows:

Sij =

[
log

(
#(wi, cj)

#(wi) · p(cj)

)
− log κ

]
+

, (3.7)

where p(cj) is a unigram distribution for sampling a context cj. Different from Eq. (3.5), it
is defined as

p(cj) =
#(cj)

γ∑
cj∈V #(cj)γ

, (3.8)

where γ is a smoothing factor. It should be noted that S need not necessarily be symmetric.
Specifying the sliding windows is a critical component of the skip-gram model. However, for
the short texts, this study turns out to be simple. That is, we can naturally view each short
document as a window, since each window will have only a few words. Therefore, the total
number of windows is equal to the number of documents. Finally, #(wi, cj), #(wi), #(cj)
and D will be calculated accordingly.

REMARK 1 The semantic correlation matrix S is not required to be symmetric.

REMARK 2 In this study, each short text is viewed as a window. Therefore, the size of
each window in the skip-gram model is equal to the length of the corresponding short text.
The total number of windows is equal to the number of short texts.

With the term-document matrix and the semantic correlation matrix, the objective function
is expressed as follows:

min
W,Wc,H≥0

∥∥∥∥( AT√
αST

)
−
(

H√
αWc

)
W T

∥∥∥∥2
F

+ ψ(W,Wc, H), (3.9)

where α ∈ R+ is a scale parameter. ψ(W,Wc, H) is a penalty function for SeaNMF, which
will be specified for a different purpose, such as the sparsity. In this study, we will primarily
demonstrate that SeaNMF is an effective topic model for the short texts.

Optimization

Suppose ψ(W,Wc, H) = 0, a block coordinate descent (BCD) algorithm can be used to solve
Eq. (3.9). We take the derivatives of the objective function with respect to the vectors W(:,k),
Wc(:,k) and H(:,k). By setting them to zero, we get the updating rules as follows:
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• Update W

W(:,k) ← [W(:,k)

+
(AH)(:,k) + α(SWc)(:,k) − (WHTH)(:,k) − α(WW T

c Wc)(:,k)
(HTH)(k,k) + α(W T

c Wc)(k,k)
]+

(3.10)

• Update Wc

Wc(:,k) ←
[
Wc(:,k) +

(STW )(:,k) − (WcW
TW )(:,k)

(W TW )(k,k)

]
+

(3.11)

From lemma 1, the document representation H is independent of Wc and S, therefore, the
update rule for H is the same as Eq. (3.3).

Algorithm 1: The SeaNMF Algorithm

Input: Term-document matrix A;
Semantic correlation matrix S;
Number of topics K, α;

Output: W , Wc, H;

1 Initialize: W ≥ 0, Wc ≥ 0, H ≥ 0 random non-negative real numbers;
2 t = 1;
3 repeat
4 for k=1,K do
5 Compute W t

(:,k) by Eq. (3.10);

6 Compute W t
c(:,k) by Eq. (3.11);

7 Compute H t
(:,k) by Eq. (3.3);

8 end
9 t = t+ 1;

10 until Converge;

The BCD algorithm for SeaNMF is summarized in Algorithm 1. We first build the term-
document matrix A using the bag-of-words representation. Then, we calculate the semantic
correlation matrix S by Eq. (3.7). The latent factor matrices W , Wc and H are initialized
randomly with non-negative real numbers. Then, within each iteration, their coordinates will
be updated column-wise. After each update, W(:,k) and Wc(:,k) will be normalized to have a
unit `2-norm. We will repeat this iteration until the algorithm converges.

Intuitive Explanation

We further demonstrate that Eq. (3.10) is equivalent to the following three updating proce-
dures.

W 1
(:,k) ← W(:,k) +

(AH)(:,k) − (WHTH)(:,k)
(HTH)(k,k)

(3.12)
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W 2
(:,k) ← W(:,k) +

(SWc)(:,k) − (WW T
c Wc)(:,k)

(W T
c Wc)(k,k)

(3.13)

W(:,k) ←
[
λW 1

(:,k) + (1− λ)W 2
(:,k)

]
+

(3.14)

where λ =
(HTH)(k,k)

(HTH)(k,k)+α(W
T
c Wc)(k,k)

∈ [0, 1]. �

As we can see, Eq. (3.12) is the same as Eq. (3.2) for the standard NMF. It tries to project
the words in the same documents into the same region of the space using the term-document
matrix. On the other hand, Eq. (3.13) tries to move the words close to each other if they
share the common context keywords. Therefore, it increases the coherence of the topics.
For example, in Fig. 3.1, w1 and w4 do not appear in the same document. However, since
they both have w2 as context keyword, they may be semantically correlated. Take two short
texts “iphone ios system” and “galaxy android system” as an example. “iphone” and “ios”
do not appear in the second sentence, and “galaxy” and “android” do not appear in the first
sentence. Thus, the correlations between “iphone, ios” and “galaxy, android” are minor in
the standard NMF. However, in SeaNMF, the correlations are enhanced by Eq. (3.13) using
the fact that they share the common keyword “system”. The overall updating procedure,
given in Eq. (3.14), is a linear combination of Eq. (3.12) and (3.13) which guarantees the
top keywords in each topic are highly correlated.

Computational Complexity

We have noticed that the proposed SeaNMF model maintains the same formation (Eq.
(3.9)) as that of the standard NMF (Eq. (3.1)), therefore, its computational complexity is
O((M +N)MK) within a single iteration of updating factor matrices. Since for short text
corpora, the number of keywords is usually less than the number of documents, i.e, M < N ,
we have M +N < 2N . Therefore, the computational complexity of SeaNMF for short texts
is reduced to O(NMK), which is the same as that of standard NMF [60]. However, due to
data sparsity for short texts, this complexity can be further reduced. From Eqs. (3.10), (3.11)
and (3.3), we can see the complexity is dominated by the calculations of AH, SWc, A

TW .
Without considering the sparsity, their computational costs are O(MNK), O(MMK), and
O(NMK), respectively. However, since A and S are sparse matrices, which can be seen in
Table 3.2, we only need to multiply the non-zero elements with factor matrices. Suppose
the numbers of non-zero elements in A and S are zA and zS, the complexity of calculating
AH, SWc, and ATW will be O(zAK), O(zSK), and O(zAK), respectively. Therefore, the
proposed SeaNMF model has the complexity of O(max(zA, zS)K), where max(zA, zS)� NM
and K � min(N,M), which is much cheaper than the standard NMF.
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3.2.3 The Sparse SeaNMF Model

In standard topic models, words are represented by dense vectors in a continuous real
space. Specifically, in SeaNMF, we use the low-rank factor matrix W to encode the words.
Introducing sparsity to W will reduce the active components of the word vectors, which will
make it easy to interpret the topics.

Considering a better interpretability of the model, we introduce the Sparse SeaNMF (SSeaNMF)
model, where we apply the sparsity constraint to W and express the penalty function as
follows:

ψ(W,Wc, H) = β‖W‖21, (3.15)

where ‖ · ‖1 represents the `1-norm. Since the sparsity is only applied to W , the BCD
algorithm for updating W is modified to

W(:,k) ← [W(:,k) +
(AH)(:,k) + α(SWc)(:,k) − (WHTH)(:,k) − α(WW T

c Wc)(:,k) + β · 1K
(HTH)(k,k) + α(W T

c Wc)(k,k) + β
]+

(3.16)
where 1K ∈ RM×1 and 1K(i,:) = −

∑K
k=1W(i,k),∀1 ≤ i ≤M .

Updating procedures for Wc and H remain the same as in Eq. (3.11) and Eq. (3.3),
respectively. Compared with standard SeaNMF, calculating 1K will not significantly increase
the computational complexity of the algorithm.

3.3 Experiments

In this section, we will demonstrate the promising performance of our models by conducting
extensive experiments on different real-world datasets. We will introduce the datasets,
evaluation metrics and baseline methods, and then explain different sets of results.

3.3.1 Datasets Used and Evaluation Metrics

Our experiments are carried out on four real-world short text datasets corresponding to four
types of applications, i.e., News, Questions&Answers, Microblogs and Article headlines.

• Tag.News. This data set is a part of the TagMyNews dataset3, which is composed of
news, snippets and tweets. After removing the stopwords, we only keep the news with at
most 25 keywords. The articles in the dataset belong to one of the following 7 categories:
Business, Entertainment, Health, Sci&Tech, Sport, US and World.

3http://acube.di.unipi.it/datasets/
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Table 3.2: Basic statistics of the datasets used in this study.

Data Set #docs #terms density(A) density(S) doc-length #cats
Tag.News 28658 11525 1.2861% 0.1369% 18.14 7
Yahoo.Ans 40754 4334 0.1997% 0.0973% 4.30 10

Tweets 43413 10279 0.2744% 0.0713% 7.73 15
DBLP 15001 2447 0.7693% 0.2677% 6.64 4

Yahoo.CA 30686 4334 5.0532% 0.7754% 42.61 -
ACM.IS 36392 2447 4.2667% 1.9494% 77.49 -

• Yahoo.Ans. This dataset is a subset extracted from the Yahoo! Answers Manner
Questions, version 2.04. In our dataset, we collect the subjects of the Questions from 10
different categories, including Financial Service, Diet&Fitness, etc.

• Tweets. The original Tweets dataset is collected and labeled by Zubiaga et al. [178]. We
select 15 different categories from the dataset, i.e., Arts, Business, Computers, Games,
Health, Home, News, Recreation, Reference, Regional, Science, Shopping, Society, Sports
and World. For each category, we sample 2500∼3000 distinct tweets with at least two
keywords.

• DBLP. The raw DBLP dataset is available at http://dblp.uni-trier.de. In our dataset,
we collect the titles of the conference papers from the following 4 categories: Machine
Learning, Data Mining, Information Retrieval and Database.

Some basic statistics of these datasets are shown in Table 3.2. In this table, ‘#docs’
represents the number of documents in each dataset. ‘#terms’ is the number of keywords
in the vocabulary. ‘density’ is defined as #non-zero

#docs·#terms
, where #non-zero is the number of

non-zero elements in the matrix. The ‘density(A)’ and ‘density(S)’ represent the density of
term-document matrix (A) and semantic correlation matrix (S), respectively. ‘doc-length’
represents the average length of the documents. ‘#cats’ denotes the number of distinct
categories.

In our experiments, we also leverage the following two datasets as external sources in the
evaluations. It should be noted that they are NOT used to train the models.

• Yahoo.CA. From the Yahoo! Answers Manner Questions, version 2.0, we collect the
content and best answer for each question, and construct a new regular-sized document
set, namely, Yahoo.CA.

• ACM.IS. This dataset is part of the ACM IS abstract dataset5, which contains the
abstracts of ACM information system papers published between 2002 and 2011.

In order to train GPUDMM [72], we also obtain GoogleNews(300d) from https://github.

com/mmihaltz/word2vec-GoogleNews-vectors. It contains 3 million English words which

4https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
5https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/27695
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are embedded into 300 dimensional latent space by performing the word2vec model [96] on
the Google News corpus which consists of 3 billion running words.

In this study, we will use the topic coherence and document classification accuracy for our
evaluation.
Topic Coherence. Given a topic k, the PMI score is calculated by the following equation:

Ck =
2

N (N − 1)

∑
1≤i<j≤N

log
p(wi, wj)

p(wi)p(wj)
(3.17)

where N is the number of most probable words in this topic.
p(wi, wj) = #(wi, wj)/D is the probability of the words wi and wj co-occurring in the same
document. p(wi) = #(wi)/D and p(wj) = #(wj)/D are the marginal probabilities. The
average PMI score over all the topics will be used to evaluate the quality of the topic models.
However, Quan et al. [112] have shown that the average PMI score, that works well for
regular-sized documents, is still problematic for short texts, which means a gold-standard
topic may be assigned with a low PMI score.

In this study, we leverage the following strategy to overcome this problem. First, we calculate
the PMI score based on the four short text datasets as usual. Second, for the Yahoo.Ans and
DBLP datasets, we calculate the PMI score based on the external corpora, i.e., Yahoo.CA
and ACM.IS, which are composed of regular documents. The results in both experiments
will be used to demonstrate the effectiveness of our models. We emphasize that Yahoo.CA
and ACM.IS do not participate in the training of our models.

In our experiments, we set N = 10. It also should be noted that the difference between Eq.
(3.17) and the PMI score used in [179] is that we do not consider the co-occurrence of the
same word.
Document Classification. Another popular way to evaluate the effectiveness of the
topic models is to leverage the latent document representations for external tasks. In our
experiments, we will conduct short text classification on all the datasets whose documents
have been labeled. A five-fold cross validation is used to evaluate the performance of the
classification, where each corpus is randomly split into training and testing sets with a ratio
of 4 : 1. Then, the documents are classified by the LIBLINEAR package6 [27].

Finally, the quality of the classification is measured by average precision, recall and F-score.

3.3.2 Comparison Methods

We compare the performance of our models with the following state-of-the-art methods.

• Latent Dirichlet Allocation (LDA). LDA [6] is a well-known baseline method in the
topic modeling which performs well on the regular-sized documents. In this study, we use

6https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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a Python implementation7 of LDA with a collapsed Gibbs sampling.

• Non-negative Matrix Factorization (NMF). NMF [60] is an unsupervised method that
can perform dimension reduction and clustering simultaneously. It has found applications
in a range of areas, including topic modeling. In our experiments, the NMF8 is implemented
in Python with a block coordinate descent algorithm.

• Pseudo-document-based Topic Model (PTM). PTM [179] introduces pseudo-documents
into the topic model, which implicitly aggregates short texts without auxiliary information.
It is one of the most recent methods for discovering topics from short text corpora.

• GPUDMM. The GPUDMM [72] for short-text topic modeling is based on the Dirichlet
Multinomial Mixture model. During the sampling process using the generalized Pólya urn
model, it promotes the semantically related words in each topic by leveraging the external
word semantic knowledge, i.e., word vectors, from very large corpora. In this study, we
will use the Google News (300d) dataset as the external resource.

In our experiments, the default number of topics is set to K = 100. For LDA, we set
parameters α = 0.1 and β = 0.01, since weak prior can give a better performance for
short texts [179]. For PTM and GPUDMM, we use the default hyper-parameter settings.
Specifically, we set parameters α = 0.1, λ = 0.1 and β = 0.01 for PTM. For GPUDMM,
we set parameters β = 0.1. In LDA, PTM and GPUDMM, Gibbs sampling is run for 2000
iterations. For SeaNMF, we set α = 1.0 for Tag.News and Tweets and α = 0.1 for Yahoo.Ans
and DBLP. To calculate S, we set κ = 1.0 and γ = 1.0. In SSeaNMF, we set β = 0.1. We
also set the seed for the random number generator to 0 for NMF, SeaNMF and SSeaNMF to
make sure the results are consistent and independent of random initial states. The codes for
SeaNMF has been publicly available at https://github.com/tshi04/SeaNMF.

3.3.3 Results

Topic Coherence Results

We first present the topic coherence results of our models and other comparison methods
in Tables 3.3 and 3.4. We use the bold font to show the best performance values and the
underlining to highlight the second best values.

From Table 3.3, we observe that our models outperform the standard NMF, which indicates
that SeaNMF is effective for learning topics from short texts. Compared with LDA and
recent PTM, SeaNMF shows significant improvements, which implies that our models discover
more coherent topics. To better understand the poor performance of GPUDMM in all cases,
we visualize the top keywords in each topic, where we find that many top keywords (e.g.
‘extraction’, ‘extracting’ and ‘extract’) are semantically correlated, but they do not tend to

7https://github.com/shuyo/iir/tree/master/lda
8https://github.com/kimjingu/nonnegfac-python
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Table 3.3: Topic coherence results in terms of PMI.

Tag.News Yahoo.Ans Tweets DBLP
LDA 1.5048 1.2957 1.1637 0.9346
NMF 1.6414 1.1394 1.8045 0.9184
PTM 1.6628 1.1311 1.3745 0.8505
GPUDMM 0.9751 0.5798 0.9213 0.2815
SeaNMF 3.6318 1.7553 4.1477 1.6137
SSeaNMF 3.6053 1.6081 4.1979 1.6239

Table 3.4: Topic coherence results with Yahoo.CA and ACM.IS.

Yahoo.Ans/Yahoo.CA DBLP/ACM.IS
LDA 0.6540 0.4282
NMF 0.5261 0.3626
PTM 0.6504 0.4431
GPUDMM 0.3302 -0.0159
SeaNMF 1.1094 0.6641
SSeaNMF 1.0188 0.6447

appear in the same document. Another possible reason is that the word semantic relationships
in Google News and other datasets are different, so that the general semantics knowledge
from Google News may not work well on discovering topics from these datasets.

As discussed in the topic coherence section, since the PMI scores are problematic for short
texts, we also evaluate topic coherence based on external corpora which are composed of long
documents. After training different models on Yahoo.Ans, we extract the top keywords from
each topic, and then calculate the PMI scores based on the Yahoo.CA corpus. Similarly, for
DBLP, the PMI scores are calculated based on the ACM.IS dataset. The results obtained
on these external corpora are presented in Table 3.4. From the table, we find that SeaNMF
outperforms the other baseline methods. Therefore, from our topic coherence results, we
demonstrate that by leveraging the word semantic correlations, SeaNMF can capture more
coherent topics from short texts.

Document Classification Results

In addition to the topic coherence, we also compared the document classification performance
of different methods. As we can see from Tables 3.5 and 3.6, both the best and the second best
results are achieved by our models on Tag.News, Yahoo.Ans, and Tweets. This demonstrates
that our models are effective in the document classification for short texts. Compared with
the conventional topic models, such as LDA and NMF, SeaNMF has a significant improvement
in terms of different classification measures. The SeaNMF models also perform better than
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Table 3.5: Performance comparison of various methods on document classification.

Tag.News Yahoo.Ans
Precision Recall F-score Precision Recall F-score

LDA 0.7323 0.7184 0.7239 0.5929 0.5738 0.5659
NMF 0.6763 0.6371 0.6507 0.6303 0.5470 0.5706
PTM 0.7525 0.7396 0.7444 0.6390 0.6038 0.6026
GPUDMM 0.7843 0.7712 0.7760 0.5954 0.6308 0.5995
SeaNMF 0.7868 0.7786 0.7821 0.6566 0.6338 0.6366
SSeaNMF 0.7894 0.7801 0.7841 0.6603 0.6369 0.6401

Table 3.6: Performance comparison of various methods on document classification.

Tweets DBLP
Precision Recall F-score Precision Recall F-score

LDA 0.3827 0.3867 0.3758 0.6081 0.5973 0.5994
NMF 0.3677 0.3517 0.3506 0.6393 0.6226 0.6273
PTM 0.3941 0.3838 0.3786 0.6424 0.6367 0.6379
GPUDMM 0.3985 0.4066 0.3903 0.6670 0.6573 0.6586
SeaNMF 0.4648 0.4555 0.4527 0.6648 0.6552 0.6575
SSeaNMF 0.4592 0.4568 0.4516 0.6700 0.6613 0.6636

PTM, which attempts to capture the cross-document word correlations by aggregating similar
short texts into pseudo documents. This comparison demonstrates that the word correlations
obtained from the skip-gram view of a corpus play an important role in capturing high quality
semantics, given the performance of standard NMF is not as good as that of LDA. In Tables
3.5 and 3.6, we also observe that the GPUDMM model performs better than the other baseline
methods. The difference between GPUDMM and SeaNMF is that GPUDMM explicitly makes
use of the term correlations obtained from the pre-trained word representations on external
large corpora, while SeaNMF is only based on the short text corpus itself. Thus, given an
external resource, like Google News, the performance of GPUDMM cannot be guaranteed
across different short texts. In summary, the classification results have shown that SeaNMF
is a superior topic model for short texts, even without using the auxiliary information or
external sources, or aggregating the short texts.

It should be noted that the results based on the Tweets dataset are more reliable because
the number of tweets in different categories is almost the same, which avoids the problems
caused by the so-called ‘imbalanced classes’. As we can see in Tables 3.5 and 3.6, SeaNMF
has on an average more than 12% improvement over the other baseline methods with respect
to precision, recall, and F-score.
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Figure 3.2: Topic coherence and classification performance by varying α, κ, and γ.

3.3.4 Parameter Sensitivity

In this section, we will demonstrate the stability and consistency of SeaNMF by varying the
parameters α, κ, and γ.

The parameter α is the weight for factorizing the word semantic correlation matrix. Here, we
study the effects of α on the topic coherence and classification accuracy on DBLP. It can be
seen from Fig. 3.2 that the topic coherence increases rapidly as we increase the weight when
α ∈ (0, 1]. However, it stays almost constant after α > 1. This clearly shows that SeaNMF is
effective for short texts just because it leverages the word semantic correlations.

We also observe that a better topic coherence does not imply better document classification
performance. As we can see in Fig. 3.2, the F-score decreases as α increases. Therefore, for a
short text collection, a highly coherent topic is not the same as a high quality topic which is
consistent with the findings of others in the literature [112]. We also notice that the F-score
does not significantly change with α, i.e., the change is less than 0.02. Hence, SeaNMF is a
stable topic model for short texts.

The parameters κ and α play an important role in constructing the semantic correlation
matrix S. κ affects the sparsity of S. Large κ leads to very sparse S, which implies that the
words are less correlated. As shown in Fig. 3.2, the F-score is reduced when we increase κ. γ
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Table 3.7: Discovered topics by the proposed method. The word is colored in red if its degree
is less than 2. The numbers in the parentheses represent the frequency of the word in the
corpus. NMF-k corresponds to the k-th topic discovered by the NMF model.

