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Applications of Multiwavelets

to Image Compression

Michael B. Martin

(ABSTRACT)

Methods for digital image compression have been the subject of much study over the past

decade. Advances in wavelet transforms and quantization methods have produced algorithms

capable of surpassing the existing image compression standards like the Joint Photographic

Experts Group (JPEG) algorithm. For best performance in image compression, wavelet

transforms require filters that combine a number of desirable properties, such as orthogo-

nality and symmetry. However, the design possibilities for wavelets are limited because they

cannot simultaneously possess all of these desirable properties. The relatively new field of

multiwavelets shows promise in removing some of the limitations of wavelets. Multiwavelets

offer more design options and hence can combine all desirable transform features. The few

previously published results of multiwavelet-based image compression have mostly fallen

short of the performance enjoyed by the current wavelet algorithms. This thesis presents

new multiwavelet transform methods and measurements that verify the potential benefits of

multiwavelets. Using a zerotree quantization scheme modified to better match the unique

decomposition properties of multiwavelets, it is shown that the latest multiwavelet filters

can give performance equal to, or in many cases superior to, the current wavelet filters. The

performance of multiwavelet packets is also explored for the first time and is shown to be

competitive to that of wavelet packets in some cases. The wavelet and multiwavelet filter

banks are tested on a much wider range of images than in the usual literature, providing a

better analysis of the benefits and drawbacks of each.
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Chapter 1

Introduction

1.1 Motivation

It has been suggested that “a picture is worth a thousand words.” This is all the more true

in the modern era in which information has become one of the most valued of assets. Recent

technology has introduced the paradigm of digital information and its associated benefits

and drawbacks. When the time comes to store a photograph digitally, its worth is put to

the test. A thousand words stored on a digital computer requires very little capacity, but a

single picture can require much more. A thousand pictures can require a very large amount

of storage. While the advancement of computer storage technology continues at a rapid pace,

a means for reducing the storage requirements of an image is still needed in most situations.

Thus the science of digital image compression has emerged. Current methods of image

compression, such as the popular Joint Photographic Experts Group (JPEG) standard,

can provide good performance in terms of retaining image quality while reducing storage

requirements. But even the popular standards like JPEG have limitations. Research in

new and better methods of image compression is ongoing, and recent results suggest that

some newer techniques may provide much greater performance than those developed just

five years ago. This thesis gives a summary of some of these new advances, presents some

1
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new multiwavelet decomposition and quantization techniques which improve the currently

published results, and illustrates their potential for inclusion in new image compression

applications and standards.

1.2 Previous Work

Both wavelet theory and methods for its application to image compression have been well

developed over the past decade. Even so, the field of wavelets is still sufficiently new that

further advancements continue to be reported in many areas. Numerous authors have con-

tributed to the field to make it what it is today, with the most well known pioneer probably

being Ingrid Daubechies. Other researchers whose contributions directly influence this work

include Stéphane Mallat for the pyramid filtering algorithm, and the team of R. R. Coifman,

Y. Meyer, and M. V. Wickerhauser for their introduction of wavelet packets [3]. Much of

the current theory of multiwavelets comes from Vasily Strela and members of the Wavelets

Strategic Research Programme (WSRP) at the National University of Singapore. Of course,

many others have contributed to the development of the theory of multiwavelets over the

past several years.

Recent literature on the subject of multiwavelets has focused mostly on development of the

basic theory [9, 30, 21, 29, 24], methods of constructing new multifilters [22, 8], and methods

for application to denoising and compression [21, 19, 20, 29, 24, 8]. Some authors have

already presented brief evaluations of the performance of multiwavelets for image compression

using orthogonal multiwavelets [21, 19, 20, 29, 24], and more recently with biorthogonal

multiwavelets [24, 8]. While the results of these evaluations have generally shown interesting

promise for multiwavelets, they have been limited to a few tests, and often are just a small

portion of a larger work. Also, some techniques required for good image compression results,

such as symmetric signal extension for linear phase multifilters, have only just recently

been developed. With the very recent work on symmetric signal extension for the class of
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symmetric-antisymmetric multiwavelets [29], multiwavelets can now be compared to scalar

wavelets on equal footing in practical image compression applications.

1.3 Significance of This Work

Multiwavelets are only now beginning to approach the maturity of development of their

scalar counterparts. A few papers that have tested the image compression properties of

multiwavelets suggest that multiwavelets can sometimes perform as well as, or better than,

scalar wavelets [19, 29, 24, 8]. But to date, no researchers have pursued this more thoroughly

with the intention of determining whether multiwavelets might be a better choice for image

compression than scalar wavelets, at least in some applications.

This thesis presents an evaluation of the performance of state-of-the-art multiwavelet meth-

ods for compression of general classes of images. To better determine typical performance on

an arbitrary image, a much larger selection of images is tested than in the usual literature.

The images used in this work include many popular favorites like Lena and Barbara, which

have been chosen for comparison to the results found in the literature. Additionally, some

“synthetic” computer-generated images have been chosen for having characteristics quite

different from those of the “natural” images normally used to test wavelet algorithms. This

thesis presents the following new results:

1. A comparison of the best known multiwavelets is made to the best known scalar

wavelets. Both quantitative and qualitative measures of performance are examined

for each of several natural and synthetic images.

2. The use of multiwavelet packets is explored. Multiwavelet packets are based on the

ideas of wavelet packets, as applied to multiwavelet filter banks, and are defined in

Section 4.3.

3. A method is presented for improving the performance of zerotree-like quantization
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methods [16, 15].

1.4 Outline of Report

Chapter 2 presents the transform approach to image compression used by most current algo-

rithms. Chapter 3 provides the basic theory of wavelets and wavelet packets, with an intro-

duction to multiwavelets given in Chapter 4. Chapter 5 discusses implementation issues for

wavelets and multiwavelets, and Chapter 6 presents the results from a wavelet/multiwavelet

coder implementation. Finally, Chapter 7 concludes this work with a summary of results,

some conclusions based thereon, and a discussion of future work.



Chapter 2

Image Compression Methodologies

2.1 Overview of Present Techniques

A number of methods have been presented over the years to perform image compression.

They all have one common goal: to alter the representation of information contained in an

image so that it can be represented sufficiently well with less information. Regardless of the

details of each image compression method, the methods can be classified into two general

categories: lossy or lossless. For methods in the first category, some information from the

original image is lost, even if only a small amount. Conversely, lossless compression methods

provide a perfect reproduction of the original image.

Current methods for lossless image compression, such as that used in the Graphical Inter-

change Format (GIF) image standard, typically use some form of Huffman or arithmetic

coder [10, 28] or an integer-to-integer wavelet transform [1]. Unfortunately, even the best

current lossless algorithms provide relatively small compression factors compared to the best

lossy methods. To achieve a high compression factor, a lossy method must be used.

The most popular current lossy image compression methods use a transform-based scheme,

as shown in Figure 2.1. The signal is processed with an invertible transform, such as discrete

5
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Figure 2.1: Typical image compression system design.

cosine transform (DCT) or wavelet transform. This step is intended to “decorrelate” the

input signal by transforming to a representation in which the set of data values is sparser,

thereby compacting the information content of the signal into a smaller number of coeffi-

cients. The transform coefficients, which may typically be thought of as infinite precision

real numbers1, are then quantized. This step is not reversible and represents the lossy stage

in the process. A good quantizer tries to assign more bits for coefficients with more informa-

tion content or perceptual significance, and fewer bits for coefficients with less information

content, based on a given fixed bit budget. The final step is entropy coding, which removes

redundancy from the output of the quantizer. Each of these components of the compression

process is described in further detail in the following sections.

2.2 Transform

The choice of transform used depends on a number of factors, in particular, computational

complexity and coding gain. Computational complexity is measured in terms of the number

of multiplications and additions required for the implementation of the transform. Coding

gain is a measure of how well the transformation compacts signal energy into a small number

of coefficients. The most commonly used transforms today are the DCT, the wavelet trans-

form, and the generalized lapped orthogonal transform (GenLOT). The latter, GenLOT, is

a relatively new design of M-channel filter banks which mitigates some of the undesirable

properties of the DCT (and of which the DCT is a special case). A good discussion of these

different transforms can be found in the book by Strang and Nguyen [18].

1Or at least machine precision floating-point numbers.
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A good study of the benefits, drawbacks, and performance of DCT and wavelet transforms

is presented in a paper by Xiong, Orchard, and Ramchandran [31]. It is noted in that paper

that the DCT used in the JPEG standard is less computationally complex than wavelet

transforms for the same number of image samples. However, it is also recognized that

wavelet transforms can achieve coding gain superior to that of the DCT. Wavelet transforms

also allow additional freedom in the selection of the particular wavelet filter used; in contrast,

there is only one DCT2. GenLOT can also give better compression than the DCT, especially

at low bit rate [18]. And, unlike the DCT, GenLOT offers the ability to optimize the filters

for certain performance criteria, such as coding gain or stopband attenuation. Wavelet-based

transforms perform slightly better than GenLOT at medium bit rate, but it is difficult to

select one over the other at high or low bit rates [18].

More sophisticated transform methods are also possible, such as Multiple-Basis Representa-

tion (MBR) algorithms. One such approach is to simultaneously decompose an image with

different transforms and then select the basis vector yielding the largest coefficient. This

process is then repeated as desired on the residual image (which is the difference between

the input and reconstructed image). Another approach is to apply two or more different

transforms (e.g. DCT, wavelet, etc.) in succession. The initial transform is followed by one

or more different transforms that operate iteratively on the residual image of the previous

stage. For example, one paper cites good results from the application of a wavelet transform

to an image followed by a local cosine transform of the residual [13]. Using multiple trans-

forms (and hence multiple bases) allows the input signal to be better represented than if a

fixed basis were used, but the algorithms are more complicated.

2There are in fact four transforms that may fall under the name of discrete cosine transform, each with
different symmetry properties. Only one, typically denoted “Type IV”, has the needed symmetry properties
for image compression with symmetric boundary extension [18].
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2.3 Quantization

There have been numerous methods proposed to perform quantization of the transform coef-

ficients. Even so, quantization remains an active field of research and some new results show

great promise for wavelet-based image compression [32, 33]. Since the properties possessed

by the coefficients from the transformation stage depend on the transform used, the choice

of a good quantizer depends on the transform that is selected. While transforms and quan-

tizers can be “mixed and matched” to a certain degree, some quantization methods perform

better with particular transform methods [31]. Also, perceptual weighting of coefficients in

different subbands can be used to improve subjective image quality [18].

Quantization methods used with wavelet transforms fall into two general categories: embed-

ded and non-embedded. Scalar and vector quantizers are common examples of non-embedded

quantizers. They determine bit allocations based on a specified bit budget, allocating bits

across a set of quantizers corresponding to the image subbands. The most common reference

for efficient bit allocation over a set of different quantizers is the paper by Shoham and Ger-

sho [17]. Embedded quantization schemes [16, 15] organize the bits so that, loosely speaking,

the most important bits are transmitted first. More pedantically, a quantization method is

embedded if, for two different bit budgets N and M , where N > M , the first M bits of the

quantizer output with bit budget N are identical to those when the budget is just M bits.

2.4 Entropy Coding

Entropy coding substitutes a sequence of codes for a sequence of symbols, where the codes are

chosen to have fewer bits when the probability of occurrence of the corresponding symbol is

higher. This process removes redundancy in the form of repeated bit patterns in the output

of the quantizer. Frequently occurring symbols are replaced with shorter bit patterns while

infrequently occurring symbols are replaced with longer bit patterns, resulting in a smaller
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bit stream overall.

The most common entropy coding techniques are run-length encoding (RLE), Huffman cod-

ing, arithmetic coding [10, 28], and Lempel-Ziv (LZ) algorithms. With RLE, when a symbol

is repeated many times consecutively (a “run”), the coder substitutes for the sequence just

the first symbol and the length of the run. This works well when there are many long runs

in the quantized data, but does not work well otherwise. Huffman, arithmetic, and LZ codes

substitute bit patterns for symbols (which may also be bit patterns) based on the frequency

of symbols. The frequency of each symbol may be assumed a priori or estimated adaptively.

LZ methods avoid the frequency estimation problem by building a dictionary that maps

symbols to bits, but these methods are less effective than arithmetic coders [28]. While the

Huffman algorithm requires each code to be an integral number of bits, arithmetic coding

methods allow for fractional numbers of bits per code by grouping two or more such codes

together into a block composed of an integral number of bits. This allows arithmetic codes

to outperform Huffman codes, and consequently arithmetic codes are more commonly used

in wavelet-based algorithms [16, 15].



Chapter 3

Wavelets and Wavelet Packets

In Chapter 2, it was shown that the most commonly used image compression methods use

three steps: transform, quantization, and entropy coding. This chapter will discuss how the

first step, the transform, may be accomplished using wavelets1. The following is intended as

merely a crash course in wavelet theory. The interested reader is referred to other sources

for more detailed background. Simple introductions may be found in the books by Strang

and Nguyen [18] and Vetterli and Kovačević [26], while readers desiring more mathematical

treatment may instead prefer the books by Daubechies [6] or Mallat [11].

3.1 Wavelets and Multiresolution Analysis

The theory of wavelets starts with the concept of a multiresolution analysis. In the analysis

of functions, it is convenient to express functions belonging to a certain space as a linear

combination of basis functions. In wavelet analysis, we go one step further and stipulate that

every basis function be a dilation and translation of a single scaling function of unit norm,

denoted φ(t). We require that integer translations {φ(t−k)}|k∈Z be linearly independent

1In fact, this chapter will present only wavelet transforms for one-dimensional signals. The techniques
for handling two-dimensional image data are discussed in Chapter 5.

10
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and produce an orthonormal basis for the subspace V0. Likewise, for fixed integer scale j,

the translations {2−j/2 φ(2−jt−k)}|k∈Z form an orthonormal basis for the subspace Vj , such

that the subspaces satisfy

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · (3.1)

and
∞⋃

j=−∞
Vj = L2(R),

∞⋂
j=−∞

Vj = {0}. (3.2)

Then each function f(t) ∈ L2(R) can be written as a linear combination of these basis

functions with weights αj,k,

f(t) =
∞∑

j=−∞
2−j/2

∞∑
k=−∞

αj,k φ(2−jt−k), (3.3)

where

αj,k =
∫ ∞
−∞

f(t) 2−j/2 φ(2−jt−k) dt. (3.4)

The weights αj,k are called scaling coefficients. It is important to point out that (3.3) is not

an orthogonal expansion of f(t) into the Vj subspaces because they are not mutually disjoint

(in light of (3.1)). Furthermore, the functions {2−j/2 φ(2−jt−k)}|j,k∈Z do not represent a

basis for L2(R) because they are not all linearly independent across scales.

The nesting property of the subspaces implies that the scaling function φ∈V0 also belongs

to V−1 and thus satisfies the two-scale dilation equation

φ(t) =
√

2
∞∑

k=−∞
hk φ(2t−k) (3.5)

where the sequence {hk} will become important in the next section. In this context the set

{hk} represents coefficients of the orthogonal projection of φ(t) onto the basis {
√

2φ(2t−

k)}|k∈Z of V−1, but later we will regard them as lowpass filter coefficients in a filter bank.

The multiresolution nature of this analysis lends itself to a graphic interpretation. As the

scale j decreases, the support of each basis function 2−j/2 φ(2−jt− k) decreases as well.
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Hence smaller scales may be regarded as representing a finer, or more detailed, resolution.

Conversely, larger values of j indicate basis functions with wider support, suggesting coarser

scales and less detail. This makes sense in light of (3.1), since Vj ⊂ Vj−1 implies that Vj−1

represents a space of functions at a finer resolution than Vj.

Because we want an orthogonal decomposition of f(t), we now define the “difference” space

Wj as the complement of Vj in Vj−1, namely

Vj−1 = Vj ⊕Wj, Vj
⋂
Wj = ∅. (3.6)

It can be shown that the W subspaces provide a decomposition of L2(R) into mutually

orthogonal subspaces [6], i.e.

Wj ⊥Wj′ if j 6= j′, and
∞⊕

j=−∞
Wj = L2(R). (3.7)

The basis for the subspace W0 consists of translations of a new function, ψ(t). Since the

W spaces inherit the scaling properties of the V spaces, {2−j/2 ψ(2−jt−k)}|k∈Z will be a

basis for Wj . As with the V spaces, each function f(t)∈L2(R) can be written as a linear

combination of these basis functions with weights βj,k:

f(t) =
∑
j

2−j/2
∞∑

k=−∞
βj,k ψ(2−jt−k), (3.8)

where

βj,k =
∫ ∞
−∞

f(t) 2−j/2 ψ(2−jt−k) dt. (3.9)

The function ψ(t) is called the wavelet function, and the numbers βj,k are called the wavelet

coefficients. The difference between (3.3) and (3.8) is that the latter represents an orthogonal

expansion of f(t). Also, the functions {2−j/2 ψ(2−jt−k)}|j,k∈Z do represent a basis for L2(R).

Since ψ∈W0 and W0⊂V−1, we have

ψ(t) =
√

2
∞∑

k=−∞
gk φ(2t−k) (3.10)
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with orthogonal projection coefficients {gk}. Note from (3.6) that each subspace VM is the

direct sum of VN and some W subspaces, for N>M :

VM = VN ⊕WN ⊕WN−1 ⊕WN−2 ⊕ · · · ⊕WM+1. (3.11)

This is another way of saying that a function belonging to the subspace VM may be written as

the linear combination of basis functions of the mutually orthogonal subspaces

VN ,WN ,WN−1, ...,WM+1. Thus given the function f(t)∈VM we may write

f(t) = 2−N/2
∞∑

k=−∞
αN,k φ(2−N t−k) +

N∑
j=M+1

2−j/2
∞∑

k=−∞
βj,k ψ(2−jt−k). (3.12)

In the filter bank representation of the wavelet transform presented in the next section, this

selection of subspaces will correspond to the tree-shaped octave-band iteration of the analysis

bank.

