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(ABSTRACT) 

Simulation optimization is a developing research area whereby a set of input conditions is sought that 

produce a desirable output (or outputs) to a simulation model. Although many approaches to simulation 

optimization have been developed, the research area is by no means mature. 

This research makes three contributions in the area of simulation optimization. The first 1s fundamental 

in that it examines simulation outputs, called “response surfaces,” and notes their behavior. In particular 

both point and region estimates are studied for different response surfaces: Conclusions are developed 

that indicate when and where simulation-opumization techniques such as Response Surface Methodology 

should be applied. 

The second contribution provides assistance in selecting a region to begin a simulation-optimization 

search. The new method is based upon the artificial intelligence based approach best-first search. Two 

examples of the method are given. 

The final contribution of this research expands upon the ideas by Crouch for building a “Learner’’ to 

improve heuristics in simulation over time. The particular case of parameter-modification learning is 

developed and illustrated by example. 

The dissertation concludes with limitations and suggestions for future work.
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Chapter One: Introduction 

Simulation 

Simulation has evolved from custom programs to simulation languages that assist in model development. 

Early custom programs required expertise in simulation as well as in programming skills. Since each 

simulation was a custom job, it meant “reinventing the wheel” each time. The earlier simulation 

languages provided procedures that were common to most simulations, such as keeping track of an event 

calendar. Later, improvements added the ability to develop the simulation model graphically. The trend 

in simulation languages has been to reduce time spent on tasks not directly related to model development. 

Development and use of simulation models typically require expertise in several disciplines (statistics, 

numerical analysis, systems analysis). Research is underway to build programs that assist in the model 

development process. The apparent driving force for a lot of this work is simulation’s usefulness as an 

effective decision making tool, including the ability to predict system behavior under different input 
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conditions, and the ability to conduct “what-if” analysis. A relatively recent use of simulation 

optimization, the determination of a set of inputs that produces an optimal (or desired) output. 

Although simulation is very good at predicting the output(s) for a given state of a system, simulation 

optimization is not a simple and direct extension of simulation. Rather simulation optimization has 

adapted search and design techniques to meet its needs. Simulation optimization techniques include 

response surface methodology, simulated annealing, single factor search, random search, and genetic 

algorithms. The application of these techniques can be very time consuming computer-intensive, and/or 

costly. 

A primary focus of simulation optimization is deciding which search strategy/technique is appropriate and 

how many computer runs to invest in the effort. These decisions are often made with little information 

about the nature of the simulation response (called the “response surface”), including presence of multiple 

optima, degree of variance, and activity of different input factors. One such approach suggested by 

Crouch (Crouch, 1992) and expanded upon by Crouch, Greenwood, and Rees (1995) is to make computer 

runs in a manner that leads to a characterization of the response surface, from which the most appropriate 

strategy can be inferred. 

In particular, Crouch (1992) formulated a knowledge-based system to guide the selection of an appropriate 

strategy for simulation optimization. She developed a scheme for classifying a response surface and then 

applying heuristics to choose the most appropriate search strategy. As the search progressed and more 

information about the surface became available, the knowledge-based simulation optimization system 

(KBSOS) reclassified the response surface and changed the search strategy accordingly. However, her 

approach was never tested on real simulations, but rather was used with a known mathematical function 

that emulated a simulation. 
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In this dissertation the KBSOS presented in Crouch is tested on actual simulation models. An alternative 

scheme for response surface classification and search strategy selection is presented, as is an alternative 

approach for the selection of initial points. 

Crouch also presented a framework for machine learning in the context of the knowledge-based 

simulation optimization system. The goal of her “learner” was to improve the ability of the KBSOS to 

guide future optimizations. Specifically, the heuristic knowledge (rules) in the knowledge base were 

improved (e.g., rules were added, modified, or combined). Her learner made judgments using information 

from two sources. The first source was past experience -- all the information generated during previous 

simulation optimizations. The second source was results of experiments that the learner had performed to 

test hypotheses regarding KBSOS rules. 

It is the framework of Crouch that serves as the blueprint here for the construction of an improved 

“learner.” We introduce discovery systems (Frawley et al., 1992) to take advantage of the past history that 

the system has diligently collected. 

The next sections of this chapter present concepts and terms that are foundational to the following 

discussions of the knowledge-based simulation optimization system and learner. First, simulation and 

issues in simulation optimization are explored. Expert or knowledge-based systems, machine learning, 

discovery systems, and knowledge-based simulation optimization are discussed in the following four 

sections. Finally, the motivation for combining simulation optimization with a knowledge-based system 

and discovery learning is presented, and the plan for the rest of the dissertation is given. 
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Simulation and Simulation Optimization Issues 

Simulation is commonly recognized as one of the most widely applied computer modeling techniques in 

use today. Its popularity is evidenced by the large number of applications documented in the literature 

and the extensive breadth of problem domains to which it has been applied. With the advent of rapidly 

advancing computer technology, the widespread use of simulation is expected to accelerate. The value of 

simulation is that it permits the study of systems that cannot feasibly be constructed or experimented upon 

in the “real world,” and which are too complex to be analytically modeled. Simulation is very useful in 

predicting the output of a system or its response to a given Set of input conditions. However, it does not in 

and of itself indicate the input conditions required to achieve a desired response. Simulation is an 

evaluative methodology and not an optimization technique. 

In many cases the strategic objective of a study is to find the best solution for the system under 

investigation, i.e., optimize the system’s performance. When the search for the optimal solution involves 

the use of data obtained from a simulation model, the analysis involves the process of simulation 

optimization. The optimization process is complicated by the presence of random error, often the result of 

the combined random effect of uncontrollable conditions. 

Note that simulation optimization is referred to as a process and not as a technique, methodology, or 

algorithm. In fact, the process of simulation optimization typically utilizes a wide range of mathematical 

and Statistical tools. There is no single or standard approach to optimizing a system where the data for 

the analysis is based on experiments conducted with a simulation model. Some approaches focus on a 

single simulation run (e.g., frequency-domain analysis, perturbation analysis). Others focus on a search 

process that involves multiple simulation runs. Within this approach, which is the most common, there 

are many philosophies on how the search should be conducted. For example many approaches utilize the 
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data to fit metamodels (e.g., response surface methodology, neural networks, nonparametric regression); 

others are free of underlying model assumptions (e.g., random search, Box’s complex search, genetic 

algorithms). Yet another approach (Crouch, Greenwood, Rees, 1995) (Greenwood, Rees, Crouch, 1993) 

proposes a multi-strategy process that utilizes the “best” methodology based on current experimental and 

synthesized knowledge of the search environment. This brief discussion of the approaches to simulation 

optimization is meant to illustrate the diverse and varied literature that exists to solve this difficult 

problem. It is beyond the scope of this section to review all of these approaches to simulation 

optimization. Therefore, the interested reader should refer to overview or literature review articles and 

introductory texts on the subject, e.g., (Azadivar, 1992) (Barton, 1992) (Jacobson, Schruben, 1989) 

(Meketon, 1987) (Myers, 1971) (Safizadeh, 1990). 

In general, the simulation optimization problem can be expressed as: 

Optimize: E[Y] = E[f( X | Z)] (1) 

Subject to: h(X) < 0 (2) 

where the responses that are to be optimized, Y = (Y1, Y2, ..., Ym), are functions of controllable factors, 

X = (X], X 2, .... Xp), uncontrollable conditions, Z, and random error, e; i.e., Y = E[Y] + e= fC X |Z) = 

E[f( X | Z)] + e. Each response Yj is a random variable and takes on a set of values for the same setting of 

the controllable factors, i.e., there is some distribution of Yj values for each combined level of the 

controllable factors. To model this behavior each response is oftentimes considered equal to the sum of a 

constant and a noise term that represents the random error, where the constant is the expected value of the 

response, E[ Yj], for a specific combination of factor settings. Therefore, due to the presence of random 

error, the optimization process typically focuses on the expected value of the responses. But, while the 

goal is to optimize E[Yj], only Yj; is observable. Also, each objective regarding Yj involves either the 

absolute maximization (or minimization) of Yj or the achievement of Yj to exceed some goal by a 
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specified tolerance. The simulation optimization problem is constrained, at least by the bounds of the 

region to be explored. As shown in (2), h(X) is a vector of deterministic constraints typically of the form: 

L<xX<UorL § f(X) < U, where L and U are the lower and upper bounds of the search region, 

respectively. Typically the regional boundaries change as the search process progresses. For example, as 

more information becomes known about the search environment and characteristics of the surface, the 

search region narrows so as to include only the most promising sector(s). The domain of the region may 

be either continuous, discrete, or mixed. 

Knowledge-based Systems 

Expert or knowledge-based systems is a branch of artificial intelligence that has grown in prominence and 

application in the last ten to twenty years. Feigenbaum has defined an expert system as “an intelligent 

computer program that uses knowledge and inference procedures to solve problems that are difficult 

enough to require significant human expertise for their solution” (Harmon and King 1985). Expert 

systems are set apart from traditional computer applications in that they can: manipulate symbols (words, 

phrases, lists of words, etc.); reason using heuristics (“rules of thumb” developed over time by experts); 

function with uncertain or incomplete knowledge (traditional programs usually stop executing if needed 

information is unavailable); and explain how a conclusion was reached or why requested information is 

needed. 
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The benefits of expert systems are many. An expert’s knowledge about his/her field of interest can be 

captured in an expert system, making it available to non-experts, freeing up the individual to tackle other 

important problems and tasks, and providing a mechanism for “keeping the knowledge alive” even after 

the expert leaves the firm or organization. If the application is one for which a team of experts is usually 

required, the expert system makes it possible to have the expertise of these different individuals available 

in one place, twenty-four hours per day, seven days per week. Expert systems do not have “off” days -- 

they do not get sick or take vacations, and they always remember everything they have learned. 

These benefits address some of the issues raised in the last section. An expert system could give a non- 

expert access to simulation optimization expertise; this could encourage more use of simulation and 

Simulation optimization. Also, simulation optimization expertise and research findings could be 

assembled in one expert system, whereas now the information is distributed in time and geographical 

location among many different researchers, practitioners, and publications. 

Rolston (1988) describes a typical expert system architecture as having five parts, as shown in Figure 1.1. 

The knowledge base contains domain-specific knowledge: facts, procedural rules (well-defined rules that 

describe invariant sequences of events and relations), and heuristic rules (rules of thumb usually 

developed through years of experience which provide direction when procedural rules are not available or 

relevant). The inference engine retrieves knowledge from the knowledge base and infers new knowledge 

from it as required by the user. The explanatory facility, when asked, provides the user with explanations 

of how a conclusion was reached or why certain information is being requested from the user. The 

knowledge update facility is a mechanism for updating and/or modifying the knowledge stored in the 

system. Finally, the user interface connects the user to the other parts of the system. Expert systems are 

beginning to include another component, the program interface. This component allows expert systems to 

call and be called by external programs -- spreadsheets, databases, FORTRAN programs, etc. -- and 

greatly adds to their flexibility. 
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Figure 1.1. Expert system architecture 

Traditionally, expert systems have been written in the artificial intelligence languages LISP and 

PROLOG. The complexity of the systems and the languages in which they were written restricted the 

broad development, and therefore, use of expert systems. This situation has changed and continues to 

change dramatically since the advent of expert system shells. 

An expert system shell is just what the name implies -- the shell of an expert system. Shells contain all 

the components of an expert system except domain-specific knowledge. Hence one shell can be used to 

create a variety of expert systems by varying the knowledge base on which it operates. Shells are available 

for mainframes, minicomputers, and personal computers, with varying levels of complexity, flexibility and 

cost. For this research the shell VP-Expert (1989) is used on a personal computer. 

In recent years there has been a trend toward using the term “knowledge-based systems” instead of “expert 

systems” since not all such systems contain truly exclusive, expert-level knowledge. The terms are often 

used interchangeably; in this work knowledge-based systems is generally used. 
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Machine Learning 

Although the Crouch’s knowledge-based system provides guidance for carrying out simulation 

optimizations, it does not nor is meant to include all known search strategies or classification 

characteristics. These are things that can be added over time, as appropriate, via machine learning. 

“Machine learning” means that a computer system (the machine) improves itself over time (learns). How 

this can be done for simulation optimization is discussed in Crouch. Consider first why it should be done. 

According to Forsyth and Rada (1986), “learning algorithms attempt to achieve one or more of the 

following goals: provide more accurate solutions; cover a wider range of problems; obtain answers more 

economically; and/or simplify codified knowledge.” These goals can easily be translated into the 

simulation optimization context. The introduction of new search strategies or improved surface 

classification (which provides for more appropriate strategy choices) can result in more accurate solutions 

(closer to the true optimum) and more economical solutions (fewer simulation runs used to find the 

optimal response). Simplifying codified knowledge (i.e., the rules in the knowledge base) by removing 

classifications that do not contribute to strategy selection or by combining overlapping rules provides two 

benefits. It will streamline the knowledge base, thereby saving storage space and reducing execution time, 

and will increase our understanding of what information about a surface is essential to successful 

simulation optimization. 
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Knowledge Discovery and Discovery Systems 

Frawley, Piatetsky-Shapiro, and Matheus (1992) present a prototypical framework for knowledge 

discovery under a different setting than simulation optimization, namely databases. This framework is 

redrawn in Figure 1.2; it contains five components (besides the discovered knowledge itself). 

Application 

  

      
    

  

Discovery Method ; 
Discovered 

Knowledge 
  v 

Search/Evaluation     
        

  

DICT 

  

  

      
DOMAIN KNOWLEDGE 

Figure 1.2. The Frawley et al. Discovery Paradigm 

The Frawley discovery system has as its core the discovery method, which computes and evaluates 

patterns on their way to becoming knowledge. Note in Figure 1.2 that the discovery method has two 
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principle components: search and evaluation. Inputs to the discovery method include the database itself, 

its data dictionary (which defines field names, the allowable data types for field values, various constraints 

on field values, etc.), additional domain or background knowledge, and a set of user-defined biases that 

provide high-level focus. The output of the discovery method, of course, is discovered knowledge that can 

be directed to the user and/or fed back into the system as new domain knowledge. Frawley et al. note that 

both the user bias and the domain knowledge assist discovery by focusing search; i.e., these sources guide 

and constrain search by, for example, telling a system what to look for and where to look for it. These 

constraining influences are both desirable and undesirable: the former in that discovery is made easier, 

and the latter in that valuable discovery may be ruled out by the constraints. 

Frawley et al. (1992) point out that discovery algorithms inherently contain two processes: identifying 

interesting patterns and then describing them in a concise and meaningful manner. They note that the 

identification problem is essentially a problem of pattern identification or clustering, which in essence is 

the problem of finding classes such that the similarity within classes is maximized while the similarity 
  

among classes is minimized. For example, it might be important for a firm to discover that the major 

purchaser of its product is a particular set of individuals, whereas other individuals tend to have very little 

interest. Concept description involves the summarization of relevant qualities of the pattern classes rather 

than just enumerating them. For example, it would help the firm described above to know that the 

particular set of individuals is the class of white males between the ages of 15 and 20. According to 

Frawley, well-known approaches to concept description include decision-tree inducers (Quinlan, (1986)), 

neural networks (Rumelhart and McClelland, (1986)), and genetic algorithms (Holland et al., (1986)). 
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Knowledge-based Simulation Optimization 

A simulation model can be thought of as a “black box,”’ with controllable inputs feeding into the box, and 

the simulation model’s responses leaving the box as outputs. The simulation model provides an 

approximation of how the true system it represents would respond to the given inputs. Each response can 

be considered to be a function of the inputs with a random error term added. 

Figure 1.3 depicts the simulation-model box together with another black box in a feedback loop around it. 

This second box represents the simulation optimizer. The optimizer takes outputs of the simulation model 

and uses them to suggest new values for the inputs to the simulation model. The objective of the 

optimizer is to find inputs that will result in optimal or satisficing responses from the simulation model. 

  

Inputs 
P Simulation 

Model 

  

  

  

      Optimizer 

  

  

  

Figure 1.3. The simulation-optimization process 

The need for simulation optimization and the costs involved in it have motivated the development of 

different strategies to search for optimal-response-producing input levels. These strategies range from 
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random and single-factor searches to response surface methodology (RSM) to simulated annealing and 

genetic algorithms. Meketon (1987) divides simulation optimization strategies into three general 

categories: nonlinear programming techniques, RSM, and stochastic approximation. 

An important decision that must be made in simulation optimization is which search strategy to employ. 

Some work has been done to aid this decision, although Meketon concludes that “optimization for 

simulation, to date, remains an art, not a science.” He considers the information available (or assumed) 

about the simulation, and groups optimization methods accordingly to help narrow the choices. Safizadeh 

(1990) discusses a variety of strategies and their application and concludes that generally RSM approaches 

are most effective, although some new developments look promising. Smith (1973) performed an 

empirical study of the effectiveness of several search strategies (random search, single factor search, and 

four variations of RSM) on a variety of surfaces. He found that the relative effectiveness of each of the 

Strategies varied depending on the characteristics of the response surface (presence of local optima, 

random error, number of controllable inputs, etc.). 

Surveys of simulation optimization lead to the conclusion that organized guidance is needed to help users 

choose appropriate search strategies. Safizadeh (1990) explains that: “for successful design and analysis 

” 

of simulation, one should be well versed in several disciplines.” Because of this, users are inhibited from 

using simulation optimization (and thereby simulation). He concludes that there is, therefore, a need to 

“develop interactive programs that direct a user to an appropriate optimization technique.” 

In an earlier paper regarding selection of appropriate optimization technique, Greenwood, Rees, and 

Crouch (1993) pointed out that there is both art and science in simulation optimization. They further 

suggested that the art and science should be “separated” in a simulation optimizer, and, in particular, that 

procedural (e.g., third generation) languages should be used to model the science part, whereas 

knowledge-based approaches should be used to encapsulate the heuristics that make up the art portion. 

The particular architecture suggested consists of an inference engine, a knowledge kernel, and processing 
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support modules (see Figure 1.4). The knowledge kernel, in turn, contains three parts: a database to store 

results, a methodology base to store procedures, and a rule base to store heuristics and to provide control. 

Note that with this architecture, the fact that optimizer control is resident in the rule base implies that 

there is no set algorithm for simulation optimization; rather the inference engine (using, for example, 

backward chaining) can pursue a goal using whatever rules are in the knowledge base. This implies that 

if the rules are or can be changed, then, in essence, the optimization algorithm itself can change. 

Exploiting this notion, Greenwood et al. suggested that if results are stored in a database, and if “the 

algorithm” can be changed by changing rules, then the potential for “doing better” nexi time, i.e., 

“learning,” exists. This notion of a learner is shown in Figure 1.5. The basic idea is that historical 

observations are taken from the database in the knowledge kernel of the optimizer, processed by the 

learner, and then rules are either added, deleted, or changed back in the optimizer rule base. In this 

manner, not only can heuristics be modified and improved, but so can control of the entire system. 

Purpose of Research 

Although Crouch specified a classifier for strategy selection in the knowledge kernel, the system was 

demonstrated with a function rather than a simulation. Also, the method presented for determining the 

mapping between response surfaces and search strategies was limited to a few surface characteristics. Not 

all of the types of learning presented by Crouch were demonstrated, rather some were left for future study. 

It is these limitations that are now addressed. 
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Figure 1.4. Greenwood-Rees-Crouch simulation-optimization architecture 

In particular, this research tests the classifier approach as suggested in Crouch on actual simulation 

models instead of a function. The behavior of surfaces under different conditions is also studied to refine 

the method presented in Crouch. An alternative method for initiating the process is presented. 
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The first contribution of this research is the study of surface characteristics and their impact on search 

procedures. This provides some insight into the simulation optimization process. This dissertation lays 

some groundwork by examining the behavior of simulation response surtaces themselves. In particular, a 

simple, inventory-simulation model is studied under various experimental conditions; both point and 

region estimates of surface characteristics are determined and graphed while such factors as number of 

replications, simulation run length, and demand and lead-time variances are varied. 