Yahoo.Ans
Category Cooking and Recipes Blues

NMF-24 SeaNMF-47 NMF-54 SeaNMF-50
PMI 2.7291 3.1713 2.6674 3.3517

Top-10
keywords

cook(381)
chicken(168)
turkey(72)
roast(54)
rice(80)
oven(67)
beef(56)
pork(40)
steak(50)

microwave(51)

cook(381)
roast(54)
oven(67)
pork(40)
beef(56)
grill(50)

turkey(72)
steak(50)
tender(11)

ribs(16)

songs(257)
ipod(143)

download(179)
computer(216)

itunes(54)
player(94)

limewire(70)
transfer(75)

add(138)
convert(118)

songs(257)
ipod(143)

computer(216)
download(179)

transfer(75)
onto(51)

itunes(54)
limewire(70)

video(71)
nano(31)

Table 3.8: Discovered topics by the proposed method. The word is colored in red if its degree
is less than 2. The numbers in the parentheses represent the frequency of the word in the
corpus. NMF-k corresponds to the k-th topic discovered by the NMF model.

DBLP
Category Machine Learning Data Mining

NMF-100 SeaNMF-45 NMF-72 SeaNMF-98
PMI 1.4570 1.7215 1.2636 1.9810

Top-10
keywords

support(228)
vector(150)

machines(95)
machine(116)

regression(127)
class(104)

training(79)
kernel(151)

incremental(105)
weighted(67)

support(228)
vector(150)

machines(95)
machine(116)

regression(127)
kernel(151)
training(79)

confidence(19)
reduced(5)

weighted(67)

filtering(147)
collaborative(122)

content(166)
scalable(130)

combining(118)
spam(37)

recommendation(47)
personalized(62)

item(29)
techniques(115)

filtering(147)
collaborative(122)

recommendation(47)
personalized(62)

spam(37)
recommender(27)

injection(5)
style(15)
rating(8)
ratings(6)

is a smoothing factor for the probability of sampling a context. From the figure, the F-score
is slightly improved when γ is increased. To summarize, both parameters affect the quality
of topics by changing the semantic correlation matrix. It implies that the word semantic
correlations are critical to SeaNMF.
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(a) NMF-24 (Yahoo.Ans) (b) NMF-54 (Yahoo.Ans) (c) NMF-100 (DBLP) (d) NMF-72 (DBLP)

(e) SeaNMF-47 (f) SeaNMF-50 (g) SeaNMF-45 (h) SeaNMF-98

Figure 3.3: Network visualizations of the keywords obtained by the NMF and SeaNMF
models on Yahoo.Ans and DBLP datasets.

3.3.5 Semantic Analysis of Topics

In this section, we show that the topics discovered by SeaNMF are meaningful by visualizing
the top keywords. They will be compared with the top keywords given by the standard NMF
method.

After training the NMF model on the Yahoo.Ans and DBLP datasets, we select the topics
with high PMI scores. Then, we find the most similar topic obtained from SeaNMF for each
of them based on the top keywords. The lists of the top keywords in the selected topics
obtained are shown in Tables 3.7 and 3.8. As we can see, two topics for Yahoo.Ans are about
cooking and the technical problems on downloading or transferring songs. The two topics
selected from DBLP are on publications related with machine learning and data mining.

To demonstrate the topics discovered by SeaNMF are more semantically correlated, we use the
selected top keywords in each topic to construct the word networks. More specifically, suppose
the top keyword list is denoted as {wi}10i=1, we first find the 30 most correlated words {vj}30j=1

for each keyword wi0 based on the positive PMI matrix. If a keyword wi1 ∈ {wi} ∩ {vj},
i1 6= i0, we draw an edge from wi0 to wi1 .

As we can see from Fig. 3.3, all the graphs for the standard NMF model are very sparse.
Some keywords with higher frequency in the corpus have lower degree which means that
they are less correlated with the other words. For example, the frequency of ‘chicken’ is
high, however, its most correlated words do not contain the other keywords and it is not in
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the most correlated word lists of the other keywords. In the standard topic modeling, these
keywords might be viewed as noise. In Tables 3.7 and 3.8, keywords with degree less than two
are colored in red. We can see that the topics obtained from the standard NMF model are
noisy. On the other hand, we conduct the same experiments on our SeaNMF model. From
Table 3.7, Table 3.8 and Fig. 3.3, we can see that topics discovered by our SeaNMF model
have less noisy words and the top keywords are more correlated. Therefore, these semantic
analysis results demonstrate that the SeaNMF model can discover meaningful and consistent
topics for short texts.

3.4 Summary

In this study, we introduce a semantics-assisted NMF (SeaNMF) model to discover topics for
short text corpora. The proposed model leverages the word-context semantic correlations in
the training, which potentially overcomes the problem of lacking context that arises due to
the data sparsity. The semantic correlations between the words and their contexts are learned
from the skip-gram view of corpora, which was demonstrated to be effective for revealing word
semantic relationships. We use a block coordinate descent algorithm to solve our SeaNMF
model. To achieve a better model interpretability, a sparse SeaNMF model is also developed.
We compared the performance of our models with several other state-of-the-art methods on
four real-world short text datasets. The quantitative evaluations demonstrate that our models
outperform other methods with respect to widely used metrics such as the topic coherence
and document classification accuracy. The parameter sensitivity results demonstrate the
stability and consistency of the performance of our SeaNMF model. The qualitative results
show that the topics discovered by SeaNMF are meaningful and their top keywords are more
semantically correlated. Hence, we conclude that the proposed SeaNMF is an effective topic
model for short texts.



Chapter 4

Multi-Aspect Sentiment Analysis for
Online Reviews of Medical Experts

This chapter presents a new dataset in the healthcare domain, i.e., RateMDs, for the document-
level multi-aspect sentiment analysis. Based on this dataset, we conduct a comprehensive
statistical analysis, explore aspect related keywords, and develop a multi-task learning
framework to predict aspect-level ratings. First, the introduction of this chapter is presented
in Section 4.1. Section 4.2 provides detailed analysis for the RateMDs dataset. The proposed
multi-task learning model is presented in Section 4.3. In Section 4.4, we introduce the datasets
used in our experiments, baseline methods, and implementation details, as well as analyze
experimental results. Section 4.5 concludes this study.

4.1 Background and Motivation

Healthcare systems are evolving rapidly due to advancements in recent artificial intelligence
techniques, especially deep learning frameworks [98, 129]. A number of automated tools and
ML driven micro-services in healthcare, e.g., medical imaging diagnosis for diabetic eye disease
[41] and cancer [82], have gained attention from both industry and academia. Online doctor
review systems, such as ratemds1 and zocdoc2, establish a unique environment for patients
to give feedback to their doctors. These reviews are evolving into an important source for
evaluating performance of doctors in medical practices as a supplement to their professional
knowledge. For example, ratemds is one such review platform for doctors and facilities (e.g.,
hospitals or clinics), which has more than two million healthcare providers (i.e., doctors and
facilities) and three million reviews. On their website, a patient can anonymously post a
review along with an overall rating and ratings from four different aspects to their doctors,

1https://www.ratemds.com/
2https://www.zocdoc.com/
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Figure 4.1: An example of ratemds reviews. Keywords corresponding to different aspects are
highlighted with different colors.

i.e., staff, punctuality, helpfulness and knowledge. Similarly, patients can also review and rate
facilities. Fig. 4.1 shows an example of doctor reviews. In this figure, there is a plain-text
review with four aspect-level ratings, in which staff and punctuality refer to front-desks and
appointments, respectively, while helpfulness and knowledge are about bedside manners of
doctors and medical procedures. Generally speaking, these reviews sketch more detailed
profiles of doctors in medical practices, so they can not only help other patients to find better
options, but also help doctors to improve their service quality.

Nowadays, different knowledge discovery and opinion mining techniques allow us to find out
general needs of patients and existing problems in clinics from a large number of online reviews,
which helps to improve current healthcare systems. Many of these techniques, including
graphical models [94], regression approaches [147] and deep learning methods [168, 69, 163],
have been successfully applied to similar online review systems in other domains, such
as BeerAdvocate3, and TripAdvisor4. However, online doctor review systems, which are
primary platforms for patients to give feedback, have not been sufficiently investigated before
[39, 52, 11], especially for those systems which evaluate doctors’ medical practices from
different aspects. There are many tasks associated with this type of data. For example, many
patients are less motivated to give aspect-level ratings and some ratings are inconsistent with
reviews. Can we predict rating scores based on plain-text reviews to recover missing values
and correct inconsistent ratings? On the other hand, given aspect categories and aspect-
level ratings, can we use these ratings as a form of weak supervision to obtain keywords
corresponding to different categories? Alternately, can we use unsupervised methods to
discover cluster structures in latent space for keywords in reviews and associate them with
different aspects? Although sophisticated models have been proposed for these tasks, they
have only been applied to other types of datasets [74] and some of them have only been
tested on small-scale datasets [163, 69]. In this study, we first thoroughly explore the ratemds

3https://www.beeradvocate.com/
4https://www.tripadvisor.com/



33

dataset, and then, due to the strong correlations of multi-aspect ratings, we formulate a
multi-task learning model to predict ratings and detect aspect-keywords in each review with
attention mechanism [4, 88]. Our contributions can be summarized as follows:

• Propose a multi-task learning framework, which takes features of doctors and aspect-
keywords discovered by the topic model into consideration, for the document-level multi-
aspect sentiment classification task and conduct extensive experiments on two subsets of
the ratemds dataset.

• Introduce a new dataset which consists of more than two million reviews with multi-
aspect ratings. Different from datasets for commercial products and entertainment (like
BeerAdvocate and TripAdvisor), this dataset is healthcare related and an important source
for studying general concerns of patients and existing problems in clinics.

• Conduct a comprehensive statistical analysis on this dataset, including statistics of reviews,
ratings and doctors. We also explore aspect-keywords of reviews with a topic model [6].

4.2 Preliminary Data Analysis

In this section, we first conduct data analysis of reviews, ratings and doctors to get a
comprehensive understanding of key features that can be useful for document-level multi-
aspect sentiment classification. To gain deeper insights into the content of reviews, we also
use topic models to discover aspect-keywords from latent topics.

4.2.1 Overview

The ratemds dataset was obtained from the ratemds.com website, which has records (e.g.,
specialties, insurance plans, etc.) of more than two million doctors world-wide, and over three
million reviews along with numeric ratings of four aspects. The original ratemds dataset has
many missing values for multi-aspect ratings which reflects the fact that patients are less
motivated to provide ratings from different aspects even if their comments are about multiple
things. This problem shows the importance of the multi-aspect rating prediction/sentiment
classification task (see Section 4.3). Due to the missing value problem, we first removed
reviews with missing aspect-level ratings and eliminated records of doctors without reviews
before investigating statistics of the dataset. Then, we obtain a refined ratemds dataset, in
which distributions of doctors and reviews are shown in Fig. 4.2. In this dataset, there are
more than 500K doctors and 2.7 million reviews, and the average number of reviews for each
doctor is 4.6. From Fig. 4.2 (a), we observed that the distribution of doctors over review
counts follows the power law distribution and almost 40% of doctors have only one review.
Thus, it is difficult to apply collaborative filtering based methods to predict multi-aspect
ratings.
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(a) # of reviews for doctors. (b) # of sentences in reviews.

(c) # of tokens in reviews. (d) # of tokens in sentences.

Figure 4.2: Statistics of reviews in ratemds dataset.

Alternately, we can make use of textual reviews for the rating prediction task, which is the
same as the sentiment classification task in this study. Therefore, we further studied the
quality of textual reviews based on lengths of texts in order to make sure that they are not
composed of short texts, since short texts may cause several problems in this task. First, short
reviews cannot contain information of four aspects, which can probably confuse the classifier
with respect to the aspect-keywords. Second, due to lack of semantic relationships [157, 122],
it is difficult to use traditional knowledge discovery methods such as topic models [6] to
automatically uncover the hidden thematic information from them. As a result, we cannot
incorporate external knowledge discovered by these models into the sentiment classifiers for
better classification performance. Figures 4.2(b) and 4.2(c) show the distribution of reviews
over numbers of tokens and sentences, respectively. Fig. 4.2(d) is the distribution of sentences
over the number of tokens. From these figures, we observed that most reviews have at least 2
sentences and over 12 tokens, and most sentences have more than 10 tokens, which indicates
that reviews in this dataset are not dominated by short texts. Moreover, the average length
of reviews are more than 4 sentences and 72 tokens, which implies that there are a number of
reviews whose content covers all four aspects in this dataset.
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Figure 4.3: Statistics of reviews over aspect-level ratings.

Ratings

Each review comes with an overall rating and ratings for four different aspects, i.e., staff,
punctuality, helpfulness and knowledge. The overall rating is the average of aspect-level
ratings, which are integer numbers ranging from 1 to 5, where 1 and 5 represent extremely
unsatisfied and satisfied, respectively. We show the distribution of reviews over rating scores
in Fig. 4.3. From this figure, we observed that more than 60% of reviews have all aspect
rating scores 5, which indicates that most patients are satisfied with their visits. About 17%
of them are 1. It seems that patients with negative experience with their doctors tend to
give extremely unsatisfied scores to express their sentiment, especially when their doctors are
not helpful. Many patients are slightly unsatisfied with staff and punctuality even if they are
satisfied with their doctors, which may be because of their appointments and waiting time.

Doctors

Apart from the basic statistics of reviews and ratings, it is also important to investigate
demographic features of doctors, since they may affect the visit experience of patients. For
example, doctors who work in urban hospitals may receive lower punctuality scores in general
than those who work in suburban clinics. Each doctor has a certain specialty (e.g., dentist).
In Fig. 4.4, we show the average ratings for doctors with different specialties. It can be
seen that dentists have much higher rating scores than other types of doctors. General
practitioners and family practitioners (family-gp) have lower punctuality scores than others,
due to the fact that patients with nearly any issue can visit them and get referrals when they
have complicated health issues. Therefore, incorporating these demographic features into
sentiment prediction models may increase the accuracy of results. In the ratemds dataset, the
key features of doctors includes gender, facility categories, specialties, locations and insurance
plans.
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Figure 4.4: Ratings for doctors with different specialties.

We first observed that doctors in this dataset are from six different countries, i.e., United
States (US), Canada (CA), Australia, India, United Kingdom and South Africa, where
around 77% and 19% of them are located in the US and CA, respectively. There are three
categories of facilities, i.e., hospital, clinic and urgent-care. About 90% of doctors work in
clinics, 10% of them are in hospitals, and very few are in urgent-care. Many doctors work in
different facilities and some of them work in two different countries. In this work, we remove
those doctors who work in more than one country, because different countries have different
healthcare systems. For the feature gender, we observed that around 32% of doctors are
female. For the feature specialty, which has been briefly mentioned in the beginning of this
section, each doctor is assigned one specialty and there are 57 different specialties. Almost
20% of doctors are family-gp. Dentists and obstetrician-gynecologists get relatively more
reviews than doctors with other types of specialties.

4.2.2 Discover Aspect-Keywords

We further investigated reviews by extracting aspect-keywords using topic models [6]. Topic
modeling approaches were considered because they can automatically uncover thematic
information from a corpus in an unsupervised manner. In addition, keywords in each topic
usually have strong semantic correlations and well-defined cluster structures. In the ratemds
dataset, reviews are assumed to be written from different aspects (different topics), whose
keywords are expected to be less correlated.
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Table 4.1: Aspect-keywords extracted with the topic model.

Specialty Aspect Keyword Examples

family-gp

staff
staff, office, rude, nurse, service, charge, call, visit, contact, insurance,
follow, phone.

punctuality wait, hour, long, time, late, appointment, minute.
helpfulness care, see, listen, regard, consider, refer, show, understanding.

knowledge
lab, symptom, treatment, professional, medicine, knowledge, drug,
skill, prescription, diagnosis.

dentist

staff
insurance, charge, service, receive, nice, kind, smile, front-desk, polite,
sweet, respect, assistant, staff.

punctuality rush, drive, late, time, appointment, wait, day, long.
helpfulness help, make, feel, comfortable, ease, care, ask, follow.

knowledge
knowledgeable, procedure, explain, treatment, implant, review, replace,
perform, extraction, experience, professional, tooth.

gynecologist-obgyn

staff call, tell, ask, nurse, rude, staff, office, nice, friendly, service.
punctuality time, wait, appointment, hour, long, minute, day, week, rush.

helpfulness
care, concern, understanding, warm, ease, helpful, think, save, offer,
answer, consider, refuse, suggest.

knowledge
knowledgeable, test, exam, review, explain, complication, pregnancy,
deliver, experience, baby, surgery, pain, hysterectomy, surgeon, medi-
cation, bleed, cry, fibroid, treatment, diagnosis, scar.

Datasets

We first separated the ratemds dataset based on countries and chose reviews for doctors in
the US. Then, we divided selected reviews into sub-categories according to specialties. We
tokenized all reviews with the SpaCy5 package and removed stop-words, punctuation and
rare words. Among all 57 specialties, we chose only three of them, i.e., family-gp, dentist,
and gynecologist-obgyn, to illustrate our experiments and results.

Experiments and Results

Using the gensim6 package, we apply the Latent Dirichlet Allocation (LDA) [6, 48] model to
each dataset. The number of topics was set to 10 considering the fact that topics which are
different from the four aspects may also be discovered. For each topic, we extracted top-20
keywords based on their weights. Finally, we empirically assigned these keywords to different
aspects which have been shown in Table 4.1.

It can be seen from the table that staff usually represents front-desk or nurse. Their duties
include receptions, contacting patients, managing insurance plans and bills, and so on.
Punctuality is associated with appointment and waiting time in offices. From Fig. 4.3, we

5https://spacy.io/
6https://radimrehurek.com/gensim/
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have found that fewer patients are satisfied with punctuality. This may be explained as it is
hard to make an appointment, waiting time is too long, or doctors rush to see other patients.
Helpfulness can be understood as bedside manner of doctors. For example, a good doctor
can carefully listen to complaints of patients, answer their questions and make them feel
comfortable. Finally, knowledge in general is related with diagnosis, exam, treatment, and
so on. From the table, we also observed that keywords of staff, punctuality or helpfulness
are similar to each other for doctors with different specialties. However, since they are
experts in different fields, the knowledge for different specialties has different keywords. For
example, surgery, hysterectomy, fibroid, and pregnancy are related with doctors specialized in
gynecologist-obgyn.

4.3 Proposed Methods

In Section 4.2, we had a comprehensive understanding of statistics and key features of ratemds
dataset, and also extracted aspect-keywords with the topic model. In this section, we perform
document-level multi-aspect sentiment classifications for reviews in ratemds dataset.

4.3.1 Preliminaries

In the document-level multi-aspect sentiment classification problem, multi-aspect rating
predictions can be viewed as tasks. Due to the strong correlations between different tasks,
this problem can be naturally formulated as a multi-task learning problem. Hence, we propose
a multi-task deep learning framework which takes plain-text reviews, aspect-keywords from
topic models and features of doctors into consideration. Formally, this document-level multi-
aspect sentiment classification problem can be described as follows: Given a textual review
X = (x1, x2, ..., xT ), keywords associated with different aspects G = (G1, G2, ..., GK) and a set
of features ξ, our goal is to predict class labels, i.e., integer ratings, y = (y1, y2, ..., yK), where
T and K are the number of tokens in the review and the number of aspects, respectively.
xt represents the one-hot encoding of word t. GK = (gk1 , g

k
2 , ..., g

k
M) is a list of keywords of

aspect k, where gkm is the one-hot encoding of keyword m. yk is an one-hot vector of the class
label of aspect k. Specific to the ratemds dataset, there are four aspects, so K = 4, and each
aspect has 5 classes corresponding to rating scores from 1 to 5. The proposed framework (see
Fig. 4.5) has a review encoder to encode textual reviews, a multi-aspect self-attention layer to
selectively focus on parts of the review for a given aspect, an aspect-keywords guided-attention
layer to focus on parts of the review that are related to aspect-keywords, and an aspect-specific
feature encoder to incorporate features of doctors into the sentiment classification.

We first use a word embedding [96] to map one-hot representations of tokens to a continuous
vector space, thus, a review is represented as (Ex1 , Ex2 , ..., ExT ), where Ext is the word vector
of xt. Then, a bi-directional GRU [18] encoder takes these word vectors as input and turns
the review into a sequence of hidden states H = (h1, h2, ..., hM).
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Figure 4.5: An illustration of the model architecture. (a) The proposed multi-task learning
model. (b) Self-attention and guided attention for aspect k. Different aspects share the
review encoder and word embedding.

4.3.2 Multi-Aspect Self-Attention

After encoding a review into a sequence of hidden states, our goal is to use these encoded
vectors to predict rating scores (i.e., class labels) of different aspects. However, not all of
them contribute equally to the predictions, especially for different aspects. Take the review in
Fig. 4.1 as an example. A model might need to focus on “wait at least 30 minutes” to predict
punctuality score, while for staff, we may put more attention to “very curt and also very
busy”. Therefore, we introduce a multi-aspect self-attention mechanism to capture important
parts of each review.

Formally, for an aspect k, we first use a self-attention mechanism [161] to determine attention
weights αkt of each token in the review

ukt = (rkself)
> tanh(W k

selfht + bkself), αkt =
exp(ukt )∑
τ exp(ukτ )

(4.1)

where W k
self, r

k
self and bkself are learnable parameters. Then, the representation of the review

under self-attention can be calculated by taking the weighted sum of all hidden states,

sk =
T∑
t=1

αkt ht (4.2)

which will be used for the classification task.
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4.3.3 Aspect-Keywords Guided-Attention

The multi-aspect self-attention mechanism relies on the model itself to discover relationships
between class labels and keywords in a review. However, due to strong correlations of rating
scores of different aspects, the model will be confused on ‘where to attend’, when aspect-level
rating scores are the same. In this case, the model may make mistakes, like placing the same
class label for all aspects for new reviews. This problem can be alleviated by bringing in
external knowledge of keywords associated with different aspects (see Section 4.2.2).