3.2 Discrete Implementation as Filter Banks

It has been shown that the wavelet analysis relations given by the two-scale equations (3.5)

and (3.10) can be expressed in terms of a two-channel perfect reconstruction (PR) filter bank,

where the lowpass and highpass filters have impulse responses {hk} and {gk}, respectively

[6]. Perfect reconstruction means that the output of the filter bank is identical to the input,

except for a possible delay and overall scaling factor. A particular signal of interest, x(t)∈V0,

can be written as a linear combination of the basis functions {φ(t−k)} with weights v0,k:

x(t) =
∞∑

k=−∞
v0,k φ(t−k). (3.13)

If we pass the coefficients v0,k into a two-channel filter bank, after the first level of filtering

and downsampling we obtain the lowpass coefficients

v1,k =
∞∑

m=−∞
hm−2k v0,k (3.14)
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Figure 3.1: Analysis and synthesis stages of a 2-channel single-level biorthogonal PR filter

bank.

and highpass coefficients

w1,k =
∞∑

m=−∞
gm−2k v0,k. (3.15)

Similar iterations of the filter bank on the lowpass channel result in the coefficients

vj,k =
∞∑

m=−∞
hm−2k vj−1,k, (3.16)

wj,k =
∞∑

m=−∞
gm−2k vj−1,k, (3.17)

after j stages of the analysis filters, where vj−1,k is the output of the (j−1)th iteration of

the filter bank. With the filters {hk} and {gk} as given in (3.5) and (3.10), it turns out that

the numbers {vj,k} are in fact just the scaling coefficients {αj,k}, and the numbers {wj,k} are

actually the wavelet coefficients {βj,k}. Thus the wavelet decomposition of the signal x(t) in

the bases for the subspaces VJ and WJ , for J >0, can be found by repeated filtering of the

scaling coefficients {v0,k} corresponding to the subspace V0.

The synthesis portion of the filter bank reconstructs the sequence {vj−1,k} from the sequences

{vj,k} and {wj,k} via

vj−1,k =
∞∑

m=−∞
h̃k−2m vj,k +

∞∑
m=−∞

g̃k−2m wj,k , (3.18)

as is shown in Figure 3.1. Note that the filters in the synthesis stage, with impulse responses

{h̃k} and {g̃k}, are not necessarily the same as those in the analysis stage, which have impulse

responses {hk} and {gk}. The filters {h̃k} and {g̃k} are called the dual2 filters with respect

2The definition of “dual” is beyond the scope of this discussion. The interested reader is referred to
Strang and Nguyen [18].
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to {hk} and {gk}. The dual filters have corresponding dual scaling and wavelet functions,

φ̃(t) and ψ̃(t), which generate the dual spaces Ṽj and W̃j. The equations relating these dual

quantities are identical to those in the last section, with a tilde placed over each quantity.

For an orthogonal PR filter bank, h̃k and g̃k are just the time reversals of hk and gk, respec-

tively. However, an FIR filter bank cannot have both orthogonal and symmetric filters with

length greater than two [18]. Consequently, filters having symmetric impulse responses with

length greater than 2 must be biorthogonal, in which case {h̃k} and {g̃k} will be different

from {hk} and {gk}. Biorthogonal filter banks give up the orthogonality property to gain

symmetric filters. The use of symmetric filters is important in image compression because

the best transform methods require symmetric filters to perform symmetric boundary ex-

tension of the image. Daubechies [6] gives the “alternating flip” conditions on h̃k and g̃k for

a PR filter bank:

gn = (−1)n+1 h̃−n+1, (3.19)

g̃n = (−1)n+1 h−n+1. (3.20)

The requirements on the biorthogonal lowpass and highpass filters to ensure perfect recon-

struction of the original signal, expressed in the time domain, are

∞∑
n=−∞

hn h̃n+2k = δk,0, (3.21)

∞∑
n=−∞

hn g̃n+2k = 0, (3.22)

∞∑
n=−∞

gn h̃n+2k = 0, (3.23)

∞∑
n=−∞

gn g̃n+2k = δk,0, (3.24)

where k is presumed to be integer.

This is the essence of Mallat’s algorithm3: starting with the scaling coefficients of a given sig-

nal x(t) in subspace V0, the scaling and wavelet coefficients for subspacesW1,W2, ...,WJ−1,WJ

3Mallat’s algorithm is also referred to as the pyramid algorithm or the fast wavelet transform.
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and VJ are computed directly via (3.16) and (3.17). The inverse computation is performed by

repeated application of (3.18). In terms of the multiresolution analysis, Mallat’s algorithm

starts at a particular scale and proceeds to coarser scales by the filtering process. Conversely,

the synthesis bank starts at the coarsest scale and finishes at the finest scale. An example

of a three-level analysis filter is shown in Figure 3.2. The corresponding synthesis filter is

shown in Figure 3.3.

Figure 3.2: Analysis stage of a three-level biorthogonal PR filter bank.

Figure 3.3: Synthesis stage of a three-level biorthogonal PR filter bank.

3.3 Wavelet Packets

The filter bank design associated with the wavelet analysis method involves iterating the

lowpass-highpass filtering and downsampling procedure only on the output of the lowpass

branch of the previous stage. A question that immediately arises is, “What happens if you

iterate on the highpass branch as well? Do you still get corresponding orthonormal bases,

and if so, what are they?”

Coifman, Meyer, and Wickerhauser answered these questions by presenting an extension of

the octave-band wavelet decomposition to a full tree decomposition [3]. They defined the
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new basis functions as follows. Let u0(t)≡φ(t) and u1(t)≡ψ(t), and define

u2n(t) =
√

2
∞∑

k=−∞
hk un(2t−k), (3.25)

u2n+1(t) =
√

2
∞∑

k=−∞
gk un(2t−k). (3.26)

Coifman et al. showed that the set {un(t−k)}, where n (the “modulation” parameter) ranges

over nonnegative integers and k ranges over all integers, forms an orthonormal basis of L2(R).

By also including dilations by a power of 2, a library of functions {2−j/2 un(2−jt−k)} is formed.

Note that this library is overcomplete: not all of its members are orthogonal, and it contains

many subsets that are a complete basis of L2(R) themselves. The question remaining is how

to select a complete orthonormal basis from the library4. The answer is given as a theorem:

if the set of integers {l, n} is such that the intervals [2ln, 2l(n + 1)) form a disjoint covering

of the half line [0,∞), then the corresponding set of functions {2l/2 un(2lt−k)}|k∈Z forms a

complete orthonormal basis of L2(R). The basis functions are called wavelet packets.

The selection of a basis can also be viewed in terms of a tree structure. Using tree terminol-

ogy, the set of elements of each basis corresponds in a one-to-one fashion to a particular set of

terminal nodes of a binary tree. Some examples of possible basis selections are shown as trees

in Figure 3.4. For each tree in Figure 3.4, a branching indicates that the signal entering from

the left passes through two channels. The upper branch is lowpass filtered, while the lower

branch is highpass (bandpass) filtered. Each branch is then also downsampled before the

next branching point. The right-most points in the tree are the terminal nodes. For example,

the tree in Figure 3.4a is the same as that in Figure 3.2. As a second example, consider the

two-level tree in Figure 3.4c. The input signal is lowpass filtered and downsampled to obtain

the uppermost branch with its corresponding terminal node and basis function u0(t). The

input signal also passes through a lower branch and is highpass filtered and downsampled.

The result of that operation is again lowpass filtered and downsampled to produce the next

terminal node (with basis function u2(t)) and highpass filtered and downsampled to produce

4Note that Multiple-Basis Representation (MBR) methods also provide basis selection adapted to match
the input signal, but they do not require orthogonality of the bases.
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Figure 3.4: Possible wavelet packet filter banks. (a) is the standard wavelet decomposition,

(b) is the full tree (Walsh basis), (c) and (d) are other possibilities.

the last terminal node (with basis function u3(t)). Interpretation of Figures 3.4b and 3.4d

follows this same reasoning.

As in the previous section, the Mallat algorithm is used to implement this procedure in the

form of a filter bank. But there is one key difference for wavelet packets: the highpass output

of each branch is also filtered and downsampled, up to a maximum number of decomposition

iterations. After computing all the coefficients in the full tree, a basis is chosen by pruning

the tree. Pruning involves making a decision at each branch about whether to keep the two

“children”, or prune them and keep the “parent”. The pruning process starts at the terminal

nodes at some maximum depth (such as five levels of decomposition) and works back up the

tree until all terminal nodes (children) have been chosen instead of their parent nodes. The

final basis is given by the remaining unpruned terminal nodes. How the pruning decision is

made at each step can vary depending on the application. Note that the pruning operation

itself is rather efficient, requiring only O(N) operations where N is the length of the original

data signal [4]. The increased computational complexity of wavelet packets comes from the

computation of all coefficients in the full tree and then the computation required at each

branch to determine whether to prune the tree at that point.

Selection of a “best” basis may be performed in a number of ways. Coifman et al. suggest

the use of an additive cost function that is applied to each set of parent and child nodes

in the pruning process. If the sum of the costs of the children is greater than the parent’s

cost, the children are pruned; otherwise the children are kept. The performance of this

method depends entirely on the choice of cost functions. Some cost functions that have
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been proposed include: Shannon entropy [5], the number of coefficients in the node that

are significant compared to (i.e., greater than) some threshold5 [12], and the number of bits

required to represent all the coefficients in the node (introduced in this paper).

Newer methods for selecting a basis approach the problem from a rate-distortion perspective.

Ramchandran and Vetterli proposed a method that attempts to select the set of terminal

nodes that are optimal in a rate-distortion sense [14]. Their approach involves the minimiza-

tion at each branch of a Lagrangian “cost function”, J(λ)=D+λR, where D is the average

distortion and R is the target average bit rate. The value of λ that minimizes J(λ) deter-

mines whether to prune and also gives the best quantizer for that node (which is then used

for uniform quantization of the coefficients of that node). More recently, Xiong et al. have

taken this idea and merged the basis optimization with their space-frequency quantization

(SQF) approach, yielding impressive results [32, 33].

The benefit of wavelet packets over the octave-band wavelet decomposition (described in

Section 3.1) comes from the ability of the wavelet packets to better represent high-frequency

content, and high-frequency oscillating signals in particular. This allows wavelet packets to

perform significantly better than wavelets for compression of images with a large amount of

texture, such as the commonly used Barbara image. For example, Meyer et al. [12] show

that wavelet packet techniques applied to images with textured patterns can give over 0.5

dB improvement in some cases over the SPIHT algorithm results [15]. The authors also

point out that the perceived image quality is significantly improved using wavelet packets

instead of wavelets, especially in the textured regions of the images. Xiong et al. show similar

results using wavelets and wavelet packets both with SPIHT and their own SFQ method [33].

Regardless of the choice of quantizer, they show wavelet packets often outperforming wavelets

by 0.5-1.0 dB across bit rates for the Barbara image. The results in these papers confirm the

ability of wavelet packets to outperform wavelets in some image compression situations. In

the next chapter we will consider an alternative approach to improving wavelet-based image

5Usually this threshold is taken to be on the order of the quantization step size.
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compression: multiwavelets.



Chapter 4

Multiwavelets and Multiwavelet

Packets

The wavelet transform described in Section 3.2 is one type of transform that may be used

in image compression. A newer alternative is the multiwavelet transform. Multiwavelets are

very similar to wavelets but have some important differences. As indicated in Chapter 3,

wavelets may be described in the context of a multiresolution analysis with scaling function

φ(t) and wavelet function ψ(t). In fact, it is possible to have more than one scaling (and

wavelet) function. This is the idea behind multiwavelets, which are described in this chapter

as a natural extension of the wavelets in Chapter 3.

4.1 Wavelets of Multiplicity r

While the very first multiwavelet literature goes back further1, some of the earliest developed

multiresolution theory of multiwavelets can be found in a paper by Goodman et al. [9]. Vasily

Strela’s Ph.D. thesis [21] extends the theory of multiwavelets even further and presents it in

1For more details, see the history and references in Strela’s Ph.D. thesis [21].
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terms of PR multifilter banks in both the time and frequency domains. The description of

multiwavelet theory here follows the organization of the wavelet theory in Chapter 3.

For the remainder of this chapter, let r be a positive integer. Now it is presumed that the

subspace V0 is spanned by translations of {φm(t)}, m = 1, 2, . . . , r, a set of r normalized and

mutually orthogonal scaling functions. The subspace Vj is then spanned by the orthonormal

set {2−j/2 φm(2−jt−k)}, where m = 1, 2, . . . , r and k is an integer. Similarly, there are r

wavelet functions {ψm(t)} such that {2−j/2 ψm(2−jt−k)} constitutes an orthonormal basis

for Wj.

For notational convenience, the set of scaling functions can be written using the vector nota-

tion Φ(t) ≡ [φ1(t) φ2(t) · · · φr(t)]T , where Φ(t) is called the multiscaling function. Like-

wise, the multiwavelet function is defined from the set of wavelet functions as Ψ(t) ≡

[ψ1(t) ψ2(t) · · · ψr(t)]T . When r = 1, as in Chapter 3, Ψ(t) is called a scalar wavelet, or

simply wavelet2. While in principle r can be arbitrarily large, all multiwavelets used in this

work are only for r=2.

The multiresolution subspace relations in (3.1), (3.2), (3.6), (3.7), and (3.11) hold without

modification for multiwavelets. The wavelet two-scale equations, (3.5) and (3.10), have

nearly identical multiwavelet equivalents:

Φ(t) =
√

2
∞∑

k=−∞
Hk Φ(2t−k), (4.1)

Ψ(t) =
√

2
∞∑

k=−∞
Gk Φ(2t−k). (4.2)

Note, however, that {Hk} and {Gk} are matrix filters, i.e. Hk and Gk are r×r matrices

for each integer k. The filter bank representation is also mostly unchanged, except now the

input and output of every branch in the multifilter bank is a vector. A particular signal of

interest, x(t)∈V0, can be written as a linear combination of the basis functions {φl(t−k)},
2In the rest of this thesis, wavelets are assumed to be scalar unless explicitly denoted multiwavelets.
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Figure 4.1: Analysis and synthesis stages of a single-level biorthogonal PR multifilter bank.

Figure 4.2: View of the H multifilter as a 2-input, 2-output system composed of the scalar

filters H11, H12, H21, and H22 (for r=2).

l = 1, 2, . . . , r, with weight vector v0,k≡ [v1
0,k v

2
0,k · · · vr0,k]T :

x(t) =
∞∑

k=−∞
vT0,k Φ(t−k) =

∞∑
k=−∞

r∑
l=1

vl0,k φl(t−k), (4.3)

where

vl0,k =
∫ ∞
−∞

x(t)φl(t−k) dt. (4.4)

In the scalar-valued expression vlj,k, j refers to the scale, k refers to the translation, and l

refers to the sub-channel or vector row. Now (3.16) and (3.17) become:

vj,k =
∞∑

m=−∞
Hm−2k vj−1,k, (4.5)

wj,k =
∞∑

m=−∞
Gm−2k vj−1,k. (4.6)

This is one stage of a multi-input multi-output (MIMO) filter bank3, as shown in Figure

4.1 for the r= 2 case. Each filter block in Figure 4.1 is really a 2-input, 2-output system,

3More information about MIMO filter banks may be found in the book by Vaidyanathan [25].
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as shown in Figure 4.2. One of the important differences between multiwavelets and scalar

wavelets is that each channel in the filter bank has a vector-valued input and a vector-valued

output. A scalar-valued input signal must somehow be converted into a suitable vector-

valued signal. This conversion is called preprocessing. There are multiple ways to handling

preprocessing and they will be discussed in Chapter 5.

The multifilter bank PR conditions that are analogous to the scalar wavelet PR conditions

in (3.21)-(3.24) are
∞∑

n=−∞
Hn H̃

T
n+2k = Ik, (4.7)

∞∑
n=−∞

Hn G̃
T
n+2k = 0, (4.8)

∞∑
n=−∞

Gn H̃
T
n+2k = 0, (4.9)

∞∑
n=−∞

Gn G̃
T
n+2k = Ik, (4.10)

where Ik is the k×k identity matrix.

For wavelet-based filter banks to be useful for image compression, the filters must have

certain key properties. Good scalar filter properties include zeros located at z=−1 in the

lowpass filter and a few orders of approximation in the highpass filter. These properties are

also important for multifilters. Construction of multifilters is generally more difficult than

that of scalar wavelets because the multifilters have more degrees of freedom. However, these

extra degrees of freedom can be used to impose good filter properties during the construction

process.

Early literature [7, 2] presented the Geronimo-Hardin-Massopust (GHM) and Chui-Lian

(CL) multiwavelets, but the authors used specific construction methods that did not try to

incorporate all the desired multifilter properties. A more general construction technique for

orthogonal multiwavelets with optimum time-frequency resolution has been presented in a

paper by Xia et al. [29]. In this paper the authors define what they call “good multifilter

properties” which equate to the usual desired scalar wavelet features, such as zero lowpass
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filter response at ω=π and zero highpass filter response at ω=0. They proceed to develop

a construction method that automatically incorporates these properties into symmetric-

antisymmetric multifilters. Strela et al. [22] present a method for constructing biorthogonal

multiwavelets based on exchanging the equivalent of zeros between analysis and synthesis

multifilters. Their method is similar to the spectral factorization of scalar wavelets. A more

recent construction method for biorthogonal symmetric-antisymmetric multiwavelets given

in a paper by Goh et al. [8] uses the lifting scheme of Sweldens [1] for computing multifilters

with optimal properties.