It is found, for example, that even for this simple surface, such optimization techniques as first-order 

Response Surface Methodology (RSM) are inappropriate on anywhere from 21% to 98% of the feasible 

region, depending on the case. Three implications are noted: the need for a simulation-optimization 

Starter; the importance of examining global, nonparametric-metamodeling approaches to simulation 

optimization; and the desirability of investigating a mullti-strategy approach to optimization. The first 

major section of this dissertation concludes with a call for further research investigating all three 

suggestions. 

The second contribution here is the development of an alternative to Crouch’s shotgun procedure for 

selecting initial inspection points. This is a direct result of the findings of the surface characteristics 

study. Many simulation optimization approaches assume that a “good” starting point is identified, that 

the design grid (i.e., spacing of runs for searching) is known, and that only one basic search method need 

be employed. Often, however, one or more of these items is unknown or is inappropriate. These 

assumptions can lead to an unnecessary expenditure of simulation runs, failure to find the simulation 

optimum, and/or a false declaration of the optimal conditions. 

It is proposed here that an approach based on best-first search be used to determine the optimization 

Starting region, starting point, and design grid. Other key features of the method that work in concert 

with the best-first search are a divide-and-conquer strategy for partitioning the search space and a safety 
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net which acts as a conservative check to prevent permanent pruning of desirable regions. The 

methodology is demonstrated and shown to be successful on an example problem. 

The third contribution is the application of discovery learning concepts to the knowledge-based simulation 

optimization system of Crouch. The ideas generated are tested on simulations instead of a mathematical 

function 

Scope and Limitations 

Although significant, each of the three contributions outlined above has a limited scope. The first 

contribution, what we call here the surface characteristics study, is based on a single class of simulation 

models (inventory models), and hence is not completely generalizable. Moreover, the assumptions of each 

Statistical test are rigidly enforced; in some cases the tests may be robust to their assumptions. This has 

been ignored here and should be studied in further work. 

The second contribution, the best-first search starter, assumes that a first-order metamodel is fit in each 

region of the surface. Additional research should be conducted on alternatives to first-order metamodels 

such as second-order models and nonparametric metamodels. Again results presented in this dissertation 

have been based upon inventory models and should only be extended beyond this realm with care. 

The third contribution, the introduction of knowledge discovery in a learner, is developed for only one 

type (parameter modification) of learning. The approach designed here pertains to other types of learning 
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as well, but is not directly extensible to those. Additional research is needed to pursue these other kinds of 

learning. 

Plan of Presentation 

The next chapter surveys related literature, and especially delves more deeply into the work by 

Greenwood, Rees and Crouch. Chapter three presents the surface characteristics study and investigates 

the effect of surface behavior on search methods. Chapter four outlines the best first search starter and 

tests it on a simulation response surface. Chapter five describes how discovery system concepts are 

applied in the knowledge-based simulation optimization field and demonstrates this on one of Crouch’s 

types of learning. Chapter six summarizes contributions and presents a plan for furthering the state of the 

art in a learning knowledge-based simulation optimization system. 
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Chapter Two: Literature Review 

Simulation 

The development of simulation did not necessarily start out with the objective of making it a widely 

accepted tool. The initial attempts were perhaps focused on providing some means of analysis for 

problems that did not permit closed-form analysis. The improvements were geared to making it more 

accurate and reliable then on ease of use. The cost of computing would be.a problem until the rise of the 

micro (personal) computer. Once simulation became a tool more businesses could afford, it became 

necessary to make simulation programs easier to use. This would include efforts to take care of the entire 

process from model development to model refinement. It is at this point where Artificial Intelligence 

concepts started to be applied. 

One of the earliest simulation programs was developed by Tocher in the late 1950’s (Tocher, 1966). 

Tocher also authored one of the first texts (Tocher, 1962). Other languages that followed were GPSS at 

IBM and SIMSCRIPT at RAND. The computers of the period had short word lengths which made it 
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difficult to obtain accurate numeric results. At this stage it was possible to perform simulations on a 

computer but the skills and costs involved prohibited wide-spread use. 

The statistical aspects of simulation were the focus of the next stage in the development of simulation. 

Routines were developed for procedural languages like FORTRAN (Pritsker, Kiviat, 1969) to improve on 

random number generators and implement multiple replications. As computers became more powerful, 

numerical accuracy improved, and thus statistical refinements continued. These improvements would be 

necessary for wider acceptance of simulation as an analytical tool, but the requirement of significant 

programming skills was still a problem. 

The next shift in focus was to tools that reduced the programming burden. These tools were called code 

generators and would ask the user questions about the simulation to be developed and would then aid in 

producing the simulation program (Mathewson, 1984). lt became possible for the user to think of the 

simulation i terms of diagrams which could subsequently be translated into code by the simulation 

program. An example of this is Q-GERT (Pritsker, Sigal 1983). The work done in this area made it 

possible for non-programmers to develop simulation programs. However, analysis of results still needed 

improvement since the typical output tended to be voluminous and at times even cryptic. 

Simulation programs became available on a large scale as micro computers became cheaper and faster and 

more powerful. Many features of the original mainframe versions of simulation programs were also 

included. Simple (by today’s standards) animation was one of these. It was one of the improvements that 

helped in the analysis of output and in model validation, thereby making simulation programs accessible 

to more people. As the users of simulation programs increased so did the need for better tools for 

developing simulation models. There was also an increase in the complexity of the systems being 

modeled. 
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The response to these needs came in several forms, most of which have their roots in artificial 

intelligence. “Intelligent front ends” became the name of a class of software that generated the code 

needed to run simulation models of interest to a user. One such intelligent front end was developed for 

SLAM (Stanwood, Waller, Marr, 1986), some knowledge of SLAM was necessary in order to make use of 

the intelligent front end, in which machine learning concepts were used to generate a simulation model 

based on a representation of the actual system. In another intelligent front end, Quinlan’s (1979) ID3 

algorithm (see e.g., TRANS (O’ Keefe, 1986) represented conditional events as rules from examples rather 

than having the user develop the rules alone. Advisory systems (a type of expert system) would then 

extract in an interview with the user as much information about the particular system to be modeled. 

Based on the interview a set of experiments would be recommended. Stated again, the motivation was to 

relieve the user of many burdens in the process of developing a simulation model. 

Simulation remains primarily a descriptive tool rather than an analytical one. The typical scenario 

involves specifying a set of input parameters and then observing the results. But there are often economic 

(and other) reasons for finding a set of inputs that optimizes a particular output; e.g., one might want to 

know the number of tellers to keep on duty in order to minimize the waiting time of customers. This need 

has produced an area of study called simulation optimization. 
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Simulation Optimization 

Simulation is a widely-used computer modeling technique that has been applied to a broad scope of 

problems, ranging from traffic-flow analysis to job-shop scheduling to military-campaign planning. 

Simulation permits the study of systems which cannot feasibly be constructed or experimented upon in the 

“real world,” and which are too complex to be analytically modeled. When a given set of input conditions 

is applied to a simulation model, the model’s output, referred to as a response, provides an estimate of 

how the true system would respond to those inputs. Although simulation is very useful in predicting the 

output of a system or responses, it does not in and of itself indicate the input conditions required to 

achieve a desired response; i.¢., it is not an optimization technique, it is an evaluative methodology. The 

process of finding the input conditions that yield the optimal (or near optimal) system response(s) is 

referred to as simulation optimization, which can be a very expensive and time consuming activity. In 

other words, simulation evaluations address “what if” questions by providing performance measures for a 

given set of input conditions, whereas simulation optimization extends the evaluations to consider “what’s 

best” by seeking optimum values for the input conditions. 

The objective of simulation optimization is to determine the values of the input conditions, 1 controllable 

factors or decision variables, that opumize m responses, subject to a set of uncontrollable conditions 

(conditions that affect outcomes but are not under the influence of the decision maker). This process is 

complicated by the presence of random error, often the result of combined random effects of all of the 

uncontrollable conditions. This causes a response Yj to become a random variable and take on a set of 

values for the same setting of the controllable factors; i.e., there is some distribution of Yj values for each 

combined level of the controllable factors. To model this behavior each response is oftentimes considered 

equal to the sum of a constant and a noise term, where the constant is the expected value of the response 

E[Yj] for a specific combination of factor settings, and the noise term represents the random error. Due to 
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the presence of random error, the optimization process typically focuses on the expected value of the 

responses; however, while the goal is to optimize E[Yj], only Yj is observable. Jacobson and Schruben 

(1989) note simulation optimization is in the class of stochastic optimization problems where the objective 

functions are stochastic functions of deterministic decision variables; these problems are known to be 

difficult to solve. 

Azadivar (1992) points out that although the most common goal in simulation optimization is to optimize 

expected value, the goal may also involve such considerations as minimizing the risk of exceeding a 

threshold, minimizing dispersion, etc. Meketon (1987) refers to two classes of objectives of optimization 

procedures: min/max and level crossing (or root finding). The latter is of the form: find X 3 E[Y(X)] = p; 

for example, find the service rate such that customers wait more than 3 minutes 5% of the time. Meketon 

also indicates that the level-crossing problem is the same as the min/max problem, e.g., min E[(Y(X)- 

p)], if Var[Y(X)] is constant. 

In general, the responses, Y = (Y], Y2, ..., Ym), are functions of the controllable factors, X = (X], X2, ..., 

Xn), uncontrollable conditions, Z, and random error, €; i.e., 

Y =E[Y]+e=f( XI1Z)=Elf( X!Z)] +e. 

Note that the additive error considered above is only one possible model, with E[e.] = 0, and Var[é, | < +00, 

In addition to the above goal, the optimization will be subject to upper and lower limits on the controllable 

factors or some function of a combination of them. Therefore, the general simulation optimization 

problem may be stated as: 

Optimize: E[Y] = E[f( X | Z )] over the region S c KR" (1) 

where the domain of S may be either continuous (Mc), or discrete (Rq), or mixed, 

and X = (X], X2, ..... Xp) € S 
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Subject to: h(X) <0 (2) 

where h(X) is a vector of deterministic constraints typically of the form: 

W<Xj<u, i=l,.in , (2a) 

Intqg<f(X<untqg G=1,...,b (2b) 

where b is the number of constraints involving more than one controllable factor. 

Typical Assumptions 

Not all simulation optimization methods search the region S directly. For example, frequency domain 

methods transform the optimization problem into the frequency domain (Safizadeh, 1990), and many so- 

called intrusive procedures are single-simulation-run optimization methods (Wilson, 1987). However, a 

broad set of simulation optimization methods do explicitly perform a search directly over the region S. 

For example, different varieties of Response Surface Methodology (RSM, see Box and Wilson (1951) or 

Myers (1971)) assume a Starting point in S then use first-order and/or second-order metamodels to suggest 

preferred directions of search or optimality locations. The research described in chapter four is most 

applicable to simulation optimization methods that search the region S directly, such as RSM, random 

search, and Box’s complex search (Safizadeh, 1990), although any optimization approach that benefits 

from a carefully chosen initial region and/or requires a specification of problem granularity (see below) is 

a candidate for the procedures defined in this research. 

Methods directly searching a region S typically make several assumptions. These often include the 

assumption that either a “good” starting point is known or that the choice of a starting point is 

unimportant to the solution of the problem. Sometimes this difficulty is obviated by selecting several 

Starting points, solving the problem for each starting point, and selecting the most-preferred answer. 

Another assumption commonly invoked is that problem granularity, i.e., an appropriate grid spacing/step 

size, is known. For example, in using first-order RSM models, a factorial design is often utilized to 
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determine the direction of steepest ascent. But there is no a priori rationale to determine the coding of 

natural variables in S, i.e., to specify the size of region over which the factorial design is defined. 

Moreover, once a direction of steepest ascent is determined from the RSM metamodel, there again is no a 

priori reasoning that leads to a good choice of step size along the path of steepest ascent. Finally, most 

approaches to simulation optimization invoke only one search method throughout the entire procedure, 

although some have suggested hybrid approaches (Crouch, Greenwood, and Rees 1995). Sometimes a 

basic method is employed (e.g., RSM) with variations (e.g., first-order, second-order) to successfully 

address simulation models with differing amounts of curvature and/or variance in the response surface. 

To summarize so far, many simulation optimization methods assume that a “good” starting point is 

identified, that the design grid (i.e., how far apart to space runs) is known, and that one basic search 

method need be employed, all regardless of the surface. Often, such assumptions are valid, for often a 

user has experience with the simulation model or is willing to live with the results obtained from 

assumptions, or expertise may be available to suggest appropriate search methods, step sizes, etc., early in 

the optimization process. Also, the surface may be “simple” and “smooth enough” to be impervious to the 

consequences of the aforementioned assumptions. However, there are cases where the simulation 

response surfaces are complex and have great variability in response across the surface and where little 

relevant optimization expertise is available. Ignoring these conditions can lead to an unnecessary 

expenditure of simulation runs, failure to find the simulation optimum, and/or a false declaration of the 

optimal conditions. Sometimes financial implications are significant. Chapter three deals with this latter 

class of problems where making these assumptions is not wise. 

Knowledge-based Simulation Optimization 

A simulation model can be thought of as a “black box,” with controllable inputs feeding into the box, and 

the simulation model's responses leaving the box as outputs. The simulation model provides an 
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approximation of how the true system it represents would respond to the given inputs. Each response can 

be considered to be a function of the inputs with a random error term added. 

Figure 2.1 depicts the simulation-model box together with another black box in a feedback loop around it. 

This second box represents the simulation optimizer. The optimizer takes outputs of the simulation model 

and uses them to suggest new values for the inputs to the simulation model. The objective of the 

optimizer is to find inputs that will result in optimal or satisficing responses from the simulation model. 

  

  

  

  

      

I ts 
mpe _ Simulation 

Model 

Optimizer 

  

  

Figure 2.1. The simulation-optimization process 

The need for simulation optimization and the costs involved in it have motivated the development of 

different strategies to search for optimal-response-producing input levels. These strategies range from 

random and single-factor searches to response surface methodology (RSM) to simulated annealing and 

genetic algorithms. Meketon (1987) divides simulation optimization strategies into three general 

categories: nonlinear programming techniques, RSM, and stochastic approximation. 
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An important decision that must be made in simulation optimization is which search strategy to employ. 

Some work has been done to aid this decision, although Meketon concludes that “optimization for 

simulation, to date, remains an art, not 4 science.” He considers the information available (or assumed) 

about the simulation, and groups optimization methods accordingly to help narrow the choices. Safizadeh 

(1990) discusses a variety of strategies and their application and concludes that generally RSM approaches 

are most effective, although some new developments look promising. Smith (1973) performed an 

empirical study of the effectiveness of several search strategies (random search, single factor search, and 

four variations of RSM) on a variety of surfaces. He found that the relative effectiveness of each of the 

Strategies varied depending on the characteristics of the response surface (presence of local optima, 

random error, number of controllable inputs, etc.). 

Surveys of simulation optimization lead to the conclusion that organized guidance is needed to help users 

choose appropriate search strategies. Safizadeb (1990) explains that: “for successful design and analysis 

of simulation, one should be well versed in several disciplines.” Because of this, users are inhibited from 

using simulation optimization (and thereby simulation). He concludes that there is, therefore, a need to 

“develop interactive programs which direct a user to an appropriate optimization technique.” 

In an earlier paper regarding selection of appropriate optimization technique, Greenwood, Rees, and 

Crouch (1993) pointed out that there is both art and science in simulation optimization. They further 

suggested that the art and science should be “separated” in a simulation optimizer, and, in particular, that 

procedural (e.g., third generation) languages should be used to model the science part, whereas 

knowledge-based approaches should be used to encapsulate the heuristics that make up the art portion. 

The particular architecture suggested consists of an inference engine, a knowledge kernel, and processing 

support modules (see figure 2.2). The knowledge kernel, in turn, contains three parts: a database to store 

results, a methodology base to store procedures, and a rule base to store heuristics and to provide control. 

Note that with this architecture, the fact that optimizer control is resident in the rule base implies that 
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there is no set algorithm for simulation optimization; rather the inference engine (using, for example, 

backward chaining) can pursue a goal using whatever rules are in the knowledge base. This implies that 

if the rules are or can be changed, then, in essence, the optimization algorithm itself can change. 

Exploiting this notion, Greenwood et al. suggested that if results are stored in a database, and if “the 

algorithm” can be changed by changing rules, then the potential for “doing better” next time, L.e., 
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Figure 2.2. Greenwood-Rees-Crouch simulation-optimization architecture 
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This notion of a learner is shown in figure 2.3. The basic idea is that historical observations are taken 

from the database in the knowledge kernel of the optimizer, processed by the learner, and then rules are 

either added, deleted, or changed back in the optimizer rule base. In this manner, not only can heuristics 

be modified and improved, but so can control of the entire system. 

Learning: Definitions, Advantages, and What There is to Learn 

Crouch (1992) states that definitions by Simon and Michalski are closest to what she means when she says 

she will let her optimizer learn. Simon (1983) concludes: “Learning denotes changes in the system that 

are adaptive in the sense that they enable the system to do the same or different tasks drawn from the same 

population more effectively the next time.” Michalski (1986) points out that knowledge acquisition 

seems to be the essence of most learning acts. He adds that in order to acquire knowledge, one has to 

represent this knowledge in some form. Consequently, he characterizes learning as “constructing or 

modifying representations of what is being experienced.” Thus the optimizer should be able to adapt its 

performance so that it improves its optimization on scenarios “close” to what it has already seen. In 

addition, an optimizer or satisfier with a learning capability should have the capacity to modify or to 

construct representations of its knowledge, be it knowledge of how to reset certain parameters, knowledge 

that is domain specific, or knowledge that is more widely applicable as general principles. 

Crouch (1992) builds upon a taxonomy developed by Carbonell et al. (1983) to suggest the types of 

knowledge acquisition a learner should include. The four basic types of learning are (1) rule modification 

or creation, (2) specialization, (3) parameter modification, and (4) generalization. According to 

Carbonell, specialization means adding conditions to the “if” part of a rule (the antecedent) so the rule 

applies to a narrower set of circumstances, and generalization means dropping restrictive conditions in the 

antecedent to make the rule apply in a wider variety of contexts. By parameter modification is meant the 

changing of a numerical value in a rule; for example, the antecedent “IF number of runs > 12” could be 
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changed to “IF number of runs > 10.” Rule modification results in changing the consequent of a rule. For 

instance, a current rule may conclude that RSM is the preferred search strategy (“... THEN strategy = 

RSM”); however, learning may suggest that simulated annealing is preferred. Thus, the modified rule 

would have the consequent “THEN strategy = simulated annealing.” 

In this research, we will limit ourselves to the four types of learning just elaborated, noting that additional 

types of learning can be added to the Learner later if desired as plug-in modules. 

What it is that can be learned in a simulation optimization system with these four types of learning has 

been pointed out in Crouch (1992). In order to understand these ideas, however, it is first necessary to 

present a quick overview of CGR’s (1995) “Classifier KBSOS.” CGR called their system a “Classifier 

KBSOS” because its simulation output surfaces are classified according to the search strategy most likely 

to render success. 

In the Classifier KBSOS, input sufficient to define the problem is obtained from the user in the User 

module (see figure 2.4). This input is then fed to the Classifier module, where three steps occur. First, 

the “shotgun” suggests an initial set of simulation runs to be made at various input combinations across 

the surface. The results from these computer runs are then input to the “synthesizer,” which attempts to 

develop a fitted or synthesized surface through those points. (A neural network can be and was 

successfully used for this by Crouch et al. The reason for this synthesis is that it hopefully will save 

computer runs by characterizing the synthesized or estimated surface rather than depending entirely on 

actual runs.) Then the synthesized surtace is analyzed by several procedural programs and heuristics in 

the “characterize” module in order to classify or characterize the response surface. The idea of classifying 

a surface is based on a study reported by Smith in Operations Research in 1973, which found that optimal 

search technique varies by type of surface. Crouch et al. used the same explanatory variables Smith used 

in his study to classify their surfaces with the Classifier KBSOS. 
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Once a surface has been classified, rules in the KBSOS knowledge kernel invoke the Strategy Selector. 

This module is a collection of rules that choose a search strategy (e.g., RSM, random search) depending 

on the surface characteristics identified by the Classifier. Note that as the whole classify-and-select- 

Strategy process iS iterative, additional search may result in reclassification of the surface and hence 

specification of a different strategy as the optimization proceeds. After a search strategy has been chosen, 

the Strategy Detailer (another set of rules) is fired, and implementation particulars are set whereby the 

Search may be conducted. 

