BUILDING A KNOWLEDGE BASED SIMULATION OPTIMIZATION
SYSTEM WITH DISCOVERY LEARNING

by

Fernando C. Siochi

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
.in partial fulfillment of the requirements for the degree of
Doctorate of Philosophy
in

Management Science

APPROVED

e P las

Loren P. Rees, Chairman

g/z{wz/ N ,é’% r Fovee A yrathia.

Edward R/Clay Lance A. Matheson
7/ clitr "T./Ragsdnle U Terry R. Rakes

November 1, 1995
Blacksburg, Virginia

Key words: Simulation Optimization, Expert Systems, Discovery Learning, Best-First Search

A

BUILDING A KNOWLEDGE BASED SIMULATION OPTIMIZATION
SYSTEM WITH DISCOVERY LEARNING

by
Fernando C. Siochi
Loren P. Rees, Chairman
Management Science

{ABSTRACT)

Simulation optimization is a developing research area whereby a set of input conditions is sought that
produce a desirable output (or outputs) to a simulation model. Although many approaches to simulation

optimization have been developed, the research area is by no means mature.

This research makes three contributions in the area of simulation optimization. The first is fundamental
in that it examines simulation outputs, called “response surfaces,” and notes their behavior. In particular
both point and region estimates are studied for different response surfaces: Conclusions are developed
that indicate when and where simulation-optimization techniques such as Response Surface Methodology

should be applied.

The second contribution provides assistance in selecting a region to begin a simulation-optimization
search. The new method is based upon the artificial intelligence based approach best-first search. Two

examples of the method are given.

The final contribution of this research expands upon the ideas by Crouch for building a “Learner” to
improve heuristics in simulation over time. The particular case of parameter-modification learning is

developed and illustrated by example.

The dissertation concludes with limitations and suggestions for future work.

ACKNOWLEDGMENTS

I give the praise and the glory to my Lord and God Jesus for sustaining me in this effort. I thank Him for

providing me with wisdom and counsel in all matters.

I thank my advisor, Dr. Loren Paul Rees, for his time and encouragement. I have learned many lessons
about academia and life from him. He provided invaluable insight and guidance in the process of writing

and developing ideas for the dissertation.

I appreciate the time and effort that Dr. Clayton, Dr. Matheson, Dr. Ragsdale and Dr. Rakes put in while

serving on my committee and for sharing their knowledge and experience.

I wish to express my gratitude to Dr. Taylor for the support of my studies and for the opportunity to teach

at the university level.

I would like to acknowledge the support and camaraderie of my fellow students, Rene, Ingrid, Barry,
Mike, Jay, Jack, and Mark for making student life a little easier to bear. I also appreciate the friendship of

Rene, Alan, and John Paul, who helped me keep in touch with the things that really mattered.

ACKNOWLEDGEMENTS iii

I am grateful for my parents Andres and Loiva for their support and encouragement. They have taught
me much about excellence and the pursuit thereof. They instilled in me not only the desire to learn and to

achieve, but to do so and give the glory and honor to my Lord Jesus Christ.

I appreciate the love, support and patience of my wife Tina, for enduring with me through the process. I
am grateful for her understanding the demands on my time and 1 treasure her words of encouragement.

Tina has a way of putting things in perspective and enabling me to continue with the work at hand.

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTIONccivvienriersrissieesuessarssreosancssacsnsssascssassssasosasassasesssasass 1
SIMULATION ..ottt ettt ettt ettt b e b e se et ee bt emte et a et eabesene st enaes 1
SIMULATION AND SIMULATION OPTIMIZATION ISSUES ..o 4
KNOWLEDGE-BASED SYSTEMS......oi e e e e e 6
MACHINE LEARNINGcooiiiiii ittt ettt 9
KNOWLEDGE DISCOVERY AND DISCOVERY SYSTEMS ..ot 10
KNOWLEDGE-BASED SIMULATION OPTIMIZATIONcooiiiiiiiiiiiieiceitn et 12
PURPOSE OF RESEARCH.......cccoiiiiiiitiiiiiie ettt ettt sttt e 14
SCOPE AND LIMITATIONS ...ttt ettt et e eaneene 18
PLAN OF PRESENTATION......cccoiiiiiiiiiiiiii ettt 19
CHAPTER TWO: LITERATURE REVIEW 20
SIMULATION ... ettt et ettt ee e e e e bt asbe et aaeeneesnaeaan 20
SIMULATION OPTIMIZATION ..ottt ettt ettt e e b e et ssaesbeessaens 23

TABLE OF CONTENTS v

KNOWLEDGE-BASED SIMULATION OPTIMIZATIONocouiiiiiiiiioiiiiei et iiniee et e e et e 26
Learning: Definitions, Advantages, and What There isto Leam 30
The CToUCh LEAIMET.ooiitiiiiiiiiii ettt sttt e e s e e inae e 35

KNOWLEDGE DISCOVERY ...c.oiiiiiiiitiiit ittt ettt et en et e sbee e 40

KNOWLEDGE DISCOVERY IN THE SIMULATION OPTIMIZATION DOMAINcccooieiiinne, 42
DAt DICHOMATYoiiieiiiiiieiit ettt ettt e e e ettt e e e sttt e e e e s e et e e e e e ateeaeeeaessatbaneeaens 44
Sessions HiStory Database..........c.oviiiiiiioi ettt e 44
Domain-Knowledge MOAUIEoooiiiiiii ettt e e e e e e e e e e e s e e e ee e 47
Discovery Methods TNOAUIE ...ttt et e e e ee e 53

CHAPTER THREE: AN INVESTIGATION OF THE BEHA VIOR OF SIMULATION RESPONSE

SURFACES.. sesstsertestrsnsesssssessnssasssarsaes conessuasnnnsnane 54
INTRODUCGTION ...ttt ettt h ettt ee e bt es e e bt emb et e esteess e e et esaeeeeeetnan 54
DEFINITION OF THE SIMULATION OPTIMIZATION PROBLEMcccooviiiieice e 56
DEFINITION OF THE EXEMPLARY MODEL AND EXPERIMENTSc.cccvviiiieriirienrecieniieninns 58
SIMUulAted INVENTOTY SYSLEITLeeiieiiiiiiit ettt et ette ettt et e e ste e e et e e e taeemteesteeentaeesneeeenbeaetnesaneeaanns 58
Experimental CONAItIONSooviiiiiiiiii ettt e e ee st et ee s e e ennbeesanreenees 63
Data COlECHON SCHEIME........cuiitiiiiii ittt ettt st ab et seeneeereans 65
STATISTICAL MEASURES OF THE BEHAVIOR OF SIMULATION SURFACESccoooevenn. 67
POINE-ESUMALE MEASUTESeeiuiiiiii ettt et et e et e e s et ee e st eeaeaebeeeentaeeaaas 67
LOCAION MEASUIEScouiiiiiiiiiiiicie ettt ettt ettt e sr et e et eaae e she e eatsenee s sbe e st eesateesaceemteeentes 68
DASPEISION MEASUIESo..eveeveoeeeee oo eeee e eee e eea e ee e e eeee s et ee e ee e ee e se e esee s e sseeeseeeseeeeee 68
RELALIVE ACHVILY ..eoeeiiiiiiitentte ittt ettt et h e e bt e sab e e bt e e st e e st e e bt e smnteenneanreennessans 69
REGIONAL MEASUIES........iiiiiiiiieiitiiieeiiecit sttt ettt eeee bt e s e e sss e e st e st e e st aestbessstesnsesssaeestneeenss 70

TABLE OF CONTENTS : vi

Test fOr NOTIIALILY ..ottt ettt ettt r e st ee s e e e s eeesnaesenraeeaanaraeeres 71

Test for Homogeneous VArianCes.ccocociiiiiiiiiiiiiiiie et sae st n e s abb s e e sbssesaaee e 72

F-test for Significance of REGression.............cccoooiiiiiiiiiiiii e 77

Fotest fOr Lack Of FAUociiiiiiiiiiei ettt n s s e en 77
EXPLORATION ...ttt ettt ettt et st e e et e sh ettt e sttt e ate et e e s aaeesaeeesanteenenesaneees 78
POInt ESHIMALESoooiiiiiiiiiiii e 79
IMIEAN ..o ne e e et e e aa 79
SaNAard DEVIATIOM.oieiii ettt ettt ettt a s e te s e s rannnaa e s santes 79
Coefficient Of VarlatiOn.c.oiiiuiiiiiiiii oottt ettt e e e ea e e s e e e s e e s mas e eene e s 84
Signal to NOISE RAtIO....coiiiiiiiiii et e et 84
Relative Activity or “BUINPINESS. iiiiiiiii ettt ettt et ee e e 89
ReZIONAI ESHIMALEScccviiiiiiiiiiieeiiie ittt e e st ee e ettt eee e sasaaeeeesanrsnseeeeesansbneneaeae s sesneeas 92
Test £Or NOITIALILYeouviiiieiteii ettt sr ettt r e et esre et e et e s s e emn e meeanseneeannes 92
Homogeneity Of VArianeecoceiiiiiiiiiii ettt et e 99
“SEArChabIE” REZIOMSoeiieiiiiiiiiiit ettt et e e e et e e e ats e enete s sannaeeeannaeessnseeeennns 99
CONCLUSIONS L.ttt et b et st et e st e be sk e bt b e bt s e e eb e e mten et e b eenbennesseaneenee 106

CHAPTER FOUR: A BEST-FIRST SEARCH APPROACH FOR DETERMINING STARTING

REGIONS IN SIMULATION OPTIMIZATIONconimrieisrirensacsacsnssussancesassasssssssssssane 109
INTRODUCGTION ..ottt ettt ettt ettt ettt sa b e r et sieaanan . 109
Definition of Simulation OPtiMIZAONocciiiiiiiee ettt eee et e e e e eaeeeeeeeaaaaeesaeeeans 109
TYPICAl ASSUINIPIIONSetiiiieiiitie ittt e e ee e et e e ettt e e e e e e e e s san e et ee e e et aeeeeeeaansreeees 112
ILLUSTRATIVE EXAMPLE ..ottt ettt et 114
BEST-FIRST SEARCH ..ottt ettt ettt et sttt et sa e e anas 118
STARTING A SIMULATION OPTIMIZATION SEARCH........ccccoociiiiiiiiiiiiiieiect et 122
ODJECHIVES ...ttt et ettt ettt ettt e e e e meeae et e seansams e st e s aenseesseesbe s e easeesseeasesaeeenee 122

TABLE OF CONTENTS vii

INPleMeENtAtON Of the SLATIEToiiiiii ittt et et s 128

EXAMPLES .o et e e 132
Example 1: Inventory Model with Low-Variance Demand and No Lead Time.c...oo.. 133
Example 2: Inventory Example with Higher Demand Variance and Lead Time Variance 150
Example 3: A Multimodal ReSponse SUITACEcooviiiriiiniiniiiii et 160

CONCLUSIONS AND FUTURE RESEARCHcoooiiiiiiiiiiiiiii ettt 162

CHAPTER FIVE: BUILDING A KNOWLEDGE-BASED SIMULATION OPTIMIZATION

SYSTEM WITH DISCOVERY LEARNING......coiritineiiricisstsnessnessssssesssesssessssssasssasess 165
BACKGROUND ...ttt ettt ettt ettt e b e st st e be et eaeemseeseeaaeens 165
Knowledge-based Simulation OptimiZationcccoiiiiiiiiiriiiiceee ettt 165
Learning: Definitions, Advantages, and What There is to Learn..............coooccooiiiiiiiiiiiciiinie, 168
The Crouch LEAIMET. ..ottt ettt ettt ettt et s 174
OVEIVIEW ..ottt bttt e et e ettt ettt ea bt e e as e e s esee e seteeeaseeesata e e e nteeesaneesaasneeennnen 174
Crouch Process FIOW ..ottt ettt e st 176
KNOWLEDGE DISCOVERY ..ottt ettt sttt sttt te s st ee st e s et eeenesenine s 178
KNOWLEDGE DISCOVERY IN THE SIMULATION OPTIMIZATION DOMAINccccevvennrnnn. 181
DAta DIACHONATY ..ottt ettt ee e et e e et e et s e e tte e e esst e e esaesa e e esaeeeeeanneaeeeannens 183
Sessions HISIOry Database.........cocoooiiiiiiiiiiiii ettt 184
Domain-Knowledge MOGUIEcooooiiiiiiiii ettt eeeate s eane s 185
Discovery Methods IOAUIEooiiiiiiiiii ettt e et s et b e e eare s 192
BUILDING A SYSTEM: A PARAMETER MODIFICATION EXAMPLEccccciiiiieniieennn, 193
CONCLUSIONS AND FUTURE WORKcocoiiiiiiiiiiiiiiiee ettt et 201
CHAPTER SIX: CONCLUSIONS......crttirininrenrstisiesuessessesssmssssssisssessossessssssnsesssssesssassssosssssssosssess 203

TABLE OF CONTENTS viii

SURFACE STUDY ..ottt 203

BEST FIRST SEARCH APPROACHooiiiiiiii et 206
BUILDING A KBSOS WITH DISCOVERY LEARNINGcooiiiiiiiiiiiiic e 208
BIBLIOGRAPHY ..o e s 210
APPENDIX A Lottt ettt s 214
APPENDIX B ..o et e e e 219
VT A ettt st ne e s s s s s s s 225

TABLE OF CONTENTS ix

List of Figures

FIGURE 1.1. EXPERT SYSTEM ARCHITECTUREcccutritittiiiirenitenieeistenteeninesnseeeateeneseesnneaemneeseseeesaneenesenaesaneas 8
FIGURE 1.2. THE FRAWLEY ET AL DISCOVERY PARADIGMcccoviiiiiiiiiiiiiiiirenitceneeeteesente e rae e e 10
FIGURE 1.3. THE SIMULATION-OPTIMIZATION PROCESSc..ccttoiieriiiiiiiimieiiiiesenete st sinesne st e s 12
FIGURE 1.4. GREENWOOD-REES-CROUCH SIMULATION-OPTIMIZATION ARCHITECTURE.......ccccovveeernireranneneen 15
FIGURE 1.5. VISUALIZATION OF THE LEARNER AND ITS ENVIRONScccciiiiiiiiiiiiiiiinenie et 16
FIGURE 2.1. THE SIMULATION-OPTIMIZATION PROCESS........coocutiiiiiieiiiiiiniieeeaietenince e e ettt eeraite e e 27
FIGURE 2.2. GREENWOOD-REES-CROUCH SIMULATION-OPTIMIZATION ARCHITECTURE........ccceeeiuienirieneene. 29
FIGURE 2.3. VISUALIZATION OF THE LEARNER AND ITS ENVIRONScoiiiiiiiiiiiiniiiiaiiiee e 31
FIGURE 2.4. AN OVERVIEW OF THE CLASSIFIER KBSOS ..ot 33
FIGURE 2.5. CROUCH’S LEARNING PROCESS {CROUCH, 1992)o 38
FIGURE 2.6. THE FRAWLEY ET AL DISCOVERY PARADIGMcoiiiiiiiniiiiiineiiiiiceriiineeiree e enine e siiee e 41
FIGURE 2.7. THE DISCOVERY LEARNER AND ITS INTERACTION WITH THE CLASSIFIER KBSOS..........cccooeee 43

FIGURE 2.8. A LATTICE SHOWING THE INTERCONNECTIONS OF THE SESSIONS HISTORY DATABASE FRAMES ... 45

FIGURE 2.9A. CONCEPTS FRAMEoooiiiiiiiiii et e 46

LIST OF FIGURES X

FIGURE 2.9B. SESSIONS FRAMEcoiiiiiimiiiiii oottt e e e e et et b e a e et ae et sertaeataeetaeeeaaeenenas 46

FIGURE 2.9C. RULEFRAMEcoitiiiiiiiiiiiiiciierte et e e et eaas s ens s st a e a e aes e ab e eas s enne s 46
FIGURE 2.9. EXAMPLES OF FRAMEScooiiiotiiiiiiiiiietiieie ettt st eae s st st eneas 46
FIGURE 2.10. DETAILS OF THE DOMAIN KNOWLEDGE COMPONENT OF THE DISCOVERY LEARNER 50
FIGURE 2.11A. INITIAL LINK-OF-INFLUENCEccuttiitittittiaiiteeiteaeiteeitreesreeeesaneeestneeeesaneessanneessanenessseanenn 52
FIGURE 2.11B. SUBSEQUENT LINK-OF-INFLUENCEc..0ccctteitiiitiiieieeneeemeeesieesiesesineoieesnnessansessasssansssnnssnnes 52
FIGURE 2.11. LINK-OF-INFLUENCEc0ccittteutettuiaieaieeieaeeentereeseeeneeteetaesanesmeseesseessaeaaneesntesaessanesaeesaseanssnnan 52

FIGURE 3.1. SIMPLE INVENTORY MODEL THAT PERMITS BACK ORDERS AND EXHIBITS BOTH STOCHASTIC

DEMAND AND LEAD TIMEcoiiiiiiiiiiiieiit ittt ettt ettt ettt e et easae e s s saba e e s sanaa e snese e 59
FIGURE 3.2. PROCESS FOR OPTIMIZING THE SIMULATED INVENTORY SYSTEM.....cccoieiiimiieiiiiiiniiireennereeiieaen 62
FIGURE 3.3A. A-BY-AREGIONScoiiiiiiiiiiiitiit ettt ettt e st 65
FIGURE 3.3B. 2A-BY-2ZAREGIONSccottiiiiiiiitiieait et ittt sttt et e raee e s et esne e s e e e e e eaee 65
FIGURE 3.3. INVENTORY MODEL’S DECISION SPACEc..coctiiiiiiiiierioiieiieiesieeie st stne s s s snns 65
FIGURE 3.4. THREE-DIMENSIONAL PLOTS OF THE MEAN OF THE RESPONSEcccccotemieniinnieanieniinnenneeiennens 80
FIGURE 3.5. CONTOUR PLOTS OF THE MEAN OF THE RESPONSE FOR CASES LNB ANDHMWccoccoenen. 81
FIGURE 3.6. THREE-DIMENSIONAL PLOTS OF THE STANDARD DEVIATION OF THE RESPONSEc.c.ccccveennnnenn. 82
FIGURE 3.7. HISTOGRAMS OF THE STANDARD DEVIATION OF THE RESPONSE.........ccccveriiiinireenienrienenenesreenines 83
FIGURE 3.8. THREE-DIMENSIONAL PLOTS OF THE COEFFICIENT OF VARIATION OF THE RESPONSE................... 85
FIGURE 3.9. HISTOGRAMS OF THE COEFFICIENT OF VARIATION OF THE RESPONSEccoeviiniiiiieeieeeiienieenne 86
FIGURE 3.10. THREE-DIMENSIONAL PLOTS OF THE SIGNAL-TO-NOISE RATIO OF THE RESPONSE &7
FIGURE 3.11. HISTOGRAMS OF THE SIGNAL-TO-NOISE RATIO OF THE RESPONSEccocoeviiiieiniinrecireeniecncennn 88
FIGURE 3.12. SECOND DIFFERENCES OF THE RESPONSE WITH Q HELD CONSTANTcccvviiiiirieeiiiieee e 90
FIGURE 3.13. SECOND DIFFERENCES OF THE RESPONSE WITH R HELD CONSTANTceoovioviviiiriieereeirenernnn 91

FIGURE 3.14. SECOND DIFFERENCES OF THE RESPONSE WHEN THE FIRST DIFFERENCE CROSSES ZERO;

WITH Q HELD CONSTANTutiiiitiiiiiit ettt e ett e iat e et e e etraeseaseeetsee e sseaesassassasseaesaesseesassesesannraeesenseesenens 93

LIST OF FIGURES xi

FIGURE 3.15. SECOND DIFFERENCES OF THE RESPONSE WHEN THE FIRST DIFFERENCE CROSSES ZERO;

WITH R HELD CONSTANT ...ttt ittt ettt ettt ettt et e st e st eesae s e st ae e saaeennraneaan 94
FIGURE 3.16. THREE-DIMENSIONAL PLOTS AND HISTOGRAMS OF P-VALUES FOR NORMALITY TEST, A=20 95
FIGURE 3.17. THREE-DIMENSIONAL PLOTS AND HISTOGRAMS OF P-VALUES FOR NORMALITY TEST, A=40 96
FIGURE 3.18A. THE DISTRIBUTION OF RESIDUALS FOR A “TYPICAL” R (A=40)ooveiiiiiiiiiririiiireeeeeeee, 98
FIGURE 3.18B. THE DISTRIBUTION OF RESIDUALS FOR A “TYPICAL” K3 (A=20)oooivirieiiiirieeeriiieeiineeeienee 98
FIGURE 3.18. THE DISTRIBUTION OF RESIDUALS FOR DIFFERENT INTER-GRIDPOINT SPACINGS.covrvviuvrenncn. 98

FIGURE 3.19. THREE-DIMENSIONAL PLOTS AND HISTOGRAMS OF P-VALUES FOR HOMOGENEITY-OF-
VARIANCE TEST, AT20.c.ce oottt 100

FIGURE 3.20. THREE-DIMENSIONAL PLOTS AND HISTOGRAMS OF P-VALUES FOR HOMOGENEITY -OF-

VARIANCE TEST, A=40. ...ttt et e e e e ee e e e e et e e e e e anb e e eenia et sanaaeennnnaeaeanas 101
FIGURE 3.21. LOCATIONS OF SEARCHABLE AREAS......ccceotiiiiiiii it e e e e 104
FIGURE 3.22. RELATIVE NUMBERS OF SEARCHABLE AREASccocieiiiiiiiiiiiieeiee e 105

FIGURE 4.1. SIMPLE INVENTORY MODEL THAT PERMITS BACKORDERS AND EXHIBITS BOTH STOCHASTIC

DEMAND AND LEAD TIME ...ttt ettt et et e s st e oot ee e saneeen 115
FIGURE 4.2. PROCESS FOR OPTIMIZING THE SIMULATED INVENTORY SYSTEM......ccciecivieeieenrireenieeniveesnennis 117
FIGURE 4.3. SOME AI-BASED SEARCH TECHNIQUESccucoimiiiiiteiieniteteniteereeiteseesnessiaesinesieesbee e seeene 119
FIGURE 4.4. BEST-FIRST SEARCH ALGORITHM PSUEDOCODEccoeerititietiaiieiiieieaieaeeaieseeeenesneesesenesenens 119
FIGURE 4.5A. A NETWORK REPRESENTATION OF FIVE CITIES ...c..cootiiiiiiiiitiniiee ettt s s e vaae e 120
FIGURE 4.5B. THE SEARCH TREE CORRESPONDING TO FIGURE 4.5Accoiitiiiiniiiniiiiiceice e 120
FIGURE 4.5. ANEXAMPLE TO ILLUSTRATE THE BEST-FIRST SEARCH PROCEDUREccccovvieeriienireineneennne 120
FIGURE 4.6A. THE DOMAIN OF THE SIMULATION OPTIMIZATION PROBLEM WITH RUNS AT THE CORNERS 125
FIGURE 4.6B. ADDITIONAL RUNS MADE IN THE DIVIDE STAGEccccoiiiitiiitanirieieeniteiieeeeiieeeneesieesaeeneneas 125
FIGURE 4.6. USING A DIVIDE-AND-CONQUER STRATEGY TO DETERMINE DESIGN POINT SPACING 125
FIGURE 4.7. A PORTION OF THE SEARCH TREE FOR FINDING GOOD STARTING POINTScccoocvviiiieiinann. 127

LIST OF FIGURES xii

FIGURE 4.8. THE BASIC STARTER ALGORITHMoouiiiiiiiiiii ot e e et ettt eaee e e s eassseaaeaeaeeaaeeeaeas 130

FIGURE 4.9. A CONTOUR PLOT OF THE THEORETICAL RESPONSE SURFACE FOR EXAMPLE 1...............oco. 135
FIGURE 4.10A. THE INITIAL (USER-SPECIFIED) SEARCH REGION R | ...c.vvvvviiieiiiiieeeeieiieeieeeeeeenivaeaaee e sannneas 137
FIGURE 4.10B. THE FIRST PASS THROUGH THE BEST-FIRST SEARCH LOOP.....ccc.ccovviiiiiniiiiiiiiiniiiiiine 137
FIGURE 4.10C. THE SECOND PASS THROUGH THE BEST-FIRST SEARCHLOOPccccccociiiiiiiiiiiiiiiiiiiiin, 141
FIGURE 4.10D. THE THIRD PASS THROUGH THE BEST-FIRST SEARCHLOOP..........ccccoiviiiiiiiiiiiiiiiiiine 141
FIGURE 4.10E. THE FOURTH PASS THROUGH THE BEST-FIRST SEARCHLOOPccccoovreriniinniiiciencen 144
FIGURE 4.10F. THE FIFTH PASS THROUGH THE BEST-FIRST SEARCHLOOPccociiiiiiiiiiiiiiiiiiiiicinice, 144
FIGURE 4.10. THE BFS STARTER SOLUTION TO EXAMPLE 1ccciiiiiiiiiiiiiiiiiniie e 144

FIGURE 4.11A. GRIDPOINTS WHERE SIMULATION RUNS ARE MADE (X) DURING THE BEST-FIRST SEARCH

PORTION OF THE SEARCH.coiiiiieii ittt oot ee e e e e e ettt e e e e e e e e e e eeeeeseseeeseeseseessnnsssnnsssanes 148

FIGURE 4.11B. GRIDPOINTS WHERE SIMULATION RUNS ARE MADE (O) DURING THE FIRST PASS OF THE

SAFETY NET ...ttt ettt ettt ettt et ettt e et eet e et e et et e e raae s sae e et e e ntne s nmae e 148
FIGURE 4.11. THE LOCATION OF SIMULATION RUNS IN EXAMPLE 1cc.coiviiiiiiiiiiiniieiiiiceneeccnce e 148
FIGURE 4.12A. THE MEAN OF THE RESPONSEcoitiitiiiiitiitieie sttt ettt ete et et et snee s e s s snse e abaenes 152
FIGURE 4.12B. THE VARIANCE OF THE RESPONSEc..cccuiitiitiiiieiiteteniteresncenieesteasaeessesisestaesibesenaseeenieenes 153
FIGURE 4.12. SOME RESPONSE SURFACE CHARACTERISTICS FOR THE MODEL OF EXAMPLE 2........c.cccoeeueee, 153
FIGURE 4.13A. THE INITIAL (USER-SPECIFIED) SEARCH REGION R | ...ccvvvvivieeiiiiereieceeiirneieee e eeeeiireeeeeseeeeins 154
FIGURE 4.13B. THE FIRST PASS THROUGH THE BEST-FIRST SEARCHLOOPccccevviiieriiieiieeiieennieeveene, 154
FIGURE 4.13C. THE SECOND PASS THROUGH THE BEST-FIRST SEARCHLOOP.........cccoveiiiiiiiiiiiiiriciieeen, 155
FIGURE 4.13D. THE THIRD PASS THROUGH THE BEST-FIRST SEARCH LOOP.........ccccviiiiiiiiiniiiiianiiiieeiiens 155
FIGURE 4.13E. THE FOURTH PASS THROUGH THE BEST-FIRST SEARCHLOOPcccccvvimiiiiiiiiiiieiiriee e, 157
FIGURE 4.13F. THE FIFTH PASS THROUGH THE BEST-FIRST SEARCHLOOPccveoviiiiiiiriieciiecceecee 157
FIGURE 4.13G. THE SIXTH PASS THROUGH THE BEST-FIRST SEARCHLOOPcccoiiiiiiiiiiiiiiiieeiiiee e, 158
FIGURE 4.13. THE BFS STARTER SOLUTION TO EXAMPLE 2cooiiiiiiiiiiiiiric e ee ettt 158

LIST OF FIGURES xtii

FIGURE 4.14A. GRIDPOINTS WHERE SIMULATION RUNS ARE MADE (X) DURING THE BEST-FIRST SEARCH
PORTION OF THE SEARCHcoiiiiitiiiie oo et e e e e e e ee e e et e e e e e e e neianrees 159

FIGURE 4.14B. GRIDPOINTS WHERE SIMULATION RUNS ARE MADE (O) DURING THE FIRST PASS OF THE

SAFETY NET L.ttt ettt et e h e e et e e et et et e e ettt e e s anteesaer e e e e eaes 159
FIGURE 4.14. THE LOCATION OF SIMULATION RUNS IN EXAMPLE 2oiiiiiiiiiiiiiceccne e 159
FIGURE 4.15. THE RESPONSE SURFACE TO BE OPTIMIZED IN EXAMPLE 2oooiiiiiiiiiiiiiice e 161
FIGURE 5.1. THE SIMULATION-OPTIMIZATION PROCESS........utetetiiiiieiie et cre st e 166
FIGURE 5.2. GREENWOOD-REES-CROUCH SIMULATION-OPTIMIZATION ARCHITECTURE.......ccceervienincennnennn. 168
FIGURE 5.3. VISUALIZATION OF THE LEARNER AND ITS ENVIRONSocoiiiiiiiiiniiiiiincenie e 169
FIGURE 54. ANOVERVIEW OF THE CLASSIFIER KBSOS ..ot 172
FIGURE 5.5. CROUCH’S LEARNING PROCESS (CROUCH, 1992)......coiiiiiiiiiiiiiiii et 177
FIGURE 5.6. THE FRAWLEY ET AL DISCOVERY PARADIGMccotiriiiiiiiiiiieieiieicetie e 180
FIGURE 5.7. THE DISCOVERY LEARNER AND ITS INTERACTION WITH THE CLASSIFIER KBSOS..................... 182

FIGURE 5.8. A LATTICE SHOWING THE INTERCONNECTIONS OF THE SESSIONS HISTORY DATABASE FRAMES. 182

FIGURE 5.9A. CONCEPTS FRAMEooiiiiiiiiiiiiii ittt ettt et e s ane 186
FIGURE 5.9B. SESSION FRAMEoiiiiiiiiiiiii ittt R 186
FIGURE 5.9C. RULEFRAMEooiiiiiiiiiiiiii ittt eb ettt ettt s sen e e e 186
FIGURE 5.9. EXAMPLES OF FRAMESouiiiiiiiiiiii ittt ettt ettt st e s 186
FIGURE 5.10. DETAILS OF THE DOMAIN KNOWLEDGE COMPONENT OF THE DISCOVERY LEARNER................. 190
FIGURE 5.11A. INITIAL LINK-OF-INFLUENCE..........cotiitiiiiiiiitiettenieee st etiesae e eieeneenasesaeasseensaesseasseanneenneenas 191
FIGURE 5.11B. SUBSEQUENT LINK-OF-INFLUENCEccotetiiititniieiiienieesieeetresiieesiaesbeeabeaeseseeassaeseseessnnens 191
FIGURE 5.11. LINK-OF-INFLUENCEccouttiiitiittititiaitie ittt estte st es st ateesices st e amee et tee s reaeeaneeeetbeenseeesnbeaetaeans 191
FIGURE 5.12A. FROM BELOW ..ottt ittt ettt ettt ettt ettt et e e e e e raaeeeneas 200
FIGURE 5.12B. FROM ABOVEoiiiiiiitiitiitiiie ittt ettt et ettt e are e eae s 200
FIGURE 5.12C. FROM WITHINiiiiiiiiiiiiiiie ettt ettt ettt ettt e st a et e e et e e easeeenseaenseesasesans 200

LIST OF FIGURES xiv

FIGURE 5.12D. THE CASE INVOLVING THE FIVE RELEVANT SESSIONS IN THE SESSIONS BASEcccccovvvnn.

FIGURE 5.12. EXAMPLES OF LINE SEARCH

LIST OF FIGURES

XV

List of Tables

TABLE 3.1 DEFINITION OF EXPERIMENTAL CASESccuttiiiiieiiiiiiiririie e ettt s as s 64
TABLE 5.1. A PORTION OF THE CLASSIFIER KNOWLEDGE BASE.........cooiiiiiiiiiiiiii e 195
TABLE 5.2. A PORTION OF THE SELECTOR KNOWLEDGE BASEccccooiiiiiiiiiiiiiiccne e 196
TABLE 5.3. A PORTION OF THE DETAILER KNOWLEDGE BASEcccoiiiiiiiiiiiiiiiienietecee e 197
TABLE 5.4. SOME SESSIONS BASE DATA......cooiiiiiiiiiiiiii et 198

LIST OF TABLES xvi

Chapter One: Introduction

Simulation

Simulation has evolved from custom programs to simulation languages that assist in model development.
Early custom programs required expertise in simulation as well as in programming skills. Since each
simulation was a custom job, it meant “reinventing the wheel” each time. The earlier simulation
languages provided procedures that were common (0 most simulations, such as keeping track of an event
calendar. Later, improvements added the ability to develop the simulation model graphically. The trend

in simulation languages has been to reduce time spent on tasks not directly related to model development.

Development and use of simulation models typically require expertise in several disciplines (statistics,
numerical analysis, systems analysis). Research is underway to build programs that assist in the model
development process. The apparent driving force for a lot of this work is simulation’s usefulness as an

effective decision making tool, including the ability to predict system behavior under different input

Chapter One: Introduction 1

conditions, and the ability to conduct “what-if” analysis. A relatively recent use of simulation

optimization, the determination of a set of inputs that produces an optimal (or desired) output.

Although simulation is very good at predicting the output(s) for a given state of a system, simulation
optimization is not a simple and direct extension of simulation. Rather simulation optimization has
adapted search and design techniques to meet its needs. Simulation optimization techniques include
response surface methodology, simulated annealing, single factor search, random search, and genetic
algorithms. The application of these techniques can be very time consuming computer-intensive, and/or

costly.

A primary focus of simulation optimization is deciding which search strategy/technique is appropriate and
how many computer runs to invest in the effort. These decisions are often made with little information
about the nature of the simulation response (called the “response surface™), including presence of multiple
optima, degree of variance, and activity of different input factors. One such approach suggested by
Crouch (Crouch, 1992) and expanded upon by Crouch, Greenwood, and Rees (1995) is to make computer
runs in a manner that leads to a characterization of the response surface, from which the most appropriate

strategy can be inferred.

In particular, Crouch (1992) formulated a knowledge-based system to guide the selection of an appropriate
strategy for simulation optimization. She developed a scheme for classifying a response surface and then
applying heuristics to choose the most appropriate search strategy. As the search progressed and more
information about the surface became available, the knowledge-based simulation optimization system
(KBSOS) reclassified the response surface and changed the search strategy accordingly. However, her
approach was never tested on real simulations, but rather was used with a known mathematical function

that emulated a simulation.

Chapter One: Introduction 2

In this dissertation the KBSOS presented in Crouch is tested on actual simulation models. An alternative
scheme for response surface classification and search strategy selection is presented, as is an alternative

approach for the selection of initial points.

Crouch also presented a framework for machine learning in the context of the knowledge-based
simulation optimization system. The goal of her “leamer” was to improve the ability of the KBSOS to
guide future optimizations. Specifically, the heuristic knowledge (rules) in the knowledge base were
improved (e.g., rules were added, modified, or combined). Her learner made judgments using information
from two sources. The first source was past experience -- all the information generated during previous
simulation optimizations. The second source was results of experiments that the learner had performed to

test hypotheses regarding KBSOS rules.

It is the framework of Crouch that serves as the blueprint here for the construction of an improved
“learner.” We introduce discovery systems (Frawley et al., 1992) to take advantage of the past history that

the system has diligently collected.

The next sections of this chapter present concepts and terms that are foundational to the following
discussions of the knowledge-based simulation optimization system and learner. First, simulation and
issues in simulation optimization are explored. Expert or knowledge-based systems, machine learning,
discovery systems, and knowledge-based simulation optimization are discussed in the following four
sections. Finally, the motivation for combining simulation optimization with a knowledge-based system

and discovery learning is presented, and the plan for the rest of the dissertation is given.

Chapter One: Introduction 3

Simulation and Simulation Optimization Issues

Simulation is commonly recognized as one of the most widely applied computer modeling techniques in
use today. Its popularity is evidenced by the large number of applications documented in the literature
and the extensive breadth of problem domains to which it has been applied. With the advent of rapidly
advancing computer technology, the widespread use of simulation is expected to accelerate. The value of
simulation is that it permits the study of systems that cannot feasibly be constructed or experimented upon
in the “real world,” and which are too complex to be analytically modeled. Simulation is very useful in
predicting the output of a system or its response to a given set of input conditions. However, it does not in
and of itself indicate the input conditions required to achieve a desired response. Simulation is an

evaluative methodology and not an optimization technique.