4.2 Motivation for Multiwavelets

Algorithms based on scalar wavelets have been shown to work quite well in image compres-

sion. Consequently, there must be some justification to use multiwavelets in place of scalar

wavelets. Some reasons for potentially choosing multiwavelets have been presented in the

existing literature and are summarized below.

First, the extra degrees of freedom inherent in multiwavelets can be used to reduce restric-

tions on the filter properties. For example, it is well known [18] that a scalar wavelet cannot

simultaneously have both orthogonality and a symmetric impulse response that has length

greater than 2. Symmetric filters are necessary for symmetric signal extension, while orthog-

onality makes the transform easier to design and implement. Also, the support length and

the number of vanishing moments are directly linked to the filter length for scalar wavelets.

This means longer filter lengths are required to achieve higher order of approximation at the

expense of increasing the wavelet’s interval of support (in the time domain). A high order

of approximation is desired for better coding gain, but shorter wavelet support is generally

preferred to achieve a better localized approximation of the input function. In contrast to the

limitations of scalar wavelets, multiwavelets are able to possess the best of all these proper-

ties simultaneously. For example, the GHM multiwavelet [7] is orthogonal, has second order
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of approximation, has symmetric scaling and wavelet functions (and thus symmetric filters),

and has short support for both of its scaling functions ([0,1] and [0,2], respectively). This

combination of good properties is impossible with scalar wavelets. The 4-tap Daubechies

filter, for example, also is orthogonal, has second order of approximation, and scaling func-

tion support on [0,3]. But, because this scalar filter is orthogonal, it does not possess the

important property of symmetry. The biorthogonal 9/7 wavelet has symmetric filters, fourth

order of approximation (in both analysis and synthesis filters), and scaling function support

on [0,9], but it does not possess orthogonality.

Second, one desirable feature of any transform used in image compression is the amount of

energy compaction achieved. A filter with good energy compaction properties can decorrelate

a fairly uniform input signal into a small number of scaling coefficients containing most of

the energy and a large number of sparse wavelet coefficients. This becomes important during

quantization since the wavelet coefficients are typically represented with significantly fewer

bits on average than the scaling coefficients. Therefore, better performance is obtained

when the wavelet coefficients have values clustered about zero with little variance, to avoid

as much quantization noise as possible. Some previous literature [30] cites numerical energy

compaction results4 showing that some multiwavelets achieve significantly better energy

compaction than some scalar wavelets. Thus multiwavelets have the potential to offer better

reconstruction quality at the same bit rate.

Third, previous literature has shown promising results in the application of multiwavelets to

image compression. Image compression results presented in a paper by Strela and Walden [20]

show that the popular Bi9/7 scalar wavelet gives better results than some older multiwavelets

on images like Lena. However, more recent results show that newer multifilters can be

competitive with some of the better scalar filters like Bi9/7 [24, 8, 29]. Also, a paper by Strela

et al. [19] presents results in which at least one multiwavelet dramatically outperformed

scalar wavelets on a synthetic test image.

4The authors of this paper define an energy compaction ratio as the ratio of energy in the bandpass parts
to the total energy in the signal and give some numerical results.
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Finally, there is the question of computational complexity. At first glance it would seem

that scalar wavelets have the clear advantage since each branch in a multiwavelet filter bank

has two channels and 2-input, 2-output filters (recall Figure 4.2). However, each of the

scalar filters in a symmetric-antisymmetric multifilter has the same kind of symmetry that

makes the symmetric biorthogonal scalar wavelets efficient. Also, each filter in a multifilter

system processes less data than a filter in a scalar filter bank at the same level (due to the

preprocessing discussed in Chapter 5). Table 4.1 lists the computational complexities of

both the scalar wavelets and multiwavelets. With all other factors equal, it is apparent that

the multiwavelets require roughly twice as much computation. However, multiwavelets still

compare favorably because they can give performance comparable to scalar wavelets with

shorter filters. For example, as Xia et al. [29] points out, the Bi9/7 scalar wavelet (with

M1 =7 and M2 =9) requires 4.5 multiplies and 7 additions per input sample. This is slightly

greater than the 4 multiplies and 7 additions required per sample by the length-4 multifilters

SA4 and ORT4 (both with M1 = 4 and M2 = 4), and yet their performance is comparable

in many of the test results in Chapter 6. Also, the Bi22/14 scalar filter from the paper by

Wei et al. [27] requires 9 multiplies and 17 additions per input sample. In contrast, the

longest multifilter used here, the BSA9/7, requires only 8 multiplies and 14 additions per

input sample. As the compression results in Chapter 6 will show, multiwavelets can achieve

the same level of performance as scalar wavelets with similar computational complexity.

4.3 Multiwavelet Packets

In practice, (4.5) and (4.6) are used to filter discrete signals using the Mallat algorithm that

was presented in Chapter 3. Just as with scalar wavelets, this procedure involves iterating the

filtering operation on the lowpass channel of the filter bank. And, just as with scalar wavelets,

new basis functions can be produced by iterating on the highpass (bandpass) channels as

well. This approach combines the wavelet packet decomposition with multiwavelet filters

and hence we call it multiwavelet packets. While the idea seems simple and obvious, this
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Table 4.1: Comparison of computational complexities of symmetric wavelets and symmetric-

antisymmetric multiwavelets for one level of analysis. M1 and M2 are the lowpass and

highpass filter lengths and L is the length in samples of the scalar-valued input signal. The

derivation of these expressions is given in Appendix B.

Filter Type Multiplies Additions

Scalar Wavelet, odd length
L (M1 +M2 + 2)

4

L (M1 +M2 − 2)

2

Scalar Wavelet, even length
L (M1 +M2)

4

L (M1 +M2 − 2)

2

Multiwavelet, odd length
L (M1 +M2)

2
L (M1 +M2 − 2)

Multiwavelet, even length
L (M1 +M2)

2
L (M1 +M2 − 1)

author has not seen any mention of multiwavelet packets in previous literature. We define

them in a manner analogous to the wavelet packets of Chapter 3.

Let U0(t)≡Φ(t) and U1(t)≡Ψ(t), and define

U2n(t) =
√

2
∞∑

k=−∞
Hk Un(2t−k), (4.11)

U2n+1(t) =
√

2
∞∑

k=−∞
Gk Un(2t−k). (4.12)

Note the similarity between (4.11) and (4.12) and the equivalent (3.25) and (3.26) from

Chapter 3. In fact, the tree structures representing bases for multiwavelet packets look just

like those in Figure 3.4, except that the un(t) functions in Figure 3.4c would be replaced

by the corresponding vector-valued functions Un(t) and each line would. For example, the

wavelet packet tree in Figure 3.4 has a multiwavelet version that is shown in Figure 4.3.
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Figure 4.3: Possible multiwavelet packet filter bank. Compare to Figure 4.3(c).

The basis selection algorithms and cost functions used to prune the resulting tree structure

are identical to those of the scalar wavelet packet case, with one exception. The difference

between wavelet packets and multiwavelet packets is that each branching in the tree structure

creates four new channels (assuming r=2) instead of just two, due to the dual-channel nature

of multiwavelet filter banks. Since the multiwavelet packet tree then has four children for

each parent, the computational complexity for multiwavelet packets may be higher than for

wavelet packets. Cost function based methods will be essentially unaffected because they

just operate on all the pixels corresponding to each node; with multiwavelet packets there

are four nodes instead of two, but each node represents half as much data so the net effect is

zero. However, methods that perform some form of rate-distortion optimization will require

more computation due to the increased number of nodes. With this caveat, the motivation

to use multiwavelet packets still holds as it does for scalar wavelets: to better capture high-

frequency content and oscillations in the original image data, while retaining the benefits of

multiwavelet filters (to be shown in Chapter 6). Since no published literature has yet tested

multiwavelet packets, we do so here.



Chapter 5

Implementation

5.1 Image Processing with Wavelet and Multiwavelet

Transforms

5.1.1 2-D Algorithms Using 1-D Transforms

The wavelet and multiwavelet transformations presented in Chapters 3 and 4 are directly

applicable only to one-dimensional (1-D) signals. But images are two-dimensional (2-D)

signals, so we must find a way to process them with a 1-D transform. The two main

categories of methods for doing this are separable and non-separable algorithms. Separable

methods simply work on each dimension in series. The typical approach is to process each

of the rows in order and then process each column of the result. Non-separable methods,

such as the factored scalar wavelet method in a paper by Meyer et al. [12], work in both

image dimensions at the same time. While non-separable methods can offer benefits over

separable methods, such as a savings in computation [12], they are generally more difficult

to implement.

30
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5.1.2 Preprocessing for Multiwavelets

Aside from decomposition concerns, there is another issue to be addressed when multi-

wavelets are used in the transform process. As mentioned in Chapter 4, multiwavelet filter

banks require a vector-valued input signal. There are a number of ways to produce such a

signal from 2-D image data. Perhaps the most obvious method is to use adjacent rows and

columns of the image data; this has already been attempted [21]. However, this approach

does not work well for general multiwavelets and leads to reconstruction artifacts in the

lowpass data after coefficient quantization [21]. This problem can be avoided by construct-

ing “constrained” multiwavelets, which possess certain key properties. Unfortunately, the

extra constraints are somewhat restrictive; image compression tests show that constrained

multiwavelets do not perform as well as some other multifilters [19].

Another approach is to first split each row or column into two half-length signals, and then

use these two half signals as the channel inputs into the multifilter. A naive approach is

to simply take the odd samples for one signal and the even samples for the second signal.

As Strela points out [21], this approach doesn’t work well because it destroys the assumed

characteristics of the input signal. It is generally presumed that image data will be locally

well-approximated by low-order polynomials, usually constant, linear, or quadratic. The

highpass filters are designed to give a uniformly zero output when the input has this form.

Taking alternating data points as the filter inputs alters the character of the input signal;

hence the filter output will no longer be forced to zero, reducing compression performance.

But there is a way around this problem: one may first prefilter the two half-length signals

before passing them into the multifilter.

An early form of prefiltering appears in a paper by Xia et al. [30], and it is refined in later

papers [21, 20, 24]. The prefilter step adjusts the input signal properties so that one scalar

signal is split into two half-length signals in such a way that the orders of approximation

built into the multifilter are utilized. The prefiltering is generally performed by taking the

two signals as a 2×N matrix (where the original 1-D signal had length 2N) and then left-
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multiplying by one or more 2×2 prefilter matrices. Note that the earlier methods [30, 21, 20]

have some limitations, such as being tied to a specific multifilter or requiring more than one

prefilter matrix. Tham et al. [24] present a method that requires only a single orthogonal

prefilter matrix for any given multifilter. Additionally, their method also provides some

optimization of the prefilter properties to match any given multifilter. When applied to the

class of symmetric-antisymmetric (SA) multiwavelets, the method of Tham et al. produces

a prefilter matrix with entries of equal magnitude. The authors point out that if the overall

constant were absorbed into the multifilter itself, then the preprocessing operation would

require no multiplications and only two additions for each input vector. Naturally, there is

a matching postfilter operation in the synthesis stage that exactly undoes the effects of the

prefilter.

5.1.3 Symmetric Signal Extension

There is one remaining obstacle to overcome before multiwavelets can be competitive with

scalar wavelets for image compression. The final issue is symmetric signal extension. It

has been shown that symmetric extension is the best way to handle signal boundaries1. Of

course, symmetric signal extension requires symmetric or antisymmetric filters. This implies

using biorthogonal scalar wavelets and SA multiwavelets (either orthogonal or biorthogonal).

The method for performing symmetric signal extension for scalar wavelets is well known [18].

One method of symmetric signal extension for multiwavelets has been reported [19], but it

only works for the GHM multiwavelet. Only very recently has a more general method been

presented that works for the entire class of SA multiwavelets [29]. Perhaps the best feature

of this new method is that the prefiltering operation is built into the extension method,

reducing the computational complexity of the preprocessing and extension steps to just that

of the prefiltering.

1Strang and Nguyen give a good illustration of this in Section 10.1 of their book [18].
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5.1.4 Iteration of Decomposition

Since multiwavelet decompositions produce two lowpass subbands and two highpass sub-

bands in each dimension, the organization and statistics of multiwavelet subbands differ

from the scalar wavelet case. A closer examination of the differences suggests a method for

improving the performance of multiwavelets in image compression applications. During a

single level of decomposition using a scalar wavelet transform, the 2-D image data is replaced

with four blocks corresponding to the subbands representing either lowpass or highpass in

both dimensions. These subbands are illustrated in Figure 5.1a. The subband labels in this

Figure indicate how the subband data was generated. For example, the data in subband LH

was obtained from highpass filtering of the rows and then lowpass filtering of the columns2.

The multiwavelets used here have two channels, so there will be two sets of scaling coeffi-

cients and two sets of wavelet coefficients. Since multiple iterations over the lowpass data

are desired, the scaling coefficients for the two channels are stored together. Likewise, the

wavelet coefficients for the two channels are also stored together. The multiwavelet decom-

position subbands are shown in Figure 5.1b. For multiwavelets, the L and H labels have

subscripts denoting the channel to which the data corresponds. For example, the subband

labeled L1H2 corresponds to data from the second channel highpass filter in the horizontal

direction and the first channel lowpass filter in the vertical direction.

This shows how a single level of decomposition is done. In practice, more than one de-

composition is performed on the image data. Successive iterations are performed on the

lowpass coefficients from the previous stage to further reduce the number of lowpass coeffi-

cients. Since the lowpass coefficients contain most of the original signal energy, this iteration

process yields better energy compaction. After a certain number of iterations, the benefit

gained in energy compaction becomes rather negligible compared to the extra computational

effort. Usually five levels of decomposition are used in current wavelet-based compression

schemes [15, 33]. Experiments performed for this thesis indicate that three levels are suf-

2The ordering convention used here is that of operators, in which subsequent operations are added to the
left of previous ones.
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Figure 5.1: Image subbands after a single-level decomposition, for (a) scalar wavelets and

(b) multiwavelets.

ficient for multiwavelets, with gains in PSNR diminishingly rapidly3 with decomposition

depth increasing above 3. As will be discussed next, a single level of decomposition with

a symmetric-antisymmetric multiwavelet is roughly equivalent to two levels of a wavelet

decomposition. Thus a 3-level multiwavelet decomposition effectively corresponds to a 6-

level scalar wavelet decomposition. Since tests indicate that the improvement from depth

5 to depth 6 for scalar wavelets is negligible4, a 3-level multiwavelet decomposition can be

considered comparable to a 5-level scalar wavelet decomposition.

Scalar wavelet transforms give a single quarter-sized lowpass subband from the original larger

subband, as seen in Figure 5.1a. In previous multiwavelet literature, multi-level decomposi-

tions are performed in the same way. The multiwavelet decompositions iterate on the lowpass

coefficients from the previous decomposition, as shown in Figure 5.2. In the case of scalar

wavelets, the lowpass quarter image is a single subband. But when the multiwavelet trans-

form is used, the quarter image of lowpass coefficients is actually a 2×2 block of subbands

(the LiLj subbands in Figure 5.1b). Due to the nature of the preprocessing and symmetric

extension method, data in these different subbands becomes intermixed during iteration of

3For example, the PSNR values for the Man image compressed with the SA4 multiwavelet at 16:1 com-
pression and depths 1, 2, 3, and 4 are, respectively, 31.05 dB, 32.11 dB, 32.13 dB, and 32.13 dB. In this case
there was exactly no improvement from the fourth level of decomposition.

4The PSNR value for the Lena image compressed with the Bi97 wavelet at 16:1 compression, for example,
only increases by 0.01 dB when increasing the decomposition depth from 5 to 6.
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Figure 5.2: Conventional iteration of multiwavelet decomposition.

the multiwavelet transform. The intermixing of the multiwavelet lowpass subbands leads to

suboptimal results, as will be discussed further.

Consider the multiwavelet transform coefficients resulting from a single-level decomposition

using a symmetric-antisymmetric (SA) multifilter. As an example, the multiwavelet coeffi-

cients produced by applying the SA4 multifilter to the 512×512 Lena image are shown in

Figure 5.3. It can be readily observed that the 2×2 “lowpass” block (upper left corner)

actually contains one lowpass subband and three bandpass subbands. The L1L1 subband

resembles a smaller version of the original image, which is a typical characteristic of a true

lowpass subband. In contrast, the L1L2, L2L1, and L2L2 subbands seem to possess charac-

teristics more like those of highpass subbands. This is most likely due to the fact that the

second multiwavelet channel in a SA multifilter corresponds to an antisymmetric wavelet.

Hence a smooth signal will typically have small coefficient values for that channel because

the antisymmetric filter has small magnitude response at DC (due to having a zero at z=1).

Also, only the L1L1 subband contains coefficients with a large DC value and a relatively

uniform distribution. An illustration of the subband coefficient distribution is given in Fig-

ure 5.4. This figure shows the maximum absolute value across each row, in other words as if

looking at Figure 5.3 from the left side. The L1, L2, H1, and H2 subbands, measured along

the vertical direction, are the 128-coefficient blocks in order, from left to right (i.e. 0 to

511 on the independent axis). Note that the L2 subband (rows 128-255) looks more like the
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highpass bands H1 and H2 (rows 256-511) than the L1 subband (rows 0-127). Examination

of other images yields similar results.

Figure 5.3: Transform coefficients of Lena image after one level of decomposition with the

SA4 multifilter. Values near zero are shown in gray, with positive values increasing toward

white and negative values decreasing toward black.
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Figure 5.4: Maximum absolute value across each row of 512×512 Lena image after one level

of decomposition with SA4 multifilter (see Figure 5.3).
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Figure 5.5: Proposed iteration method for multiwavelet decomposition. Compare to Figure

5.2.