As Crouch points out, it should be clearly stated what is not meant when one suggests that a KBSOS will 

learn. The learner is not expected automatically to derive or infer a never-before-seen search technique 

whenever a previously unanalyzed surface in encountered. Rather, the learner is expected to perform such 

tasks as to modify parameters in the shotgun, to suggest that a new antecedent be included in a set of rules 

in the Strategy Selector, or to respecify the number of runs to be made at the center point of a given search 

being implemented. Learning is to be incremental as opposed to far reaching, and it will only be 

successful as its databases of surfaces and experiments grow large. 

In order to indicate how learning will take place in a KBSOS, Crouch (1992) lists some examples of each 

of the four kinds of learning; see that reference and Crouch, Greenwood, and Rees (1995) for further 

details: 

parameter modification: - in the Classifier: re-specifying the number of runs to be made randomly and 

at regular grid points in the shotgun module; re-setting a variance threshold, above which additional 

replications of data points used to fit the synthesized surface will be collected; re-stipulating the vertical 
distance delta from the true optimum, within which non-adjacent portions of the response surface indicate 

multiple, optimal solutions. And in the Strategy Detailer, re-adjusting the step size for a given search 

technique. 

specialization: - adding new concepts as antecedents to the rules in the Strategy Selector (e.g., adding “IF 

variance is not high” to a current rule specifying RSM as the search procedure); adding a similar clause 

again to the IF part of an existing rule in the Strategy Detailer (e.g., adding “IF lack of fit is significant” 

io a rule specifying a shift from a first-to a second-order RSM design). 
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rule modification: - in the Strategy Selector, if some cases concluding in “THEN Strategy = S;" achieve 

different levels of success than others, then separate these cases and respecify “THEN Strategy = S9,” a 

new strategy whereby there is some evidence that S5 will work better on the poorer cases than S, did. 

generalization: - deleting existing concepts from the antecedents of rules when there is evidence that such 

concepts are irrelevant to the Strategy Selection being made (e.g., removing “IF distance to optimum = 

far” from a rule concluding in “THEN Search = random search.) Generalization is also helpful in a 

housecleaning sense in that rules can at tumes be combined, thereby reducing the number of rules in the 

rule base. 

It is easily noted from the above lists that there are a plethora of details to be learned; this is because, 

fundamentally, so much of simulation optimization is heuristic, or “art.” The approach taken in Crouch 

(1992) and that we have taken here is to prioritize what we want to learn with our KBSOS. We have 

placed the Strategy Selector as our top learning objective, with its specialization, rule modification, and 

generalization. At second priority is the Classifier, which calls primarily for parameter modification 

learning. 

Having examined the Classifier KBSOS, definitions of learning, and what it is that may be learned in a 

knowledge-based simulation optimization system, we now direct our attention to the Crouch (1992) 

Learner. This will provide the final building block needed to explain the Learner we have actually 

constructed ourselves. 

The Crouch Learner 

Overview: Each of the four learning types to be included in Crouch’s learner requires both procedural 

and heuristic computation. That is, each learning type consists of both procedural decisions such as 

hypothesis testing that can best be performed by algorithmic means, as well as heuristic processing best 

done in, for example, knowledge-based systems. A major design decision made by Crouch was to separate 

the “art” and “science” in the learner; Crouch, Greenwood, and Rees (1995) also did this in their KBSOS. 
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Figure 2.3 shows Crouch’s learner sitting above the KBSOS and deriving input from the KBSOS 

database; changes are passed back to the KBSOS rule base. Figure 2.3 explicitly illustrates the 

implementation of the separation of art and science in the learner in terms of its three modules, the 

Learner Data Base, the Learner Methodology Base, and the Learner Rule Base. In addition, figure 2.3 

shows some of the functions to be carried out by each of the three modules. 

According to Crouch (1992), a knowledge-based simulation optimization system contains many concepts 

that may be stored in a variety of representation formats, including tables, rules, and neural networks. In 

order to be able to manipulate this information in a learner, the Learner Data Base must keep a registry of 

concepts and their interrelationships. Crouch’s mechanism for doing this is a concept bank and a 

Relationships Among Concepts (RAC) table. The RAC table stores which concepts are used in which 

rules. As indicated in Figure 2.3, both the concept bank and RAC table are (important) components of the 

Learner Data Base, as is the strategy mapping, which will be described later in chapter five. An 

additional item included in Crouch‘s Learner Data Base is a collection of “old” simulation programs. 

That is, she suggested that whenever a simulation program was run and its results were stored in the 

database, it would be advantageous if the program (1.e., the code) itself were left in a library in the Learner 

Data Base, in case the Learner decided later to do further exploration with the program. Obviously, this is 

not practical in all cases. But the more the Learner has access to in the way of history, the more likely it 

is to be successful. Finally note that Crouch’s Learner Data Base may share or coincide or differ from the 

knowledge kernel data base. 

The Learner Methodology Base consists of whatever procedural aspects are necessary to implement the 

four types of learning. For example, if the Learner were investigating the advantages of changing a 

troublesome parameter, it might decide to conduct an experiment to test the proposed change. In such a 

case, the Learner would call the experimental design submodule, which would specify where computer 

runs should be made to carry out (say) a fractional factorial design. Then a second submodule in the 
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methodology base, a hypotheses testing procedure, would evaluate the results of these experiments to 

determine statistically the worth of the change. Crouch admits that these submodules may be complex, 

but add that they can be implemented using ideas well-established 1n the literature. A third submodule in 

the learner methodology base deals with searching for common features or concepts for a given set of 

rules. 

Crouch’s Learner Rule Base contains all the rules or heuristics needed to do specialization, rule 

modification, parameter modification, and generalization. Moreover, it also possesses a set of controller 

rules, which decide when to invoke each of the four learning types. All of these rules, under the direction 

of an inference engine, drive the Learner in its search for an improved simulation optimization process, 

and call the Learner Data Base and Methodology Base when needed. 

Crouch Process Flow: A brief overview is now given of the Crouch learning process flow, details may be 

found in Crouch (1992). This process is based on Slade’s work on case-based reasoning (1991). Slade 

never examined the simulation optimization context; rather Crouch adapted some of the basic concepts in 

case-based reasoning and learning and modified them for this application. 

Figure 2.5 indicates the flow of Crouch‘s learning process. The shaded boxes indicate the major 

operations in the process needed for all four learning types. (The only exception is that Repair is not 

needed in Generalization learning.) The learning process for any of the types begins with Retrieve, where 

learner rules are used to extract relevant data trom either the learner or knowledge kernel databases. 

Upon retrieval, learner modification rules are invoked to suggest changes in some aspect of knowledge 

kernel rules. This occurs in the Modify block. For example, in parameter-modification learning, a 

particular parameter is suggested for change; whereas in specialization learning, retrieved data cases are 

first segmented by performance, and concepts in the antecedents are then sought that can explain the 

performance differences. Once a modification is proposed that hopefully improves KBSOS performance, 
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the Test block is called. Basically, the Test block determines whether the proposed modification results in 

an improved solution (1.e., a new set of rules), or rather in no improvement or possibly failure. In the first 

case, control passes to the Assign and Store blocks, where the proposed modifications are actually made 

and put back in the KBSOS rule base. In the case of tailure or no improvement, the Explain and Repair 

blocks are called, where either abandonment of learning for this case occurs due to unsuccessful 

explanation and repair, or further modification leads to a successful solution. This latter case leads back 

to assignment and Storage, as figure 2.5 indicates. 

Although Crouch’s research has suggested an architecture and a learner flow, details were not specified as 

to how all modules would work for the four types of learning. Moreover, since a Learner has never been 

built, it is not known whether such a Learner is truly practical. The research described in chapter five 

specifically addresses these issues, making three contributions. First of all, we build a Learner and test it 

on a simulation example. Second, having successfully constructed a Learner, we are able to specify an 

architecture and process flow; in particular, it will be seen that a clear explanation of how discovery takes 

place was not provided in the Crouch paper. And finally, an analysis of what must be done next to extend 

the Learner to larger-scale, more complex scenarios is described. 

The remainder of this chapter is organized as follows. The next section describes a general model of 

“discovery,” and the following segment details the modified general learning flow of our discovery 

learning system. It will be found that the Crouch (1992) architecture of figure 2.3 contains most of the 

components necessary in a Learner, but is lacking in clear explanation of how discovery will take place -- 

in particular how domain knowledge and search will be used in this process. This discussion is followed 

in turn by a detailed inventory simulation example invoking the Learner illustrating parameter 

modification. The chapter concludes with a summary and a description of future steps. 
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KNOWLEDGE DISCOVERY 

The use of knowledge discovery concepts in a knowledge-base simulation optimization system (KBSOS) 

is new. The previous work in KBSOS did outline and define four kinds of learning which required 

storing some items in the form of a database. It is a simple extension then to use knowledge extraction 

techniques for databases in an attempt to learn something from the data being stored. 

The essence of learning as we use it here is knowledge discovery. Frawley, Piatetsky-Shapiro, and 

Matheus (1992) present a prototypical framework for knowledge discovery under a different setting than 

simulation optimization, namely databases. This framework is redrawn in figure 2.6; it contains five 

components (besides the discovered knowledge itself). Since our research builds a Learner based upon 

both the Frawley et al. paradigm and the Crouch (1992) architecture and flow, we now discuss the former 

in some detail. 

The Frawley discovery system has as its core the discovery method, which computes and evaluates 

patterns on their way to becoming knowledge. Note m figure 2.6 that the discovery method has two 

principle components: search and evaluation. Inputs to the discovery method include the database itself, 

its data dictionary (which defines field names, the allowable data types for field values, various constraints 

on field values, etc.), additional domain or background knowledge, and a set of user-defined biases that 

provide high-level focus. The output of the discovery method, of course, is discovered knowledge that can 

be directed to the user and/or fed back into the system as new domain knowledge. Frawley et al. note that 

both the user bias and the domain knowledge assist discovery by focusing search; 1.e., these sources guide 

and constrain search by, for example, telling a system whai to look for and where to look for it. These 

constraining influences are both desirable and undesirable: the former in that discovery is made easier, 

and the latter in that valuable discovery may be ruled out by the constraints. 

Chapter Two: Literature Review 40



Application 

      

Discovery Method 
    Discovered 

Knowledge 
         Search/Evaluation     

      

    
  

DICT 
  

      

DOMAIN KNOWLEDGE    

Figure 2.6. The Frawley et al. Discovery Paradigm 

Frawley et al. (1992) point out that discovery algorithms inherently contain two processes: identifying 

mteresting patterns and then describing them in a concise and meaningful manner. They note that the 

identification problem is essentially a problem of pattern identification or clustering, which in essence is 

the problem of finding classes such that the similarity within classes is maximized while the similarity 
  

among classes is minimized. For example, it might be important for a firm to discover that the major 

purchasers of its product is a particular set of individuals, whereas other individuals tend to have very 

little interest. Concept description involves the summarization of relevant qualities of the pattern classes 

rather than just enumerating them. For example, it would help the firm described above to know that the 

particular set of individuals is the class of white males between the ages of 15 and 20. According to 
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Frawley, well-known approaches to concept description include decision-tree inducers (Quinlan, (1986)), 

neural networks (Rumelhart and McClelland, (1986)), and genetic algorithms (Holland et al., (1986)). 

KNOWLEDGE DISCOVERY IN THE SIMULATION 

OPTIMIZATION DOMAIN 

Figure 2.7 illustrates the architecture of our Discovery Learner for simulation optimization and its 

interaction with the Classifier knowledge-based simulation optimization system. The Classifier KBSOS, 

shown at the right in that figure, contains three principle modules: an inference engine; a knowledge 

kernel, which contains the rules and algorithms necessary for simulation optimization, as well as a record 

(a database) of the optimization session; and processing support, including interfaces to users, the 

simulation program, etc. Crouch, Greenwood, and Rees (1995) may be seen for further details on the 

Classifier KBSOS. 

The Learner, shown as an “L”-shape at the left of figure 2.7, contains the same modules as the Frawley et 

al. paradigm, but is adapted to fit the purposes of the simulation-optimization environment. These 

modules are the sessions history database, the data dictionary, a domain-knowledge module, and (at its 

heart), the discovery-methods module. As in Frawley, bias is provided to the Learner from a 

user/developer. 

Note that the key information/knowledge Hows between the Classifier KBSOS and the Learner consist of 

one primary flow from the KBSOS to the Learner, and two flows from the discovery-methods module: 

one back to the KBSOS, and another internal to the Learner, back to the domain-knowledge module. 

These three flows are emphasized in figure 2.7 by the heavier lines and arrows. The key notion is that 

information from optimization sessions (stored in the database of the knowledge kernel) flows to the 

Learner as input where it is recorded in the Sessions History Database. Similarly, what is learned by the 

Learner flows back as output to the rule base of the KBSOS, so that rules are modified; consequently, 
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simulations conducted in the future by the KBSOS will (hopefully) be improved. What is learned by the 

Learner also flows back to the domain-knowledge module in the Learner, as a means of keeping the 

Learner up-to-date. These flows constitute the primary activity of the Learner, with all other activities 

conducted in support of that activity. We now detail this support, proceeding module-by-module through 

the Learner. 

Data Dictionary 

The data dictionary maintains the concept bank, namely a list of concepts or constructs utilized in the 

sessions history database. For example, some of the concepts in the sessions base are number of 

controllable factors, distance from the optimum, level of factor activity, and presence of local optima. The 

concept bank also contains, as mentioned, allowable data types for field values as well as any constraints 

on field values. The data dictionary employed in the Learner is not significantly different from data 

dictionaries employed in other applications. 

Sessions History Database 

The Learner database is called a Sessions History database because it records the history of sessions 

carried out by the KBSOS. There are three kinds of information regarding any session maintained in the 

database, each carried to meet a different need tor the Learner. The first is the concepts and the values 

that each can take. The second is a description of session characteristics which includes a session trace, 

the search method and results, surface characteristics, and the activating rule, among others. The third 

kind is a detailing of the rules including parameters and associated levels. Figure 2.8 is a lattice that 

shows some of the relationships among the three kinds of information (Siochi, 1993). 
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Figure 2.8. A lattice showing the interconnections of the Sessions History Database frames 

All three kinds of information are represented as frames (Siochi, 1993). The concept frame (see figure 

2.9a) contains the name of the concept and the possible values that the concept can take. The concept 

frame can be a child frame of an antecedent or consequent frame. The session frame (figure 2.9b) 

contains session specific information such as the session number, the goal (mim/max), performance, 

number of searches performed, a rating of effectiveness, total number of runs, number of inputs, and the 

best solution found. It has one child frame called the search frame. The search frame contains search 

specific information such as number of runs used, search method, best pomt found and the surface 

characteristics as estimated at that point (the selector parameter in figure 2.8). The search frame has three 

child frames, (1) the activating rule frame, (2) the trace frame, and (3) another search frame if an 

additional search had been performed (the value is null if no additional searches were performed). The 

rule frame (figure 2.9c) contains the rule name, the rule base it belongs to and two child frames; 

antecedent and consequent. The antecedent and consequent frames have pointers to concept frames and 

logical operator slot. A trace frame contains the points visited. 
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Domain-Knowledge Module 

The third component of the Discovery Learner is the Domain-Knowledge module. As mentioned, 

discovery must often be focused if the knowledge discovered is to be useful, and sometimes it must be so if 

there is to be any discovery at all. The general purpose of the Domain-Knowledge module is to enable the 

discovery that occurs in the Learner to be relevant and useful to the Classifier KBSOS. In particular, the 

function of the domain-knowledge component is to provide guidance to the search portion of the 

Discovery Methods module in four particular ways, one for each type of learning: (1) what parameters 

can/should be considered for modification (this is for parameter-modification learning), (2) which rules 

are candidates for specialization, (3) which rules should be modified in their conclusions (e.g., 

recommending different search strategies for rule-modification learning), and (4) when to attempt 

generalization. 

Of course, there is a danger in providing domain knowledge to our system in that specifying such 

knowledge can rule out potentially valuable discovery. Frawley et al. (1992) point out the case in logistics 

planning where the search space is so large that it is impossible to find solutions without using constraints 

such as “trucks don’t drive on top of water (without bridges).” But adding this constraint eliminates 

potentially interesting solutions such as those in which trucks drive over frozen lakes in winter. So the 

key, they say, is to provide as general as possible constraints, while still maintaining enough specificity to 

provide useful discoveries. 

There are four primary components in the Domain-Knowledge module; these may be modified or 

enhanced in the future. They are 

° the performance measures component 

° the low-confidence parameter list 

° the link-of-influence submodule, and 

° the classifier-methodology-to-search-space (CM/SS) component. 

We now describe each of these components. 
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The performance-measures component contains the currently recommended measures for evaluating 

success in the KBSOS. At this point, we are utilizing the same performance measures as Crouch (1992), 

not because we have studied them and found them acceptable, but rather because we have focused our 

efforts elsewhere and have assumed them by default. (We believe this whole area to be a topic worthy of 

further study.) There are two Crouch performance levels, weak and strong, and both are defined in terms 

of what Crouch called “interesting” optimization sessions or cases. Two of Crouch’s three “interesting” 

cases are oriented toward the efficiency of the optimization, which Crouch measured according to the total 

number of runs used to find the optimal response. Those optimization sessions requiring relatively many 

runs are marked “Bad” or “B,” whereas those requiring relatively few runs are marked “Good” or “G.” 

The other Crouch “interesting” case is based upon effectiveness, which she measured by observing the 

variance of the surface and whether multiple optima exist. If there is high variance or if multiple optima 

exist, Crouch labels the case “Ugly” or “U.”” We refer to Crouch’s three interesting cases as “BUG.” 

As mentioned, Crouch then defined performance in terms of the BUG cases. Performance is judged as 

“strong” or “weak” according to the following two (Crouch) rules: 

IF marked = G AND 

marked < > U 

THEN performance = strong; 

IF marked = B 

THEN performance = poor. 

The performance measures “strong” and “weak” are used in the Discovery Methods module as will be 

explained shortly. With the modular structure of the domain-knowledge module, it is relatively easy to 

modify performance measures as desired. 
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Again, it is the purpose of the first of the four Domain-Knowledge module components, namely the 

performance-measures component, to provide the criteria whereby the success and failure of the KBSOS 

may be judged. 

The second component in the Domain-Knowledge module is the Low-Confidence Parameter List. This 

list is simply a developer-supplied tabulation of the “important” parameters utilized in the rules. They are 

ranked according to the lack of confidence the developer has in their values, with least-confidence 

parameters at the top of the stack. When the Learner decides to attempt parameter modification, it will do 

so by popping the low-confidence-parameter-list stack, and considering the modification of the parameter 

at the top of that list using the parameter modification process flow outlined in Crouch (1992). Figure 

2.10 shows where the KBSOS parameters that can be modified are located within the Classifier KBSOS. 

The third aspect of the Domain-Knowledge module is the link-of-influence (LOI) submodule. The basic 

purpose of this component is to establish the link between any parameters to be modified and the effect on 

rules “downstream” in the knowledge base. For example, assume a given parameter in the “characterize” 

component in the classifier module in the KBSOS is presently set to a value of 0.5. If a change to 0.7 for 

this parameter is under consideration, then those cases (i.e., sessions) for which the parameter took on 

values between 0.5 and 0.7 must be re-examined. Now if the parameter being set at 0.7 in the 

“characterizer’’ caused a particular rule in the Strategy Selector to be fired and another rule in the Detailer 

subsequently to be fired, then the effect of the change to 0.7 must be considered to the extent that the 

downstream rules in the Selector and Detailer that would be fired instead of the initial set must be 

examined. For instance, the change from 0.5 to 0.7 might result in a whole new search strategy being 

chosen in the Selector. 
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The determination of the downstream rules affected by a parameter shift is not difficult conceptually, as 

one merely needs to forward chain through the rules. Figure 2.11a shows how this works with a few rules 

and five sessions. The parameter a affects the parameter B which in turn affects the parameters y. The 

parameter y affects the number of replications but only for one search method. By forward chaining 

through the rules the parameters that are affected can be found. The threshold for parameter a is set at 

0.5 and the rules that are affected by @ are shown in figure 2.1la. The effect of changing the threshold 

from 0.5 to 0.7 is shown in figure 2.11b. Note that only two sessions (3 and 4) are impacted by the 

change. The particular modules in the Classifier KBSOS affected by the LOI submodule are also shown 

in figure 2.10 by the dashed lines leading from that submodule. 