Given a list of aspect-keywords for aspect k, we first obtain the word embedding for them,
i.e., (Egk1 , Egk2 , ..., EgkM ). Then, each word vector is transformed into a hidden state with7

vkm = (1− σ(W k
0Egkm + bk0)) tanh(W k

1Egkm + bk1 + bk3σ(W k
2Egkm + bk2)) (4.3)

It is followed by concatenating all hidden states into a single vector vk =
[
vk1 , v

k
2 , ..., v

k
M

]
.

Here, the average of all vectors is not taken because we consider that averaging may neutralize
some features. We then use the global attention mechanism [88, 4] to calculate alignment
scores between encoded vectors of aspect-keywords and tokens in the review as

wkt = w(vk, ht) = (vk)>W k
guideht (4.4)

where W k
guide are learnable parameters. Thus, the guided-attention weights and vector

representation of the review are obtained by

βkt =
exp(wkt )∑
τ exp(wkτ )

, ck =
T∑
t=1

βkt ht (4.5)

4.3.4 Aspect-Specific Feature Encoder

From the basic statistics given in Fig. 4.4, we can observe that some features of doctors (such
as specialty and locations) also affect rating scores; therefore, we incorporate them into our
model to improve the prediction accuracy. Formally, we embed one-hot representations of
features of doctors into a continuous vector space for each aspect k as

fk = W k
f ξ + bkf (4.6)

where W k
f and bkf are model parameters.

4.3.5 Multi-Aspect Rating Prediction

So far, we have obtained aspect-specific representations of a review via self-attention and
guided-attention mechanisms, and representations of features of doctors. These vectors will

7Here, we want to apply a single step GRU transformation for every keyword. But each aspect has only
one GRU cell.
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be concatenated and fed into a classifier, which is a single layer feed-forward network with
a softmax activation function, to predict rating scores. The classifier yields a probability
distribution of class labels of different aspects with

yk = softmax(W k
out[f

k, sk, ck] + bkout) (4.7)

where W k
out and bkout are parameters.

Given predicted labels yk and ground-truth labels ŷk, we train our model in an end-to-end
manner using back-propagation, where the loss function is defined as the cross-entropy loss.
The goal of the training is to minimize average cross-entropy error between yk and ŷk for all
aspects. Formally, it is given as

Lθ = −
K∑
k=1

N∑
i=1

ŷki log(yki ) + λΩ(θ) (4.8)

where Ω(θ) and λ are a regularizer and a scalar, respectively. θ is a parameter set including
all weight matrices and bias vectors. N represents the number of classes.

4.4 Experiments

In this section, we describe an extensive set of experiments on the ratemds dataset for
document-level multi-aspect sentiment classification and explain different experimental re-
sults. We start with introducing two subsets of the ratemds dataset, baseline methods, and
implementation details of the proposed model and evaluation metrics. Then, we will show
the classification performance of different models along with some qualitative results.

4.4.1 Datasets Used

We created two subsets from the ratemds dataset, i.e., ratemds-us and ratemds-ca, based
on countries that doctors work in. We chose the US and CA, because 90% of reviews are
from these two countries (see Fig. 4.4 (a)). The ratemds-us consists of 1,414,235 reviews
for 385,407 doctors, while ratemds-ca has 1,252,941 reviews for 99,719 doctors. We first
tokenized texts with SpaCy8. Since features of doctors are used as additional input, we also
extracted attributes of doctors, including specialties, insurance plans, locations, genders and
facilities, and transformed them into one-hot representations. In addition, aspect-keywords
were selected from latent topics. Finally, we randomly split each dataset into training,
development and testing sets with the ratio of 80:10:10.

8https://spacy.io/
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4.4.2 Compared Methods and Implementation Details

We compare the proposed model with different baseline methods, including conventional
classification and deep learning models.

• MAJOR. This method simply uses the majority label of each aspect in the training set
as the prediction label.

• GLVL. In this model, we first calculate the vector representation of each review by taking
the average of vectors of all keywords in the review. Word vectors were pre-trained on the
Twitter datasets with 2 billion tweets by GloVe [106]. Then, we use the LIBLINEAR [27]
package9 for the classification task.

• BOWL. This model feeds Bag-Of-Words (BOW) representations of reviews into the
LIBLINEAR package for the sentiment classification. In the experiment, we have removed
stop-words and punctuation in textual reviews to make the model capture keywords
efficiently.

• CNN. We adopt the convolutional neural network (CNN) structure proposed in [61, 164]
for the rating prediction of reviews. In our experiments, 1-directional convolutions with
different filter sizes along the sequence time-step dimension are first applied to the word
embedding of a review. Then, a max-over-time pooling operation [23] is built upon each
feature map. By selecting the maximum value, we obtain the key-feature of each filter.
Finally, the vector representation of the review is obtained by concatenating all features.
This vector will be fed into a feed-forward network for classification (similar to other deep
learning models.).

• GRU. We use GRU to refer to a bi-directional GRU with multiple hidden layers [18]. In
this model, we concatenate output vectors of the last hidden states of the top hidden layer
in both forward and backward directions10 to represent a review.

• GRU-ATN. GRU-ATN first builds a self-attention layer [138, 75] on top of a recurrent
neural network. With attention weights, we can compute a context vector for a review by
taking the weighted sum of all hidden states (see Eq. (4.1)).

• MT-BASE and MT-FEAT. MT-BASE is a multi-task learning framework with only
a review encoder, self-attention layers and classifiers (see Fig. 4.5) [163]. In this model,
different tasks (i.e., aspects) share the same review encoder. MT-FEAT also takes features
of doctors into consideration.

We implemented all deep learning models using PyTorch [105] and model parameters are
selected based on the development set. For both ratemds-us and ratemds-ca, vocabulary
sizes are set to 50,000. We do not use the pre-trained word embeddings [96, 106] and they
are learned from scratch during the training. The dimension of word embeddings is set to
128. For CNN, filter sizes were chosen to be 3, 4, 5 and the number of filters are 100 for each
size. For all GRU based models, the dimension of hidden states is set to 128 and the number

9https://www.csie.ntu.edu.tw/~cjlin/liblinear/
10Here, the first token in a sequence corresponds to the last hidden state in the backward direction.
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Table 4.2: Performance comparison of different models on ratemds-us. For MSE, smaller is
better.

Staff Punctuality Helpfulness Knowledge
F-score MSE F-score MSE F-score MSE F-score MSE

MAJOR 0.1453 3.6394 0.1370 3.7749 0.1546 4.5445 0.1575 3.8039
GLVL 0.2893 1.9486 0.2777 2.0598 0.3341 1.4356 0.3140 1.6360
BOWL 0.3805 1.3691 0.3744 1.4440 0.4142 0.8564 0.4151 1.0056
CNN 0.3767 1.1588 0.3721 1.2375 0.4208 0.5355 0.4205 0.7079
GRU 0.4101 0.9717 0.3885 1.1000 0.4602 0.4617 0.4419 0.6326
GRU-ATN 0.4090 0.9638 0.3896 1.0938 0.4479 0.4817 0.4597 0.6078
MT-BASE 0.4093 0.9495 0.3997 1.0273 0.4554 0.4569 0.4528 0.5993
MT-FEAT 0.4187 0.9456 0.3976 1.0443 0.4684 0.4461 0.4721 0.5722
MT-FAKGA (our) 0.4193 0.9061 0.4103 1.0018 0.4787 0.4437 0.4822 0.5681

of layers is 2. All parameters are trained with the ADAM [63] optimizer with learning rate
0.0001. Gradient clipping has also been applied to prevent gradient explosion.

In this study, we adopt ‘macro’ averaged F-score and mean squared error (MSE) to evaluate
performance of different models. Accuracy has been used in [163, 69], however their models
are only tested on reviews with different aspect-level ratings, since those with identical aspect-
level ratings can make it difficult for their models to distinguish keywords of different aspects.
In our experiments, these reviews are still kept, because we assume that aspect-keywords
guided-attention mechanism can alleviate this problem. However, based on distributions
of aspect-level ratings and their correlations (see Fig. 4.3), the data is highly imbalanced,
therefore, accuracy is not a suitable evaluation metric and we adopt F-score instead. Both
accuracy and F-score are based on exact match of class labels, however, for sentiment analysis,
we only need predicted rating scores close to the ground-truth. For example, if the ground
truth score is 5, a model still performs reasonably well by predicting 4. Therefore, MSE is
also a promising metric.

4.4.3 Rating Prediction Performance

We first present quantitative results of different models in Tables 4.2 and 4.3, where we use
bold font to show the best performance values and underlining to highlight the second best
values.

From these two tables, we can observe that MAJOR gets the lowest performance among all
compared methods, since it simply classifies all reviews to the dominant labels without using
textual reviews. GLVL achieves much better results than MAJOR, but is still not as good
as other methods. Although it attempts to take advantage of semantic information of the
word embedding, simply averaging all word vectors in a review can cause information offset,
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Table 4.3: Performance comparison of different models on ratemds-ca.

Staff Punctuality Helpfulness Knowledge
F-score MSE F-score MSE F-score MSE F-score MSE

MAJOR 0.1466 3.1578 0.1377 3.3958 0.1590 3.8706 0.1613 3.2678
GLVL 0.2665 2.1426 0.2645 2.1774 0.3209 1.6168 0.3028 1.6960
BOWL 0.3663 1.4573 0.3651 1.5007 0.4239 0.8667 0.4179 0.9554
CNN 0.3480 1.3431 0.3568 1.3520 0.4267 0.5871 0.4197 0.7042
GRU 0.3778 1.1466 0.3958 1.1282 0.4714 0.4742 0.4519 0.5977
GRU-ATN 0.3907 1.0910 0.3891 1.1457 0.4827 0.4743 0.4739 0.5714
MT-BASE 0.3894 1.0730 0.3905 1.1205 0.4806 0.4686 0.4759 0.5568
MT-FEAT 0.3965 1.0838 0.3916 1.1020 0.4856 0.4556 0.4833 0.5362
MT-FAKGA (our) 0.4013 1.0403 0.3965 1.0781 0.5051 0.4432 0.5025 0.5203

which results in poor review representation11. BOWL can also capture word-level semantic
information via bag-of-words (BOW) representations of reviews. It performs significantly
better than GLVL and as well as CNN. Compared to GLVL, the BOW representation
encodes each review into a high-dimensional space, thus, BOWL requires more parameters to
classify reviews which avoids under-fitting. On the other hand, by removing stop-words and
punctuation in reviews, we only keep keywords relevant to classification and frequency of
keywords in a review can partially reflect their importance. Therefore, representations of
reviews by BOWL are better than those obtained by GLVL.

Compared to traditional methods and CNN, GRU based models have achieved significantly
better results on both datasets. GRU and GRU-ATN are simple classification methods
and trained separately for different aspects, while MT-BASE, MT-FEAT, MT-FAKGA are
multi-task models and they share the word embedding and recurrent hidden layers. Since
most model parameters are attributed to these layers, multi-task models require significantly
fewer parameters. Moreover, GRU and GRU-ATN need K different training for K different
aspects, while the multi-task learning framework can simultaneously learn different aspects,
thus, they require much lesser training time. As to the performance of rating predictions, we
first observe that multi-task learning models can perform as well as or even better than GRU
and attention-based GRU models. MT-FEAT performs slightly better than MT-BASE in
most cases, since it considers features of doctors. By incorporating knowledge from aspect-
keywords, we further improve the performance of MT-FEAT. The proposed MT-FAKGA
achieves the best results in terms of F-score and MSE on both datasets.

4.4.4 Attention Visualization

As the attention mechanism enables a model to selectively focus on important parts of reviews,
visualization of attention weights has become a popular tool that helps to interpret models

11Before averaging word vectors, we have removed stop-words and punctuation from reviews. However, the
performance has not improved significantly using this trick.
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(a) Positive Review

(b) Negative Review

Figure 4.6: Visualization of attention weights. In parentheses, first and second numbers
represent ground-truth and predicted ratings, respectively. For each sub-figure, the first and
second rows represent self-attention and guided-attention weights, respectively. Different
aspects are labeled with different colors, therefore, this figure is best viewed in color.

and analyze experimental results [163, 155]. Specific to our multi-aspect classification task,
our goal is to investigate if models accurately attend keywords of different aspects or not.

In Fig. 4.6, we first show one example with positive ratings and one with negative ratings.
In these examples, the proposed model makes correct predictions of sentiment, and reviews
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(a) Short Review.

(b) Review does not cover punctuality.

Figure 4.7: Visualization of attention weights. This figure will be best viewed in color.

contain keywords of all four different aspects, therefore, we only need to check if the model
can successfully detect these keywords. Take Fig. 4.6(a) as an example, both self-attention
and guided-attention focus on “excellent, helpful” for staff. As to punctuality, both of them
capture “no waiting”. However, self-attention also highlights “this was my first time ...” which
is not quite relevant. Helpfulness and knowledge are often difficult to be distinguished in many
examples. Here, self-attention focuses on “efficient teamwork, calm, really nice and not rush”
for helpfulness, while guided-attention does not successfully detect these keywords, which
might be because the extracted aspect-keywords do not align well with “calm, nice, rush”.
Finally, for knowledge, both mechanisms capture “knowledgeable”. The guided-attention
also treats “efficient teamwork” as knowledge aspect keywords, which is reasonable. For
the negative review (see Fig. 4.6 (b)), both self-attention and guided-attention highlight

“rude” for staff, and “i waited forever” for punctuality. Therefore, the model predicts a rating
score of 1 for both aspects, which is consistent with ground-truth in sentiment sense. As to
helpfulness, guided-attention incorrectly attends “room”. However, it also focuses on “he
must be incapable of listening or just wants an extra visit” which reflects the fact that the
doctor does not help. On the other hand, self-attention focuses on “did not listen”, which is
also good. Finally, we observe that self-attention fails to capture knowledge aspect keywords,
while guided-attention highlights “helpfulness, my life is on hold, rooms were not good for
privacy”, which can partially indicate that the patient is not happy with the knowledge of
this doctor.

As we can see from the above examples, an attention mechanism cannot always build accurate
connections between rating and keywords of the same aspect. In practice, we found that
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failure of attention may be caused by several reasons: 1) A review is very short and only
discusses a certain issue. For example, in Fig. 4.7 (a), the patient first questioned the
knowledge of the doctor and then suggested others to stay away from him/her. However, it
does not mention anything about staff and punctuality. Therefore, both self-attention and
guided-attention make mistakes in finding aspect-keywords, which will then result in incorrect
predictions. 2) A review is long enough, but does not cover all aspects. Fig. 4.7 (b) shows an
example in which the patient did not mention anything about punctuality. Thus, “the staff,
also, i heard” are highlighted for this aspect, which lead to the opposite sentiment. 3) We
may need some reasoning for a review to make predictions. For example, some reviews start
with “dr. started out being an excellent doctor for us.”, then the patients begin to complain
about different issues. 4) Many keywords and phrases are ambiguous in different contexts,
such as “long” in “wait very long” and “he has been my doctor very long”.

4.4.5 Practical Implications

In this section, we describe the practical applications of our tool. Similar to the example
shown in Fig. 4.1, our tool can highlight keywords corresponding to different aspects, so
that both patients and doctors can get the important information from these reviews more
efficiently. For doctors, they can find out their problems by just visualizing keywords of the
aspects with negative ratings. For example, if the punctuality is a problem in a clinic, then,
“wait very long” may appear in many reviews. Coloring these keywords can help doctors to
find out this problem in seconds. On the other hand, patients may need to read the reviews
of many doctors, which takes a long time, before they can find their primary care physicians
or specialists. However, if they are trying to find a doctor who is caring and helpful, they
can use this tool, which can also highlight the keywords of positive and negative sentiment
with different colors for aspect “helpfulness”, to see the experience of other patients instead
of browsing all reviews.

4.5 Summary

Online doctor review systems provide a platform for patients to give feedback to their doctors.
These reviews not only help other patients to learn more about a doctor before they visit,
but also help doctors to improve their service quality. From these reviews, we can also
discover common concerns of patients and existing problems in clinics. In this study, we
systematically investigated the dataset from one such review system, i.e., ratemds.com, where
each review comes with an overall rating and ratings for four different aspects. We first
studied statistics of reviews, ratings and doctors. Then, we attempted to explore the content
of reviews by extracting aspect-keywords with topic modeling. We proposed a multi-task
learning framework for the document-level multi-aspect sentiment classification, which can
help us to not only recover missing aspect-level ratings and detect inconsistent rating scores,
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but also identify aspect-keywords in a given review based on ratings. The proposed model
takes both features of doctors and aspect-keywords into consideration. Extensive experiments
have been conducted on two subsets of the ratemds dataset to demonstrate the effectiveness
of the proposed model. Qualitative results show the power of attention mechanisms. In
the future, we will work on solving these problems and applying fine-grained aspect-based
sentiment classification techniques to study these reviews.



Chapter 5

Corpus-level and Concept-based
Explanation Methods for Model
Interpretation and Review
Understanding

This chapter introduces a corpus-level explanation approach, which aims to capture causal
relationships between keywords and model predictions via learning importance of keywords
for predicted labels across a training corpus based on attention weights, to interpret attention-
based deep document classification models. A concept-based explanation method, which can
automatically learn higher level concepts and their importance to the model prediction task,
has also been proposed. The rest of this chapter is organized as follows: The introduction
of this chapter is first presented in Section 5.1. In Section 5.2, we first present details of
our proposed abstraction-aggregation network (AAN), and then discuss corpus-level and
concept-based explanation methods. In Section 5.3, we evaluate different self-attention
and AAN based models on three different datasets. We also show how corpus-level and
concept-based explanations can help us interpret attention-based classification models and
understand training corpora. Our discussion concludes in Section 5.4.

5.1 Background and Motivation

Attention Mechanisms [4] have boosted performance of deep learning models in a variety of
natural language processing (NLP) tasks, such as sentiment analysis [151, 108], semantic
parsing [145], machine translation [88], reading comprehension [45, 26] and others. Attention-
based deep learning models have been widely investigated not only because they achieve state-
of-the-art performance, but also because they can be interpreted by identifying important

49
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input information via visualizing heat-maps of attention weights [135, 144, 35], namely
attention visualization. Therefore, attention mechanisms help end-users to understand
models and diagnose trustworthiness of their decision making.

However, the attention visualization approach still suffers from several drawbacks: 1) The
fragility of attention weights can easily make end-users find contradicting examples, espe-
cially for noisy data and cross-domain applications. For example, a model may attend on
punctuation or stop-words. 2) Attention visualization cannot automatically extract high-level
concepts that are important for model predictions. For example, when a model assigns news
articles to Sports, relevant keywords may be player, basketball, coach, nhl, golf, and nba.
Obviously, we can build three concepts/clusters for this example, i.e., roles (player, coach),
games (basketball, soccer), and leagues (nba, nhl). 3) Attention visualization still relies on
human experts to decide if keywords attended by models are important to model predictions.

There have been some studies that attempt to solve these problems. For example, Jain et al.
[53] and Serrano et al. [121] focused on studying if attention can be used to interpret a
model, however, there are still problems in their experimental designs [53]. Yeh et al. [162]
tried to apply a generic concept-based explanation method to interpret BERT models in
the text classification task, however, they did not obtain semantically meaningful concepts
for model predictions. Antognini et al. [2] introduced a concept explanation method that
first extracts a set of text snippets as concepts and infers which ones are described in the
document, and then it explained the predictions of sentiment with a linear aggregation of
concepts. In this study, we propose a general-purpose corpus-level explanation method and
a concept-based explanation method based on a novel Abstraction-Aggregation Network
(AAN) to tackle the aforementioned drawbacks of attention visualization. We summarize the
primary contributions of this study as follows:

• To solve the first problem, we propose a corpus-level explanation method, which aims to
discover causal relationships between keywords and model predictions. The importance
of keywords is learned across a training corpus based on attention weights. Thus, it can
provide more robust explanations compared to attention visualization case studies. The
discovered keywords are semantically meaningful for model predictions.

• To solve the second problem, we propose a concept-based explanation method (case-level
and corpus-level) that can automatically learn semantically meaningful concepts and their
importance to model predictions. The concept-based explanation method is based on an
AAN that can automatically cluster keywords, which are important to model predictions,
during the end-to-end training for the main task. Compared to the basic attention
mechanisms, the models with AAN do not compromise on classification performance or
introduce any significant number of new parameters.

• To solve the third problem, we build a Näıve Bayes Classifier (NBC), which is based on an
attention-based bag-of-words document representation technique and the causal relationships
discovered by the corpus-level explanation method. By matching predictions from the
model and NBC, i.e., consistency analysis, we can verify if the discovered keywords are
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important to model predictions. This provides an automatic verification pipeline for the
results from the corpus-level explanation and concept-based explanation methods.

5.2 Proposed Methods

In this section, we first introduce the classification framework and our Abstraction-Aggregation
Network (AAN). Then, we systematically discuss the corpus-level explanation, concept-based
explanation, and attention-based Näıve Bayes Classifier.