A couple of conclusions may be drawn from these observations. First, since these four

LL subbands possess different statistical characteristics, mixing them together using the

multiwavelet decomposition described previously results in further subbands with mixed data

characteristics. This implies that typical quantization schemes that assume the statistics in

each subband are either lowpass or highpass will not give the best possible results. Second,

since only the L1L1 subband actually has lowpass characteristics, we only need to perform

further iterations on that one subband. Thus, this thesis proposes to do just this. Results

presented in Chapter 6 demonstrate that iterating only on the L1L1 subband at each stage

in the decomposition does yield better performance than iterating on the entire LL subband.

It is also worth noting that iterating only on the L1L1 subband requires one quarter of the

computational complexity as iteration over the entire LL subband, thus improving run-time

performance as well. This new improved multiwavelet decomposition method is illustrated

in Figure 5.5.
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5.2 Quantization Issues

The quantization method used to generate all the results in this thesis is the SPIHT5 quan-

tizer developed by Said and Pearlman [15]. It is an embedded coder that refines the ideas

presented in Shapiro’s embedded zerotree wavelet (EZW) coder [16]. EZW and SPIHT

achieve good performance by exploiting the spatial dependencies of pixels in different sub-

bands of a scalar wavelet transform. The SPIHT coder was chosen for the experiments in

this thesis due to its good objective and computational performance. To fully understand

the results in Chapter 6, it is necessary to better understand how SPIHT works. This section

gives an introduction to the operational ideas behind SPIHT and a method for improving

its performance for multiwavelet compression methods.

It has been noted [16] that there exists a spatial dependence between pixels in different

subbands in the form of a child-parent relationship. In particular, each pixel in a smaller

subband has four children in the next larger subband in the form of a 2×2 block of adjacent

pixels. This relationship is illustrated in Figure 5.6, which shows a three-level scalar wavelet

decomposition and some sample pixel relations. In this figure, each small square represents

a pixel and each arrow points from a particular parent pixel to its 2×2 group of children.

The importance of the parent-child relation in quantization is this: if the parent coefficient

has a small value, then the children will most likely also have small values; conversely, if the

parent has a large value, one or more of the children might also.

Coders like SPIHT exploit this spatial dependence by partitioning the pixel values into

parent-descendent groups. The coder starts with a threshold value that is the largest integer

power of two that does not exceed the largest pixel value. Pixels are evaluated in turn to

see if they are larger than the threshold; if not, these pixels are considered insignificant. If a

parent and all of its descendents are insignificant, then the coder merely records the parent’s

coordinates. Since the children’s coordinates can be inferred from those of the parent, those

coordinates are not recorded, resulting in a potentially great savings in the output bitstream.

5SPIHT stands for “Set Partitioning in Hierarchical Trees.”
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Figure 5.6: Illustration of the parent-child relationship in a 3-level iterated wavelet decom-

position.

After locating and recording all the significant pixels for the given threshold, the threshold is

reduced by a factor of two and the process repeats. By the end of each stage, all coefficients

that have been found to be significant will have their most significant bits (when considered

as binary integers) recorded. As further passes occur, more precision is added to the value

stored for each pixel. In this manner, the SPIHT algorithm performs a rough sorting of pixel

values by magnitude and records their values one bit at a time. It is this separation of bit

planes that makes SPIHT an embedded coder: at any point in the output data stream, only

the most significant bits for any given pixel are transmitted.

The assumptions that the SPIHT quantizer makes about spatial relations between subbands

hold well for scalar wavelets, but they do not hold for multiwavelets. More specifically, the

three largest highpass subbands in a scalar wavelet transform are each split into a 2×2 block

of smaller subbands by the multiwavelet transform, destroying the parent-child relationship

that SPIHT presumes. To work around this limitation, this thesis presents a new quanti-

zation method that allows multiwavelet decompositions to receive most of the benefits of

using a quantizer like SPIHT. The basic idea is to try to restore the spatial features that
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Figure 5.7: Illustration of coefficient shuffling method. Selected pixels are numbered to

indicate correspondence. (a) Before shuffling. (b) After shuffling.

SPIHT requires for optimal performance. Examination of the coefficients in a single-level

multiwavelet transform reveals that there generally exists a large amount of similarity in

each of the 2×2 blocks that compose the LiHj , HiLj, and HiHj subbands, where i= 1, 2

and j=1, 2.

This observation suggests the following procedure: rearrange the coefficients in each 2×2

block so that coefficients corresponding to the same spatial locations are placed together.

This procedure will be referred to as shuffling. A clearer picture of this is given in Figure 5.7.

Figure 5.7a shows one of the 2×2 blocks resulting from a multiwavelet decomposition. Eight

pixels (two from each subband) are highlighted and given a unique numeric label. Figure

5.7b shows the same set of pixels after shuffling. Note that pixels 1-4 map to a 2×2 set

of adjacent pixels, as do pixels 5-8. This shuffling procedure restores some of the spatial

dependence of pixels by placing the pixels that correspond to a certain part of the image

where they would be if a scalar wavelet decomposition had been performed.

After shuffling coefficients, a 2-level decomposition iterating only on the L1L1 block would

look like the one shown in Figure 5.8. Note that the subband boundaries, indicated by dotted

lines in that figure, have been removed by the shuffling process. The remaining coefficient
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data has the same structure as that of a 4-level scalar wavelet decomposition. Experimental

results in Chapter 6 show that this new shuffling scheme can greatly improve multiwavelet

performance in many cases.

Figure 5.8: Subbands in 2-level multiwavelet decomposition after coefficient shuffling. Solid

lines denote new subband boundaries, and dashed lines show subband boundaries that are

removed by coefficient shuffling.

5.3 Implementation Details

All wavelet and multiwavelet results in this work were obtained using a separable decomposi-

tion of the 2-D image data. For the multiwavelets, the approximation-preserving prefiltering

and signal extension approach presented by Xia et al. [29] was used. A block diagram of

each level of decomposition, including preprocessing, is shown in Figure 5.9. The 2-D data

is processed first in rows, and then columns. The processing of each row or column involves

splitting the 1-D signal into even and odd subsets and multiplying the resulting 2×1 vector

by the prefilter matrix. The data is then extended symmetrically, filtered, and downsam-

pled. Subsequent iterations for multiwavelets were performed only on the L1L1 subband of

the previous transform result. Similarly, multiwavelet packets were implemented by iterat-

ing only on whole subbands, yielding a “doubly-dyadic” decomposition (i.e., each subband

becoming a 4×4 block of smaller subbands). Tests were performed both with and without

the use of the coefficient shuffling method. For the wavelet packet and multiwavelet packet
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Figure 5.9: Illustration of 2-D multiwavelet filtering with approximation-based preprocessing.

cases, a cost function approach was used (as opposed to a rate-distortion optimized tree

search). This choice was made with an eye toward computational complexity, since the rate-

distortion searching methods are much more computationally expensive than a simple cost

function method [33]. After the transform stage, the coefficients were quantized using the

SPIHT coder [15] and written to the output bitstream. No entropy coder was used in these

experiments. Since the entropy coding process typically just adds a roughly constant gain in

dB to the PSNR [15], entropy coding is not necessary for comparisons of different transform

methods and would simply improve all the results in Chapter 6 by a certain amount. The re-

construction method followed the opposite order of steps: read in bitstream, perform inverse

SPIHT process to obtain quantized transform coefficients, and perform inverse transform to

obtain the reconstructed image.



Chapter 6

Experimental Results

6.1 Preliminary Comments

A relatively small selection of certain test images appears repeatedly in the published liter-

ature on image compression. Using only a few standard images has some benefits, such as

allowing for direct comparison of results from different compression methods. However, one

drawback is that the so-called “standard” images are not necessarily standard. For exam-

ple, when using a color image with grayscale algorithms, how the color image is converted

to grayscale may differ. This means that authors citing results in different papers for the

same image may be using slightly different images. Also, using only a few images fails to

illustrate more generally how a particular algorithm performs on other image types. For

example, some methods work quite well on the popular Lena image while performing poorly

on the Barbara image, and vice versa1. Lena and Barbara are both examples of “natural”

images, on which wavelet-based compression methods are known to work well. Performance

of different wavelet and multiwavelet methods changes significantly when “synthetic” test

images are used.

1The results later in this chapter will show such cases.

43
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The test images used in this work were collected from a variety of sources on the Internet.

In addition to the most commonly used natural images, a number of synthetic images were

selected to obtain a better overall picture of the performance of the image compression

methods described in Chapter 5. The following list of sources indicates the origin of the test

images used, which are themselves listed in Table 6.1.

1. MATLAB Image Processing Toolbox

2. Image Compression Lab, UCLA School of Engineering and Applied Sciences

(http://www.icsl.ucla.edu/~ipl/psnr images.html)

3. Waterloo BragZone

(http://links.uwaterloo.ca/bragzone.base.html)

4. Information Coding Laboratory, UCSD ECE Department

(http://www.code.ucsd.edu/~sherwood/image examples/chan coded/

chan coded.html)

5. Home page of François Meyer

(http://noodle.med.yale.edu/~meyer/profile.html)

6. Signal and Image Processing Institute, USC

(http://sipi.usc.edu/services/database/Database.html)

7. UICODER

(http://saigon.ece.wisc.edu/~waveweb/QMF/software.html)
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Table 6.1: Listing of test images.

Name Size Source2 Notes

Barbara 512×512 2

Barchart 256×256 6 original was named 5.1.13.tiff

Boat 512×512 3

Finger 512×512 5

Frog 576×448 3 cropped from 621×498 original

Goldhill 512×512 2

Gray21 512×512 6 original was named gray21.512.tiff

House 512×512 5

IC 256×256 1

Lena 512×512 2

Lighthouse 512×512 5

Man 1024×1024 6 original was named 5.3.01.tiff

Mandrill 512×512 4

Monarch 768×512 3 original was color; converted to grayscale

with MATLAB Image Processing

Toolbox command RGB2GRAY

Nitf7 512×512 7

Peppers 512×512 3

Ruler 512×512 6 original was named ruler.512.tiff

Testpat 1k 1024×1024 6 original was named testpat.1k.tiff

Testpat2 256×256 1

Yogi 512×512 7

2The numbers in the “Source” column indicate the corresponding entry in the list on the previous page.
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Objective results given in the next section are provided in the form of tables of peak signal-

to-noise ratio (PSNR) values. Since all tests here are performed on 8-bit grayscale images,

the peak signal value is 255. Hence the PSNR values in dB for an M×N image signal x and

its reconstruction x̂ are calculated via

PSNR = 10 log10

(
2552

MSE

)
, (6.1)

where the mean square error (MSE) is defined as

MSE =
1

MN

M−1∑
m=0

N−1∑
n=0

|x(m,n)− x̂(m,n)|2 . (6.2)

For each image, a number of wavelet and multiwavelet filters are tested and the compression

ratio is varied. Some compression parameters, such as the decomposition depth for a partic-

ular type of transform, have fixed values and are mentioned now so that such details can be

omitted later. In each table in the next section, the “Type” column specifies the transform

type, which has one of the following values:

1. W: wavelet (decomposition depth 5)

2. WP: wavelet packet (maximum decomposition depth 5)

3. MW: multiwavelet (decomposition depth 3)

4. MWP: multiwavelet packet (maximum decomposition depth 3)

In each case, the indicated depth specifies how many iterations of the subband decomposition

were performed. For the multiwavelet cases that use the coefficient shuffling scheme presented

in Chapter 5, the “MWP” type name is followed by “(sh)”. In the wavelet packet and

multiwavelet packet cases, the cost function used is specified as a number in parentheses

following the type abbreviation. Cost function “1” computes the cost as the number of

significant coefficients3 in the tested node. Cost function “2” computes the cost as the total

3In this case, the threshold used for significance testing is simply 0.5, the threshold below which a
coefficient will be converted to 0 during integer conversion.
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number of bits required in the binary representation of all the coefficients in that node. The

Filter column gives the name of the filter used. The third and subsequent columns give the

PSNR values in dB for that particular image at various compression/bit rates. The bit rates

used here correspond to 8-bit grayscale images, so the number of bits per pixel (bpp) is 8

divided by the compression factor. The test results given in this chapter are all at either 1.0

bpp (8:1), 0.5 bpp (16:1), 0.25 bpp (32:1), or 0.125 bpp (64:1).

Two scalar wavelet filters were used in this work. The first is the popular biorthogonal

“Bi9/7” filter [6], which has been used with great success in numerous prior image compres-

sion tests [15, 12, 27]. The other scalar filter is the newly presented “Bi22/14” biorthogonal

filter [27]. Results show this filter to perform at least as well, or better than, the Bi9/7

and other scalar filters with good image compression performance in many cases [27]. Since

best image compression results are obtained when the lowpass synthesis filter is longer than

the highpass synthesis filter [18], all biorthogonal filters (and multifilters) used here were

implemented according to this rule. The naming convention here is “lowpass synthesis filter

length/highpass synthesis filter length”. Both orthogonal and biorthogonal multiwavelets

were tested, and all are from the class of symmetric-antisymmetric multifilters due to the

availability of construction and symmetric extension methods for them. The orthogonal

symmetric-antisymmetric multifilters used are “SA4” and “ORT4” [24, 29]. The biorthog-

onal symmetric-antisymmetric multifilters are “BSA7/5” and “BSA9/7” [8]. The notation

for biorthogonal filter lengths used for scalar filters is also applied here, and hence the “7/5”

and “9/7” in the filter names refer to the lowpass and highpass synthesis filter lengths.
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6.2 Results and Discussion

6.2.1 Preface

A couple of notes apply to the rest of this chapter. First, printed reproductions of the 20 test

images used here may be found in Appendix A. Second, for each image and compression rate,

the largest PSNR value is highlighted in boldface. This is done for the packet decompositions

as well as the non-packet decompositions.

All the multiwavelet results in this chapter were obtained by decomposing only the L1L1

subband at each step, as described in Chapter 5. Some justification for this choice is given

in Table 6.2. The tests show that the new proposed decomposition that iterates only on the

L1L1 subband works best at all bit rates for all multifilters and for different types of images.

The PSNR values in Table 6.2 were all created without coefficient shuffling. The PSNR

values with shuffling (not shown) are comparable and thus still show the improvement for

our new decomposition method.

Table 6.2: PSNR results (in dB) comparing multiwavelet decomposition methods. The

subband labels are the same as in Figure 5.1.

Comp. Decomposition iterated on:

Image Multifilter ratio LL Subband L1L1 Subband

Lena SA4 16:1 33.50 34.66

BSA9/7 16:1 33.29 34.96

SA4 32:1 29.85 31.20

BSA9/7 32:1 29.88 31.94

Barbara SA4 16:1 28.82 29.58

BSA9/7 16:1 28.79 30.25

SA4 32:1 25.78 26.30

BSA9/7 32:1 25.60 26.80
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6.2.2 Results for Natural Images

6.2.2.1 Lena

We begin analysis of the results with the widely used Lena4 image. This image is selected

from the class of natural images that do not contain large amounts of high-frequency or

oscillating patterns. As a result, the standard scalar wavelet methods perform well on it. The

PSNR results in Table 6.3 show that the Bi22/14 scalar filter gives the best performance on

this image, especially at the higher bit rates. As the bit rate decreases, the BSA9/7 multifilter

with shuffling begins to approach the same level, and even surpasses the Bi9/7 filter. Note

that the use of coefficient shuffling provided a significant improvement in performance for all

multiwavelets. In fact, shuffling brings the multiwavelet performance from well under scalar

wavelet performance to being generally on par with the scalar wavelets. It is also interesting

to note that in both the scalar and multiwavelet cases, using a packet decomposition decreased

performance. This shows that the use of packets is not always an improvement, and that

the choice of basis is very important when packets are used. In principle, the packet method

should produce results at least equal to those of the standard wavelet tree decomposition if an

optimized basis searching algorithm is used, such as the ones in the papers by Ramchandran

et al. [14, 33]. If a simpler cost function method is used, as in this case, the cost function

may not find the best basis and therefore give worse results than the wavelet tree basis5.

It is well known that PSNR values do not necessarily correspond to perceived image quality

at low bit rates. The truth of this statement can be seen in Figures 6.1-6.6. Compared

to the original Lena, the reconstructed images at 0.125 bpp using scalar wavelets (Figures

6.2 and 6.3) show a great deal of ringing, in addition to washed out areas. In contrast,

the reconstructed images using multiwavelets in Figures 6.4-6.6 show crosshatching and

blocking artifacts instead. The reconstruction for SA4 (not shown) is visually almost identical

to that for ORT4 in Figure 6.6. While the PSNR values for the Bi22/14 filter (Figure

4This image is also sometimes called “Lenna”.
5The reason for using the cost function approach was given in the last section of Chapter 5.
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6.3) and BSA9/7 multifilter (Figure 6.4) are nearly identical, the crosshatching evident in

the reconstruction using BSA9/7 makes it appear significantly lower in quality than the

Bi22/14 reconstruction. The reconstructions for the SA4 (not shown), ORT4 (Figure 6.6),

and BSA7/5 (Figure 6.5) multiwavelets appear worse still with bad blocking artifacts. These

blocking artifacts presumably occur for the same reason they occur with the DCT at low

bit rate: the short filters do not decay smoothly to zero at the ends. Nonetheless, as the

numbers attest, the multiwavelets used here with coefficient shuffling generally perform quite

well at high bit rate and have reconstruction quality comparable to the best known scalar

wavelets.

Figure 6.1: Original Lena, showing 256×
256 portion of face.

Figure 6.2: Lena compressed with Bi9/7
wavelet to 0.125 bpp, PSNR=29.44 dB.
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Figure 6.3: Lena compressed with Bi22/14
wavelet to 0.125 bpp, PSNR=29.87 dB.