The final submodule currently present in the domain-knowledge portion of the Learner is the classifier- 

methodology-to-search-space (CM/SS) mapping. Recall that the Classifier KBSOS synthesizes simulation 

runs and then characterizes the resulting optimization surface according to six output measures. These 

output measures have been chosen particularly because they channel surfaces toward the search technique 

most appropriate for the type of surface. 

The purpose of the CM/SS component as used in the Discovery Methods module is to suggest new search 

Strategies for appropriate bad and ugly cases. Three current means of doing this in the CM/SS include 

what we call the “primitive method,” whereby Smith’s (1973) second and third search choices in his 

experiments are suggested; a taboo-region method, where those strategies deemed terrible in a particular 

region of classifier methodology/search space are listed as “to be avoided”; and a third method that 

calculates the Mahalanobis distance from the currently recommended strategy to the nearest centroid of 

the other strategies. As noted in figure 2.10, the CM/SS rules impact only the Strategy Selector module in 

the KBSOS. 
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Discovery Methods module 

The final Learner module to be discussed is the “work-horse” component, namely the Discovery Methods 

module. Recall that, as Frawley et al.’s (1992) paradigm suggests, discovery methods consist of search 

followed by evaluation. The search itself, they say, also has two parts: pattern identification and concept 

description. As mentioned, the former defines classes that maximize within-class similarity while 

minimizing among-class similarity. Concept description consists of deriving descriptions of the classes. 

Our discovery method module also consists of search and evaluation, the latter of which we have labeled 

our “experimental designer” (in the sense of a “design-of-experiments” expert). The pattern identification 

phase of our search consists of the four tasks, parameter modification, specialization, rule modification, 

and generalization. The first three tasks are defined procedurally in Crouch (1992), and generalization is 

described in Greenwood et al. (1993). The procedures referenced are modified as explained in the 

example below. These four tasks are conducted instead of a more formal cluster analysis, although, in a 

sense, most of the four tasks pursue their goal through attempts at clustering BUG cases into clearer 

categories. The second portion of search, the concept description effort, utilizes rules as_ the 

representation scheme in which all new constructs will be expressed. This is both convenient, given that 

the four tasks are designed to operate on rules; and propitious for further discovery, since any rule in the 

KBSOS or Learner can, whether a new or an old construct, in principle, then be re-learned (i.e., modified, 

or even “unlearned,” etc.) by additional search using the four tasks. 
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Chapter Three: An Investigation of the Behavior of 

Simulation Response Surfaces 

INTRODUCTION 

Jacobson and Schruben (1989) point out that simulation optimization is in the class of stochastic 

optimization problems, where the objective function is a stochastic function of deterministic decision 

variables, thus making problems in this domain very difficult to solve. Much work has been done, as 

evidenced by the extensive literature on the subject, in refining the approaches to the simulation 

optimization problem. However, the literature does not provide a complete illustration of the complexity 

of simulation response surfaces and the difficulties they pose for optimizing a system. In this paper, we 

demonstrate how “messy” stochastic functions can be, even in the case of a simulation model that 

represents a fairly simple system. The stochastic nature of the system greatly confounds the search 

process. Our simulation experiment, which is conducted on a simple inventory model, and the ensuing 

discussion and graphical presentation of the results clearly illustrate the problems that one can encounter. 
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The behavior of the response surface is important to examine because it directly affects the choice of 

search technique as well as the degree of success obtained. 

In order to guide the search process one needs descriptions of the behavior of the surface. We present a 

set of measures that are used to characterize the behavior of the surface and guide the search process. 

While these measures are not new, one contribution of this paper is to demonstrate the measures’ use in 

the simulation optimization process in a unifying context; this is accomplished through a single 

comprehensive example. 

The purpose of this paper is to explore the characteristics and properties of simulation surfaces with the 

focus on how the behavior of the surfaces affects the simulation optimization process. As part of this 

investigation, we identify and develop measures that characterize the behavior of the surfaces and discuss 

some implications if one insists on a Statistically valid strategy at each step in the process. The behavior 

of the surfaces and the measures used to characterize that behavior are illustrated via the aforementioned 

inventory model. 

This paper is organized as follows. The first section provides a bref background discussion of the 

simulation optimization problem. It is followed by a description of the model and the experiments that are 

performed in order to illustrate the behavior of the simulation response surfaces. The third section defines 

a series of measures, both point estimates and regional measures, that are used to characterize a 

simulation model’s behavior. The findings of this research are then discussed and presented graphically 

to provide insight into how the response surfaces of a simple simulation model behave under varying 

degrees of variability and design conditions. The results illustrate how these conditions affect the choice 

of a search technique/methodology in the simulation optimization process. The final section discusses the 

implications that the findings pose for future research in simulation optimization. 
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DEFINITION OF THE SIMULATION OPTIMIZATION 

PROBLEM 

Simulation is commonly recognized as one of the most widely applied computer modeling techniques in 

use today. Its popularity is evidenced by the large number of applications documented in the literature 

and the extensive breadth of problem domains to which it has been applied. With the advent of rapidly 

advancing computer technology, the widespread use of simulation is expected to accelerate. The value of 

simulation is that it permits the study of systems which cannot feasibly be constructed or experimented 

upon in the “real world,” and which are too complex to be analytically modeled. Simulation is very useful 

in predicting the output of a system or its response to a given set of input conditions. However, it does not 

in and of itself indicate the input conditions required to achieve a desired response. Simulation is an 

evaluative methodology and not an optimization technique. 

In many cases the strategic objective of a study is to find the best solution for the system under 

investigation, i.e., optimize the system's performance. When the search for the optimal solution involves 

the use of data obtained from a simulation model, the analysis involves the process of simulation 

optimization. The optimization process is complicated by the presence of random error, often the result of 

the combined random effect of uncontrollable conditions. 

Note that we refer above to simulation optimization as a process and not as a technique, methodology, or 

algorithm. In fact, the process of simulation optimization typically utilizes a wide range of mathematical 

and statistical tools. There is no single or standard approach to optimizing a system where the data for 

the analysis is based on experiments conducted with a simulation model. Some approaches focus on a 

single simulation run (e.g., frequency-domain analysis, perturbation analysis). Others focus on a search 

process that involves multiple simulation runs. Within this approach, which is the most common, there 

are many philosophies on how the search should be conducted. For example many approaches utilize the 
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data to fit metamodels (e.g., response surface methodology, neural networks, nonparametric regression), 

others are free of underlying model assumptions (e.g., random search, Box’s complex search, genetic 

algorithms). Yet another approach (Crouch, Greenwood, Rees, 1995) (Greenwood, Rees, Crouch, 1993) 

proposes a multi-strategy process that utilizes the “best” methodology based on current experimental and 

synthesized knowledge of the search environment. This brief discussion of the approaches to simulation 

optimization is meant to illustrate the diverse and varied literature that exists to solve this difficult 

problem. It is beyond the scope of this paper to review all of these approaches to simulation optimization. 

Therefore, the interested reader should refer to overview or literature review articles and introductory texts 

on the subject, e.g., (Azadivar, 1992) (Barton, 1992) (Jacobson, Schruben, 1989) (Meketon, 1987) (Myers, 

1971) (Safizadeh, 1990). 

In general, the simulation optimization problem can be expressed as: 

Optimize: E[Y] = E[f( X | Z)) (1) 

Subject to: h(X) < 0 (2) 

where the responses that are to be optimized, Y = (Y], Y2, .... Ym), are functions of controllable factors, 

X= (Xj, X 2, ..., Xp), uncontrollable conditions, Z, and random error, €; 1.c., Y = E[Y] + € = f( X 1 Z) = 

E(f( X | Z)] + €. Each response Yj is arandom variable and takes on a set of values for the same setting of 

the controllable factors; i.e., there is some distribution of Yj values for each combined level of the 

controllable factors. To model this behavior each response is oftentimes considered equal to the sum of a 

constant and a noise term that represents the random error, where the constant is the expected value of the 

response, E[ Yj], for a specific combination of factor settings. Therefore, due to the presence of random 

error, the optimization process typically focuses on the expected value of the responses. But, while the 

goal is to optimize E[Y;], only Yj is observable. Also, each objective regarding Yj involves either the 

absolute maximization (or minimization) of Yj or the achievement of Yj; to exceed some goal by a 

specified tolerance. The simulation optimization problem is constrained, at least by the bounds of the 

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 37



region to be explored. As shown in (2), h(X) is a vector of deterministic constraints typically of the form: 

L<X<sUorL § f(X) < U, where L and U are the lower and upper bounds of the search region, 

respectively. Typically the regional boundaries change as the search process progresses. For example, as 

more information becomes known about the search environment and characteristics of the surface, the 

search region narrows so as to include only the most promising sector(s). The domain of the region may 

be either continuous, discrete, or mixed. 

DEFINITION OF THE EXEMPLARY MODEL AND 

EXPERIMENTS 

The concepts presented in this paper are demonstrated through experimentation with a simple inventory 

model that permits backorders. Experimentation with this model illustrates the effect of changes in the 

model’s parameters on its simulated response surface. This section defines both the model and the 

experimental conditions that are considered. 

Simulated inventory system 

The model is analogous to the continuous-review EOQ model, except that it is stochastic. The inventory 

model, illustrated in Figure 3.1, contains two decision variables or controllable factors -- order quantity 

(Q) and re-order point (R). They are varied during the search process in order to find the combination of 

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 58



Q and R that yield the lowest total cost (TC). Total cost is composed of three components: ordering cost, 

carrying or holding cost, and shortage or backorder cost. 

The model contains two uncontrollable conditions, demand and lead time -- these are random variables, 

and not constants, as assumed in the basic EOQ model. Demand (D) is a random variable and causes the 

inventory level to decrease at a non-constant rate, as illustrated in Figure 3.1. Lead time (L), the time 

between order placement and order receipt, is also a random variable. The effect of the stochastic lead 

time 1s that the inventory level! does not always return to the same maximum value when an order of size 

Q is received, as illustrated in Figure 3.1. 

  

  

i Decision Variables Random Variables 
eee Q= order quantity D= demand 
eve R = re-order point L = lead time     

  

  

v 
L ——p| <—_. LS     A Y         

Figure 3.1. Simple inventory model that permits backorders and exhibits both stochastic demand 

and lead time. Note: Q and R, the decision variables, are fixed in any given simulation 

run. 

The problem may be stated as: 

Optimize: Minimize { E[TC] = E[f(Q, R 1D, L)] } (3) 

1 
where D ~ Gammat Op, Bp) and L ~N (Ly » 32), 
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a and B are shape and scale parameters, respectively, 

uw and o” are the mean and variance of a normal distribution, 

1, ; 
D is the time between demands on the system, and 

L is the time between order placement and order arrival. 

Subject to: 0<Q<400 (4) 

-400 <R <0 (5) 

IRI< Q. (6) 

The first constraint, as shown in (4), defines the initial estimate of the domain of the order quantity, Q; 

1.€., 1t is assumed the “optimum” order quantity will be less than or equal to 400 units. This is based on 

the decision maker's understanding of the problem and values of such cost parameters as the cost to place 

an order, cost of one unit to be in inventory for one year, etc. The second constraint, in (5), limits the 

value of the second decision variable R, re-order point. In this example, an order will be placed when the 

inventory level reaches zero, when the number of back orders reaches 400, or somewhere in between. The 

final constraint (6) ensures that a policy where the system is always in a backorder situation is avoided. 

This would occur if Q was not set large enough to meet all backorders in an order cycle, on the average. 

Note that this constraint restricts the feasible region to be triangular. 

The simulation model of the inventory system operates as follows. The times between single-item 

1 
demands on the system, D? are randomly generated based on samples from a Gamma(q, §) distribution. 

If the request for demand cannot be met from on-hand inventory, it is considered backordered. This 

unsatisfied demand is filled immediately upon replenishment of the inventory -- when an inventory 

“order” arrives. An order, of size Q, is placed when a demand arrival causes the inventory position to 

reach (or go below) the reorder point, R. The order will arrive L days after the order is placed, where cach 
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L is randomly generated based on a sample from the truncated Normal distribution (i.e., L is not permitted 

to g0 negative). 

The process that is followed in the simulation optimization process is illustrated in Figure 3.2. The 

operation of the system, as represented by the simulation model, is run for a specified period of time. The 

performance of the system is based on total cost, an output of the simulation model and the response that 

is to be minimized. Total cost is based on the specified values of the decision variables or controllable 

factors -- order quantity and re-order point, Q and R, respectively -- and random demand and lead time 

values that occurred during the simulated operation of the system. Every possible combination of Q and 

R, 1.e., every point in (Q, R) space, represents a possible simulation run. In order to improve upon the 

expected total cost of the system, one changes the values of the decision variables and simulates the 

operation of the system again at another (Q, R) location. Decisions on how to change the value of the 

decision variables in order to get an improved solution occur in the “optimizer” box in Figure 3.2. The 

optimizer may involve a simple random strategy or a more complex but rational approach such as 

response surface methodology. Multiple simulation runs, replications, may be made at a single (Q, R) 

point in order to obtain a better estimate of the response, total cost, and obtain an estimate of the 

variability of the response. 

In order for the model to provide results that are comparable across a variety of scenarios, the simulation 

run duration must span complete order cycles and not a fixed period of time. Since every (Q, R) 

combination results in a different order cycle, failure to account for “end effects” (stopping the simulation 

at different points in the order cycle) would bias the estimate of total cost. Therefore, the actual length of 

a simulation run is the intended run length (e.g., one-half year, four years) plus whatever time is necessary 

to complete the last order cycle. In addition, each simulation run includes a “warm up” period of 

operation before statistics are collected. In order to illustrate these run-time controls, consider the 

simulation of a (Q, R) inventory system that is to be evaluated based on four years of operation following a 
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one-year “warm up” (assume 250 days per year). The simulation begins at a point immediately after an 

order arrives (time zero) and continues until the first cycle beyond 250 days is completed, say 251.2 days. 

The statistical arrays are cleared at this point and the simulation is run for at least another four years, at 

least until time 1251.2. The simulation terminates at the end of the first order cycle beyond this point, say 

another 2.3 days. Therefore, while the total simulation time is 1254.5 days, the performance measures 

would be based on a simulated time of 1002.3 days -- total simulated time less warm-up time. 

  

UNCONTROLLABLE 

CONDITIONS 

D L 

demand IAT lead time       
  

CONTROLLABLE 
FACTORS   

RESPONSE 
  

Q, order quantity —-———> SIMULATION | 1c 

R, re-order point —————> MODEL Ce , total cost 

“OPTIMIZER” 

Figure 3.2. Process for optimizing the simulated inventory system 

                  

  

The single response or performance measure (Y=Y,) considered in this example is TC, “total average 

inventory cost per day” over the simulated time period. As shown in (7), the cost measure is composed of 

three components -- ordering cost, carrying cost, and shortage cost. Ordering cost is the product of the 

number of orders placed during the simulation (O) and the cost to place an order (Cg). Carrying costs is 

the product of average inventory during the simulation (1) and the cost of carrying an item im inventory 

per period (C;). Shortage cost is the product of the average number of units short or backordered during 

the simulation ( S) and the cost of being short one period (Cs). For the model discussed in this paper, Co 
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= $50, Cc=$10/tem/year, and Cs = $5/item/year. The length of the simulation T is the intended run 

length, after warm up, plus whatever time is necessary to complete an order cycle (with regard to the 

example given above, T = 1002.3 days.) 

C= O*C, + tC. + S#C, 
  (7) 

T 

For comparison purposes later in the analysis, the analytic solution to this problem, assuming 

deterministic demand and lead time, is Q = 194, R = -129, and TC = $2.58 per day. 

Experimental conditions 

As mentioned above, the random variable demand is assumed to follow a Gamma(a, B) distribution, 

where the mean demand has a value of of and a variance of op. The random variable lead time follows 

anormal distribution with mean pw and variance o2, with no lead-time permitted to be negative. In all the 

cases considered in the paper, the mean of the random variable remains constant but the variance is 

changed in order to illustrate the effect of variability on the search process. As shown in Table 3.1, 

experiments are run where the mean time between requests for demand is 0.2 days (conversely, mean 

demand is 5 units per day). Variability in demand is considered “low” and “high” -- the coefficient of 

variation (CV) of time between requests for demand is 1.00 and 4.5. Likewise, mean lead time is 6 days 

and is either considered to exhibit “no” or “moderate” variability, corresponding to a coefficient of 

variability of 0.00 or 0.33 (Normally distributed with a mean of 6 days and a standard deviation of 2 

days). The no variability in demand and no variability in lead time case -- not shown in the table -- was 

used to validate the simulation model by comparing its results to the analytic solution. Results of this case 

are not reported here. 
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Table 3.1. Definition of experimental cases 

  as a 

DESIGN CONDITIONS | 
WORST 

(# REPLICATION S=3, 
RUN LENGTH = 0.5 YRS) 

  

BEST 

(# REPLICA TION S=10,; 
RUN LENGTH =4 YRS) 
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Z, << 
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= eal NONE — ~ . 
= = a (CV=0.0) (HNB) 

aa 
& << 
> @ -) | MODERATE 

S& | (Cv=0.33) —— (HMW) 

a     

The behavior of the model’s simulated response surface is also sensitive to two design variables -- the 

number of replications and the length of time the model is simulated. Each of these variables is 

considered at two levels. In this example, three replications is considered “small” and ten replications is 

considered “large.” Also, running the simulation model for a six-month period is considered “short” and 

running the model for four years is considered “long.” On the one hand, one can think of the case where 

the mode] is run for six-months and replicated three times as the “worst” case, i.e., the one that would 

produce the “messiest” surface. On the other hand, one can consider the case where the simulation model 

is run for four years and replicated ten times as the “best” case. 

In order to illustrate the behavior of simulation response surfaces, it is not necessary to run all 

combinations of the variables under consideration. This paper, in a later section, reports the results for 

four experimentation conditions or four cases -- selected combinations of inventory model variabilities and 

design conditions. The first two cases, referred to as LNB and LNW, both examine Low demand 
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variability and No lead-time variability; the first case explores the Best design conditions we consider, 

whereas the second explores the Worst design conditions. The third case, HNB, considers high demand 

variability with no lead-time fluctuation and the best design-condition set. The fourth case, HMW, 

explores high demand variability, moderate lead-time variability, and the worst design conditions. These 

four cases are summarized in Table 1. Note that by comparing LNB with LNW some feeling of the effect 

of design conditions can be seen; comparing LNB with HNB shows the effect of demand variability, 

whereas contrasting LNW and HMW illustrates the effect of both demand and lead-time variabilities 

simultaneously; and comparing LNB with HMW shows the result of “better” versus “worse” conditions 

for all three factors. 