In many cases the strategic objective of a study is to find the best solution for the system under
investigation, i.¢., optimize the system’s performance. When the search for the optimal solution involves
the use of data obtained from a simulation model, the analysis involves the process of simulation
optimization. The optimization process is complicated by the presence of random error, often the result of

the combined random effect of uncontrollable conditions.

Note that simulation optimization is referred to as a process and not as a technique, methodology, or
algorithm. In fact, the process of simulation optimization typically utilizes a wide range of mathematical
and statistical tools. There is no single or standard approach to optimizing a system where the data for
the analysis is based on experiments conducted with a simulation model. Some approaches focus on a
single simulation run (e.g., frequency-domain analysis, perturbation analysis). Others focus on a search
process that involves multiple simulation runs. Within this approach, which is the most common, there

are many philosophies on how the search should be conducted. For example many approaches utilize the

Chapter One: Introduction 4

data to fit metamodels (e.g., response surface methodology, neural networks, nonparametric regression);
others are free of underlying model assumptions (e.g., random search, Box’s complex search, genetic
algorithms). Yet another approach (Crouch, Greenwood, Rees, 1995) (Greenwood, Rees, Crouch, 1993)
proposes a multi-strategy process that utilizes the “best” methodology based on current experimental and
synthesized knowledge of the search environment. This brief discussion of the approaches to simulation
optimization is meant to illustrate the diverse and varied literature that exists to solve this difficult
problem. It is beyond the scope of this section to review all of these approaches to simulation
optimization. Therefore, the interested reader should refer to overview or literature review articles and
introductory texts on the subject, e.g., (Azadivar, 1992) (Barton, 1992) (Jacobson, Schruben, 1989)

(Meketon, 1987) (Myers, 1971) (Safizadeh, 1990).

In general, the simulation optimization problem can be expressed as:

Optimize: E[Y]=E[f(X | Z)] ¢))
Subject to: hX) <0 2)

where the responses that are to be optimized, Y = (Y], Y2, ..., Ym), are functions of controllable factors,
X = (X1, X 2, ..., Xp), uncontrollable conditions, Z, and random error, e; i.e.,, Y=E[Y]+e=f(X1Z) =
E[f(X |Z)] + e. Each response Yj is a random variable and takes on a set of values for the same setting of
the controllable factors; i.e., there is some distribution of Yj values for each combined level of the

controllable factors. To model this behavior each response is oftentimes considered equal to the sum of a
constant and a noise term that represents the random error, where the constant is the expected value of the

response, E[Y|], for a specific combination of factor settings. Therefore, due to the presence of random

error, the optimization process typically focuses on the expected value of the responses. But, while the

goal is to optimize E[Yj], only Yj is observable. Also, each objective regarding Y; involves either the

absolute maximization (or minimization) of Yj or the achievement of Yj to exceed some goal by a

Chapter One: Introduction 5

specified tolerance. The simulation optimization problem is constrained, at least by the bounds of the
region to be explored. As shown in (2), h(X) is a vector of deterministic constraints typically of the form:
L<X<UorL < f(X) £U, where L. and U are the lower and upper bounds of the search region,
respectively. Typically the regional boundaries change as the search Process progresses. For example, as
more information becomes known about the search environment and characteristics of the surface, the
search region narrows so as to include only the most promising sector(s). The domain of the region may

be either continuous, discrete, or mixed.

Knowledge-based Systems

Expert or knowledge-based systems is a branch of artificial intelligence that has grown in prominence and
application in the last ten to twenty years. Feigenbaum has defined an expert system as “an intelligent
computer program that uses knowledge and inference procedures to solve problems that are difficult
enough to require significant human expertise for their solution” (Harmon and King 1985). Expert
systems are set apart from traditional computer applications in that they can: manipulate symbols (words,
phrases, lists of words, etc.); reason using heuristics (“rules of thumb” developed over time by experts);
function with uncertain or incomplete knowledge (traditional programs usually stop executing if needed
information is unavailable); and explain how a conclusion was reached or why requested information is

needed.

Chapter One: Introduction 6

The benefits of expert systems are many. An expert’s knowledge about his/her field of interest can be
captured in an expert system, making it available to non-experts, freeing up the individual to tackle other
important problems and tasks, and providing a mechanism for “keeping the knowledge alive” even after
the expert leaves the firm or organization. If the application is one for which a team of experts is usually
required, the expert system makes it possible to have the expertise of these different individuals available
in one place, twenty-four hours per day, seven days per week. Expert systems do not have “off” days --

they do not get sick or take vacations, and they always remember everything they have learned.

These benefits address some of the issues raised in the last section. An expert system could give a non-
expert access to simulation optimization expertise; this could encourage more use of simulation and
simulation optimization. Also, simulation optimization expertise and research findings could be
assembled in one expert system, whereas now the information is distributed in time and geographical

location among many different researchers, practitioners, and publications.

Rolston (1988) describes a typical expert system architecture as having five parts, as shown in Figure 1.1.
The knowledge base contains domain-specific knowledge: facts, procedural rules (well-defined rules that
describe invariant sequences of events and relations), and heuristic rules (rules of thumb usually
developed through years of experience which provide direction when procedural rules are not available or
relevant). The inference engine retrieves knowledge from the knowledge base and infers new knowledge
from it as required by the user. The explanatory facility, when asked, provides the user with explanations
of how a conclusion was reached or why certain information is being requested from the user. The
knowledge update facility is a mechanism for updating and/or modifying the knowledge stored in the
system. Finally, the user interface connects the user to the other parts of the system. Expert systems are
beginning to include another component, the program interface. This component allows expert systems to
call and be called by external programs -- spreadsheets, databases, FORTRAN programs, etc. -- and

greatly adds to their flexibility.

Chapter One: Introduction 7

USER

1

A 4

USER INTERFACE |

L

KNOWLEDGE UPDATE EXPLANATION
FACILITY FACILITY

'

KNOWLEDGE
BASE

INFERENCE
ENGINE

Figure 1.1. Expert system architecture

Traditionally, expert systems have been written in the artificial intelligence languages LISP and
PROLOG. The complexity of the systems and the languages in which they were written restricted the
broad development, and therefore, use of expert systems. This situation has changed and continues to

change dramatically since the advent of expert system shells.

An expert system shell is just what the name implies -- the shell of an expert system. Shells contain all
the components of an expert system except domain-specific knowledge. Hence one shell can be used to
create a variety of expert systems by varying the knowledge base on which it operates. Shells are available
for mainframes, minicomputers, and personal computers, with varying levels of complexity, flexibility and

cost. For this research the shell VP-Expert (1989) is used on a personal computer.

In recent years there has been a trend toward using the term “knowledge-based systems” instead of “expert
systems” since not all such systems contain truly exclusive, expert-level knowledge. The terms are often

used interchangeably; in this work knowledge-based systems is generally used.

Chapter One: Introduction 8

Machine Learning

Although the Crouch’s knowledge-based system provides guidance for carrying out simulation
optimizations, it does not nor is meant to include all known search strategies or classification
characteristics. These are things that can be added over time, as appropriate, via machine learning.
“Machine learning” means that a computer system (the machine) improves itself over time (learns). How

this can be done for simulation optimization is discussed in Crouch. Consider first why it should be done.

According to Forsyth and Rada (1986), “learning algorithms attempt to achieve one or more of the
following goals: provide more accurate solutions; cover a wider range of problems; obtain answers more
economically; and/or simplify codified knowledge.” These goals can easily be translated into the
simulation optimization context. The introduction of new search strategies or improved surface
classification (which provides for more appropriate strategy choices) can result in more accurate solutions
(closer to the true optimum) and more economical solutions (fewer simulation runs used to find the
optimal response). Simplitying codified knowledge (i.e., the rules in the knowledge base) by removing
classifications that do not contribute to strategy selection or by combining overlapping rules provides two
benefits. It will streamline the knowledge base, thereby saving storage space and reducing execution time,
and will increase our understanding of what information about a surface is essential to successful

simulation optimization.

Chapter One: Introduction 9

Knowledge Discovery and Discovery Systems

Frawley, Piatetsky-Shapiro, and Matheus (1992) present a prototypical framework for knowledge
discovery under a different setting than simulation optimization, namely databases. This framework is

redrawn in Figure 1.2; it contains five components (besides the discovered knowledge itself).

Application

Discovery Method .
Discovered

Knowledge

y

Search/Evaluation

DICT

DOMAIN KNOWLEDGE

Figure 1.2. The Frawley et al. Discovery Paradigm

The Frawley discovery system has as its core the discovery method, which computes and evaluates

patterns on their way to becoming knowledge. Note in Figure 1.2 that the discovery method has two

Chapter One: Introduction 10

principle components: search and evaluation. Inputs to the discovery method include the database itself,
its data dictionary (which defines field names, the allowable data types for field values, various constraints
on field values, etc.), additional domain or background knowledge, and a set of user-defined biases that
provide high-level focus. The output of the discovery method, of course, is discovered knowledge that can
be directed to the user and/or fed back into the system as new domain knowledge. Frawley et al. note that
both the user bias and the domain knowledge assist discovery by focusing search; i.e., these sources guide
and constrain search by, for example, telling a system what to look for and where to look for it. These
constraining influences are both desirable and undesirable: the former in that discovery is made easier,

and the latter in that valuable discovery may be ruled out by the constraints.

Frawley et al. (1992) point out that discovery algorithms inherently contain two processes: identifying
interesting patterns and then describing them in a concise and meaningful manner. They note that the
identification problem is essentially a problem of pattern identification or clustering, which in essence is
the problem of finding classes such that the similarity within classes is maximized while the similarity
among classes is minimized. For example, it might be important for a firm to discover that the major
purchaser of its product is a particular set of individuals, whereas other individuals tend to have very little
interest. Concept description involves the summarization of relevant qualities of the pattern classes rather
than just enumerating them. For example, it would help the firm described above to know that the
particular set of individuals is the class of white males between the ages of 15 and 20. According to
Frawley, well-known approaches to concept description include decision-tree inducers (Quinlan, (1986)),

neural networks (Rumelhart and McClelland, (1986)), and genetic algorithms (Holland et al., (1986)).

Chapter One: Introduction 11

Knowledge-based Simulation Optimization

A simulation model can be thought of as a “black box,” with controllable inputs feeding into the box, and
the simulation model’s responses leaving the box as outputs. The simulation model provides an
approximation of how the true system it represents would respond to the given inputs. Each response can

be considered to be a function of the inputs with a random error term added.

Figure 1.3 depicts the simulation-model box together with another black box in a feedback loop around it.
This second box represents the simulation optimizer. The optimizer takes outputs of the simulation model
and uses them to suggest new values for the inputs to the simulation model. The objective of the

optimizer is to find inputs that will result in optimal or satisficing responses from the simulation model.

Inputs Outputs
pu Simulation P

Model

-
\

Figure 1.3. The simulation-optimization process

Optimizer

The need for simulation optimization and the costs involved in it have motivated the development of

different strategies to search for optimal-response-producing input levels. These strategies range from

Chapter One: Introduction 12

random and single-factor searches to response surface methodology (RSM) to simulated annealing and
genetic algorithms. Meketon (1987) divides simulation optimization strategies into three general

categories: nonlinear programming techniques, RSM, and stochastic approximation.

An important decision that must be made in simulation optimization is which search strategy to employ.
Some work has been done to aid this decision, although Meketon concludes that “optimization for
simulation, to date, remains an art, not a science.” He considers the information available (or assumed)
about the simulation, and groups optimization methods accordingly to help narrow the choices. Safizadeh
(1990) discusses a variety of strategies and their application and concludes that generally RSM approaches
are most effective, although some new developments look promising. Smith (1973) performed an
empirical study of the effectiveness of several search strategies (random search, single factor search, and
four variations of RSM) on a variety of surfaces. He found that the relative effectiveness of each of the
strategies varied depending on the characteristics of the response surface (presence of local optima,

random error, number of controllable inputs, etc.).

Surveys of simulation optimization lead to the conclusion that organized guidance is needed to help users
choose appropriate search strategies. Safizadeh (1990) explains that: “for successful design and analysis
of simulation, one should be well versed in several disciplines.” Because of this, users are inhibited from
using simulation optimization (and thereby simulation). He concludes that there is, therefore, a need to

“develop interactive programs that direct a user to an appropriate optimization technique.”

In an earlier paper regarding selection of appropriate optimization technique, Greenwood, Rees, and
Crouch (1993) pointed out that there is both art and science in simulation optimization. They further
suggested that the art and science should be “separated” in a simulation optimizer, and, in particular, that
procedural (e.g., third generation) languages should be used to model the science part, whereas
knowledge-based approaches should be used to encapsulate the heuristics that make up the art portion.

The particular architecture suggested consists of an inference engine, a knowledge kernel, and processing

Chapter One: Introduction 13

support modules (see Figure 1.4). The knowledge kernel, in turn, contains three parts: a database to store
results, a methodology base to store procedures, and a rule base to store heuristics and to provide control.
Note that with this architecture, the fact that optimizer control is resident in the rule base implies that
there is no set algorithm for simulation optimization; rather the inference engine (using, for example,
backward chaining) can pursue a goal using whatever rules are in the knowledge base. This implies that
if the rules are or can be changed, then, in essence, the optimization algorithm itself can change.
Exploiting this notion, Greenwood et al. suggested that if results are stored in a database, and if “the
algorithm™ can be changed by changing rules, then the potential for “doing better” next time, i.e.,
“learning,” exists. This notion of a learner is shown in Figure 1.5. The basic idea is that historical
observations are taken from the database in the knowledge kernel of the optimizer, processed by the
learner, and then rules are either added, deleted, or changed back in the optimizer rule base. In this

manner, not only can heuristics be modified and improved, but so can control of the entire system.

Purpose of Research

Although Crouch specified a classifier for strategy selection in the knowledge kernel, the system was
demonstrated with a function rather than a simulation. Also, the method presented for determining the
mapping between response surfaces and search strategies was limited to a few surface characteristics. Not
all of the types of learning presented by Crouch were demonstrated, rather some were left for future study.

It is these limitations that are now addressed.

Chapter One: Introduction 14

INFERENCE ENGINE

NOWLEDGE KERNEL

DATABASE METHODOLOGY BASE RULE BASE

OBSERVATIONS ANALYTICAL PROCEDURES GENERAL PRINCIPLES

RESULTS INTERFACES DOMAIN-SPECIFIC RULES

HISTORY QUERIES INTER-STRATEGY VARIABLE RULES
CHARACTERISTICS DISPLAYS INTRA-STRATEGY VARIABLE RULES

CONTROLLER

PROCESSING SUPPORT

» database management

* graphics package

» statistical analysis programs
* report generators

L]

Figure 1.4. Greenwood-Rees-Crouch simulation-optimization architecture

In particular, this research tests the classifier approach as suggested in Crouch on actual simulation
models instead of a function. The behavior of surfaces under different conditions is also studied to refine

the method presented in Crouch. An alternative method for initiating the process is presented.

Chapter One: Introduction 15

LEARNER / LEARNER LEARNER

DATA BASE | METHODOLOGY RULE BASE

¢ concept bank [DATA BASE \ * Controller rules
* RAC table * specify experimental design * rule mod rules
* strategy mapping * conduct hypothesis test * generalization rules
* “0ld” sim models » find common features * specl/parm mod rules

~ LEARNER |

—

” rerence vonE N

From
Data Base

Methodology
Base

/' PROCESSING SUPPORT \

Figure 1.5. Visualization of the Learner and its environs

Chapter One: Introduction

16

The first contribution of this research is the study of surface characteristics and their impact on search
procedures. This provides some insight into the simulation optimization process. This dissertation lays
some groundwork by examining the behavior of simulation response surfaces themselves. In particular, a
simple, inventory-simulation model is studied under various experimental conditions; both point and
region estimates of surface characteristics are determined and graphed while such factors as number of

replications, simulation run length, and demand and lead-time variances are varied.

It is found, for example, that even for this simple surface, such optimization techniques as first-order
Response Surface Methodology (RSM) are inappropriate on anywhere from 21% to 98% of the feasible
region, depending on the case. Three implications are noted: the need for a simulation-optimization
starter; the importance of examining global, nonparametric-metamodeling approaches to simulation
optimization; and the desirability of investigating a multi-strategy approach to optimization. The first
major section of this dissertation concludes with a call for further research investigating all three

suggestions.

The second contribution here is the development of an alternative to Crouch’s shotgun procedure for
selecting initial inspection points. This is a direct result of the findings of the surface characteristics
study. Many simulation optimization approaches assume that a “good” starting point is identified, that
the design grid (i.e., spacing of runs for searching) is known, and that only one basic search method need
be employed. Often, however, one or more of these items is unknown or is inappropriate. These
assumptions can lead to an unnecessary expenditure of simulation runs, failure’to find the simulation

optimum, and/or a faise declaration of the optimal conditions.

It is proposed here that an approach based on best-first search be used to determine the optimization
starting region, starting point, and design grid. Other key features of the method that work in concert

with the best-first search are a divide-and-conquer strategy for partitioning the search space and a safety

Chapter One: Introduction 17

net which acts as a conservative check to prevent permanent pruning of desirable regions. The

methodology is demonstrated and shown to be successful on an example problem.

The third contribution is the application of discovery learning concepts to the knowledge-based simulation
optimization system of Crouch. The ideas generated are tested on simulations instead of a mathematical

function

Scope and Limitations

Although significant, each of the three contributions outlined above has a limited scope. The first
contribution, what we call here the surface characteristics study, is based on a single class of simulation
models (inventory models), and hence is not completely generalizable. Moreover, the assumptions of each
statistical test are rigidly enforced; in some cases the tests may be robust to their assumptions. This has

been ignored here and should be studied in further work.

The second contribution, the best-first search starter, assumes that a first-order metamodel is fit in each
region of the surface. Additional research should be conducted on alternatives to first-order metamodels
such as second-order models and nonparametric metamodels. Again results presented in this dissertation

have been based upon inventory models and should only be extended beyond this realm with care.

The third contribution, the introduction of knowledge discovery in a learner, is developed for only one

type (parameter modification) of learning. The approach designed here pertains to other types of learning

Chapter One: Intreduction 18

as well, but is not directly extensible to those. Additional research is needed to pursue these other kinds of

learning.

Plan of Presentation

The next chapter surveys related literature, and especially delves more deeply into the work by
Greenwood, Rees and Crouch. Chapter three presents the surface characteristics study and investigates
the effect of surface behavior on search methods. Chapter four outlines the best first search starter and
tests it on a simulation response surface. Chapter five describes how discovery system concepts are
applied in the knowledge-based simulation optimization field and demonstrates this on one of Crouch’s
types of learning. Chapter six summarizes contributions and presents a plan for furthering the state of the

art in a learning knowledge-based simulation optimization system.

Chapter One: Introduction 19

Chapter Two: Literature Review

Simulation

The development of simulation did not necessarily start out with the objective of making it a widely
accepted tool. The initial attempts were perhaps focused on providing some means of analysis for
problems that did not permit closed-form analysis. The improvements were geared (0 making it more
accurate and reliable then on ease of use. The cost of computing would be a problem until the rise of the
micro {personal) computer. Once simulation became a tool more businesses could afford, it became
necessary to make simulation programs easier to use. This would include efforts 10 take care of the entire
process from model development to model refinement. It is at this point where Artificial Intelligence

concepts started to be applied.

One of the earliest simulation programs was developed by Tocher in the late 1950’s (Tocher, 1966).
Tocher also authored one of the first texts (Tocher, 1962). Other languages that followed were GPSS at

IBM and SIMSCRIPT at RAND. The computers of the period had short word lengths which made it

Chapter Two: Literature Review 20

difficult to obtain accurate numeric results. At this stage it was possible to perform simulations on a

computer but the skills and costs involved prohibited wide-spread use.

The statistical aspects of simulation were the focus of the next stage in the development of simulation.
Routines were developed for procedural languages like FORTRAN (Pritsker, Kiviat, 1969) to improve on
random number generators and implement multiple replications. As computers became more powerful,
numerical accuracy improved, and thus statistical refinements continued. These improvements would be
necessary for wider acceptance of simulation as an analytical tool, but the requirement of significant

programming skills was still a problem.

The next shift in focus was (o tools that reduced the programming burden. These tools were called code
generators and would ask the user questions about the simulation to be developed and would then aid in
producing the simulation program (Mathewson, 1984). 1t became possible for the user to think of the
simulation in terms of diagrams which could subsequently be translated into code by the simulation
program. An example of this is Q-GERT (Pritsker, Sigal 1983). The work done in this area made it
possible for non-programmers to develop simulation programs. However, analysis of results still needed

improvement since the typical output tended to be voluminous and at times even cryptic.

Simulation programs became available on a large scale as micro computers became cheaper and faster and
more powerful. Many features of the original mainframe versions of simulation programs were also
included. Simple (by today’s standards) animation was one of these. It was one of the improvements that
helped in the analysis of output and in model validation, thereby making simulation programs accessible
to more people. As the users of simulation programs increased so did the need for better tools for
developing simulation models. There was also an increase in the complexity of the systems being

modeled.

Chapter Two: Literature Review 21

The response to these needs came in several forms, most of which have their roots in artificial
intelligence. “Intelligent front ends” became the name of a class of software that generated the code
needed to run simulation models of interest to a user. One such intelligent front end was developed for
SLAM (Stanwood, Waller, Marr, 1986), some knowledge of SLAM was necessary in order to make use of
the intelligent front end, in which machine learning concepts were used to generate a simulation model
based on a representation of the actual system. In another intelligent front end, Quinlan’s (1979) ID3
algorithm (see e.g., TRANS (O’Keefe, 1986) represented conditional events as rules from examples rather
than having the user develop the rules alone. Advisory systems (a type of expert system) would then
extract in an interview with the user as much information about the particular system to be modeled.
Based on the interview a set of experiments would be recommended. Stated again, the motivation was to

relieve the user of many burdens in the process of developing a simulation model.

Simulation remains primarily a descriptive tool rather than an analytical one. The typical scenario
involves specifying a set of input parameters and then observing the results. But there are often econornic
(and other) reasons for finding a set of inputs that optimizes a particular output; e.g., one might want (o
know the number of tellers (o keep on duty in order to minimize the waiting time of customers. This need

has produced an area of study called simulation optimization.

Chapter Two: Literature Review 22

Simulation Optimization

Simulation is a widely-used computer modeling technique that has been applied to a broad scope of
problems, ranging from traffic-flow analysis to job-shop scheduling to military-campaign planning.
Simulation permits the study of systems which cannot feasibly be constructed or experimented upon in the
“real world,” and which are too complex to be analytically modeled. When a given set of input conditions
is applied to a simulation model, the model’s output, referred to as a response, provides an estimate of
how the true system would respond to those inputs. Although simulation is very useful in predicting the
output of a system or responses, it does not in and of itself indicate the input conditions required to
achieve a desired response; i.e., it is not an optimization technique, it is an evaluative methodology. The
process of finding the input conditions that yield the optimal (or near optimal) system response(s) is
referred to as simulation optimization, which can be a very expensive and time consuming activity. In
other words, simulation evaluations address “what if”” questions by providing performance measures for a
given set of input conditions, whereas simulation optimization extends the evaluations to consider “what’s

best” by seeking optimum values for the input conditions.

The objective of simulation optimization is to determine the values of the input conditions, n controllable
factors or decision variables, that optimize m responses, subject to a set of uncontrollable conditions
(conditions that affect outcomes but are not under the influence of the decision maker). This process is
complicated by the presence of random error, often the result of combined random effects of all of the

uncontrollable conditions. This causes a response Yj to become a random variable and take on a set of
values for the same setting of the controllable factors; i.e., there is some distribution of Y; values for each

combined level of the controllable factors. To model this behavior each response is oftentimes considered
equal to the sum of a constant and a noise term, where the constant is the expected value of the response

E[Y;] for a specific combination of factor settings, and the noise term represents the random error. Due to

Chapter Two: Literature Review 23

the presence of random error, the optimization process typically focuses on the expected value of the

responses; however, while the goal is to optimize E[Yj], only Yj is observable. Jacobson and Schruben

(1989) note simulation optimization is in the class of stochastic optimization problems where the objective
functions are stochastic functions of deterministic decision variables; these problems are known to be

difficult to solve.

Azadivar (1992) points out that although the most common goal in simulation optimization is to optimize
expected value, the goal may also involve such considerations as minimizing the risk of exceeding a
threshold, minimizing dispersion, etc. Meketon (1987) refers to two classes of objectives of optimization
procedures: min/max and level crossing (or root finding). The latter is of the form: find X 3 E[Y(X)] = p;
for example, find the service rate such that customers wait more than 3 minutes 5% of the time. Meketon

also indicates that the level-crossing problem is the same as the min/max problem, e.g., min E[(Y(X)-

p)2], if Var[Y(X)] is constant.

In general, the responses, Y = (Y1, Y2, ..., Ymn), are functions of the controllable factors, X = (X1, X2, ...,

Xn), uncontrollable conditions, Z, and random error, €; i.e.,

Y=E[Y]+e=f(XI|Z)=E[f(XIZ)] +¢.

Note that the additive error considered above is only one possible model, with E[ei] =0, and Var[g] < +ee.

In addition to the above goal, the optimization will be subject to upper and lower limits on the controllable
factors or some functon of a combinaton of them. Therefore, the general simulation optimization

problem may be stated as:

Optimize: E[Y]=E[f(X | Z)] over the region S C RO @))
where the domain of S may be either continuous (Re), or discrete (Rq), or mixed,

and X =(X1,X2, ..., Xp e S

Chapter Two: Literature Review 24

Subject to: h(X)<0 2
where h(X) is a vector of deterministic constraints typically of the form:
li<Xj<uj i=1,..,n) (2a)
In+q<fX)<up+q q=1,...b (2b)

where b is the number of constraints involving more than one controllable factor.

Typical Assumptions

Not all simulation optimization methods search the region S directly. For example, frequency domain
methods transform the optimization problem into the frequency domain (Safizadeh, 1990), and many so-
called intrusive procedures are single-simulation-run optimization methods (Wilson, 1987). However, a
broad set of simulation optimization methods do explicitly perform a search directly over the region S.
For example, different varieties of Response Surface Methodology (RSM, see Box and Wilson (1951) or
Myers (1971)) assume a starting point in S then use first-order and/or second-order metamodels to suggest
preferred directions of search or optimality locations. The research described in chapter four is most
applicable to simulation optimization methods that search the region S directly, such as RSM, random
search, and Box’s complex search (Safizadeh, 1990), although any optimization approach that benefits
from a carefully chosen initial region and/or requires a specification of problem granularity (see below) is

a candidate for the procedures defined in this research.

Methods directly searching a region S typically make several assumptions. These often include the
assumption that either a “good” starting point is known or that the choice of a starting point is
unimportant to the solution of the problem. Sometimes this difficulty is obviated by selecting several
starting points, solving the problem for each starting point, and selecting the most-preferred answer.
Another assumption commonly invoked is that problem granularity, i.e., an appropriate grid spacing/step

size, is known. For example, in using first-order RSM models, a factorial design is often utilized to

Chapter Two: Literature Review 25

determine the direction of steepest ascent. But there is no a priori rationale to determine the coding of
natural variables in S, i.e., to specify the size of region over which the factorial design s defined.
Moreover, once a direction of steepest ascent is determined from the RSM metamodel, there again is no a
priori reasoning that leads to a good choice of step size along the path of steepest ascent. Finally, most
approaches to simulation optimization invoke only one search method throughout the entire procedure,
although some have suggested hybrid approaches (Crouch, Greenwood, and Rees 1995). Sometimes a
basic method is employed (e.g., RSM) with variations (e.g., first-order, second-order) to successfully

address simulation models with differing amounts of curvature and/or variance in the response surface.

To summarize so far, many simulation optimization methods assume that a “good” starting point is
identified, that the design grid (i.e., how far apart o space runs) is known, and that one basic search
method need be employed, all regardless of the surface. Often, such assumptions are valid, for often a
user has experience with the simulation model or is willing to live with the results obtained from
assumptions, or expertise may be available to suggest appropriate search methods, step sizes, etc., early in
the optimization process. Also, the surface may be “simple” and “smooth enough” to be impervious to the
consequences of the aforementioned assumptions. However, there are cases where the simulation
response surfaces are complex and have great variability in response across the surface and where little
relevant optimization expertise is available. Ignoring these conditions can lead to an unnecessary
expenditure of simulation runs, failure to find the simulation optimum, and/or a false declaration of the
optimal conditions. Sometimes financial implications are significant. Chapter three deals with this latter

class of problems where making these assumptions is not wise.

Knowledge-based Simulation Optimization

A simulation model can be thought of as a “black box,” with controllable inputs feeding into the box, and

the simulation model’s responses leaving the box as outputs. The simulation model provides an

Chapter Two: Literature Review 26

approximation of how the true system it represents would respond to the given inputs. Each response can

be considered to be a function of the inputs with a random error term added.

Figure 2.1 depicts the simulation-model box together with another black box in a feedback loop around it.
This second box represents the simulation optimizer. The optimizer takes outputs of the simulation model
and uses them to suggest new values for the inputs to the simulation model. The objective of the

optimizer is to find inputs that will result in optimal or satisficing responses from the simuiation model.

Inputs
npu Simulation

Model

Optimizer

Figure 2.1. The simulation-optimization process

The need for simulation optimization and the costs involved in it have motivated the development of
different strategies to search for optimal-response-producing input levels. These strategies range from
random and single-factor searches to response surface methodology (RSM) to simulated annealing and
genetic algorithms. Meketon (1987) divides simulation optimization strategies into three general

categories: nonlinear programming techniques, RSM, and stochastic approximation.

Chapter Two: Literature Review 27

An important decision that must be made in simulation optimization is which search strategy to employ.
Some work has been done to aid this decision, although Meketon concludes that “optimization for
simulation, to date, remains an art, not a science.” He considers the information available {or assumed)
about the simulation, and groups optimization methods accordingly to help narrow the choices. Safizadeh
(1990) discusses a variety of strategies and their application and concludes that generally RSM approaches
are most effective, although some new developments look promising. Smith (1973) performed an
empirical study of the effectiveness of several search strategies (random search, single factor search, and
four variations of RSM) on a variety of surfaces. He found that the relative effectiveness of each of the
strategies varied depending on the characteristics of the response surface (presence of local optima,

random error, number of controllable inputs, etc.).

Surveys of simulation optimization lead to the conclusion that organized guidance is needed to help users
choose appropriate search strategies. Safizadeh (1990) explains that: “for successful design and analysis
of simulation, one should be well versed in several disciplines.” Because of this, users are inhibited from
using simulation optimization (and thereby simulation). He concludes that there is, therefore, a need to

“develop interactive programs which direct a user to an appropriate optimization technique.”

In an earlier paper regarding selection of appropriate optimization technique, Greenwood, Rees, and
Crouch (1993) pointed out that there is both art and science in simulation optimization. They further
suggested that the art and science should be “separated” in a simulation optimizer, and, in particular, that
procedural (e.g., third generation) languages should be used to model the science part, whereas
knowledge-based approaches should be used to encapsulate the heuristics that make up the art portion.
The particular architecture suggested consists of an inference engine, a knowledge kernel, and processing
suppbrt modules (see figure 2.2). The knowledge kemel, in turn, contains three parts: a database to store
results, a methodology base to store procedures, and a rule base to store heuristics and to provide control.

Note that with this architecture, the fact that optimizer control is resident in the rule base implies that

Chapter Two: Literature Review 238

there is no set algorithm for simulation optimization; rather the inference engine (using, for example,

backward chaining) can pursue a goal using whatever rules are in the knowledge base. This implies that

if the rules are or can be changed, then, in essence, the optimization algorithm itself can change.

Exploiting this notion, Greenwood et al. suggested that if results are stored in a database, and if “the

algorithm” can be changed by changing rules, then the potential for “doing better” next time, i.e.,

>

“learning,” exists.

INFERENCE ENGINE

DATABASE

OBSERVATIONS
RESULTS

HISTORY
CHARACTERISTICS

METHODOLOGY BASE

ANALYTICAL PROCEDURES
INTERFACES
QUERIES

DISPLAYS

RULE BASE

GENERAL PRINCIPLES
DOMAIN-SPECIFIC RULES
INTER-STRATEGY VARIABLE RULES
INTRA-STRATEGY VARIABLE RULES

CONTROLLER

y

PROCESSING SUPPORT

* database management

* graphics package

« statistical analysis programs

* report generators

Figure 2.2. Greenwood-Rees-Crouch simulation-optimization architecture

Chapter Two: Literature Review

29

This notion of a learner is shown in figure 2.3. The basic idea is that historical observations are taken
from the database in the knowledge kernel of the optimizer, processed by the learner, and then rules are
either added, deleted, or changed back in the optimizer rule base. In this manner, not only can heuristics

be modified and improved, but so can control of the entire system.

Learning: Definitions, Advantages, and What There is to Learn

Crouch (1992) states that definitions by Simon and Michalski are closest to what she means when she says
she will let her optimizer learn. Simon (1983} concludes: “Learning denotes changes in the system that
are adaptive in the sense that they enable the system to do the same or different tasks drawn from the same
population more effectively the next time.” Michalski (1986) points out that knowledge acquisition
seems to be the essence of most learning acts. He adds that in order to acquire knowledge, one has to
represent this knowledge in some form. Consequently, he characterizes learning as “constructing or
modifying representations of what is being experienced.” Thus the optimizer should be able to adapt its
performance so that it improves its optimization on scenarios “close’” to ‘what it has already seen. In
addition, an optimizer or satisfier with a learning capability should have the capacity to modify or to
construct representations of its knowledge, be it knowledge of how to reset certain parameters, knowledge

that is domain specific, or knowledge that is more widely applicable as general principles.

Crouch (1992) builds upon a taxonomy developed by Carbonell et al. (1983) to suggest the types of
knowledge acquisition a learner should include. The four basic types of learning are (1) rule modification
or creation, (2) specialization, (3) parameter modification, and (4) generalization. According to
Carbonell, specialization means adding conditions to the “if” part of a rule (the antecedent) so the rule
applies to a narrower set of circumstances, and generalization means dropping restrictive conditions in the
antecedent to make the rule apply in a wider variety of contexts. By parameter modification is meant the

changing of a numerical value in a rule; for example, the antecedent “IF number of runs > 12 could be

Chapter Two: Literature Review 30

LEARNER LEARNER LEARNER
DATA BASE[/ METHODOLOGY RULE BASE
7] DATA BASE

* concept bank * Controller rules

* RAC table * specify experimental design » rule mod rules
* strategy mapping * conduct hypothesis test ¢ generalization rules
* “old” sim models ¢ find common features * specl/parm mod rules

LEARNER

/" ocessia sureort_\

Figure 2.3. Visualization of the Learner and its environs

Chapter Two: Literature Review 31

changed to “IF number of runs > 10.” Rule modification results in changing the consequent of a rule. For
instance, a current rule may conclude that RSM is the preferred search strategy (“.. THEN strategy =
RSM”}); however, learning may suggest that simulated annealing is preferred. Thus, the modified rule

would have the consequent “THEN strategy = simulated annealing.”

In this research, we will limit ourselves to the four types of learning just elaborated, noting that additional

types of learning can be added to the Learner later if desired as plug-in modules.

What it is that can be learned in a simulation optimization system with these four types of learning has
been pointed out in Crouch (1992). In order to understand these ideas, however, it is first necessary to
present a quick overview of CGR’s (1995) “Classifier KBSOS.” CGR called their system a “Classifier
KBSOS” because its simulation output surfaces are classified according to the search strategy most likely

to render success.

In the Classifier KBSOS, input sufficient to define the problem is obtained from the user in the User
module (see figure 2.4). This input is then fed to the Classifier module, where three steps occur. First,
the “shotgun” suggests an initial set of simulation runs to be made at various input combinations across
the surface. The results from these computer runs are then input to the “synthesizer,” which attempts to
develop a fitted or synthesized surface through those points. (A neural network can be and was
successfully used for this by Crouch et al. The reason for this synthesis is that it hopefully will save
computer runs by characterizing the synthesized or estimated surface rather than depending entirely on
actual runs.) Then the synthesized surface is analyzed by several procedural programs and heuristics in
the “characterize” module in order to classify or characterize the response surface. The idea of classifying
a surface is based on a study reported by Smith in Operations Research in 1973, which found that optimal
search technique varies by type of surface. Crouch et al. used the same explanatory variables Smith used

in his study to classify their surfaces with the Classifier KBSOS.