5.2.1 The Proposed Model

Basic Framework

A typical document classification model is equipped with three components, i.e., an encoder,
an attention or pooling layer and a classifier. 1) Encoder: An encoder reads a document,
denoted by d = (w1, w2, ..., wT ), and transforms it to a sequence of hidden states H =
(h1, h2, ..., hT ). Here, wt is the one-hot representation of token t in the document. ht is
also known as a word-in-context representation. Traditionally, the encoder consists of a
word embedding layer followed by a LSTM [47] sequence encoder. Recently, pre-trained
language models [26, 160, 107] have emerged as an important component for achieving
superior performance on a variety of NLP tasks including text classification. Our model
is adaptable to any of these encoders. 2) Attention/Pooling: The attention or pooling
(average- or max-pooling) layer is used to construct a high-level document representation,
denoted by vdoc. In attention networks, the attention weights show the contributions of
words to the representations [161, 75]. Compared with pooling, attention operations can
be well interpreted by visualizing attention weights [161]. 3) Classifier: The document
representation is passed into a classifier to get the probability distribution over different class
labels. The classifier can be a multi-layer feed-forward network with activation layer followed
by a softmax layer, i.e., y = softmax(W2 · ReLU(W1 · vdoc + b1) + b2), where W1,W2, b1 and
b2 are model parameters.

To infer parameters, we can minimize the averaged cross-entropy error between predicted
and ground-truth labels. Here, loss function is defined as Lθ = −

∑L
l=1 ŷ log(y), where ŷ

represents the ground-truth label and L is the number of class labels. The model is trained
in an end-to-end manner using back-propagation.

Abstraction-Aggregation Network

In order to use different explanation methods, especially concept-based explanation, to
interpret deep neural networks, we propose a novel AAN for the Attention/Pooling layer,
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Figure 5.1: The proposed Abstraction-Aggregation Network and different interpretation
methods.

which first captures keywords for different concepts from a document, and then aggregates
all concepts to construct the document representation (see Fig. 5.1).

AAN has two stacked attention layers, namely, abstraction-attention (abs) and aggregation-
attention (agg) layers. In the abs layer, for each attention unit k, we calculate the alignment
score uabsk,t and attention weight αabs

k,t as follows:

uabsk,t = (gabsk )>ht,

αabs
k,t =

exp(uabsk,t )∑T
τ=1 exp(uabsk,τ )

,
(5.1)

where gabsk are model parameters. Here, we do not apply linear transformation and tanh acti-
vation when calculating alignment scores for two reasons: 1) Better intuition: Calculating
attention between gabsk and ht in Eq. (5.1) is the same as calculating a normalized similarity
between them. Therefore, abstraction-attention can also be viewed as a clustering process,
where gabsk determines the centroid of each cluster. In our model, concepts are related to
the clusters discovered by AAN. 2) Fewer parameters: Without the linear transformation
layer, the abstraction-attention layer only introduces K × |ht| new parameters, where |ht| is
the dimension of ht and K � |ht|. The kth representation is obtained by vabsk =

∑T
t=1 α

abs
k,t ht.

We use K to denote the total number of attention units.

In the agg layer, there is only one attention unit. The alignment score uaggk and attention
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weight αagg
k are obtained by

uaggk = (gagg)> tanh(Waggv
abs
k + bagg),

and

αagg
k =

exp(uaggt )∑K
κ=k exp(uaggκ )

,

where Wagg, bagg and gagg are model parameters. The final document representation is ob-

tained by vdoc =
∑K

k=1 α
agg
k vabsk . It should be noted that AAN is different from hierarchical

attention [161], which aims to get a better representation. However, AAN is used to automat-
ically capture concepts/clusters. We have also applied two important techniques to obtain
semantically meaningful concepts.

1) Diversity penalty for abstraction-attention weights: To encourage the diversity
of concepts, we introduce a new penalization term to abstraction-attention weights A =
[−→α abs

1 ,−→α abs
2 , ...,−→α abs

K ] ∈ RT×K , where −→α abs
k = (αabs

k,1 , α
abs
k,2 , ..., α

abs
k,T )>. We define the penalty

function as

Ldiv =
1

K
‖A>A− I‖F , (5.2)

where ‖ · ‖F represents the Frobenius norm of a matrix. Hence, the overall loss function is
expressed as L = Lθ + Ldiv.

2) Dropout of aggregation-attention weights: In the aggregation-attention layer, it is
possible that αagg

k ≈ 1 for some k, and other attention weights tend to be 0. To alleviate
this problem, we apply dropout with a small dropout rate to aggregation-attention weights
(αagg

1 , αagg
2 , ..., αagg

K ), namely attention weights dropout. It should be noted that a large dropout
rate has negative impact on the explanation, since it discourages the diversity of concepts.
More specifically, the model will try to capture keywords in the dropped abstraction-attention
units by the other units.

5.2.2 Explanation

In this section, we discuss corpus-level and concept-based explanations. Given a corpus C
with |C| documents, we use d or ξ to represent a document. Let us also use θ to denote
all parameters of a model and V to represent the vocabulary, where |V| is the size of V.
Throughout this chapter, we will assume that both prior document probability p(d) and
prior label probability pθ(y = l) are constants. For example, in a label-balanced dataset,
pθ(y = l) ≈ 1/L.

We will first apply the attention weights visualization technique to the proposed AAN model.



54

Here, the document representation can be directly expressed by the hidden states, i.e.,

vagg =
T∑
t=1

(
K∑
k=1

αagg
k αabs

k,t

)
ht,

where

αdt =
K∑
k=1

αagg
k αabs

k,t (5.3)

gives the contribution of word wt to the document representation. Therefore, we can interpret
a single example via visualizing the combined weights αdt .

Corpus-Level Explanation

Corpus-level explanation aims to find causal relationships between keywords captured by the
attention mechanism and model predictions, which can provide robust explanation for the
model. To achieve this goal, we learn distributions of keywords for different predicted labels
on a training corpus based on attention weights.

Formally, for a given word w ∈ V and a label l predicted by a model θ1, the importance of the
word to the label can be estimated by the probability pθ(w|y = l) across the training corpus
Ctrain since the model is trained on it. Therefore, pθ(w|y = l) can be expanded as follows:

pθ(w|y = l) =
∑

ξ∈Cltrain

pθ(w, ξ|y = l), (5.4)

where Cltrain ⊂ Ctrain consists of documents with model predicted label l. For each document
ξ ∈ Cltrain, probability pθ(w, ξ|y = l) represents the importance of word w to label l, which
can be defined using attention weights, i.e.,

pθ(w, ξ|y = l) :=

∑T
t=1 α

ξ
t · δ(wt, w)∑

ξ′∈Ctrain fξ′(w) + γ
, (5.5)

where fξ′(wt) is frequency of wt in document ξ′ and γ is a smoothing factor. δ(wt, w) ={
1 if wt = w

0 otherwise
is a delta function. The denominator is applied to reduce noise from stop-words

and punctuation. For the sake of simplicity, we will use pθ(w, l, C) to denote pθ(wt|y = l),
where C corresponds to the corpus in Eq. (5.4), and can be different from Ctrain in our
applications. The denominator in Eq. (5.5) is always determined by the training corpus.

1Here, the label is the model’s prediction, not the ground-truth label, because our goal is to explain the
model.
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As to applications: 1) Since Eq. (5.4) captures the importance of words to model predicted
labels, we can use it as a criterion for finding their causal relationships. In experiments, we
can collect top-ranked keywords for each label l for further analysis. 2) We can also use
corpus-level explanation to measure the difference between two corpora (i.e., Ctest1 and Ctest2).
Formally, we can compare |Ctrain||Ctest1| · pθ(w, l, Ctest1) with |Ctrain|

|Ctest2| · pθ(w, l, Ctest2) across different

words and class labels. The difference can be evaluated by Kullback-Leibler divergence [67].
In addition, we can get mutual keywords shared across different domains based on these
distributions.

It should be noted that the corpus-level explanation discussed in this section can be applied
to interpret different attention-based networks.

Concept-Based Explanation

The corpus-level explanation still suffers from the drawback that it cannot automatically
obtain higher-level concepts/clusters for those important keywords. To alleviate this problem,
we propose concept-based explanation for our AAN model. In AAN, each abstraction-
attention unit can capture one concept/cluster. Here, we will take distribution of concepts
into consideration. Formally, we express pθ(wt|y = l) as follows:

pθ(w|y = l) =
K∑
k=1

pθ(w|ck, y = l)pθ(ck|y = l)

where pθ(w|ck, y = l) captures the distribution of w across Ctrain for the kth concept and label
l, while pθ(ck|y = l) captures the distribution of the concept ck across Ctrain for label l. They
can be computed using the following equations.

pθ(w|ck, y = l) =
∑

ξ∈Cltrain

pθ(w, ξ|ck, y = l),

pθ(ck|y = l) =
∑

ξ∈Cltrain

pθ(ck, ξ|y = l),
(5.6)

where we define

pθ(w, ξ|ck, y = l) :=

∑T
t=1 α

abs,ξ
k,t · δ(wt, w)∑

ξ′∈Ctrain fξ′(w) + γ
(5.7)

and

pθ(ck, ξ|y = l) :=
αagg,ξ
k

|Ctrain|
, (5.8)

where αabs,ξ
k,t represents αabs

k,t for document ξ. Based on Eq. (5.6), we are able to obtain scores
(importance) and most relevant keywords for different concepts for a given label l.
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Consistency Analysis

In corpus-level and concept-based explanations, we have obtained causal relationships between
keywords and predictions, i.e., pθ(w|y = l). However, we have not verified if these keywords
are really important to predictions. To achieve this goal, we build a Näıve Bayes classifier
[30] (NBC) based on these causal relationships. Formally, for each testing document d, the
probability of getting label l is approximated as follows:

pθ(y = l|d) =
pθ(d|y = l)pθ(y = l)

p(d)

∝ pθ(d|y = l) =
T∏
t=1

pθ(wt|y = l),

(5.9)

where pθ(wt|y = l) is obtained by Eq. (5.4) or Eq. (5.6) on the training corpus. We further
approximate Eq. (5.9) with

pθ(y = l|d) =
∏
w∈d′

(pθ(w|y = l) + λ), (5.10)

where d′ ⊂ d is an attention-based bag-of-words representation for document d. It consists
of important keywords based on attention weights. λ is a smoothing factor. Here, we can
conduct consistency analysis by comparing labels obtained by the model and NBC, which
may also help estimate the uncertainty of a model [170].

5.3 Experiments

5.3.1 Datasets

We conducted experiments on three publicly available datasets. Newsroom is used for news
categorization, while IMDB and Beauty are used for sentiment analysis. The details of the
three datasets are as follows:

• Newsroom [40]: The original dataset, which consists of 1.3 million news articles, was
proposed for text summarization. In our experiments, we first determined the category
of each article based on the URL, and then, randomly sampled 10,000 articles for each
of the five categories, including business, entertainment, sports, health, and technology
[57, 123, 126].

• IMDB [89]: This dataset contains 50,000 movie reviews from the IMDB website with
binary (positive or negative) labels.

• Beauty [44]: This dataset contains product reviews in the beauty category from Amazon.
We converted the original ratings (1-5) to binary (positive or negative) labels and sampled
20,000 reviews for each label.
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Table 5.1: Statistics of the datasets used.

Dataset #docs Avg. Length Scale
Newsroom 50,000 827 1-5

IMDB 50,000 292 1-2
Beauty 40,000 91 1-2

For all three datasets, we tokenized reviews using the BERT tokenizer [153] and randomly
split them into train/development/test sets with a proportion of 8:1:1. Statistics of the
datasets are summarized in Table 5.1.

5.3.2 Models and Implementation Details

We compare different classification models including several baselines, variants of our AAN
model, and Näıve Bayes classifiers driven by a basic self-attention network (SAN) [121] and
AAN.

• CNN [61]: This model extracts key features from a review by applying convolution and
max-over-time pooling operations [23] over the shared word embedding layer.

• LSTM-SAN, BERT-SAN, DistilBERT-SAN, RoBERTa-SAN, and Longformer-
SAN: All these models are based on the SAN framework. In LSTM-SAN, the encoder
consists of a word embedding layer and a Bi-LSTM encoding layer, where embeddings
are pre-loaded with 300-dimensional GloVe vectors [106] and fixed during training. BERT
[153], DistilBERT [119], RoBERTa [83], and Longformer [5] leverage different pre-trained
language models, which have 110M, 66M, 125M, 125M parameters, respectively.

• AAN + C(c) + Drop(r): These are variants of AAN. C(c) and Drop(r) represent the
number of concepts and dropout rate, respectively.

We implemented all deep learning models using PyTorch [105] and the best set of parameters
are selected based on the development set. For CNN based models, the filter sizes are chosen
to be 3, 4, and 5 and the number of filters is set to 100 for each size. For LSTM based models,
the dimension of hidden states is set to 300 and the number of layers is 2. All parameters
are trained with the ADAM optimizer [63] with a learning rate of 0.0002. Dropout with a
rate of 0.1 is also applied in the classification layer. For all explanation tasks, we set the
number of concepts to 10 and dropout-rate to 0.02. Our codes and datasets are available at
https://github.com/tshi04/ACCE.
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Table 5.2: Averaged accuracy of different models on Newsroom, IMDB, and Beauty testing
sets.

Model Newsroom IMDB Beauty
CNN 90.18 88.56 88.42
LSTM-SAN 91.26 90.68 92.00
BERT-SAN 92.28 92.60 93.72
DistilBERT-SAN 92.66 92.52 92.82
RoBERTa-SAN 91.16 92.76 93.40
Longformer-SAN 92.04 93.74 94.50

Table 5.3: Averaged accuracy of BERT and Longformer-based AAN models on Newsroom,
IMDB, and Beauty testing sets.

Newsroom IMDB Beauty
BERT Longformer BERT Longformer BERT Longformer

SAN Framework 92.28 92.04 92.60 93.74 93.72 94.50
AAN + C(10) + Drop(0.01) 92.54 91.72 92.22 92.96 93.38 93.42
AAN + C(10) + Drop(0.02) 92.14 91.64 92.14 92.86 93.58 93.75
AAN + C(10) + Drop(0.05) 92.14 91.60 91.82 92.66 93.05 93.80
AAN + C(10) + Drop(0.10) 92.30 91.48 91.50 92.12 93.25 93.60
AAN + C(20) + Drop(0.01) 92.02 91.98 91.64 92.78 93.70 93.48
AAN + C(20) + Drop(0.02) 92.44 91.84 91.80 93.04 93.55 93.88
AAN + C(20) + Drop(0.05) 92.54 91.86 91.92 93.14 93.68 93.42
AAN + C(20) + Drop(0.10) 92.52 91.98 92.10 92.96 93.72 93.88

5.3.3 Performance Results

We use accuracy as evaluation metric to measure the performance of different models. All
quantitative results have been summarized in Tables 5.2 and 5.3, where we use bold font to
highlight the highest accuracy on testing sets in Table 5.2. Comparing LSTM-SAN with BERT,
DistilBERT, RoBERTa and Longformer, we first find that different pre-trained language
model-based encoders are better than the conventional LSTM encoder with pre-trained word
embeddings. In Table 5.3, we replace self-attention on top of pre-trained language models
with the abstraction-aggregation network (AAN). We observe that different AAN models do
not significantly lower the classification accuracy, which indicates we can use AAN for the
concept-based explanation task without losing the overall performance. Here, the strategy of
aggregation-attention weights dropout is necessary when training AAN models. In Table 5.9,
we show that AAN models without randomly dropping aggregation-attention weights attain
poor interpretability in concept-based explanation.
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Table 5.4: Case-level concept-based explanation. Here, each ID is associated with a concept,
i.e., abstraction-attention unit. Scores and weights (following each keyword) are calculated
with Eq. (5.7) and (5.8). ‘-’ represents special characters.

ID Score Keywords

8 0.180
com(0.27), boston(0.26), boston(0.16), boston(0.1),
m(0.02)

6 0.162
marketing(0.28), ad(0.06), ##fs(0.05), investors(0.03),
said(0.03)

1 0.148
campaign(0.14), firm(0.14), money(0.06), brand(0.04),
economist(0.03)

2 0.122
economist(0.2), said(0.16), professional(0.16), in-
vestors(0.08), agency(0.06)

9 0.116 boston(0.89), boston(0.11)

7 0.108
bloomberg(0.16), cn(0.11), global(0.09), money(0.06),
cable(0.05)

5 0.103 -(0.96), -(0.03), s(0.01)

4 0.047
investment(0.76), money(0.14), investment(0.06), invest-
ment(0.02), investors(0.01)

3 0.016 ,(0.64), -(0.36)
10 0.000 .(0.93), -(0.07)

Figure 5.2: Attention-weight visualization for an interpretable attention-based classification
model.

5.3.4 Heat-maps and Case-level Concept-based Explanation

First, we investigate if AAN attends to relevant keywords when it is making predictions,
which can be accomplished by visualizing attention weights (see Fig. 5.2). This is a Business
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news article from Newsroom and we observe that the most relevant keyword that AAN detects
is boston. Other important keywords include investment, economist, marketing and com.
Compared with Fig. 5.2, our case-level concept-based explanation provides more informative
results. From Table 5.4, we observe that AAN makes the prediction based on several different
aspects, such as corporations (e.g., com), occupations (e.g., economist), terminology (e.g.,
marketing) and so on. Moreover, boston may be related with corporation (e.g., bostonglobe
or gerritsen of boston) or city, thus, it appears in both concepts 8 (corporations) and 9
(locations).

5.3.5 Corpus-Level Explanation

Corpus-level explanation aims to find the important keywords for the predictions. In Table 5.5,
we show 20 most important keywords for each predicted label and we assume these keywords
determine the predictions. In the last section, we will demonstrate this assumption by the
consistency analysis. The scores of keywords have been shown in Fig. 5.3.

In addition to causal relationships, we can also use these keywords to check if our model and
datasets have bias or not. For example, boston and massachusetts plays an important role in
predicting business, which indicates the training set has bias. By checking our data, we find
that many business news articles are from The Boston Globe. Another obvious bias example
is that the numbers 8, 7, and 9 are important keywords for IMDB sentiment analysis. This
is because the original ratings scale from 1 to 10 and many reviews mention that “rate this
movie 8 out of 10 ”.

Moreover, from Fig. 5.3 (a) and (b), we find that for a randomly split corpus, distributions of
keywords across training/development/test sets are similar to each other. This guarantees
the model achieves outstanding performance on testing sets. If we apply a model trained on
IMDB to Beauty (see Fig. 5.3 (c)), it can only leverage the cross-domain common keywords
(e.g., disappointed and loved) to make predictions. However, we achieve 71% accuracy, which
is much better than random predictions. In Table 5.5, we use bold font to highlight these
common keywords.

5.3.6 Corpus-level Concept-based Explanation

Corpus-level concept-based explanation further improves the corpus-level explanation by
introducing clustering structures to keywords. In this section, we still use the AAN trained
on Newsroom as an example for this task. Table 5.6 shows concepts and relevant keywords
for AAN when it assigns an article to Business. Here, we observe that the first-tier salient
concepts consist of concepts 8 (corporations) and 1 (business terminology in general). The
second-tier concepts 7, 6, and 4 are related to economy, finance, mortgage, and banking,
which are domain-specific terminology. They share many keywords. Concepts 9 and 2 are
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Table 5.5: This table shows 20 most important keywords for model predictions on different
training sets. Keywords are ordered by their scores. For Newsroom, we only show 2 out of 5
classes due to space limitations.

Dataset Label Keywords

IMDB

Negative
worst, awful, terrible, bad, disappointed, boring, disappointing, waste,
horrible, sucks, fails, disappointment, lame, dull, poorly, poor, worse,
mess, dreadful, pointless

Positive
8, 7, excellent, loved, 9, enjoyable, superb, enjoyed, highly, wonder-
ful, entertaining, best, beautifully, good, great, brilliant, terrific, funny,
hilarious, fine

Beauty

Negative
disappointed, nothing, unfortunately, made, not, waste, disappointing,
terrible, worst, horrible, makes, no, sadly, disappointment, t, awful, sad,
bad, never, started

Positive
great, love, highly, amazing, pleased, perfect, works, best, happy, awe-
some, makes, recommend, excellent, wonderful, definitely, good, glad, well,
fantastic, very

Newsroom

Business
inc, corp, boston, massachusetts, economic, cambridge, financial, economy,
banking, auto, automotive, startup, company, mr, finance, biotechnology,
somerville, retailer, business, airline

Entertainment
singer, actress, actor, star, fox, comedian, hollywood, sunday, rapper,
fashion, celebrity, contestant, filmmaker, bachelor, insider, porn, oscar,
rocker, host, monday

Sports
quarterback, coach, basketball, baseball, soccer, nba, sports, striker, ten-
nis, hockey, nfl, nhl, football, olympic, midfielder, golf, player, manager,
outfielder, nascar

Health
dr, health, pediatric, obesity, cardiovascular, scientists, researcher,
medicine, psychologist, diabetes, medical, psychiatry, aids, fitness, health-
care, autism, psychology, neuroscience, fox, tobacco

Technology
tech, cyber, electronics, wireless, lifestyle, silicon, gaming, culture, telecom-
munications, scientist, company, google, smartphone, technology, francisco,
broadband, privacy, internet, twitter

associated with locations and occupations, respectively, which receive relatively lower scores.
Concepts 5, 3 and 10 are not quite meaningful. We have also shown results for Newsroom
sports in Table 5.7, where we find that 1 (sports terminology) and 7 (leagues and teams)
are the first-tier salient concepts. The second-tier salient concepts 6 and 4 are about games
and campaigns. Concepts 7, 6, 4 also share many keywords. Concepts 8 (corporations and
channels), 2 (occupations and roles) and 9 (locations) are the third-tier salient concepts.
Concepts 5, 3, 10 are also meaningless. From these tables, we summarize some commonalities:
1) Domain-specific terminologies (i.e., concepts 1, 7, 6 and 4) play an important role in
predictions. 2) Locations (i.e., concept 9) and Occupations/Roles (i.e., concept 2) are less
important. 3) Meaningless concepts (i.e., concepts 5, 3, and 10), such as punctuation, have
the least influence.
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(c) IMDB-to-Beauty. Left: Negative. Right: Positive.