Data Collection Scheme 

Figure 3.3 shows the triangular decision-variable or search space for the problem. The space is defined by 

the constraints of the inventory model, defined in (3) through (5) above. 
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Figure 3.3. Inventory model’s decision space 

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 65



Point-estimate statistics of the simulation-response surface are collected in a grid pattern over the decision 

variable space X = (xj, Xz). The gridpoints are spaced 20 units apart in each direction, i.e., Ay = Az = A= 

20. A plot of the grid spacing is shown in Figure 3.3. 

In order to develop statistical estimates over a region, the gridpoints are combined to form a region of 

analysis. For a grid spacing A, each gridpoint forms a corner of a region (no region will be larger than A 

by A). Most of the regions will be A by A square, with a gridpoint at each corner. However, because the 

model's feasible region is triangular, some regions formed (in particular, those along the line x; = x2) will 

themselves be triangular, and will be defined by only three gridpoints. These two situations are illustrated 

in Figure 3.3a. For example, regions with three gridpoints, designated here as ®.3 are all of the general 

shape 

R3= | , where the * denotes the coordinates ($1.62) of a gridpoint. Specifically, 
* 

Ri= li $2 Su $2 , where 0 < G1; < 400 - A, and (9) = -01;. 
(Cy; + 24,65; - 4) 

In this research, we also consider the effect of larger regions, ones that are 2A by 2A. Most of these 

regions will be squares that contain nine gridpoints, denoted by ® 9. However, due to the shape of the 

decision space, six- (R.6) and eight-point (Rg) regions are also possible. Examples are shown in Figure 

3.3b. 
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STATISTICAL MEASURES OF THE BEHAVIOR OF 

SIMULATION SURFACES 

In order to assess the behavior of a simulation surface, measures need to be defined that capture the salient 

behavior of the surface. One measure is the value of the response itself, total cost, at each (Q, R) point 

simulated. If that point is replicated -- i.e., multiple independent simulation runs are made at point (Q, R) 

-- then an obvious measure is the mean response at that point. Other point measures considered in this 

paper, as defined below, include the following statistics that measure dispersion at the point (Q, R): 

standard deviation, coefficient of variation, and signal-to-noise ratio. Another point measure considers 

the “relative activity” or acceleration of the surface. In addition to point measures, one is also interested 

in region statistics, often used to check the validity of using a particular parametric test or utilizing a 

procedure that assumes the surface exhibits a particular characteristic over the search region, e.g., 

homogeneity of variance. 

By considering the various measures of the behavior of the simulation response surface, the intent is to 

characterize the surface in such a way that it is useful in determining the appropriate search strategy to 

employ. For example, if measurements of the region of interest indicate significantly different variances, 

then it may not be prudent to use an optimization strategy such as Response Surface Methodology (RSM) 

(Myers, 1971) that assumes homogeneity of variance throughout the region. 

POINT-ESTIMATE MEASURES 

Each simulation run provides information on the performance or response of the system to a set of input 

conditions. The output of a simulation provides an estimate of the response at a single point in the 

decision space X c R". In this example, Xj ¢ X = (Xj, Xz) = (Q, R) ¢ R? represents one combination 
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of order quantity and re-order point and the location of one simulation run. For the measures defined 

below, the subscript i indicates the measure was estimated at the point X; in the decision space. Since the 

system being simulated is stochastic, multiple simulation runs at the same point, 1.e., replications, will 

result in different responses at the same point. A realization j of the single response total cost (TC) is 

denoted as y;. The number of replications at each poimt, r,, is assumed to be constant; Le., =r V i. 

Location Measures 

Only one location measure is explored: the arithmetic mean of the replicated response(s) at a given point 

Yip: (8) 

Dispersion Measures 

Three dispersion measures are considered at points i in X: (1) the response standard deviation s;, (2) the 

response coefficient of variation CV;, and (3) the signal-to-noise ratio of the response (S/N), (see, for 

example, (Barton, 1992), pages 289-299). The measures are defined as: 

  

1 r 2 

S. = XY - 9) >i (9) 

(r-1) F! 

oF 
CV. = ~ Yj # 0, and (10) 

yj 
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1 >,s, >Q. (11) 

Relative Activity 

There are two components of curvature in a response surface: actual surface undulations and variance at 

each point. Actual undulations are of interest because they indicate where optima are. The variance at 

each point can mask or heighten the perceived activity. One goal of functional synthesis is to find true 

areas of curvature in a function. Good and Gaskin (1971) suggest using the second derivative to locate 

areas of a function that have more relative activity. Miiller (1984) suggests spending more runs at points 

that have a lot of relative activity, i.c., where the second derivative is large. Since in simulation 

optimization, response surface values are known only at discrete points where simulation runs are made, 

an approximation of the second derivative must be made. A numerical analysis estimate (Conte, de Boor, 

1980) is used: 

f(a- h) - 2f(a) + f(a +h) (12) 
2 

h 

  f(a) = 

Since h does not approach zero in our application, the approximation to the second partial derivative is 

very coarse. Therefore, we refer to f’ as “bumpiness” and not the second derivative. 

Although functional synthesis is used to get a good estimate for a function across the entire function, what 

is relevant to simulation optimization is (1) where we need to spend more points to accurately detect 

activity, and (2) is the point a local optimum in the “proper direction” (e.g., is it a local maximum in a 
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maximization problem). Obviously, we do not care about local minima in a maximization problem. We 

are interested in spending more points where there appears to be a local optimum in the desired direction. 

Computationally, a local optimum can be found by combining the second derivative with the first 

derivative. If the first derivative at a point is equal to zero, then a local optimum exists there. The second 

derivative can then be used to determine if the point is a maximum or a minimum. If the first derivative 

iS not equal to zero at a point, then first derivatives are checked at adjacent points. If the first derivatives 

show that zero is crossed from one side of the point to the other (a change in sign), then a local optimum 

has been found. 

In the plots presented below, four different types of relative-activity graphs are shown. The first is the 

bumpiness in the Q-direction, with R held constant; the second is the bumpiness in the R-direction, with 

Q held constant. The third shows the bumpiness only where the first derivative is zero or crosses zero in 

the Q-direction, and the fourth plots the same combined measure in the R-direction. 

REGIONAL MEASURES 

In searching for the “optimal” solution, and deciding how to conduct that search, it is helpful to obtain 

information in the decision space. Point estimates are combined to provide estimates of how the response 

surface behaves across some portion of the decision space. A region is defined as adjacent points in the 

decision space where a group of simulation runs are made, 2, < \/X, . Regions for this example were 
Vi 

defined earlier and include: R3,R%4,R%6,R3, Ro. 

Of the four regional estimates presented below, the first two are used to test normality and homogeneity of 

variance assumptions. Most parametric statistical techniques, e.g., regression and RSM, are based on 
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these assumptions. The second two measures provide an assessment of how well a plane or hyperplane 

would fit the data contained in the region. 

Test for Normality 

The question addressed with this measure is whether the residuals obtained after fitting a hyperplane over 

aregion (1.e.,.R3,R4,R¢6,Rg, Ro) are normal. This is an important question because normality of the 

residuals is an implicit assumption commonly used in simulation optimization F-tests such as 

“significance of regression” and “lack of fit” (see below). 

The Shapiro- Wilk test for normality is used here because it is a powerful omnibus test, i.e., 11 18 a test that 

will test the normal distribution against any alternative distribution (D’ Agostino, Stephens, 1986). The 

hypothesis tested is: 

Hypotheses: 

Hp: The distribution of all the residuals in the region ®, obtained after fitting a 

hyperplane through all responses observed in the region, follows a normal 

distribution. 

H,: The distribution of residuals does not follow a normal distribution. 

Test Statistic: 

(Dae) 

S(e-£)°. 

where “a” is a tabulated constant (see, e.g., (D’ Agostino, Stephens, 1986) pp. 209-211), 

and € represents the residuals (sorted in ascending order) in the region. 

Decision Rule: 

Reject Hp if W < W', where W” is tabulated and may be found, e.g., in (D’ Agostino, 

Stephens, 1986), pp. 212-213. Fail to reject Hg otherwise. 
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Test for Homogeneous Variances 

This test investigates whether variances are homogeneous across a region ® of interest. This issue is 

important for the same reason that the normality test is, namely that homogeneity of variance 1s an 

assumption of F-tests. 

The procedure initialized to examine this issue is as follows. First, a region R(either R;,R4,ReE,Rs, 

or Rg) is specified. Next the variance is calculated (using the replications) at each design point in the 

region. For example, in a region with six points (R ¢) with ten replications at each point, six separate 

variance calculations are made, each involving ten responses. Since the proper homogeneity-of-variance 

test depends on whether region residuals are normal, the Shapiro-Wilk normality test described above is 

performed over the region. If the residuals can be safely assumed to come from a normal distribution, 

then Bartlett's test, with Box’s Transformation is used to examine homogeneity of variances in the region; 

if they cannot be assumed to be normal, Levene’s Test (using the median rather than the mean) should be 

used. 

Each of these tests is now described. 

Bartlett’s Test with Box’s Transformation. (Neter, Wasserman, Kutner (1985), pp. 618-622.) Since 

Bartlett's test is sensitive to departures from normality it will only be used if the Shapiro-Wilk test for 

normality is not rejected. 

Hypotheses: 

2 2 2 
Hp 6, =90, = =o, 

2 
Hy: notall o, are equal, 

where g is the number of gridpoints in the region, 

ris the number of replications, and 
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n = gr = total number of runs in the region. 

Test Statistic: 

1 g 
B= let, ylog MSE — 2 (df, 08.) | 

Cc i=l 

  

1 zg | ] 
C=1+———|| s— |- — 

3(g -— 1) i=l df. df. 

1 8 2 

MSE = —— 2df,s, 
df, i=l 

Ss. = (yi: ) 
r-if ‘ 

df, =(r-1) 

df; =(r- eg 

2 
In the above B is approximately distributed as X with (g-1) degrees of freedom. Box’s 

transformation is used to accommodate cases where the number of replications is less 

than four (1.e., r < 4). The following approximation can be “used when some of the 

degrees of freedom are small and [it] ... also 1s appropriate for large degrees of freedom” 

(Neter, Wasserman, Kutner, 1985, p. 620). 

f, BC 
B = —— 

f(A — BC) 

where: 

f=g-l 

g+l 
f, =—-— 
2 

(C-1)° 
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A= 2 
2 

2-C+— 

f, 

and B and C are as defined as above. 

B’ is approximately distributed as F(t, .f, ) 

Decision Rule: 

Reject Ho if B'> FU ~ a; f,,f, ). This means that the data come from populations that 

do not have common variance. Rejection means that there is at least one gridpoint 

whose variance is different from the others in the region (heteroskedasticity). Failure to 

reject means that there is not enough evidence to say that the variances are not different 

(homoskedasticity). 

Levene’s Test (with median). (Glaser, 1983) Conover et al. (1981) list this test as one of three that are 

superior in terms of robustness and power. 

Hypotheses: 

2 2 2 
Hp =, =O, =...= o, 

2 
Hi: notallo, are equal, 

where g, r, and n (see below) are detined as above. 

Test Statistic: 

  

and where ¥, is the median. 
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Decision Rule: 

Reject Ho if W > F(g - 1, n- g). This means that the data come from populations that do 

not have common variance. Rejection means that there is at least one gridpoint variance 

that is different from the others (heteroskedasticity). Failure to reject means that there is 

not enough evidence to say that the variances are not different Ghomoskedasticity). 

The next two regional measures are based on the following first-order regression model being fit over the 

region of interest, y = GB+e, and the associated ANOVA: 

  

  

  

    

            

SOURCE DF SUMS OF MEAN SQUARE F-RATIO 
SQUARES 

Regression (R) p-1 | 4 ' A MSp 
B’G’y -Tyd ay MS, _—1 B'G’y —+y7 y Fp = 

(p - 1) n° oo MS, 

Error (E) n- A “ 
P yy —B’ G’y MS, = wo) (y'y — B’ G’y) 

Lack of Fit (LOF) | g-p A \ A MS oF 
PTB E 5 | MSton = Ty YY BG oye | | For 

Pure Error (PE) |n-g | Lys. MSpp = pub's, 

TOTAL nV | yy-dyduy 

where 

p = the number of parameters to be estimated in the regression model, 

g = the number of distinct sets of levels for the X variables, 

n = the number of observations (including) replications, 

y = a vector of n observations of responses, 

G = the gridpoint region design matrix. 
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Design matrices Gg are defined for each type of region defined above (R.3,R4,Re,Rs,O1 Ko ) and are 

based on the number of gridpoints (¢ = 3, 4, 6, 8, 9) in that region; for example, for g =3 (which implies 

0 < C1,< 400 — A and C, = —C),) with four replicates, 

CCH OTOP HOHE HERE HHO RHE TOE OTE DE     
where 

B = the vector of ordinary least-mean squares estimates of regression model parameters 

NN 

given by B = (GG) Gy), 

Jy =  the.x1 matrix of all 1s, and 

G = vo 9 
~g 0 Jy] 

Similar definitions may be made for G4, Gg, Gg, and Go. 
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F-test for Significance of Regression 

This test determines whether a relationship exists between the dependent variable and any of the 

independent variables. The test assumes normality of the error € in the regression model and homogeneity 

of variance across the region. 

Hypotheses: 

Hp: 8; =0 Viai=l....p-1 

Hy: f, # 0, forat least one i, i= 1, ..., p-1. 

Test Statistic: 

  F, = 
RMS 

Decision Rule: 

If Fp > F1-« pt, np, then the null hypothesis is rejected at the level a, and it is concluded 

that there is a significant relationship between X and y in that region. Failure to reject 

Hg implies that the hyperplane fit with the Bj is flat (or horizontal), i.e., no significant 

relationship appears to exist between the dependent variable and any independent 

variable. 

F-test for Lack of Fit 

If there is a relationship between the dependent variable and at least one of the independent variables, it 

becomes important to know whether the postulated linear regression model adequately fits the data. As 

with the previous test, normality and homogeneity of variance are assumed. 
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Hypotheses: 

Ho: Ely)= Bo +B, X,+..4B, 4 

Hy: Ely) #Bp +B, X,+..4B, 

Test Statistic: 

MS LOF , 
For = 

Decision Rule: 

If Flor> Fi-o, gp, ng, then the null hypothesis is rejected at the level a. That is, 

rejecting the null hypothesis implies that a plane cannot be accurately fit through the (X, 

y) points over the region. 

EXPLORATION 

This section discusses the results, outcomes, and insights gained from this research. The discussions are 

based on graphs of the statistical measures over the decision-variables or search space. The study is based 

on the simple inventory system presented above that permits backorders, where each measure is compared 

across a variety of scenarios. These scenarios include both changes in the simulation design (run length 

and number of replications) and changes in the inherent variability in the system (due to variation in the 

demand and lead-time processes). 
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POINT ESTIMATES 

Mean 

Figure 3.4 shows 3-dimensional plots of the mean of the response for all 210 points in the regions -- an 

exhaustive covering of the decision space indicating a good representation of the true surface, even for the 

worst case (HMW). However, as contour plots of the mean (Figure 3.5) show, there is a marked decrease 

in the accuracy of the representation if there are not enough replications. Distortion is possible even in 

this relatively simple inventory model. For example, case HMW with two replications suggests that the 

true response surface might be multimodal, which it is not. 

Standard Deviation 

Figure 3.6 shows the plots of the standard deviation of the response. The effect of design conditions and 

inherent variability in the system being modeled begin to appear when one examines the standard 

deviation (SD) at each gridpoint in the region. SDs are quite consistent for the first case, LNB (Figure 

3.7), where all are below 0.3. Although some SDs are doubled in the next two cases (LNW and HNB), the 

HMW case shows marked degradation in consistency (less than half of the SD’s are below 0.3 and 

approximately 12% are above 0.6). This again reinforces the notion that a simple model can have 

problems with the representation of the actual surface. Furthermore, these results raise concerns that 

homogeneity of variance assumptions may not hold for statistical tests (see section on homogeneity of 

variance). 
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Figure 3.4. Three-dimensional plots of the mean of the response 
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Figure 3.6. Three-dimensional plots of the standard deviation of the response 
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Figure 3.7. Histograms of the standard deviation of the response 
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Coefficient of Variation. 

Measures that incorporate both the mean and the standard deviation are also revealing. The coefficient of 

variation of the response, CV, is one such measure, and is defined in (10) above. Figures 3.8 and 3.9 

show 3-D plots and histograms of the CV. First note that the simulation model dampens the relative 

variability. E.g., the CV of the interarrival time of demand for Case LNB is one (1.0) while the largest 

CV of the response is less than 0.045 (less than 5% of the variability of the demand.) The simulation 

model has attenuated the demand variability by a factor of 20. Even in the extreme case, HMW, the CV 

of the interarrival ume of demand is 4.8 but the CV of the response is less than 0.225, again an 

attenuation of about the same factor. As shown in Figure 3.9, Case LNB shows low relative variability 

across the entire surface (less than 0.045); case HNB’s surface has more relative variability (12% of the 

CV’s are above 0.045); case HMW shows considerable variability with only 28% of the CV’s below 0.045, 

over 40% above 0.09, and approximately 5% above 0.18. These results are consistent with the 

observations made to this point. The true response at each point does not change, but the variability about 

that value is increasing, although not evenly across the surface. 

Signal to Noise Ratio 

The point measure defined in (Keys, Rees, Greenwood, 1995a) above, the signal-to-noise ratio (S/N), is 

similar to CV but is logarithmic; with this measure, a high S/N is preferred since this indicates relatively 

low error. The S/N plots (Figures 3.10 and 3.11) are consistent with the CV plots. The S/N’s for Case 

LNB are the most consistent with over 96% of the ratio between 37.5 and 46.0 (Figure 3.11). The 

uncertainty in the process becomes more evident in the other cases as less than half of the S/N values are 

above 37.5 in Case LNW (Figure 3.11) and almost none are above 37.5 for cases HNB and HMW. In fact, 
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Figure 3.8. Three-dimensional plots of the coefficient of variation of the response 
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Figure 3.9. Histograms of the coefficient of variation of the response 
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Figure 3.10. Three-dimensional plots of the signal-to-noise ratio of the response 
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nearly half of the S/N ratios are below 29.0 in Case HNB (Figure 3.11) and nearly 90% below 29.0 in 

Case HMW (Figure 3.11). 

A comparison of Cases LNB and LNW illustrate the effect of the design conditions -- run length and 

replications. Fewer replications and shorter runs add to the lack of consistency in the S/N ratio and also 

produce more noise. Comparing Cases LNW and HMW reveals that greater inherent model variability 

also produces more noise, but not necessarily greater spread in the S/N ratio. This suggests that for a 

given simulation model, the developer's choice of run length and replications can significantly affect the 

amount of noise in the system and hence the S/N, CV and SD. This indirectly affects the validity of 

statistical tests and the appropriateness and efficacy of different search methods. 

Relative Activity or “Bumpiness.“ 

Figure 3.12 shows that with the decision variable Q held constant there is very little activity as all plots 

are almost completely flat or horizontal. However, the plots of bumpiness with the decision variable R 

held constant (Figure 3.13, note the change in the axes) show a lot more activity as well as some 

acceleration; i.e., the system is more sensitive to the variable Q than it is to R. That this is so may also be 

seen from Figure 3.4 which shows much more response variability as Q is changed than when R is varied. 

The plots in Figures 3.12 and 3.13 also indicate that the higher the inherent system variability, the more 

bumpiness there is. 

Lower values for bumpmess in a region should indicate higher confidence that the region is well 

understood. Conversely, higher values indicate lower confidence and can therefore suggest to the modeler 

areas where additional experimentation may be helpful or necessary. Design conditions and inherent 

model variability both affect bumpiness. Increasing the number of replications and the duration of the 

runs results in lower values for bumpiness. The plots indicate that the greater the inherent model 

variability the greater the values of bumpiness. For the cases considered, inherent model variability has a 
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lesser impact on bumpiness than do design conditions. The plots showing second differences when the 

first difference is approximately zero (Figures 3.14 and 3.15) point out local optima. When the second 

difference is positive the local optimum is a minimum, the case of interest for the inventory model. Note 

first in these two figures that all second differences are very small, suggesting very little 

acceleration/deceleration in the surface; this is consistent with the gently sloping nature of this simple 

inventory model. The plots also indicate a series of local minima close to the Q =IRI edge of the feasible 

region of the surface. The locations of the local minima are consistent with the plots of the means and 

include the “true” minimum. Figure 3.15 case HMW also shows some activity near the line Q = 380, but 

further investigation shows that this is just a local optimum due to a ripple in the response surface. 

REGIONAL ESTIMATES 

Test for Normality 

Figures 3.16 and 3.17 show three-dimensional plots of p-values for the Shapiro-Wilk (S-W) test of 

normality, with one p-value calculated and plotted for each region. Figure 3.16 reports the p-values for 

the A = inter-gridpoint spacing = 20 case, whereas Figure 3.17 shows the same for the A = 40 case. 