Chapter Two: Literature Review 32

USER

K CLASSIFIER
[Shotgun J

R

STRATEGY
SELECTOR

- (
Synthesize
_

—

_

Characterize l

A |

STRATEGY
DETAILER

SEARCH

Figure 2.4. An overview of the Classifier KBSOS

Chapter Two: Literature Review

33

Once a surface has been classified, rules in the KBSOS knowledge kernel invoke the Strategy Selector.
This module is a collection of rules that choose a search strategy (e.g., RSM, random search) depending
on the surface characteristics identified by the Classifier. Note that as the whole classify-and-select-
strategy process is iterative, additional search may result in reclassification of the surface and hence
specification of a different strategy as the optimization proceeds. After a search strategy has been chosen,
the Strategy Detailer (another set of rules) is fired, and implementation particulars are set whereby the

Search may be conducted.

As Crouch points out, it should be clearly stated what is not meant when one suggests that a KBSOS will
learn. The learner is not expected automatically to derive or infer a never-before-seen search technique
whenever a previously unanalyzed surface in encountered. Rather, the learner is expected to perform such
tasks as to modify parameters in the shotgun, to suggest that a new antecedent be included in a set of rules
in the Strategy Selector, or to respecify the number of runs to be made at the center point of a given search
being implemented. Learning is to be incremental as opposed to far reaching, and it will only be

successful as its databases of surfaces and experiments grow large.

In order to indicate how learning will take place in a KBSOS, Crouch (1992) lists some examples of each
of the four kinds of learning; see that reference and Crouch, Greenwood, and Rees (1995) for further

details:

parameter modification: - in the Classifier: re-specifying the number of runs to be made randomly and
at regular grid points in the shotgun module; re-setting a variance threshold, above which additional
replications of data points used to fit the synthesized surface will be collected; re-stipulating the vertical
distance delta from the true optimum, within which non-adjacent portions of the response surface indicate
multiple, optimal solutions. And in the Strategy Detailer, re-adjusting the step size for a given search
technique.

specialization: - adding new concepts as antecedents to the rules in the Strategy Selector (e.g., adding “TF
variance is not high™ to a current rule specifying RSM as the search procedure); adding a similar clause
again to the IF part of an existing rule in the Strategy Detailer (e.g., adding “IF lack of fit is significant”
to a rule specifying a shift from a first-to a second-order RSM design).

Chapter Two: Literature Review 34

rule modification: - in the Strategy Selector, if some cases concluding in “THEN Strategy = S achieve
different levels of success than others, then separate these cases and respecify “THEN Strategy = S5,” a
new strategy whereby there is some evidence that So will work better on the poorer cases than S did.

generalization: - deleting existing concepts from the antecedents of rules when there is evidence that such
concepts are irrelevant to the Strategy Selection being made (e.g., removing “IF distance to optimum =
far” from a rule concluding in “THEN Search = random search.”) Generalization is also helpful in a
housecleaning sense in that rules can at times be combined, thereby reducing the number of rules in the
rule base.

It is easily noted from the above lists that there are a plethora of details to be learned; this is because,
fundamentally, so much of simulation optimization is heuristic, or “art.” The approach taken in Crouch
(1992) and that we have taken here is to prioritize what we want to learn with our KBSOS. We have
placed the Strategy Selector as our top learning objective, with its specialization, rule modification, and

generalization. At second priority is the Classifier, which calls primarily for parameter modification

learning.

Having examined the Classifier KBSOS, definitions of learning, and what it is that may be learned in a
knowledge-based simulation optimization system, we now direct our attention to the Crouch (1992)
Leamer. This will provide the final building block needed to explain the Learner we have actually

constructed ourselves.

The Crouch Learner

Overview: Each of the four learning types to be included in Crouch’s learner requires both procedural
and heuristic computation. That is, each learning type consists of both procedural decisions such as
hypothesis testing that can best be performed by algorithmic means, as well as heuristic processing best
done in, for example, knowledge-based systems. A major design decision made by Crouch was to separate

the “art’” and “science” in the learner; Crouch, Greenwood, and Rees (1995) also did this in their KBSOS.

Chapter Two: Literature Review 35

Figure 2.3 shows Crouch’s learner sitting above the KBSOS and deriving input from the KBSOS
database; changes are passed back to the KBSOS rule base. Figure 2.3 explicitly illustrates the
implementation of the separation of art and science in the learner in terms of its three modules, the
Learner Data Base, the Learner Methodology Base, and the Learner Rule Base. In addition, figure 2.3

shows some of the functions to be carried out by each of the three modules.

According to Crouch (1992), a knowledge-based simulation optimization system contains many concepts
that may be stored in a variety of representation formats, including tables, rules, and neural networks. In
order to be able to manipulate this information in a learner, the Learner Data Base must keep a registry of
concepts and their interrelationships. Crouch’s mechanism for doing this is a concept bank and a
Relationships Among Concepts (RAC) table. The RAC table stores which concepts are used in which
rules. As indicated in Figure 2.3, both the concept bank and RAC table are (important) components of the
Learner Data Base, as is the strategy mapping, which will be described later in chapter five. An
additional item included in Crouch's Learner Data Base is a collection of “old” simulation programs.
That is, she suggested that whenever a simulation program was run and its results were stored in the
database, it would be advantageous if the program (i.e., the code) itself were left in a library in the Learner
Data Base, in case the Learner decided later to do further exploration with the program. Obviously, this is
not practical in all cases. But the more the Learner has access to in the way of history, the more likely it
is to be successful. Finally note that Crouch’s Learner Data Base may share or coincide or differ from the

knowledge kernel data base.

The Learner Methodology Base consists of whatever procedural aspects are necessary to implement the
four types of learning. For example, if the Learner were investigating the advantages of changing a
troublesome parameter, it might decide to conduct an experiment to test the proposed change. In such a
case, the Learner would call the experimental design submodule, which would specify where computer

runs should be made to carry outl (say} a fractional factorial design. Then a second submodule in the

Chapter Two: Literature Review 36

methodology base, a hypotheses testing procedure, would evaluate the results of these experiments
determine statistically the worth of the change. Crouch admits that these submodules may be complex,
but add that they can be implemented using ideas well-established in the literature. A third submodule in
the learner methodology base deals with searching for common features or concepts for a given set of

rules.

Crouch’s Learner Rule Base contains all the rules or heuristics needed to do specialization, rule
modification, parameter modification, and generalization. Moreover, it also possesses a set of controller
rules, which decide when to invoke each of the four learning types. All of these rules, under the direction
of an inference engine, drive the Learner in its search for an improved simulation optimization process,

and call the Learner Data Base and Methodology Base when needed.

Crouch Process Flow: A brief overview is now given of the Crouch learning process flow; details may be
found in Crouch (1992). This process is based on Slade’s work on case-based reasoning (1991). Slade
never examined the simulation optimization context; rather Crouch adapted some of the basic concepts in

case-based reasoning and learning and modified them for this application.

Figure 2.5 indicates the flow of Crouch's learning process. The shaded boxes indicate the major
operations in the process needed for all four learning types. (The only exception is that Repair is not
needed in Generalization learning.) The learning process for any of the types begins with Retrieve, where
learner rules are used to extract relevant data from either the learner or knowledge kernel databases.
Upon retrieval, leammer modification rules are invoked to suggest changes in some aspect of knowledge
kernel rules. This occurs in the Modify block. For example, in parameter-modification learning, a
particular parameter is suggested for change; whereas in specialization learning, retrieved data cases are
first segmented by performance, and concepts in the antecedents are then sought that can explain the

performance differences. Once a modification is proposed that hopefully improves KBSOS performance,

Chapter Two: Literature Review 37

Determine
Learning
Type

j

Retrieve

Store

Prior Solution

Modify

Assign

Proposed Solution

| I

Test

Retrieval

Rules

Modification

Rules

New Solution

Failure or
No Change

Repair
Rules

New Solution

Repair <

Adjust

Explain

Parameter;

Figure 2.5. Crouch’s learning process (Crouch, 1992)

Chapter Two: Literature Review

Modify
Strategy
Exit

Exit

38

the Test block is called. Basically, the Test block determines whether the proposed modification results in
an improved solution (i.e., a new set of rules), or rather in no improvement or possibly failure. In the first
case, control passes to the Assign and Store blocks, where the proposed modifications are actually made
and put back in the KBSOS rule base. In the case of failure or no improvement, the Explain and Repair
blocks are called, where either abandonment of learning for this case occurs due to unsuccessful
explanation and repair, or further modification leads to a successful solution. This latter case leads back

to assignment and storage, as figure 2.5 indicates.

Although Crouch’s research has suggested an architecture and a learner flow, details were not specified as
to how all modules would work for the four types of learning. Moreover, since a Learner has never been
built, it is not known whether such a Learner is truly practical. The research described in chapter five
specifically addresses these issues, making three contributions. First of all, we build a Learner and test it
on a simulation example. Second, having successfully constructed a Learner, we are able to specify an
architecture and process flow; in particular, it will be seen that a clear explanation of how discovery takes
place was not provided in the Crouch paper. And finally, an analysis of what must be done next to extend

the Learner to larger-scale, more complex scenarios is described.

The remainder of this chapter is ofganized as follows. The next section describes a general model of
“discovery,” and the following segment details the modified general learning flow of our discovery
learning system. It will be found that the Crouch (1992) architecture of figure 2.3 contains most of the
components necessary in a Learner, but is lacking in clear explanation of how discovery will take place --
in particular how domain knowledge and search will be used in this process. This discussion is followed
in turn by a detailed inventory simulation example invoking the Learner illustrating parameter

modification. The chapter concludes with a summary and a description of future steps.

Chapter Two: Literature Review 39

KNOWLEDGE DISCOVERY

The use of knowledge discovery concepts in a knowledge-base simulation optimization system (KBSOS)
is new. The previous work in KBSOS did outline and define four kinds of learning which required
storing some items in the form of a database. It is a simple extension then to use knowledge extraction

techniques for databases in an attempt to learn something from the data being stored.

The essence of learning as we use it here is knowledge discovery. Frawley, Piatetsky-Shapiro, and
Matheus (1992) present a prototypical framework for knowledge discovery under a different setting than
simulation optimization, namely databases. This framework is redrawn in figure 2.6; it contains five
components (besides the discovered knowledge itself). Since our research builds a Learner based upon
both the Frawley et al. paradigm and the Crouch (1992) architecture and flow, we now discuss the former

in some detail.

The Frawley discovery system has as its core the discovery method, which computes and evaluates
patterns on their way to becoming knowledge. Note in figure 2.6 that the discovery method has two
principle components: search and evaluation. Inputs to the discovery method include the database itself,
its data dictionary (which defines field names, the allowable data types for field values, various constraints
on field values, etc.), additional domain or background knowledge, and a set of user-defined biases that
provide high-level focus. The output of the discovery method, of course, is discovered knowledge that can
be directed to the user and/or fed back into the system as new domain knowledge. Frawley et al. note that
both the user bias and the domain knowledge assist discovery by focusing search; i.e., these sources guide
and constrain search by, for example, telling a system what to look for and where to look for it. These
constraining influences are both desirable and undesirable: the former in.that discovery is made easier,

and the latter in that valuable discovery may be ruled out by the constraints.

Chapter Two: Literature Review 40

Application

Discovery Method .
Discovered

Knowledge

Search/Evaluation

DICT

DOMAIN KNOWLEDGE

Figure 2.6. The Frawley et al. Discovery Paradigm

Frawley et al. (1992) point out that discovery algorithms inherently contain two processes: identifying
interesting patterns and then describing them in a concise and meaningful manner. They note that the
identification problem is essentially a problem of pattern identification or clustering, which in essence is

the problem of finding classes such that the similarity within classes is maximized while the similarity

among classes is minimized. For example, it might be important for a firm to discover that the major
purchasers of its product is a particular set of individuals, whereas other individuals tend to have very
little interest. Concept description involves the summarization of relevant qualities of the pattern classes
rather than just enumerating them. For example, it would help the firm described above to know that the

particular set of individuals is the class of white males between the ages of 15 and 20. According to

Chapter Two: Literature Review 41

Frawley, well-known approaches to concept description include decision-tree inducers (Quinlan, (1986)),

neural networks (Rumelhart and McClelland, (1986)), and genetic algorithms (Holland et al., (1986)).

KNOWLEDGE DISCOVERY IN THE SIMULATION
OPTIMIZATION DOMAIN

Figure 2.7 illustrates the architecture of our Discovery Leamner for simulation optimization and its
interaction with the Classifier knowledge-based simulation optimization system. The Classifier KBSOS,
shown at the right in that figure, contains three principle modules: an inference engine; a knowledge
kernel, which contains the rules and algorithms necessary for simulation optimization, as well as a record
(a database) of the optimization session; and processing support, including interfaces to users, the
simulation program, etc. Crouch, Greenwood, and Rees (1995) may be seen for further details on the

Classifier KBSOS.

The Learner, shown as an “L”-shape at the left of figure 2.7, contains the same modules as the Frawley et
al. paradigm, but is adapted to fit the purposes of the simulation-optimization environment. These
modules are the sessions history database, the data dictionary, a domain-knowledge module, and (at its
heart), the discovery-methods module. As in Frawley, bias is provided to the Learner from a

user/developer.

Note that the key information/knowledge tlows between the Classifier KBSOS and the Leamer consist of
one primary flow from the KBSOS to the Learver, and two flows from the discovery-methods module:
one back to the KBSOS, and another internal to the Learner, back to the domain-knowledge module.
These three flows are emphasized in figure 2.7 by the heavier lines and arrows. The key notion is that
information from optimization sessions (stored in the database of the knowledge kernel) flows to the
Learner as input where it is recorded in the Sessions History Database. Similarly, what is learned by the

Learner tlows back as output to the rule base of the KBSOS, so that rules are modified; consequently,

Chapter Two: Literature Review : 42

SOSHD 13YISSE[) 3Y) Y)IM UONILIINUL S)I 2 JAUILIT AI13A00S1(J Y], *L°T dand1]

19ubise g |Bjue wuedx3 —

uoneneasy

Buluee|0eSNOH (UONBZHEIGUED-

Mo

SS/ND +ede1| + DNE [UONBOIYPOW SINY -

eoelL + ©NEG ‘uonezyeIdeds - .woawisozx NIV WOQa

©ONE +107 1UORBIYIPOW 1036 weIB g -

\— yolees

?.u.nm >no.eto£.c_.a jousre 'y seug ,o:.:c 19uieeq W)

SAOHLINW AHIADDSIA aseq

jdasuod

131a

140ddNS DNISS3ID0Hd

| yoleags MaN-
iajawieled Sd2UaplUOD MmOT]-

selg

eouB uojIed/eden SOSAMN-

eseqgp \

SONSHSIORIBYD BOBNG

eseq ol
o

9seQ1oNnJjsuov/jdeduo D

TINYIN 3IDAITMONN

esrqeirg

suny
uoljelnui s
el

AIOISIH SUOIBS IS

/ INIONT 29N xu.“...z_,N

SOSHY HIHISSYTD \ yaNuy3)
) L ; 10sn Josedojereg

43

Literature Review

Chapter Two!

simulations conducted in the future by the KBSOS will (hopefully) be improved. What is learned by the
Learner also flows back to the domain-knowledge module in the Learner, as a means of keeping the
Learner up-to-date. These flows constitute the primary activity of the Learner, with all other activities
conducted in support of that activity. We now detail this support, proceeding module-by-module through

the Learner.

Data Dictionary

The data dictionary maintains the concept bank, namely a list of concepts or constructs utilized in the
sessions history database. For example, some of the concepts in the sessions base are number of
controllable factors, distance from the optimum, level of factor activity, and presence of local optima. The
concept bank also contains, as mentioned, allowable data types for field values as well as any constraints
on field values. The data dictionary employed in the Learner is not significantly different from data

dictionaries employed in other applications.

Sessions History Database

The Learner database is called a Sessions History database because it records the history of sessions
carried out by the KBSOS. There are three kinds of information regarding any session maintained in the
database, each carried to meet a different need for the Learner. The first is the concepts and the values
that each can take. The second is a description of session characteristics which includes a session trace,
the search method and results, surface characteristics, and the activating rule, among others. The third
kind is a detailing of the rules including parameters and associated levels. Figure 2.8 is a lattice that

shows some of the relationships among the three kinds of information (Siochi, 1993).

Chapter Two: Literature Review 44

TOP FRAME

|
I - M | |
Concept Session “Rule
Level Level Search Consequent || Antecedent
T Il
Selector Parameter Rule
I |
| 1
Consequent | [‘Antecedent

Figure 2.8. A lattice showing the interconnections of the Sessions History Database frames

All three kinds of information are represented as frames (Siochi, 1993). The concept frame (see figure
2.9a) contains the name of the concept and the possible values that the concept can take. The concept
frame can be a child frame of an antecedent or consequent frame. The session frame (figure 2.9b)
contains session specific information such as the session number, the goal (min/max), performance,
number of searches performed, a rating of effectiveness, total number of runs, number of inputs, and the
best solution found. It has one child frame called the search frame. The search frame contains search
specific information such as number of runs used, search method, best point found and the surtace
characteristics as estimated at that point (the selector parameter in figure 2.8). The search frame has three
child frames, (1) the activating rule frame, (2) the trace frame, and (3) another search frame if an
additional search had been performed (the value is null if no additional searches were performed). The
rule frame (figure 2.9¢) contains the rule name, the rule base it belongs to and two child frames;
antecedent and consequent. The antecedent and consequent frames have pointers to concept frames and

logical operator slot. A trace frame contains the points visited.

Chapter Two: Literature Review 45

Concept

Descriptor Level
2.9a. Concepts Frame
Sessioh
Session Number Min/Max

Mark (BUG)

Best Point Found

Performance

Number of Searches

Number of Runs

Number of Inputs

Pointerto S
Frame

earch

2.9b. Session Frame

Rule

Pointer to
Antecedent Frame

Pointer to
Consequent Frame

Rule Name

Rule Base

Chapter Two: Literature Review

2.9¢. Rule Frame

Figure 2.9. Examples of frames

46

Domain-Knowledge Module

The third component of the Discovery Learner is the Domain-Knowledge module. As mentioned,
discovery must often be focused if the knowledge discovered is to be useful, and sometimes it must be so if
there is to be any discovery at all. The general purpose of the Domain-Knowledge module is to enable the
discovery that occurs in the Learner to be relevant and useful to the Classifier KBSOS. In particular, the
function of the domain-knowledge component is to provide guidance to the search portion of the
Discovery Methods module in four particular ways, one for each type of learning: (1) what parameters
can/should be considered for modification (this is for parameter-modification learning), (2) which rules
are candidates for specialization, (3) which rules should be modified in their conclusions (e.g.,
recommending different search strategies for rule-modification learning), and (4) when to attempt

generalization.

Of course, there is a danger in providing domain knowledge to our system in that specifying such
knowledge can rule out potentially valuable discovery. Frawley et al. (1992) point out the case in logistics
planning where the search space is so large that it is impossible to find solutions without using constraints
such as “trucks don’t drive on top of water (without bridges).” But adding this constraint eliminates
potentially interesting solutions such as those in which trucks drive over frozen lakes in winter. So the
key, they say, is to provide as general as possible constraints, while still maintaining enough specificity to

provide useful discoveries.

There are four primary components in the Domain-Knowledge module; these may be modified or

enhanced in the future. They are

. the performance measures component

. the low-confidence parameter list

. the link-of-influence submodule, and

. the classifier-methodology-to-search-space (CM/SS) component.

We now describe each of these components.

Chapter Two: Literature Review 47

The performance-measures component contains the currently recommended measures for evaluating
success in the KBSOS. At this point, we are utilizing the same performance measures as Crouch (1992),
not because we have studied them and found them acceptable, but rather because we have focused our
efforts elsewhere and have assumed them by default. (We believe this whole area to be a topic worthy of
further study.) There are two Crouch performance levels, weak and strong, and both are defined in terms
of what Crouch called “interesting” optimization sessions or cases. Two of Crouch’s three “interesting”
cases are oriented toward the efficiency of the optimization, which Crouch measured according to the total
number of runs used to find the optimal response. Those optimization sessions requiring relatively many
runs are marked “Bad” or “B,” whereas those requiring relatively few runs are marked “Good” or “G.”
The other Crouch “interesting” case is based upon effectiveness, which she measured by observing the
variance of the surface and whether multiple optima exist. If there is high variance or if multiple optima

exist, Crouch labels the case “Ugly” or “U.” We refer to Crouch’s three interesting cases as “BUG.”

As mentioned, Crouch then defined performance in terms of the BUG cases. Performance is judged as

“strong” or “weak” according to the following two (Crouch) rules:

IF marked = G AND

marked <> U

THEN performance = strong,

IF marked = B

THEN performance = poor.

The performance measures “strong” and “weak™ are used in the Discovery Methods module as will be
explained shortly. With the modular structure of the domain-knowledge module, it is relatively easy to

modify performance measures as desired.

Chapter Two: Literature Review 48

Again, it is the purpose of the first of the four Domain-Knowledge module components, namely the
performance-measures component, to provide the criteria whereby the success and failure of the KBSOS

may be judged.

The second component in the Domain-Knowledge module is the Low-Confidence Parameter List. This
list is simply a developer-supplied tabulation of the “important” parameters utilized in the rules. They are
ranked according to the lack of confidence the developer has in their values, with least-confidence
parameters at the top of the stack. When the Learner decides to attempt parameter modification, it will do
so by popping the low-confidence-parameter-list stack, and considering the modification of the parameter
at the top of that list using the parameter modification process flow outlined in Crouch (1992). Figure

2.10 shows where the KBSOS parameters that can be modified are located within the Classifier KBSOS.

The third aspect of the Domain-Knowledge module is the link-of-influence (LOI) submodule. The basic
purpose of this component is to establish the link between any parameters to be modified and the effect on
rules “downstream’ in the knowledge base. For example, assume a given parameter in the “characterize”
component in the classifier module in the KBSOS is presently set to a value of 0.5. If a change to 0.7 for
this parameter is under consideration, then those cases (i.e., sessions) for which the parameter took on
values between 0.5 and 0.7 must be re-examined. Now if the parameter being set at 0.7 in the
“characterizer” caused a particular rule in the Strategy Selector to be fired and another rule in the Detailer
subsequently to be fired, then the effect of the change to 0.7 must be considered to the extent that the
downstream rules in the Selector and Detailer that would be fired instead of the initial set must be
examined. For instance, the change from 0.5 to 0.7 might result in a whole new search strategy being

chosen in the Selector.

Chapter Two: Literature Review 49

Jauaea| £13403si(] 2Y) jo yusucduiod agpajsmoury] urewio(] Y 3o sjieda(q o1z 2andig

1subisaqeiue E:un‘u\—

uoneneay —

Butueaoasnoy uonezeIFUID-

SS/ND +20811 + DG (UOHBIYPOW 2ANY -

@oer)] + 9ng 'uonezedadg -

DNE +107 (UOHEXIPOW 13jd WeIEd -

IDGITMONX NIYHOQ

— UEILEX —

(eseg ABojopoyjey seuses) g os8g 9NY Jsuive] ul)

SGOHLIW AHIAODSIO

r

s s ereo e

140ddNS DNISS3IDO0OHd

H3Wv1iia
AD3ILVYLS

40103138
A931vHILS

/ : ‘sosaX HAASSYID

~v

1280} 10 18dojanaQ

aoue ulojiadsacen SOSEN

SO1IS1I3|08IBYI 3 IE)ING

@SBQ ON1I5H0D/1dadu0 O

eseqeieq
KiosiH sucisses

#43INHVII

50

Chapter Two: Literature Review

The determination of the downstream rules affected by a parameter shift is not difficult conceptually, as
one merely needs to forward chain through the rules. Figure 2.11a shows how this works with a few rules
and five sessions. The parameter o affects the parameter 3 which in turn affects the parameters Y. The
parameter 7y affects the number of replications but only for one search method. By forward chaining
through the rules the parameters that are affected can be found. The threshold for parameter « is set at
0.5 and the rules that are affected by o are shown in figure 2.11a. The effect of changing the threshold
from 0.5 to 0.7 is shown in figure 2.11b. Note that only two sessions (3 and 4) are impacted by the
change. The particular modules in the Classifier KBSOS affected by the L.OI submodule are also shown

in figure 2.10 by the dashed lines leading from that submodule.

The final submodule currently present in the domain-knowledge portion of the Learner is the classifier-
methodology-to-search-space (CM/SS) mapping. Recall that the Classifier KBSOS synthesizes simulation
runs and then characterizes the resulting optimization surface according to six output measures. These
output measures have been chosen particularly because they channel surfaces toward the search technique

most appropriate for the type of surface.

The purpose of the CM/SS component as used in the Discovery Methods module is to suggest new search
strategies for appropriate bad and ugly cases. Three current means of doing this in the CM/SS include
what we call the “primitive method,” whereby Smith’s (1973) second and third search choices in his
experiments are suggested; a taboo-region method, where those strategies deemed terrible in a particular
region of classifier methodology/search space are listed as “to be avoided”; and a third method that
calculates the Mahalanobis distance from the currently recommended strategy to the nearest centroid of
the other strategies. As noted in figure 2.10, the CM/SS rules impact only the Strategy Selector module in

the KBSOS.

Chapter Two: Literature Review 51

I Q= search_|_
Then eps =

——
)

Session_1
Session_3
Session_4

ey
Then(ob)
'\

2.11a. Initial Link-of-Influence

ThenCy = search_1

If = search_T>
Then ps = 3D

Chapter Two: Literature Review

1%
Session_1

_..-|Session_4: 0=0.6]
d Session_5: 0=0.4 "

2.11b. Subsequent Link-of-Influence

Figure 2.11. Link-of-Influence

I
Then {y = search
— Scssions History
N~ Daabase \
Session_1: 0=0.9 Session_2
Session_2: 0=0.1 Session_35
Session_3: 0=0.7
.- Session_4: 0=0.6]
If Q0D
Then(@ = High \
—_/ I
Then {y = search
— Sessions History
Session_1: 0=0.9 Session_2
Session_2: 0=0.1 Session_3
Session_3: 0=0.7 Session_4
Session_5

Discovery Methods module

The final Learner module to be discussed is the “work-horse” component, namely the Discovery Methods
module. Recall that, as Frawley et al.’s (1992) paradigm suggests, discovery methods consist of search
followed by evaluation. The search itself, they say, also has two parts: pattern identification and concept
description. As mentioned, the former defines classes that maximize within-class similarity while

minimizing among-class similarity. Concept description consists of deriving descriptions of the classes.

Our discovery method module also consists of search and evaluation, the latter of which we have labeled
our “experimental designer” (in the sense of a “design-of-experiments” expert). The pattern identification
phase of our search consists of the four tasks, parameter modification, specialization, rule modification,
and generalization. The first three tasks are defined procedurally in Crouch (1992), and generalization is
described in Greenwood et al. (1993). The procedures referenced are modified as explained in the
example below. These four tasks are conducted instead of a more formal cluster analysis, although, in a
sense, most of the four tasks pursue their goal through attempts at clustering BUG cases into clearer
categories. The second portion of search, the concept description effort, utilizes rules as the
representation scheme in which all new constructs will be expressed. This is both convenient, given that
the four tasks are designed to operate on rules; and propitious for further discovery, since any rule in the
KBSOS or Leamer can, whether a new or an old construct, in principle, then be re-learned (i.e., modified,

or even “unlearned,” etc.) by additional search using the four tasks.

Chapter Two: Literature Review 53

Chapter Three: An Investigation of the Behavior of
Simulation Response Surfaces

INTRODUCTION

Jacobson and Schruben (1989) point out that simulation optimization is in the class of stochastic
optimization problems, where the objective function is a stochastic function of deterministic decision
variables, thus making problems in this domain very difficult to solve. Much work has been done, as
evidenced by the extensive literature on the subject, in refining the approaches to the simulation
optimization problem. However, the literature does not provide a complete illustration of the complexity
of simulation response surfaces and the difficulties they pose for optimizing a system. In this paper, we
demonstrate how “messy” stochastic functions can be, even in the case of a simulation model that
represents a fairly simple system. The stochastic nature of the system greatly confounds the search
process. Our simulation experiment, which is conducted on a simple inventory model, and the ensuing

discussion and graphical presentation of the results clearly illustrate the problems that one can encounter.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 54

The behavior of the response surface is important to examine because it directly affects the choice of

search technique as well as the degree of success obtained.

In order to guide the search process one needs descriptions of the behavior of the surface. We present a
set of measures that are used to characterize the behavior of the surface and guide the search process.
While these measures are not new, one contribution of this paper is to demonstrate the measures’ use in
the simulation optimization process in a unifying context; this is accomplished through a single

comprehensive example.

The purpose of this paper is to explore the characteristics and properties of simulation surfaces with the
focus on how the behavior of the surfaces affects the simulation optimization process. As part of this
investigation, we identify and develop measures that characterize the behavior of the surfaces and discuss
some implications if one insists on a statistically valid strategy at each step in the process. The behavior
of the surfaces and the measures used to characterize that behavior are illustrated via the aforementioned

inventory model.

This paper is organized as follows. The first section provides a brief background discussion of the
simulation optimization problem. Itis followed by a description of the model and the experiments that are
performed in order to illustrate the behavior of the simulation response surfaces. The third section defines
a series of measures, both point estimates and regional measures, that are used to characterize a
simulation model’s behavior. The findings of this research are then discussed and presented graphically
to provide insight into how the response surfaces of a simple simulation model behave under varying
degrees of variability and design conditions. The results illustrate how these conditions affect the choice
of a search technique/methodology in the simulation optimization process. The final section discusses the

implications that the findings pose for future research in simulation optimization.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 55

DEFINITION OF THE SIMULATION OPTIMIZATION
PROBLEM

Simulation is commonly recognized as one of the most widely applied computer modeling techniques in
use today. Its popularity is evidenced by the large number of applications documented in the literature
and the extensive breadth of problem domains to which it has been applied. With the advent of rapidly
advancing computer technology, the widespread use of simulation is expected to accelerate. The value of
simulation is that it permits the study of systems which cannot feasibly be constructed or experimented
upon in the “real world,” and which are too complex to be analytically modeled. Simulation is very useful
in predicting the output of a system or its response to a given set of input conditions. However, it does not
in and of itself indicate the input conditions required to achieve a desired response. Simulation is an

evaluative methodology and not an optimization technique.

In many cases the strategic objective of a study is to find the best solution for the system under
investigation, i.e., optimize the system's performance. When the search for the optimal solution involves
the use of data obtained from a simulation model, the analysis involves the process of simulation
optimization. The optimization process is complicated by the presence of random error, often the result of

the combined random effect of uncontrollable conditions.

Note that we refer above to simulation optimization as a process and not as a technique, methodology, or
algorithm. In fact, the process of simulation optimization typically utilizes a wide range of mathematical
and statistical tools. There is no single or standard approach to optimizing a system where the data for
the analysis is based on experiments conducted with a simulation model. Some approaches focus on a
single simulation run (e.g., frequency-domain analysis, perturbation analysis). Others focus on a search
process that involves multiple simulation runs. Within this approach, which is the most common, there

are many philosophies on how the search should be conducted. For example many approaches utilize the

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 56

data to fit metamodels (e.g., response surface methodology, neural networks, nonparametric regression);
others are free of underlying model assumptions (e.g., random search, Box’s complex search, genetic
algorithms). Yet another approach (Crouch, Greenwood, Rees, 1995) (Greenwood, Rees, Crouch, 1993)
proposes a multi-strategy process that utilizes the “best”™ methodology based on current experimental and
synthesized knowledge of the search environment. This brief discussion of the approaches to simulation
optimnization is meant to illustrate the diverse and varied literature that exists to solve this difficult
problem. Itis beyond the scope of this paper to review all of these approaches to simulation optimization.
Therefore, the interested reader should refer to overview or literature review articles and introductory texts
on the subject, e.g., (Azadivar, 1992) (Barton, 1992) (Jacobson, Schruben, 1989) (Meketon, 1987) (Myers,

1971) (Safizadeh, 1990).

In general, the simulation optimization problem can be expressed as:

Optimize: E[Y] =E[f(X |Z)] (1)
Subject to: hX)<0 2)

where the responses that are to be optimized, Y = (Y[, Y2, ..., Ym), are functions of controllable factors,
X = (X1, X 2, ..., Xy, uncontrollable conditions, Z, and random error, €;i.¢., Y=E[Y]+e=f(X1Z) =
E[f(X 1Z)] + &. Each response Yj is a random variable and takes on a set of values for the same setting of
the controllable factors; i.e., there is some distribution of Yj values for each combined level of the

controllable factors. To model this behavior each response is oftentimes considered equal to the sum of a
constant and a noise term that represents the random error, where the constant is the expected value of the

response, E[Y;], for a specific combination of factor settings. Therefore, due to the presence of random

error, the optimization process typically focuses on the expected value of the responses. But, while the

goal is to optimize E[Yj], only Yj is observable. Also, each objective regarding Yj involves either the
absolute maximization (or minimization) of Yj or the achievement of Yj to exceed some goal by a

specified tolerance. The simulation optimization problem is constrained, at least by the bounds of the

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 57

region to be explored. As shown in (2), h(X) is a vector of deterministic constraints typically of the form:
L<X<UorL <f(X)<£U, where L and U are the lower and upper bounds of the search region,
respectively. Typically the regional boundaries change as the search process progresses. For example, as
more information becomes known about the search environment and characteristics of the surface, the
search region narrows so as to include only the most promising sector(s). The domain of the region may

be either continuous, discrete, or mixed.

DEFINITION OF THE EXEMPLARY MODEL AND
EXPERIMENTS

The concepts presented in this paper are demonstrated through experimentation with a simple inventory
model that permits backorders. Experimentation with this model illustrates the effect of changes in the
model’s parameters on its simulated response surface. This section defines both the model and the

experimental conditions that are considered.

Simulated inventory system

The model is analogous to the continuous-review EOQ model, except that it is stochastic. The inventory
model, illustrated in Figure 3.1, contains two decision variables or controllable factors -- order quantity

(QQ) and re-order point (R). They are varied during the search process in order to find the combination of

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 58

Q and R that yield the lowest total cost (TC). Total cost is composed of three components: ordering cost,

carrying or holding cost, and shortage or backorder cost.

The model contains two uncontrollable conditions, demand and lead time -- these are random variables,
and not constants, as assumed in the basic EOQ model. Demand (D) is a random variable and causes the
inventory level to decrease at a non-constant rate, as illustrated in Figure 3.1. Lead time (L), the time
between order placement and order receipt, is also a random variable. The effect of the stochastic lead
time is that the inventory level does not always return to the same maximum value when an order of size

Q is received, as illustrated in Figure 3.1.

| Decision Variables Random Variables
m;entcl)ry : Q= order quantity D= demand
eve R = re-order point L =lead time

Figure 3.1. Simple inventory model that permits backorders and exhibits both stochastic demand
and lead time. Note: Q and R, the decision variables, are fixed in any given simulation
run.

The problem may be stated as:

Optimize: Minimize { E[TC]=E[f(Q,RID, L)] } 3)

1
where B ~ Gamma{ oy, BD) and L ~ Ny, 02L),

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 59

o and P are shape and scale parameters, respectively,

W and o2 are the mean and variance of a normal distribution,
1 . .
B is the time between demands on the system, and

L is the time between order placement and order arrival.

Subject to: 0< Q<400 4@
400<R <0 3)
RI£Q. ()

The first constraint, as shown in (4), defines the initial estimate of the domain of the order quantity, Q;
i.e., it is assumed the “optimum” order quantity will be less than or equal to 400 units. This is based on
the decision maker’s understanding of the problem and values of such cost parameters as the cost to place
an order, cost of one unit to be in inventory for one year, etc. The second constraint, in (5), limits the
value of the second decision variable R, re-order point. In this example, an order will be placed when the
inventory level reaches zero, when the number of back orders reaches 400, or somewhere in between. The
final constraint (6) ensures that a policy where the system is always in a backorder situation is avoided.
This would occur if Q was not set large enough to meet all backorders in an order cycle, on the average.

Note that this constraint restricts the feasible region to be triangular.

The simulation model of the inventory system operates as follows. The times between single-item

1
demands on the system, D are randomly generated based on samples from a Gamma(o, [3) distribution.

If the request for demand cannot be met from on-hand inventory, it is considered backordered. This
unsatisfied demand is filled immediately upon replenishment of the inventory -- when an inventory
“order” arrives. An order, of size Q, is placed when a demand arrival causes the inventory position to

reach (or go below) the reorder point, R. The order will arrive L days after the order is placed, where each

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 60

L is randomly generated based on a sample from the truncated Normal distribution (i.e., L is not permitted

to go negative).