Figure 5.3: Distribution of keywords on training, development and testing sets. Scores are
calculated by pθ(w, l, C). The orders of tokens are the same as those in Table 5.5.

5.3.7 Consistency Analysis

In this section, we leverage the method proposed in Section 5.2.2 to respectively build a NBC
for BERT-SAN and BERT-AAN on the training set. Then, we apply them to the testing set
to compare if NBC predictions and the model predictions are consistent with each other. We
approximate the numerator of Eq. (5.5) with five words (can repeat) with highest attention
weights in each document. In Eq. (5.4), γ is set to be 1000. In Eq. (5.10), we set λ = 1.2 for
text categorization and λ = 1.0 for sentiment analysis. d′ consists of five words with highest
attention weights.



63

Table 5.6: Concept-based explanation (Business). Scores are calculated using Eq. (5.6).

ID Score Keywords
8 0.173 inc, corp, massachusetts, boston, mr, ms, jr, ltd, mit, q

1 0.168
economy, retailer, company, startup, ##maker, airline, chain, bank, utility, billion-
aire

7 0.151
biotechnology, banking, tech, startup, pharmaceuticals, mortgage, financial, auto,
commerce, economic

6 0.124
economic, health, banking, finance, insurance, healthcare, economy, housing, safety,
commerce

4 0.107
financial, economic, banking, auto, automotive, securities, housing, finance, mone-
tary, biotechnology

9 0.086
boston, massachusetts, cambridge, washington, detroit, frankfurt, harvard, tokyo,
providence, paris

5 0.056 -, ##as, -, -, itunes, inc, corp, northeast, -, llc

2 0.054
economist, executive, spokesman, analyst, economists, ##gist, ceo, director, ana-
lysts, president

3 0.026 -, -, -, ), ##tem, ##sp, the, =, t, ob
10 0.000 -, comment, ), insurance, search, ’, tesla, graphic, guitarist, ,

Table 5.7: Concept-based explanation (Sports). Scores are calculated using Eq. (5.6).

ID Score Keywords

1 0.176
quarterback, player, striker, champion, pitcher, midfielder, outfielder, athlete, goal-
tender, forward

7 0.165 nhl, mets, soccer, nets, yankees, nascar, mls, reuters, doping, twitter
6 0.147 tennis, sports, soccer, golf, doping, hockey, athletic, athletics, injuries, basketball
4 0.139 baseball, basketball, nba, nfl, sports, football, tennis, olympic, hockey, golf
8 0.119 jr, ”, n, j, fox, espn, nl, u, boston, ca

2 0.100
coach, manager, commissioner, boss, gm, trainer, spokesman, umpire, coordinator,
referee

9 0.060
philadelphia, indianapolis, boston, tampa, louisville, buffalo, melbourne, manchester,
baltimore, atlanta

5 0.055 ’, ’, ##as, –, ##a, ‘, sides, newcomers, chelsea, jaguars
3 0.022 ’, ’, ), ,, ##kus, ##gre, the, whole, lever, ##wa
10 0.000 ., ), finishes, bel, gymnastics, ’, ##ditional, becomes, tu, united

We use the accuracy (consistency score) between labels predicted by NBC and the original
model to evaluate the consistency. Table 5.8 shows that around 85% of predictions are
consistent. This demonstrates that keywords obtained by the corpus-level and concept-
based explanation methods are important to predictions. They can be used to interpret
attention based models. Moreover, from CP and NCP scores, we observe a significantly
higher probability that the model makes an incorrect prediction if it is inconsistent with NBC
prediction. This finding suggests us to use consistency score as one criterion for uncertainty
estimation.
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Table 5.8: Consistency between the model and NBC. CS represents consistency score,
CP/NCP denote percentage of incorrect predictions when NBC predictions are consistent/not
consistent with model predictions.

Model Newsroom IMDB Beauty
CS NCP CP CS NCP CP CS NCP CP

BERT-SAN 83.96 21.59 4.72 86.02 17.17 5.81 85.45 16.30 4.56
BERT-AAN 84.36 20.20 5.57 85.46 21.18 5.05 84.72 16.04 4.51

Table 5.9: Concept-based explanation (Sports) for AAN without applying dropout to attention
weights.

CID Weight Keywords

1 0.8195
quarterback, athletic, olympic, basketball, athletics, qb, hockey, outfielder,
sports

7 0.0865 nascar, celtics, motorsports, nba, boston, augusta, nhl, tennis, leafs, zurich

4 0.0370
mets, knicks, yankees, players, pitchers, lakers, hosts, coaches, forwards, swim-
mers

3 0.0164 offensive, eli, bird, doping, nba, jay, rod, hurdle, afc, peyton
2 0.0098 premier, american, mets, nl, field, yankee, national, aaron, nba, olympic
10 0.0083 games, seasons, tries, defeats, baskets, players, season, contests, points, throws
5 0.0015 dustin, antonio, rookie, dante, dale, dylan, lineman, ty, launch, luther
8 0.0010 2016, 2014, college, tribune, card, press, s, -, this, leadership
9 0.0004 men, -, grand, 9, s, usa, state, west, world, major
6 0.0000 the, -, -, year, whole, vie, very, tr, too, to

5.3.8 Dropout of Aggregation-Attention Weights

For AAN, we apply dropout to aggregation-attention weights during training. In Table 5.9,
we show an example without using the attention weight dropout mechanism. We observed
that the weight for concept 1 is much higher than the other concepts. In addition, keywords
for each concept are not semantically coherent.

5.4 Summary

In this study, we proposed a general-purpose corpus-level explanation approach to interpret
attention-based networks. It can capture causal relationships between keywords and model
predictions via learning importance of keywords for predicted labels across the training corpus
based on attention weights. Experimental results show that the keywords are semantically
meaningful for predicted labels. We further propose a concept-based explanation method
to identify important concepts for model predictions. This method is based on a novel
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Abstraction-Aggregation Network (AAN), which can automatically extract concepts, i.e.,
clusters of keywords, during the end-to-end training for the main task. Our experimental
results also demonstrate that this method effectively captures semantically meaningful
concepts/clusters. It also provides relative importance of each concept to model predictions.
To verify our results, we also built a Näıve Bayes Classifier based on an attention-based
bag-of-words document representation technique and the causal relationships. Consistency
analysis results demonstrate that the discovered keywords are important to the predictions.



Chapter 6

An Interpretable and Uncertainty
Aware Multi-Task Framework for
Multi-Aspect Sentiment Analysis

This chapter introduces a deliberate self-attention based deep neural network model for
the document-level multi-aspect sentiment analysis problem. An attention-driven keywords
ranking method has also been proposed to automatically discover aspect keywords and aspect-
level opinion keywords from review corpora based on the attention weights. In addition, we
develop a lecture-audience method to estimate model uncertainty in the context of multi-task
learning. The rest of this chapter is organized as follows: The introduction of this chapter is
presented in Section 6.1. In Section 6.2, we present details of our proposed model, attention-
driven keywords extraction method and lecture-audience uncertainty estimation approach. In
Section 6.3, we introduce different benchmark datasets, baseline methods and implementation
details, as well as analyze experimental results. Our discussion concludes in Section 6.4.

6.1 Background and Motivation

Sentiment analysis plays an important role in many business applications [103]. It is used to
identify customers’ opinions and emotions toward a particular product/service via identifying
polarity (i.e., positive, neutral or negative) of given textual reviews [77, 104]. In the past
few years, with the rapid growth of online reviews, the topic of fine-grained aspect-based
sentiment analysis (ABSA) [108] has attracted significant attention since it allows models to
predict opinion polarities with respect to aspect-specific terms in a sentence. Different from
sentence-level ABSA, document-level multi-aspect sentiment classification (DMSC) aims to
predict the sentiment polarity of documents, which are composed of several sentences, with
respect to a given aspect [163, 74, 167]. DMSC has become a significant challenge since

66
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Figure 6.1: An example of an online review from the BeerAdvocate platform. Keywords
corresponding to different aspects are highlighted with different colors.

many websites provide platforms for users to give aspect-level feedback and ratings, such as
TripAdvisor1 and BeerAdvocate2. Fig. 6.1 shows a review example from the BeerAdvocate
website. In this example, a beer is rated with four different aspects, i.e., feel, look, smell
and taste. The review also describes the beer with four different aspects. There is an overall
rating associated with this review. Recent studies have found that users are less motivated
to give aspect-level ratings [163, 167], which makes it difficult to analyze their preference,
and it takes a lot of time and effort for human experts to manually annotate them.

There are several recent studies that aim to predict the aspect ratings or opinion polarities
using deep neural network based models with a multi-task learning framework [163, 74, 169,
167]. In this setting, rating predictions for different aspects, which are highly correlated and
can share the same review encoder, are treated as different tasks. However, these models
rely on hand-crafted aspect keywords to aid in rating/sentiment predictions [163, 74, 169].
Thus, their results, especially case studies of reviews, are biased towards pre-defined aspect
keywords. In addition, these models only focus on improving the prediction accuracy, however,
knowledge discovery (such as aspect and opinion related keywords) from review corpora still
relies on unsupervised [94] and rule-based methods [167], which limits applications of current
DMSC models [163, 74, 169]. In the past few years, model uncertainty of deep neural network
classifiers has received increasing attention [32, 31], because it can identify low-confidence
regions of input space and give more reliable predictions. Uncertainty models have also been
applied to deep neural networks for text classification [170]. However, few existing uncertainty
methods have been used to improve the overall prediction accuracy of multi-task learning
models when crowd-sourcing annotation is involved in the DMSC task. In this study, we
attempt to tackle the above mentioned issues. The primary contributions of this study are as
follows:

• Develop a FEDAR model that achieves competitive results on five benchmark datasets

1https://www.tripadvisor.com
2https://www.beeradvocate.com
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Figure 6.2: An overview of our multi-task learning framework with uncertainty estimation for
accurate and reliable sentiment classification in DMSC task. Here, sentiment classification
for each aspect is treated as a task and different tasks share the same review encoder.

without using hand-crafted aspect keywords. The proposed model is equipped with a
highway word embedding layer, a sequential encoder layer whose output features are
enriched by pooling and factorization techniques, and a deliberate self-attention layer. The
deliberate self-attention layer can boost performance as well as provide interpretability
for our FEDAR model. Here, FEDAR represents some key components of our model,
including Feature Enrichment, Deliberate self-Attention, and overall Rating.

• Introduce two new datasets obtained from the RateMDs website https://www.ratemds.

com, which is a platform for patients to review the performance of their doctors. We
benchmark different models on them.

• Propose an Attention-driven Keywords Ranking (AKR) method to automatically discover
aspect and opinion keywords from review corpora based on attention weights, which also
provides a new research direction for interpreting self-attention mechanism. The extracted
keywords are significant to ratings/polarities predicted by FEDAR.

• Propose a LEcture-Audience (LEAD) method to measure the uncertainty of our FEDAR
model for given reviews. This method can also be generally applied to other deep neural
networks.

6.2 Proposed Methods

In this section, we first introduce our FEDAR model (see Fig. 6.3) for the DMSC task. Then,
we describe our AKR method to automatically discover aspect and aspect-level sentiment
terms based on the FEDAR model. Finally, we discuss our LEAD method (see Fig. 6.4) for
measuring the uncertainty of the FEDAR model.
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6.2.1 The Proposed FEDAR Model

Problem Formulation

The DMSC problem can be formulated as a multi-task classification problem, where the
sentiment classification for each aspect is viewed as a task (see Fig. 6.2). More formally, the
DMSC problem is described as follows: Given a textual review X = (x1, x2, ..., xT ), our goal is
to predict class labels, i.e., integer ratings/sentiment polarity of the review y = (y1, y2, ..., yK),
where T and K are the number of tokens in the review and the number of aspects/tasks,
respectively. xt and yk are the one-hot vector representations of word t and the class label of
aspect k, respectively.

The challenge in this problem is to build a model that can achieve competitive accuracy
without losing model interpretability or obtaining biased results. Therefore, we propose
improving word embedding, review encoder and self-attention layers to accomplish this
goal. We will now introduce our model and provide more details of our architecture in a
layer-by-layer manner.

Highway Word Embedding Layer

This layer aims to learn word vectors based on pre-trained word embeddings. We first use
a word embedding technique [96] to map one-hot representations of tokens x1, x2, ..., xT to
a continuous vector space, thus, they are represented as Ex1 , Ex2 , ..., ExT , where Ext is the
word vector of xt, pre-trained on a large corpus and fixed during parameter inference. In
our experiments, we adopted GloVe word vectors [106], so that they do not need to be
trained from random states, which may result in poor embeddings due to the lack of word
co-occurrence.

Then, a single layer highway network [134] is used to adapt the knowledge, i.e., semantic
information from pre-trained word embeddings, to target DMSC datasets. Formally, the
highway network is defined as follows:

E ′xt = f(Ext)� g(Ext) + Ext � (1− g(Ext)) (6.1)

where f(·) and g(·) are affine transformations with ReLU and Sigmoid activation functions,
respectively. � represents element-wise product. g(·) is also known as gate, which is used
to control the information that is being carried to the next layer. Intuitively, the highway
network aims at transferring knowledge from pre-trained word embeddings to the target
review corpus. E ′xt can be viewed as a perturbation of Ext , and f(·) and g(·) have significantly
fewer parameters than Ext . Therefore, training a highway network is more efficient than
training a word embedding layer from random parameters.
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Review Encoder Layer

This layer describes the review encoder and feature enrichment techniques proposed in our
model.

Sequential Encoder Layer: The output of the highway word embedding layer (E ′x1 , E
′
x2
, ..., E ′xT )

is fed into a sequential encoder layer. Here, we adopt a multi-layer bi-directional LSTM
encoder [47], which encodes a review into a sequence of hidden states in forward direction
−→
H = (

−→
h1,
−→
h2, ...,

−→
hT ) and backward direction

←−
H = (

←−
h1,
←−
h2, ...,

←−
hT ).

Representative Features: For each hidden state
−→
ht (or

←−
ht), we generate three representa-

tive features, which will be later used to assist the attention mechanism to learn the overall
review representation.

The first and second features, denoted by
−−→
hmax
t and

−−→
havgt , are the max-pooling and average-

pooling of
−→
ht , respectively. The third one is obtained using a factorization machine [116],

where the factorization operation is defined as

F(z) = w0 +
N∑
i=1

wizi +
N∑
i=1

N∑
j=i+1

〈Vi, Vj〉 zizj. (6.2)

Here, the model parameters are wi ∈ R and V ∈ RN×F . N and F are the dimensions of the
input vector z and factorization, respectively. 〈·, ·〉 is the dot product between two vectors.
w0 in Eq. (6.2) is a global bias, wi is the strength of the i-th variable, and 〈Vi, Vj〉 captures
the pairwise interaction between zi and zj.

Intuitively, the max-pooling and avg-pooling provide the approximated location (bound and

mean) of the hidden state
−→
ht in the N dimensional space, while the factorization captures

all single and pairwise interactions. Together they provide the high-level knowledge of that
hidden state.

Feature Augmentation: Finally, the aggregated hidden state ht at time step t is obtained
by concatenating hidden states in both directions and all representative features, i.e.,

−→
ht =

−→
ht ⊕

−−→
hmax
t ⊕

−−→
havgt ⊕F(

−→
ht),

←−
ht =

←−
ht ⊕

←−−
hmax
t ⊕

←−−
havgt ⊕F(

←−
ht),

ht =
−→
ht ⊕

←−
ht .

(6.3)

Thus, the review is encoded into a sequence of aggregated hidden states H = (h1, h2, . . . , hT ).

Deliberate Self-Attention Layer

Once the aggregated hidden states for each review are obtained, we apply a self-attention
layer for each task to learn an overall review representation for that task. Compared with
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Figure 6.3: Review encoder and deliberate self-attention for aspect k. Each hidden state is
enriched by three features, i.e., max-pooling, average-pooling, and factorization.

pooling and convolution operations, the self-attention mechanism is more interpretable, since
it can capture relatively important words for a given task. However, a standard self-attention
layer merely relies on a single global alignment vector across different reviews, which results
in sub-optimal representations. Therefore, we propose a deliberate self-attention alignment
method to refine the review representations while maintaining the network interpretability.
In this section, we will first introduce the self-attention mechanism, and then provide the
details of the deliberation counterpart.

Global Self-Attention: For each aspect k, the self-attention mechanism [161] is used
to learn the relative importance of tokens in a review to the sentiment classification task.
Formally, given the aggregated hidden states H for a review, the alignment score ukt,G and
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attention weight αkt,G are calculated as follows:

ukt,G = (vkG)> tanh(W k
Ght + bkG), αkt,G =

exp(ukt,G)∑T
τ=1 exp(ukτ,G)

, (6.4)

where W k
G, vkG and bkG are model parameters. G represents global, as the above attention

mechanism is also known as global attention [88]. vkG is viewed as a global aspect-specific
base-vector in this study, since it has been used in calculating the alignment with different
hidden states across different reviews. It can also be viewed as a global aspect-specific filter
that is designed to capture important information for a certain aspect from different reviews.
Therefore, we also call the regular self-attention layer as the global self-attention layer. With
attention weights, the global review representation is calculated by taking the weighted sum
of all aggregated hidden states, i.e., skG =

∑T
t=1 α

k
t,Ght. Traditionally, skG is used for the

sentiment classification task.

Deliberate Attention: As we can see from Eq. (6.4), the importance of a token t is
measured by the similarity between tanh(W k

Ght + bkG) and the base-vector vkG. However, a
single base-vector vkG is difficult to capture the variability in the reviews, and hence, such
alignment results in sub-optimal representations of reviews. In this study, we attempt
to alleviate this problem by reusing the output of the global self-attention, i.e., skG, as a
document-level aspect-specific base-vector to produce better review representations. Notably,
skG already incorporates the knowledge of the review content and aspect k. We refer this step
as deliberation.

Given the hidden states H and review representation skG, we first calculate the alignment
scores and attention weights as follows:

ukt,D = (skG)> tanh(W k
Dht + bkD), αkt,D =

exp(ukt,D)∑T
τ=1 exp(ukτ,D)

, (6.5)

where W k
D and bkD are parameters. D represents deliberation. Similarly, we can calculate the

aspect-specific review representation by deliberation as skD =
∑T

t=1 α
k
t,Dht.

Review Representation: Finally, the review representation for aspect k can be obtained
as follows3:

sk = skG + skD =
T∑
t=1

(
αkt,G + αkt,D

)
ht. (6.6)

From the above equation, we not only get refined review representations but also maintain
the interpretability of our model. Here, we did not use the concatenation of two vectors since
we would like to maintain the interpretability as well. Notably, we can use the accumulated
attention weights, i.e., 1

2
(αkt,G + αkt,D), to interpret our experimental results.

3In this study, we also consider models that repeat the deliberation multiple times. However, we did not
observe significant performance improvement.
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Sentiment Classification Layer

Finally, we pass the representation of each review for aspect k into an aspect-specific classifier
to get the probability distribution over different class labels. Here, the classifier is defined as
a two layer feed-forward network with a ReLU activation followed by a softmax layer, i.e.,

ykout = ReLU(W k
outs

k + bkout),

ykpred = softmax(W k
predy

k
out + bkpred),

(6.7)

where W k
out, W

k
pred, bkout, and bkpred are learnable parameters.

Given the ground-truth labels ŷk, which is a one-hot vector, our goal is to minimize the
averaged cross-entropy error between ykpred and ŷk across all aspects, i.e.,

Lθ = −
K∑
k=1

N∑
i=1

ŷki log(ykpred,i), (6.8)

where K and N represents the number of aspects and class labels, respectively. The model is
trained in an end-to-end manner using back-propagation.

6.2.2 Aspect and Sentiment Keywords

Traditionally, aspect and sentiment keywords are obtained using unsupervised clustering
methods, such as topic models [94, 125]. However, these methods cannot automatically
build correlations between keywords and aspects or sentiment due to the lack of supervision.
Aspect and opinion term extractions in fine-grained aspect-based sentiment analysis tasks
[110, 108, 28, 150] focus on extracting terms and phrases from sentences. However, they
require a number of labeled reviews to train deep learning models. In this study, we propose
a fully automatic Attention-driven Keywords Ranking (AKR) method to discover aspect and
opinion keywords, which are important to predicted ratings, from a review corpus based on a
self-attention (or deliberate self-attention) mechanism in the context of DMSC.

Aspect Keywords Ranking

The significance of a word w to an aspect k can be described by a conditional probability
pC(w|k) on a review corpus C. Intuitively, given an aspect k, if a word w1 is more frequent
than w2 across the corpus, then, w1 is more significant to aspect k. We can further expand
this probability as follows:

pC(w|k) =
∑
ξ∈C

pC(w, ξ|k), (6.9)
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Figure 6.4: The LEcture-AuDience (LEAD) model for uncertainty estimation. ‘R’, ‘K’, ‘C’,
‘U’ represent rating, knowledge, probability distribution of different class labels (see Eq. (6.7)),
and uncertainty score, respectively.

where ξ is a review in corpus C. For each ξ ∈ C, probability pC(w, ξ|k) indicates the importance
of word w to the aspect k, which can be defined using attention weights, i.e.,

pC(w, ξ|k) =

∑T
t=1 α

ξ
t · δ(wt, w)∑

ξ′∈C fξ′(w) + γ
, (6.10)

where fξ′(w) is frequency of w in document ξ′ and γ is a smoothing factor. δ(wt, w) ={
1 if wt = w

0 otherwise
is a delta function. Attention weight αξt is defined as αξt = 1

2
(αkt,G + αkt,D) for

the deliberation self-attention mechanism. In Eq. (6.10), the denominator is applied to reduce
the noise from stop-words and punctuation. After obtaining the score pC(w|k) for every
member in the vocabulary, we collect top-ranked words (with part-of-speech tags: NOUN
and PROPN) as aspect keywords.