Recall that for the S-W test, a p-value lower than the a-level indicates that the normality assumption must 

be rejected, whereas higher (than «) p-values imply there is less evidence against the null hypothesis that 

the distribution is normal. Hence, in Figure 3.16, approximately only 5% (Case LNB) to 13% (Case 

HMW) of the regions fail to meet the normality assumption at an a=0.05 level. For Cases LNB and 

LNW, there is very little difference in the distribution of p-values over the region, as indicated by the 

histograms in Figure 3.16. This implies design conditions have little impact on the normality assumption 

for the model and levels considered. Inherent variability in the system appears to have more of an effect, 
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as seen in the comparison of Cases LNW and HMW. Based on the S-W test defined above, case HMW 

provides stronger evidence against the null hypothesis, which states that the data follows a normal 

distribution. This finding implies that increased variability in the system makes it more difficult to meet 

normality assumptions required in many statistical tests. 

The most noticeable and important finding from Figure 3.17, which reports on the A = 40 spacing, is that 

all three histograms shown indicate a much greater percentage of regions that have non-normally 

distributed residuals. The range of percentages of regions not meeting normality ranges from 22% (case 

LNW) to 80% (case LNB). These results compare with a range of 5% to 13% for the A = 20 case. This 

indicates that the choice of inter-gridpoint spacing greatly affects the validity of F-tests used commonly in 

such simulation-optimization techniques as RSM. 

The explanation for the increased rejection of normality for A = 40 is as follows. With A = 20, possible 

region configurations are R., and R.,. Each of these configurations contains gridpoints only on the 

boundary of the region. Conversely, with A = 40, possible region configurations (R, 6? Rg: Ro) contain 

points both on the boundary and the interior of the region. What is typically happening in the regions that 

fail to have normal residuals ts that the hyperplane is not fitting the data well due to curvature. For 

example, the hyperplane may overestimate the responses on one region boundary, underfit it for the 

interior points, and fit fairly well through the opposite boundary. This leads to a distribution of residuals 

that is highly non-normal. A plot showing one such histogram of residuals for the ten replications across 

the R,, region defined by R={(Q, R) = (20, 0); (40, 0); (40, -20); (60, 0); (60, -20); (60, -40)} is shown in 

Figure 3.18a; precisely what was described about curvature has happened in this region. The ten residuals 

in the right-most rectangle in the figure all come from the point (20, 0); the twenty residuals in the left 

most rectangle in Figure 3.18a all come from the points (40, 0) and (40, -20). The plane overestimated 

the responses at the left of the region, underestimated those in the interior, and fit those on the right 

boundary better. These residuals do not follow a normal distribution, as may be seen by inspection of 
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Figure 3.18. The distribution of residuals for different inter-gridpoint spacings. 
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Figure 3.18a. Conversely, the residuals for the A = 20 R,3 region case defined by R ={(Q, R) = (20, 0); 

(40, 0); (40, -20)} are shown in Figure 3.18b and are much more normal in appearance as the plane gives 

a much more even fit with no interior points. (The S-W test fails to reject normality.) 

Note that it is inappropriate to perform a parametric first-order lack-of-fit test over the R ¢ described 

above, as such a test requires normality. It is possible that naive RSM users conduct such tests incorrectly 

as the RSM procedure is sometimes explained without inclusion of steps checking assumptions (such as 

normality). 

Homogeneity of Variance 

Plots for homogeneity of variance in each region are shown in Figures 3.19 and 3.20. Recall that in these 

figures p-values above 0.05 suggest homogeneous variances in the region (at o=0.05), whereas values 

below 0.05 indicate heterogeneity. 

These plots show that, in general, variances are not heterogeneous for either A = 20 or A = 40, regardless 

of the design conditions. Even the HMW cases show that only 5% or 6% of the regions fail to possess 

homogeneity tests. Of course the simulation model studied in this research is fairly straightforward, and 

other more complex models might lead to increased heterogeneity. But for the conditions studied here, 

the homogeneity assumption required for F-tests is rarely violated. 

“SEARCHABLE” REGIONS 

This section addresses the question of whether search techniques using first-order metamodels to 

determine gradient-search directions, such as RSM, can be properly used over the various regions & 
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comprising the feasible region. Two inter-gridpoint spacing cases, A = 20 and A = 40 are examined, and 

each is further studied on four experimental design cases (LNB, LNW, HMB, HMW). 

The issue of whether first-order RSM models can be properly invoked is important because we will show 

that even with this simple, inventory simulation model, traditional RSM is not appropriate for many 

regions R, The implications of this finding will be discussed in the Conclusions section. 

As mentioned, in order to fit a linear, first-order model over a region and ensure adequate, non-horizontal 

fit, two F-tests must be passed: the significance-of-regression test and the lack-of-fit test. These tests in 

turn require that the region consists of normally distributed residual errors and homogeneous variance 

over the region. Therefore, strictly speaking, for a region to have a first-order model properly fit and be a 

candidate for RSM’s gradient search, the following four conditions should hold: 

(1) _ the region passes the Shapiro-Wilk normality test (p>0.05); 

(2) the region passes the Bartlett test for homogeneity of variance (p>0.05); 

(3) the region passes the significance-of-regression test (p<0.05); and 

(4) the region fails the lack-of-fit test, i.e., lack-of-fit fails to be true (p>0.05). 

Figures 3.21 and 3.22 are constructed to indicate which areas are “searchable” with first-order RSM 

metamodels. These figures show the four possibilities: 

(1) violation. A region so classified has failed either the normality or the homogeneity of 

variance test. In Figure 3.21, regions in this category are shaded in black. 
  

(2) flat. A region classified in this grouping has failed the significance-of-regression test. In 

Figure 3.21, these regions are shaded dark gray. 
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(3) first order. A region in this category is a candidate for RSM’s gradient search and has met 

all four of the conditions stated above. These regions are shaded light gray in Figure 3.21. 

(4) second-order/other. These regions, which are left white in Figure 3.21, have passed the 

normality, homogeneity-of-variance, and significance-of-regression tests. But the regions 

contain significant lack-of-fit, suggesting that a second-order or some other model is 

needed to adequately fit the response over the region; a first-order model is inadequate. 

The first row of panels in Figures 3.2] and 3.22 describes results for the A = 20 inter-gridpoint spacing 

case. Observe that many areas are “RSM-able” (i.e., light gray). The first panel in the first row (case 

LNB) contains many regions (about 68%) that are white and therefore require a second-order/other 

metamodel. This finding is somewhat in opposition to the popular RSM strategy of fitting a first-order 

model initially when one is probably tar from the true opumum. Case LNW is much more appropriate for 

an RSM strategy with about 80% of the regions light gray (i.e., first-order). As demand variability is 

increased (HNB) over the previous two cases, over 30% of the regions fit in a category other than first- 

order; about 25% violate either normality or homogeneity-of-variance requirements, and the other 8% or 

so are equally divided between “flat” and “second-order/other.” The final A = 20 case shows that only 

31% of the regions are first-order; the rest are either in violation or have so much variance that 

Statistically they appear flat. 

The A = 40 row of panels at the bottom of both Figures 3.21 and 3.22 indicate a much lower percentage of 

regions appropriate for first-order RSM. For all four cases of A = 40, no more than 10% of the region is 

light gray; the other regions are either in violation of F-test assumptions (almost exclusively normality) or 

need non-first-order metamodels. 
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These findings are not meant to imply that RSM is an inappropriate search strategy. Rather the issue is 

whether first-order models are being used appropriately within RSM and whether nonparametric tests are 

also needed. 

CONCLUSIONS 

In this study a simple, inventory-simulation model was studied under four different experimental design 

conditions. These conditions varied the coefficient of variance of demand and of lead time and also 

examined two different levels of design conditions, i.e., the number of replications and the simulation run 

length. A simple model was studied because it was believed that even a naive modeler intent on finding 

the system optimum would be able to safely and properly use a technique such as RSM, a widely used and 

respected approach. 

The purpose of the study was to vestigate common Statistical measures over the search region. Both 

point estimates (mean, standard deviation, coefficient of variation, signal-to-noise ratio) and region 

measures and tests (normality of residuals, homogeneity of variance, significance-of-regression and lack- 

of-fit) were examined. 

Point-estimate measures exhibited considerable sensitivity to experimental design conditions. This gave 

rise to concerns that perhaps the simple inventory model might not be simple enough to conduct 

Chapter Three: An Investigation of the Behavior of Simulation Response Surfaces 106



simulation-optimization searches using methods requiring some parametric statistical tests. Regional 

measures added some additional concerns. 

That the appropriateness of various optimization approaches should be questioned was portrayed in a final 

set of plots indicating which points of the overall search area were amenable to first-order RSM and 

which were not. [t was found that an important determinant of amenability was the inter-gridpoint 

spacing of the gridpoints. The gridpoint spacing is a very important practical issue, as one conducting 

Optimization on a simulation model must be able to specify, e.g., in RSM, the (uncoded) size of the region 

of the first-order designs and the step size to be taken along the path of steepest ascent/descent. It was 

found for a spacing of A = 40 that in no case were more than 10% of the total number of regions 

appropriate for first-order RSM. For A = 20, the range of appropriate percentages varied from about. 25% 

to 78%. 

Again, this is a relevant, practical finding. Individuals conducting optimization must be very careful not 

to make experimental-region size too large, since then first-order parametric metamodels may only be 

appropriate 10% of the me, whereas setting even a smaller region size will still lead to considerable 

variability in achieving a properly executed search. 

There are three implications of these findings. The first 1s that there is a need to develop a simulation- 

optimization “pre-processor” or “starter” that suggests both a starting point for the optimization and the 

granularity of the problem, i.e., the inter-gridpoint spacing or some surrogate. Many times it 1s 

appropriate to assume that a “good-enough” starting point is known by an expert, but even if so, it 1s not 

as Clear that such an expert would have sufficient knowledge to specify an inter-gridpoint spacing that is 

not too big, given the particular model variabilities (exogenous and endogenous) and design conditions 

(run length and replications). Too small a spacing may be costly. 
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The second implication of the findings of this research is that nonparametric metamodeling should be 

examined. This is necessary not only because of the potential of violating parametric assumptions, but 

also for another reason implied in this research: the benefits of global, nonparametric metamodeling. 

Recall that in Figure 3.5 with two replications, multi-modal response surfaces were indicated (which was 

incorrect). If RSM were attempted starting on the wrong “side” of such a simulation response surface, the 

wrong optimum might be tound. A possible alternative to parametric metamodeling such as RSM is 

global nonparametric metamodeling, whereby the whole surface is modeled using a nonparametric 

technique such as kerne! smoothing or spline smoothing. In fact, some preliminary investigation on our 

part (Keys, Rees, Greenwood, 1995a) suggests that global, nonparametric metamodeling is very effective, 

seems safer, and requires relatively few computer runs to obtain the optimum. 

The third implication of this research is that a multi-strategy approach to simulation optimization be 

explored. Since a response surface may vary considerably over the entire region in terms of both point 

and region characteristics/measures, it stands to reason that different search techniques might be 

appropriate and thus more successful in different areas of the search space. For example, RSM might be 

appropriate in one area and random search in another. We have initiated some discussion of this 

elsewhere (Crouch, Greenwood, Rees, 1995) (Greenwood, Rees, Crouch, 1993). 

In conclusion, we recommend that further research be conducted to “flesh out” these three implications. 
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Chapter Four: A Best-First Search Approach for 

Determining Starting Regions In Simulation 

Optimization 

INTRODUCTION 

Definition of Simulation Optimization 

Simulation is a widely-used computer modeling technique that has been applied to a broad scope of 

problems, ranging from traffic-flow analysis to job-shop scheduling to military-campaign planning. 

Simulation permits the study of systems which cannot feasibly be constructed or experimented upon in the 

“real world,” and which are too complex to be analytically modeled. When a given set of input conditions 

is applied to a simulation model, the model's output, referred to as a response, provides an estimate of 

how the true system would respond to those inputs. Although simulation is very useful in predicting the 

output of a system or responses, it does not in and of itself indicate the input conditions required to 

achieve a desired response; i.€., 1 is NOt an Optimization technique, it is an evaluative methodology. The 
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process of finding the input conditions that yield the optimal (or near optimal) system response(s) is 

referred to as simulation optimization, which can be a very expensive and time consuming activity. In 

other words, simulation evaluations address “what if questions by providing performance measures for a 

given set of input conditions, whereas simulation optimization extends the evaluations to consider “what's 

best” by seeking optimum values for the input conditions. 

The objective of simulation optimization is to determine the values of the input conditions, 1 controllable 

factors or decision variables, that optimize #1 responses, subject to a set of uncontrollable conditions 

(conditions that atfect outcomes but are not under the influence of the decision maker). This process is 

complicated by the presence of random error, often the result of combined random effects of all of the 

uncontrollable conditions. This causes a response Yj to become a random variable and take on a set of 

values for the same setting of the controllable factors; i.e., there is some distribution of Yj values for each 

combined level of the controllable factors. To model! this behavior each response is oftentimes considered 

equal to the sum of a constant and a noise term, where the constant is the expected value of the response 

E[Yj] for a specific combination of factor settings, and the noise term represents the random error. Due to 

the presence of random error, the optimization process typically focuses on the expected value of the 

responses; however, while the goal is to optimize E[Yj], only Yj is observable. Jacobson and Schruben 

(1989) note simulation optimization is in the class of stochastic optimization problems where the objective 

functions are stochastic functions of deterministic decision variables; these problems are known to be 

difficult to solve. 

Azadivar (1992) points out that although the most common goal in simulation optimization is to optimize 

expected value, the goal may also involve such considerations as minimizing the risk of exceeding a 

threshold, minimizing dispersion, etc. Meketon (1987) refers to two classes of objectives of optimization 

procedures: min/max and level crossing (or root finding). The latter is of the form: find X 9 E[Y(X)] = p; 

for example, find the service rate such that customers wait more than 3 minutes 5% of the ume. Meketon 
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also indicates that the level-crossing problem is the same as the min/max problem, e.g., min E[(Y(X)- 

p)2], if Var[Y(X)] is constant. 

In general, the responses, Y = (Y], Y2, .... Ym), are functions of the controllable factors, X = (X 1, X2, ..., 

Xp), uncontrollable conditions, Z, and random error,€; i.e., 

Y=E[Y] +e=f(X1Z)=El[f( X1Z)] +e. 

Note that the additive error considered above is only one possible model, with E[e,] = 0, and Var[e,] < +00. 

In addition to the above goal, the optimization will be subject to upper and lower limits on the controllable 

factors or some function of a combination of them. Therefore, the general simulation optimization 

problem may be stated as: 

Optimize E[Y] = E[f( X |Z )] over the regionS c KR" (1) 

where the domain of S may be either continuous (Kc), or discrete (Rq), or mixed, 

and X = (Xj, X2,...., Xp) Ee S 

Subject to: 

h(X) 2 0 (2) 

where h(X) is a vector of deterministic constraints typically of the form: 

li < Xj < uj i=l,..,n (2a) 

Int+q < f(X)< un+q q=1,...,b (2b) 

where b is the number of constraints involving more than one controllable factor. 
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Typical Assumptions 

Not all simulation optimization methods search the region S directly. For example, frequency domain 

methods transform the optimization problem into the frequency domain (Safizadeh, 1990), and many so- 

called intrusive procedures are single-simulation-run optimization methods (Wilson, 1987). However, a 

broad set of simulation optimization methods do explicitly perform a search directly over the region S. 

For example, different varieties of Response Surtace Methodology (RSM, see Box and Wilson (1951) or 

Myers (1971)) assume a starting point in S then use first-order and/or second-order metamodels to suggest 

preferred directions of search or optimality locations. The research described in this chapter is most 

applicable to simulation optimization methods that search the region S directly, such as RSM, random 

search, and Box’s complex search (Safizadeh, 1990), although any optimization approach that benefits 

from a carefully chosen initial region and/or requires a specification of problem granularity (see below) is 

a candidate for the procedures defined in this research. 

Methods directly searching a region S typically make several assumptions. These often include the 

assumption that either a “good” starting point is known ‘or that the choice of a Starting point is 

unimportant to the solution of the problem. Sometimes this difficulty is obviated by selecting several 

Starting points, solving the problem for each starting point, and selecting the most-preferred answer. 

Another assumption commonly invoked is that problem granularity, i.e., an appropriate grid spacing/step 

size, is known. For example, in using first-order RSM models, a factorial design is often utilized to 

determine the direction of steepest ascent. But there ts no a priori rationale to determine the coding of 

natural variables in S, Le., to specify the size of region over which the factorial design is defined. 

Moreover, once a direction of steepest ascent is determined from the RSM metamodel, there again is no a 

priori reasoning that leads to a good choice of step size along the path of steepest ascent. Finally, most 

approaches to simulation optimization invoke only one search method throughout the entire procedure, 

although some have suggested hybrid approaches (Crouch, Greenwood, and Rees 1995). Sometimes a > 
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basic method is employed (e.g., RSM) with variations (e.g., first-order, second-order) to successfully 

address simulation models with differing amounts of curvature and/or variance in the response surface. 

To summarize so far, many simulation optimization methods assume that a “good” starting point is 

identified, that the design grid (i.e., how far apart to space runs) is known, and that one basic search 

method need be employed, all regardless of the surface. Often, such assumptions are valid, for often a 

user has experience with the simulation model or is willing to live with the results obtained from 

assumptions, or expertise may be available to suggest appropriate search methods, step sizes, etc., early in 

the optimization process. Also, the surtace may be “simple” and “smooth enough” to be impervious to the 

consequences of the aforementioned assumptions. However, there are cases where the simulation 

response surfaces are complex and have great variability in response across the surface and where little 

relevant optimization expertise 1s available. Ignoring these conditions can lead to an unnecessary 

expenditure of simulation runs, failure to find the simulation optimum, and/or a false declaration of the 

optimal conditions. Sometimes financial implications are significant. This research deals with this latter 

class of problems where making these assumptions is not wise. 

The objective of this stream of research is to specify a “Starter” which can suggest a good starting point, a 

reasonable grid spacing, and an appropriate initial search methodology for those cases where these items 

are unknown and important. The Starter algorithm would be used initially in simulation optimization 

problems, and then would be followed by a conventional optimization method (such as RSM, Box’s 

complex search, etc.) using the starting point and inter-grid spacing stipulated by the Starter. In 

particular, this chapter locates a starting point and an inter-grid spacing. The objective of finding an 

initial appropriate search methodology is simplified in this chapter to finding a starting point and inter- 

grid spacing for a first-order RSM design. The Starter algorithm will be easy to modify to include other 

search techniques once the preferred conditions for starting with other search techniques is determined. 
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This latter matter is, of course, still an open research question (see, for example, (Crouch, Greenwood, 

and Rees 1995)). 

Organizationally, this chapter is developed as follows. The next section provides a simulation 

optimization example that will be used throughout the chapter to illustrate concepts. This is followed by a 

discussion of the artificial-intelligence based search method, best-first search. The chapter then continues 

with the objectives and then implementation details of a Starter, and it is followed with three example 

simulation optimizations begun with the Starter. Finally, conclusions are drawn and further research 

directions ure discussed. 

ILLUSTRATIVE EXAMPLE 

The concepts presented in this chapter are demonstrated through a primary example of an inventory 

simulation system with two variations. A second example, defined later, tests the procedure on a multi- 

modal surface. 

The primary example is a simple inventory model that permits backorders, as illustrated in Figure 4.1. 

The model contains two decision variables or controllable factors -- order quantity (Q) and re-order point 

(R). Whenever the inventory level dips below the re-order point, an order of size Q is placed. The two 

controllable factors are varied during the search in order to find the combination of Q and R that yield the 

lowest total cost (TC). Total cost is composed of three components: ordering cost, carrying or holding 

cost, and shortage or backorder cost. 
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Q = order quantity 

R = re-order point 

T = order cycle ume 

Inventory level 

      

t, me      
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Figure 4.1. Simple inventory model that permits backorders and exhibits both stochastic demand 

and lead time. 

The primary example model also contains two uncontrollable conditions. The first, interarrival times for 

demand (D), is a random variable which indirectly causes the inventory level to decrease at a non-constant 

rate, as illustrated in Figure 4.1. The second uncontrollable condition involves another random variable, 

lead time (ZL), the time between order placement and receipt. The effect of the stochastic lead time is that 

the inventory level does not always return to the same maximum value when an order of size Q is 

received, as is also shown in Figure 4.1. 