The process that is followed in the simulation optimization process is illustrated in Figure 3.2. The
operation of the system, as represented by the simulation model, is run for a specified period of time. The
performance of the system is based on total cost, an output of the simulation model and the response that
is to be minimized. Total cost is based on the specified values of the decision variables or controllable
factors -- order quantity and re-order point, Q and R, respectively -- and random demand and lead time
values that occurred during the simulated operation of the system. Every possible combination of Q and
R, i.e., every point in (Q, R) space, represents a possible simulation run. In order to improve upon the
expected total cost of the system, one changes the values of the decision variables and simulates the
operation of the system again at another (Q, R) location. Decisions on how to change the value of the
decision variables in order to get an improved solution occur in the “optimizer” box in Figure 3.2. The
optimizer may involve a simple random strategy or a more complex but rational approach such as
response surface methodology. Multiple simulation runs, replications, may be made at a single (Q, R)
point in order to obtain a better estimate of the response, total cost, and obtain an estimate of the

variability of the response.

In order for the model to provide results that are comparable across a variety of scenarios, the simulation
run duration must span complete order cycles and not a fixed period of time. Since every (Q, R)
combination results in a different order cycle, failure to account for “end effects™ (stopping the simulation
at different points in the order cycle) would bias the estimate of total cost. Therefore, the actual length of
a simulation run is the intended run length (e.g., one-half year, four years) plus whatever time is necessary
to complete the last order cycle. In addition, each simulation run includes a “warm up” period of
operation before statistics are collected. In order to illustrate these run-time controls, consider the

simulation of a (Q, R) inventory system that is to be evaluated based on four years of operation following a

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 61

one-year “warm up” (assume 250 days per year). The simulation begins at a point immediately after an
order arrives (time zero) and continues until the first cycle beyond 250 days is completed, say 251.2 days.
The statistical arrays are cleared at this point and the simulation is run for at least another four years, at
least until time 1251.2. The simulation terminates at the end of the first order cycle beyond this point, say
another 2.3 days. Therefore, while the total simulation time is 1254.5 days, the performance measures

would be based on a simulated time of 1002.3 days -- total simulated time less warm-up time.

UNCONTROLLABLE
CONDITIONS

D L
demand IAT lead time

CONTROLLABLE
FACTORS

RESPONSE

Q, order quantity ———1 SIMULATION
R, re-order point —J MODEL —®{ TC, total cost

f 4 “OPTIMIZER" |-t——

Figure 3.2. Process for optimizing the simulated inventory system

The single response or performance measure (Y=Y,) considered in this example is TC, “total average

inventory cost per day” over the simulated time period. As shown in (7), the cost measure is composed of
three components -- ordering cost, carrying cost, and shortage cost. Ordering cost is the product of the

number of orders placed during the simulation (O) and the cost to place an order (Cg). Carrying costs is

the product of average inventory during the simulation (1) and the cost of carrying an item in inventory

per period (C¢). Shortage cost is the product of the average number of units short or backordered during

the simulation (§) and the cost of being short one period (Cg). For the model discussed in this paper, Cq

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 62

= $50, Cc=$10/item/year, and Cg = $5/item/year. The length of the simulation T is the intended run

length, after warm up, plus whatever time is necessary to complete an order cycle (with regard to the

example given above, T = 1002.3 days.)

TC - O*C0 + ¥ C_ + S+ C

)]
T
For comparison purposes later in the analysis, the analytic solution to this problem, assuming

deterministic demand and lead time, is Q = 194, R = -129, and TC = $2.58 per day.

Experimental conditions

As mentioned above, the random variable demand is assumed to follow a Gamma(o,) distribution,
where the mean demand has a value of oy and a variance of aB2. The random variable lead time follows

a normal distribution with mean p and variance 02, with no lead-time permitted to be negative. In all the
cases considered in the paper, the mean of the random variable remains constant but the variance is
changed in order to illustrate the eftect of variability on the search process. As shown in Table 3.1,
experiments are run where the mean time between requests for demand is 0.2 days (conversely, mean
demand is 5 units per day). Variability in demand is considered “low” and “high” -- the coefficient of
variation (CV) of time between requests for demand is 1.00 and 4.5. Likewise, mean lead time is 6 days
and is either considered to exhibit “no” or “moderate” variability, corresponding to a coefficient of
variability of 0.00 or 0.33 (Normally distributed with a mean of 6 days and a standard deviation of 2
days). The no variability in demand and no variability in lead time case -- not shown in the table -- was
used to validate the simulation model by comparing its results to the analytic solution. Results of this case

are not reported here.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 63

Table 3.1. Definition of experimental cases

e

DESIGN CONDITIONS |

WORST
{(# REPLICATIONS=3;
RUN LENGTH = 0.5 YRS)

BEST
(# REPLICATIONS=10;
RUN LENGTH =4 YRS)

- NONE

Fmt —
LOW S8 | (©v=00 (LNB) (LNW)

% (CV=1.0) 5 g

g = % | MODERATE

= S | (©v=033)

a8

S

E m NONE

— el

5 &2 (CV=0.0) (HNB)

5 =
;M

< <

> = é MODERATE
S| ©v=033) — (HMW)

—

The behavior of the model’s simulated response surface is also sensitive to two design variables -- the
number of replications and the length of time the model is simulated. Each of these variables is
considered at two levels. In this example, three replications is considered “small” and ten replications is
considered “large.” Also, running the simulation model for a six-month period is considered “short” and
running the model for four years is considered “long.” On the one hand, one can think of the case where
the model is run for six-months and replicated three times as the “worst” case, i.e., the one that would
produce the “messiest” surface. On the other hand, one can consider the case where the simulation model

is run for four years and replicated ten times as the “best’” case.

In order to illustrate the behavior of simulation response surfaces, it is not necessary to run all
combinations of the variables under consideration. This paper, in a later section, reports the results for
four experimentation conditions or four cases -- selected combinations of inventory model variabilities and

design conditions. The first two cases, referred 0 as LNB and LNW, both examine Low demand

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 64

variability and No lead-time variability; the first case explores the Best design conditions we consider,

whereas the second explores the Worst design conditions. The third case, HNB, considers high demand

variability with no lead-time fluctuation and the best design-condition set.

The fourth case, HMW,

explores high demand variability, moderate lead-time variability, and the worst design conditions. These

four cases are summarized in Table 1. Note that by comparing LNB with LNW some feeling of the effect

of design conditions can be seen; comparing LNB with HNB shows the effect of demand variability,

whereas contrasting LNW and HMW illustrates the effect of both demand and lead-time variabilities

simultaneously; and comparing LNB with HMW shows the result of “better” versus “worse” conditions

for all three factors.

Data Collection Scheme

Figure 3.3 shows the triangular decision-variable or search space for the problem. The space is defined by

the constraints of the inventory model, defined in (3) through (5) above.

0 0
20 -20
a0 o A TN
€0 AN 60 { \
/
00 A h
1 — 100
4 L1
! { 1= 4 N
120 — 120 / \
-140 140
£ 160 2 = \ /
[% 160
£ £ L1
S-180 2-180
5 20 5 =
5-200 200 1 =
2 S,
& -220 & -220
-240 =240
-260 -260
|_4
-&dU -2l r
-300 300 ‘I.EJ
-320 -320
-340 -340
-360 360
30U -as80
0 20 40 60 80 100 120 140 160 180200 220 240 260 280 300 320 340 360 380 400 0O 20 40 60 80 100 120 140 160 180200 220 240 260 280 300 320 340 360 380 400
Order Size (0) Onder Size (Q)
3.3a. A-by-A regions 3.3b. 2A-by-2A regions

Figure 3.3. Inventory model’s decision space

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces

65

Point-estimate statistics of the simulation-response surface are collected in a grid pattern over the decision
variable space X = (X}, x2). The gridpoints are spaced 20 units apart in each direction, i.e,, Ay = Ay = A=

20. A plot of the grid spacing is shown in Figure 3.3.

In order to develop statistical estimates over a region, the gridpoints are combined to form a region of
analysis. For a grid spacing A, each gridpoint forms a corner of a region (no region will be larger than A
by A). Most of the regions will be A by A square, with a gridpoint at each corner. However, because the
model’s feasible region is triangular, some regions formed (in particular, those along the line x; = x3) will
themselves be triangular, and will be defined by only three gridpoints. These two situations are illustrated

in Figure 3.3a. For example, regions with three gridpoints, designated here as ® 3 are all of the general

shape

*

R3= { J , where the * denotes the coordinates (¢1.52) of a gridpoint. Specifically,

(Cli +A9C2i) (Cli +2AvC2i)

, where 0 < {1; <400 - A, and {2; = -Q1;.
Ly +24,8y; — A) ! 1=

R3=

In this research, we also consider the effect of larger regions, ones that are 2A by 2A. Most of these

regions will be squares that contain nine gridpoints, denoted by % 9. However, due to the shape of the
decision space, six- (R ¢) and eight-point (& g) regions are also possible. Examples are shown in Figure

3.3b.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 66

STATISTICAL MEASURES OF THE BEHAVIOR OF
SIMULATION SURFACES

In order to assess the behavior of a simulation surface, measures need to be defined that capture the salient
behavior of the surface. One measure is the value of the response itself, total cost, at each (Q, R) point
simulated. If that point is replicated -- i.e., multiple independent simulation runs are made at point (Q, R)
-- then an obvious measure is the mean response at that point. Other point measures considered in this
paper, as defined below, include the following statistics that measure dispersion at the point (Q, R):
standard deviation, coefficient of variation, and signal-to-noise ratio. Another point measure considers
the “relative activity” or acceleration of the surface. In addition to point measures, one is also interested
in region statistics, often used to check the validity of using a particular parametric test or utilizing a
procedure that assumes the surface exhibits a particular characteristic over the search region, e.g.,

homogeneity of variance.

By considering the various measures of the behavior of the simulation response surface, the intent is to
characterize the surface in such a way that it is useful in determining the appropriate search strategy to
employ. For example, if measurements of the region of interest indicate significantly different variances,
then it may not be prudent to use an optimization strategy such as Response Surface Methodology (RSM)

{Myers, 1971) that assumes homogeneity of variance throughout the region.

POINT-ESTIMATE MEASURES

Each simulation run provides information on the performance or response of the system to a set of input
Y

conditions. The output of a simulation provides an estimate of the response at a single point in the

decision space X < R\, In this example, Xj ¢ X = (X, X2) = (Q, R) ¢ R? represents one combination

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 67

of order quantity and re-order point and the location of one simulation run. For the measures defined
below, the subscript i indicates the measure was estimated at the point X; in the decision space. Since the

system being simulated is stochastic, multiple simulation runs at the same point, i.e., replications, will
result in different responses at the same point. A realization j of the single response total cost (TC) is

denoted as y;. The number of replications at each point, r;, is assumed to be constant; ie., =1V i.

Location Measures

Only one location measure is explored: the arithmetic mean of the replicated response(s) at a given point

¥, == 2y, - ()
J=

Dispersion Measures

Three dispersion measures are considered at points i in X: (1) the response standard deviation s;, (2) the
response coefficient of variation CV;, and (3) the signal-to-noise ratio of the response (S/N); (see, for

example, (Barton, 1992), pages 289-299). The measures are defined as:

1 T 2
s, = .Z(yii—yi) ,r>1 i 9)
(r-1n#F!
S
CV,=—,y,#0, and (10)
Y

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 68

,r>1,si > 0. (11)

Relative Activity

There are two components of curvature in a response surface: actual surface undulations and variance at
each point. Actual undulations are of interest because they indicate where optima are. The variance at
each point can mask or heighten the perceived activity. One goal of functional synthesis is to find true
areas of curvature in a function. Good and Gaskin (1971) suggest using the second derivative to locate
areas of a function that have more relative activity. Miiller (1984) suggests spending more runs at points
that have a lot of relative activity, i.e., where the second derivative is large. Since in simulation
optimization, response surface values are known only at discrete points where simulation runs are made,
an approximation of the second derivative must be made. A numerical analysis estimate (Conte, de Boor,
1980) is used:

f(a-h) - 2f(a) + fla+ h) (12)

f’(a) =
112

Since h does not approach zero in our application, the approximation to the second partial derivative is

very coarse. Therefore, we refer to £ as “bumpiness” and not the second derivative.

Although functional synthesis is used to get a good estimate for a function across the entire function, what
is relevant to simulation optimization is (I) where we need to spend more points to accurately detect

activity, and (2) is the point a local optimum in the “proper direction” (e.g., is it a local maximum in a

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 69

maximization problem). Obviously, we do not care about local minima in a maximization problem. We

are interested in spending more points where there appears to be a local optimum in the desired direction.

Computationally, a local optimum can be found by combining the second derivative with the first
derivative. If the first derivative at a point is equal to zero, then a local optimum exists there. The second
derivative can then be used to determine if the point is a maximum or a minimum. If the first derivative
is not equal to zero at a point, then first derivatives are checked at adjacent points. If the first derivatives
show that zero is crossed from one side of the point to the other (a change in sign), then a local optimum

has been found.

In the plots presented below, four different types of relative-activity graphs are shown. The first is the
bumpiness in the Q-direction, with R held constant; the second is the bumpiness in the R-direction, with
Q held constant. The third shows the bumpiness only where the first derivative is zero or crosses zero in

the Q-direction, and the fourth plots the same combined measure in the R-direction.

REGIONAL MEASURES

In searching for the “optimal” solution, and deciding how to conduct that search, it is helpful to obtain
information in the decision space. Point estimates are combined to provide estimates of how the response
surface behaves across some portion of the decision space. A region is defined as adjacent points in the

decision space where a group of simulation runs are made, £, < U X. . Regions for this example were
Vi

defined earlier and include: X3, R4, %¢, R, Rs.

Of the four regional estimates presented below, the first two are used to test normality and homogeneity of

variance assumptions. Most parametric statistical techniques, e.g., regression and RSM, are based on

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 70

these assumptions. The second two measures provide an assessment of how well a plane or hyperplane

would fit the data contained in the region.

Test for Normality

The question addressed with this measure is whether the residuals obtained after fitting a hyperplane over
aregion (i.e.,, R, R4, R¢s,Rs, R are normal. This is an important question because normality of the
residuals is an implicit assumption comunonly used in simulation optimization F-tests such as

“significance of regression” and “lack of fit” (see below).

The Shapiro-Wilk test for normality is used here because it is a powerful omnibus test, i.e., it is a test that
will test the normal distribution against any alternative distribution (D’ Agostino, Stephens, 1986). The

hypothesis tested is:

Hypotheses:

Hy: The distribution of all the residuals in the region K , obtained after fitting a
hyperplane through all responses observed in the region, follows a normal
distribution.

H;: The distribution of residuals does not follow a normal distribution.

Test Statistic:

(T ag)’

2(6—?)2’

where “a” is a tabulated constant (see, e.g., (D’ Agostino, Stephens, 1986) pp. 209-211),
and ¢ represents the residuals (sorted in ascending order) in the region.

Decision Rule:

Reject Hy if W < W, where W" is tabulated and may be found, e.g., in (D’ Agostino,
Stephens, 1986), pp. 212-213. Fail to reject Hg otherwise.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 71

Test for Homogeneous Variances

This test investigates whether variances are homogeneous across a region K of interest. This issue is
important for the same reason that the normality test is, namely that homogeneity of variance is an

assumption of F-tests.

The procedure initialized to examine this issue is as follows. First, a region R (either R 3, R4, X s, K s
or R o) is specified. Next the variance is calculated (using the replications) at each design point in the
region. For example, in a region with six points (& 4 with ten replications at each point, six separate
variance calculations are made, each involving ten responses. Since the proper homogeneity-of-variance
test depends on whether region residuals are normal, the Shapiro-Wilk normality test described above is
performed over the region. If the residuals can be safely assumed to come from a normal distribution,
then Bartlett’s test, with Box’s Transformation is used to examine homogeneity of variances in the region;
if they cannot be assumed to be normal, Levene’s Test (using the median rather than the mean) should be

used.
Each of these tests is now described.

Bartlett’s Test with Box’s Transformation. (Neter, Wasserman, Kutner (1985), pp. 618-622.) Since
Bartlett’s test is sensitive to departures from normality it will only be used if the Shapiro-Wilk test for

normality is not rejected.

Hypotheses:
2 _ 2 _ 2
Hy o, =0, =...= o,

2
H;: notall o, areequal,

where g is the number of gridpoints in the region,

r is the number of replications, and

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 72

n = gr = total number of runs in the region.

Test Statistic:

1 g
B = —[(dfT)logeMSE e)mgesf]
C

i=1

1 g 1 1
C=l+—|| Z—|-—
3g - D \Fldt;) dfyg
1 g 2
MSE = — .Z df;s,
df ;- i=l
s, = (y .)
1 r—1j=]y‘] i
dfi =(-D
dfT =(r-Dg

2
In the above B is approximately distributed as X with (g-1) degrees of freedom. Box’s
transformation is used to accommodate cases where the number of replications is less
than four (i.e, r < 4). The following approximation can be “used when some of the
degrees of freedom are small and [it] ... also is appropriate for large degrees of freedom”
{Neter, Wasserman, Kutner, 1985, p. 620).

f,BC
B o _25C
f, (A - BC)

where:
t=¢g-1

g+1

f, =——
2

€ -1’

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 73

and B and C are as defined as above.
B’ is approximately distributed as F(fl by)
Decision Rule:

Reject Hy if B'> F(l -o;f;, 1) This means that the data come from populations that
do not have common variance. Rejection means that there is at least one gridpoint
whose variance is different from the others in the region (heteroskedasticity). Failure to
reject means that there is not enough evidence to say that the variances are not different
(homoskedasticity).

Levene’s Test (with median). (Glaser, 1983) Conover et al. (1981) list this test as one of three that are

superior in terms of robustness and power.

Hypotheses:
2 2 2
Hy o, =0, =...= S,

H;: notall csiz are equal,

where g, 1, and n (see below) are defined as above.

Test Statistic:

Mo

-
o

NI

|

NI

g
[5

~
=
|
ua

—.
1l
—

T

~~~
/5
|
—
N | e’
Moo
T~
N
N
!
NI
N——
[N}

~

where Zij = lyij -5

and where ¥, is the median.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 74



Decision Rule:

Reject Hp if W > F(g - 1, n - g). This means that the data come from populations that do
not have common variance. Rejection means that there is at least one gridpoint variance
that is different from the others (heteroskedasticity). Failure to reject means that there is
not enough evidence to say that the variances are not different (homoskedasticity).

The next two regional measures are based on the following first-order regression model being fit over the

region of interest, y = GB+¢, and the associated ANOVA:

SOURCE DF SUMS OF MEAN SQUARE F-RATIO
SQUARES
Regression (R) p-1 |~ ! A MS,
BGy-qylyy MS, = BGy-LyTy Fp=
(p . 1) n’ n MSE
Error (E n- A »
) P yy-p Gy MSg = —(nlp) Oy -BFGy
Lack of Fit (LOF) | g-p ‘; . A MS, or
yy-BpGy-5y3 S op = 7——<| yy-pGy-Ly Flop =
g ¥~ MS | op (g_ ) y'y - B’'G’y gySg LOF MS
Pure Error (PE) |n-g | Lyg MSpe = Zaog ¥'S,
TOTAL N1 | yy-dya,y
where

p = the number of parameters to be estimated in the regression model,

g = the number of distinct sets of levels for the X variables,

n = the number of observations (including) replications,

y = a vector of n observations of responses,

G = the gridpoint region design matrix.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces

75




Design matrices Gg are defined for each type of region defined above (R 5, R4, R, Rs, 0r Rg ) and are

based on the number of gridpoints (g = 3, 4, 6, 8, 9) in that region; for example, for g =3 (which implies

0 < {;,< 400 — A and {p, =—{y,) with four replicates,

Gy =] e
1 C’li ch
1§, +2A Ly
1 Z;h +2A Z_,zl —-A
1 Qli CZ)
1§, +28 Gy
1§, +28 §,,-A
where
N
B = the vector of ordinary least-mean squares estimates of regression model parameters

A

givenby B = (G'G)-I(G’y),

1

]

3 = Jo O
~e 0 Jy )

Similar definitions may be made for G4, Gg, Gg, and G.

the 1 x 1 matrix of all 1s, and

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces

76



F-test for Significance of Regression

This test determines whether a relationship exists between the dependent variable and any of the
independent variables. The test assumes normality of the error € in the regression model and homogeneity

of variance across the region.

Hypotheses:

Hy: By =0 Visi=1l...p-1

H;: B]. # 0, foratleastonei,i=1, .., p-1.

Test Statistic:

E, = ,
R MS

Decision Rule:
If Fr > Fi.q p1, np> then the null hypothesis is rejected at the level o, and it is concluded

that there is a significant relationship between X and y in that region. Failure to reject
Hy implies that the hyperplane fit with the B is flat (or horizontal), i.e., no significant

relationship appears to exist between the dependent variable and any independent
variable.

F-test for Lack of Fit

If there is a relationship between the dependent variable and at least one of the independent variables, it
becomes important to know whether the postulated linear regression model adequately fits the data. As

with the previous test, normality and homogeneity of variance are assumed.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 77



Hypotheses:

Ho:  E(y) =B, +B; X+ 4B,

H;:  E(y)#B, +B,X, +...+Bp_]

Test Statistic:
MS
LOF ,
FLOF =
MSpe

Decision Rule:

If FLor> Fiq gp. ng, then the null hypothesis is rejected at the level o. That is,
rejecting the null hypothesis implies that a plane cannot be accurately fit through the (X,
y) points over the region.

EXPLORATION

This section discusses the results, outcomes, and insights gained from this research. The discussions are
based on graphs of the statistical measures over the decision-variables or search space. The study is based
on the simple inventory system presented above that permits backorders, where each measure is compared
across a variety of scenarios. These scenarios include both changes in the simulation design (run length
and number of replications) and changes in the inherent variability in the system (due to variation in the

demand and lead-time processes).

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 78



POINT ESTIMATES

Mean

Figure 3.4 shows 3-dimensional plots of the mean of the response for all 210 points in the regions -- an
exhaustive covering of the decision space indicating a good representation of the true surface, even for the
worst case (HMW). However, as contour plots of the mean (Figure 3.5) show, there is a marked decrease
in the accuracy of the representation if there are not enough replications. Distortion is possible even in
this relatively simple inventory model. For example, case HMW with two replications suggests that the

true response surface might be multimodal, which it is not.

Standard Deviation

Figure 3.6 shows the plots of the standard deviation of the response. The effect of design conditions and
inherent variability in the system being modeled begin to appear when one examines the standard
deviation (SD) at each gridpoint in the region. SDs are quite consistent for the first case, LNB (Figure
3.7), where all are below 0.3. Although some SDs are doubled in the next two cases (LNW and HNB), the
HMW case shows marked degradation in consistency (less than half of the SD’s are below (.3 and
approximately 12% are above 0.6). This again reinforces the notion that a simple model can have
problems with the representation of the actual surface. Furthermore, these results raise concerns that
homogeneity of variance assumptions may not hold for statistical tests (see section on homogeneity of

variance).

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 79



LY

Case HNB

Case LNB

Case HMW

Case LNW

Figure 3.4. Three-dimensional plots of the mean of the response

80

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



MIANH pue gN'] sase)) 10j asuodsal ay) jo ueauwi ayy jo sjopd anojuo)) *g'¢ aandig

suoneordar 321y L, - MINH 258D

Aguong 19pi0 'S

Q0P 0BT 0%C OVE I O0C 082 OC 0P 0ZZ 002 081 01 OFL OZ1 001 08 0%
it Ml

—_ A RS i

o
1

®© 0
i

suoned1dar YL - N1 358D

Auon 19010 ©
O 02€ 00€ (8 05 02 0ZZ OOC 081 09L OPL 0Z1 001 09
AR R SRR AR SR e \

NSRS

(v
—

o

® o
i

Fose-
Fose-
Fove-
ﬁo«n.
F ooe-
b osz-
Fose-

suoneordar om [,

AUUONT 19PI0 B

MWH 958D

(0P 08E 09E OFE 02€ 00€ 08Z 05 OV 0ZZ 002 081 091 OVt 0L 001 08 09 @ &2 O
— T

suoneordar om [,

ANUONS 19p10 'S

= 08¢

4NT 958D

00F 0BE 09 OFE OZE 00 0BZ O OPZ OXZ (02 081 091 OP1 (XL 001 & 09 OF X O
AR A SR AR SRR At h A S L

PR e

L ogc-

Lose-
o

wiog 10pIO-ey o

uoneordal auQ

ANuong 90 ‘S

MINH 958D

00F 0BE O9C OFC 0CC 00E 0BZ O OPZ 07 00Z 021 091 OPL QL 001 @8 09 W (% O

uoneordar suQ

Aluone 9pIo B

gNT98ED

0¥ 09€ O9E OFE OZE 00 082 09 OFZ 0ZZ 002 021 09t OFL OZL Q0L 08 09 OF &8 O

T Lor
3
Fo%e
Fore
Foze

Wiog RO

Wit 0o Y

81

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



Case HNB

Case LNB

Case HMW

Case LNW

Figure 3.6. Three-dimensional plots of the standard deviation of the response

82

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



19 — )
099 0.9
0.8 0.81
074 0.79
0.6+ 0.6
E [
g
s g
go,s- go.s—
'S 'S
# N
0.49 0.44
0.3 0.39
0.2 0.24
0.1 014
o] | o] | -
0.00,030) (0.30,0.60) (0.60.090) (0.90,1.20) (1.20.1.50) (1.50, 1.80) (0.00,0.30) (0.30,0.60) (0.60,0.90) (0.90,1.20) (1.20.1.50) (1.50, 1.80)
Standard Deviation Standard Deviation
Case LNB Case HNB
{ ) {
0.94 09
0.4 08
0.7 07
0.6 06
g 0.5 7056
[rit w
® ®
0.4+ 0.4+
0.34 0.34
0.2] 0.2
0.t .14
. Jﬁ o+
0.00,0.30) (0.30.0.60) (0.60,0.90) (0.90, 1.20} (1.20.1.50) (1.50, 1.80) 0.00.030) (0.30,060) (0.40,0.90) (0.90.1.20) (1.20,1.50) (1.50, 1.80)

Standard Deviation

Case LNW

Standard Deviation

Case HMW

Figure 3.7. Histograms of the standard deviation of the response

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces

83



Coefficient of Variation.

Measures that incorporate both the mean and the standard deviation are also revealing. The coefficient of
variation of the response, CV, is one such measure, and is defined in (10) above. Figures 3.8 and 3.9
show 3-D plots and histograms of the CV. First note that the simulation model dampens the relative
variability. E.g., the CV of the interarrival time of demand for Case LNB is one (1.0) while the largest
CV of the response is less than 0.045 (less than 5% of the variability of the demand.) The simulation
model has attenuated the demand variability by a factor of 20. Even in the extreme case, HMW, the CV
of the interarrival time of demand is 4.8 but the CV of the response is less than (.225, again an
attenuation of about the same factor. As shown in Figure 3.9, Case LNB shows low relative variability
across the entire surface (less than 0.045); case HNB’s surface has more relative variability (12% of the
CV’s are above 0.045); case HMW shows considerable variability with only 28% of the CV’s below 0.045,
over 40% above 0.09, and approximately 5% above 0.18. These results are consistent with the
observations made to this point. The true response at each point does not change, but the variability about

that value is increasing, although not evenly across the surface.

Signal to Noise Ratio

The point measure defined in (Keys, Rees, Greenwood, 1995a) above, the signal-to-noise ratio (S/N), is
similar to CV but is logarithmic; with this measure, a high S/N is preferred since this indicates relatively
low error. The S/N plots (Figures 3.10 and 3.11) are consistent with the CV plots. The S/N’s for Case
LNB are the most consistent with over 96% of the ratio between 37.5 and 46.0 (Figure 3.11). The
uncertainty in the process becomes more evident in the other cases as less than half of the S/N values are

above 37.5 in Case LNW (Figure 3.11) and almost none are above 37.5 for cases HNB and HMW. In fact,

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 84



Case HNB

Case LNB

Case HMW

Case LNW

Figure 3.8. Three-dimensional plots of the coefficient of variation of the response

85

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



0.9 0.9

0.8+ 0.8
0.7 0.7
0.6 0.6

% Frequency
o
o
1

% Frequency
=)
o
o
=3
&
N

0.4 '
0.3 0.3
0.2+ 0.2+
C.14 0.19
0 04
(0.000.0.045)  {0.045.0.000) (0.090.0.135) (0.135,0.180) (0.180.0.225) (0.000,0045) (0.045,0.000) (0.090.0.135) (0.135.0.180)  (0.180.0.225)
Coefficlent of Variation Coefficient of Variation
Case LNB Case HNB
1 1
0.9 0.9
0.8+ 0.8
0.74 0.7
0461 0.6
3 g
H $
7 0.5 g0
w w
* ES
Q.4+ 04
0.31 03
0.21 0‘2;
0.1 0.1
o] | — o] B -
(0.000,0.045) {0.045,0.090) (0.090.0.135) (0.135,0.180) (0.180.0.225 (0.000,0.045) (0.045.0.090) (0.090.0.135) (0.135.0.180) (0.180.0.225)
Coesfficlent of Variation Coefficlent of Variation
Case LNW Case HMW
Figure 3.9. Histograms of the coefficient of variation of the response
86

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



LI

Case HNB

Case LNB

Case HMW

Case LNW

Figure 3.10. Three-dimensional plots of the signal-to-noise ratio of the response

87

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



1 1
0.9 0.9
0.8 [oX:]
0.7 0.7
0.6 0.6
T o)
é e
E E
gos gos
w w
* b
0.4 0.4
03 0.3
0.2 o]
0.1 0.1
T [a]
(12.0.205) (20.5.290) (29.0.375) (37.5.460) (46.0.54.5) (54.5,63.0) (12.0.205) (20.5.290) (29.0.37.5) (37.5.460) (46.0.54.5) (54.5.63.0)
Signd-te-noise Ratio Signd-io-noise Ratlo
Case LNB Case HNB
i 1
0.9 0.
0.8 0.8
Q.7 07
Q.6 J 0.8
T g
] g
g0s £05
Iy <
N 3
0.4 0.44
0.3 0.39
0.2 0.29
o o1
0 | o o]
(120.205) (205.200) (29.0.37.5) (37.5.460) (46.0.545) (54.5,63.0) (120.205) (205,200) (20.0.37.5) (37.5,460) (46.0,84.5) (54.5,63.0)
Signd-to-noise Ratio Signd-to-nolse Ratio
Case LNW Case HMW

Figure 3.11. Histograms of the signal-to-noise ratio of the response

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 88



nearly half of the S/N ratios are below 29.0 in Case HNB (Figure 3.11) and nearly 90% below 29.0 in

Case HMW (Figure 3.11).

A comparison of Cases LNB and LNW illustrate the effect of the design conditions -- run length and
replications. Fewer replications and shorter runs add to the lack of consistency in the S/N ratio and also
produce more noise. Comparing Cases LNW and HMW reveals that greater inherent model variability
also produces more noise, but not necessarily greater spread in the S/N ratio. This suggests that for a
given simulation model, the developer's choice of run length and replications can significantly affect the
amount of noise in the system and hence the S/N, CV and SD. This indirectly atfects the validity of

statistical tests and the appropriateness and efficacy of different search methods.

Relative Activity or “Bumpiness.‘

Figure 3.12 shows that with the decision variable Q held constant there is very little activity as all plots
are almost completely flat or horizontal. However, the plots of bumpiness with the decision variable R
held constant (Figure 3.13, note the change in the axes) show a lot more activity as well as some
acceleration; i.e., the system is more sensitive to the variable Q than it is to R. That this is so may also be
seen from Figure 3.4 which shows much more response variability as Q is changed than when R is varied.
The plots in Figures 3.12 and 3.13 also indicate that the higher the inherent system variability, the more

bumpiness there is.

Lower values for bumpiness in a region should indicate higher confidence that the region is well
understood. Conversely, higher values indicate lower confidence and can therefore suggest to the modeler
areas where additional experimentation may be helpful or necessary. Design conditions and inherent
model variability both affect bumpiness. Increasing the number of replications and the duration of the
runs results in lower values for bumpiness. The plots indicate that the greater the inherent model

variability the greater the values of bumpiness. For the cases considered, inherent model variability has a

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 89



Case HNB

e o.s, /
\.&“wwﬁ\ %.W&
\w\f S50,

" { s
ome.\ ’ a\u, [)

)

A,
)
N

4

b

&0
x.%.

)

0
41\\.‘< 38 ki
uw&&\\w\ i se.ws,
AR
.\\\‘ \ﬂw g
AN B
-4 ik § Vel
N RB
AL

Case LNB

XK ,,.\.&

0t
\w.s...
RN

)

Case HMW
90

Case LNW

Figure 3.12. Second differences of the response with Q held constant

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



sousIe] PUOOES

91

(XN ..

Case HNB
Case HMW

ion

ulat

im

fS

vior o

Second differences of the response with R held constant
Response Surfaces

Case LNB
Case LNW
13.

Figure 3

Chapter Three: An Investigation of the Beh



lesser impact on bumpiness than do design conditions. The plots showing second differences when the
first difference is approximately zero (Figures 3.14 and 3.15) point out local optima. When the second
difference is positive the local optimum is a minimum, the case of interest for the inventory model. Note
first in these two figures that all second differences are very small, suggesting very little
acceleration/deceleration in the surface; this is consistent with the gently sloping nature of this simple
inventory model. The plots also indicate a series of local minima close to the Q =IRI edge of the feasible
region of the surface. The locations of the local minima are consistent with the plots of the means and
include the “true” minimum. Figure 3.15 case HMW also shows some activity near the line Q = 380, but

further investigation shows that this is just a local optimum due (o a ripple in the response surface.

REGIONAL ESTIMATES

Test for Normality

Figures 3.16 and 3.17 show three-dimensional plots of p-values for the Shapiro-Wilk (S-W) test of
normality, with one p-value calculated and plotted for each region. Figure 3.16 reports the p-values for
the A = inter-gridpoint spacing = 20 case, whereas Figure 3.17 shows the same for the A = 40 case.
Recall that for the S-W test, a p-value lower than the a-level indicates that the normality assumption must
be rejected, whereas higher (than o) p-values imply there is less evidence against the null hypothesis that
the distribution is normal. Hence, in Figure 3.16, approximately only 5% (Case LNB) to 13% (Case
HMW) of the regions fail to meet the normality assumption at an o=0.05 level. For Cases LNB and
LNW, there is very little difference in the distribution of p-values over the region, as indicated by the
histograms in Figure 3.16. This implies design conditions have little impact on the normality assumption

for the model and levels considered. Inherent variability in the system appears to have more of an effect,

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 92



Case HNB

Case LNB

Case HMW

Case LNW

s with Q held

Figure 3.14. Second differences of the response when the first difference crosses zero

constant

93

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



Case HNB

Case LNB

[ AP,
T
.ﬁ-»..
.ni.

Y

Y
Y

!
X0
0

0

X/
)

Tty
YY) a.o.
..“..".“.““.“.
Mo

A

p % 0
5050
dlat],

.....
Y Y

Case HMW

Case LNW

fferences of the response when the first difference crosses zero; with R held

Second d

Figure 3.15.

constant

94

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



oooooooooo

- Yo = -
s

(7777777785
77777 1%

Case HMW

000005  (00501) (0100%) (050090 (050095)  (095,100)

Range of p-values

Case HMW

R

\ N\
\\\Q\,
NARRNY

Case LNW

|

o7

a1

o

(00000%5) (005010) (010050) (050090 (090095 (095.100)

Range of p-volues

Case LNW

Case LNB

| -

(000005)  (005010) (010050 (050090) (00095 (095,100)

L] |

Range of pvolues

Case LNB

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces

=20

Figure 3.16. Three-dimensional plots and histograms of p-values for Normality Test, A

95



oooooooooo

of pvalues.

(/][]
HIETIIORG ¥

Range

(LI E
NN NN
NSNS

Case HMW

Case HMW

NSO A
AN

[000005)  [005010)  [010050)  [050.090)  [090095) [0 95100
al

Range of pvalues

Case LNW

|

[000005) |0 05010)  (010050) 050090 90095 1095100

o1
o]

aaaaaaaaaa

(177777777
(1777777777
77777

Case LNB

Figure 3.17. Three-dimensional plots and histograms of p-values for Normality Test, A=40

Range of pvalues

Case LNB

000205 © [005010)  010050) [©S0.090) 09009 095100

Auenbes 3%

..........
eeeeeeeee

02
014
VJ

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



as seen in the comparison of Cases LNW and HMW. Based on the S-W test defined above, case HMW
provides stronger evidence against the null hypothesis, which states that the data follows a normal
distribution. This finding implies that increased variability in the system makes it more difficult to meet

normality assumptions required in many statistical tests.

The most noticeable and important finding from Figure 3.17, which reports on the A = 40 spacing, is that
all three histograms shown indicate a much greater percentage of regions that have non-normally
distributed residuals. The range of percentages of regions not meeting normality ranges from 22% (case
LNW) to 80% (case LNB). These results compare with a raugé of 5% to 13% for the A = 20 case. This
indicates that the choice of inter-gridpoint spacing greatly affects the validity of F-tests used commonly in

such simulation-optimization techniques as RSM.

The explanation for the increased rejection of normality for A = 40 is as follows. With A = 20, possible

region configurations are X , and X ,. Each of these configurations contains gridpoints only on the
boundary of the region. Conversely, with A = 40, possible region configurations (R, 6 R g+ Rg) contain

points both on the boundary and the interior of the region. What is typically happening in the regions that
fail to have normal residuals is that the hyperplane is not fitting the data well due to curvature. For
example, the hyperplane may overestimate the responses on one region boundary, underfit it for the
interior points, and fit fairly well through the opposite boundary. This leads to a distribution of residuals
that is highly non-normal. A plot showing one such histogram of residuals for the ten replications across

the R ; region defined by R ={(Q, R) = (20, 0); (40, 0); (40, -20); (60, 0); (60, -20); (60, -40)} is shown in

Figure 3.18a; precisely what was described about curvature has happened in this region. The ten residuals
in the right-most rectangle in the figure all come from the point (20, 0); the twenty residuals in the left
most rectangle in Figure 3.18a all come from the points (40, 0) and (40, -20). The plane overestimated
the responses at the left of the region, underestimated those in the interior, and fit those on the right

boundary better. These residuals do not follow a normal distribution, as may be seen by inspection of

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 97



—

(-1.3954, -0.8250) (-0.8250, -0.2547) (-0.2647, 0.3167) (0.3157,0.8861) (0.8861, 1.4549)

Figure 3.18a. The distribution of residuals for a “typical’” R g (A=40)

J N |

(-0.2908, 0.1927) (-0.1927, -0.0946) (-0.0946, 0.0034) (0.0034,0.1015) (0.1015,0.1997)

Figure 3.18b. The distribution of residuals for a ‘“typical” & 3 (A=20)

Figure 3.18. The distribution of residuals for different inter-gridpoint spacings.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces

98



Figure 3.18a. Conversely, the residuals for the A = 20 R.3 region case defined by R.={(Q, R) = (20, 0);

(40, 0); (40, -20)} are shown in Figure 3.18b and are much more normal in appearance as the plane gives

a much more even fit with no interior points. (The S-W test fails to reject normality.)

Note that it is inappropriate to perform a parametric first-order lack-of-fit test over the ® ¢ described
above, as such a test requires normality. It is possible that naive RSM users conduct such tests incorrectly

as the RSM procedure is sometimes explained without inclusion of steps checking assumptions (such as

normality).

Homogeneity of Variance

Plots for homogeneity of variance in each region are shown in Figures 3.19 and 3.20. Recall that in these
figures p-values above (.05 suggest homogeneous variances in the region (at o=0.05), whereas values

below 0.05 indicate heterogeneity.

These plots show that, in general, variances are not heterogeneous for either A = 20 or A = 40, regardless
of the design conditions. Even the HMW cases show that only 5% or 6% of the regions fail to possess
homogeneity tests. Of course the simulation model studied in this research is fairly straightforward, and
other more complex models might lead to increased heterogeneity. But for the conditions studied here,

the homogeneity assumption required for F-tests is rarely violated.

“SEARCHABLE” REGIONS

This section addresses the question of whether search techniques using first-order metamodels to

determine gradient-search directions, such as RSM, can be properly used over the various regions R

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 99



9 (=3
3
= o2 9
= E <
F 6 T g
2 L
& c g =
O if Q ®
8 (%3
; -
@ om—
i
o~ ° >
. I 0
: g
iy
)
5
20
e
=
=]
=
5 '
5
; g
: z
= & z -
e% 95
- g3 = @
Q gé Q £
& e 4 =
O e Of &
8
¢ 2
g‘ -
|z 2
I <
i 2
2
[-9
=
s
=
172}
s
%)
£
g B
H 8
i -
g =
m | F
g =
% EH % .
Qg o
— s - ®
z g§ Q =
& < & B
A -
8
g
g

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 100



Case HMW
Case HMW

[—]

-

I

<

2

o

3]

(%)

s

=3

=

=

>

o

g

>

)

s

3]

0

=]

£

=)

=

_ S

-

5 ]

- |

2 ]

= 3 ?

§ -9

&  HEEE-

e i =| @
3 4

2 i 8 5

° < s < ;‘b

© i ©| &

= 2

P) ]

H -

= ]

]

’ 2

[=%

=

-]

L

172}

g

E

i 3

2 3

X £

m: | F

/M i M e?;

2 - 5| G

3 4

) is% ) H

Z LI 20

@) ‘g @) =
3
i?
H

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 101



comprising the feasible region. Two inter-gridpoint spacing cases, A = 20 and A = 40 are examined, and

each is further studied on four experimental design cases (LNB, LNW, HMB, HMW).

The issue of whether first-order RSM models can be properly invoked is important because we will show
that even with this simple, inventory simulation model, traditional RSM is not appropriate for many

regions R, The implications of this finding will be discussed in the Conclusions section.

As mentioned, in order to fit a linear, first-order model over a region and ensure adequate, non-horizontal
fit, two F-tests must be passed: the significance-of-regression test and the lack-of-fit test. These tests in
turn require that the region consists of normally distributed residual errors and homogeneous variance
over the region. Therefore, strictly speaking, for a region to have a first-order model properly fit and be a

candidate for RSM’s gradient search, the following four conditions should hold:

(1) the region passes the Shapiro-Wilk normality test (p>0.05);

(2) the region passes the Bartlett test for homogeneity of variance (p>0.05);

(3) the region passes the significance-of-regression test (p<(.05); and

(4) the region fails the lack-of-fit test, i.e., lack-of-fit fails to be true (p>0.05).

Figures 3.21 and 3.22 are constructed to indicate which areas are “searchable” with first-order RSM

metamodels. These figures show the four possibilities:

(1) violation. A region so classified has failed either the normality or the homogeneity of

variance test. In Figure 3.21, regions in this category are shaded in black.

(2) flat. A region classified in this grouping has failed the significance-of-regression test. In

Figure 3.21, these regions are shaded dark gray.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 102



(3)  firstorder. A region in this category is a candidate for RSM's gradient search and has met

all four of the conditions stated above. These regions are shaded light gray in Figure 3.21.

(4)  second-order/other. These regions, which are left white in Figure 3.21, have passed the

normality, homogeneity-of-variance, and significance-of-regression tests. But the regions
contain significant lack-of-fit, suggesting that a second-order or some other model is

needed to adequately fit the response over the region; a first-order model is inadequate.

The first row of panels in Figures 3.21 and 3.22 describes results for the A = 20 inter-gridpoint spacing
case. Observe that many areas are “RSM-able” (i.e., light gray). The first panel in the first row (case
LNB) contains many regions (about 68%) that are white and therefore require a second-order/other
metamodel. This finding is somewhat in opposition to the popular RSM strategy of fitting a first-order
model initially when one is probably far from the true optimum. Case LNW is much more appropriate for
an RSM strategy with about 80% of the regions light gray (i.e., first-order). As demand variability is
increased (HNB) over the previous two cases, over 30% of the regions fit in a category other than first-
order; about 25% violate either normality or homogeneity-of-variance requirements, and the other 8% or
so are equally divided between “flat” and “second-order/other.” The final A = 20 case shows that only
31% of the regions are first-order; the rest are either in violation or have so much variance that

statistically they appear flat.

The A = 40 row of panels at the bottom of both Figures 3.21 and 3.22 indicate a much lower percentage of
regions appropriate for first-order RSM. For all four cases of A = 40, no more than 10% of the region is
light gray; the other regions are either in violation of F-test assumptions (almost exclusively normality) or

need non-first-order metamodels.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 103



SBAIE 3[qEYIILaSs Jo suonedo| *1Z'¢ Ay

0y=V MAH 25¢)) 0b=V dNH 2s¢) Ob=V MNT 958 0=V UN'|9s8)
. h.._n:o oo . Kinueno 910 0 Awusng BP0 D ARUEnO 2010 D
BESBBARIBBEeingResn, BESREBBLNERaiI88828y, BEL888BENEeaia888en, EESSSEBERBa8588888 03,
08E
] N 9
| 00 O0E:
H nee; 08
; . 30 vl ¥
ﬁsm.m ‘.m'l W m
o1 084 dﬁ 08l c o
- st m oo § oar- 3
L — X ort nri- 1 ort
[ | 3 & e
TT :3 L]ﬁ T o8 “_ ] 08
— ng 1 ng
EREL S ﬁ - or T
| ~# L [ S EEL JEL RN Y .
0C=V MIAH 2st) 0=V ¢INH 9stD) 07=V MNT3se) 0=V t4N'] 95%)
. . e P M_ B . Amuens) Bo0 0 AlurnD 000 0 AiuenD Be0 0
BEES8BEERTEagindagan, mmmmmmmmwwwmmwmmmmmo EBSBEBEERERB8I38828 3 LR R E R EEE RN ER NN °
;—’ X — 0or wor
09€-
ore: Ore:
€ N € 0cE
' - 06
3 8 u [
- 092
MTIl K M aNNM 3
-5 . %
3 : o b 0 g o3
o1 $ 3 - oot 8 T | w8
1 2 1- et {
1- (4% ) AN
004 00l
o8 o8
n 1 . f )

104

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



SBIIR JQRYIIRIS JO SIIGUINU dANERY ‘77'¢ 24ndiyg

0P=V ML 252))

AOIPPRDI PUSSS  WDX) ey 1o owniep

0P=V 4NH 2520

b=V MN"] os¢))

0F=V tIN'To58))

ROTRPII RS WD) 8y 1oy wnnoren MO/APK) pucTes  REK) W3 o1 . 20/0x) pucces H oy P -
Lin o |H. Lo 0 .’.’ booon 0 Llomio
—tmro Loxe o Lok o —treo
— Lorox o o o Lvoco
o skt Al
toms 0 0 — o 0
0 " o Loncn
B
nvo o o Loweo
rono o
- -
07=V MINH 25¢)) 0=V UNI 958)) 0T=V MN'195¢) 0C=V N1 )
wrmpIopuoses  mExy on s simorsposes iy s e, [P S O—— s pucons mov g u ,E
T e | 3
- ] J Loz e o
- o 0 o
. o 0 Howen
0 o "
o — o
o  — o 0 n
® o o 0

1“_|I oo

105

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces



These findings are not meant to imply that RSM is an inappropriate search strategy. Rather the issue is
whether first-order models are being used appropriately within RSM and whether nonparametric tests are

also needed.

CONCLUSIONS

In this study a simple, inventory-simulation model was studied under four different experimental design
conditions. These conditions varied the coefficient of variance of demand and of lead time and also
examined two different levels of design conditions, i.e., the number of replications and the simulation run
length. A simple model was studied because it was believed that even a naive modeler intent on finding
the system optimum would be able to safely and properly use a technique such as RSM, a widely used and

respected approach.

The purpose of the study was to investigate common statistical measures over the search region. Both
point estimates (mean, standard deviation, coefficient of variation, signal-to-noise ratio) and region
measures and tests (normality of residuals, homogeneity of variance, significance-of-regression and lack-

of-fit) were examined.

Point-estimate measures exhibited considerable sensitivity to experimental design conditions. This gave

rise to concerns that perhaps the simple inventory model might not be simple enough to conduct

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 106



simulation-optimization searches using methods requiring some parametric statistical tests. Regional

measures added some additional concemns.

That the appropriateness of various optimization approaches should be questioned was portrayed in a final
set of plots indicating which points of the overall search area were amenable to first-order RSM and
which were not. It was found that an important determinant of amenability was the inter-gridpoint
spacing of the gridpoints. The gridpoint spacing is a very important practical issue, as one conducting
optimization on a simulation model must be able to specify, e.g., in RSM, the (uncoded) size of the region
of the first-order designs and the step size to be taken along the path of steepest ascent/descent. It was
found for a spacing of A = 40 that in no case were more than 10% of the total number of regions
appropriate for first-order RSM. For A = 20, the range of appropriate percentages varied from about. 25%

to 78%.

Again, this is a relevant, practical finding. Individuals conducting optimization must be very careful not
to make experimental-region size too large, since then first-order parametric metamodels may only be
appropriate 10% of the time, whereas setting even a smaller region size will still lead to considerable

variability in achieving a properly executed search.

There are three implications of these findings. The first 1s that there is a need to develop a simulation-
optimization “pre-processor” or “starter’” that suggests both a starting point for the optimization and the
granularity of the problem, i.e., the inter-gridpoint spacing or some surrogate. Many times it is
appropriate to assume that a “good-enough™ starting point is known by an expert, but even if so, it is not
as clear that such an expert would have sufficient knowledge to specify an inter-gridpoint spacing that is
not too big, given the particular model variabilities (exogenous and endogenous) and design conditions

(run length and replications). Too small a spacing may be costly.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 107



The second implication of the findings of this research is that nonparametric metamodeling should be
examined. This is necessary not only because of the potential of violating parametric assumptions, but
also for another reason implied in this research: the benefits of global, nonparametric metamodeling.
Recall that in Figure 3.5 with two replications, multi-modal response surfaces were indicated (which was
incorrect). If RSM were attempted starting on the wrong “side” of such a simulation response surface, the
wrong optimum might be tound. A possible alternative to parametric metamodeling such as RSM is
global nonpuarametric metamodeling, whereby the whole surface is modeled using a nonparametric
technique such as kernel smoothing or spline smoothing. In fact, some preliminary investigation on our
part (Keys, Rees, Greenwood, 1995a) suggests that global, nonparametric metamodeling is very effective,

seems safer, and requires relatively few computer runs to obtain the optimum.

The third implication of this research is that a multi-strategy approach to simulation optimization be
explored. Since a response surface may vary considerably over the entire region in terms of both point
and region characteristics/measures, it stands to reason that different search techniques might be
appropriate and thus more successful in different areas of the search space. For example, RSM might be
appropriate in one area and random search in another. We have initiated some discussion of this

elsewhere (Crouch, Greenwood, Rees, 1995) (Greenwood, Rees, Crouch, 1993).

In conclusion, we recommend that further research be conducted to “flesh out” these three implications.

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 108



Chapter Four: A Best-First Search Approach for
Determining Starting Regions In Simulation
Optimization

INTRODUCTION

Definition of Simulation Optimization

Simulation is a widely-used computer modeling technique that has been applied to a broad scope of
problems, ranging from traffic-flow analysis to job-shop scheduling to military-campaign planning.
Simulation permits the study of systems which cannot feasibly be constructed or experimented upon in the
“real world,” and which are too complex to be analytically modeled. When a given set of input conditions
is applied to a simulation model, the model’s output, referred to as a response, provides an estimate of
how the true system would respond to those inputs. Although simulation is very useful in predicting the
output of a system or responses, it does not in and of itself indicate the input conditions required to

achieve a desired response; i.e., it is not an optimization technique, it is an evaluative methodology. The

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 109



process of finding the input conditions that vield the optimal (or near optimal) system response(s) is
referred to as simulation optimization, which can be a very expensive and time consuming activity. In
other words, simulation evaluations address “what if” questions by providing performance measures for a
given set of input conditions, whereas simulation optimization extends the evaluations to consider “what’s

best” by seeking optimum values for the input conditions.

The objective of simulation optimization is to determine the values of the input conditions, n controllable
factors or decision variables, that optimize m responses, subject to a set of uncontrollable conditions
(conditions that aftect outcomes but are not under the influence of the decision maker). This process is
complicated by the presence of random error, often the result of combined random effects of all of the
uncontrollable conditions. This causes a response Yj to become a random variable and take on a set of
values for the same setting of the controllable factors; i.e., there is some distribution of Yj values for each
combined level of the controllable factors. To model this behavior each response is oftentimes considered
equal to the sum of a constant and a noise term, where the constant is the expected value of the response
E[Y;] for a specific combination of factor settings, and the noise term represents the random error. Due (o
the presence of random error, the optimization process typically focuses on the expected value of the
responses; however, while the goal is to optimize E[Y]], only Yj is observable. Jacobson and Schruben
(1989) note simulation optimization is in the class of stochastic optimization problems where the objective
functions are stochastic functions of deterministic decision variables; these problems are known to be

difficult to solve.

Azadivar (1992) points out that although the most common goal in simulation optimization is to optimize
expected value, the goal may also involve such considerations as minimizing the risk of exceeding a
threshold, minimizing dispersion, etc. Meketon (1987) refers to two classes of objectives of optimization
procedures: min/max and level crossing (or root tinding). The latter is of the form: find X 3 E[Y(X)] = p;

for example, find the service rate such that customers wait more than 3 minutes 5% of the time. Meketon

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 110



also indicates that the level-crossing problem is the same as the min/max problem, e.g., min E[(Y(X)-

p)2], if Var[Y(X)] is constant.

In general, the responses, Y =(Y1, Y2, ..., Ym), are functions of the controllable factors, X = (X1, X2, ...,

Xn), uncontrollable conditions, Z, and random error,e; i.e.,

Y=E[Y]+e=f(XIZ)=E[f(XI|Z)]+¢.

Note that the additive error considered above is only one possible model, with E[e;] = 0, and Var[e ] < +oo.
In addition to the above goal, the optimization will be subject to upper and lower limits on the controllable

factors or some function of a combination of them. Therefore, the general simulation optimization

problem may be stated as:

Optimize E[Y] = E[f( X | Z )] over the region S ¢ R" 1)
where the domain of S may be either continuous (R¢), or discrete (Rq), or mixed,
and X =(X1,X2,...Xp)e S

Subject to:
hX)>0 2)
where h(X) is a vector of deterministic constraints typically of the form:
lj < Xj <uj i=1,..,n (2a)
ln+q < f(X)< Un+q gq=1..,b (2b)

where b is the number of constraints involving more than one controllable factor.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 111



Typical Assumptions

Not all simulation optimization methods search the region S directly. For example, frequency domain
methods transform the optimization problem into the frequency domain (Safizadeh, 1990), and many so-
called intrusive procedures are single-simulation-run optimization methods (Wilson, 1987). However, a
broad set of simulation optimization methods do explicitly perform a search directly over the region S.
For example, ditferent varieties of Response Surface Methodology (RSM, see Box and Wilson (1951) or
Myers (1971)) assume a starting point in S then use tirst-order and/or second-order metamodels to suggest
preferred directions of search or optimality locations. The research described in this chapter is most
applicable to simulation optimization methods that search the region S directly, such as RSM, random
search, and Box’s complex search (Safizadeh, 1990), although any optimization approach that benefits
from a carefully chqsen initial region and/or requires a specification of problem granularity (see below) is

a candidate for the procedures defined in this research.

Methods directly searching a region S typically make several assumptions. These often include the
assumption that either a “good” starting point is known ‘or that the choice of a starting point is
unimportant to the solution of the problem. Sometimes this difficulty is obviated by selecting several
starting points, solving the problem for each starting point, and selecting the most-preferred answer.
Another assumption commonly invoked is that problem granularity, i.e., an appropriate grid spacing/step
size, is known. For example, in using first-order RSM models, a factorial design is often utilized to
determine the direction of steepest ascent. But there is no a priori rationale to determine the coding of
natural variables in S, i.e., to specify the size of region over which the factorial design is defined.
Moreover, once a direction of steepest ascent is determined from the RSM metamodel, there again is no a
priori reasoning that leads to a good choice of step size along the path of steepest ascent. Finally, most
approaches to simulation optimization invoke only one search method throughout the entire procedure,

although some have suggested hybrid approaches (Crouch, Greenwood, and Rees 1995). Sometimes a

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 112



basic method is emploved (e.g., RSM) with variations (e.g., first-order, second-order) to successfully

address simulation models with differing amounts of curvature and/or variance in the response surface.

To summarize so far, many simulation optimization methods assume that a “good™ starting point is
identified, that the design grid (i.e., how far apart to space runs) is known, and that one basic search
method need be employed, all regardless of the surface. Often, such assumptions are valid, for often a
user has experience with the simulation model or is willing to live with the results obtained from
assumptions, or expertise may be available to suggest appropriate search methods, step sizes, etc., early in
the optimization process. Also, the surface may be “simple™ and “smooth enough”™ to be impervious to the
consequences of the aforementioned assumptions. However, there are cases where the simulation
response surfaces are complex and have great variability in response across the surface and where little
relevant optimization expertise is available. Ignoring these conditions can lead to an unnecessary
expenditure of simulation runs, failure to find the simulation optimum, and/or a false declaration of the
optimal conditions. Sometimes financial implications are significant. This research deals with this latter

class of problems where making these assumptions is not wise.

The objective of this stream of research is to specify a “Starter” which can suggest a good starting point, a
reasonable grid spacing, and an appropriate initial search methodology for those cases where these items
are unknown and important. The Starter algorithmm would be used initially in simulation optimization
problems, and then would be followed by a conventional optimization method (such as RSM, Box's
complex search, etc.) using the starting point and inter-grid spacing stipulated by the Starter. In
particular, this chapter locates a starting point and an inter-grid spacing. The objective of finding an
initial appropriate search methodology is simplified in this chapter to finding a starting point and inter-
¢grid spacing for a first-order RSM design. The Starter algorithm will be easy to modify to include other

search techniques once the preferred conditions for starting with other search techniques is determined.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 113



This latter matter is, of course, still an open research question (see, for example, (Crouch, Greenwood,

and Rees 1995)).

Organizationally, this chapter is developed as follows. The next section provides a simulation
optimization example that will be used throughout the chapter to illustrate concepts. This is followed by a
discussion of the artificial-intelligence based search method, best-first search. The chapter then continues
with the objectives and then implementation details of a Starter, and it is followed with three example
simulation optimizations begun with the Starter. Finally, conclusions are drawn and further research

directions are discussed.

ILLUSTRATIVE EXAMPLE

The concepts presented in this chapter are demonstrated through a primary example of an inventory
simulation system with two variations. A second example, defined later, tests the procedure on a multi-

modal surface.

The primary example is a simple inventory model that permits backorders, as illustrated in Figure 4.1.
The model contains two decision variables or controllable factors -- order quantity (Q) and re-order point
(R). Whenever the inventory level dips below the re-order point, an order of size Q is placed. The two
controllable factors are varied during the search in order to find the combination of Q and R that yield the
lowest total cost (TC). Total cost is composed of three components: ordering cost, carrying or holding

cost, and shortage or backorder cost.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 114



Q = order quantity
R = re-order point
T = order cycle ime

Inventory level

—— [ ———

Figure 4.1. Simple inventory model that permits backorders and exhibits both stochastic demand
and lead time.

The primary example model also contains two uncontrollable conditions. The first, interarrival times for

demand (D), is a random variable which indirectly causes the inventory level to decrease at a non-constant

rate, as illustrated in Figure 4.1. The second uncontrollable condition involves another random variable,

lead time (L), the time between order placement and receipt. The effect of the stochastic lead time is that

the inventory level does not always return to the same maximum value when an order of size Q is

received, as is also shown in Figure 4.1.

In the primary example model, the random variable D is assumed to follow a Gamma(a, 3) distribution,
where the mean of D is oy and its variance is 0([32. In the first variation of the primary example, lead
time L is assumed to be identically zero. In the second variation, lead time is introduced and is assumed
to follow a Normal distribution; in this second case, the mean of D remains the same as in the first case,

but the variance of D is increased in order to illustrate the eftect of high variability on the Starter strategy.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 115



The primary-example problem may be stated as:

Optimize: Minimize { E[TC]} = Minimize {E[f(Q, R | D, L)] }, 3)

where D ~ T (o, Bp) and L ~ Ny, , GLz),

and o and P are shape and scale parameters, respectively, of the Gamma distribution,

and where p and o’are the mean and variance, respectively of the Normal distribution.

Subject to: 0< Q<400 @
-400<R<0 5
IRI<Q. (6)

The first constraint, as shown in (4), defines the initial estimate of the domain of the order quantity; i.e., it
is assumed the “optimum™ order quantity will be less than 400 units. This is based on the decision
maker's understanding of the problem and values of such cost parameters as the cost to place an order,
cost of one unit to be in inventory for one year, etc. The second constraint, in (5), limits the value of the
second decision variable R, re-order point. In this example, an order will be placed when the inventory
level reaches zero, when the number of back orders reaches 400, or somewhere in between. The final
constraint (6) ensures that a policy where the system is always in a backorder situation is avoided. This
would occur if Q was not set large enough to meet all backorders in an order cycle, on the average. Note

that this constraint restricts the feasible region h(X) in equation (2) to be triangular.