Aspect-level Opinion Keywords

Similarly, we can estimate the significance of a word w to an aspect-level opinion label/rating
ŷk by a conditional probability pC(w|ŷk). Let us use Cŷk to denote reviews with rating ŷk for
aspect k, then, the following equivalence holds, i.e.,

pC(w|ŷk) = pC
ŷk

(w|k), (6.11)

which can be further calculated by Eqs. (6.9) and (6.10). Intuitively, we first construct a
subset Cŷk ⊂ C of the review corpus, then, we use attention weights of aspect k to calculate the
significance of word w to that aspect. Finally, we collect top-ranked words (with part-of-speech
tags: ADJ, ADV and VERB) as aspect-level opinion keywords.



75

6.2.3 The Proposed Uncertainty Model

Although our FEDAR model has achieved competitive prediction accuracy and our AKR
method allows us to explore aspect and sentiment keywords, it is still difficult to deploy such
a model in real-world applications. In DMSC datasets, we find that there are many typos
and abbreviations in reviews and many reviews describe the product or service from only
one aspect. However, deep learning models cannot capture these problems in the datasets,
therefore, the predictions are not reliable. One way to tackle this challenge is by estimating
the uncertainty of model predictions. If a model returns ratings with high uncertainty,
we can pass the review to human experts for annotation. In this section, we propose a
LEcture-AuDience (LEAD) method (see Fig.6.4) to measure the uncertainty of our FEDAR
model in the context of multi-task learning.

Lecturer and Audiences

We use a lecturer (denoted by ML) to represent any well-trained deep learning model, e.g.,
FEDAR model. Audiences are models (denoted by MA) with partial knowledge of the
lecturer, where knowledge can be interpreted as relationships between an input review and
output ratings which are inferred by ML. Here, MA = {MA1 ,MA2 , ...,MA|A|}, where |A| is
the number of audiences. Partial knowledge determines the eligibility of audiences to provide
uncertainty scores. For example, eligible audiences can be: (1) Models obtained by pruning
some edges (e.g., dropout with small dropout rate) of the lecturer model. (2) Models obtained
by continuing training of the lecturer model with very small learning rate for a few batches.
Ineligible audiences include: (1) Random models trained on the same or a different review
corpus. (2) Models with the same or similar structure as lecturer but initialized with different
parameters and trained on a different corpus.

Uncertainty Scores

Given a review, suppose the lecturer ML predicts the class label as ỹL,k for aspect k, where
ỹL,k is an one-hot vector. An audienceMAµ obtains the probability distribution over different
class labels as y

Aµ,k
pred (see Eq. (6.7)). Then, the uncertainty score is defined as the cross entropy

between ỹL,k and y
Aµ,k
pred , which is calculated by

ψAµ,k = −
N∑
i=1

ỹL,ki log(y
Aµ,k
pred,i). (6.12)

Intuitively, the audience is more uncertain about the lecturer’s prediction if it gets lower
probability for that prediction. For example, in Fig. 6.4, the lecturer model predicts rating/label
as 4. Three audiences obtain probability 0.1, 0.8, 0.5 for that label, respectively. Then, their
uncertainty scores are ψA1,k = 2.30, ψA2,k = 0.22, and ψA3,k = 0.69.
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With the uncertainty score from a single audience and for a single aspect, we can calculate
the final uncertainty score as

ψ = exp

|A|∑
µ=1

ζ log

(
exp

k∑
k=1

log
(
ψAµ,k + λ

)
+ η

)
, (6.13)

where λ and η ≥ 1 are smoothing factors that are set to 1 in our experiments. ζ is an
empirical factor for knowledge. If audience networks are obtained by applying dropout to
the lecturer network, the higher the dropout rate, the lower the factor ζ. In this case, the
audiences have less knowledge of the lecturer.

After obtaining uncertainty scores for all reviews in the testing set, we can select either a
certain percent of reviews with higher scores or reviews with scores over a threshold for
crowdsourcing annotation. Human experts are expected to analyze the reviews and decide
the aspect ratings for them.

6.3 Experiments

In this section, we present the results from an extensive set of experiments and demonstrate
the effectiveness of our proposed FEDAR model, AKR, and LEAD methods.

6.3.1 Research Questions

Our empirical analysis aims at the following Research Questions (RQs):

• RQ1: What is the overall performance of FEDAR? Does it outperform state-of-the-art
baselines?

• RQ2: What is the overall performance of the LEAD method compared with uncertainty
estimation baselines?

• RQ3: How does each component in FEDAR contribute to the overall performance?

• RQ4: Is the deliberate self-attention module interpretable? Does it learn meaningful
aspect and opinion terms from a review corpus?

6.3.2 Datasets

We first conduct our experiments on five benchmark datasets, which are obtained from
the TripAdvisor and BeerAdvocate review platforms. TripAdvisor based datasets have
seven aspects (value, room, location, cleanliness, check in/front desk, service, and business
service), while BeerAdvocate based datasets have four aspects (feel, look, smell, and taste).
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Table 6.1: Statistics of different DMSC datasets. † indicates the datasets collected and
prepared by us.

Dataset # docs # aspects Scale
TripAdvisor-R 29,391 7 1-5
TripAdvisor-RU 58,632 7 1-5
TripAdvisor-B 28,543 7 1-2
BeerAdvocate-R 50,000 4 1-10
BeerAdvocate-B 27,583 4 1-2
RateMDs-R† 155,995 4 1-5
RateMDs-B† 120,303 4 1-2

TripAdvisor-R [163], TripAdvisor-U [74], and BeerAdvocate-R [163, 69] use the original
rating scores as sentiment class labels. In TripAdvisor-B and BeerAdvocate-B [167], the
original scale is converted to a binary scale, where 1 and 2 correspond to negative and
positive sentiment, respectively. Neutral has been ignored in both datasets. All datasets
have been tokenized and split into train/development/test sets with a proportion of 8:1:1. In
our experiments, we use the same datasets that are provided by the previous studies in the
literature [163, 74, 167]. Statistics of the datasets are summarized in Table 6.1.

In addition to the aforementioned five datasets, we also propose two new datasets, i.e.,
RateMDs-R and RateMDs-B, and benchmarked our models on them. The RateMDs dataset
was collected from the https://www.ratemds.com website which has textual reviews along
with numeric ratings for medical experts primarily in the North America region. Each review
comes with ratings of four different aspects, i.e., staff, punctuality, helpfulness, and knowledge.
The overall rating is the average of these aspect ratings. To obtain a more refined dataset for
our experiments, we removed reviews with missing aspect ratings and selected the rest of the
reviews whose lengths are between 72 and 250 tokens (i.e., not outliers 4), since short reviews
may not have information on all the four aspects. The original data has a rating-imbalance
problem, i.e., 60% and 17% of reviews are rated as 5 and 1, respectively, and more than 50%
of reviews have identical aspect ratings. Therefore, similar to [69], we chose reviews with
different aspect ratings, i.e., at least three of the aspect ratings are different. The statistics
of our dataset have been shown in Table 6.1. For RateMDs-R, we tokenized reviews with
Stanford CoreNLP5 and randomly split the dataset into training, development and testing
by a proportion of 135,995:10,000:10,000. For RateMDs-B, we followed the process in [167]
by converting original scales to binary and sampling data according to the overall polarities
to avoid the imbalance issue. The statistics of the RateMDs-B dataset have also been shown
in Table 6.1. Similarly, we split the dataset into training, development and testing by a
proportion of 100,303:10,000:10,000.

4The average number of tokens for all reviews is 72 tokens and there are very few reviews with more than
250 tokens.

5https://stanfordnlp.github.io/CoreNLP/
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6.3.3 Comparison Methods

To demonstrate the effectiveness of our methods, we compare the proposed models with the
following baseline methods:

• MAJOR simply uses the majority sentiment labels or polarities in training data as
predictions.

• GLVL first calculates the document representation by averaging the word vectors of all
keywords in a review, where pre-trained word vectors are obtained from GloVe [106]. Then,
a LIBLINEAR package [27] is used for the classification task.

• BOWL feeds the normalized Bag-of-Words (BOW) representation of reviews into the
LIBLINEAR package for the sentiment classification. In our experiments, stop-words
and punctuation are removed in order to enable the model to capture the keywords more
efficiently.

• MCNN is an extension of the CNN model in the multi-task learning framework. For
each task, CNN [61] extracts key features from a review by applying convolution and
max-over-time pooling [23] operations over the shared word embeddings layer.

• MLSTM extends a multi-layer Bi-LSTM model [47], which captures both forward and
backward semantic information, with the multi-task learning framework, where different
tasks have their own classifiers and share the same Bi-LSTM encoder.

• MBERT is a multi-task version of the BERT classification model [26]. Different tasks
share the same BERT encoder [153].

• MATTN is a multi-task version of self-attention based models. Similar to MLSTM,
different tasks share the same Bi-LSTM encoder. For each task, we first apply a self-
attention layer, and then pass the document representations to a sentiment classifier.

• DMSCMC [163] introduces a hierarchical iterative attention model to build aspect-specific
document representations by frequent and repeated interactions between documents and
aspect questions.

• HRAN [74] incorporates hand-crafted aspect keywords and the overall rating into a
hierarchical network to build sentence and document representations.

• AMN [169] first uses attention-based memory networks to incorporate hand-crafted aspect
keywords information into the aspect and sentence memories. Then, recurrent attention
operation and multi-hop attention memory networks are employed to build document
representations.

• FEDAR is the name of our model, where FE, DA and R represent Feature Enrichment,
Deliberate self-Attention, and overall Rating, respectively.

We compare our LEAD method with the following uncertainty estimation approaches:

• Max-Margin is the maximal activation of the sentiment classification layer (after softmax
normalization).

• PL-Variance (Penultimate Layer Variance) [166] uses the variance of the output of the
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sentiment classification layer (before softmax normalization) as the uncertainty score.

• Dropout [32] applies dropout to deep neural networks during training and testing. The
dropout can be used as an approximation of Bayesian inference in deep Gaussian processes,
which aims to identify low-confidence regions of input space.

All methods are based on our FEDAR model.

6.3.4 Implementation Details

We implemented all deep learning models using PyTorch [105] and the best set of parameters
are selected based on the development set. Word embeddings are pre-loaded with 300-
dimensional GloVe embeddings [106] and fixed during training. For MCNN, filter sizes are
chosen to be 3, 4, 5 and the number of filters are 400 for each size. For all LSTM based
models, the dimension of hidden states is set to 600 and the number of layers is 4. All
parameters are trained using the ADAM optimizer [63] with an initial learning rate of 0.0005.
The learning rate decays by 0.8 every 2 epochs. Dropout with a dropout-rate 0.2 is applied
to the classifiers. Gradient clipping with a threshold of 2 is also applied to prevent gradient
explosion. For MBERT, we leveraged the pre-trained BERT encoder from HuggingFace’s
Transformers package [153] and fixed its weights during training. We also adopted the learning
rate warmup heuristic [79] and set the warmup step to 2000. For dropout-based uncertainty
estimation methods, we set the dropout-rate to 0.5. The number of samples for Dropout
are 50. The number of audiences is 20 for our LEAD model. ζ is set to 1.0. Our codes and
datasets are available at https://github.com/tshi04/DMSC_FEDA.

6.3.5 Prediction Performance

For research question RQ1, we use accuracy (ACC) and mean squared error (MSE) as our
evaluation metrics to measure the prediction performance of different models. All results are
shown in Tables 6.2 and 6.3, where we use bold font to highlight the best performance values
and underlining to highlight the second best values.

For the DMSC problem, it has been demonstrated that deep neural network (DNN) based
models perform much better than conventional machine learning methods that rely on n-gram
or embedding features [163, 74]. In our experiments, we have also demonstrated this by
comparing different DNN models with MAJOR, GLVL, and BOWL. Compared to simple
DNN classification models, multi-task learning DNN models (MDNN) can achieve better
results with fewer parameters and training time [163]. Therefore, we focused on comparing
the performance of our model with different MDNN models. From Table 6.2, DMSCMC
achieves better results on all five datasets compared with baselines MCNN, MLSTM, MBERT,
and MATTN. HRAN and AMN leverage the power of overall rating and get significantly
better results than other compared methods. From both tables, we observed our FEDAR
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Table 6.2: Averaged Accuracy (ACC) and MSE of different models on TripAdvisor-R
(Trip-R), TripAdvisor-U (Trip-U), TripAdvisor-B (Trip-B), BeerAdvocate-R (Beer-R), and
BeerAdvocate-B (Beer-B) testing sets. For MSE, smaller is better. † indicates that results
are obtained from previous published papers and NA indicates that results are not available
in those papers. We use bold font to highlight the best performance values and underlining
to highlight the second best values.

Method
Trip-R Trip-U Trip-B Beer-R Beer-B

ACC MSE ACC MSE ACC ACC MSE ACC
MAJOR 29.12 2.115 39.73 1.222 62.42 26.29 4.252 67.26
GLVL 38.94 1.795 48.04 0.879 78.15 30.59 2.774 79.73
BOWL 40.14 1.708 48.68 0.888 78.38 31.02 2.715 79.14
MCNN 41.75 1.458 51.21 0.714 81.31 34.11 2.016 82.37
MLSTM 42.74 1.401 48.64 0.791 80.56 34.48 2.167 82.07
MATTN 42.13 1.427 50.53 0.679 80.82 35.78 1.962 84.86
MBERT 44.41 1.250 54.50 0.617 82.84 35.94 1.963 84.73
DMSCMC† 46.56 1.083 55.49 0.583 83.34 38.06 1.755 86.35
HRAN† 47.43 1.169 58.15 0.528 NA 39.11 1.700 NA
AMN† 48.66 1.109 NA NA NA 40.19 1.686 NA
FEDAR (Ours) 48.92 1.072 58.50 0.522 85.50 40.62 1.530 87.40

Table 6.3: Averaged accuracy (ACC) and MSE of different models on RateMDs-R (RMD-R)
and RateMDs-B (RMD-B) testing sets. For MSE, smaller is better.

Method
RMD-R RMD-B

ACC MSE ACC
MAJOR 31.42 3.393 57.18
GLVL 43.11 1.882 76.93
BOWL 44.78 1.704 78.68
MCNN 46.19 1.333 81.60
MLSTM 48.37 1.148 82.40
MATTN 49.08 1.157 82.66
MBERT 48.65 1.160 83.39
FEDAR (Ours) 55.57 0.794 88.63

model achieves the best performance on all seven datasets. These results demonstrate the
effectiveness of our methods.

6.3.6 Uncertainty Performance

Uncertainty estimation can help users identify reviews for which the models are not confident
of their predictions. More intuitively, prediction models are prone to mistakes on the reviews
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Table 6.4: Performance of various uncertainty methods on different datasets.

TripAdvisor-R
Method top-5% top-10% top-15% top-20% top-25%
Max-Margin 35.40 36.00 37.47 39.15 40.68
PL-Variance 40.20 42.40 43.00 44.25 44.84
Dropout 53.80 53.50 53.33 53.35 53.60
LEAD 65.40 62.60 60.93 60.85 60.20

BeerAdvocate-R
Method top-5% top-10% top-15% top-20% top-25%
Max-Margin 38.80 43.80 46.53 48.30 49.44
PL-Variance 44.00 47.00 48.33 49.65 50.68
Dropout 57.00 57.90 58.60 58.70 59.28
LEAD 71.60 69.50 67.93 67.55 67.20

RateMDs-R
Method top-5% top-10% top-15% top-20% top-25%
Max-Margin 20.20 23.80 26.80 28.15 29.40
PL-Variance 28.60 29.70 30.53 30.85 31.60
Dropout 51.00 50.70 50.60 49.60 48.88
LEAD 66.00 62.70 60.40 59.05 58.32

that they are uncertain about. In Table 6.4, we first selected the most uncertain predictions
(denoted by top-n%) based uncertainty scores from the testing sets of the TripAdvisor-R,
BeerAdvocate-R and RateMDs-R datasets. Then, we evaluated the uncertainty performance
by comparing the mis-classification rate (i.e., error rate) of our FEDAR model for the
selected reviews. The more incorrect predictions that can be captured, the better the
uncertainty method will be. From these results, we can observe that the Dropout method
achieves significantly better results than Max-Margin and PL-Variance. Our LEAD method
outperforms all these baseline methods on three datasets, which shows our method is superior
in identifying less confident predictions and answers research question RQ2.

6.3.7 Ablation Study of FEDAR

For research question RQ3, we attribute the performance improvement of our FEDAR model
to: 1) Better review encoder, including a highway word embedding layer and a feature
enriched encoder. 2) Deliberate self-attention mechanism. 3) Overall rating.

Therefore, we systematically conducted ablation studies to demonstrate the effectiveness of
these components, and provided the results in Table 6.5, Table 6.6 and Fig. 6.5. We first
observe that FEDAR significantly outperforms model-OR (FEDAR w/o OR), which indicates
that overall rating can help the model make better predictions. Secondly, we compare
model-OR with model-ORFE (FEDAR w/o OR, FE), which is equipped with a regular
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Table 6.5: Ablation study results. Different models are evaluated by Averaged Accuracy
(ACC) and MSE metrics on five public DMSC testing sets. For MSE, smaller is better.
FE, DA and OR represent Feature Enrichment, Deliberated self-Attention, Overall Rating,
respectively.

Method
Trip-R Trip-U Trip-B Beer-R Beer-B

ACC MSE ACC MSE ACC ACC MSE ACC
FEDAR 48.92 1.072 58.50 0.522 85.50 40.62 1.530 87.40
w/o OR 46.72 1.178 55.82 0.574 84.23 39.66 1.617 86.52
w/o OR, DA 45.70 1.224 55.39 0.584 83.43 38.85 1.633 85.99
w/o OR, FE 44.50 1.300 53.41 0.632 82.39 38.92 1.714 84.99
w/o OR, DA, FE 42.13 1.427 50.53 0.679 80.82 35.78 1.962 84.86

Table 6.6: Ablation study results. Different models are evaluated by Averaged Accuracy
(ACC) and MSE metrics on RateMDs-R (RMD-R) and RateMDs-B (RMD-B) testing sets.

Method
RMD-R RMD-B

ACC MSE ACC
FEDAR 55.82 0.786 88.63
w/o OR 49.80 1.106 83.89
w/o OR, DA 49.68 1.108 83.62
w/o OR, FE 49.28 1.123 83.47
w/o OR, DA, FE 49.08 1.157 82.66

word embedding layer and a multi-layer Bi-LSTM encoder. Obviously, model-OR obtained
better results than model-ORFE. Similarly, we also compare model-ORDA (FEDAR w/o OR,
DA) with model-BASE (FEDAR w/o OR, DA, FE), since model-ORDA adopts the same
self-attention mechanism as model-BASE. It can be observed that model-ORDA performs
significantly better than model-BASE on all the datasets. This experiment shows that we can
improve the performance by using the highway word embedding layer and feature enrichment
technique. Furthermore, we compared model-OR with model-ORDA, which does not have
a deliberate self-attention layer. It can be seen that model-OR outperforms model-ORDA
in all the experiments. In addition, we have also compared the results of model-ORFE
and model-BASE, which are equipped with a deliberate self-attention layer and a regular
self-attention layer. We observed that model-ORFE has a better performance compared
to model-BASE. This experiment indicates the effectiveness of the deliberate self-attention
mechanism. In Fig. 6.5, we show the accuracy and MSE of different models during training
in order to demonstrate that FEDAR can get consistently higher accuracy and lower MSE
after training for several epochs than its basic variants.
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Figure 6.5: This figure shows (a) Averaged Accuracy and (b) MSE for FEDAR and its
variants on the TripAdvisor-R dataset during the training process.

6.3.8 Attention Visualization

The attention mechanism enables a model to selectively focus on important parts of the
reviews, and hence, visualization of the attention weights can help in interpreting our model
and analyzing the experimental results [163, 155]. To answer research question RQ4, we
need to investigate whether our model attends to relevant keywords when it is making
aspect-specific rating predictions for the DMSC problem.

In Fig. 6.6 (a), we show a review example from the BeerAdvocate-R testing set, for which
our model has successfully predicted all aspect-specific ratings. In this figure, we highlighted
the review with deliberate attention weights. The review contains keywords of all four
aspects, thus, we only need to verify whether our model can successfully detect those aspect-
specific keywords. We observed that deliberate self-attention attends to “creamy and luscious
mouthfeel” for feel. For the look aspect, it captures “dark murky brown with a ..., leave some
lacing on the glass”, which is quite relevant to the appearance of the beer. Our model also
successfully detects “very rich and spicy” for smell. For taste, it attends to “taste is a bit
disappointing, ... too prominent”, which yields a slightly lower rating. Similarly, we show an
example from the RateMDs-R testing set in Fig. 6.6 (b). Our model detects “unfortunately,
the office staff is very lousy! I do think ...” for staff, which expresses negative opinion on
the office staff. For punctuality, it captures “true that you have to wait a long time for
her”, which is also negative. Finally, it attends to “is by far the best doctor, she does get a
lot of patient and may get overwhelmed. but when it comes to knowledge, communicating, the
best” for the knowledge, and “she is patient and caring, patience and caring attitude” for
the helpfulness of the doctor. Both aspects have positive sentiment. Therefore, these two
examples show good interpretability of our model.
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(a) BeerAdvocate-R

(b) RateMDs-R

Figure 6.6: Visualization of attention weights. In parentheses, the first and second numbers
represent ground-truth and predicted ratings, respectively. Different aspects are labeled with
different colors. The figure is best viewed in color.