Figure 6.4: Lena compressed with BSA9/7
with multiwavelet with shuffling to 0.125
bpp, PSNR=29.81 dB.

Figure 6.5: Lena compressed with BSA7/5
with multiwavelet with shuffling to 0.125
bpp, PSNR=28.95 dB.

Figure 6.6: Lena compressed with ORT4
with multiwavelet with shuffling to 0.125
bpp, PSNR=29.10 dB.
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Table 6.3: PSNR results (in dB) for Lena.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 38.99 35.62 32.31 29.44

W Bi22/14 39.23 36.06 32.79 29.87

MW SA4 38.31 34.66 31.20 28.34

MW (sh) SA4 39.06 35.39 31.97 29.08

MW ORT4 38.35 34.71 31.24 28.38

MW (sh) ORT4 39.09 35.43 32.01 29.10

MW BSA9/7 38.06 34.96 31.94 29.30

MW (sh) BSA9/7 38.49 35.55 32.62 29.81

MW BSA7/5 38.49 34.83 31.29 28.38

MW (sh) BSA7/5 39.08 35.43 31.96 28.95

WP (1) Bi9/7 37.84 34.55 31.58 28.78

WP (2) Bi9/7 38.51 35.40 32.21 29.35

WP (1) Bi22/14 37.99 34.93 32.09 29.53

WP (2) Bi22/14 38.82 35.82 32.72 29.81

MWP (1) SA4 37.82 34.26 30.90 28.13

MWP (2) SA4 38.22 34.53 30.99 28.15

MWP (1) ORT4 37.83 34.29 30.94 28.18

MWP (2) ORT4 38.28 34.57 31.04 28.19

MWP (1) BSA9/7 37.36 34.39 31.60 29.20

MWP (2) BSA9/7 37.86 34.65 31.69 29.24

MWP (1) BSA7/5 38.21 34.65 31.10 28.08

MWP (2) BSA7/5 38.44 34.68 31.11 28.14



Michael B. Martin Chapter 6. Experimental Results 53

6.2.2.2 Peppers

Another image that has little high-frequency content is Peppers. Not surprisingly, the PSNR

values in Table 6.4 show a pattern similar to that for Lena. While the SA4, ORT4, and

BSA7/5 multiwavelets match the performance of the scalar wavelets at high bit rate, they

do not keep up at low bit rate. Conversely, the BSA9/7 multiwavelet, which gives poor

results at high bit rate, outperforms all but the Bi22/14 scalar wavelet at low bit rate.

While wavelet packets and multiwavelet packets both give relatively poor results at all bit

rates, it is interesting to note that the multiwavelet packet results are very close to the

multiwavelet results without shuffling.

6.2.2.3 Monarch

The Monarch image contains proportionally much more low-frequency content than the other

images tested in this thesis, although there are a few localized areas of high-frequency content.

The scalar wavelets, and to a lesser extent the wavelet packets, give the best performance

on this image by a significant margin. Further results given later in this chapter will confirm

that scalar wavelets generally outperform multiwavelets for images with very little high-

frequency content. At 1.0 bpp scalar wavelets lead multiwavelets by about 2 dB, but this

lead decreases as the bit rate decreases. For both the wavelets and multiwavelets, using a

packet-based decomposition gave slightly lower results than for the standard decomposition.

It is also interesting to note that the coefficient shuffling method dramatically decreased

performance for the multiwavelet filters. This performance decrease is most likely due to the

fact that the Monarch image has relatively little structure to the high-frequency content,

which means that there is little spatial structure for the shuffling to enhance.
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Table 6.4: PSNR results (in dB) for Peppers.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 37.09 34.75 31.90 28.89

W Bi22/14 37.03 34.82 32.10 29.10

MW SA4 36.58 33.71 30.67 27.54

MW (sh) SA4 37.14 34.38 31.42 28.35

MW ORT4 36.60 33.74 30.70 27.57

MW (sh) ORT4 37.15 34.39 31.44 28.37

MW BSA9/7 36.13 33.71 31.20 28.53

MW (sh) BSA9/7 36.49 34.21 31.72 28.94

MW BSA7/5 36.66 33.84 30.86 27.81

MW (sh) BSA7/5 37.10 34.34 31.30 28.24

WP (1) Bi9/7 35.98 33.22 30.54 27.99

WP (2) Bi9/7 36.71 34.17 31.37 28.36

WP (1) Bi22/14 35.92 33.23 30.75 28.05

WP (2) Bi22/14 36.75 34.12 31.47 28.65

MWP (1) SA4 36.26 33.40 30.52 27.43

MWP (2) SA4 36.66 33.70 30.65 27.51

MWP (1) ORT4 36.20 33.22 30.31 27.28

MWP (2) ORT4 36.69 33.74 30.68 27.54

MWP (1) BSA9/7 35.42 33.01 30.59 27.98

MWP (2) BSA9/7 35.92 33.39 30.96 28.36

MWP (1) BSA7/5 36.63 33.79 30.82 27.71

MWP (2) BSA7/5 36.73 33.84 30.86 27.79
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Table 6.5: PSNR results (in dB) for Monarch.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 41.55 35.38 30.73 27.38

W Bi22/14 41.81 35.50 31.02 27.55

MW SA4 39.52 33.93 29.75 26.38

MW (sh) SA4 38.69 33.52 29.43 26.15

MW ORT4 39.58 33.97 29.77 26.40

MW (sh) ORT4 38.73 33.56 29.47 26.17

MW BSA9/7 39.38 34.14 30.36 27.13

MW (sh) BSA9/7 38.38 33.55 29.91 26.84

MW BSA7/5 39.79 34.11 29.92 26.54

MW (sh) BSA7/5 38.82 33.65 29.55 26.31

WP (1) Bi9/7 38.74 33.65 29.83 26.87

WP (2) Bi9/7 41.12 35.20 30.73 27.28

WP (1) Bi22/14 39.10 34.09 30.17 27.14

WP (2) Bi22/14 41.37 35.46 31.07 27.57

MWP (1) SA4 38.89 33.47 29.22 25.83

MWP (2) SA4 39.32 33.75 29.52 26.10

MWP (1) ORT4 38.92 33.47 29.18 25.78

MWP (2) ORT4 39.38 33.79 29.54 26.12

MWP (1) BSA9/7 38.18 33.32 29.73 26.70

MWP (2) BSA9/7 38.67 33.67 30.17 27.09

MWP (1) BSA7/5 39.38 33.73 29.28 25.98

MWP (2) BSA7/5 39.57 33.94 29.63 26.25
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6.2.2.4 Barbara

Results for the Barbara image are presented in Table 6.6. Barbara is a popular choice from

the class of natural test images that exhibit large amounts of high-frequency and oscillating

patterns. It is therefore not surprising that the overall results are somewhat different than

for the Lena and Peppers images. Here the wavelet packets show their advantage, with

the Bi22/14 wavelet packets giving by far the best results at all bit rates. Not only are

the PSNR values large for Bi22/14 wavelet packets, but the visual quality is also superior,

with the textured regions better preserved than with other filters. It is interesting to note

here that the coefficient shuffling method actually makes the multiwavelet results worse in

this case, although the loss in PSNR is generally rather small. This is presumably due

to the fact that the shuffling method is intended to help images with a large amount of

overall structure. Images like Barbara have relatively little structure, especially in the high-

frequency subbands, and thus do not benefit from shuffling. Also, as with Lena and Peppers,

the BSA9/7 multifilter generates lower PSNR values at high bit rates than Bi22/14, but closes

the gap as the bit rate decreases.

A remarkable feature of multiwavelets is shown in Figures 6.7-6.12. A close-up view of the

subject’s right leg is shown in Figure 6.7. The same close-up of the leg is then shown with

five different choices of wavelet transform at 0.25 bpp in Figures 6.8-6.12. Note that the

scalar Bi9/7 (Figure 6.8) and Bi22/14 (Figure 6.9) filters lose much of the textured pattern

in the pants and scarf, while the pattern is fairly well preserved when those same filters

are used in a wavelet packet decomposition (Figures 6.11 and 6.12). This texture test is

a standard comparison used to show the benefits of multiwavelets and has been performed

previously [12]. What is interesting here is that the BSA9/7 multiwavelet (Figure 6.10),

without shuffling and without a packet decomposition, manages to preserve substantially

more of the texture than the Bi9/7 and Bi22/14 scalar wavelets. And this occurs even though

the PSNR value for the BSA9/7 result is slightly lower than that for the Bi22/14 filter. The

scalar wavelet packets still obtain the best results, both in PSNR and visual quality. But



Michael B. Martin Chapter 6. Experimental Results 57

the BSA9/7 multiwavelet gives a result with intermediate quality despite a PSNR value that

is at least 1 dB lower than the wavelet packet results. This same phenomenon can also be

seen in close-ups of the tablecloth (not shown).

While the use of packets dramatically improved results for the scalar wavelets, there was much

less improvement for the multiwavelet packets over the multiwavelets. In fact, multiwavelet

packets only showed performance similar to that of the multiwavelets and lacked the sub-

stantial improvement that the use of packets gave to the scalar wavelets. The relatively low

performance of multiwavelet packets is most likely due to the fact that a multiwavelet packet

decomposition deviates significantly from the spatial structure that the SPIHT quantizer as-

sumes, thus reducing performance noticeably. The lack of performance is not necessarily a

problem with multiwavelet packets but an expression of the fact that they don’t work well

with zerotree-based quantizers. The use of a different quantization method that exploits

the subband structure of a multiwavelet packet decomposition would presumably give much

better performance.

Figure 6.7: Original Barbara, showing a
close-up of the leg.

Figure 6.8: Barbara at 0.25 bpp with Bi9/7
wavelet; PSNR=26.35 dB.
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Figure 6.9: Barbara at 0.25 bpp with
Bi22/14 wavelet; PSNR=26.85 dB.

Figure 6.10: Barbara at 0.25 bpp with
BSA9/7 multiwavelet; PSNR=26.80 dB.

Figure 6.11: Barbara at 0.25 bpp with
Bi9/7 wavelet packets; PSNR=27.83 dB.

Figure 6.12: Barbara at 0.25 bpp with
Bi22/14 wavelet packets; PSNR=28.30 dB.
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Table 6.6: PSNR results (in dB) for Barbara.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 34.58 29.74 26.35 23.81

W Bi22/14 35.30 30.32 26.85 24.00

MW SA4 34.60 29.58 26.30 23.82

MW (sh) SA4 34.59 29.50 26.27 23.84

MW ORT4 34.66 29.64 26.33 23.86

MW (sh) ORT4 34.65 29.55 26.29 23.83

MW BSA9/7 34.71 30.25 26.80 24.31

MW (sh) BSA9/7 34.67 30.01 26.60 24.05

MW BSA7/5 34.92 29.85 26.48 23.85

MW (sh) BSA7/5 34.91 29.74 26.42 23.74

WP (1) Bi9/7 35.02 30.67 27.37 24.89

WP (2) Bi9/7 35.84 31.30 27.83 25.18

WP (1) Bi22/14 35.71 31.23 27.85 25.21

WP (2) Bi22/14 36.42 31.84 28.30 25.50

MWP (1) SA4 34.45 29.52 26.48 24.02

MWP (2) SA4 34.34 29.62 26.75 24.37

MWP (1) ORT4 34.50 29.59 26.54 24.08

MWP (2) ORT4 34.45 29.68 26.78 24.41

MWP (1) BSA9/7 33.67 29.26 26.38 24.35

MWP (2) BSA9/7 34.61 30.02 26.78 24.24

MWP (1) BSA7/5 34.92 29.85 26.58 23.87

MWP (2) BSA7/5 34.69 29.92 26.98 24.54
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6.2.2.5 Finger

Like Barbara, the Finger image contains a large amount of texture. Hence, as the results

in Table 6.7 show, the packet-based decompositions work best on this image. The best

results at all bit rates are given by the scalar wavelet packets. However, in this case the

multiwavelet packets also perform well and give the next-best results. As with Barbara,

the use of coefficient shuffling decreased performance for the multiwavelets. It would seem

that shuffling does not improve compression of images that contain large amounts of high-

frequency energy.

The performance of the SA4, ORT4, and BSA7/5 multiwavelets on the Finger image is unim-

pressive, but the BSA9/7 multiwavelet without shuffling outperforms both scalar wavelets

at all bit rates. In fact, while the BSA9/7 multiwavelet performed poorly compared to other

multiwavelets in most of the images tested, its performance on this image is comparable to

that of the Bi9/7 scalar wavelet packets. Since the BSA9/7 also performed well at capturing

the textures in the Barbara image, it seems likely that this particular multifilter works best

on images with a large amount of texture and oscillating patterns. The subclass of natu-

ral images that contain large textured regions might be a good field of application for the

BSA9/7 multiwavelet.
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Table 6.7: PSNR results (in dB) for Finger.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 32.73 28.47 24.78 22.36

W Bi22/14 33.92 29.21 25.53 23.13

MW SA4 33.26 28.09 24.22 22.10

MW (sh) SA4 33.02 28.08 24.45 22.06

MW ORT4 33.38 28.13 24.22 22.12

MW (sh) ORT4 33.13 28.13 24.47 22.07

MW BSA9/7 34.49 29.60 25.89 23.25

MW (sh) BSA9/7 34.23 29.48 25.78 23.12

MW BSA7/5 33.89 28.39 24.21 22.15

MW (sh) BSA7/5 33.63 28.36 24.50 22.08

WP (1) Bi9/7 34.42 29.39 25.67 22.90

WP (2) Bi9/7 34.59 29.64 25.92 23.26

WP (1) Bi22/14 35.56 30.63 26.78 23.80

WP (2) Bi22/14 35.63 30.65 26.77 23.81

MWP (1) SA4 33.25 28.08 24.21 22.10

MWP (2) SA4 34.10 28.99 25.38 22.85

MWP (1) ORT4 33.36 28.12 24.21 22.11

MWP (2) ORT4 34.26 29.06 25.41 22.87

MWP (1) BSA9/7 34.52 29.55 25.95 23.35

MWP (2) BSA9/7 34.56 29.75 26.26 23.57

MWP (1) BSA7/5 34.09 28.70 24.83 22.66

MWP (2) BSA7/5 34.60 29.27 25.54 22.94
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6.2.2.6 Goldhill

Goldhill is another popular test image, perhaps the third most commonly used after Lena and

Barbara. It contains both regions of locally smooth content and regions of high-frequency

textures and sharp transitions. The high-frequency areas make this image more difficult

to compress than an image like Lena or Peppers, because wavelet methods work best on

low-frequency signals. The reconstruction PSNR results for Goldhill are given in Table 6.8.

Perhaps the most obvious result is that the multiwavelets are able to keep pace with the scalar

wavelets in PSNR across bit rates. There is no clear overall winner from the multiwavelets,

though, since the best performers at high bit rate are not the ones that perform best at the

lower bit rates. For example, the best result at 1.0 bpp is for BSA7/5 with shuffling, showing

a lead of 0.15 dB over Bi22/14, but at 0.125 it is 0.23 dB behind Bi22/14 and 0.22 dB behind

BSA9/7 with shuffling, the best multiwavelet result in this case. In any event, these PSNR

variations are fairly small and show that the multiwavelets can perform at the same level as

the scalar wavelets. Careful inspection of the reconstructed images verifies this performance

similarity, as is it becomes difficult to select a single best image from among the various

non-packet filters at each fixed bit rate. It was noted before that the multiwavelets generally

performed worse than scalar wavelets for low-frequency images (like Lena) but better for

high-frequency images (like Barbara). The results for Goldhill indicate that when both low-

and high-frequency elements are combined, the advantages of multiwavelets roughly cancel

out the disadvantages, resulting in performance very similar to scalar wavelets.

The use of coefficient shuffling with the multiwavelet transforms improved performance for

Goldhill, although the gain it is not as dramatic as it was with Lena. It is also worth

noting that while the wavelet and multiwavelet packets don’t show any improvement over

their standard-decomposition counterparts, they don’t experience a large performance deficit

either, as they did with Lena. Oddly enough, the Bi22/14 scalar filter performance was

improved by using packets at the middle bit rates (0.5 and 0.25 bpp) but was reduced at

the highest and lowest bit rates (1.0 and 0.125 bpp). This inconsistency is most likely
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attributable to variation in optimality of the basis selected in each case. While the PSNR

values tend to be lower for the packet-based methods with this image, visual inspection of

the reconstructed images shows that the packet reconstructions are nearly identical to those

without packets, although some fine texture details (such as the tile roofing on the houses)

are slightly better preserved by using the packets, regardless of the PSNR.