Particular details of the operation of the simulation model are given in Appendix A. Included are

specifications of the general algorithm, warm-up period, termination conditions, and statistics collection.

The mechanism that is followed in the simulation optimization process is illustrated in Figure 4.2. The
operation of the system, as represented by the simulation model, is run for a specified period of time. The
performance of the system is based on total cost, the only output of the simulation model, and is a

response that, naturally, is to be minimized. Total cost is based on the specified values of the decision

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 116



variables or controllable factors -- order quantity and re-order point, Q and R, respectively -- and random
demand and lead time values that occurred during the simulated operation of the system. Every possible
combination of Q and R, i.e., every point in (Q, R) space, represents a possible simulation run. In order to
improve upon the expected total cost of the system, one changes the values of the decision variables and
simulates the operation of the system again at another (Q, R) location. Decisions on how to change the
value of the decision variables in order to get an improved solution occur in the “optimizer” box in Figure
4.2. The optimizer may involve a simple random strategy or a more complex but rational approach such
as response surface methodology. Multiple simulation runs, replications, may be made at a single (Q, R)
point in order to obtain a better estimate of the response (total cost) and to obtain an estimate of the

variability of the response.

UNCONTROLLABLE
CONDITIONS

D L
demand IAT lead time

CONTROLLABLE
FACTORS
- RESPONSE
Q, order quantity =~ ——————» SIMULATION | e
R, re-order point  —f———p» MODEL —® TC, total cost

f “OPTIMIZER™

Figure 4.2. Process for optimizing the simulated inventory system

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 117



BEST-FIRST SEARCH

Best-First Search (BFS) is an Al-based search procedure that the Encvclopedia of Artificial Intelligence
(1987) attributes to the work of Doran and Michie in 1966 . This work presented an algorithm as part of
a graph traversal program. It is this algorithm that has served as the basis for later variations of the BES.
We will explain and utilize BFS in a graph-traversal or network context as well. That is, we will invoke
BES as a network search whereby nodes represent subregions of the feasible area given by equation (2),

and queues represent different paths through the network or search tree, as will be explained later.

The BFS procedure is heuristic in that it does not guarantee an optimal solution, but rather belongs to the
class of search procedures that proceeds toward some solution, provided a solution exists (see Figure 4.3,
based on (Winston, 1984)). BFS difters from some other heuristic Al search procedures in that estimates
of the “goodness” of partial solutions are used to decide which further solutions to pursue. In many search
situations, such estimates are unavailable, in which case BFS cannot be utilized; in those cases search
strategies such as depth-first or breadth-first search must be invoked, where paths through a search tree
are methodically developed regardless of the goodness of solutions discovered. In simulation

optimization, measures are available as goodness estimates, such as the mean response at a point.

Pseudo code for the Best-First Search Algorithm as it proceeds from a Start node to a Goal node is shown

L4

in Figure 4.4; this code is based on (Winston, 1984).

A short example will illustrate the algorithm. Consider Figure 4.5a, which is a pictorial representation (a
“map”) showing the connectivity of five cities. City 4 is the starting city, and we wish to travel to city ¥
(our “goal™). Cities A, B, and C are intermediate cities, any or all of which we may travel through if we

wish on our way from $ to 4. In Figure 4.5a the numbers on the arcs between cities represent actual

distances between the cities. Our objective is to go from 4 to 4 in the shortest possible distance. Available

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 118



to us also is the estimated distance from each city to the goal, which in this example is an approximation

based on the straight-line distance to the goal.

— Depth first
— Hill Climbing
Breadth-first
Beam

—— Best-first

[ Some path

British Museum
[ Branch and bound
Dynamic programming

-——Al'

Search ————= Optimal path em——

Minimax
— Alpha-beta pruning
Progressive deepening

: Heuristic pruning
Heuristic continuation

e Can‘es ——

Note: Based on Winston [14]

Figure 4.3. Some Al-based search techniques

. Create a queue.
. Put the Start node on it.
. Until the Goal node has been reached or the queue is empty, repeat:
- if the first element on the queue is NOT the goal node
+ remove the first element from the queue
e add the first element’s children, if any, to the queue
* sort the entire queue by estimated remaining distance to the goal
- it the tirst element on the queue is the goal node
o announce “success’” and then STOP.
. If get to this step, the queue is empty and no Goal node has been found;

- .. announce failure.

Figure 4.4. Best-First Search Algorithm psuedocode

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization

119



Straight-line
distance to goal

From A
A

B
C
b

4.5a. A network representation of five cities

00 (1)

4.5b. The search tree corresponding to Figure 4.5a.

Figure 4.5. An example to illustrate the best-first search procedure

4.5
2.0
55
3.0
0.0

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization

120



The search wree corresponding to the example is indicated in Figure 4.5b. From 3, one may progress to
either A or B. If one travels from § to A, then possible subsequent destinations are B and 4. If one went
from 4 to A and then to B, we assume that one could only travel to C. This is because going to 3 would be
returning to a city already visited, for which there is clearly a shorter path. The rest of the tree is

developed similarly.

The BFS algorithm begins by placing the source node 4 on the queue. As this node is not the goal node,
the children of 4, namely A and B, are added to the queue and 4 is removed. The contents of the queue at

this point are

3-B:5.5

Here 3-A indicates the path from 4 to A, 4-B the path from 4 to B, and the numbers indicate the estimated
distance to the goal. For example, the number 5.5 indicates that, once one is at B, the estimated straight-
line distance to the goal is 5.5. According to the algorithm, the queue is next sorted based on estimated
distance to the goal, which in this case results in no change at all. The first element on the queue is then

removed from the queue and its children are added to the queue. This results in

Queue

5-A-B: 5.5

4-A-b:0.0

When the queue is sorted, it becomes

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 121



Sorted Queue

b-A-4: 00
5B :5.5

3-A-B:5.5

The first path is removed from the sorted queue, and since it leads to the goal node, the procedure
terminates successfully. The BFS solution to this problem is $-A-#, which (coincidentally) is the optimal
path. Even though the example is simple, it illustrates that the procedure is desirable because the entire
queue is sorted, thereby keeping the most promising alternative at the front of the queue. This is as
opposed to depth-first search and breadth-first search, which place children at the front and back of the
queue, respectively, and omit the sort. The tradeoff is one of effectiveness of the search procedure as
opposed to the computational expense for the sorting. Computationally, BFS is of order n [O(n)] at worst
and O(log n) at best, where n is the number of nodes, whereas depth-first and breadth-first search are

O(n). Of course, BFS is viable only when estimates to the goal are available.

STARTING A SIMULATION OPTIMIZATION SEARCH

Objectives

In the simulation optimization methodologies considered here, one wants to begin the search process at a

point near the optimum, to explore a region of appropriate size near that starting point, and o use a

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 122



search methodology appropriate to the response surtace of the simulation model. Often, however, one is
unaware of where (0 start, how large a region to use, and/or what methodology is appropriate. For
example, in the inventory simulation model described above, the user may only be able to state with
confidence that 0 < Q* < 400 and -400 < R* < 0, where (Q*, R*) is the optimal solution to the problem.
Furthermore, the user may have no feel for the granularity of the problem other than to say that there is no
need to place experimental design points closer than every 25 units in either the Q or R direction. It may
be that a granularity of 50 or 100 units could suffice, but the user has no idea what the proper value is and
whether the value changes as one gets closer to the optimum. Finally, the user may not know enough
about the response surface itself to specify whether a gradient-based search method such as RSM will be
appropriate, or whether another approach such as simulated annealing is more appropriate because the

surface may be multimodal.

As a first step in building a simulation optimization starter, we assume the following objectives, our

Starter should:

1. specify a “good” starting point (or points) for the subsequent search, in the sense that the optimal
solution is likely to be found if the search is begun there.

[

suggest a minimum necessary inter-gridpoint spacing Ay, between experimental design points to
be used initially in the subsequent search.

3. specify a subset of the global domain where the optimal solution(s) is (are) likely to reside; i.e.,
stipulate a limited search region.

4. generate another subset of the global domain where the optimal solution is almost certain not to
reside.

5. allow the user to specify aggressiveness, e.g., to stipulate whether “many” runs should be
expended to ensure good results (a not very aggressive strategy) or whether only a paucity of
points should be investigated because, say, simulation runs are expensive or time consuming (a

more aggressive strategy).

6. expend as few computer runs as possible within the context of the above objectives.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 123



Note that we have omitted several important possible Starter objectives in this research; e.g., our Starter
neither specifies a preferred search method, nor does it indicate which portions of the domain will be
difficult to search (e.g., because of sharp peaks, multiple optima, ridges, etc.). These objectives are left as
topics for future research, although we have initiated work on preferred search methods in (Crouch,
Greenwood, and Rees 1995) and on global nonparametric metamodeling in (Keys, Rees, and Greenwood,

1995a; 1995b).

Objectives (2) and (6) taken together suggest a “divide-und-conquer™ strategy for determining Ap,,. For
example, consider the simple domain & | = {(x,, x,) [0 < X, < 10, 0 € x3 £ 20} shown in Figure 4.6. We
initially make simulation runs at the comers of &_,, indicated by the four heavy dots in Figure 4.6a. To

determine whether the (entire) region as specitied stipulates a good value for Apj, in each of the x, and x,

dimensions, we perform certain tests (given below) over the region. If the tests are passed, then there is
no need to reduce Amyp, and AV, in the x, direction is set to 10 and A®, in the x, direction is set to
20. If, however, the test is not passed, then the Ap,,s are too large. When this occurs, each dimension
(i.e,, x, and x,) is bisected and additional runs are made as indicated in Figure 4.6b at the points (5,0),

(5,10), (5,20), (0,10), and (10,10). This divides the region K, into four new regions
R = {x,x) 10 x; €5, 10 € x, €20},
R 2= {(xpx2) 1 5 < x1 £ 10, 10 € x €20},
Riz={(x,x) 10<x, £5,0<x, €10},
Ris={(x,x) 5<%, 10,0 < x,5 10},
and implies A(”mm = 5 and A(z)m,-,, = 10. Again the tests are performed to see if the region is small

enough to capture the essentials of the surface. If passed, the Apiss are 5 and 10 respectively, and if not,

the most preferred (again see below for how the preference is determined) region(s) is(are) quartered. For

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 124



10

10

<10
, <20
X}

4.6a. The domain of the simulation optimization problem with runs at the corners

10

X1

4.6b. Additional runs made in the divide stage.

Figure 4.6. Using a divide-and-conquer strategy to determine design point spacing

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization



example, if B ;>>K ;, and R 1;>>K ;3 and R »>>R |4 (where ">>" means “is preferred™), then K,

would be quartered (see the open circles in Figure 4.6b) to give

R.IZI = {(x,x) 1 5<x; €75, 15 <%, £20},
R..122 = {(x1,x2) 1 7.5 €x; £ 10, 15 £ x5 £20},

R 123= {(x1,x2) | 5 < x; S 7.5, 10 x5 < 15},

K124= {(xp,x) 17.5<x £10, 10 £ x5 15}

This process is continued until the region tests are passed. For instance, region & _;,; might be quartered
itself, giving regions R 511, R 1212 R 1215, and R 5, with corresponding minimal spacings of A, =

1.25 and A(Z)min = 2.50. Note that the divide-and-conquer strategy provides an estimate of A in a

preferred region of the domain using relatively few simulation runs.

Whereas Starter objectives (2) and (6) imply a divide-and-conquer strategy, objectives (1) and (2) taken
together imply a depth-first based search. To see this, consider Figure 4.7, which indicates a portion of
the search tree used in finding the most preferred region (i.e., which region to start in and the
corresponding region size). Since it is desired (objective (2}) to find the largest satisfactory A, in each
direction, it is necessary to proceed down the tree as fast as possible until the region size tests are passed.
At this point we note that searches that proceed down the search tree rather than across it are depth-first
based searches. Since objective (1) asks that a “good™ or most preferred starting point be found, the list of
candidate regions to be searched should be searched from most preferred to least preferred, and explored
in that order. But a depth-first search with the queue sorted from most preferred to least preferred at each
step is equivalent to best-first search, as explained above. The BFS solution to the hypothetical problem

above is indicated in Figure 4.7.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 126



3;& mv_w NQQ _v_w

Y%

*suoidaa Sunaeys pood Surpuly 10§ 334) Yoaeas ay) jo uoniod y -Lp aandyy

ENQ m_N_w Nl_ﬂ:ﬁw e E:w. m_:w N:_w :_Q

VAN

wm.w. mmg Nm_w _m_w v~§ mNQ Nm_w _N_N v:u“. m:w NZP“ :_w

N\

:w\\

P

. %

127

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization



If a test can be devised to differentiate preferred trom non-preferred regions, then objective (3) can be
satisfied with a list of most promising regions. Similarly, such a test can also be used to identify a list of
regions meeting objective (4), that subset of the domain almost certain not to include a good starting

point.

Note that aggressiveness (objective (5)) or risk taking can be specified in several ways. First, a user may
decide to use statistical tests and set a very low p-value for tests, thereby expressing conservatism.
Similarly, the degree of aggressiveness may be set by specifying how regions may be eliminated trom
further consideration. For example, we specity below that all regions significantly different in a statistical
sense from the best region discovered so far should be placed on a discard list. A less aggressive

procedure might be to discard only those regions that are not different from any other region not different

from the most preferred region. For example, if region K, ;» the best region discovered so far, is not
significantly different from region X_,, but region K , is significantly worse than & | but is not
significantly worse than K, our Starter would place X_, on the discard list, whereas the less aggressive

approach described above would not discard any of the three regions.

Having stated the objectives of our starter and their implications, we turn our attention in the next section
to the identification of preferred regions and the implementation of the best-first search. Examples of the

complete procedure are presented following this discussion.

Implementation of the Starter

In order to specity completely the BFS procedure for the Starter, we must stipulate the performance
measure on which items in the queue will be sorted. Betore doing this, we recall that BFS is a heuristic

search and does not guarantee optimality.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 128



Several difterent possible measures exist that make sense as indicators of region preference. For example,

?(EK) , the average of the response values obtained from the simulation runs made over the region, could

be used. Alternatively, ?m‘ (SRIM), the estimated maximum response over the region R based on a

first- or second-order metamodel M fitted to the simulated data, could be specified. This latter choice has

the advantage of allowing goodness-of-fit tests as a means of helping to decide whether the Apy,s are
small enough. But this estimate requires more simulation runs, particularly for a second-order
metamodel, many of which may not be helpful in the initial stages of the search. Recall that the purpose
of this procedure is to start the process of identifying promising regions to explore and does not

necessarily have as an objectve finding the system optimum. Because we want to demonstrate the

concept with a relatively simple case, we choose 7(3() as our performance measure and leave open the

question of other measures, suchas Y, (‘JTIM), tor tuture research.

Note that at this point we are choosing an aggressive strategy, or at least a strategy more aggressive than
?max (ERlM). Uldmately, the degree of aggressiveness could be set by the system at each stage of the

search by specifying the most appropriate region preference measure. This topic is also left for future

research.

With 7(3?) as the performance measure and a divide-and-conquer approach using best-first search, the

Starter strategy becomes clear. The essential features of the Starter are shown in Figure 4.8.

In the algorithm of Figure 4.8 the subdividing is done by bisecting the most preferred region along each

dimension, as explained. Note also that the entire queue (list) Z is sorted from the most-preferred to the

least-preferred region, as is required in best-tirst search. However, two items must be further explained.

First, it has not yet been shown how statistical tests are pertormed that determine which regions should be

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 129



placed on the list £ and which on the discard list D. Second, the stopping criteria have also not been

stipulated for the Starter.

Jser: Initializ
The user specifies the dimensionality (k) of the simulation-optimization problem.
The user specifies the region to be optimized; call it .’R_l.
The user specifies whether optimization is minimization or maximization.

System: Define and Initialize

Initially define D-=list of regions to be discarded={¢}.

Define each vertex of the region &, as a “gridpoint.”

Run replications, e.g., three, at each gridpoint.

Initially define E=list of promising regions to be cxplorcd:{ﬂ_l}‘

Define A; as the inter-gridpoint spaciug between gridpoints along dimension, i=1, ..., k.

Best-first search
Repeat

While the list Z is not empty
Take the first region K off E.
While not meeting stop criteria
Subdivide K.
Perform statistical tests on all regions  on E .
Based on these tests, keep promising regions on E and place others on D.
Sort ‘£, putting the most promising region at the front of the list.
End While /* not meeting stop criteria */
End While /* the list E is not empty */
Run the Safety Net
Until the lists £ and D are empty.

Figure 4.8. The basic Starter algorithm.

The testing is a multiple-comparison test of all regions on the list £ of regions still to be explored. With
this test, the most preferred region and all those not significantly different from it are kept on the list E,

whereas all regions significandy ditferent from the most preferred region are placed on the discard list.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 130



The proper multiple-comparison test depends on whether heteroskedasticity is present; the particular

procedure used in our Starter follows Toothaker (1991) and is as follows:

+  For each region R taken one at a time on the list £, assume a metamodel M and determine g from Yj

=M+ & where j represents a run at a gridpoint in the region K,

*  Use the Shapiro-Wilk test to test for normality on all g for each region.

*  Assume homoskedasticity unless disproved below.
« If any region has nonnormal errors then
it Levene’s Median test is significant
then heteroskedasticity is present;
else
if the Bartlett-Box test is significant
then heteroskedasticity is present.
* It homoskedasticity is present then
use the Tukey -Kramer multiple comparison procedure;
else

use Schefte’s multiple comparison procedure.

As mentioned, the metamodel M = _\7(9?) is used in this research, but other metamodels should be

explored in future research.

There are currently three rules that serve as the stopping criteria in the best-first search. Terminology and

notation used in the stopping criteria are

Fregr = the F-value of a significance-of-regression test, and

F\ or = the F-value of a lack-of-fit test.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 131



The rules are

1. Stop if the user-supplied minimum inter-gridpoint spacing (call it A,) is reached.

2. Stop if gradient-based search methods, e¢.2. RSM, can be used properly in the most-preferred region
R* le., stop if Freag is significant and Fp ¢ is not significant for R .

3. Stop if a horizontal hyperplane may be fit accurately over .‘R_*. This implies that any point in the
most-preferred region is optimal and there 1s no further reason to divide this region. le., stop if
Freor and F o both are not significant for R ™.

Because the penalty for incorrectly placing a region on the discard list i1s very high, namely an optimal
solution may be discarded, we invoke a safety-net in our strategy. This provides a “second chance™ to

place regions on the discard list back under consideration. The safety-net is invoked after the list & is
emptied; comparison of each item on the list D is made with the best region discovered so far (K*). No

region i1s permanently discarded that is larger than 4A,;, without subdividing that region first. Details of

our implementation of the safety-net as well as pseudo code for the entire Starter are included in Appendix

B. The examples that follow will also include detail not specified here, but included in Appendix B.

EXAMPLES

In this section three examples are presented in varying levels of detail to illustrate the Starter procedure.
The first example is the inventory model with low variance demand and no lead time described above.
The second example considers the same model but with more variance in the demand and stochastic lead

time. The third example consists of a multi-modal response surface with five peaks and an annular

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 132



depression around the highest peak. The purpose of the third example i to test the starter on a complex,

multi-modal surtace where gradient-based searches could fail.

Example 1: Inventory Model with Low-Variance Demand and No Lead
Time.

Further simulation model specification. We assume in this example that the simulation model used by

the user has the following parameters:
L= lead time = 0

D= daily demand interarrival time ~I'(o. B),

where a=1.0, B=0.2, which is also exp(0.2). Note that with an assumption of 250 days per year and a

demand inter-arrival time of 0.2 days, the expected number of arrivals per year is 250%5 = 1250.

Simulation run length > 4 years of 250 days each; i.e., the simulation ends at the completion of the first
cycle at or beyond 1000 days. (See Appendix A for further details on “cycles.”) Warm-up period 2 250
days; i.e., the warm-up period ends at the completion of the first cycle at or beyond 250 days.

(), = bolding cost = $10/unit/year

Cb = backorder cost = $5/unit/year

C0 = ordering cost = $50/order

User specification. The user stipulates that the dimensionality of the problem is two (k=2), and that the
decision variables are (Q, R). Furthenmore, the objective function is the minimization of daily total cost.
The optimal values to this simulation model are believed to lie in the following region, as far as the user

knows:

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 133



16 < Q <400
-384 < R <0

IRI € Q

IN

-16.

(We have allowed the user to choose a lower bound on Q of 16 and a lower bound on R of -384 for ease of
exposition. By choosing these values, the bisection of Q and R results in nicer numbers for the boundaries
of regions.) Note that the user’s specification of the region yields a triangular shape, thereby implying

that the Starter will generate not only rectangular subregions as above, but triangular subregions as well.

Finally, the user stipulates that spacing gridpoints 24 units apart in either the Q or the R direction will

provide sufficient granularity, i.e., A", = AY , = A= 24,

“True” answer to this problem. The expected optimal solution can be found by solving the closed-form

(analytic), deterministic model of this problem, allowing only integer values for Q and R. However, it is
assumed that the “true” response surface generated by this simulation model is unknown to the user. The
optimal solution is

Q=194

R =-130.

TC = $2.58 per day,

and a contour plot of the true response surface is indicated in Figure 4.9.

Notation. The BFS Starter solution to this example is shown in the various panels of Figure 4.10; in

these panels we show the progress of the solution as well as the final answer. To explain the solution,

three items of notation must be explained. We define the list £ as the list of regions to be explored

further and the list D as the list of regions (o be discarded (for later analysis on the safety-net). Both lists

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 134



T adwexy 10 3dejans asuodsaa [earjat0ay) Y3 jo joid ano0Ju0d Y g aand1y|

9'¢c

v

99

98

90l

9l

vl

ABQASOD §

135

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization



initially are empty, i.e., £ = {¢} and D = {¢}. In addition we use superbars to indicate regions not

statistically different from each other. For example, the notation

<l

{Y212’ Yy Yoo

indicates that the average response in regions X_,,, and &_,,, do not differ statistically from each other;
moreover, neither do regions K , R_,,, and K|, differ. The absence of a superbar indicates that each of

the regions KS and sz does differ from all the other regions on the list.

Initialization. The procedure begins with three replications of simulation runs at each of the three vertices

of the user-defined feasible region (call it Kl), as indicated in Figure 4.10a by the open circles. Note that
the initial inter-gridpoint spacing is AVpy= AP py= A= 384. The list £ becomes £ ={X_,}, while the

list D = {6}

Best-first search. (1). The first (and only) region on Z, namely K_ , is removed from E and is divided
by bisecting K., along each dimension, thereby generating three new regions K ||, XK ,,, and R |, (see
Figure 4.10b); these regions are defined as

R, 16<Q<208; -192<R<0; RI<Q - 16;

Klzz 208<Q<400; -192<R <0,

R (5 208 <Q<400; -384 <R<-192; IRISQ - 16.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 136



A=384

-384

4.10a. The initial (user-specified) search region % ;

16 208 400

-192 A=192

-384

4.10b. The first pass through the best-first search loop

(cont.)

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 137



Note that regions & ,, and R |3 are triangular, whereas region R 12 18 rectangular (square). Inter-

[}

gridpoint spacing is now A" in= A% in= A min = 192. The three regions formerly comprising Kl replace

iton E, giving E = (R, . R 5, R |;}. D remains = {¢}. The best region located so far is R *= R,

Simulation runs (three replications) are made at those corner points of the new regions where runs have

not already been made, i.e., at the open circles in Figure 4.10b. All runs both old and new in each region

(a total of 9 in , 12 1in , and 9 in ) are averaged to provide the estimates Y ., Y ,
1 12 13 2 P R

andY . The first multiple comparison test is now made. [t compares the means of the following
13

regions, in general: the union of (a) all regions newly subdivided at this step, and (b) R*, if and only if
K* is not the region that was subdivided at this step. The idea is to compare the costs of the newly

formed regions with the cost of the best region discovered so far, in order to immediately prune inferior

. ~ . - . . x P .
regions from the list of regions to explore. In this case, X = K | was subdivided, so the multiple
comparison is made of only the subdivided regions K|, R |, and K_|;. In order o see whether the

means of these three regions differ statustically from each other, the tollowing procedure is tollowed:

. The Shapiro-Wilk test is used to check for normality for each region i&ion ‘L using the model
Yij = ?l + € where j represents the jth simulation run in the ith region. (Note that if there are g

gridpoints in the ith region, each with r replications, then n, = g*r simulation runs will be made in region

1.} Results indicate that regions ‘.7(“ and KD have nonnormal errors, whereas there is no violation of

the normality assumption in region Q{'H.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 138



. The appropriate test for homogeneity of variance over X | = (R |, U K, U R ;) is Levene’s
Median test, since the normality assumption is violated over the region & - Results indicate that

heteroskedasticity is present, thereby implying that Scheffe’s test is the appropriate multiple comparison

test.

. The result of Scheffe’s multiple comparison test is

713 712 711.

Note that the notation implies that the mean in region ﬂ(l 5 is preferred to that in KIZ’ which in turn is
preferred to the mean in KII. But the means in regions Ku and R»lz do not differ statistically from
each other, and the same may be said about K, and K ,,. Since the mean of K , does differ
statistically from the most preferred (i.e., lowest cost) mean, K|, is removed from E and is placed on D,

leavingZ = (R ;R ), and D = {R ,}. Note that the order of regions in our notational scheme

is significant in that the list is sorted from most-preferred region to least-preferred. The best region

located so faris R *= R ,.

(2). The best-first search loop is repeated, with the first region on E, namely K |3 removed. R 1318
subdivided, giving the three new subregions shown in Figure 4.10c and described by

17(131: 208 <Q<304; -288<R<-192; RISQ-16;

R 1350 304<Q<400; -288 <R <-192;

R |5y 304<Q<400; -384 <R <-288; IRISQ- 16.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 139



Note that inter-gridpoint spacing is now AV = AP = A o= 96, Also note that Figure 4.10¢ only

shows the old region 5{‘” and not the entire feasible region.

Simulation runs (three replications) are made at those corner points of the new regions where runs have
not already been made, i.e., at the open circles in Figure 4.10c. Once again, R* is subdivided, so only the

newly divided regions are included in the multiple comparison test. Therefore, all runs in each of the

three newest regions are averaged to provide the estimates Y5, , Y3, ,and Y 3;.

»  The Shapiro-Wilk test shows violation of the normality assumption.

» Levene's Median test indicates that heteroskedasticity is not present, thereby implying that the Tukey-

Kramer test is the appropriate multiple comparison test.

*  The result of that multiple comparison test is

Y131 Y132 Y133,

Therefore, KW is removed from Z and is placed on D, leaving (after sorting in ascending cost order for

eachlis) E = {R 15, R 15 R o) and D= (R 0. R |, ).

Having determined which of the subdivided regions should be placed on E and on D, the multiple

comparison test is now repeated for the entire list Z. This is done because there is now a new best (lowest

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 140



208 304 400

-192

A=96

-288

-384

4.10c. The second pass through the best-first search loop

208 256 304

-192

A=48
-240

-288

4.10d. The third pass through the best-first search loop

(cont.)

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 141



cost) region (R ™ = 9{,1,]), 0 it may be possible to remove some of the higher cost regions at the end of

the list . Shapiro-Wilk shows nonnormality, Levene’s Median test shows heteroskedasticity, and

Scheffe’s test gives

Y131 Y132 Y12,
Hence, the  and D lists are unchanged.

(3). The best-first search loop is repeated again, with the first region on E, namely Km removed. The

region R—Bl is subdivided, giving the three new subregions shown in Figure 4.10d and described by

K1311: 208 £Q<256; -240 <R <-192; IRILQ - 16
R |31y 256 <Q<304; -240 <R <-192;
R 13130 256 <Q<304; -288 <R <-240; IRISQ - 16.
Inter-gridpoint spacing is now A%, = A in = A min = 48.
Simulation runs (three replications) are made at those corner points of the new regions where runs have

not already been made, i.e., at the open circles in Figure 4.10d. The multiple comparison test is of the

three new regions, so all runs in each of these regions are averaged to provide the estimates _'713“,

Y1312 ’ Y1313'

*  The Shapiro-Wilk test shows no violation of the normality assumption, implying that the Bartlett-Box

test for homogeneity of variance is appropriate.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 142



* The Bartlett-Box test indicates that heteroskedasticity is not present, thereby making the Tukey-

Kramer test the appropriate multiple comparison test.

»  The result of that multiple comparison test is

Y1312 Y1311 Y1313,

Therefore, K, |, , and K_,,, are placed on E, and K is placed on D, leaving (after sorting) £ =

1313

R 312 s R Kl2}’ and D ={R ;. R 55 Ku I

The multiple comparison test is now repeated for the entire list E, because there is a new R = R_ ..

Shapiro-Wilk shows nonnormality, Levene’s Median test shows heteroskedasticity, and Scheffe’s test

gives

Y1312 Y1311 Y132 Y12

Hence, R, is puton D so E= {R 35 R j5yp Rypph and D= {R 13,5 R 133 Rpp Ry -

(4). The best-first search loop is repeated for the fourth time, with the first region on E, namely R, ,

removed. R is subdivided, giving the four new subregions shown in Figure 4.10e and described by

1312
R jappps 256 <Q<280; -216 <R <-192;

R 310y 280 <Q<304; 216 SR <-192;

___C
w
)
(2
[}

56 < Q <280; -240 <R <-216;

R 13124 280<Q<304; -240 <R <216

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 143



R? 256 280 0
é'“ : : : Q
192 7 S '

K13121 E K13122

A=24

216} - - - - - Qr-mmneee- O--vmrennes P

Kl:‘l:" E Rl3124
240----- @ o o

A=24
-216

4.10f. The fifth pass through the best-first search loop

Figure 4.10. The BFS Starter solution to Example 1.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization

144



Inter-gridpoint spacing is now AW, = AP . = A, = 24, which is also the user-specified minimum inter-

gridpoint spacing (A).

Simulation runs (three replications) are made at those corner points of the new regions where runs have
not already been made, i.e., at the open circles in Figure 4.10e. Again the multiple comparison test is of

the new regions, so averages are made of the runs in each of these four regions to provide the estimates

13121 Y,

<

131220 ¥ 13123> a0d Vi35,

« The Shapiro-Wilk test shows a violation of the normality assumption, implying that the Levene-

Median test for homogeneity of variance is appropriate.

+ The Levene-Median test indicates that heteroskedasticity is present, thereby making the Scheffe test

the appropriate multiple comparison test.

The result of that multiple comparison test is

Y 13121 Y13122 Y13124 Y13123

Therefore, K. |5,,, and K _,,,,, are placed on E, and R ;,,, and R, ,, are placed on D, leaving

(after sorting) £ = {R. 13,5, K 15100 Rj31pp Kisph ad D =AR 13150 K 3100 Riaie Risy R

R_,,}- Since the best region located so far is a new region, R*=R the multiple comparison test is

131217
now repeated for the entire list ‘E. Shapiro-Wilk shows nonnormality, Levene’s Median test shows

heteroskedasticity, and Scheffe’s test gives

Y13121 Y13122 Y1311 Y132,

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 145



Consequently, K ,, is placed on D leaving £ = (R 3, R 1300 K 3y} and D ={R 5,0

K13123’ K’l313’ R‘132, K'133’ K‘12’ “R'll}’

At this point, R |,,,, and R |,,,, are removed from E, because they are at the user-supplied inter-

gridpoint minimum (i.e., 24). This leaves £ = {R_,,,}.

(5). The fifth loop through the best-first search takes K _ ,,, off of E. K_ ,,, is subdivided, giving the
three new subregions shown in Figure 4.10f and described by

R 131 208<Q<232; 216 <R<-192; RISQ - 16;

R0 232<Q<256; -216 <R <-192;

R a3 232<Q<256; -240<R<-216; RI<Q - 16.
Inter-gridpoint spacing is now AV = A® 0 = Apin = 24, which is also the user-specified minimum

inter-gridpoint spacing (A,).

Simulation runs (three replications) are made at those corner points of the new regions where runs have

not already been made, i.e., at the open circles in Figure 4.10f. Since R ™ = szl is not one of the

newly divided regions, the multiple comparison test is of R * and the three new regions. All runs in each

region are averaged to provide the estimates Y,3;5,, Y311, » Y1312 » and Y3q53-

¢ The Shapiro-Wilk test shows no violation of the normality assumption, implying that the Bartlett-Box

test for homogeneity of variance is appropriate.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 146



» Bartlett-Box test indicates that no heteroskedasticity is present, thereby making the Tukey-Kramer

test the appropriate multiple comparison test.

« The result of that multiple comparison test is made comparing Y  from the best region 'R,* =

R. 317, With the three new regions:

Y 13121 Y1312 Y13111 Y1313,

This indicates that & 5, ,, and R |, ,, should be placed on E and that &_,,,, should be placed on D,

leaving = (R ;31,5 Rjzi1y) 08 D = AR 3000 Risn Rz Rizie Rizp Ripse Rip Ky
But R ;,,, and K ;;,,, are at the user-specified minimum inter-gridpoint spacing Ay, so these two

regions are removed from £ since no further subdividing is allowed, leaving £ = {¢}. The best region

located so far is still R *= R 13121

Since the list  is empty, the best-first search part of the procedure is concluded. The results obtained
thus far are as follows; if we did not perform the safety net, we would begin our search at

Starting point : Q=256
R=-192

TC = $2.73/day.

We have expended 57 computer runs at 19 different points thus far. The (Q, R) values found so far
compare with the known optimal solution of (Q*, R*) = (193, -130) at a total cost of $2.58/day. An
illustration showing the 19 points in the feasible region where runs have been made is given in Figure

4.11a; the x’s in that figure indicate the run locations.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 147



qu
]
-50]
1
-1007]
-1507
] X X K x K
R'EOO: x K x K
] X X K
-25073
] X 3
-3007]
2350
] 3
0 S50 100 150 200 250 300 350 400
6]

4.11a. Gridpoints where simulation runs are made (x) during the best-first search portion of the
search.

T
>
E O

b ¢

400+t
0 50 100 150 200 250 300 350 400
Q

4.11b. Gridpoints where simulation runs are made (o) during the first pass of the safety net.

Figure 4.11. The location of simulation runs in Example 1

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 148



Details of the safety-net procedure will not be elaborated here; rather, only an overview and summary

results will be given. Each “pass”™ through the safety net examines every region &_ on the list D one at a
time and compares each R _with the best region K* found so far either during the best-first search part of
the algorithm or during a previous pass of the safety net. The comparison of each R with &* results in
either & being discarded (i.e., removed from all further consideration) or placed back on the list £ of

candidate regions. No region is discarded, without further testing, that is greater than or equal to four
times the smallest inter-gridpoint spacing A encountered tor any region thus far. A “pass” through the

safety net ends whenever the list D is depleted and all new items placed on ‘E from D have been run

through the best-first search portion of the algorithm. Of course, the repetition of the BFS part of the

search may result in further items being placed on D, which requires another “pass” through the safety
net. The entire Starter algorithm terminates when there are no more regions on either £ or D; i.e., the

Starter terminates when all regions have been discarded.

A very aggressive strategy with respect to the safety net is to conduct no passes through the safety net at

all. Conversely, a very conservative (cautious) safety-net strategy is to conduct all necessary passes to

clear E and D (i.e., run the algorithm to completion). A more moderate approach, and the strategy used
here, is to perform one pass through the safety net. This gives every region R in the list 2 “one last
chance” to compete with R*, the best region found so far.

In example 1, one complete pass through the safety net takes an additional 12 points (or 36 runs). The

location of theses 12 safety net points is shown with small circles in Figure 4.11b. The best starting point

at the end of the first pass is then

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 149



Starting point: Q=184
R=-120
TC = $2.59/day.
Note that the total cost figure is very close o the optimal daily cost (within one cent per day). However,

the best-first search procedure left several regions on D, so the entire safety-net procedure may be invoked
again if the user wishes (o be very cautious. In fact to entirely empty the list D, the safety-net must be

invoked twice more for a total of 27 more points (and 81 runs); the same (Q, R) point and total cost is
obtained as after the first pass of the safety net. If the entire BFS Starter procedure is run from start to
finish with all passes of the safety net a total of 237 runs at 79 points is made. This is roughly half the
459 runs at 153 point needed if, rather than using the Starter, the entire region is blanketed with points at

an inter-gridpoint spacing of 24.

Example 2: Inventory Example with Higher Demand Variance and
Lead Time Variance

Further simulation model specification. In order to demonstrate the Starter procedure on a simulation
model with more variability in response, the example above is modified to include lead time L and to

increase the variance of the interarrival time for daily demand D. In particular,

L ~ truncated N(6, 22), i.e., L 20, rather than L =0 in example 1, and

D is changed to D ~ T (o, Bp), where op = 0.05, Bp = 4.0.

With these parameters, the mean of demand remains the same as before, but demand variance is increased

by a factor of twenty. All other parameters and costs remain the same as in Example 1.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 150



User specification. As before, the user stipulates that the dimensionality of the problem is two (k=2), the
decision variables are {Q, R), and the objective function is the minimization of daily total cost. The
optimal values to this simulation model are believed to lie in the following region, as far as the user

knows:

48 < Q < 400
352 < R <€ 0
IRl < Q < -48

(Once again the lower bounds on Q and R have been assumed set by the user to 48 and -352 respectively
in order to make the numbers “nicer” for the example, and also because the introduction of lead time in

this example restricts (Q, R) policies if one wishes to guarantee feasibility.)

For this example, we assume the user specifies no minimum inter-gridpoint spacing, A,. As such, we use
the system default, namely a A, allowing for 5 repetitions of the “divide (i.e., bisect) and conquer” steps

5

1 :
whichis | — | *100% = 3.125% of the initial range. In this case A, = 0.03125%352 = 11 is permitted.
2

“True” answer to this problem. Figure 4.12a shows the expected simulation response surface, based on

three replications, whereas, Figure 4.12b illustrates the variance of the response surface under the same

conditions. The true optimal solution is:

Q=194
R =-130.
TC = $2.58 per day.
Initialization. The procedure begins with three replications of simulation runs at each of the three vertices

of the user-defined feasible region (call it K 1)» as indicated in Figure 4.13a by the open circles. Note that

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 151



(R},

the initial inter-gridpoint spacing is AV, = A? = Apin = 352, The list E becomes ‘E =
while the list D = {¢}.

Best-first search. (1). The first (and only) region on &, namely R_,» is removed from E and is divided as
shown in Figure 4.13b. The results of the best-first search steps are E = (R Ry R, D= {¢},

A = AP = Amin = 176, and Kik = K13~

1 14.6

12.6

10.6

8.6

$ Cost/Day

6.6

4.6

2.6

4.12a. The mean of the response

(cont.)

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 152



(2). The first region on ‘E, R,D, is removed from £ and is divided as shown in Figure 4.13c. The results
of the best-first search stepsare ~ £={R ,,, R ,, R |,}, D= {R 132 R 133} A%nin= A%min = Apin

=88, and R*=R ;.

(3). The first region on ‘E, R—m’ is removed from Z and is divided as shown in Figure 4.13d. The

results of the best-first search steps are E={R 5 Ry Rph D={R 55 Rip R

R,133}v Ammin: A(E)min = Amin = 44, and Rjk = R‘Bll'

0.30007

0.25007

0.20007

0.15007

0.10007

0.05007

0.00007

4.12b. The variance of the response

Figure 4.12 Some response surface characteristics for the model of Example 2

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 153



48 400

A=352
-352]
4.13a. The initial (user-specified) search region %;
A
R
48 224 400
1\
~
176 A=176

-352

4.13b. The first pass through the best-first search loop

(cont.)

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization

154



224 312 400

A=88

-352

4.13c. The second pass through the best-first search loop

o

224

R )

4.13d. The third pass through the best-first search loop

(cont.)

h

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 15



(4). The first region on ‘E, Kmr is removed from £ and is divided as shown in Figure 4.13e. The
results of the best-first search steps are £ = (R 13,1 K 13110 R 3113 Rz X 12h P =R 515

Rir Rz Rissh A%in= A%in = Amin =22, and R* = R 5, .

(5). The first region on ‘E, K13112, is removed from ‘Z and is determined to meet the stopping condition
specified in rule 3 above, i.e., the plane fit through region K13 112 1s horizontal.  As such, this region 1s
removed from the list Z, giving Z = {R_5,,» K 13113 K 1310 K o). Next, the new first element on
E, R |3,y is removed and is divided as shown in Figure 4.13f. The results of the best-first search steps
are E = {R 131110 R e Rz Rpne Kb P= Ry Ry Ry Ry R

A(l)n]jn= Ammin = Apin = 11, and Rf‘ = g{—13112'