6.3.9 Aspect and Opinion Keywords

In Fig. 6.7, we first show aspect keywords detected by our AKR method for the TripAdvisor-B,
BeerAdvocate-B, and RateMDs-B corpora. From Fig. 6.7 (top row), we observe that value
related keywords include “price, money, rate, overprice”. Keywords related to a room
are “air conditioning, comfy, leak, mattress, bathroom, modern, ceiling” and others. For
cleanliness, people are interested in “housekeeping, spotless, cleaning, hair, stain, smell”
and so on. Service is related with “staff, service, employee, receptionist, personnel”. From
Fig. 6.7 (middle row), we observe that feel is usually related with keywords, like “mouthfeel,
mouth, smooth, watery”, which describe feel of beers in mouth. Look is the appearance
of beers, thus, the model captures “appearance, retention, white, head, foam, color” and
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Figure 6.7: Word-cloud visualization of aspect keywords for TripAdvisor-B (Top row),
BeerAdvocate-B (middle row) and RateMDs-B datasets (bottom row).

others. Smell related aspect keywords include “smell, aroma, scent, fruity” and more.
Finally, representative keywords for taste are “taste, balance, complex, flavor” and so on.
From Fig. 6.7 (bottom row), we observe that staff related keywords are “staff, assistant,
secretary, receptionist” and so on. For punctuality, people usually concern “waits, hour,
hours, retard”. The helpfulness of a doctor is related to “compassion, manner, empathy,
attitude, condescending” and so on. Finally, knowledge related keywords are “knowledge,
expertise, surgeon, skill” and others.

We also obtain aspect-specific opinion keywords from the Trip-B, Beer-B, and RMD-B
datasets, and show them in Fig. 6.8. From this figure (top row), we observe that reviewers
with positive experience usually live in “comfortable, beautiful, spacious, lovely and gorgeous”
rooms, and the staff are “helpful, friendly, courteous and attentive”, while reviewers with
negative experience may live in “uncomfortable, small, cramped and tiny” rooms. Something
may “leak” and there are also problems with “air conditioning”. The staff are “rude, unhelpful
and unfriendly” and the service is “poor”. From Fig. 6.8 (middle row), we learn that good
beers should have “great, amazing, wonderful, pleasant, aromatic, fresh, rich, and incredible”
smell, and the taste may be “tasty, great, balanced, enjoyable, and flavorful”. The smell
of low-rated beers is “faint, weak, pungent, odd, funky, and rotten”, and the taste may be
“bland, unbalanced, disappointed, and sour”. From Fig. 6.8 (bottom row), we find that good
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Figure 6.8: Word-cloud visualization of aspect-level opinion keywords for TripAdvisor-B (top
row), BeerAdvocate-B (middle row), and RateMDs-B datasets (bottom row).

doctors usually have “sincerely, friendly, helpful, and wonderful” staff and are “knowledgeable,
competent, intelligent, and excellent”. In a low-rated clinic, staff may be “incompetent, rude,
horrible, terrible, and unfriendly”, and doctors may “misdiagnose” conditions of patients
and can be not “competent, knowledgeable, or trusted”.

From these figures, we can conclude that our deliberate self-attention mechanism is inter-
pretable, and by leveraging our AKR method, it is a powerful knowledge discovery tool for
online multi-aspect reviews, which answers research question RQ4.

6.4 Summary

In this study, we proposed a multi-task deep learning model, namely FEDAR, for the problem
of document-level multi-aspect sentiment classification. Different from previous studies,
our model does not require hand-crafted aspect-specific keywords to guide the attention
and boost model performance for the task of sentiment classification. Instead, our model
relies on (a) a highway word embedding layer to transfer knowledge from pre-trained word
vectors on a large corpus, (b) a sequential encoder layer whose output features are enriched
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by pooling and feature factorization techniques, and (c) a deliberate self-attention layer
which maintains the interpretability of our model. Experiments on various DMSC datasets
have demonstrated the superior performance of our model. In addition, we also developed
an Attention-driven Keywords Ranking (AKR) method, which can automatically discover
aspect and opinion keywords from the review corpus based on attention weights. Attention
weights visualization and aspect/opinion keywords word-cloud visualization results have
demonstrated the interpretability of our model and effectiveness of our AKR method. Finally,
we also proposed a LEcture-AuDience (LEAD) method to measure the uncertainty of deep
neural networks, including our FEDAR model, in the context of multi-task learning. Our
experimental results on multiple real-world datasets demonstrate the effectiveness of the
proposed work.



Chapter 7

Self-Supervised Contrastive Learning
for Aspect Detection

This chapter introduces a self-supervised contrastive learning framework and an attention-
based model equipped with a novel smooth self-attention module for the unsupervised aspect
detection task. We also introduce a high-resolution selective mapping method to efficiently
assign aspects discovered by the model to the aspects of interest. In addition, we propose
using a knowledge distillation technique to further improve the aspect detection performance.
The rest of this chapter is organized as follows: The introduction of this chapter is presented
in Section 7.1. In Section 7.2, we present details of our self-supervised contrastive learning
framework, high-resolution select mapping method and knowledge distillation approach.
In Section 7.3, we introduce different aspect detection datasets, baseline methods and
implementation details, as well as analyze experimental results. Our discussion concludes in
Section 7.4.

7.1 Background and Motivation

Aspect detection, which is a vital component of aspect-based sentiment analysis [110, 109],
aims at identifying predefined aspect categories (e.g., Price, Quality) discussed in segments
(e.g., sentences) of online reviews. Table 7.1 shows an example review about a television
from several different aspects, such as Image, Sound, and Ease of Use. With a large number
of reviews, automatic aspect detection allows people to efficiently retrieve review segments
of aspects they are interested in. It also benefits many downstream tasks, such as review
summarization [1] and recommendation justification [102].

There are several research directions for aspect detection. Supervised approaches [168] can
leverage annotated labels of aspect categories but suffer from domain adaptation problems
[118]. Another research direction consists of unsupervised approaches and has gained a lot

88
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Table 7.1: An example from Amazon product reviews about a television and aspect annotations
for every sentence.

Sentence Aspect
Replaced my 27” jvc clunker with this one. General
It fits perfectly inside our armoire. General
Good picture. Image
Easy to set up and program. Ease of Use
Descent sound, not great... Sound
We have the 42” version of this set downstairs. General
Also a solid set. General

of attention in recent years. Early unsupervised systems are dominated by Latent Dirichlet
Allocation (LDA) based topic models [10, 100, 34, 113, 171]. However, several recent studies
have revealed that LDA-based approaches do not perform well for aspect detection and the
extracted aspects are of poor quality (incoherent and noisy) [43]. Compared to LDA-based
approaches, deep learning models, such as aspect-based autoencoder (ABAE) [43, 87], have
shown excellent performance in extracting coherent aspects and identifying aspect categories
for review segments. However, these models require some human effort to manually map
model discovered aspects to aspects of interest, which may lead to inaccuracies in mapping
especially when model discovered aspects are noisy. Another research direction is based on
weakly supervised approaches that leverage a small number of aspect representative words
(namely, seed words) for the fine-grained aspect detection [1, 55]. Although these models
outperform unsupervised approaches, they do make use of human annotated data to extract
high-quality aspect seed words, which may limit their application. In addition, they are not
able to automatically discover new aspects from review corpora.

We focus on the problem of unsupervised aspect detection (UAD) since a large number of
reviews are generated every day and many of them are for newer products. It is difficult for
humans to efficiently capture new aspects and manually annotate segments for them at scale.
Motivated by ABAE, we learn interpretable aspects by mapping aspect embeddings into word
embedding space, so that aspects can be interpreted by the nearest words. To learn better
representations for both aspects and review segments, we formulate UAD as a self-supervised
representation learning problem and solve it using a contrastive learning algorithm, which is
inspired by the success of self-supervised contrastive learning in visual representations [14, 42].
In addition to the learning algorithm, we also resolve two problems that deteriorate the
performance of ABAE, including its self-attention mechanism for segment representations and
aspect mapping strategy (i.e., many-to-one mapping from aspects discovered by the model to
aspects of interest). Finally, we discover that the quality of aspect detection can be further
improved by knowledge distillation [46]. The contributions of this study are summarized as
follows:
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• Propose a self-supervised contrastive learning framework for the unsupervised aspect
detection task.

• Introduce a high-resolution selective mapping strategy to map model discovered aspects to
the aspects of interest.

• Utilize knowledge distillation to further improve the performance of aspect detection.

• Conduct systematic experiments on seven benchmark datasets and demonstrate the effec-
tiveness of our models both quantitatively and qualitatively.

7.2 Proposed Methods

In this section, we describe our self-supervised contrastive learning framework for aspect
detection shown in Fig. 7.1. The goal is to first learn a set of interpretable aspects (named as
model-inferred aspects), and then extract aspect-specific segments from reviews so that they
can be used in downstream tasks.

Problem Statement

The aspect detection problem is defined as follows: given a review segment x = {x1, x2, ..., xT}
such as a sentence or an elementary discourse unit (EDU) [91], the goal is to predict an
aspect category yk ∈ {y1, y2, ..., yK}, where xt is the index of a word in the vocabulary, T is
the total length of the segment, yk is an aspect among all aspects that are of interest (named
as gold-standard aspects), and K is the total number of gold-standard aspects. For instance,
when reviewing restaurants, we may be interested in the following gold-standard aspects:
Food, Service, Ambience, etc. Given a review segment, it most likely relates to one of the
above aspects.

The first challenge in this problem is to learn model-inferred aspects from unlabeled review
segments and map them to a set of gold-standard aspects. Another challenge is to accurately
assign each segment in a review to an appropriate gold-standard aspect yk. For example,
in restaurants reviews, “The food is very good, but not outstanding.”→Food. Therefore, we
propose a series of modules in our framework, including segment representations, contrastive
learning, aspect interpretation and mapping, and knowledge distillation, to overcome both
challenges and achieve our goal.

7.2.1 Self-Supervised Contrastive Learning

To automatically extract interpretable aspects from a review corpus, a widely used strategy
is to learn aspect embeddings in the word embedding space so that the aspects can be
interpreted using their nearest words [43, 1]. Here, we formulate this learning process as a
self-supervised representation learning problem.
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Figure 7.1: The proposed self-supervised contrastive learning framework. Attract and Repel
represent positive and negative pairs, respectively.

Segment Representations

For every review segment in a corpus, we construct two representations directly based on
(i) word embeddings and (ii) aspect embeddings. Then, we develop a contrastive learning
mechanism to map aspect embeddings to the word embedding space. Let us denote a word
embedding matrix as E ∈ RV×M , where V is the vocabulary size and M is the dimension of
word vectors. The aspect embedding matrix is represented by A ∈ RN×M , where N is the
number of model-inferred aspects.

Given a review segment x = {x1, x2, ..., xT}, we construct a vector representation sx,E based
on its word embeddings {Ex1 , Ex2 , ..., ExT }, along with a novel self-attention mechanism, i.e.,

sx,E =
T∑
t=1

αtExt , (7.1)

where αt is an attention weight and is calculated as follows:

αt =
exp (ut)∑T
τ=1 exp (uτ )

ut = λ · tanh (q> (WEExt + bE))

(7.2)

Here, ut is an alignment score and q = 1
T

∑T
t=1Ext is a query vector. WE ∈ RM×M , bE ∈ RM

are trainable parameters, and the smooth factor λ is a hyperparameter. More specifically, we
call this attention mechanism as Smooth Self-Attention (SSA). It applies an activation
function tanh to prevent the model from using a single word to represent the segment, thus
increasing the robustness of our model. For example, for the segment “plenty of ports and
settings”, SSA will attend on both “ports” and “settings”, while regular self-attention may
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Algorithm 2: The SSCL Algorithm

Input: Batch size X; constants λ and τ ; network structures;
Output: Aspect embedding matrix A; model parameters WE, bE, vA, bA;

1 Initialize Matrix E with pre-trained word vectors; matrix A with k-means
centroids;

2 for sampled mini-batch of size X do
3 for i=1,X do
4 Calculate si,E with Eq. (7.1);
5 Calculate si,A with Eq. (7.3);

6 end
7 for i=1,X; j=1,X do
8 Calculate sim(sj,E, si,A) with Eq. (7.6);
9 end

10 for i=1,X do
11 Calculate li with Eq. (7.5);
12 end
13 Calculate regularization term Ω using Eq. (7.7);

14 Define Loss function L = 1
X

∑X
i=1 li + Ω;

15 Update learnable parameters to minimize L.

16 end

only concentrate on “settings”. Hereafter, we will use RSA to represent regular self-attention
adopted in [1]. In our experiments, we discover that RSA without smoothness gets worse
performance compared to a simple average pooling mechanism.

Further, we also construct a vector representation sx,A for the segment x with global aspect
embeddings {A1, A2, ..., AN} through another attention mechanism, i.e.,

sx,A =
N∑
n=1

βnAn (7.3)

The attention weight βn is obtained by

βn =
exp (v>n,Asx,E + bn,A)∑N
η=1 exp (v>η,Asx,E + bη,A)

, (7.4)

where vn,A ∈ RM and bn,A ∈ R are learnable parameters. β = {β1, β2, ..., βN} can be also
interpreted as soft-labels (probability distribution) over model-inferred aspects for
a review segment.
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Contrastive Learning

Inspired by recent contrastive learning algorithms [14], SSCL learns aspect embeddings by
introducing a contrastive loss to maximize the agreement between two representations of the
same review segment. During training, we randomly sample a mini-batch of X examples
and define the contrastive prediction task on pairs of segment representations from the
mini-batch, which is denoted by {(s1,E, s1,A), (s2,E, s2,A), ...(sX,E, sX,A)}. Similar to [15], we
treat (si,E, si,A) as a positive pair and {(sj,E, si,A)}j 6=i as negative pairs within the mini-batch.
The contrastive loss function for a positive pair of examples is defined as

li = − log
exp (sim(si,E, si,A)/µ)∑X

j=1 I[j 6=i] exp (sim(sj,E, si,A)/µ)
, (7.5)

where I[j 6=i] ∈ {0, 1} is an indicator function that equals 1 iff j 6= i and µ represents a
temperature hyperparameter. We utilize cosine similarity to measure the similarity between
sj,E and si,A, which is calculated as follows:

sim(sj,E, si,A) =
(sj,E)>si,A
‖sj,E‖‖si,A‖

, (7.6)

where ‖ · ‖ denotes L2-norm.

We summarize our SSCL framework in Algorithm 2. Specifically, in line 1, the aspect
embedding matrix A is initialized with the centroids of clusters by running k-means on
the word embeddings. We follow [43] to penalize the aspect embedding matrix and ensure
diversity of different aspects. In line 13, the regularization term Ω is defined as

Ω = ‖AA> − I‖, (7.7)

where each row of matrix A, denoted by Aj, is obtained by normalizing the corresponding
row in A, i.e., Aj = Aj/‖Aj‖.

7.2.2 Aspect Interpretation and Mapping

Aspect Interpretation

In the training stage, we map aspect embeddings to the word embedding space in order
to extract interpretable aspects. With embedding matrices A and E, we first calculate a
similarity matrix

G = AE>,

where G ∈ RN×V . Then, we use the top-ranked words based on Gn to represent and interpret
each model-inferred aspect n. In our experiments, the matrix with inner product similarity
produces more meaningful representative words compared to using the cosine similarity (see
Table 7.6).
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Figure 7.2: Comparison of aspect mappings. For HRSMap, aspects 3, 7, and 8 are not
mapped to gold-standard aspects.

Aspect Mapping

Most unsupervised aspect detection methods focus on the coherence and meaningfulness
of model-inferred aspects, and prefer to map every model-inferred aspect (MIA) to a gold-
standard aspect (GSA) [43]. Here, we call this mapping as many-to-one mapping, since
the number of model-inferred aspects are usually larger than the number of gold-standard
aspects. Weakly supervised approaches leverage human-annotated datasets to extract the
aspect representative words, so that model-inferred aspects and gold-standard aspects have
one-to-one mapping [1]. Different from the two mapping strategies described above, we
propose a high-resolution selective mapping (HRSMap) strategy as shown in Fig. 7.2.
Here, high-resolution means that the number of model-inferred aspects should be at least 3
times more than the number of gold-standard aspects, so that model-inferred aspects have a
better coverage. Selective mapping means noisy or meaningless aspects will not be mapped
to gold-standard aspects.

In our experiments, we set the number of MIAs to 30, considering the balance between aspect
coverage and human-effort to manually map them to GSAs1. First, we automatically generate
keywords of MIAs based aspect interpretation results, where the number of the most relevant
keywords for each aspect is set to 10. Second, we create several rules for aspect mapping: (i)
If keywords of a MIA are clearly related to one specific GSA (not General), we map this MIA
to the GSA. For example, we map “apps, app, netflix, browser, hulu, youtube, stream” to
Apps/Interface (see Table 7.6). (ii) If keywords are coherent but not related to any specific
GSA, we map this MIA to General. For instance, we map “pc, xbox, dvd, ps3, file, game” to
General. (iii) If keywords are related to more than one GSA, we treat this MIA as a noisy
aspect and it will not be mapped. For example, “excellent, amazing, good, great, outstanding,
fantastic, impressed, superior” may be related to several different GSAs. (iv) If keywords

1Usually, it takes less than 15 minutes to assign 30 MIAs to GSAs.
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are not quite meaningful, their corresponding MIA will not be mapped. For instance, “ago,
within, last 30, later, took, couple, per, every” is a meaningless MIA. Third, we further verify
the quality of aspect mapping using development sets.

Given the soft-labels of model-inferred aspects β, we calculate soft-labels γ = {γ1, γ2, ..., γK}
over gold-standard aspects for each review segment as follows:

γk =
N∑
n=1

I[f(βn)=γk]βn, (7.8)

where f(βn) is the aspect mapping for model-inferred aspect n. The hard-label ŷ of gold-
standard aspects for the segment is obtained by

ŷ = argmax{γ1, γ2, ...γK}, (7.9)

which can be converted to a one-hot vector with length K.

7.2.3 Knowledge Distillation

Given both soft- and hard-labels of gold-standard aspects for review segments, we utilize
a simple knowledge distillation method, which can be viewed as classification on noisy
labeled data. We construct a simple classification model, which consists of a segment
encoder such as BERT encoder [26], a smooth self-attention layer (see Eq. (7.2)), and a
classifier (i.e., a single-layer feed-forward network followed by a softmax activation). This
model is denoted by SSCLS, where the last S represents student. SSCLS learns knowledge
from the teacher model, i.e., SSCL. The loss function is defined as

L = − 1

K

K∑
k=1

I[H(γ)<ξk] · ŷk log(yk), (7.10)

where yk is the probability of aspect k predicted by SSCLS. ŷk is a hard-label given by
SSCL. H(γ) represents the Shannon entropy for the soft-labels and is calculated by H =
−
∑K

k=1 γk log(γk). Here, the scalar ξk = χG if aspect k is General and ξk = χNG, otherwise.
Both χG and χNG are hyperparameters. Hereafter, we will refer to I[H(γ)<ξk] as an Entropy
Filter.

Entropy scores have been used to evaluate the confidence of predictions [90]. In the training
stage, we set thresholds to filter out training samples with low confidence predictions from
the SSCL model, thus allowing the student model to focus on training samples for which
the model prediction are more confident. Moreover, the student model also benefits from
pre-trained encoders and overcomes the disadvantages of data pre-processing for SSCL, since
we have removed out-of-vocabulary words and punctuation, and lemmatized tokens in SSCL.
Therefore, SSCLS achieves better performance in segment aspect predictions compared to
SSCL.
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Table 7.2: The annotated aspects for Amazon reviews across different domains.

Domains Aspects

Bags
Compartments, Customer Service, Handles, Looks, Price, Quality, Protec-
tion, Size/Fit, General.

Bluetooth
Battery, Comfort, Connectivity, Durability, Ease of Use, Look, Price,
Sound, General

Boots
Color, Comfort, Durability, Look, Materials, Price, Size, Weather Resis-
tance, General

Keyboards
Build Quality, Connectivity, Extra Function, Feel Comfort, Layout, Looks,
Noise, Price, General

TVs
Apps/Interface, Connectivity, Customer Service, Ease of Use, Image, Price,
Size/Look, Sound, General

Vacuums
Accessories, Build Quality, Customer Service, Ease of Use, Noise, Price,
Suction Power, Weight, General

Table 7.3: The vocabulary size and the number of segments in each dataset. Vocab and
W2V represent vocabulary size and word2vec, respectively.

Dataset Vocab W2V Train Dev Test
Citysearch 9,088 279,862 279,862 2,686 1,490

Bags 6,438 244,546 584,332 598 641
B/T 9,619 573,206 1,419,812 661 656

Boots 6,710 408,169 957,309 548 611
KBs 6,904 241,857 603,379 675 681
TVs 10,739 579,526 1,422,192 699 748
VCs 9,780 588,369 1,453,651 729 725

7.3 Experiments

7.3.1 Datasets

We train and evaluate our methods on seven datasets: Citysearch restaurant reviews [33]
and Amazon product reviews [1] across six different domains, including Laptop Cases (Bags),
Bluetooth Headsets (B/T), Boots, Keyboards (KBs), Televisions (TVs), and Vacuums (VCs).