In the primary example model, the random variable D is assumed to follow a Gamma(a, 8) distribution, 

where the mean of D is «8 and its variance is ap. In the first variation of the primary example, lead 

time L is assumed to be identically zero. In the second variation, lead time is introduced and 1s assumed 

to follow a Normal distribution; in this second case, the meun of D remains the same as in the first case, 

but the variance of D is increased in order to illustrate the effect of high variability on the Starter strategy. 
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The primary-example problem may be stated as: 

Optimize: Minimize { E{TC]} = Minimize {E[f(Q, R | D, L)] }, (3) 

where D ~ T (Qp,Bp) and L ~ N(H, 5 5,7), 

and co and B are shape and scale parameters, respectively, of the Gamma distribution, 

and where pw and are the mean and variance, respectively of the Normal distribution. 

Subject to: 0<Q<400 (4) 

-400 <R <0 (5) 

IRI<Q. (6) 

The first constraint, as shown in (4), defines the initial estimate of the domain of the order quantity; 1.e., it 

is assumed the “opumum” order quantity will be less than 400 units. This is based on the decision 

maker's understanding of the problem and values of such cost parameters as the cost to place an order, 

cost of one unit to be in inventory for one year, etc. The second constraint, in (5), limits the value of the 

second decision variable R, re-order point. In this example, an order will be placed when the inventory 

level reaches zero, when the number of back orders reaches 400, or somewhere in between. The final 

constraint (6) ensures that a policy where the system is always in a backorder situation is avoided. This 

would occur if Q was not set large enough to meet all backorders in an order cycle, on the average. Note 

that this constraint restricts the feasible region h(X) in equation (2) to be triangular. 

Particular details of the operation of the simulation model are given in Appendix A. Included are 

specifications of the general algorithm, warm-up period, termination conditions, and statistics collection. 

The mechanism that is followed in the simulation optimization process is illustrated in Figure 4.2. The 

operation of the system, as represented by the simulation model, is run for a specified period of time. The 

performance of the system is based on total cost, the only output of the simulation model, and is a 

response that, naturally, is to be minimized. Total cost is based on the specified values of the decision 
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variables or controllable factors -- order quantity and re-order point, Q and R, respectively -- and random 

demand and lead time values that occurred during the simulated operation of the system. Every possible 

combination of Q and R, i-e., every point in (Q, R) space, represents a possible simulation run. In order to 

improve upon the expected total cost of the system, one changes the values of the decision variables and 

simulates the operation of the system again at another (Q, R) location. Decisions on how to change the 

value of the decision variables in order to get an improved solution occur in the “optimizer” box in Figure 

4.2. The optimizer may involve a simple random strategy or a more complex but rational approach such 

as response surface methodology. Multiple simulation runs, replications, may be made at a single (Q, R) 

point in order to obtain a better estimate of the response (total cost) and to obtain an estimate of the 

variability of the response. 

  

  

UNCONTROLLABLE 
CONDITIONS 

D L 

demand IAT lead time   
  

  

FACTORS 

Q, order quantity 

R, re-order point   

CONTROLLABLE 

|p} SIMULATION | 
— | MODEL     

  

  

      

“OPTIMIZER” 

Figure 4.2. Process for optimizing the simulated inventory system 
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BEST-FIRST SEARCH 

Best-First Search (BFS) is an Al-based search procedure that the Encyclopedia of Artificial Intelligence 

(1987) attributes to the work of Doran and Michie in 1966. This work presented an algorithm as part of 

a graph traversal program. It is this algorithm that has served as the basis for later variations of the BFS. 

We will explain and utilize BFS in a graph-traversal or network context as well. That is, we will invoke 

BFS as a network search whereby nodes represent subregions of the feasible area given by equation (2), 

and queues represent different paths through the network or search tree, as will be explained later. 

The BFS procedure is heuristic in that it does not guarantee an optimal solution, but rather belongs to the 

class of search procedures that proceeds toward some solution, provided a solution exists (see Figure 4.3, 

based on (Winston, 1984)). BFS differs from some other heuristic AI search procedures in that estimates 

of the “goodness” of partial solutions are used to decide which further solutions to pursue. In many search 

situations, such estimates are unavailable, in which case BFS cannot be utilized; in those cases search 

Strategies such as depth-first or breadth-first search must be invoked, where paths through a search tree 

are methodically developed regardless of the goodness of solutions discovered. In simulation 

optimization, measures are available as goodness estimates, such as the mean response at a point. 

Pseudo code for the Best-First Search Algorithm as it proceeds from a Start node to a Goal node is shown 

in Figure 4.4; this code is based on (Winston, 1984). 

A short example will illustrate the algorithm. Consider Figure 4.5a, which is a pictorial representation (a 

“map’) showing the connectivity of five cities. City 4 is the starting city, and we wish to travel to city 4 

(our “goal”). Cities A, B, and C are intermediate cities, any or all of which we may travel through if we 

wish on our way from 4 to ¥. In Figure 4.5a the numbers on the arcs between cities represent actual 

distances between the cities. Our objective is to go from 4 to 4 in the shortest possible distance. Available 
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to us also is the estimated distance from each city to the goal, which in this example is an approximation 

based on the straight-line distance to the goal. 

Depth -first 
Hill Climbing 

Breadth-first 

Beam 

Best-first 

[—— Some path 

  

British Museum 

Branch and bound 

Dynamic programming 
A* 

Search —_wpenme Optimal path 

  

Minimax 

Alpha-beta pruning 
Progressive deepening 
Heuristic pruning 
Heuristic continuation 

  —= Games 

  

Note: Based on Winston [14] 

Figure 4.3. Some Al-based search techniques 

  

° Create a queue. 

° Put the Start node on it. 

° Until the Goal node has been reached or the queue is empty, repeat: 

- if the first element on the queue is NOT the goal node 

* remove the first element from the queue 

¢ add the first element's children, if any, to the queue 

* sort the entire queue by estimated remaining distance to the goal 

if the first element on the queue is the goal node 

* announce “success” and then STOP. 

° If get to this step, the queue is empty and no Goal node has been found, 

- .. announce failure.       
Figure 4.4. Best-First Search Algorithm psuedocode 
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4.5a. A network representation of five cities 
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4.5b. The search tree corresponding to Figure 4.5a. 

Figure 4.5. An example to illustrate the best-first search procedure 
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The search tree corresponding to the example is indicated in Figure 4.5b. From 4, one may progress to 

either A or B. If one travels from 4 to A, then possible subsequent destinations are B and 4. If one went 

from 4 to A and then to B, we assume that one could only travel to C. This is because going to 4 would be 

returning to a city already visited, for which there is clearly a shorter path. The rest of the tree 1s 

developed similarly. 

The BFS algorithm begins by placing the source node 4 on the queue. As this node is not the goal node, 

the children of 4, namely A and B, are added to the queue and 4 is removed. The contents of the queue at 

this point are 

Queue 

$-A : 2.0 

$-B : 5.5 

Here 4-A indicates the path from 4 to A, 4-B the path from 4 to B, and the numbers indicate the estimated 

distance to the goal. For example, the number 5.5 indicates that, once one is at B, the estimated straight- 

line distance to the goal is 5.5. According to the algorithm, the queue is next sorted based on estimated 

distance to the goal, which in this case results in no change at all. The first element on the queue is then 

removed from the queue and its children are added to the queue. This results in 

Queue 

4-A-B : 5.5 

8-A-§ : 0.0 

$-B: 5.5 

When the queue ts sorted, it becomes 
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Sorted Queue 

§-A-8 : 0.0 

8-A-B: 5.5 

The first path is removed from the sorted queue, and since it leads to the goal node, the procedure 

terminates successtully. The BFS solution to this problem is -A-4, which (coincidentally) is the optimal 

path. Even though the example is simple, it illustrates that the procedure is desirable because the entire 

queue is sorted, thereby keeping the most promising alternative at the front of the queue. This is as 

opposed to depth-first search and breadth-first search, which place children at the front and back of the 

queue, respectively, and omit the sort. The tradeoff is one of effectiveness of the search procedure as 

opposed to the computational expense for the sorting. Computationally, BFS is of order n [O(n)] at worst 

and O(log n) at best, where n is the number of nodes, whereas depth-first and breadth-first search are 

O(n). Of course, BFS is viable only when estimates to the goal are available. 

STARTING A SIMULATION OPTIMIZATION SEARCH 

Objectives 

In the simulation optimization methodologies considered here, one wants to begin the search process at a 

point near the optimum, to explore a region of appropriate size near that starting point, and to use a 
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search methodology appropriate to the response surface of the simulation model. Often, however, one is 

unaware of where to start, how large a region to use, and/or what methodology is appropriate. For 

example, in the inventory simulation model described above, the user may only be able to state with 

confidence that 0 < Q* < 400 and -400 < R* < 0, where (Q*, R*) is the optimal solution to the problem. 

Furthermore, the user may have no feel for the granularity of the problem other than to say that there is no 

need to place experimental design points closer than every 25 units in either the Q or R direction. It may 

be that a granularity of 50 or 100 units could suffice, but the user has no idea what the proper value is and 

whether the value changes as one gets closer to the optimum. Finally, the user may not know enough 

about the response surface itself to specify whether a gradient-based search method such as RSM will be 

appropriate, or whether another approach such as simulated annealing is more appropriate because the 

surface may be multimodal. 

AS a first step in building a simulation optimization starter, we assume the following objectives; our 

Starter should: 

1. specify a “good” starting point (or points) for the subsequent search, in the sense that the optimal 

solution is likely to be found if the search is begun there. 

ty
 

suggest a minimum necessary inter-gridpoint spacing A,,i, between experimental design points to 

be used initially in the subsequent search. 

3. specify a subset of the global domain where the optimal solution(s) is (are) likely to reside; 1.e., 

stipulate a limited search region. 

4. generate another subset of the global domain where the optimal solution is almost certain not to 

reside. 

5. allow the user to specify aggressiveness, e.g., to stipulate whether “many” runs should be 

expended to ensure good results (a not very aggressive strategy) or whether only a paucity of 

points should be investigated because, say, simulation runs are expensive or time consuming (a 

more aggressive strategy). 

6. expend as few computer runs as possible within the context of the above objectives. 
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Note that we have omitted several! important possible Starter objectives in this research; e.g., our Starter 

neither specifies a preferred search method, nor does it indicate which portions of the domain will be 

difficult to search (e.g., because of sharp peaks, multiple optima, ridges, etc.). These objectives are left as 

topics for future research, although we have initiated work on preferred search methods in (Crouch, 

Greenwood, and Rees 1995) and on global nonparametric metamodeling in (Keys, Rees, and Greenwood, 

1995a; 1995b). 

Objectives (2) and (6) taken together suggest a “divide-und-conquer™ strategy for determining Ajj. For 

example, consider the simple domain ® , = {(x,, x,)10< x, $ 10,0 < x2 $ 20} shown in Figure 4.6. We 

initially make simulation runs at the corners of R ,, indicated by the four heavy dots in Figure 4.6a. To 

determine whether the (entire) region as specified stipulates a good value for Amin in each of the xX and X, 

dimensions, we perform certain tests (given below) over the region. If the tests are passed, then there is 

no need to reduce Amin, and A" nin in the x; direction is set to 10 and A@),,;, in the x2 direction is set to 

20. If, however, the test is not passed, then the ApjnS are too large. When this occurs, each dimension 

(i.e., X,; and x,) is bisected and additional runs are made as indicated in Figure 4.6b at the points (5,0), 

(5,10), (5,20), (0,10), and (10,10). This divides the region ® ; into four new regions 

Rosy = ((Xy,x2) 10S x, $5, LOS x < 20}, 

R12 = {(x1,%2) 15S x1 < 10, 10 $ xz ¥ 20}, 

R13 = {(X1,xX2) |OS x, $5, 0 < x2 ¥ 10}, 

Ria = ((X1,X2) 15 $x, $10, 0¢ x2¢ 10}, 

and implies A“, = 5 and A) in = 10. Again the tests are performed to see if the region is small 

enough to capture the essentials of the surface. If passed, the ApjnS are 5 and 10 respectively, and if not, 

the most preferred (again see below for how the preference is determined) region(s) is(are) quartered. For 
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4.6a. The domain of the simulation optimization problem with runs at the corners 
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4.6b. Additional runs made in the divide stage. 

Figure 4.6. Using a divide-and-conquer strategy to determine design pvint spacing 
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example, if R ;2>>R1, and Ry2>>R_ 13 and R j2>>R_14 (where “>>” means “is preferred”), then R 17 

would be quartered (see the open circles in Figure 4.6b) to give 

R121 = {(X1,X2) IS< X] < 7.5, IS< x2 < 20}, 

R122 = {(X1,X2) 17.5 <x, < 10, 15 < xz < 20}, 

R i99= ((%4%9) 15 Sx, $7.5, 10S x2 < 15}, 

Ri2= {(X1,X2) [7.5 x, S 10, 10 < X72 15}. 

This process is continued until the region tests are passed. For instance, region ® ,,, might be quartered 

itself, giving regions R 4>,;, Ryr2, Ris, and R_,.,, with corresponding minimal spacings of A pin = 

1.25 and A@ i, = 2.50. Note that the divide-and-conquer strategy provides an estimate of A in a 

preferred region of the domain using relatively few simulation runs. 

Whereas Starter objectives (2) and (6) imply a divide-and-conquer strategy, Objectives (1) and (2) taken 

together unply a depth-first based search. To see this, consider Figure 4.7, which indicates a portion of 

the search tree used in finding the most preferred region (i.e. which region to start in and the 

corresponding region size). Since it is desired (objective (2)) to find the largest satisfactory Apjn in each 

direction, it is necessary to proceed down the tree as fast as possible unul the region size tests are passed. 

At this point we note that searches that proceed down the search tree rather than across it are depth-first 

based searches. Since objective (1) asks that a “good” or most preferred starting point be found, the list of 

candidate regions to be searched should be searched from most preferred to least preferred, and explored 

in that order. But a depth-first search with the queue sorted from most preferred to least preferred at each 

step is equivalent to best-first search, as explained above. The BFS solution to the hypothetical problem 

above is indicated in Figure 4.7. 
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If a test can be devised to differentiate preferred from non-preferred regions, then objective (3) can be 

satisfied with a list of most promising regions. Similarly, such a test can also be used to identify a list of 

regions meeting objective (4), that subset of the domain almost certain not to include a good starting 

point. 

Note that aggressiveness (objective (5)) or risk taking can be specified in several ways. First, a user may 

decide to use Statistical tests and set a very low p-value for tests, thereby expressing conservatism. 

Similarly, the degree of aggressiveness may be set by specifying how regions may be eliminated from 

further consideration. For example, we specify below that all regions significantly different in a statistical 

sense from the best region discovered so far should be placed on a discard list. A less aggressive 

procedure might be to discard only those regions that are not different from any other region not different 

from the most preferred region. For example, if region R » the best region discovered so far, is not 

significantly different from region K ,, but region RK, is significantly worse than R_ , but is not 

significantly worse than K_,, our Starter would place R_, on the discard list, whereas the less aggressive 

approach described above would not discard any of the three regions. 

Having stated the objectives of our starter and their implications, we turn our attention in the next section 

to the identification of preferred regions and the implementation of the best-first search. Examples of the 

complete procedure are presented following this discussion. 

Implementation of the Starter 

In order to specify completely the BFS procedure for the Starter, we must stipulate the performance 

measure on which items in the queue will be sorted. Before doing this, we recall that BFS is a heuristic 

search and does not guarantee optimality. 
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Several different possible measures exist that make sense as indicators of region preference. For example, 

¥(x) , the average of the response values obtained from the simulation runs made over the region, could 

be used. Alternatively, an (KIM), the estimated maximum response over the region R based on a 

first- or second-order metamodel M fitted to the simulated data, could be specified. This latter choice has 

the advantage of allowing goodness-of-fit tests as a means of helping to decide whether the ApinS are 

small enough. But this estimate requires more simulation runs, particularly for a second-order 

metamodel, many of which may not be helpful in the initial stages of the search. Recall that the purpose 

of this procedure is to start the process of identifying promising regions to explore and does not 

necessarily have as an objective finding the system optimum. Because we want to demonstrate the 

concept with a relatively simple case, we choose ¥(x) as Our performance measure and leave open the 

question of other measures, such as Y,,,,. (RIM), for future research. 

Note that at this point we are choosing an aggressive Strategy, or at least a strategy more aggressive than 

Yimax (KIM). Ultimately, the degree of aggressiveness could be set by the system at each stage of the 

search by specifying the most appropriate region preference measure. This topic is also left for future 

research. 

With ¥(x) as the performance measure and a divide-and-conquer approach using best-first search, the 

Starter strategy becomes clear. The essential features of the Starter are shown in Figure 4.8. 

In the algorithm of Figure 4.8 the subdividing is done by bisecting the most preferred region along each 

dimension, as explained. Note also that the entire queue (list) £ is sorted from the most-preferred to the 

least-preferred region, as is required in best-tirst search. However, two items must be further explained. 

First, it has not yet been shown how staustical tests are performed that determine which regions should be 
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placed on the list £ and which on the discard list D. Second, the stopping criteria have also not been 

stipulated for the Starter. 

  

iUser: Initialize 

The user specifies the dimensionality (k) of the sumulation-optimization problem. 

The user specifies the region to be optimized; call it R, I 

The user specifies whether optimization is minimization or maximization. 

System: Define and Initialize 

Initially define D=list of regions to be discarded={ $}. 

Define each vertex of the region R, as a “gridpoint.” 

Run replications, e.g., three, at each gridpoimt. 

Initially define £=list of promising regions to be explored={ R_, }. 

Define Aj as the inter-gridpoint spacing between gridpoints along dimension , t= 1, ..., k. 

Best-first search 

Repeat 

While the list £ is not empty 

Take the first region R off E. 
While not meeting stop criteria 

Subdivide R, 

Perform statistical tests on all regions Ron £. 

Based on these tests, keep promising regions on & and place others on D. 

Sort £, putting the most promising region at the front of the list. 

End While /* not meeting stop criteria */ 

End While /* the list £ is not empty */ 
Run the Safety Net 

Until the lists £ and D are empty.       
Figure 4.8. The basic Starter algorithm. 

The testing is a multiple-comparison test of all regions on the list & of regions still to be explored. With 

this test, the most preferred region und all those not significantly different from it are kept on the list Z, 

whereas all regions significandy different from the most preferred region are placed on the discard list. 
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The proper multiple-comparison test depends on whether heteroskedasticity is present; the particular 

procedure used in our Starter follows Toothaker (1991) and is as follows: 

¢ For each region ® taken one at a time on the list £, assume a metamodel M and determine e; from y, 

=M+ €;, where j represents a run at a gridpoint in the region R, 

* Use the Shapiro-Wilk test to test for normality on all ej for each region. 

* Assume homoskedasticity unless disproved below. 

¢ If any region has nonnormal errors then 

if Levene’s Median test is significant 

then heteroskedasticity is present, 

else 

if the Bartlett-Box test is significant 

then heteroskedasticity 1s present. 

¢  Ifhomoskedasticity is present then 

use the Tukey -Kramer multiple comparison procedure; 

else 

use Scheffe’s multiple comparison procedure. 

As mentioned, the metamodel M = ¥(x) 1S used in this research, but other metamodels should be 

explored in future research. 

There are currently three rules that serve as the stopping criteria in the best-first search. Terminology and 

notation used in the stopping criteria are 

Fesce = the F-value of a significance-of-regression test, and 

F, of = the F-value of a lack-of-fit test. 
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The rules are 

1. Stop if the user-supplied minimum inter-gridpoint spacing (call it A,) is reached. 

2. Stop if gradient-based search methods, e.g. RSM, can be used properly in the most-preferred region 

R* Le., stop if Ferg is significant and Fog is not significant for R™. 

3. Stop if a horizontal hyperplane may be fit accurately over R* This implies that any point in the 

most-preterred region is optimal and there is no further reason to divide this region. Le., stop if 

Fercr and F.og both are not significant for R*. 