(6). The first region on E, K ;,,,,» is removed from Z and is also determined to meet the stopping

condition specified in rule 2 above. As this region is “RSM-able,” it is marked as such and is removed

from the list Z, giving £ = (R 15,1, R 131113 3113 Rja1p) Next, the new first element on E, R
13111 18 removed. But subdividing this region gives a Ay, = 5.5 < Ay = 11; therefore, R 131111 18

removed from Z. The same is true for K 5,5 This leaves £ = {K |55, R |3,,}. Therefore, region

K13113 is removed from £ and subdivided as shown in Figure 4.13g. The results of the best-first search
= = R
steps are £ = (R 131130 Rz P = 1R 32K i1 Rz Riziy i iz Kiash A%in =

AP pin = Amin = 11, and Kik = “R,]3112

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 156



224 246 268
—W— e
= : :
-176 ﬂ

A=22
-198

224 235 246 —
= : :
176} -+ - - @ -O- —o

K,Bllll

A=11
S 1.7/ EEEE RS 6 CL TR O

R.BIJIS

198fe el

4.13f. The fifth pass through the best-first search loop

(cont.)

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 157



246 257 268
- - -
= : ; : Q
-108}---- C‘r j
R 131131 .
. R 3113
A=11

) R R E TR ¢ LR Jf
R 131133
S | R R

4.13g. The sixth pass through the best-first search loop

Figure 4.13. The BFS Starter solution to Example 2.

Since further dividing either region on ‘£ results in Ay, < Ay, the list Z becomes empty, and the best-first

search portion of the Starter ends.

The results obtained from the Starter without the safety net are as follows; start search at

Starting point: Q= 268
R=-176

TC = $2.73/day.

We have expended 63 computer runs at 21 different points thus far. Figure 4.14a shows a plot of these 21
points in the feasible region. The (Q, R) values found so far compare with the known optimal solution of

(Q*, R*) = (194, -130) at a total cost of $2.58/day.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 158



111y 1

-50
-1004
-150
] XXX X X 3
] Xs)?x'y
R -200 ] BOX
1 X X
-2504
j X 3
]
-3004
-350

-400 1t

0 50 100 150 200 250 300 350 400
Q

4.14a. Gridpoints where simulation runs are made (X) during the best-first search portion of the
search.

0 > o = o
50
1
- [o] [o] [o] q
-1004]
1
150
R -2007 Bor—ere-
] X ofX o
-250 010
1 X o 3
-300- =
-3505
400~
0 50 100 150 200 250 300 350 400

Q

4.14b. Gridpoints where simulation runs are made (O) during the first pass of the safety net.

Figure 4.14. The location of simulation runs in Example 2

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 159



One pass of the safety-net procedure (our recommended final step of the Starter algorithm), costing an

additional 54 runs, yields a new best starting point of:
Q=191
R=-132

TC = $2.72/day.

These additional 18 points are shown in Figure 4.14b.

To be totally cautious and entirely empty the lists £ and D, the safety-net must be invoked three times

more for a total of 113 points (and 339 runs); the same (Q, R) point is obtained as after the first safety
net. The 113 total points run under this very cautious Starter strategy is still less than one-third of the
1683 runs at 561 points required if the starter algorithm is abandoned and an exhaustive covering of the

region at an inter-gridpoint spacing of A = 11 is made.

Example 3: A Multimodal Response Surface

To illustrate that the BFS Starter works even under quite unfavorable conditions, one further example will

now be provided. This example shows how the Starter handles a multimodal response surface.

The response employed in this example is based on Crouch et al. (1995) and is a mathematical function
with random error added to form the response surface. The particular function and error term used here

are

[O.Sexp(—2.7r2 )cos(31rr) +05+¢ r<05
Y(xl ’ Xz) = i 2
O,Sexp(—2.7r )cos(nr)cos(46) +05+¢e r>05
2 2 o] 0.3 Xl
where € follows N(0.0,0.0S' ) ,T= (XI + x:) , and 6 = arctan| —
& x2

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 160



A picture of this response over the assumed-to-be user-supplied domain is given in Figure 4.15. Note that
this is a very difficult surface to optimize as (1) it has five peaks and one annular depression around the

largest peak, and (2) and it has large flat regions (e.g., in the region x, < -0.75). However, the response

surface has relatively low variance. The true optimum of this surface is x, = -0.17, X, = 0.29, which

1

yields a maximum of y = 1.00.

v
d

1
I

~—
[~~~
[~
T
vs

[~
[~
T~
T~
T~

[[]]]

0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

11777

N

L

1o 20 €0 vO0 S0 90 (0 80 60

ﬂ’s !

Figure 4.15. The response surface to be optimized in Example 3

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 161



The best-first search portion of the Starter yields x, = -0.875, x, = -0.25, with y = 0.5546. This requires
99 runs at a total of 33 points. One pass of the safety net gives x; = -0.125, x, = 0.25, with y = 0.9378;
this required an additional 87 runs. Observe that this result is very close to the true optimal solution.

Clearing E and D of all regions requires another 39 runs for a total of 225 runs at 75 points and does not

change the solution.

CONCLUSIONS AND FUTURE RESEARCH

This research has defined a Starter for use in those simulation optimization cases where either the starting
point or the granularity of the problem are not known in advance. The Starter combines the artificial-

intelligence based best-first search with a divide-and-conquer strategy and a safety net.

Three examples have illustrated the Starter procedure. The first example showed that the Starter worked
on a “simple” simulation-optimization problem, while the second illustrated the process on a more
involved surface with twenty times the variance of the first. The final example represented a very difficult
surface to optimize, with multimodal behavior and large flat regions. The Starter worked quite well even
without the safety net in all cases, and obtained an optimal solution within 7% after one pass of the safety

net in all three cases.

A lower-bound estimate of the number of simulation runs N required by the Starter may be determined

based on the original user-specified region and inter-gridpoint minimal spacing. If a best case of the

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 162



minimal subdivisions in the divide-and-conquer step occurs, and if no ties occur among the most preferred

region at any point in the algorithm and the other regions, then for a square region,

N=12+15m

range

where m = log, and ro—l is the ceiling function.

For example, if A = 11 and the user specifies 48 < x < 400, then
range = 400 - 48 = 352

352
m = log, _11— = log2r32_l=5, and

N= 87 simulation runs.

Conversely, the maximum number of runs required over the specified range to completely cover a square

feasible region at a granularity of A  if the Starter approach is ignored is

2
range
N=3 +1
AU
In the example above,
2
352
N=3| — |+ 1] =3,267 simulation runs.
11

The potential savings using the Starter algorithm is great.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 163



Future work on the Starter involves testing it on more surfaces. The results from these runs can be used to
ascertain how aggressiveness may be incorporated dynamically into the Starter process and also to
determine which metamodel should be used in estimating the performance of each region, as discussed

above.

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 164



Chapter Five: Building a Knowledge-Based Simulation
Optimization System With Discovery Learning

BACKGROUND

Knowledge-based Simulation Optimization

A simulation model can be thought of as a "black box,” with controllable inputs feeding into the box, and
the simulation model's responses leaving the box as outputs. The simulation model provides an
approximation of how the true system it represents would respond to the given inputs. Each response can

be considered to be a function of the inputs with a random error term added.

Figure 5.1 depicts the simulation-model box together with another black box in a feedback loop around it.
This second box represents the simulation optimizer. The optimizer takes outputs of the simulation model
and uses them to suggest new values for the inputs to the simulation model. The objective of the

optimizer i$ to find inputs that will result in optimal or satisficing responses from the simulation model.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 165



I ts
npu Simulation

Model

Optimizer

Figure 5.1. The simulation-optimization process

The need for simulation optimization and the costs involved in it have motivated the development of
different strategies to search for optimal-response-producing input levels. These strategies range from
random and single-factor searches to response surface methodology (RSM) to simulated annealing and
genetic algorithms. Meketon (1987) divides simulation optimization strategies into three general

categories: nonlinear programming techniques, RSM, and stochastic approximation.

An important decision that must be made in simulation optimization is which search strategy to employ.
Some work has been done to aid this decision, although Meketon concludes that "optimization for
simulation, to date, remains an art, not a science.” He considers the information available (or assumed)
about the simulation, and groups optimization methods accordingly to help narrow the choices. Safizadeh
(1990) discusses a variety of strategies and their application and concludes that generally RSM approaches
are most effective, although some new developments look promising. Smith (1973) performed an
empirical study of the effectiveness of several search strategies (random search, single factor search, and

four variations of RSM) on a variety of surfaces. He found that the relative effectiveness of each of the

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 166



strategies varied depending on the characteristics of the response surface (presence of local optima,

random error, number of controllable inputs, etc.).

Surveys of simulation optimization lead to the conclusion that organized guidance is needed to help users
choose appropriate search strategies. Safizadeh (1990) explains that: "for successful design and analysis
of simulation, one should be well versed in several disciplines.” Because of this, users are inhibited from
using simulation optimization (and thereby simulation). He concludes that there is, therefore, a need to

"develop interactive programs which direct a user to an appropriate optimization technique.”

In an earlier paper regarding selection of appropriate optimization technique, Greenwood, Rees, and
Crouch (1993) pointed out that there is both art and science in simulation optimization. They further
suggested that the art and science should be "separated” in a simulation optimizer, and, in particular, that
procedural (e.g., third generation) languages should be used to model the science part, whereas
knowledge-based approaches should be used to encapsulate the heuristics that make up the art portion.
The particular architecture suggested consists of an inference engine, a knowledge kernel, and processing
support modules (see Figure 5.2). The knowledge kernel, in turn, contains three parts: a database to store
results, a methodology base to store procedures, and a rule base to store heuristics and to provide control.
Note that with this architecture, the fact that optimizer control is resident in the rule base implies that
there is no set algorithm for simulation optimization; rather the inference engine (using, for example,
backward chaining) can pursue a goal using whatever rules are in the knoWledge base. This implies that
if the rules are or can be changed, then, in essence, the optimization algorithm itself can change.
Exploiting this notion, Greenwood et al. suggested that if results are stored in a database, and if " the
algorithm"” can be changed by changing rules, then the potential for "doing better" next time, i.e.,

1

"learning,” exists. This notion of a learner is shown in Figure 5.3. The basic idea is that historical
observations are taken from the database in the knowledge kernel of the optimizer, processed by the

learner, and then rules are either added, deleted, or changed back in the optimizer rule base. In this

manner, not only can heuristics be modified and improved, but so can control of the entire system.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 167



INFERENCE ENGINE

WLEDGE KERNEL

DATABASE METHODOLOGY BASE RULE BASE

OBSERVATIONS ANALYTICAL PROCEDURES GENERAL PRINCIPLES

RESULTS INTERFACES DOMAIN-SPECIFIC RULES

HISTORY QUERIES INTER-STRATEGY VARIABLE RULES
CHARACTERISTICS DISPLAYS INTRA-STRATEGY VARIABLE RULES

CONTROLLER

y

PROCESSING SUPPORT

¢ database management

* graphics package

* statistical analysis programs
* report generators

Figure 5.2. Greenwood-Rees-Crouch simulation-optimization architecture

Learning: Definitions, Advantages, and What There is to Learn

Crouch (1992) states that definitions by Simon and Michalski are closest to what she means when she says
she will let her optimizer learn. Simon (1983) concludes: "Learning denotes changes in the system that
are adaptive in the sense that they enable the system to do the same or different tasks drawn from the same

population more effectively the next time." Michalski (1986) points out that knowledge acquisition seems

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 168



/ LEARNER / LEARNER X LEARNER
Y

DATA BASE; METHODOLOG RULE BASE

/- concept bank / DATA BASE \ -« Controller rules
« RAC table « specify experimental design\ « rule mod rules
* strategy mapping/ * conduct hypothesis test « generalization rules

* “old” sim models / ¢ find common features * specl/parm mod rules

/ INFERENCE ENGINE \

/

From
Data Base) [ Methodology
Base

Figure 5.3. Visualization of the Learner and its environs

to be the essence of most learning acts. He adds that in order to acquire knowledge, one has to represent

this knowledge in some form. Consequently, he characterizes learning as "constructing or modifying

representations of what is being experienced.” Thus the optimizer should be able to adapt its performance

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning



so that it improves its optimization on scenarios "close” to what it has already seen. In addition, an
optimizer or satisfier with a learning capability should have the capacity to modify or to construct
representations of its knowledge, be it knowledge of how to reset certain parameters, knowledge that is

domain specific, or knowledge that is more widely applicable as general principles.

Crouch (1992) builds upon a taxonomy developed by Carbonell et al. (1983) to suggest the types of
knowledge acquisition a learner should include. The four basic types of learning are (1) rule modification
or creation, (2) specialization, (3) parameter modification, and (4) generalization. According to
Carbonell, specialization means adding conditions to the "if" part of a rule (the antecedent) so the rule
applies to a narrower set of circumstances, and generalization means dropping restrictive conditions in the
antecedent to make the rule apply in a wider variety of contexts. By parameter modification is meant the
changing of a numerical value in a rule; for example, the antecedent "IF number of runs > 12" could be
changed to "IF number of runs > 10." Rule modification results in changing the consequent of a rule. For
instance, a current rule may conclude that RSM is the preferred search strategy ("..THEN strategy =
RSM"); however, learning may suggest that simulated annealing is preferred. Thus, the modified rule

"

would have the consequent "THEN strategy = simulated annealing.

In this research, we will limit ourselves to the four types of learning just elaborated, noting that additional

types of learning can be added to the Learner later if desired as plug-in modules.

What it is that can be learned in a simulation optimization system with these four types of learning has
been pointed out in Crouch (1992). In order to understand these ideas, however, it is first necessary to
present a quick overview of CGR’s (1995) "Classifier KBSOS." CGR called their system a "Classifier
KBSOS" because its simulation output surfaces are classified according to the search strategy most likely

to render success.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Leaming 170



In the Classifier KBSOS, input sufficient to define the problem is obtained from the user in the User
module (see Figure 5.4). This input is then fed to the Classifier module, where three steps occur. First,
the "shotgun" suggests an initial set of simulation runs to be made at various input combinations across
the surface. The results from these computer runs are then input to the "synthesizer,” which attempts to
develop a fitted or synthesized surface through those points. (A neural network can be and was
successfully used for this by Crouch et al. The reason for this synthesis is that it hopefully will save
computer runs by characterizing the synthesized or estimated surface rather than depending entirely on
actual runs.) Then the synthesized surface is analyzed by several procedural programs and heuristics in
the "characterize” module in order to classify or characterize the response surface. The idea of classifying
a surface is based on a study reported by Smith (1973) in Operations Research in 1973, which found that
optimal search technique varies by type of surface. Crouch et al. used the same explanatory variables

Smith used in his study to classify their surfaces with the Classifier KBSOS.

Once a surface has been classified, rules in the KBSOS knowledge kernel invoke the Strategy Selector.
This module is a collection of rules that choose a search strategy (e.g., RSM, random search) depending
on the surface characteristics identified by the Classifier. Note that as the whole classify-and-select-
strategy process is iterative, additional search may result in reclassification of the surface and hence
specification of a different strategy as the optimization proceeds. After a search strategy has been chosen,
the Strategy Detailer (another set of rules) is fired, and implementation particulars are set whereby the

Search may be conducted.

As Crouch points out, it should be clearly stated what is not meant when one suggests that a KBSOS will
learn. The learner is not expected automatically to derive or infer a never-before-seen search technique
whenever a previously unanalyzed surface in encountered. Rather, the learner is expected to perform such
tasks as to modify parameters in the shotgun, to suggest that a new antecedent be included in a set of rules

in the Strategy Selector, or to respecify the number of runs to be made at the center point of a given search

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 171



USER

CLASSIFIER

[ Shotgun J

STRATEGY
SELECTOR

eat
Synthesize
Y
\ [ Characterizg

y

STRATEGY
DETAILER

SEARCH

Figure 5.4. An overview of the Classitfier KBSOS

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learmning

172



being implemented. Learning is to be incremental as opposed to far reaching, and it will only be

successful as its databases of surfaces and experiments grow large.

In order to indicate how learning will take place in a KBSOS, Crouch (1992) lists some examples of each
of the four kinds of learning; see that reference and Crouch, Greenwood, and Rees (1995) for further

details:

parameter modification: - in the Classifier: re-specitying the number of runs to be made randomly and
at regular grid points in the shotgun module; re-setting a variance threshold, above which additional
replications of data points used to fit the synthesized surface will be collected; re-stipulating the vertical
distance delta from the true optimum, within which non-adjacent portions of the response surface indicate
multiple, optimal solutions. And in the Strategy Detailer, re-adjusting the step size for a given search
technique.

specialization: - adding new concepts as antecedents to the rules in the Strategy Selector (e.g., adding "IF
variance is not high" to a current rule specifying RSM as the search procedure); adding a similar clause
again to the IF part of an existing rule in the Strategy Detailer (e.g., adding "IF lack of fit is significant” to
a rule specifying a shift from a first-to a second-order RSM design).

rule modification: - in the Strategy Selector, if some cases concluding in "THEN Strategy = S1" achieve

different levels of success than others, then separale these cases and respecify "THEN Strategy = S," a
new strategy whereby there is some evidence that Sy will work better on the poorer cases than Sy did.

generalization: - deleting existing concepts from the antecedents of rules when there is evidence that such
concepts are irrelevant to the Strategy Selection being made (e.g., removing "IF distance to optimum =
far" from a rule concluding in "THEN Search = random search.”) Generalization is also helpful in a
housecleaning sense in that rules can at times be combined, thereby reducing the number of rules in the
rule base.

It is easily noted from the above lists that there are a plethora of details to be learned; this is because,
fundamentally, so much of simulation optimization is heuristic, or "art.” The approach taken in Crouch
(1992) and that we have taken here is to prioritize what we want to learn with our KBSOS. We have
placed the Strategy Selector as our top learning objective, with its specialization, rule modification, and

generalization. At second priority is the Classifier, which calls primarily for parameter modification

learning.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Leaming 173



Having examined the Classifier KBSOS, definitions of learning, and what it is that may be learned in a
knowledge-based simulation optimization system, we now direct our attention to the Crouch (1992)
Learner. This will provide the final building block needed to explain the Learner we have actually

constructed ourselves.

The Crouch Learner

Overview

Each of the four learning types to be included in Crouch's learner requires both procedural and heuristic
computation. That is, each learning type consists of both procedural decisions such as hypothesis testing
that can best be performed by algorithmic means, as well as heuristic processing best done in, for
example, knowledge-based systems. A major design decision made by Crouch was to separate the "art”

and "science” in the learner, just as Crouch, Greenwood, and Rees (1995) did in the KBSOS.

Figure 5.3 shows Crouch's learner sitting above the KBSOS and deriving input from the KBSOS database;
changes are passed back to the KBSOS rule base. Figure 5.3 explicitly illustrates the implementation of
the separation of art and science in the learner in terms of its three modules, the Learner Data Base, the
Leamer Methodology Base, and the Learner Rule Base. In addition, Figure 5.3 shows some of the

functions to be carried out by each of the three modules.

According to Crouch (1992), a knowledge-based simulation optimization system contains many concepts
that may be stored in a variety of representation formats, including tables, rules, and neural networks. In
order to be able to manipulate this information in a learner, the Learner Data Base must keep a registry of
concepts and their interrelationships. Crouch's mechanism for doing this is a concept bank and a

Relationships Among Concepts (RAC) table. The RAC table stores which concepts are used in which

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 174



rules. As indicated in Figure 5.3, both the concept bank and RAC table are (important) components of the
Leamer Data Base, as is the strategy mapping, which will be described later in this chapter. An
additional item included in Crouch's Learner Data Base is a collection of "old” simulation programs.
That is, she suggested that whenever a simulation program was run and its results were stored in the
database, it would be advantageous if the program (i.e., the code) itself were left in a library in the Learner
Data Base, in case the Learner decided later to do further exploration with the program. Obviously, this is
not necessarily practical in all cases. But the more the Learner has access to in the way of history, the
more likely it is to be successful. Finally note that Crouch's Learner Data Base may share or coincide or

differ from the knowledge kernel data base.

The Learner Methodology Base consists of whatever procedural aspects are necessary to implement the
four types of learning. For example, if the Learner were investigating the advantages of changing a
troublesome parameter, it might decide to conduct an experiment to test the proposed change. In such a
case, the Learner would call the experimental design submodule, which would specify where computer
runs should be made to carry out (say) a fractional factorial design. Then a second submodule in the
methodology base, a hypotheses testing procedure, would evaluate the results of these experiments to
determine statistically the worth of the change. Crouch admits that these submodules may be complex,
but add that they can be implemented using ideas well-established in the literature. A third submodule in
the learner methodology base deals with searching for common features or concepts for a given set of

rules.

Crouch's Learner Rule Base contains all the rules or heuristics needed to do specialization, rule
modification, parameter modification, and generalization. Moreover, it also possesses a set of controller
rules, which decide when to invoke each of the four learning types. All of these rules, under the direction
of an inference engine, drive the Learner in its search for an improved simulation optimization process,

and call the Learner Data Base and Methodology Base when needed.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 175



Crouch Process Flow

A brief overview is now given of the Crouch learning process flow; details may be found in Crouch
(1992). This process is based on Slade’s work on case-based reasoning (1991). Slade never examined the
simulation optimization context; rather Crouch adapted some of the basic concepts in case-based

reasoning and learning and modified them for this application.

Figure 5.5 indicates the flow of Crouch's learning process. The shaded boxes indicate the major
operations in the process needed for all four learning types. (The only exception is that Repair is not
needed in Generalization learning.) The learning process for any of the types begins with Retrieve, where
learner rules are used to extract relevant data from either the learner or knowledge kernel databases.
Upon retrieval, learner modification rules are invoked to suggest changes in some aspect of knowledge
kernel rules. This occurs in the Modify block. For example, in parameter-modification learning, a
particular parameter is suggested for change; whereas in specialization learning, retrieved data cases are
first segmented by performance, and concepts in the antecedents are then sought that can explain the
performance differences. Once a modification is proposed that hopefully improves KBSOS performance,
the Test block in called. Basically, the Test block determines whether the proposed modification results in
an improved solution (i.e., a new set of rules), or rather in no improvement or possibly failure. In the first
case, control passes to the Assign and Store blocks, where the proposed modifications are actually made
and put back in the KBSOS rule base. In the case of failure or no improvement, the Explain and Repair
blocks are called, where either abandonment of learning for this case occurs due to unsuccessful
explanation and repair, or further modification leads to a successful solution. This latter case leads back

to assignment and storage, as Figure 5.5 indicates.

Although Crouch’s research has suggested an architecture and a learner flow, details were not specified

as to how all modules would work for the four types of learning. Moreover, since a Learner has never

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 176



Determine
Learning
Type
Rules

Prior Solution

~Store ' o

Modify Modification
Rules
f Proposed Solution
Assign
, Test
| I D
New Solution Failure or

No Change

New Solution : Explain
Repair |
Repair 1 Adjust
‘ v Parameter;
Rules Modify
Strategy
Exit Exit

Figure 5.5. Crouch’s learning process (Crouch, 1992)

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Leamning 177



been built, it is not known whether such a Learner is truly practical. The research described in this
chapter specifically addresses these issues, making three contributions. First of all, we build a Learner
and test it on a simulation example. Second, having successfully constructed a Learner, we are able to
specify an architecture and process flow; in particular, it will be seen that a clear explanation of how
discovery takes place was not provided in the Crouch paper. And finally, an analysis of what must be

done next to extend the Learner to larger-scale, more complex scenarios is described.

The remainder of this chapter is organized as follows. The next section describes a general model of

t

"discovery,” and the following segment details the modified general learning flow of our discovery
learning system. It will be found that the Crouch (1992) architecture of Figure 5.3 contains most of the
components necessary in a Learner, but is lacking in clear explanation of how discovery will take place --
in particular how domain knowledge and search will be used in this process. This discussion is followed

in wrn by a detailed inventory simulation example invoking the Learner illustrating parameter

modification. The chapter concludes with a summary and a description of future steps.

KNOWLEDGE DISCOVERY

The use of knowledge discovery concepts in a knowledge-base simulation optimization system (KBSOS)
is new. The previous work in KBSOS did outline and define four kinds of learning which required
storing some items in the form of a database. It is a simple extension then to use knowledge extraction

techniques for databases in an attempt to learn something from the data being stored.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 178



The essence of learning as we use it here is knowledge discovery. Frawley, Piatetsky-Shapiro, and
Matheus (1992) present a prototypical framework for knowledge discovery under a different setting than
simulation optimization, namely databases. This framework is redrawn in Figure 5.6; it contains five
components (besides the discovered knowledge itself). Since our research builds a Learner based upon
both the Frawley et al. paradigm and the Crouch (1992) architecture and flow, we now discuss the former

in some detail.

The Frawley discovery system has as its core the discovery method, which computes and evaluates
patterns on their way to becoming knowledge. Note in Figure 5.6 that the discovery method has two
principle components: search and evaluation. Inputs to the discovery method include the database itself,
its data dictionary (which defines field names, the allowable data types for field values, various constraints
on field values, etc.), additional domain or background knowledge, and a set of user-defined biases that
provide high-level focus. The output of the discovery method, of course, is discovered knowledge that can
be directed to the user and/or fed back into the system as new domain knowledge. Frawley et al. note that
both the user bias and the domain knowledge assist discovery by focusing search; i.e., these sources guide
and constrain search by, for example, telling a system what to look for and where to look for it. These
constraining influences are both desirable and undesirable: the former in that discovery is made easier,

and the latter in that valuable discovery may be ruled out by the constraints.

Frawley et al. (1992) point out that discovery algorithms inherently contain two processes: identifying
interesting patterns and then describing them in a concise and meaningful manner. They note that the
identfication problem is essentially a problem of pattern identification or clustering, which in essence is

the problem of finding classes such that the similarity within classes is maximized while the similarity

among classes is minimized. For example, it might be important for a firm to discover that the major
purchasers of its product is a particular set of individuals, whereas other individuals tend to have very

little interest. Concept description involves the summarization of relevant qualities of the pattern classes

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 179



wiSipeae £19400sI(] ‘[€ 13 Ad[med,] Y], *9'S 34nd1g

IOA3TTMONM NIVNOA

uoljenjeajpyoleas

abpajmouy

1210

palanodsi(
poyiey A1enoosi(

uopesnddy

aseg eleq

180

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Leamning



rather than just enumerating them. For example, it would help the firm described above to know that the
particular set of individuals is the class of white males between the ages of 15 and 20. According to
Frawley, well-known approaches to concept description include decision-tree inducers (Quinlan, (1986)),

neural networks (Rumelhart and McClelland, (1986)), and genetic algorithms (Holland et al., (1986)).

KNOWLEDGE DISCOVERY IN THE SIMULATION
OPTIMIZATION DOMAIN

Figure 5.7 illustrates the architecture of our Discovery Leamer for simulation optimization and its
interaction with the Classifier knowledge-based simulation optimization system. The Classifier KBSOS,
shown at the right in that figure, contains three principle modules: an inference engine; a knowledge
kernel, which contains the rules and algorithms necessary for simulation optimization, as well as a record
(a database) of the optimization session; and processing support, including interfaces to users, the
simulation program, etc. Crouch, Greenwood, and Rees (1995) may be seen for further details on the

Classifier KBSOS.

The Learner, shown as an "L"-shape at the left of Figure 5.7, contains the same modules as the Frawley et
al. paradigm, but is adapted to fit the purposes of the simulation-optimization environment. These
modules are the sessions history database, the data dictionary, a domain-knowledge module, and (at its
heart), the discovery-methods module. As in Frawley, bias is provided to the Learner from a

user/developer.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 181



SOS J2UISSEL) ) YA UOIIIRIIJUL S)I ) JAUIRIT AI2A0ISK(] YL

1oubise g |e1ue wyedx3 —

uojemeay

Buiuee|2eSNOH (uUONEZIBIOUD-
SS/WD *+edeil + ONE
9%8)) + ©NQ ‘uonezeIdedsg -

ona +101

luonBOYIPOW OINY -

1UOREBOYPOW 1010 WEBLB 4 -

L

yolees

"L's 2an31g

jied
mon

3IDAITMONN NiVvNOQ

(oswg ABojopoyioy 1auIEa] p 9seg ainy 1auieal w)

SQOH13W AHIAOISIA

LU0ddNS YNISSIDOHd

eseqp

woyy ‘

eseq o)n)
o}

TININ IOATTMONY

yoseag ManN-
1ajaWwele d 20UdBPYUO D MOT-
seTg

esue wioed/ede SOSHEN

1

\ \ECECEEEETELCEETTY 4

suny
uonenwg
axen

's0sa) HISSYID

/

1esn 10 Jedojers g

$OoNseIoBIBYD 908BJING

eseqloniysuodpdesuoc D

aszqneq

A10¥81H SUOISS IS

HINHVIT

182

ing

ith Discovery Learn

System Wi

ion

t

imiza

Chapter Five: Building a Knowledge-Based Simulation Opt



Note that the key information/knowledge flows between the Classifier KBSOS and the Learner consist of
one primary flow from the KBSOS to the Learner, and two flows from the discovery-methods module:
one back to the KBSOS, and another internal to the Learner, back to the domain-knowledge module.
These three flows are emphasized in Figure 5.7 by the heavier lines and arrows. The key notion is that
information from optimization sessions (stored in the database of the knowledge kemel) flows to the
Learner as input where it is recorded in the Sessions History Database. Similarly, what is learned by the
Learner flows back as output to the rule base of the KBSOS, so that rules are modified; consequently,
simulations conducted in the future by the KBSOS will (hopefully) be improved. What is learned by the
Learner also flows back to the domain-knowledge module in the Learner, as a means of keeping the
Learner up-to-date. These flows constitute the primary activity of the Learner, with all other activities
conducted in support of that activity. We now detail this support, proceeding module-by-module through

the Learner.

Data Dictionary

The data dictionary maintains the concept bank, namely a list of concepts or constructs utilized in the
sessions history database. For example, some of the concepts in out sessions base are number of
controllable factors, distance from the optimum, level of factor activity, and presence of local optima. The
concept bank also contains, as mentioned, allowable data types for field values as well as any constraints
on field values. The data dictionary employed in our Learner is not significantly different from data

dictionaries employed in other applications.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 183



Sessions History Database

The Learner database is called a Sessions History database because it records the history of sessions
carried out by the KBSOS. There are three kinds of information regarding any session maintained in the
database, each carried to meet a difterent need for the Learner. The first is the concepts and the values
that each can take. The second is a description of session characteristics which includes a session trace,
the search method and results, surface characteristics, and the activating rule, among others. The third
kind is a detailing of the rules including parameters and associated levels. Figure 5.8 is a lattice that

shows some of the relationships between the three kinds of information.

TOP FRAME
[ 1
Concept Session Rule
Level Level Search Consequent || Antecedent

L _|

Selector Parameter Rule

_ |

Consequent Antecedent

Figure 5.8. A lattice showing the interconnections of the Sessions History Database frames

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 184



All three kinds of information are represented as frames. The concept frame (see Figure 5.9a) contains
the name of the concept and the possible values that the concept can take. The concept frame can be a
child frame of an antecedent or consequent frame. The session frame (Figure 5.9b) contains session
specific information such as the session number, the goal (min/max), performance, number of searches
performed, a rating of effectiveness, total number of runs, number of inputs, and the best solution found.
It has one child frame called the search frame. The search frame contains search specific information
such as number of runs used, search method, best point found and the surface characteristics as estimated
at that point (the selector parameter in Figure 5.8). The search frame has three child frames, (1) the
activating rule frame, (2) the trace frame, and (3) another search frame if an additional search had been
performed (the value is null if no additional searches were performed). The rule frame (Figure 5.9¢)
contains the rule name, the rule base it belongs to and two child frames; antecedent and consequent. The
antecedent and consequent frames have pointers to concept frames and logical operator slot. A trace

frame contains the points visited.

Domain-Knowledge Module

The third component of our Discovery Learmner is the Domain-Knowledge module. As mentioned,
discovery must often be focused if the knowledge discovered is to be useful, and sometimes it must be so if
there is to be any discovery at all. The general purpose of the Domain-Knowledge module is to enable the
discovery that occurs in our Learner to be relevant and useful to the Classifier KBSOS. In particular, the
function of the domain-knowledge component is to provide guidance to the search portion of the
Discovery Methods module in four particular ways, one for each type of learning: (1) what parameters
can/should be considered for modification (this is for parameter-modification learning), (2) which rules
are candidates for specialization, (3) which rules should be modified in their conclusions (e.g.,
recommending different search strategies for rule-modification learning), and (4) when to attempt

generalization.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 185



Concept

Descriptor Level
5.9a. Concepts Frame
Session
Session Number Min/Max

Mark (BUG)

Best Point Found

Performance

Number of Searches

Number of Runs

Number of Inputs

Pointer to Search

Frame

5.9b. Session Frame

Rule

Pointer to
Antecedent Frame

Pointer to
Consequent Frame

Rule Name

Rule Base

5.9¢. Rule Frame

Figure 5.9. Examples of frames

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning

186



Of course, there is a danger in providing domain knowledge to our system in that specifying such
knowledge can rule out potentially valuable discovery. Frawley et al. (1992) point out the case in logistics
planning where the search space is so large that it is impossible to find solutions without using constraints
such as "trucks don't drive on top of waler (without bridges).” But adding this constraint eliminates
potentially interesting solutions such as those in which trucks drive over frozen lakes in winter. So the
key, they say, is to provide as general as possible constraints, while still maintaining enough specificity o

provide useful discoveries. We have tried to walk this "fine line" in our Domain-Knowledge module.

There are four primary components in the Domain-Knowledge module; these may be modified or

enhanced in the future. They are

e the performance measures component

+ the low-confidence parameter list

¢ the link-of-influence submodule, and

* the classifier-methodology-to-search-space (CM/SS) component.

We now describe each of these components.

The performance-measures component contains the currently recommended measures for evaluating
success in the KBSOS. At this point, we are utilizing the same performance measures as Crouch (1992),
not because we have studied them and found them acceptable, but rather because we have focused our
efforts elsewhere and have assumed them by default. (We believe this whole area to be a topic worthy of
further study.) There are two Crouch performance levels, weak and strong, and both are defined in terms
of what Crouch called "interesting” optimization sessions or cases. Two of Crouch's three "interesting”
cases are oriented toward the efficiency of the optimization, which Crouch measured according to the total

number of runs used to find the optimal response. Those optimization sessions requiring relatively many

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 187



runs are marked "Bad"” or "B," whereas those requiring relatively few runs are marked "Good" or "G."
The other Crouch "interesting” case is based upon effectiveness, which she measured by observing the
variance of the surface and whether multiple optima exist. If there is high variance or if multiple optima

exist, Crouch labels the case "Ugly" or "U." We refer to Crouch's three interesting cases as "BUG."

As mentioned, Crouch then defined performance in terms of the BUG cases. Performance is judged as

"strong" or "weak" according to the following two (Crouch) rules:

IF marked = G AND

marked < > U

THEN performance = strong;

IF marked = B

THEN performance = poor.

The performance measures "strong” and "weak" are used in the Discovery Methods module as will be
explained shortly. With the modular structure of the domain-knowledge module, it is relatively easy to

modify performance measures as desired.

Again, it is the purpose of the first of the four Domain-Knowledge module components, namely the
performance-measures component, to provide the criteria whereby the success and failure of the KBSOS

may be judged.

The second component in the Domain-Knowledge module is the Low-Confidence Parameter List. This
list is simply a developer-supplied tabulation of the "important” parameters utilized in the rules. They are
ranked according to the lack of confidence the developer has in their values, with least-confidence
parameters at the top of the stack. When the Learner decides to attempt parameter modification, it will do

so by popping the low-confidence-parameter-list stack, and considering the modification of the parameter

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learing 188



at the top of that list using the parameter modification process flow outlined in Crouch (1992). Figure

5.10 shows where the KBSOS parameters that can be modified are located within the Classifier KBSOS.

The third aspect of the Domain-Knowledge module is the link-of-influence (LOI) submodule. The basic
purpose of this component is to establish the link between any parameters to be modified and the effect on
rules “downstream” in the knowledge base. For example, assume a given parameter in the "characterize”
component in the classifier module in the KBSOS is presently set to a value of 0.5. If a change to 0.7 for
this parameter is under consideration, then those cases (i.e., sessions) for which the parameter took on
values between 0.5 and 0.7 must be re-examined. Now if the parameter being set at 0.7 in the
“characterizer” caused a particular rule in the Strategy Selector to be fired and another rule in the Detailer
subsequently to be fired, then the effect of the change to 0.7 must be considered to the extent that the
downstream rules in the Selector and Detailer that would be fired instead of the initial set must be
examined. For instance, the change from 0.5 to 0.7 might result in a whole new search strategy being

chosen in the Selector.

The determination of the downstream rules affected by a parameter shift is not difficult conceptually, as
one merely needs to forward chain through the rules. Figure 5.11a shows how this works with a few rules
and five sessions. The parameter a affects the parameter 3 which in turn affects the parameters y. The
parameter vy affects the number of replications but only for one search method. By forward chaining
through the rules the parameters that are affected can be found. We have written such a domain-specific
forward chainer and placed it in what we call the “link-of-influence™ submodule, since the chaining
establishes the influential links in the connection between any parameter and the rules impacted. The
threshold for parameter « is set at 0.5 and the rules that are affected by a are shown in Figure 5.11a. The
effect of changing the threshold from 0.5 to 0.7 is shown in Figure 5.11b. Note that only two sessions (3
and 4) are impacted by the change. The particular modules in the Classifier KBSOS affected by the LOI

submodule are also shown in Figure 5.10 by the dashed lines leading from that submodule.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 189



Jouaed| £19A03s1(] 3Y) Jo yuauoduwiod aZpajmouryy uiewio(] Y3 Jo s{HeId(q “OI°S 2An3Lg

ieubise g |ejue E:cnxu\—

— uonenjeay —

BuIUBGIDRSNON (UOHBZIBIRUSD-

SS/ND +edeiL + ©Ng

SuonRBIIPPOW INY -
#%e))] + NG :uonezYRIdRdS -

NG +107 uonedIpoN 1ele weIBd -

ysiees —

(9s®g ABojopoyla W 1ouIE e B s8R g SNy IouIEe] u))

SQOHLIWAHIAODSIQ

1H0ddNs ONISS3IO0Hd

"H31dISSviID

g3Uvi3a
ADILVYHILS

401037138
AD3LVHLS

m e e -a- A

. -

\ 3noNza 3onauan f

/ O s0seX.HIASEVID

D I A L R L B R Y

s
VY

108 10 10dojene g

3903TMONN NIVHNOG

aseq

1daduo>

131¢

eous wio)ed/eden SOSAMN
$2118110108IBYD @OHINS

eseq)onisuoaadeduon

Toseqeieg
A10181H Su0Iss RS

HINHY I

190