The Citysearch dataset only has training and testing sets. To avoid optimizing any models
on the testing set, we use restaurant subsets of SemEval 2014 [110] and SemEval 2015 [109]
datasets as a development set, since they adopt the same aspect labels as Citysearch. Similar
to previous work [43], we select sentences that only express one aspect, and disregard those
with multiple and no aspect labels. We have also restricted ourselves to three labels (Food,
Service, and Ambience), to form a fair comparison with prior work [141]. Amazon product
reviews are obtained from the OPOSUM dataset [1]. Different from Citysearch, EDUs [91]
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are used as segments and each domain has eight representative aspect labels as well as aspect
General (see Table 7.2).

In order to train SSCL, all reviews are preprocessed by removing punctuation, stop-words,
and less frequent words (<10). For Amazon reviews, reviews are segmented into elementary
discourse units (EDUs) through a Rhetorical Structure Theory parser [29]. We have converted
EDUs back to sentences to avoid training word2vec [96] on very short segments. However,
we still use EDU-segments for training and evaluating different models following previous
work [1]. Table 7.3 shows statistics of different datasets.

7.3.2 Comparison Methods

We compare our methods against five baselines on the Citysearch dataset.

• SERBM [148] is a sentiment-aspect extraction restricted Boltzmann machine, which
jointly extracts review aspects and sentiment polarities in an unsupervised manner.

• W2VLDA [34] is a topic modeling based approach, which combines word embeddings
[96] with Latent Dirichlet Allocation [6]. It automatically pairs discovered topics with
pre-defined aspect names based on user provided seed-words for different aspects.

• ABAE [43] is an autoencoder that aims at learning highly coherent aspects by exploiting
the distribution of word co-occurrences using neural word embeddings, and an attention
mechanism that can put emphasis on aspect-related keywords in segments during training.

• AE-CSA [87] improves ABAE by leveraging sememes to enhance lexical semantics, where
sememes are obtained via WordNet [97].

• CAt [141] is a simple heuristic model that consists of a contrastive attention mechanism
based on Radial Basis Function kernels and an automated aspect assignment method.

For Amazon reviews, we compare our methods with several weakly supervised baselines,
which explicitly leverage seed words extracted from human annotated development sets [55]
as supervision for aspect detection.

• ABAEinit [1] replaces each aspect embedding vector in ABAE with the corresponding
centroid of seed word embeddings, and fixes aspect embedding vectors during training.

• MATE [1] uses the weighted average of seed word embeddings to initialize aspect em-
beddings. MATE-MT extends MATE by introducing an additional multi-task training
objective.

• TS-* [55] is a weakly supervised student-teacher co-training framework, where TS-Teacher
is a bag-of-words classifier (teacher) based on seed words. TS-Stu-W2V and TS-Stu-
BERT are student networks that use word2vec embeddings and the BERT model to
encode text segments, respectively.
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7.3.3 Implementation Details

We implemented all deep learning models using PyTorch [105]. For each dataset, the best
parameters and hyperparameters are selected based on the development set.

For our SSCL model, word embeddings are pre-loaded with 128-dimensional word vectors
trained by the skip-gram model [96] with negative sampling and fixed during training. For
each dataset, we use gensim2 to train word embeddings from scratch and set both window
and negative sample size to 5. The aspect embedding matrix is initialized with the centroids
of clusters by running k-means on word embeddings. We set the number of aspects to 30
for all datasets because the model can achieve competitive performance while it will still be
relatively easier to map model-inferred aspects to gold-standard aspects. The smooth factor
λ is tuned in {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} and set to 0.5 for all datasets. The temperature µ is
set to 1. For SSCLS, we have experimented with two pretrained encoders, i.e., BERT [26]
and DistilBERT [119]. We tune smoothing factor λ in {0.5, 1.0}, χG in {0.7, 0.8, 1.0, 1.2},
and χNG in {1.4, 1.6, 1.8}. We set χG < χNG to alleviate the label imbalance problem, since
the majority of sentences in the corpus are labeled as General.

For both SSCL and SSCLS, model parameters are optimized using the Adam optimizer [63]
with β1 = 0.9, β2 = 0.999, and ε = 10−8. Batch size is set to 50. For learning rates, we adopt
a warmup schedule strategy proposed in [143], and set warmup step to 2000 and model size
to 105. Gradient clipping with a threshold of 2 has also been applied to prevent gradient
explosion. Our codes are available at https://github.com/tshi04/AspDecSSCL.

7.3.4 Performance on Amazon Product Reviews

Following previous works [1, 55], we use micro-averaged F1 score as our evaluation metric
to measure the aspect detection performance among different models on Amazon product
reviews. All results are shown in Table 7.4, where we use bold font to highlight the best
performance values. The results of the compared models are obtained from the corresponding
published papers. From this table, we can observe that weakly supervised ABAEinit, MATE
and MATE-MT perform significantly better than unsupervised ABAE since they leverage
aspect representative words extracted from human-annotated datasets and this leads to
more accurate aspect predictions. TS-Teacher outperforms MATE and MATE-MT on most
of the datasets, which further demonstrates that these words are highly correlated with
gold-standard aspects. The better performance of both TS-Stu-W2V and TS-Stu-BERT over
TS-Teacher demonstrates the effectiveness of their teacher-student co-training framework.

In our experiments, we conjecture that low-resolution many-to-one aspect mapping may
be one of the reasons for the low performance of traditional ABAE. Therefore, we have
re-implemented ABAE and combined it with HRSMap. The new model (i.e., ABAE +

2https://radimrehurek.com/gensim/
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Table 7.4: Micro-averaged F1 scores for 9-class EDU-level aspect detection in Amazon reviews.
AVG denotes the average of F1 scores across all domains.

Methods Bags B/T Boots KBs TVs VCs AVG
Unsupervised Methods

ABAE [43] 38.1 37.6 35.2 38.6 39.5 38.1 37.9
ABAE + HRSMap 54.9 62.2 54.7 58.9 59.9 54.1 57.5

Weakly Supervised Methods
ABAEinit [1] 41.6 48.5 41.2 41.3 45.7 40.6 43.2
MATE [1] 46.2 52.2 45.6 43.5 48.8 42.3 46.4
MATE-MT [1] 48.6 54.5 46.4 45.3 51.8 47.7 49.1
TS-Teacher [55] 55.1 50.1 44.5 52.0 56.8 54.5 52.2
TS-Stu-W2V [55] 59.3 66.8 48.3 57.0 64.0 57.0 58.7
TS-Stu-BERT [55] 61.4 66.5 52.0 57.5 63.0 60.4 60.2

Our Models
SSCL 61.0 65.2 57.3 60.6 64.6 57.2 61.0
SSCLS-BERT 65.5 69.5 60.4 62.3 67.0 61.0 64.3
SSCLS-DistilBERT 64.7 68.4 61.0 62.0 66.3 59.9 63.7

HRSMap) obtains significantly better results compared to the traditional ABAE on all
datasets (performance improvement of 51.7%), showing HRSMap is effective in mapping
model-inferred aspects to gold-standard aspects. Compared to the TS-* baseline methods,
our SSCL achieves better results on Boots, KBs, and TVs, and competitive results on Bags,
B/T, and VCs. On average, it outperforms TS-Teacher, TS-Stu-W2V, and TS-Stu-BERT by
16.9%, 3.9%, and 1.3%, respectively. SSCLS-BERT and SSCLS-DistilBERT further boost
the performance of SSCL by 5.4% and 4.4%, respectively, thus demonstrating that knowledge
distillation is effective in improving the quality of aspect prediction.

7.3.5 Performance on Restaurant Reviews

We have conducted more detailed comparisons on the Citysearch dataset, which has been
widely used to benchmark aspect detection models. Following previous work [141], we use
weighted macro averaged precision, recall and F1 score as metrics to evaluate the overall
performance. We also evaluate performance of different models for three major individual
aspects by measuring aspect-level precision, recall, and F1 scores. Experimental results are
presented in Table 7.5. Results of compared models are obtained from the corresponding
published papers.

From Table 7.5, we also observe that ABAE + HRSMap performs significantly better than
traditional ABAE. Our SSCL outperforms all baselines in terms of weighted macro averaged
F1 score. SSCLS-BERT and SSCLS-DistilBERT further improve the performance of SSCL,
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Table 7.5: Aspect-level precision (P), recall (R), and F-scores (F) on the Citysearch testing
set. For overall, we calculate weighted macro averages across all aspects.

Food Staff Ambience Overall
Methods P R F P R F P R F P R F
SERBM [148] 89.1 85.4 87.2 81.9 58.2 68.0 80.5 59.2 68.2 86.0 74.6 79.5
ABAE [43] 95.3 74.1 82.8 80.2 72.8 75.7 81.5 69.8 74.0 89.4 73.0 79.6
W2VLDA [34] 96.0 69.0 81.0 61.0 86.0 71.0 55.0 75.0 64.0 80.8 70.0 75.8
AE-CSA [87] 90.3 92.6 91.4 92.6 75.6 77.3 91.4 77.9 77.0 85.6 86.0 85.8
CAt [141] 91.8 92.4 92.1 82.4 75.6 78.8 76.6 80.1 76.6 86.5 86.4 86.4
ABAE + HRSMap 93.0 88.8 90.9 85.8 75.3 80.2 67.4 89.6 76.9 87.0 85.8 86.0
SSCL 91.7 94.6 93.1 88.4 75.9 81.7 79.1 86.1 82.4 88.8 88.7 88.6
SSCLS-BERT 89.6 97.3 93.3 95.5 71.9 82.0 84.0 87.6 85.8 90.0 89.7 89.4
SSCLS-DistilBERT 91.3 96.6 93.9 92.4 75.9 83.3 84.4 88.0 86.2 90.4 90.3 90.1

and SSCLS-DistilBERT achieves the best results. From aspect-level results, we can observe
that, for each individual aspect, our SSCL, SSCLS-BERT and SSCLS-DistilBERT performs
consistently better than compared baseline methods in terms of F1 score. SSCLS-DistilBERT
gets the best F1 scores across all three aspects. This experiment demonstrates the strength of
the contrastive learning framework, HRSMap, and knowledge distillation, which are able to
capture high-quality aspects, effectively map model-inferred aspects to gold-standard aspects,
and accurately predict aspect labels for the given segments.

7.3.6 Aspect Interpretation

As SSCL achieves promising performance quantitatively on aspect detection compared to the
baselines, we further show some qualitative results to interpret extracted concepts. From
Table 7.6, we notice that there is at least one model-inferred aspect corresponding to each of
the gold-standard aspects, which indicates model-inferred aspects based on HRSMap have
a good coverage. We also find that model-inferred concepts, which are mapped to non-
general gold-standard aspects, are fine-grained, and their representative words are meaningful
and coherent. For example, it is easy to map “app, netflix, browser, hulu, youtube” to
Apps/Interface. Compared to weakly supervised methods (such as MATE), SSCL is also
able to discover new concepts. For example, for aspects mapped to General, we may label
“pc, xbox, dvd, ps3, file, game” as Connected Devices, and “plastic glass screw piece metal
base” as Build Quality. Similarly, we observe that model-inferred aspects based on Bluetooth
Headsets reviews also have sufficient coverage for gold-standard aspects (see Table 7.7).
We can easily map model inferred aspects to gold-standard ones since their keywords are
meaningful and coherent. For instance, it is obvious that “red, light, blinking, flashing, color,
blink” are related to Look and “charge, recharge, life, standby, battery, drain” are about
Battery. For new aspect detection, “motorola, model, plantronics, voyager, backbeatjabra”
can be interpreted as Brand. “player, video, listen, streaming, movie, pandora” are about
Usage.
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Table 7.6: Left: Gold-standard aspects for TVs reviews. Right: Model-inferred aspects
presented by representative words.

Aspects Representative Keywords
Apps/Interface apps app netflix browser hulu youtube

Connectivity
channel antenna broadcast signal station
optical composite hdmi input component

Customer Serv.
service process company contact support
call email contacted rep phone repair

Ease of Use button remote keyboard control use qwerty

Image
setting brightness mode contrast color
motion scene blur action movement effect

Price dollar cost buck 00 pay tax
Size/Look 32 42 37 46 55 40
Sound speaker bass surround volume sound stereo

General

forum read reading review cnet posted
recommend research buy purchase decision
plastic glass screw piece metal base
foot wall mount stand angle cabinet
football watch movie kid night game
pc xbox dvd ps3 file game
series model projection plasma led sony

7.3.7 Ablation Study and Parameter Sensitivity

In addition to self-supervised contrastive learning framework and HRSMap, we also attribute
the promising performance of our models to (i) Smooth self-attention mechanism, (ii) Entropy
filters, and (iii) Appropriate batch size. Hence, we systematically conduct ablation studies
and parameter sensitivity analysis to demonstrate the effectiveness of them, and provide the
results in Fig. 7.3 and Fig. 7.4.

First, we replace the smooth self-attention (SSA) layer with a regular self-attention (RSA)
layer used in [1] and an average pooling (AP) layer. The model with SSA performs better
than the one with AP or RSA. Next, we examine the entropy filter for SSCLS-BERT, and
observe that adding it has a positive impact on the model performance. Then, we study the
effect of smoothness factor λ in SSA and observe that our model achieves promising and
stable results when λ ≤ 1. Finally, we investigate the effect of batch size. F1 scores increase
with batch size and become stable when batch size is greater than 20. However, very large
batch size increases the computational complexity; see Algorithm 2. Therefore, we set batch
size to 50 for all our experiments.
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Table 7.7: Left: Gold-standard aspects for Bluetooth Headsets reviews. Right: Model inferred
aspects presented by representative words.

Aspects Representative Keywords
Battery charge recharge life standby battery drain
Comfort uncomfortable hurt sore comfortable tight pressure

Connectivity
usb cable charger adapter port ac
paired htc galaxy android macbook connected

Durability minute hour foot day min second
Ease of Use button pause track control press forward
Look red light blinking flashing color blink
Price 00 buck spend paid dollar cost

Sound
bass high level low treble frequency
noisy wind environment noise truck background

General

rating flaw consider star design improvement
christmas gift son birthday 2013 new husband
warranty refund shipping contacted sent email
motorola model plantronics voyager backbeat jabra
gym walk house treadmill yard kitchen
player video listen streaming movie pandora
read reading website manual web review
purchased bought buying ordered buy purchase
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Figure 7.3: Ablation study on the Citysearch testing set. WMF represents weighted macro
averaged F1-score.

7.3.8 Case Study

Fig. 7.5 compares heat-maps of attention weights obtained from SSA and RSA on two
segments from the Amazon TVs testing set. In each example, RSA attempts to use a single
word to represent the entire segment. However, the word may be either a representative
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Figure 7.4: Parameter sensitivity analysis on Citysearch.
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Figure 7.5: Visualization of attention weights. SSA and RSA represent smooth and regular
self-attention, respectively.

word for another aspect (e.g., “scene” for Image in Table 7.6) or a word with no aspect
tendency (e.g., “great” is not assigned to any aspect). In contrast, SSA captures phrases and
multiple words, e.g., “volume scenes” and “great value, 499 ”. Based on the results in Fig. 7.3
and Fig. 7.5, we argue SSA is more robust and intuitively meaningful than RSA for aspect
detection.

7.4 Summary

In this study, we propose a self-supervised contrastive learning framework for aspect detection.
Our model is equipped with two attention modules, which allows us to represent every segment



104

with word embeddings and aspect embeddings, so that we can map aspect embeddings to the
word embedding space through a contrastive learning mechanism. In the attention module
over word embeddings, we introduce a SSA mechanism. Thus, our model can learn robust
representations, since SSA encourages the model to capture phrases and multiple keywords
in the segments. In addition, we propose a HRSMap method for aspect mapping, which
dramatically increases the accuracy of segment aspect predictions for both ABAE and our
model. Finally, we further improve the performance of aspect detection through knowledge
distillation. BERT-based student models can benefit from pretrained encoders and overcome
the disadvantages of data preprocessing for the teacher model. During training, we introduce
entropy filters in the loss function to ensure student models focus on high confidence training
samples. Our models have shown better performance compared to several recent unsupervised
and weakly-supervised models on several publicly available review datasets across different
domains. Aspect interpretation results show that extracted aspects are meaningful, have a
good coverage, and can be easily mapped to gold-standard aspects. Ablation studies and
visualization of attention weights further demonstrate the effectiveness of SSA and entropy
filters.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

The main goal of this dissertation is to develop innovative solutions to understand online
customer reviews and learn structured knowledge from them. To achieve this goal, we studied
the review understanding problem in three directions, including corpus-level, document-level
and sentence-level review understanding, which are associated with many NLP tasks. In this
dissertation, we primarily focus on three tasks, i.e., topic modeling, sentiment analysis, and
aspect detection. We have developed machine learning techniques based on unsupervised,
multi-task and self-supervised learning frameworks to deal with the challenges in these tasks.

For the topic modeling task, we introduced a SeaNMF model to discover topics for the short
texts and use a block coordinate descent algorithm to infer parameters for our SeaNMF
model. We also developed a sparse SeaNMF model in order to get a better interpretability.
Extensive quantitative evaluations on various real-world short text datasets demonstrate the
superior performance of the proposed models over several other state-of-the-art methods
in terms of topic coherence and classification accuracy. The qualitative semantic analysis
demonstrates the interpretability of our models by discovering meaningful and consistent
topics. With a simple formulation and the superior performance, SeaNMF can be an effective
standard topic model for short texts.

For the document-level multi-aspect sentiment analysis task, we systematically investigated
the dataset from the ratemds.com review platform, where each review for a doctor comes with
an overall rating and ratings of four different aspects. We also proposed a multi-task learning
framework for the document-level multi-aspect sentiment classification. Extensive experiments
have been conducted on two subsets of the ratemds dataset to demonstrate effectiveness of
the proposed model. Qualitative results show the power of attention mechanisms and reveal
some linguistic problems in the textual reviews.

105
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In order to improve the interpretability of attention-based deep sentiment classification models,
we proposed a general-purpose corpus-level explanation approach, which can capture causal
relationships between keywords and model predictions via learning importance of keywords
for predicted labels across a training corpus based on attention weights. Experimental results
have shown that the keywords are semantically meaningful for predicted labels. We further
proposed a concept-based explanation method to identify important concepts for model
predictions. Our experimental results also demonstrate that this method effectively captures
semantically meaningful concepts. It also provides the relative importance of each concept to
model predictions.

For the document-level multi-aspect sentiment analysis task, we have also focused on inter-
pretability and reliability of our proposed model. We have developed a deliberate self-attention
based deep neural network model, which can achieve competitive performance while also being
able to interpret the predictions made. We proposed an attention-driven keywords ranking
method, which is based on the corpus-level explanation approach and can automatically
discover aspect keywords and aspect-level opinion keywords from a review corpus based on
the attention weights. In addition, we proposed a lecture-audience strategy to estimate model
uncertainty in the context of multi-task learning. Our extensive set of experiments on five
different open-domain datasets demonstrate the superiority of the proposed models. We fur-
ther introduced two new datasets in the healthcare domain and benchmark different baseline
models and our models on them. Attention weights visualization results and visualization of
aspect and opinion keywords demonstrate the interpretability of our models.

For the aspect detection task, we proposed a self-supervised contrastive learning framework
and an attention-based model equipped with a novel smoothing self-attention module in
order to learn better representations for aspects and review segments. We also introduced a
high-resolution selective mapping method to efficiently assign aspects discovered by the model
to the aspects of interest. In addition, we proposed using a knowledge distillation technique
to further improve the aspect detection performance. Our methods outperform several recent
unsupervised and weakly supervised approaches on publicly available benchmark user review
datasets. Aspect interpretation results show that extracted aspects are meaningful, have a
good coverage, and can be easily mapped to aspects of interest.

8.2 Future Work

In the future, there are many ways to advance techniques for understanding online customer
reviews. In this section, some research directions are discussed as follows:
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8.2.1 Mining Structured Knowledge from Reviews

Several tasks in ABSA, including aspect term extraction, opinion term extraction, and
opinion-target detection, play a fundamental role in review understanding. They enable
us to convert reviews into a structured knowledge base that will benefit many downstream
tasks, such as review summarization and question-answering. As aforementioned, most
deep learning methods for ABSA rely on fully supervised training, so their applications are
limited to a few areas with annotated corpora. In order to have a broad impact in other
domains, unsupervised, weakly-supervised, and transfer learning methods will continue to be
investigated to deal with these problems. There are many interesting research questions, such
as 1) Can we apply open-domain entity extraction techniques (e.g., phrase extraction) to the
aspect and opinion term extraction tasks? 2) Can we use a distant-supervision approach to
deal with the opinion-target detection problem?

In practical applications, we can use the discovered knowledge (i.e., aspects and sentiment) to
analyze changes of aspects/topics over time for products and services. For example, for TVs,
customers may have been interested in high-resolution LCD screens 10 years ago. Nowadays,
they may be more interested in OLED screens and smart features. Personalization is another
direction that has gained attention. By considering user groups, we can apply extracted
aspects to the development of recommender systems.

8.2.2 Review-Based Natural Language Generation

Other research tasks include question-answering (question generation and answer generation),
multi-document summarization, and recommendation justification tasks in the direction of
NLG for online reviews, and plan to deal with two common challenges: 1) Lack of ground-truth
or paired examples. In these tasks, we do not have paired answers, ground-truth summaries
or justification available for training natural language generation models. Therefore, there
are two strategies to solve this problem, including creating synthetic datasets (e.g., pseudo
paired examples) based on aspect-based sentiment analysis and developing unsupervised
deep learning models (e.g., autoencoder based models). 2) Fact correctness. These tasks are
conditioned on multiple reviews with different facts and it is difficult to generate a coherent
story while retaining the facts. To solve this problem, clustering methods will be studied
to group reviews or review segments based on their aspect and sentiment. Text matching
or natural language inference methods will also be considered to show if different review
segments have the same meaning or not. In addition, automatic evaluation metrics will be
investigated to evaluate the fact correctness of generated content.
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