6.2.2.7 Boat

Like Goldhill, the Boat image contains significant amounts of both low and high-frequency

regions, hence the PSNR results are very similar. The multiwavelets with shuffling slightly

out-performed the scalar wavelets. The scalar wavelet packets gave the best results by

a slight margin, while the multiwavelet packets results were worse than the multiwavelet

results without shuffling.
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Table 6.8: PSNR results (in dB) for Goldhill.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 35.11 31.78 29.33 27.60

W Bi22/14 35.20 31.86 29.34 27.74

MW SA4 35.19 31.73 29.08 27.30

MW (sh) SA4 35.30 31.89 29.34 27.54

MW ORT4 35.20 31.75 29.10 27.32

MW (sh) ORT4 35.31 31.89 29.35 27.55

MW BSA9/7 35.00 31.78 29.27 27.61

MW (sh) BSA9/7 35.03 31.83 29.46 27.73

MW BSA7/5 35.28 31.82 29.15 27.29

MW (sh) BSA7/5 35.35 31.90 29.35 27.51

WP (1) Bi9/7 34.74 31.60 29.26 27.37

WP (2) Bi9/7 35.07 31.95 29.49 27.57

WP (1) Bi22/14 34.89 31.78 29.40 27.61

WP (2) Bi22/14 35.17 32.01 29.52 27.75

MWP (1) SA4 34.88 31.58 29.02 27.13

MWP (2) SA4 35.06 31.73 29.09 27.18

MWP (1) ORT4 34.75 31.46 29.02 27.16

MWP (2) ORT4 35.05 31.75 29.10 27.18

MWP (1) BSA9/7 34.13 31.25 28.99 27.16

MWP (2) BSA9/7 34.84 31.65 29.25 27.58

MWP (1) BSA7/5 34.94 31.64 29.11 27.21

MWP (2) BSA7/5 35.23 31.82 29.16 27.27
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Table 6.9: PSNR results (in dB) for Boat.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 37.16 32.67 29.27 26.71

W Bi22/14 37.35 32.87 29.37 26.72

MW SA4 36.80 32.46 28.88 25.97

MW (sh) SA4 37.53 32.96 29.45 26.74

MW ORT4 36.85 32.49 28.90 25.98

MW (sh) ORT4 37.56 33.00 29.47 26.75

MW BSA9/7 36.53 32.44 29.06 26.41

MW (sh) BSA9/7 37.01 32.83 29.48 26.88

MW BSA7/5 36.97 32.59 29.06 26.15

MW (sh) BSA7/5 37.52 32.97 29.45 26.62

WP (1) Bi9/7 36.62 32.49 29.22 26.64

WP (2) Bi9/7 37.33 32.91 29.50 26.81

WP (1) Bi22/14 36.88 32.60 29.21 26.73

WP (2) Bi22/14 37.48 33.11 29.56 26.90

MWP (1) SA4 36.39 32.24 28.84 25.96

MWP (2) SA4 36.81 32.45 28.88 25.96

MWP (1) ORT4 36.49 32.27 28.86 25.96

MWP (2) ORT4 36.85 32.49 28.90 25.98

MWP (1) BSA9/7 35.83 32.04 28.84 26.29

MWP (2) BSA9/7 36.21 32.19 28.88 26.36

MWP (1) BSA7/5 36.85 32.54 29.05 26.12

MWP (2) BSA7/5 36.88 32.55 29.05 26.14



Michael B. Martin Chapter 6. Experimental Results 66

6.2.2.8 Lighthouse

Another good example of an image with mixed smooth and high-frequency regions is Light-

house. The results for Lighthouse, shown in Figure 6.10, are quite interesting. As with

Lena and Goldhill, the use of coefficient shuffling improves the performance of the multi-

wavelets. In fact, it enables all the multiwavelets tested to achieve better objective results

than the scalar wavelets at all bit rates. Due to the amount of high-frequency content in

Lighthouse in the fence, the use of wavelet packets raises the PSNR values significantly. But

the reconstructions with higher PSNR values don’t necessarily look better.

Consider Figures 6.13-6.20, which show a close-up of the fence and binoculars. The scalar

Bi9/7 (Figure 6.14) and Bi22/14 (Figure 6.15) wavelets lose a lot of the fence texture and

produce quite a bit of ringing around the binoculars. Also, the sign on the fence is very

blurred, to the point of almost being unidentifiable and indistinguishable from the fence

itself. The SA4 (Figure 6.16) and ORT4 (Figure 6.17) multiwavelet results, which are nearly

identical, seem much clearer. They capture more of the fence texture and exhibit less of the

blurring on and around the binoculars. While the BSA9/7 results (Figure 6.18) are rather

similar to the scalar wavelet results, BSA7/5 (Figure 6.19) combines the good features of

the SA4 and ORT4 reconstructions with less blocking artifacts. And despite having the

best PSNR value, the Bi22/14 wavelet packet reconstruction (Figure 6.20) is rather poor. It

captures the fence texture better than many others, but blurs most other objects, including

the sign and binoculars, and produces the worst ringing of the bunch. The best-looking

reconstruction, in this author’s opinion goes to the BSA7/5 multiwavelet with shuffling.
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Table 6.10: PSNR results (in dB) for Lighthouse.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 32.46 29.24 26.57 24.08

W Bi22/14 32.46 29.28 26.72 24.24

MW SA4 32.58 29.20 26.62 24.13

MW (sh) SA4 32.92 29.48 26.84 24.33

MW ORT4 32.60 29.22 26.63 24.14

MW (sh) ORT4 32.93 29.48 26.83 24.34

MW BSA9/7 32.34 29.03 26.60 24.25

MW (sh) BSA9/7 32.47 29.29 26.76 24.39

MW BSA7/5 32.67 29.21 26.65 24.20

MW (sh) BSA7/5 32.88 29.48 26.84 24.37

WP (1) Bi9/7 32.15 29.13 26.96 24.86

WP (2) Bi9/7 32.66 29.48 27.20 25.02

WP (1) Bi22/14 32.13 29.07 26.89 24.87

WP (2) Bi22/14 33.07 29.66 27.29 25.10

MWP (1) SA4 32.10 28.84 26.55 24.48

MWP (2) SA4 32.51 29.27 26.78 24.50

MWP (1) ORT4 32.08 28.81 26.53 24.41

MWP (2) ORT4 32.53 29.28 26.79 24.51

MWP (1) BSA9/7 31.85 28.62 26.41 24.20

MWP (2) BSA9/7 32.30 29.10 26.70 24.28

MWP (1) BSA7/5 32.29 28.89 26.53 24.27

MWP (2) BSA7/5 32.56 29.21 26.80 24.54
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Figure 6.13: Original Lighthouse, showing
a close-up of the fence and binoculars.

Figure 6.14: Lighthouse compressed with
Bi9/7 wavelet to 0.25 bpp at PSNR=26.57
dB.

Figure 6.15: Lighthouse compressed
with Bi22/14 wavelet to 0.25 bpp at
PSNR=26.72 dB.

Figure 6.16: Lighthouse compressed with
SA4 multiwavelet with shuffling to 0.25
bpp at PSNR=26.84 dB.
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Figure 6.17: Lighthouse compressed with
ORT4 multiwavelet with shuffling to 0.25
bpp at PSNR=26.83 dB.

Figure 6.18: Lighthouse compressed with
BSA9/7 multiwavelet with shuffling to 0.25
bpp at PSNR=26.76 dB.

Figure 6.19: Lighthouse compressed with
BSA7/5 multiwavelet with shuffling to 0.25
bpp at PSNR=26.84 dB.

Figure 6.20: Lighthouse compressed with
Bi22/14 wavelet packets to 0.25 bpp at
PSNR=27.29 dB.
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6.2.2.9 House

House is another example of an image that is difficult to compress well due to the large

amount of high-frequency information it contains. Objective results for the House image

are given in Figure 6.11. In this case, the multiwavelets typically produce PSNR values

comparable to, or better than, that of the scalar wavelets. In particular, the multiwavelets

with shuffling consistently achieve the best PSNR values at high bit rate. Without shuffling,

the multiwavelet results are somewhat lower, but they are still competitive at moderate and

high bit rates.

It is interesting to note that the wavelet packets and multiwavelet packets perform reasonably

well. In particular, the scalar wavelet packet PSNR values are slightly better than scalar

wavelets using the standard decomposition. Also note that the multiwavelet packet scores

using the second cost function are very close to the those of the multiwavelets without

shuffling. As with most of the other images tested, the PSNR values for wavelet packet and

multiwavelet packet decompositions produced with the first cost function are generally low.

Figures 6.21-6.28 show a detail of the shutters on the right side of the House image. The

horizontal slats in the shutters are completely lost by the scalar wavelets, but all the multi-

wavelets capture them to some extent. Of course, the wavelet packet decomposition preserves

this detail even better. As was seen with the Barbara image, multiwavelets using a stan-

dard decomposition can capture some texture details that normally require a packet-based

decomposition. This is important to note because a 3-level multiwavelet transform is much

less computationally expensive than a typical 5-level scalar wavelet packet transform.
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Table 6.11: PSNR results (in dB) for House.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 29.19 25.02 22.01 20.08

W Bi22/14 29.29 25.00 22.17 20.12

MW SA4 29.33 25.14 22.00 19.80

MW (sh) SA4 29.64 25.38 22.23 20.15

MW ORT4 29.34 25.15 22.00 19.81

MW (sh) ORT4 29.64 25.39 22.24 20.16

MW BSA9/7 29.22 25.05 22.05 20.02

MW (sh) BSA9/7 29.35 25.20 22.22 20.25

MW BSA7/5 29.42 25.21 22.11 19.89

MW (sh) BSA7/5 29.59 25.37 22.28 20.15

WP (1) Bi9/7 28.66 24.96 22.19 20.06

WP (2) Bi9/7 29.59 25.49 22.40 20.27

WP (1) Bi22/14 28.92 25.22 22.31 20.11

WP (2) Bi22/14 29.50 25.42 22.28 20.13

MWP (1) SA4 29.18 25.17 22.08 19.77

MWP (2) SA4 29.30 25.14 22.00 19.79

MWP (1) ORT4 29.30 25.14 21.99 19.78

MWP (2) ORT4 29.34 25.15 22.00 19.81

MWP (1) BSA9/7 28.72 24.88 21.98 19.90

MWP (2) BSA9/7 29.22 25.05 22.05 20.02

MWP (1) BSA7/5 29.09 25.12 22.18 19.78

MWP (2) BSA7/5 29.42 25.21 22.11 19.89
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Figure 6.21: Original House. Figure 6.22: House at 16:1 compression us-
ing Bi9/7 filter, with PSNR=25.02 dB.

Figure 6.23: House at 16:1 compression us-
ing Bi22/14 filter, PSNR=25.00 dB.

Figure 6.24: House at 16:1 compression
using SA4 multifilter with shuffling, with
PSNR=25.38 dB.
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Figure 6.25: House at 16:1 compres-
sion using ORT4 multifilter with shuffling,
PSNR=25.39 dB.

Figure 6.26: House at 16:1 compression
using BSA9/7 multifilter with shuffling,
PSNR=25.20 dB.

Figure 6.27: House at 16:1 compression
using BSA7/5 multifilter with shuffling,
PSNR=25.37 dB.

Figure 6.28: House at 16:1 compression us-
ing Bi9/7 filter with packets, PSNR=25.49
dB.
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6.2.2.10 Mandrill

The Mandrill image is another popular image that is quite difficult to compress well. The

texture of the fur produces a large amount of high-frequency content spread over most of the

image. Consequently, the reconstructed images start to show artifacts even at high bit rates.

The ability of multiwavelets to capture high-frequency detail better than scalar wavelets is

visible in the PSNR results in Table 6.12. The multiwavelets with shuffling typically perform

at least as well as the scalar wavelets. PSNR values for the packet-based methods are lower,

although the multiwavelet packets now perform as well as, or better than, the scalar wavelet

packets. In fact, the multiwavelet packets using the second cost function produce results

almost identical to those of the multiwavelets without shuffling. This level of performance

is below that of the multiwavelets with shuffling, but not by much.

6.2.2.11 Frog

The results for the Frog image are quite interesting. As Table 6.13 shows, the PSNR values at

each bit rate are quite uniform for all transforms. Also interesting is the fact that coefficient

shuffling lowers the PSNR for the multiwavelet transforms, although the difference becomes

negligibly small at low bit rates.
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Table 6.12: PSNR results (in dB) for Mandrill.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 27.86 24.43 22.30 21.16

W Bi22/14 28.07 24.61 22.35 21.21

MW SA4 27.84 24.40 22.24 21.04

MW (sh) SA4 28.15 24.61 22.47 21.16

MW ORT4 27.86 24.41 22.25 21.05

MW (sh) ORT4 28.17 24.63 22.48 21.16

MW BSA9/7 27.69 24.41 22.22 21.16

MW (sh) BSA9/7 27.97 24.55 22.42 21.23

MW BSA7/5 27.91 24.49 22.23 21.14

MW (sh) BSA7/5 28.17 24.62 22.46 21.20

WP (1) Bi9/7 26.97 23.98 21.96 20.95

WP (2) Bi9/7 27.53 24.37 22.23 21.16

WP (1) Bi22/14 27.08 24.08 22.06 20.97

WP (2) Bi22/14 27.73 24.45 22.28 21.14

MWP (1) SA4 27.21 24.06 21.96 20.94

MWP (2) SA4 27.76 24.36 22.21 21.04

MWP (1) ORT4 27.24 24.06 21.96 20.95

MWP (2) ORT4 27.73 24.32 22.20 21.04

MWP (1) BSA9/7 27.27 23.58 21.73 20.75

MWP (2) BSA9/7 27.66 24.41 22.22 21.16

MWP (1) BSA7/5 27.30 24.13 22.03 21.02

MWP (2) BSA7/5 27.84 24.44 22.21 21.14
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Table 6.13: PSNR results (in dB) for Frog.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 27.52 25.72 24.66 23.46

W Bi22/14 27.57 25.64 24.70 23.50

MW SA4 27.56 25.68 24.53 23.19

MW (sh) SA4 27.44 25.61 24.48 23.19

MW ORT4 27.56 25.69 24.53 23.20

MW (sh) ORT4 27.45 25.62 24.48 23.19

MW BSA9/7 27.17 25.58 24.61 23.37

MW (sh) BSA9/7 27.09 25.52 24.53 23.32

MW BSA7/5 27.59 25.77 24.58 23.26

MW (sh) BSA7/5 27.47 25.68 24.53 23.22

WP (1) Bi9/7 27.03 25.30 24.22 23.15

WP (2) Bi9/7 27.20 25.46 24.44 23.28

WP (1) Bi22/14 27.11 25.29 24.25 23.14

WP (2) Bi22/14 27.30 25.50 24.48 23.34

MWP (1) SA4 27.20 25.23 24.10 22.98

MWP (2) SA4 27.43 25.56 24.43 23.14

MWP (1) ORT4 27.22 25.27 24.13 22.88

MWP (2) ORT4 27.44 25.57 24.44 23.14

MWP (1) BSA9/7 26.26 24.87 23.78 22.97

MWP (2) BSA9/7 27.10 25.50 24.57 23.36

MWP (1) BSA7/5 27.28 25.36 24.16 22.95

MWP (2) BSA7/5 27.53 25.71 24.56 23.25
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6.2.2.12 Man

Like Mandrill, the image titled Man contains a large amount of non-repetitive high-frequency

content. The results in Table 6.14 show that objective measures of performance for wavelet

and multiwavelet filters are quite close. Visual inspection of the reconstructed images reveals

that the images are nearly indistinguishable from each other at 0.25 bpp; the exception is

for multiwavelets without coefficient shuffling. The use of shuffling provides significant gains

for all multifilters in this case, and as with Lena, raises PSNR values from below those of

scalar wavelets to being fully competitive. At low bit rate, there is still little evidence to

prefer scalar wavelets or multiwavelets, since it results in a trading off the bluriness of Bi9/7,

Bi22/14, and BSA9/7 for the blockiness of SA4, ORT4, and BSA7/5.

Wavelet and multiwavelet packets show slightly worse performance on the Man image. As

in previous examples, this is presumably due to poor basis selection. Packet-based methods

tend to work best on textured images, like Barbara and Lighthouse, where they can isolate

high-frequency patterns. The high-frequency components of the Man image contain very

little pattern and hence lose the advantage of packets.

6.2.2.13 Nitf7

The final example from the class of natural images is Nitf7. This image contains a large

number of fine lines, sharp edges, and other high-frequency elements. The PSNR results in

Table 6.15 indicate a slight performance advantage for the multiwavelets but uniformly low

PSNR values at each bit rate. Since much of the high-frequency content of this image is

non-repetitive, the packet-based decompositions do not show any advantage and in fact trail

the objective results of the scalar wavelets and multiwavelets. As usual, the use of coefficient

shuffling improves multiwavelet performance significantly.
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Table 6.14: PSNR results (in dB) for Man.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 35.88 32.60 29.74 27.37

W Bi22/14 35.99 32.78 29.87 27.63

MW SA4 35.60 32.13 29.16 26.77

MW (sh) SA4 36.02 32.61 29.64 27.28

MW ORT4 35.64 32.16 29.19 26.79

MW (sh) ORT4 36.04 32.64 29.66 27.30

MW BSA9/7 35.38 32.36 29.60 27.30

MW (sh) BSA9/7 35.68 32.73 30.01 27.68

MW BSA7/5 35.76 32.33 29.31 26.88

MW (sh) BSA7/5 36.09 32.71 29.67 27.30

WP (1) Bi9/7 35.27 32.08 29.35 27.06

WP (2) Bi9/7 35.81 32.63 29.80 27.41

WP (1) Bi22/14 35.38 32.26 29.54 27.29

WP (2) Bi22/14 35.91 32.76 29.96 27.52

MWP (1) SA4 35.37 32.00 29.12 26.76

MWP (2) SA4 35.56 32.11 29.16 26.77

MWP (1) ORT4 35.43 32.04 29.15 26.79

MWP (2) ORT4 35.60 32.14 29.18 26.79

MWP (1) BSA9/7 34.93 31.95 29.37 27.18

MWP (2) BSA9/7 35.27 32.21 29.54 27.29

MWP (1) BSA7/5 35.52 32.22 29.28 26.87

MWP (2) BSA7/5 35.71 32.31 29.30 26.87
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Table 6.15: PSNR results (in dB) for Nitf7.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 24.50 21.44 19.31 17.58

W Bi22/14 24.38 21.27 19.26 17.53

MW SA4 23.87 20.82 18.92 17.19

MW (sh) SA4 24.62 21.44 19.24 17.45

MW ORT4 23.90 20.85 18.94 17.20

MW (sh) ORT4 24.64 21.46 19.27 17.46

MW BSA9/7 23.95 21.08 19.16 17.38

MW (sh) BSA9/7 24.42 21.55 19.45 17.59

MW BSA7/5 24.00 20.94 19.02 17.32

MW (sh) BSA7/5 24.59 21.46 19.29 17.52

WP (1) Bi9/7 23.31 20.57 18.61 17.16

WP (2) Bi9/7 24.02 21.17 19.13 17.54

WP (1) Bi22/14 23.22 20.54 18.71 17.21

WP (2) Bi22/14 23.98 21.11 19.05 17.46

MWP (1) SA4 23.08 20.22 18.49 16.94

MWP (2) SA4 23.87 20.82 18.91 17.19

MWP (1) ORT4 23.17 20.42 18.69 17.05

MWP (2) ORT4 23.90 20.85 18.94 17.20

MWP (1) BSA9/7 22.92 20.43 18.50 17.13

MWP (2) BSA9/7 23.95 21.08 19.16 17.38

MWP (1) BSA7/5 23.37 20.43 18.47 17.04

MWP (2) BSA7/5 24.00 20.94 19.02 17.32
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6.2.3 Results for Synthetic Images

6.2.3.1 Gray21

Now we examine the performance of multiwavelets for the class of synthetic images. We start

with Gray21, a simple array of solid blocks that form a gradient with twenty-one shades of

gray. The PSNR results for Gray21 in Figure 6.16 show that the multiwavelets seriously

outperform the scalar wavelets, especially when the SA4 and ORT4 multifilters are used. In

contrast, the BSA9/7 multifilter gives the worst results at all bit rates. The scalar wavelet

packets and multiwavelet packets performed poorly, most likely due to a poor choice of basis.