iscovery Learning

tion System With Di

Chapter Five: Building a Knowledge-Based Simulation Optimiza



i Low confidence parameter : oo
AP : ThenCE = High \

/

_|Session_4: 0=0.6
Session_S: 0=0.4

I
Then

= search

Database
/
Session_1 Session_1: 0=0.9 Session_2
Session_3 Session_2: 0=0.1 Session_S
Session_4 Session_3: 0=0.7

N———

5.11a. Initial Link-of-Influence

+ Low confidence parameter R BLN> )
e B : ThenQ= HigD —

<= Hj I

Theny = search_1

I seareh >
Then Qeps = D

Sessions History
Database

Then

= search

y

4
ISession_l l Session_1: 0=0.9 Session_2
Session_2: 0=0.1 Session_3
Session_3: 0=0.7 Session_4
_|Session_4: 0=0.6] _ Session_5
“ |Session_5: 0=0.4

5.11b. Subsequent Link-of-Influence

Figure 5.11. Link-of-Influence

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 191



The final submodule currently present in the domain-knowledge portion of the Learner is the classifier-
methodology-to-search-space (CM/SS) mapping. Recall that the Classifier KBSOS synthesizes simulation
runs and then characterizes the resulting optimization surface according to six output measures. These
output measures have been chosen particularly because they channel surfaces toward the search technique

most appropriate for the type of surface.

The purpose of the CM/SS component as used in the Discovery Methods module is to suggest new search
strategies for appropriate bad and ugly cases. Three current means of doing this in the CM/SS include
what we call the "primitive method,” whereby Smith's (1973) second and third search choices in his
experiments are suggested; a taboo-region method, where those strategies deemed terrible in a particular
region of classifier methodology/search space are listed as "to be avoided”; and a third method that
calculates the Mahalanobis distance from the currently recommended strategy to the nearest centroid of
the other strategies. As noted in Figure 5.10, the CM/SS rules impact only the Strategy Selector module

in the KBSOS.

Discovery Methods module

The final Learner module to be discussed is the "work-horse” component, namely the Discovery Methods
module. Recall that, as Frawley et al.'s (1992) paradigm suggests, discovery methods consist of search
followed by evaluation. The search itself, they say, also has two parts: pattern identification and concept
description. As mentioned, the former defines classes that maximize within-class similarity while

minimizing among-class similarity. Concept description consists of deriving descriptions of the classes.

Our discovery method module also consists of search and evaluation, the latter of which we have labeled
our "experimental designer” (in the sense of a "design-ot-experiments” expert). The pattern identification

phase of our search consists of the four tasks, parameter modification, specialization, rule modification,

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Leaming 192



and generalization. The first three tasks are detined procedurally in Crouch (1992), and generalization is
described in Greenwood et al. (1993). The procedures referenced are modified as explained in the
example below. These four tasks are conducted instead of a more formal cluster analysis, although, in a
sense, most of the four tasks pursue their goal through attempts at clustering BUG cases into clearer
categories. The second portion of search, the concept description effort, utilizes rules as the
representation scheme in which all new constructs will be expressed. This is both convenient, given that
the four tasks are designed to operale on rules; and propitious for further discovery, since any rule in the
KBSOS or Leamer can, whether a new or an old construct, in principle, then be re-learned (i.e., modified,

or even "unlearned,” etc.) by additional search using the four tasks.

Further particular details of the search and experimental design modules will not be discussed in this
section. Rather, an example implemented in practice will now be discussed that illustrate discovery

learning through parameter modification.

BUILDING A SYSTEM: A PARAMETER MODIFICATION
EXAMPLE

This section will show an example of parameter modification. The system will modify the threshold of
the parameter coefficient of variation (CV) in an attempt to obtain “better” results. The example is based

on multiple simulation studies actually run previously by us and stored in the sessions base. The rules

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 193



used in these sessions have been preserved, and relevant portions are shown below as needed in tabular

form.

Presented in summary fashion, the example proceeds as follows. First the low-confidence parameter list
provides the needed bias (Figure 5.7) in the form of those parameters that most need to be checked; we
assume that the parameter CV is at the top of the list. The link-of-influence (LOI) module, next
determines those sessions potentially affected by the suggested change. Subsequently the range-of-
parameter-sensitivity module performs a line search to suggest needed simulation runs (i.e., the
“experimental points™), while the experimental designer (the evaluation module of the discovery methods)
runs the affected sessions and evaluates performance. The details of the parameter modification example

are presented below.

At the top of the low-confidence parameter list is the parameter coefficient of variation (CV). The

Learner passes this parameter to the LOIL, which proceeds to track the affected rules by forward chaining.

The classifier is the first knowledge base that is activated in the KBSOS, so forward chaining starts there.
In general, to forward chain through the knowledge base, the antecedents of the rules must be checked for
matches with the parameter CV. If the parameter in the antecedent of a rule matches, the variable in the
consequent is also placed on a list (call it “list1”). Therefore, if after checking all the rules for matches
there is at least one match, then the process of checking and matching proceeds, but with the consequents
of the rules in listl. When there are no more maitches, this phase terminates, and the next knowledge base

is checked using all of the parameters listed to this point.

Table 5.1 contains relevant portions of the Classifier knowledge base, with each row representing one
rule. That table contains three columns: the first contains the rule name, the second the rule’s
antecedent, and the third its consequent. As can be seen in Table 5.1, two rules (named var2 and var3)

contain CV in the antecedent. So the consequents of rules var2 and var3, namely “random_error,” are

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 194



placed on listl. Since items were added to list1, another round of checking needs to be done, but this time

the effort is to match antecedents with the parameter random_error.

Table 5.1 shows two rules

(opt_distl, opt_dist2) that have random_error in the antecedents; therefore, the consequent “dist_to_opt”

in the rules opt_distl and opt_dist2 are added to listl. Again, items are added to list1, so another round of

maltching follows, but this time using the parameter dist_to_opt to match with the antecedents of the rules.

At this point there are no more matches, so this phase can terminate.

random_error, and dist_to_opt, are passed on to the next phase.

Table 5.1. A portion of the Classifier Knowledge Base.

The parameters on listl, CV,

Name Antecedent Consequent
loc_optl synth = done CALL COMBINSS,""
CALL RANK,""
|_opt_thresh = 0.15
SHIP locopt, I_opt_thresh
CALL OPTIMA,""
RECEIVE opttot, num_opt
opt = done;
loc_opt2 num_opt =1 local_optima = absent;
loc_opt3 num_opt > 1 local_optima = present;
varl synth = done RECEIVE avevar, variance
cvar = done;
var2 cvar = done AND random_error = small;
CV <5
var3 cvar = done AND random_error = large;
CV2>0.5
opt_distl local_optima = absent AND dist_to_opt = near,
random_error = small AND
last_search = RSM
opt_dist2 local_optima = present OR dist_to_opt = far;
random_error = large
fac_actl synth = done CALL factact,""
RECEIVE factive, active
act=done;
fac_act2 active < (0.5*num_inputs) factor_activity = low;

fac_act3

active >= (0.5*num_inputs)

factor_activity = high;

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning

195



The Selector is the next knowledge base activated in typical KBSOS operation so it is searched next. To
forward chain, antecedents of the Selector rules are checked for matches with the parameters CV,
random_error, and dist_to_opt. If any rule has an antecedent that matches any of these parameters, the
variable in the consequent of the rule is placed on another list, called list2. If after checking all the rules
for matches there is at least one item on list2, then the process of checking and matching repeats with all
items on list2. When there are no more matches, this phase terminates, and the next knowledge base

incurred is checked using all of the parameters listed to this point.

As can be seen in Table 5.2 the rule simplex_1 has matches on random_error and dist_to_opt. So the
consequent of the rule is added to list2, namely the variable “search_strategy.” Since search_strategy does
not match any other antecedents in Table 5.2, this phase terminates, but passes on the variables on list2,

namely CV, random_error, dist_to_opt, and search_strategy.

Table 5.2. A portion of the Selector Knowledge Base

Name Antecedent Consequent

random_1 num_factors = small AND search_strategy= random_search;
num_sim_runs = petite

full_factorial_1 num_factors = small AND search_strategy = RSM_II;

num_sim_runs = large AND
local_optima = absent AND
random_error = large AND
factor_activity = high

Simplex_1 num_sim_runs = medium AND search_strategy = RSM_I;
local_optima = absent AND
dist_to_opt = near AND
random_error = small AND
factor_activity = high

The next knowledge base to be activated is the Detailer. (See Table 5.3.) To forward chain through that
knowledge base, the antecedents of the Detailer rules are checked for matches with the items CV,
random_error, dist_to_opt and search_strategy. Table 5.3 shows that there are three rules (rand_srch,

simplex, full_factorial) that match the variable search_strategy in the list passed from the previous phase.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 196



No other parameters are a match. So the rules rand_srch, simplex, and full_factorial are put on a new list,
list3. Since there were matches another round of matching follows, but now using the consequent
variables starting_point, region_of_fit, step_size, and design. There are no matches so this phase and the
link-of-influence module terminates. In summary so far, the items in the lists constitute the link-of-
influence, which indicates the potential impact of a change in the parameter under consideration for
modification. A change in CV can affect the factors random_error, dist_to_opt, search_strategy,

starting_point, region_of_fit, step_size, and design.

Table 5.3. A portion of the Detailer Knowledge Base

Name Antecedent Consequent
rand_srch search_strategy=random_search starting_point=none
CALL REGION,™"

region_of_fit = found
step_size = none
design = none;

simplex search_strategy = RSM _I starting_point = start

CALL REGION,""
step_size = (0.10 * (ub - 1b))
design = simplex;

full_factorial search_strategy = RSM_II starting_point = start

CALL REGION,""
step_size = (0.10 * (ub - Ib))
design = full_factorial;

Note that if the parameter to be modified had been in the consequent of a rule rather than in its
antecedent, then the scanning process would have proceeded as above except that scanning would have
been done on consequents and antecedents would have been posted to the lists. This is analogous to

backchaining.

Note that the primary interest at this point is in finding sessions that are affected by the change in the

parameter threshold. In the Detailer KBSOS there are only five variables that can affect a session: (1)

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Leaming 197



search_strategy, (2) region_of_fit, (3) starting point, (4) step-size, and (5) design. If none of these factors
shows up on the list generated above of affected parameters, then there is no reason (o pursue parameter
modification any further; if, however, at least one of the previously mentioned five factors is affected, then
the range-of-parameter-sensitivity module must be called. Since all five factors are affected, further effort
is necessary. Continuing to follow the same logic as illustrated in Figure 5.11, the Sessions Base is
examined to see which of the many sessions there are affected by a change in CV. Five sessions are

identified, and we call them session 1 to session 5 here for simplicity.

Some of the information stored in the Sessions Base regarding these sessions is included in Table 5.4.
Note that each row entry in that table consists of an entire simulation optimization session actually
conducted in the past. As can be seen in Table 5.4, past sessions were conducted using different model
conditions (e.g., different demand distributions), each taking a different number of runs to reach
optimality, which itself varied from case to case. Note that all optimizations in Table 5.4 were performed
using a “Simplex” experimental design; this is not surprising because all CV’s are below CV = 0.05.
Table 5.1, rule var2, indicates that consequently random_error = small; Table 5.2 , rule simplex_1,
informs that search_strategy = RSM_I, which is the Simplex search. Also note from Table 5.4 that the

range-of-parameter-sensitivity = (0.0021, 0.0216)

Table 5.4. Some Sessions Base Data

Session Demand Search Response  Optimal Runs
Name Distribution Strategy Cv Cost/Day  Made
1 Unif(0.19, 0.21) Simplex 0.0021 $2.82 65
2 Exp(0.20) Simplex 0.0085 $2.86 55
3 Gamma(0.25, 0.80) Simplex 0.0105 $2.81 39
4 Gamma(0.1111, 1.80) Simplex 0.0200 $3.79 28
5 Gamma(0.05, 4.0) Simplex 0.0216 $4.08 30

The experimental-design module is invoked next to perform a line search using the value of the parameter

taken from the low-confidence parameter list (CV = (.5) and the range-of-parameter-sensitivity (0.0021,

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 198



0.0216). Note that the situation we have is that of Figure 5.12b; we will be examining parameter changes
“from above.” This situation is redrawn in Figure 5.12d, where the CVs of the five sessions are shown

explicitly within the range-of-parameter-sensitivity.

The experimental designer first tries moving the parameter CV = (.5 to that of session 5. It does this by
scheduling an entire simulation optimization under the same conditions as before, except that now rule
var2 in Table 5.1 will be IF CV < 0.0216. This results in the search strategy shifting from RSM_I

(Simplex) to RSM_II (Full Factorial).

The results obtained constitute an improvement in that there is a tie on cost (i.e., costs are within 10% of

each other), but the number of runs is reduced from 30 to 25.

Since session 5 resulted in an improvement with the change in CV from 0.5 to 0.0216, a further shift in
CV from 0.0216 to 0.0200 (session 4) is considered. Therefore, another entire simulation optimization is
conducted on session 4’s condition, this time using a Full Factorial design. As there is a significant
improvement in cost from $3.79/day to $2.69/day (a 41% improvement), another shift in CV, to that of
session 3 is considered. Since performance deteriorates (tie on cost, but runs more costly), the process
terminates. As the recommendation from the Discovery Leamer is to change the CV, rules var2 and var3
in the classifier knowledge base are modified. The factor CV is left on the Low-Confidence Parameter

List for further investigation by the Learmer after new sessions are accumulated.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Leaming 199



Range-of-Parameter-Sensitivity
i .' I ............................ .»

5.12a. From below

Range-of-Parameter-Sensitivity
< .......................... L__S

5.12b. From above

Range-of-Parameter-Sensitivity

*—=5 —o
I

5.12¢. From within

Range-of-Parameter-Sensitivity

e 9

Session 1 2 3

5.12d. The case involving the five relevant sessions in the Sessions Base.

Figure 5.12. Examples of Line Search

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 200



CONCLUSIONS AND FUTURE WORK

Previous research has emphasized the advantages of building a knowledge-based simulation optimization
system and of the potential for an embedded learner. Whereas earlier work describes the architecture of
such a learner, this research reports on a leamer (or portions thereof) we have actually built and its
experiences in adapting itself to a history of simulation runs of inventory problems. The Learner itself
was changed to include the concept of discovery learning, whereby the optimizer develops its own agenda

of problems to pursue.

The example described in this research successfully experimented in changing a parameter in the
knowledge base of the simulation optimizer, one of four types of learning (parameter modification)
described in the literature. Although the other three types of learning (specialization, rule modification,
and generalization) are in most ways easier than the learning shown here, it is not recommended that
these types of learning be pursued next. Rather it is believed that a study be made of incorporating
domain knowledge to see if the number of confounding factors in the experimental-design portion of the

Learner can be reduced.

What is meant by reducing the confounding factors is that there are often too many factors involved in
each simulation optimization session to identify which are important. For example, there is starting point,
inter-gridpoint spacing, and step size as well as CV, search method, etc. For the experimental designer to
hope to be able to attribute change to the proper factor, the other influences must be properly controlled.
This will result in huge experimental designs unless domain knowledge can be brought to bear to
eliminate possible confounding factors or to rule out the wisdom of testing on a factor by factor basis.
Further work is needed to identify more specifically which factors can be learned practically speaking, and

how domain knowledge can be included to reduce the complexity of the task. We believe this is the next

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 201



critical topic which must be pursued in the development of a Learner for a knowledge-based simulation

optimization system.

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learming 202



Chapter Six: Conclusions

Surface Study

In Chapter three a simple, inventory-simulation model was studied under four different experimental
design conditions. These conditions varied the coefficient of variance of demand and of lead time and
also examined two different levels of design conditions, i.e., the number of replications and the simulation
run length. A simple model was studied because it was believed that even a naive modeler intent on
finding the system optimum would be able to safely and properly use a technique such as RSM, a widely

used and respected approach.

The purpose of the study was to investigate common statistical measures over the search region. Both
point estimates (mean, standard deviation, coefficient of variation, signal-to-noise ratio) and region
measures and tests (normality of residuals, homogeneity of variance, significance-of-regression and lack-

of-fit) were examined.

Chapter Six: Conclusions 203



Point-estimate measures exhibited considerable sensitivity to experimental design conditions. This gave
rise to concerns that perhaps the simple inventory model might not be simple enough to conduct
simulation-optimization searches using methods requiring some parametric statistical tests. Regional

measures added some additional concerns.

That the appropriateness of various optimization approaches should be questioned was portrayed in a final
set of plots indicating which points of the overall search area were amenable to first-order RSM and which
were not. It was found that an important determinant of amenability was the inter-gridpoint spacing of
the gridpoints. The gridpoint spacing is a very important practical issue, as one conducting optimization
on a simulation model must be able to specify, e.g., in RSM, the (uncoded) size of the region of the first-
order designs and the step size to be taken along the path of steepest ascent/descent. It was found for a
spacing of A = 40 that in no case were more than 10% of the total number of regions appropriate for first-

order RSM. For A = 20, the range of appropriate percentages varied from about 25% to 78%.

Again, this is a relevant, practical finding. Individuals conducting optimization must be very careful not
to make experimental-region size too large, since then first-order parametric metamodels may only be
appropriate 10% of the time, whereas setting even a smaller region size will still lead to considerable

variability in achieving a properly executed search.

There are three implications of these findings. The first is that there is a need to develop a simulation-
optimization “pre-processor’” or “starter” that suggests both a starting point for the optimization and the
granularity of the problem, i.e., the inter-gridpoint spacing or some surrogate (chapter four addresses
this). Many times it is appropriate to assume that a “good-enough” starting point is known by an expert,
but even if so, it is not as clear that such an expert would have sufficient knowledge to specify an inter-
gridpoint spacing that is not too big, given the particular model variabilities (exogenous and endogenous)

and design conditions (run length and replications). Too small a spacing may be costly.

Chapter Six: Conclusions 204



The second implication of the findings of this research is that nonparametric metamodeling should be
examined. This is necessary not only because of the potential of violating parametric assumptions, but
also for another reason implied in this research: the benefits of global, nonparametric metamodeling.
Recall that in Figure 3.5 with two replications, multi-modal response surfaces were indicated (which was
incorrect). If RSM were attempted starting on the wrong “side” of such a simulation response surface, the
wrong optimum might be found. A possible alternative to parametric metamodeling such as RSM is
global nonparametric metamodeling, whereby the whole surface is modeled using a nonparametric
technique such as kemel smoothing or spline smoothing. In fact, some preliminary investigation (Keys,
Rees, Greenwood, (1995)) suggests that global, nonparametric metamodeling is very effective, seems

safer, and requires relatively few computer runs to obtain the optimum.

The third implication of this research is that a multi-strategy approach to simulation optimization be
explored. Since a response surface may vary considerably over the entire region in terms of both point
and region characteristics/measures, it stands to reason that different secarch techniques might be
appropriate and thus more successful in different areas of the search space. For example, RSM might be
appropriate in one area and random search in another. Initial studies on this have already been done

(Crouch, Greenwood, Rees, (1995), Greenwood, Rees, Crouch (1993)).

Chapter Six: Conclusions 205



Best First Search Approach

Chapter four defined a Starter for use in those simulation optimization cases where either the starting
point or the granularity of the problem are not known in advance. The Starter combines the artificial-

intelligence based best-first search with a divide-and-conquer strategy and a safety net.

Three examples have illustrated the Starter procedure. The first example showed that the Starter worked
on a “simple” simulation-optimization problem, while the second illustrated the process on a more
involved surface with twenty times the variance of the first. The final example represented a very difficult
surface to optimize, with multimodal behavior and large flat regions. The Starter worked quite well even
without the safety net in all cases, and obtained an optimal solution within 7% after one pass of the safety

net in all three cases.

A lower-bound estimate of the number of simulation runs N required by the Starter may be determined
based on the original user-specified region and inter-gridpoint minimal spacing. If a best case of the
minimal subdivisions in the divide-and-conquer step occurs, and if no ties occur among the most preferred

region at any point in the algorithm and the other regions, then for a square region with a granularity A ,

N=12+ 15m

range

where m = log, and l—o—l is the ceiling function.

u

For example, if A = 11 and the user specifies 48 < x < 400, then

range = 400 - 48 = 352

Chapter Six: Conclusions 206



352
m=log,| — (= 10g2|_32_|=5, and
11

N= 87 simulation runs.

Conversely, the maximum number of runs required over the specified range to completely cover a square

feasible region at a granularity of A if the Starter approach is ignored is

2
range
N= +1
AU
In the example above,
2
352
N=3 | — |+ 1| =3,267 simulation runs.
11

The potential savings using the Starter algorithm is great.

Future work on the Starter involves testing it on more surfaces. The results from these runs can be used to
ascertain how aggressiveness may be incorporated dynamically into the Starter process and also to
determine which metamodel should be used in estimating the performance of each region, as discussed in

chapter four.

Chapter Six: Conclusions 207



Building A KBSOS With Discovery Learning

Previous rescarch has emphasized the advantages of building a knowledge-based simulation optimization
system and of the potential for an embedded learner. Whereas earlier work describes the architecture of
such a learner, this research reports on a learner (or portions thereof) we have actually built and its
experiences in adapting itself to a history of simulation runs of inventory problems. The Learner itself
was changed to include the concept of discovery learning, whereby the optimizer develops its own agenda

of problems to pursue.

The example described in this research successfully experimented in changing a parameter in the
knowledge base of the simulation optimizer, one of four types of learning (parameter modification)
described in the literature. Although the other three types of learning (specialization, rule modification,
and generalization) are in most ways easier than the learning shown here, it is not recommended that
these types of learning be pursued next. Rather it is believed that a study be made of incorporating
domain knowledge to see if the number of confounding factors in the experimental-design portion of the

Learner can be reduced.

What is meant by reducing the confounding factors is that there are often too many factors involved in
each simulation optimization session to identify which are important. For example, there is starting point,
inter-gridpoint spacing, and step size as well as CV, search method, etc. For the experimental designer to
hope to be able to attribute change to the proper factor, the other influences must be properly controlled.
This will result in huge experimental designs unless domain knowledge can be brought to bear to
eliminate possible confounding factors or to rule out the wisdom of testing on a factor by factor basis.
Further work is needed to identify more specifically which factors can be learned practically speaking, and

how domain knowledge can be included to reduce the complexity of the task. We believe this is the next

Chapter Six: Conclusions 208



critical topic which must be pursued in the development of a Learner for a knowledge-based simulation

oplimization system.

Chapter Six: Conclusions 209



BIBLIOGRAPHY

Azadivar, F.(1992), “A Tutorial on Simulation Optimization,” Proceedings of the Winter Simulation
Conference, pp. 198-204.

Barton, R.R.(1992), “Metamodels for Simulation Input-Output Relations,” Proceedings of the Winter
Simulation Conference, pp. 289-299.

Box, G.E.P, and K.B. Wilson(1951), “On the Experimental Attainment of Optimum Conditions,”
Journal of the Royal Statistical Society, Ser. B, 13, 1, pp. 1-45.

Carbonell, J.G., R.S. Michalski, and T.M. Mitchell (1983) “An overview of machine learning,” Machine
Learning: An Artificial Intelligence Approach, Michalski, Carbonell and Mitchell, eds., Palo Alto,
CA: Tioga Publishing Company.

Conover, W.J., ME. Johnson, and M.M. Johnson (1981), “A Comparative Study of Tests for
Homogeneity of Variances, with Applications to the Outer Continental Shelf Bidding Data,”
Technometrics, 23, 4, pp. 351-361.

Conte, S.D., and C. de Boor(1980), Elementaryv Numerical Analysis: An Algorithmic Approach,
McGraw-Hill, New York.

Crouch, L W.M.(1992), Dissertation, A Knowledge-Based Simulation Optimization System with Machine
Learning, Department of Management Science, Virginia Polytechnic Institute & State University,
Blacksburg, VA.

Crouch, ILW.M., A.G. Greenwood, and L.P. Rees(1995), “Use of a Classifier in a Knowledge-Based
Simulation Optimization System,” Naval Research Logistics, to appear.

D’Agostino, R.B., and M.A. Stephens(1986), eds., Goodness-Of-Fit Techniques, Marcell Dekker Inc.,
New York.

Doran, J.E. and D. Michie(1966), “Experiments with the Graph Traverser Program,” Proceedings of the
Roval Society of London, Ser. A, 294, pp. 235-259.

Encyclopedia of Artificial Intelligence(1987), S. Shapiro ed., John Wiley & Sons, NY.

Bibliography 210



Frawley, W.J., G. Piatetsky-Shapiro,and C.J. Matheus (1992), “Knowledge Discovery in Databases: An
Overview,” Al Magazine, 13(3): pp. 57-70.

Glaser, R.E.(1983), “Levene’s Robust Test for Homogeneity of Variance,” Encyclopedia of Statistical
Sciences, 4, pp. 608-610.

Good, I.J, R.A. Gaskin(1971), “Nonparametric Roughness Penalties for Probability Densities,”
Biometrika, 58, 2, pp. 255-277.

Greenwood, A.G., L.P. Rees,and I.W.M. Crouch(1993), “Separating the Art and Science of Simulation
Optimization: a Knowledge-Based Architecture Providing for Machine Learning,” /IE Transactions,
25(6), pp. 70-83.

Holland, J.H., K.J. Holyoak, R.E. Nisbett, and P.R. Thagud(1986), Induction: Processes of Inference,
Learning, and Discovery, Cambridge, MA: MIT Press.

Jacobson, S.H.,, and L.W. Schruben(1989), “Techniques for Simulation Response Optimization,”
Operations Research Letters, 8, 1, pp. 1-9.

Keys, A.C., L.P. Rees, and A.G. Greenwood(1995), “A Performance-Based Study of Nonparametric-
Metamodeling Techniques for the Classification of Response Surfaces in Simulation Optimization,”
working paper.

Keys, A.C., L.P. Rees, and A.G. Greenwood(1995), “Implementing Nonparametric-Metamodeling
Techniques in a Classifier Knowledge-Based Simulation Optimization System,” working paper.

Klimasauskas, C., J. Guiver, and G. Pelton (1989), NeuralWorks Professional II and NeuralWorks
Explorer, Pittsburgh, PA: NeuralWare, Inc.

Miiller, H.(1984), “Optimal Designs for Nonparametric Regression,” Statistics and Probability Letters, 2,
pp- 285-290.

Mathewson, S.C.(1984), “The Application of Program Generator Software and Its Extensions to Discrete
Event Simulation Modeling,” /IE Transactions, 16, pp. 3-18.

Meketon, M.S.(1987), “Optimization in Simulation: A Survey of Recent Results,” Proceedings: Winter
Simulation Conference, pp. 58-67.

Michalski, R.S (1986), “Understanding the nature of learning: issues and research directions,” Machine
Learning: An Artificial Intelligence Approach, Michalski, Carbonell and Mitchell, eds., Los Altos,
CA: Morgan Kaufman Publishers, Inc.

Myers, R.H.(1971), Response Surface Methodology, Allyn and Bacon, Boston.

Bibliography 211



Neter, J., W. Wasserman, and M.H. Kutner(1985), Applied Linear Statistical Models, (2nd edition),
Irwin, Illinois, pp. 618-622.

O’Keefe, R.M.(1986), “Advisory Systems in Simulation,” in E. J. H. Kerckhoffs, G. C. Vansteenkiste, and
B. P. Zeigler (Eds.) Artificial Intelligence Applied to Simulation, The Society for Computer
Simulation, San Diego, CA, pp. 73-78.

Pritsker, A.A., and P.J. Kiviat(1969), Simulation With GASP 11, Prentice-Hall, Engelwood Cliffs, NJ.

Pritsker, A.A., and C.E. Sigal(1983), Management Decision Making--a Network Simulation Approach,
Prentice-Hall, Englewood Cliffs, NJ.

Quinlan, J.R. (1986), “Induction of Decision Trees,” Machine Learning, 1(1), pp. 81-106.

Quinlan, J.R.(1979), “Discovering Rules by Induction from Large Collections of Samples,” in D. Michie
(Ed.), Expert Systems in the Microelectronic Age, Edinburgh University Press, pp. 168-201.

Rumelhart, D.E. and J.L. McClelland(1986), Parallel Distributed Processing, vol. 1, Cambridge, MA:
MIT Press.

Safizadeh, M.H. (1990), “Optimization in Simulation: Current Issues and the Future Outlook,” Naval
Research Logistics, 37, pp. 807-825.

Simon, H.A. (1983), “Why should machines learn?” Machine Learning: An Artificial Intelligence
Approach, Michalski, Carbonell and Mitchell, ed., Palo Alto, CA: Tioga Publishing Company.

Slade, S.(1991), “Case-based Reasoning: A Research Paradigm,” Al Magazine, 12(1), pp. 42-55.

Siochi, F.C. (1993) Dissertation Proposal, Building a Knowledge-Based Simulation Optimization System
with Discovery Learning, Department of Management Science, Virginia Polytechnic Institute & State
University, Blacksburg, VA.

Smith, D.E.(1973), “An Empirical Investigation of Optimum-seeking In the Computer Simulation
Situation,” Operations Research, 21(2), pp. 475-497.

Stanwood, K.L., L.N. Waller, and G.C. Marr(1986), “System Iconic Modeling Facility,” Proceedings of
the Winter Simulation Conference, pp. 531-536.

Tocher, K.D.(1966), “Some Techniques of Model Building,” Proceedings of the IBM Scientific
Computing Symposium on Simulation Models and Gaming, IBM, White Plains, NY, pp. 119-155.

Tocher, K.D.(1962), The Art of Simulation, English Universities Press, London.

Bibliography 212



Toothaker, L.E.(1991), Multiple Comparisons for Researchers, Sage Publications, Inc., Newbury Park,
CA.

Wilson, J.R.(1987), “Future Directions in Response Surface Methodology for Simulation,” Proceedings:
Winter Simulation Conference, pp. 378-381.

Winston, P.H.(1984), Artificial Intelligence, Addison Wesley, Reading, MA.

Bibliography 213



APPENDIX A ~

In the simulation used in Examples 1 and 2 of chapter three, the implicit time unit is assumed to be one
day. Demand for both examples comes from a gamma distribution, I'(a, B), where o is the shape
parameter and [ is the scale parameter. Demand for both examples has a mean of 0.2 days. Example 1,
however, has a shape parameter of 1.0, indicating an exponential distribution, whereas Example 2 has an
a of 0.05. Example 1 also has a deterministic lead time of zero, whereas Example 2 has a lead time
following a truncated normal distribution. The simulation is designed to start at the beginning of a cycle
and to terminate on the completion of a cycle. A cycle (T) is defined to exist from the moment just after

an order arrives until the time the next order arrives (see Figure 3.1).
The simulation model has four main events:
e Initialization

e  Arrival-of-Demand

e Arrival-of-Order

e Termination
Initialization specifies the values of several system parameters and variables. A sequence of arrival-of-
demand and arrival-of-order events follows initialization, thereby starting the actual simulation. The

simulation consists of a warm-up period followed by a study period. After the warm-up period all

Appendix A 214



statistics are reset to zero, and statistics collection for the study period begins. At termination, the

performance measure is calculated.

The four main events can be broken down into activities.

The Initialization event has the following activities:

e Set decision variables Q and R (They do not change during the simulation run.)
e Set Inventory and Inventory Position to Q
e  Set Number of Back Orders and Number of Orders to zero

e  Set the minimum time for warm-up (250 days) and statistics collection (1000 days)

The Arrival-of-Demand event has two activities:

e  Check Order
If Inventory Position is less than or equal to R then

Place Order
Increment Inventory position by Q
Schedule Arrival-of-order

*  Process Demand
If demand can be met from inventory then

decrement Inventory and Inventory Position
If demand cannot be met then

Satisfy whatever can be satisfied from Inventory

Set number of backorders to the portion of demand that cannot be satisfied

If this is the first time in the cycle that Inventory cannot satisfy demand then
Set Inventory and Inventory Position to zero (0)

If this is not the first time in the cycle that Inventory cannot satisfy demand then
Subtract demand from Inventory Position

The Arrival-of-Order event has three activities:

¢ Process Order
Satisfy backorders as possible

Increment Inventory Position by Q
If Inventory Position is greater than zero then

Set Inventory to Inventory Position

Appendix A 215




e  Check Order
If Inventory Position is less than or equal to R then

Place Order
Increment Inventory position by Q
Schedule Arrival-of-order

e Check-for-End-of-Cycle
If current time is > warm-up time (250) and it is still the warm-up period then

Set the period to statistics collection
Set simulation termination time to current time plus statistics collection time (1000)
Set total warm-up time to current time
Set number of orders to zero (0)
Start statistics collection
If current time 2> simulation termination time then
Terminate Simulation

The Termination event has one activity

¢  Generate Report
Calculate Statistics

Average Daily Inventory

Average Daily Backorder

Total number of orders

Total Cost for run normalized to Average Daily Cost
Print Q, R, Average Daily Cost

The four events occur during four separate stages, an initialization stage, a warm-up stage, a statistics-
collection (study) stage, and a reporting stage. The four stages are sequential as shown in the following

diagram.

IInitialization Stage Warm-up Stage Statistics Collections Staggcl—PIReporting Stage |

The initialization stage corresponds to the initialization event. Both the warm-up stage and statistics-

collection stage are a series of arrival-of-demand and arrival-of-order events. The reporting stage

corresponds to the termination event.

Appendix A 216




The following diagrams show how the arrival-of-demand and arrival-of-order events interact in the warm-

up stage.

Process Demand

Demand Arrives

Check Order If inventory position < R lSchedule Order Arrival

Check for End of Cyclel

Order Arrives

If inventory position <R lSche dule Order Arrival

The statistics collection stage has the same basic events. The check-for-end-of-cycle activity is shown in
greater detail below showing the termination of warm-up and the beginning of statistics collection. The
difference between the warm-up and the statistics-collection stages is that the statistics that are collected

in the warm-up stage are discarded.

Terminate Wamm-up
and start Statistics
Collection

If current time > Minimum warm-up time
and it is still wanm-up period

Check for End of Cycle

Terminate Simulation

The reporting stage essentially starts at the end of the simulation. The measure of performance is the total
cost of the simulation run normalized to a daily cost. Total cost is composed of holding cost, backorder
cost, and order cost. The holding cost and backorder cost are based on inventory and backorder levels,
which are maintained by the simulation program as time-persistent variables. The daily order cost for the
duration of the statistics-collection stage is calculated as the cost per order times the number of orders

placed during the study period, divided by the duration of the statistics-collection stage {expressed in

Appendix A 217



days). Summing the holding cost, backorder cost, and order cost gives the daily cost for the simulation

run. The output of the reporting stage is the (Q, R) pair and its associated daily cost.

Appendix A 218



APPENDIX B

Psuedocode for the best-search algorithm of chapter four is as follows:
MAIN

User

The user specifies the dimensionality (k) of the simulation-optimization problem.
The user specifies whether optimization is minimization or maximization.

The user specifies the region to be optimized.

The user specifies the minimum inter-gridpoint spacing, A,,.

Initialize

If the user-specified region is not convex, create the minimum number of polygons

(each of which is convex, by definition).

Define each polygon as a “promising region” or as a “region,” for short.

Initially define E = list of promising regions to be explored = {@}.

Initially define D = list of regions to be discarded = {g}.

Define each vertex of each polygon as a “gridpoint.”

Define A, as the inter-gridpoint spacing along dimension i.

If unspecified by user above, set A; = 3.125% of initial range in direction i

(Halving 100% five times (50; 25; 12.5; 6.25; 3.125) so that the search is limited to five levels).
Run replications (e.g., 3 - depending on aggressiveness) at each gridpoint of all regions.

Place all regions on the list £.
SORT the list £, with the most preferred region on the front of the list.

Appendix B 219



Best-first search with safety net

Repeat
While the list £ is not empty
Take the first region X off list .
Initialize stop_criteria(® ) = false.
While not(stop_criteria(% ))
SUBDIVIDE region .
Perform multiple comparison test on list £
Sort list £ with the most promising region at the front of the list
End while
End while
SORT list © with the most promising region at the front of the list
While the list D is not empty
Perform SAFETY NET on list D.
End while
Until list £ and list D are empty

STOP
END MAIN

LOGICAL FUNCTION STOP_CRITERIA(R)

/* User specified stopping criterion */
If user-supplied A, is reached then

stop_criteria = true
annotate the region X as having reached A,

RETURN
endif.
If assumptions_are_met(% ) then
/* gradient search looks promising */
If FRpgR 18 significant and Fy i is not significant for this X then

stop_criteria = true
annotate the region % as being good for RSM.
RETURN

endif.

/* Region is flat */

If FREGR and FLOF are both not significant for this X then
stop_criteria = true
annotate the region R as not being good for RSM.
RETURN

endif.

endif.

RETURN
END STOP_CRITERIA(R)

Appendix B

220




LOGICAL FUNCTION ASSUMPTIONS_ARE_MET(R )

/* If errors are not normal */
If Shapiro-Wilk test is significant then
assumptions_are_met = false;

else

/* If errors are normal but do not have homogeneous variance */

if Bartlett-Box test is significant then
assumptions_are_met = false;

else
/* If errors are normal and have homogeneous variance */
assumptions_are_met = true.

RETURN

END ASSUMPTIONS_ARE_MET(R)

PROCEDURE SUBDIVIDE(R)

Define the list T as a temporary list.
/* Take the parent off the list */
Remove R from list £

For each dimension 1 in the problem space /* 1 £1 <k */

bisect each region X boundary along the tth axis

create a new gridpoint at each bisected boundary if one does not already exist
Next 1.

Without straying outside the region,
form the Cartesian product of each new gridpoint, thereby creating more new gridpoints.
Run replications (e.g., 3) at each of the new gridpoints that do not already have runs.

Create up to 2K new, non-overlapping, smaller regions completely covering R,
Place each new region on the list 7.
Perform MULTIPLE_COMPARISON_TEST on list T
/* Testing the new regions only */
RETURN
END SUBDIVIDE(R )

Appendix B 221



PROCEDURE MULTIPLE_COMPARISON_TEST(x )
/* This tests whether the regions ® on the list X differ statistically with respect to their means. */

If ® * is not in X then add R * to X and call the new list xX*
If homogeneity_of_variance(X’) is true then

Perform Tukey-Kramer multiple comparison test on list X"
else

Perform Scheffe multiple comparison test on regions on list X*

For each region X on X:
If % is not different from the most preferred region R * then
If ® is not on the list £
Place ® on the list £

else
If R is on the list £ then
Remove K from the list £
Place Z on the list ©
Next region % on X:

RETURN
END MULTIPLE_COMPARISON_TEST(x )

LOGICAL FUNCTION HOMOGENEITY_OF_VARIANCE(X)

/*Define violation as a logical variable that is set to true if normality assumption is violated */
violation = false
For each ® on X:
/* If errors are not normal */
If Shapiro-Wilk test is significant then
violation = true;
Next % on X.
homogeneity_of_variance = true.

If violation = false then
if Bartlett-Box test is significant then
homogeneity_of_variance = false;
else
if Levene’s Median test is significant then
homogeneity_of_variance = false.

RETURN
END HOMOGENEITY_OF_VARIANCE(X)

Appendix B

222




PROCEDURE SAFETY_NET(D)

Call the smallest A encountered for any region so far A ..

Take region R at the front of D.
/* Call the A for this region Ap. */

If stop_criteria (®) then
RETURN.

Get the best region found so far, R*.
If AR 2 44, then

If sig_better (X, R* then
Place region R on the list £

else
Perform BUMPINESS on the region % ;
else
If sig_better (R, R then
Place region R on the list £
else
REMOVE region % from the list D
RETURN

END SAFETY_NET(®)

LOGICAL FUNCTION SIG_BETTER(ZR , X"

/* If R is significantly better than &% then sig_better is true. */
Let X = list comprised (only) of 2 and R ™

If homogeneity_of_variance (X) then

Perform TUKEY-KRAMER comparison test on X
else

Perform SCHEFFE comparison test on X.

If appropriate test above (R > R *)is significant then
sig_better = true

else
sig_better = false.

RETURN
END SIG_BETTER(Z,, R

Appendix B

223




PROCEDURE BUMPINESS(R)

/* To get to this point, & has been shown to be inferior to K* But R still covers a relatively large

area, i.e., it still has a large A relative to A . */

REMOVE region R from the list D.

Bisect the region ® along each axis.
Make sure all runs for all gridpoints have been recorded.
For each gridpoint that does not have runs, run replications (e.g., three).

Calculate bumpiness (an approximation to the second derivative) in the direction of all axes as
follows:

_Ha-h)-2f(a) +f(a+h)

=~ 2

f*(a)

If ® has significant bumpiness in the direction of optimization then
/* if the problem is maximization and the bumpiness indicates a maximum or */
/* if the problem is minimization and the bumpiness indicates a minimum, then */
For each subregion R of R

if not stop_criteria(ﬂ(,i) then
PLACE subregion R.;on the list £.

next R ;.

RETURN
END BUMPINESS(R))

Appendix B 224




VITA

The author was born in Manila, the Philippines, on February 25, 1962. He graduated from the Ateneo de
Manila Grade School (Honors Program) in 1976, Ateneo de Manila High School (Honors Program) in
1980 and Ateneo de Manila University with a Bachelor of Science in Management Engineering (Honors
Program) in 1984. He finished his MBA (concentration in Management Science) at Virginia Polytechnic

Institute and State University in 1988.

He worked in the Computer Science Department and Management Science Department as a graduate
teaching assistant. He was accepted into the doctoral program in Management Science prior to
completion of his MBA. As a doctoral student, he continued as a graduate teaching assistant and also was
a part-time lecturer in the Management Science department. He graduated with a Doctor of Philosophy

degree in Management Science on November 1, 1995.

The author is currently working as an Operations Research Analyst at RV Industries in Atlanta, GA.

Vita 225