This is not surprising since packet-based decompositions work best on images with oscillating

patterns, of which Gray21 has none.

The results for Gray21 confirm other authors’ results in which multiwavelets performed very

well on a geometric test pattern [19], even to the point of one multifilter giving lossless

reconstruction at 1.0 bpp. As the results for 0.5 bpp show in Table 6.16, the SA4, ORT4,

and BSA7/5 multifilters were able to reconstruct the original image perfectly, regardless

of whether shuffling was used. This suggests that the multiwavelets are able to capture

high-frequency detail, including the sharp transitions of Gray21, better than scalar wavelets.

6.2.3.2 Testpat2

Very similar results occur for the next test image, Testpat2. Testpat2 is a geometric set

of rectangles of decreasing sizes. The objective results shown in Figure 6.16 indicate that

multiwavelets again outperformed scalar wavelets, except for the BSA9/7 multiwavelet. In

particular, reconstruction error was completely absent at 1.0 bpp for the SA4, ORT4, and

BSA7/5 multifilters with the standard decomposition, and also for the SA4 and BSA7/5

multifilters with a multiwavelet packet decomposition.
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Table 6.16: PSNR results (in dB) for Gray21. A PSNR value of ∞ means that the MSE is

exactly zero.

Type Filter 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 88.17 59.04 49.45

W Bi22/14 86.19 57.98 48.61

MW SA4 ∞ 67.11 52.44

MW (sh) SA4 ∞ 68.01 53.54

MW ORT4 ∞ 68.43 52.39

MW (sh) ORT4 ∞ 69.63 53.16

MW BSA9/7 54.62 47.63 45.21

MW (sh) BSA9/7 48.61 47.21 44.32

MW BSA7/5 ∞ 63.26 50.73

MW (sh) BSA7/5 ∞ 63.30 50.75

WP (1) Bi9/7 72.64 59.41 49.66

WP (2) Bi9/7 71.34 58.32 49.56

WP (1) Bi22/14 71.57 57.01 49.41

WP (2) Bi22/14 70.31 56.11 49.42

MWP (1) SA4 77.50 65.56 52.19

MWP (2) SA4 76.90 64.01 52.27

MWP (1) ORT4 77.39 65.77 52.01

MWP (2) ORT4 76.63 63.94 52.11

MWP (1) BSA9/7 68.28 55.84 48.71

MWP (2) BSA9/7 68.31 56.92 49.56

MWP (1) BSA7/5 77.12 62.99 50.75

MWP (2) BSA7/5 73.92 60.16 50.98



Michael B. Martin Chapter 6. Experimental Results 82

Table 6.17: PSNR results (in dB) for Testpat2. A PSNR value of ∞ means that the MSE is

exactly zero.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 81.52 67.35 62.45 59.44

W Bi22/14 71.55 66.57 61.65 58.79

MW SA4 ∞ 70.12 63.23 60.00

MW (sh) SA4 ∞ 70.06 62.66 59.40

MW ORT4 ∞ 70.43 63.28 60.02

MW (sh) ORT4 ∞ 70.38 62.66 59.41

MW BSA9/7 71.55 54.67 46.63 45.51

MW (sh) BSA9/7 48.77 45.94 45.25 45.06

MW BSA7/5 ∞ 71.73 63.20 59.79

MW (sh) BSA7/5 ∞ 71.24 62.37 58.97

WP (1) Bi9/7 81.11 75.12 66.05 61.27

WP (2) Bi9/7 79.67 75.16 66.00 61.43

WP (1) Bi22/14 73.42 69.19 65.04 60.44

WP (2) Bi22/14 73.44 69.28 65.13 60.38

MWP (1) SA4 ∞ 78.23 70.51 63.42

MWP (2) SA4 ∞ 78.44 70.60 63.42

MWP (1) ORT4 96.30 77.97 70.66 63.46

MWP (2) ORT4 96.30 77.54 70.81 63.46

MWP (1) BSA9/7 87.84 79.86 70.52 62.32

MWP (2) BSA9/7 87.84 80.73 70.98 62.69

MWP (1) BSA7/5 ∞ 82.32 70.67 62.86

MWP (2) BSA7/5 ∞ 81.82 71.12 62.86
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6.2.3.3 Ruler

Ruler is an example of an image that is difficult to compress because it contains a large

amount of repeated high-frequency patterns. For this same reason, it is best compressed using

a packet-based decomposition. The PSNR values in Table 6.18 confirm the improvement

using packets, with the Bi9/7 scalar wavelet packets giving the best results at high bit rate.

At lower bit rate, the multiwavelet packets give the best performance. After packet-based

decompositions, the SA4 and ORT4 multiwavelets give the best PSNR values. The Bi22/14

scalar filter, which does very well on smooth images, gives some of the worst results for this

image. Note that in this case, the packets show their strength most at the lower bit rates;

while the best packet-based results only lead by the best non-packet-based results by about

2.5 dB at 1.0 bpp, this difference widens to about 10 dB at 0.25 bpp. This result reinforces

the idea that standard wavelet decompositions perform poorly at low bit rates on images

with large amounts of high-frequency oscillation.

6.2.3.4 Barchart

The next synthetic test image used is Barchart, the results for which are shown in Table

6.19. As with the Gray21 image, the multiwavelets outperform the scalar wavelets at all

bit rates. It is interesting to note that the use of coefficient shuffling dramatically improves

the PSNR values for the multiwavelets, especially at higher bit rates, with nearly a 3.0 dB

improvement for SA4 and ORT4 at 1.0 bpp. While the packet decompositions give lower

PSNR values at high bit rates, the multiwavelet packets give results comparable to those of

the multiwavelets at the lowest bit rates.
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Table 6.18: PSNR results (in dB) for Ruler.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp

W Bi9/7 26.09 17.07 13.69

W Bi22/14 23.83 18.64 12.19

MW SA4 26.64 18.02 13.45

MW (sh) SA4 28.13 18.03 13.32

MW ORT4 26.60 18.02 13.46

MW (sh) ORT4 28.06 18.02 13.33

MW BSA9/7 26.62 19.39 15.03

MW (sh) BSA9/7 25.55 16.92 11.97

MW BSA7/5 26.31 18.29 13.26

MW (sh) BSA7/5 26.70 18.64 13.20

WP (1) Bi9/7 30.68 26.69 23.46

WP (2) Bi9/7 30.68 26.69 23.46

WP (1) Bi22/14 28.16 24.92 22.72

WP (2) Bi22/14 28.18 24.92 22.73

MWP (1) SA4 29.98 25.74 23.78

MWP (2) SA4 29.98 25.74 23.78

MWP (1) ORT4 30.01 25.75 23.77

MWP (2) ORT4 30.01 25.75 23.77

MWP (1) BSA9/7 28.27 25.26 22.90

MWP (2) BSA9/7 28.49 25.37 23.03

MWP (1) BSA7/5 29.99 26.06 23.77

MWP (2) BSA7/5 29.99 26.06 23.77
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Table 6.19: PSNR results (in dB) for Barchart.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 35.03 27.45 22.18 18.82

W Bi22/14 34.96 27.16 22.50 18.92

MW SA4 34.40 27.46 22.31 19.03

MW (sh) SA4 37.35 28.88 23.25 19.32

MW ORT4 34.36 27.47 22.37 19.05

MW (sh) ORT4 37.17 28.85 23.24 19.33

MW BSA9/7 33.19 26.94 22.50 19.06

MW (sh) BSA9/7 34.40 27.50 22.63 19.15

MW BSA7/5 34.32 27.39 22.36 19.34

MW (sh) BSA7/5 36.08 28.43 23.01 19.43

WP (1) Bi9/7 33.96 27.09 22.16 18.78

WP (2) Bi9/7 35.03 27.45 22.18 18.81

WP (1) Bi22/14 34.95 27.15 22.49 18.91

WP (2) Bi22/14 34.93 27.12 22.47 18.90

MWP (1) SA4 34.40 27.45 22.30 19.01

MWP (2) SA4 34.40 27.45 22.30 19.01

MWP (1) ORT4 34.36 27.46 22.33 19.03

MWP (2) ORT4 34.36 27.46 22.33 19.03

MWP (1) BSA9/7 32.27 25.86 21.81 18.78

MWP (2) BSA9/7 32.27 26.14 22.09 18.98

MWP (1) BSA7/5 34.32 27.38 22.34 19.32

MWP (2) BSA7/5 34.32 27.38 22.34 19.32
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6.2.3.5 Testpat 1k

The Testpat 1k image is very interesting. This image is mostly a combination of synthetic

elements, such as gradients and checkerboard and line patterns, but also has a small 256×256

version of Lena in the center. The results for Testpat 1k are shown in Table 6.20. As with the

other synthetic images, the SA4, ORT4, and BSA7/5 multifilters substantially outperform

the scalar filters and the BSA9/7 multifilter. Another interesting point is that the use of

coefficient shuffling gives somewhat mixed results here. For example, BSA9/7 and BSA7/5

perform consistently better without shuffling. At 1.0 bpp, shuffling improves the PSNR

values for SA4 and ORT4 by more than 1 dB, yet at lower bit rates shuffling performance

by a similar amount. Even so, for the cases in which shuffling decreases performance, the

multiwavelets generally still outperform the scalar wavelets.

6.2.3.6 IC

An example of an image that is somewhat between natural and synthetic is IC. Unlike

Testpat 1k, which is a composite of both natural and synthetic images in different parts of

the image, IC combines features of both image types simultaneously. The PSNR numbers in

Table 6.21 match the visual quality of the reconstructed images. Figures 6.29-6.34 illustrate

the results at 0.5 bpp. It can be observed that the multiwavelet methods, which achieve

higher PSNR values, generally produce less ringing around edges and sharper transitions.

As with the other synthetic images, the sole exception is the BSA9/7 multifilter, which

generally seems to perform poorly on such images.
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Table 6.20: PSNR results (in dB) for Testpatk 1k.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 46.81 36.25 27.25 22.04

W Bi22/14 48.47 36.67 30.04 24.12

MW SA4 52.51 41.38 32.88 27.14

MW (sh) SA4 53.68 40.15 31.80 26.22

MW ORT4 52.25 41.15 32.83 27.20

MW (sh) ORT4 53.89 39.70 31.96 26.33

MW BSA9/7 45.54 35.70 29.18 25.72

MW (sh) BSA9/7 45.09 35.15 28.05 23.46

MW BSA7/5 53.05 41.20 32.03 26.98

MW (sh) BSA7/5 51.83 38.61 31.15 25.39

WP (1) Bi9/7 45.86 35.95 29.05 24.42

WP (2) Bi9/7 46.16 36.57 30.45 26.14

WP (1) Bi22/14 47.28 35.99 29.89 24.06

WP (2) Bi22/14 47.05 37.40 30.80 26.68

MWP (1) SA4 52.51 41.38 32.88 27.14

MWP (2) SA4 50.45 40.86 33.08 28.19

MWP (1) ORT4 52.25 41.15 32.83 27.20

MWP (2) ORT4 50.31 40.45 33.08 28.21

MWP (1) BSA9/7 46.04 35.42 29.20 25.63

MWP (2) BSA9/7 45.82 35.64 29.40 25.74

MWP (1) BSA7/5 53.05 41.20 32.03 26.98

MWP (2) BSA7/5 50.92 40.90 32.66 27.78
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Table 6.21: PSNR results (in dB) for IC.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 35.68 30.38 25.85 22.45

W Bi22/14 35.82 30.62 26.03 22.28

MW SA4 35.70 30.94 26.10 21.87

MW (sh) SA4 36.38 31.90 27.03 22.86

MW ORT4 35.71 30.97 26.15 21.91

MW (sh) ORT4 36.39 31.91 27.03 22.89

MW BSA9/7 35.06 30.30 26.07 22.33

MW (sh) BSA9/7 35.39 30.70 26.45 22.72

MW BSA7/5 35.72 30.96 26.38 21.91

MW (sh) BSA7/5 36.25 31.50 26.92 22.58

WP (1) Bi9/7 34.01 29.82 25.83 22.21

WP (2) Bi9/7 35.09 30.55 26.10 22.29

WP (1) Bi22/14 34.28 29.91 26.07 22.36

WP (2) Bi22/14 35.01 30.43 25.94 21.80

MWP (1) SA4 34.64 29.97 25.55 21.61

MWP (2) SA4 35.47 30.89 26.01 21.63

MWP (1) ORT4 34.65 29.99 25.62 21.67

MWP (2) ORT4 35.48 30.93 26.06 21.72

MWP (1) BSA9/7 33.31 29.49 25.91 22.08

MWP (2) BSA9/7 34.86 30.28 26.07 22.25

MWP (1) BSA7/5 34.72 29.78 25.74 22.20

MWP (2) BSA7/5 35.72 30.95 26.37 21.89
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Figure 6.29: 128×128 portion of original
IC image.

Figure 6.30: IC at 0.5 bpp using Bi9/7
scalar filter, PSNR=30.38 dB.

Figure 6.31: IC at 0.5 bpp using Bi22/14
scalar filter with shuffling, PSNR=30.62
dB.

Figure 6.32: IC at 0.5 bpp using SA4 mul-
tifilter with shuffling, PSNR=31.90 dB.
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Figure 6.33: IC at 0.5 bpp using BSA9/7
multifilter with shuffling, PSNR=30.70
dB.

Figure 6.34: IC at 0.5 bpp using BSA7/5
multifilter with shuffling, PSNR=31.50
dB.

6.2.3.7 Yogi

The final test image, Yogi, is similar to IC in the sense that it has features of both natural

and synthetic images. Multiwavelets with shuffling produce the best objective results, as

shown in Table 6.22. It is interesting to note that in this case the multiwavelets perform

poorly without shuffling, yielding results as much as 5 dB less than without shuffling and

as much as 3 dB below the scalar wavelet results. Inspection of the reconstructions shows

that SA4, ORT4, and BSA7/5 show much less ringing than other filters, which no doubt

contributes to their better PSNR values. Due to the lack of high-frequency details and the

subsequent poor basis selection, wavelet packets and multiwavelet packets perform poorly.
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Table 6.22: PSNR results (in dB) for Yogi.

Type Filter 1.000 bpp 0.500 bpp 0.250 bpp 0.125 bpp

W Bi9/7 38.67 29.84 24.84 21.91

W Bi22/14 38.43 29.73 25.00 22.09

MW SA4 35.54 28.77 24.13 21.24

MW (sh) SA4 40.49 31.27 25.66 22.38

MW ORT4 35.55 28.76 24.15 21.26

MW (sh) ORT4 40.42 31.19 25.65 22.39

MW BSA9/7 34.97 28.24 24.06 21.50

MW (sh) BSA9/7 37.94 29.80 25.01 22.17

MW BSA7/5 35.48 28.68 24.13 21.26

MW (sh) BSA7/5 39.17 30.35 25.12 22.18

WP (1) Bi9/7 38.67 29.84 24.83 21.91

WP (2) Bi9/7 38.67 29.84 24.83 21.91

WP (1) Bi22/14 38.43 29.73 25.00 22.09

WP (2) Bi22/14 38.43 29.73 25.00 22.09

MWP (1) SA4 35.54 28.77 24.13 21.23

MWP (2) SA4 35.54 28.77 24.13 21.23

MWP (1) ORT4 35.55 28.76 24.15 21.25

MWP (2) ORT4 35.55 28.76 24.15 21.25

MWP (1) BSA9/7 33.36 27.59 23.74 21.31

MWP (2) BSA9/7 34.97 28.24 24.05 21.50

MWP (1) BSA7/5 35.48 28.68 24.13 21.26

MWP (2) BSA7/5 35.48 28.68 24.13 21.26



Chapter 7

Conclusion

7.1 Summary of Results

7.1.1 Remarks about Multiwavelets

A number of conclusions regarding the image compression performance of the wavelet and

multiwavelet filters tested may be made based upon the results in Chapter 6. First, the

performance of multiwavelets in general depends greatly on the image characteristics. For

images with mostly low-frequency content (like Lena or Monarch), scalar wavelets gener-

ally give better performance. However, multiwavelets appear to excel at preserving high-

frequency content. In particular, multiwavelets better capture the sharp edges and geometric

patterns that occur in the synthetic images like Gray21 and Testpat 1k. For images that

contain both low- and high-frequency areas, as do many natural images, multiwavelets with

shuffling generally give performance that is competitive to scalar wavelets. For some cases,

such as Barbara and Lighthouse, multiwavelets give slightly better visual quality with very

similar PSNR values. In fact, tests on images that contain large textured regions (like Bar-

bara and Finger) demonstrate that multiwavelets can attain some of the benefits of wavelet

packets, by preserving high-frequency patterns that are lost by scalar wavelets with a non-

92
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packet decomposition. High-frequency content that is spread over a large image region or

which exhibits oscillations (as in the Barbara image) is currently best preserved with wavelet

packets in general, but multiwavelet packets perform moderately well in some cases.

Addressing individual wavelets, the SA4, ORT4, and BSA7/5 multiwavelets tend to perform

best on synthetic images. In particular, images with only sharp transitions, such as Gray21

and Testpat2, are best compressed with either of the SA4 and ORT4 multiwavelets. It is

interesting to note that the orthogonal multiwavelets, SA4 and ORT4, show nearly identical

performance in most situations. The BSA7/5 multiwavelet performed best on “mixed”

images, like Peppers, Goldhill, and Mandrill. Like the Bi9/7 and Bi22/14 scalar wavelets,

the BSA9/7 multiwavelet performed best on natural images. However, while the Bi9/7 and

Bi22/14 scalar wavelets perform best on smooth images like Lena and Monarch, BSA9/7

performs better on images like Finger and Nitf7 which have a large amount of structure (and

hence some high-frequency patterns) in the image.

Evaluating performance over all the test images, it is difficult to select any particular wavelet

or multiwavelet over any of the others. However, the Bi22/14 wavelet showed the most

consistently good results on natural images, performing best on the smoother images while

still giving respectable results on the less-smooth natural images. Also, the Bi22/14 wavelet

packets were nearly always the best of the packet-based methods on natural images. For

synthetic images, the SA4 and ORT4 multiwavelets gave the most consistently good results,

especially for the images that are more synthetic. There was no clear best filter for packet-

based decompositions on the synthetic images. Hopefully new multifilters constructed in the

future will show more consistent image compression performance.

In general, the shorter multifilters work well for synthetic images, while the longer multifilters

work best for natural images. This relation between filter length and performance is the same

for scalar wavelets. Shorter filters tend to capture high-frequency detail better because they

do not decay smoothly to zero at the ends, and hence better match the local discontinuities

of high-frequency image data. On the other hand, longer filters generally decay more rapidly
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to zero at the ends and thus better match locally smooth regions in low-frequency image

data.

For all types of images, the PSNR advantage demonstrated by each one of the transform

methods decreased with the reconstruction bit rate. This is a natural and expected result,

since at low bit rate the coding gain of the transform is overpowered by insufficient bits for

representation. If too few bits are used to represent an image, the reconstruction quality

will be poor regardless of the transform used. At high bit rate, enough bits are available to

allow the different transforms to show their strengths (and weaknesses).

7.1.2 Remarks about Multiwavelet Packets

One of the new contributions of this thesis is the implementation and testing of multiwavelet

packets. The results from Chapter 6 show mixed results for multiwavelet packets. For most

natural images, the Bi22/14 scalar wavelet packets with our new cost function “2” (which

counts the number of bits required to represent the coefficients of each node) produced the

best results of all packet-based transforms. In fact, for highly textured images like Barbara

and Finger, the Bi22/14 wavelet packet results were the best achieved at each bit rate of any

of the tested transforms; in those cases the multiwavelet packets did not perform well. How-

ever, on some images with both high-frequency and low-frequency content, the multiwavelet

packet performance was equal to, if not better than, scalar wavelet packets. Examples of

this include Mandrill, Frog, and Nitf7. On many natural images with mixed content, such as

Goldhill, Lighthouse, House, and Man, wavelet packets outperformed multiwavelet packets,

but the difference in PSNR was often rather small (0.3 dB or less).

Relative to wavelet packets, multiwavelet packets performed better on synthetic images. For

Testpat2, the multiwavelet packet results are the best overall at most bit rates and uni-

formly surpass the scalar wavelet packet results. This image is one of the few examples

in which multiwavelet packets give better results than multiwavelets without the packet

decomposition. The ruler image had similar results; scalar wavelet packets gave the best
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results at most bit rates, but the multiwavelet packets gave consistently much better results

than the multiwavelets. In other synthetic images, like Barchart, Testpat 1k, and IC, mul-

tiwavelet packets gave the best packet-based decomposition performance at some bit rates,

but not all. For those images, the multiwavelet packets sometimes performed better than

non-packet multiwavelets, but not always. Taken together, these results show that multi-

wavelet packets have the potential to give performance improvements for images which have

any significant amount of high-frequency textures, just as with scalar wavelet packets. How-

ever, the multiwavelet packets do not realize their potential in these tests, presumably due

to the quantization method used. Recall that multiwavelets (and therefore also multiwavelet

packets) have a spatial decomposition structure which does not match the assumptions of a

zerotree quantization method. While the coefficient shuffling method presented in this thesis

can improve multiwavelet performance with the SPIHT quantizer by trying to restore the

spatial structure assumed by SPIHT, no such method exists to improve multiwavelet packet

performance with SPIHT. Hence another quantization method would be better suited for

use with multiwavelet packets. An optimized uniform scalar quantization method, such as

SFQ [33], might give good results with multiwavelet packets.

7.1.3 Remarks about New Decomposition Methods

Two new methods for improving the multiwavelet transform have been proposed in this

thesis: a new multiwavelet decomposition that iterates only on the L1L1 subband, and a

coefficient shuffling method to improve performance with zerotree-based quantizers. Both

methods have been shown to improve the performance of multiwavelet image compression in

many cases. The improved decomposition iteration gives uniformly better results and was

therefore used to generate the results for all the test images. However, the performance gains

of shuffling depend upon the image content to a large extent. In particular, shuffling helps

most for images with more low-frequency content. For images with more high-frequency

content, shuffling typically has no significant effect on performance, and in some cases de-
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creases performance. Decreases in performance as a result of shuffling are presumably due

to unstructured high-frequency content in images. Shuffling tries to group together pixels

corresponding to the same spatial locations in the image. Images like Barbara, which lack a

strong structure in the bandpass subbands due to large amounts of high-frequency content,

will therefore not see any benefit from shuffling. However performance losses due to shuffling

are usually very small and often occur in cases in which the multiwavelets outperform scalar

wavelets regardless of shuffling. An example of this is the Finger image, for which shuffling

coefficients tended to lower the multiwavelet PSNR results by up to nearly 0.3 dB; even

though the shuffled result for the BSA9/7 multifilter is lower than the unshuffled result at

all bit rates, the shuffled result is still at least as good as the Bi22/14 scalar wavelet result

at all bit rates. In contrast, when shuffling improves performance, the improvement is often

quite significant and gives the multiwavelets performance equal to or better than that of

scalar wavelets. Hence, while the type of image being compressed has a significant bearing

on whether shuffling will be beneficial, it is probably safe to use the shuffling method in

general.

7.1.4 Concluding Remarks

It should be pointed out that the scalar wavelets used here represent the best-known filters

published after years of study. In contrast, the multifilters used here are still quite new,

and many have only been discovered in the past year or so. It seems very likely that new

multifilters will be published in the future which give even better performance than those

in this thesis. Even so, the multiwavelets used in this thesis give performance equal to the

best scalar wavelets in many cases. While the Bi22/14 scalar wavelet gives consistently good

performance for natural images, in most cases a multiwavelet can be selected which gives

similar performance with lower computational complexity. This makes multiwavelets a viable

alternative to the conventional scalar wavelets in many situations. Also, the multi-channel

nature of multiwavelets could be exploited to perform multifiltering on each channel in par-
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allel on suitable hardware. The ability to perform fast parallel multiwavelet transforms in

silicon is important in video applications, because the computational complexity for wavelet

transforms have been a disadvantage to date compared to DCT-based algorithms [31]. As

better multifilter construction techniques, and hence better multifilters, are developed, mul-

tiwavelets could in fact displace scalar wavelets as the transform of choice for many areas of

image and video compression.

7.2 Future Work

The multiwavelet techniques presented in this thesis produce some of the best-reported re-

sults to date for multiwavelet-based image compression compared to wavelet-based methods.

Nonetheless, there is always room for improvement. The following list includes a number of

possible future topics for study. Some of the topics involve improvements to multiwavelet

decomposition methods; other topics include more advanced applications of multiwavelets.

1. Since multiwavelets are a relatively new subject of study, only a few construction meth-

ods have been published previously. It seems likely that future construction methods

might yield multiwavelet filters with better image compression properties. While the

latest published methods can construct SA multiwavelets with desirable magnitude

response characteristics, most current filters have few orders of approximation. For ex-

ample, the SA4 multiwavelet has only one approximation order, while the Bi9/7 scalar

wavelet has four. The biorthogonal construction method of Goh et al. [8] only guar-

antees a single order of approximation for the BSA multifilters. Future construction

methods that add higher orders of approximation while preserving the good features of

the current methods could give multifilters that perform better for image compression.

2. It is important to note that all compression results in this thesis use the zerotree-based

SPIHT quantization method. Since zerotree methods are designed to exploit the spatial

properties of wavelet decompositions and multiwavelet decompositions have different
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spatial properties, zerotree methods do not work as well for multiwavelet transforms.

While the shuffling method helps standard multiwavelet decompositions work better

with zerotree-based quantizers, multiwavelet packets are still at a disadvantage. A

quantization method that exploits the spatial properties of multiwavelet packet de-

compositions could dramatically improve compression performance. A logical choice

for such a quantization method is an optimized scalar quantizer [14, 33]. Also, the

SQF method [32] applied to multiwavelets could give better results than the shuffling

method and SPIHT as used here.

3. While the computational complexity of multiwavelets is not significantly higher than

that of scalar wavelets, the development of ways to further reduce computation would

be helpful. Methods for reducing the computation rate include factoring the multifilter

into a cascade of shorter filters (as Meyer et al. do for scalar wavelets [12]), implemen-

tation of the multifilter via the lifting scheme1, and construction of multifilters which

possess repeated filter coefficients (in addition to the usual symmetry of the SA mul-

tifilters). An additional possibility is to apply factored multiwavelets to non-separable

2-D multifiltering, as has already been done for scalar wavelets [12].

4. The algorithms presented and employed in this thesis are designed to work only

on grayscale images. Based on the good performance demonstrated in Chapter 6,

multiwavelet-based compression of color images should perform well compared to meth-

ods based on wavelet and DCT transforms. An extension to the compression of color

images could be performed in at least two ways. Since most digital color image devices

use RGB color space to represent image data, the multiwavelet methods used here

could be applied individually to each color plane. However, a better method would

be to transform the RGB color data to a luminance/chrominance color space (such as

YCbCr or YUV). The human eye is more sensitive to high-frequency information in the

luminance values (corresponding to the “grayscale” data of the image). Thus the color

1Use of the lifting method could also result in multifiltering methods which can be performed “in place”.
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information in the chrominance planes could be quantized more severely, resulting in

excellent compression rates with good visual quality. This is the method used by the

current imaging standards, such as JPEG.

5. Multiwavelets have demonstrated considerable success in still image compression, with

results comparable to wavelet-based compression methods. It would be a natural ex-

tension to attempt multiwavelet-based video compression. One multiwavelet-based

video codec has already been proposed by Tham et al. [23]. However, the authors of

that paper use the standard method for iteration of multiwavelet decompositions and

a zerotree-based quantizer. The new proposed decomposition method and coefficient

shuffling method presented in this thesis might yield better results than the multi-

wavelet transform method proposed by Tham et al. Also, the authors of that paper

suggest using a Haar or 4-tap Daubechies filter to perform compression in the time

dimension (i.e. filtering each pixel at a fixed image location across successive image

frames). One of the short multiwavelet filters, such as SA4 or ORT4, might give better

image quality results if higher computational complexity is allowed.

6. Good results have been presented in previous attempts [21, 19, 20] to apply multi-

wavelets to the denoising of 1-D and 2-D signals. Combined with the success shown

here for multiwavelet image compression, it seems likely that multiwavelets may work

well for compression of noisy images. It should be noted that the Mandrill image used

in this thesis contains some significantly noisy regions, and multiwavelets gave the best

compression results in that case. This may be due to the ability of multiwavelets to

better isolate high-frequency content, which is how noise may appear in an image. The

performance of multiwavelets for the compression of noisy images remains a worthwhile

subject to be studied.



Appendix A

Test Images

The test images used in Chapter 6 are displayed here for reference. Electronic versions may

be found at the locations given in the first section of that chapter.

Figure A.1: Lena. Figure A.2: Peppers.
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Figure A.3: Monarch.

Figure A.4: Barbara. Figure A.5: Finger.
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Figure A.6: Goldhill. Figure A.7: Boat.

Figure A.8: Lighthouse. Figure A.9: House.
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Figure A.10: Mandrill. Figure A.11: Man.

Figure A.12: Frog.



Michael B. Martin Chapter 7. Conclusion 104

Figure A.13: Nitf7. Figure A.14: Gray21.

Figure A.15: Testpat2. Figure A.16: Barchart.
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Figure A.17: Ruler. Figure A.18: Testpat 1k.

Figure A.19: IC. Figure A.20: Yogi.



Appendix B

Calculations of Computational

Complexity

This section describes the method by which the expressions for computational complexity

for symmetric/antisymmetric wavelet and multiwavelet filters were calculated in Table 4.1.

First we consider scalar wavelets and assume a biorthogonal filter bank in which M1 and M2

are the lowpass (h) and highpass (g) filter lengths. Let L be the length of the (scalar) input

signal.

If M1 and M2 are even, then each filter has M1/2 and M2/2 unique coefficients. The sum-

mation in the lowpass filtering operation for each sample,

y =
M1−1∑
k=0

hk xk =
M1/2−1∑
k=0

hk (xk+xM1−1−k), (B.1)

requires M1/2 multiplications, one for each unique filter coefficient, and M1/2+(M1/2−1) =

M1−1 additions. For the same reasons, the highpass filter requires M2/2 multiplications and

M2−1 additions, for a total of (M1 +M2)/2 multiplications and M1+M2−2 additions per

output sample for both filter banks. However, the output of each filter is downsampled by

2, so there are L/2 samples out of this stage of the decomposition process. Hence the total
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numbers of multiplications and additions required are L(M1+M2)/4 and L(M1+M2− 2)/2,

respectively.

If M1 and M2 are odd, then the filters have (M1+1)/2 and (M2+1)/2 unique coefficients.

The summation in the lowpass filtering operation for each sample,

y =
M1−1∑
k=0

hk xk =
(M1−1)/2−1∑

k=0

hk (xk+xM1−1−k) + h(M1−1)/2 x(M1−1)/2, (B.2)

requires (M1+1)/2 multiplications, one for each unique filter coefficient, and (M1−1)/2+(M1−

1)/2−1+1 = M1−1 additions. Similarly, the highpass filter requires (M2+1)/2 multiplications

and M2−1 additions, for a total of (M1+M2+2)/2 multiplications and M1+M2−2 additions

per output sample for both filter banks. Since there are L/2 output samples, the total

numbers of multiplications and additions required are L(M1+M2+2)/4 and L(M1+M2−2)/2,

respectively.

Now we consider multifilters. The lowpass (H) and highpass (G) multifilters are composed

of four scalar filters, each of which is symmetric or antisymmetric. It should be noted that

for a symmetric-antisymmetric multiwavelet, such as those used here, two of the scalar filters

are symmetric while the other two are antisymmetric. Here M1 and M2 will still refer to the

lengths of the scalar filters.

First, suppose M1 and M2 are even. Then each of the four scalar filters in H requires

M1/2 multiplications and M1−1 additions, as calculated before for scalar wavelets. Since

there are four such filters, the H multifilter requires 4(M1/2) = 2M1 multiplications and

4(M1−1)+2 = 4M1−2 additions. Note that the extra 2 additions come from the addition

of two values to create the output value of each channel (see Figure 4.2). Likewise, the G

multifilter requires 2M2 multiplications and 4M2−2 additions. Hence H and G together

require 2(M1+M2) multiplications and 4(M1+M2−1) additions per output sample. Since

the original length-L scalar signal is split into two half-length signals before going into the

multifilter and each output channel of the multifilter is downsampled by two, the number of
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samples out of each scalar filter is L/4. This gives the total requirements of L(M1+M2)/2

multiplications and L(M1+M2−1) additions.

Now suppose M1 and M2 are odd. As for old-length scalar filters before, the two symmetric

filters composing H require (M1 +1)/2 multiplications and M1− 1 additions per output

sample. Since the two antisymmetric scalar filters composing H have odd length, their

central coefficient must be zero. Hence, they require only (M1 +1)/2−1 multiplications

and M1−2 additions per output sample. Thus the total numbers of multiplications and

additions required for the H multifilter, including the extra addition for each channel, are

2[(M1+1)/2] + 2[(M1+1)/2−1] = 2M1 and 2(M1−1)+2(M1−2)+2 = 4(M1−1), respectively.

Similarly, the G multifilter requires 2M2 multiplications and 4(M2−1) additions per output

sample, and therefore,H and G together require 2(M1+M2) multiplications and 4(M1+M2−2)

additions for each output sample. Multiplying by the L/4 output samples from each scalar

filter gives a total of L(M1+M2)/2 multiplications and L(M1+M2−2) additions.
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[11] Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego

CA, 1998.

[12] F. G. Meyer, A. Z. Averbuch, and J. O. Strömberg. Fast adaptive wavelet packet image
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