Because the penalty for incorrectly placing a region on the discard list is very high, namely an optimal 

solution may be discarded, we invoke a safety-nel in our strategy. This provides a “second chance” to 

place regions on the discard list back under consideration. The safety-net is invoked after the list & is 

emptied; comparison of each item on the list D is made with the best region discovered so far (R*). No 

region 1s permanently discarded that is larger than 4A,\, without subdividing that region first. Details of 

our implementation of the safety-net as well as pseudo code for the entire Starter are included in Appendix 

B. The examples that follow will also include detail not specified here, but included in Appendix B. 

EXAMPLES 

In this section three examples are presented in varying levels of detail to illustrate the Starter procedure. 

The first example is the inventory model with low variance demand and no lead time described above. 

The second example considers the same model but with more variance in the demand and stochastic lead 

time. The third example consists of a multi-modal response surface with five peaks and an annular 
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depression around the highest peak. The purpose of the third example is to test the starter on a complex, 

multi-modal surface where gradient-based searches could fail. 

Example 1: Inventory Model with Low-Variance Demand and No Lead 

Time. 

Further simulation model specification, We assume in this example that the simulation model used by 

the user has the following parameters: 

L= lead time = 0 

D= daily demand interarrival time ~I"(c. B) 

where a@=1.0, B=0.2, which is also exp(0.2). Note that with an assumption of 250 days per year and a 

demand inter-arrival time of 0.2 days, the expected number of arrivals per year is 250*5 = 1250. 

Simulation run length > 4 years of 250 days each; i.e., the simulation ends at the completion of the first 

cycle at or beyond 1000 days. (See Appendix A for further details on “cycles.”) Warm-up period 2 250 

days; i.e., the warm-up period ends at the completion of the first cycle at or beyond 250 days. 

C), = holding cost = $10/unit/year 

Ch = backorder cost = $5/unit/year 

C.. = ordering cost = $50/order 
Oo 

User _specificauon. The user stipulates that the dimensionality of the problem is two (k=2), and that the 

decision variables are (Q, R). Furthermore, the objective function is the minimization of daily total cost. 

The optimal values to this simulation mode! are believed to lie in the following region, as far as the user 

knows: 
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16 <Q < 400 

-384 R <0 lA
 

lA
 

IRI IA
 

IA
 Q <-16. 

(We have allowed the user to choose a lower bound on Q of 16 and a lower bound on R of -384 for ease of 

exposition. By choosing these values, the bisection of Q and R results in nicer numbers for the boundaries 

of regions.) Note that the user’s specification of the region yields a triangular shape, thereby implying 

that the Starter will generate not only rectangular subregions as above, but triangular subregions as well. 

Finally, the user stipulates that spacing gridpoints 24 units apart in either the Q or the R direction will 

provide sufficient granularity, i.e., AY y= A® y = Ag= 24. 

“True” answer to this problem. The expected optimal solution can be found by solving the closed-form 

(analytic), deterministic model of this problem, allowing only integer values for Q and R. However, it is 

assumed that the “true” response surface generated by this simulation model is unknown to the user. The 

optimal solution is 

Q=194 

R = -130. 

TC = $2.58 per day, 

and a contour plot of the true response surface is indicated in Figure 4.9. 

Notation. The BFS Starter solution to this example is shown in the various panels of Figure 4.10; in 

these panels we show the progress of the solution as well as the final answer. To explain the solution, 

three items of notation must be explained. We define the list & as the list of regions to be explored 

further and the list D as the list of regions to be discarded (for later analysis on the safety-net). Both lists 
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initially are empty, ie. £ = {6} and D = {9}. In addition we use superbars to indicate regions not 

Statistically different from each other. For example, the notation 

  

{Yan Ysqi> Yoox Yoo) Yygs 5; Yai} 

indicates that the average response in regions R.,,, and R_,,, do not differ statistically from each other; 

moreover, neither do regions R.,, R.,., and K_,, differ. The absence of a superbar indicates that each of 

the regions R. and R513 does differ from all the other regions on the list. 

Initialization. The procedure begins with three replications of simulation runs at each of the three vertices 

of the user-defined feasible region (call it RR.) as indicated in Figure 4.10a by the open circles. Note that 

the initial inter-gridpoint spacing is A" min= AP min= Ay= 384. The list £ becomes £ ={R_,}, while the 

list D = {9}. 

Best-first search. (1). The first (and only) region on &, namely Ry is removed from & and is divided 

by bisecting R, along each dimension, thereby generating three new regions R, Y Rio and Ruy (see 

Figure 4.10b); these regions are defined as 

Ri: 165 Qs 208; -192<R<0; IRI<Q - 16; 

R 2: 208 $ Q $400; -192<R <0; 

Ris 208 <Q < 400; -384<R<-192; IRI<Q- 16. 
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16 400 
  

  

  

  
  

A=384 

-384 

4.10a. The initial (user-specified) search region R , 

A 
R 

16 208 400 
0 -O- 

192 A=192 

  
-384 

  

  
4.10b. The first pass through the best-first search loop 

(cont.) 
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Note that regions R ,, and R_,, ure triangular, whereas region R_ ,, is rectangular (square). Inter- 

gridpoint spacing is now A min= A min= A min = 192. The three regions formerly comprising R_, replace 

iton E, giving £={R,,. Ry, R,,}. D remains = {}. The best region located so far is R= R.- 

Simulation runs (three replications) are made at those corner points of the new regions where runs have 

not already been made, 1.e., at the open circles in Figure 4.10b. All runs both old and new in each region 

(a total of 9 in KR ,,, 12 in KR ,,, and 9 in R_,,) are averaged to provide the estimates Ys . Ys , 

andY . The first multiple comparison test is now made. It compares the means of the following 
t3 

regions, in general: the union of (a) all regions newly subdivided at this step, and (b) R* if and only if 

R* is not the region that was subdivided at this step. The idea is to compare the costs of the newly 

formed regions with the cost of the best region discovered so far, in order to immediately prune inferior 

. + . . . . * - . 
regions from the list of regions to explore. In this case, R = R_, was subdivided, so the multiple 

comparison is made of only the subdivided regions R_,,, R,,, and K,,. In order to see whether the 

meuns of these three regions differ statistically from each other, the following procedure is followed: 

° The Shapiro-Wilk test is used to check for normality for each region Ron E using the model 

yy = Y, + Ei, where j represents the jth simulation run in the ith region. (Note that if there are g 

gridpoints in the ith region, each with r replications, then n. = g*r simulation runs will be made in region 

i.) Results indicate that regions R_,, and R_,, have nonnormal errors, whereas there is no violation of 

the normality assumption in region Ry 
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. The appropriate test for homogeneity of variance over KR, =(R_,, U Ry, U R,,,) is Levene’s 

Median test, since the normality assumption is violated over the region RK ,. Results indicate that 

heteroskedasticity is present, thereby implying that Scheffe’s test is the appropriate multiple comparison 

test. 

° The result of Scheffe’s multiple comparison test is 

  

Y43 Yr2 Yut. 

Note that the notation implies that the mean in region Ri; is preferred to that in RR» which in turn is 

preferred to the mean in R_,,. But the means in regions R_,, and R_,, do not differ statistically from 

each other, and the same may be said about ®. 1p and R 13, ‘Since the mean of R 1; does differ 

statistically from the most preferred (i.e., lowest cost) mean, R. 1, 18 removed from £ and is placed on D, 

leaving £= {R,,,R,,}, and D={K_,,}. Note that the order of regions in our notational scheme 

is significant in that the list is sorted from most-preterred region to least-preferred. The best region 

located so far is R“= R_,,. 

(2). The best-first search loop is repeated, with the first region on Z, namely KR ,, removed. K_,, is 

subdivided, giving the three new subregions shown in Figure 4.10c and described by 

Risa 208 S QS 304; -288 SRS -192; IRISQ- 16; 

R137: 3045 Q S400; -288 <R < -192; 

R yx: 3045. QS 400; -384 < RS -288; IRIS Q - 16. 
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Note that inter-gridpoint spacing is now A® yin = AC min = A min = 96. Also note that Figure 4.10c only 

shows the old region K_, , and not the entire feasible region. 

Simulation runs (three replications) are made at those corner points of the new regions where runs have 

not already been made, i.e., at the open circles in Figure 4.10c. Once again, R* is subdivided, so only the 

newly divided regions are included in the multiple comparison test. Therefore, all runs in each of the 

three newest regions are averaged to provide the estimates Y,,, , Y,32 .and Yj33. 

¢ The Shapiro-Wilk test shows violation of the normality assumption. 

« Levene’s Median test indicates that heteroskedasticity is not present, thereby implying that the Tukey- 

Kramer test is the appropriate multiple comparison test. 

» The result of that multiple comparison test is 

  

Y 131 Y132 Y133 

Therefore, Ria is removed from & and is placed on D, leaving (after sorting in ascending cost order for 

each list) £ = {R_,,, R13, Rj}, and D={R_,,,,R,,}- 

Having determined which of the subdivided regions should be placed on & and on QM, the multiple 

comparison test is now repeated for the entire list £. This is done because there is now a new best (lowest 
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-288 

  

  

-384   
4.10c. The second pass through the best-first search loop 

  

  

A=48 

-240 

    -288   
4.10d. The third pass through the best-first search loop 

(cont.) 
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. x . . . . 
cost) region (R." = K_,,,), so it may be possible to remove some of the higher cost regions at the end of 

the list £. Shapiro-Wilk shows nonnormality, Levene’s Median test shows heteroskedasticity, and 

Scheffe’s test gives 

  

Y131 Y132 Y12. 

Hence, the £ and D lists are unchanged. 

(3). The best-first search loop is repeated again, with the first region on £, namely ®.,,, removed. The 
131 

region K_,,, is subdivided, giving the three new subregions shown in Figure 4.10d and described by 

R441 208 S$ QS 256; -240 <R<-192; IRIS Q - 16; 

R37) 256 S QS 304; -240 SR < -192; 

R 1313: 256 S$ Q $304; -288<R <-240; IRISQ- 16. 

Inter-gridpoint spacing is now A” in = AC min = A min = 48. 

Simulation runs (three replications) are made at those corner points of the new regions where runs have 

not already been made, i.e., at the open circles in Figure 4.10d. The multiple comparison test is of the 

three new regions, so all runs in each of these regions are averaged to provide the estimates Y,3,,, 

Y312 , Yi313- 

e The Shapiro-Wik test shows no violation of the normality assumption, implying that the Bartlett-Box 

test for homogeneity of variance is appropriate. 

Chapter Four: A Best-First Search Approach for Determining Starting Regions In Simulation Optimization 142



¢ The Bartlett-Box test indicates that heteroskedasticity is not present, thereby making the Tukey- 

Kramer test the appropriate muluple comparison test. 

¢ The result of that multiple comparison test is 

¥ 14312 Y1311 Y1313. 

are placed on &, and R, is placed on D, leaving (after sorting) £ = 
1313 

Therefore, R ,,,, and Ri), 

{Rigi Rigi Rigy Ky} and D = (Ky 3)y Ry33: Ry}. 

The multiple comparison test is now repeated for the entire list £, because there is anew R= R315. 

Shapiro-Wilk shows nonnormality, Levene’s Median test shows heteroskedasticity, and Scheffe’s test 

gives 

  

Y 1312 Y1311 Y132 Y12. 

Hence, K.,, is put on D so L= (Ry 519, Ryayy Ry}, and D= (Ryziy Ry 33 Rig Rij}. 

(4). The best-first search loop is repeated for the fourth time, with the first region on £, namely R_,,,, 

removed. R__,_, is subdivided, giving the four new subregions shown in Figure 4.10e and described by 
1312 

Ryayoy 256 <Q < 280; -216<R <-192; 

R i3in7: 2805 QS 304; -216 SR < -192; 

£ we
 

—
 nN
 Ww 

to
 56 <Q < 280; -240<R <-216; 

R iaiog 2805 QS 304; -240<R <-216. 
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Risa + Risin 

A=24 
-216 ----- Je -- eee ee O------0ee- ® 

R. 13123 RK 13124 

2a). -O ° 

4.10e. The fourth pass through the best-first search loop 

a A 
208 232 256 

Wy a t . _ 

= ; Q 

-192f +++ -O ® 

Rist : Roisii2 

: A=24 

26h --- ee eee eee eee Mee wee eeeee 

-24Q) - - 2 ee ee ee eee ee eee   
4.10f. The fifth pass through the best-first search loop 

Figure 4.10. The BFS Starter solution to Example 1. 
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Inter-gridpoint spacing is now A? nin = A@ min = Au = 24, which is also the user-specified minimum inter- 

gridpoint spacing (A,). 

Simulation runs (three replications) are made at those corner points of the new regions where runs have 

not already been made, 1.e., at the open circles in Figure 4.10e. Again the multiple comparison test is of 

the new regions, so averages are made of the runs in each of these four regions to provide the estimates 

Yigia1y Yusi22> Y y3iza» aNd Yy3194- 

¢« The Shapiro-Wilk test shows a violation of the normality assumption, implying that the Levene- 

Median test for homogeneity of variance is appropriate. 

¢ The Levene-Median test indicates that heteroskedasticity is present, thereby making the Scheffe test 

the appropriate multiple comparison test. 

The result of that multiple comparison test is 

  

Y 13121 Y13122 Y13124 Y13123 

Therefore, KR ,,,5, and R_,,,5, are placed on E, and KR ,3,5, and R_,3,5, are placed on D, leaving 

(after sorting) E = {Rijs Rygiey Rysyp Rizoh and D = {Ry gyrg Ris» Riss Ryze Ry» 

K_,,}- Since the best region located so far is a new region, R*= R_ 131) the multiple comparison test is 

now repeated for the entire list &. Shapiro-Wilk shows nonnormality, Levene’s Median test shows 

heteroskedasticity, and Scheffe’s test gives 

  

Y 13121 Y13122 Y1311 Y132. 
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Consequently, R. 3, is placed on D leaving E = {R_ 13:9 Rig» R31} and D HAR yay 

Risioy Rirsiy Riso, Riz Ri» Ri }. 

At this point, R ,,,,, and R_,,,,, are removed from £, because they are at the user-supplied inter- 

gridpoint minimum (i.e., 24). This leaves £ = {R_,,,,}. 

(5). The fifth loop through the best-first search takes R 1311 Off of E. Riis 11 1S subdivided, giving the 

three new subregions shown in Figure 4.10f and described by 

Roy3111: 208 S$ Qs 232; -216<R<-192; IRISQ- 16; 

Riis 232 S$ QS 256; -216<R ¥ -192; 

Riss: 232 S$ QS 256; -240<R<-216; IRISQ- 16. 

Inter-gridpoint spacing is now A? yin = AP min = Amin = 24, which is also the user-specified minimum 

inter-gridpoint spacing (A,). 

Simulation runs (three replications) are made at those corner points of the new regions where runs have 

not already been made, i.e., at the open circles in Figure 4.10f. Since R* = R_ 13121 18 not one of the 

newly divided regions, the multiple comparison test is of R* and the three new regions. All runs in each 

region are averaged to provide the estimates Y,3)5;. Y13111 » 13132 » aNd Yy3)]3- 

¢« The Shapiro-Wilk test shows no violation of the normality assumption, implying that the Bartlett-Box 

test for homogeneity of variance is appropriate. 
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¢  Bartlett-Box test indicates that no heteroskedasticity is present, thereby making the Tukey-Kramer 

test the appropriate multiple comparison test. 

*« The result of that multiple comparison test is made comparing Y from the best region R* = 

R_ 13121 With the three new regions: 

Y 13121 Y13112 Y13111 Y13113. 

This indicates that R_,,,,. and R_,,,,, should be placed on E and that KR ,,,,, should be placed on D, 

leaving E = {Ri 3449 Rygiyy} and D = {Ry spy Risiay Riariy Risiy Ray Kisy Rig Ry} 

But RK. 131, and R ,,,, ave at the user-specified minimum inter-gridpoint spacing Ay, so these two 

regions are removed from & since no further subdividing is allowed, leaving £ = {6}. The best region 

located so far is still R.* = Rosia 

Since the list £ is empty, the best-first search part of the procedure is concluded. The results obtained 

thus far are as follows; if we did not perform the safety net, we would begin our search at 

Starting point: Q=256 

R= -192 

TC = $2.73/day. 

We have expended 57 computer runs at 19 different points thus far. The (Q, R) values found so far 

compare with the known optimal solution of (Q*, R*) = (193, -130) at a total cost of $2.58/day. An 

illustration showing the 19 points in the feasible region where runs have been made is given in Figure 

4.11a; the x’s in that figure indicate the run locations. 
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4.1la. Gridpoints where simulation runs are made (x) during the best-first search portion of the 

search. 
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4.11b. Gridpoints where simulation runs are made (0) during the first pass of the safety net. 

Figure 4.11. The location of simulation runs in Example 1 
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Details of the safety-net procedure will not be elaborated here; rather, only an overview and summary 

results will be given. Each “pass” through the safety net examines every region ®, on the list D one at a 

time and compares each ® with the best region &* found so far either during the best-first search part of 

the algorithm or during a previous pass of the safety net. The comparison of each R with R* results in 

either ® being discarded (i.e., removed from all further consideration) or placed back on the list £ of 

candidate regions. No region is discarded, without further testing, that is greater than or equal to four 

times the smallest inter-gridpoint spacing A encountered for any region thus far. A “pass” through the 

safety net ends whenever the list D is depleted and all new items placed on & from M have been run 

through the best-first search portion of the algorithm. Of course, the repetition of the BFS part of the 

search may result in further items being placed on ®, which requires another “pass” through the safety 

net. The entire Starter algorithm terminates when there are no more regions on either £ or D; ive., the 

Starter terminates when all regions have been discarded. 

A very aggressive Strategy with respect to the safety net is to conduct no passes through the safety net at 

all. Conversely, a very conservative (Cautious) safety-net strategy 1s to conduct all necessary passes to 

clear & and D (i.e., run the algorithm to completion). A more moderate approach, and the strategy used 

here, is to perform one pass through the safety net. This gives every region ® in the list D “one last 

chance” to compete with ®*, the best region found so far. 

In example 1, one complete pass through the safety net takes an additional 12 points (or 36 runs). The 

location of theses 12 safety net points is shown with small circles in Figure 4.11b. The best starting point 

at the end of the first pass is then 
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Starting point: Q= 184 

R = -120 

TC = $2.59/day. 

Note that the total cost figure is very close to the opumal daily cost (within one cent per day). However, 

the best-first search procedure left several regions on D, so the entire safety-net procedure may be invoked 

again if the user wishes to be very cautious. In fact to entirely empty the list D, the safety-net must be 

invoked twice more for a total of 27 more points (and 81 runs); the same (Q, R) point and total cost is 

obtained as after the first pass of the safety net. If the entire BFS Starter procedure is run from start to 

finish with all passes of the safety net a total of 237 runs at 79 points is made. This is roughly half the 

459 runs at 153 point needed if, rather than using the Starter, the entire region is blanketed with points at 

an inter-gridpoint spacing of 24. 

Example 2: Inventory Example with Higher Demand Variance and 

Lead Time Variance 

Further simulation model specification. In order to demonstrate the Starter procedure on a simulation 

model with more variability in response, the example above is modified to include lead time L and to 

imcrease the variance of the interarrival ime for daily demand D. In particular, 

L ~ truncated N(6, 2°), i.e., L > 0, rather than L = 0 in example 1, and 

Dis changed to D ~ T (Gp, Bp), where Op = 0.05, Bp = 4.0. 

With these parameters, the mean of demand remains the same as before, but demand variance is increased 

by a factor of twenty. All other parameters and costs remain the same as in Example 1. 
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User specification. As before, the user stipulates that the dimensionality of the problem is two (k=2), the 

decision variables are (Q, R), and the objective function is the minimization of daily total cost. The 

optimal values to this simulation model are believed to lie in the following region, as far as the user 

knows: 

48 <Q < 400 

352 <R < 0 

IRI <Q < -48 

(Once again the lower bounds on Q and R have been assumed set by the user to 48 and -352 respectively 

in order to make the numbers “nicer” for the example, and also because the introduction of lead time in 

this example restricts (Q, R) policies if one wishes to guarantee feasibility.) 

For this example, we assume the user specifies no minimum inter-gridpoint spacing, Ay. As such, we use 

the system default, namely a A, allowing for 5 repetitions of the “divide (i.e., bisect) and conquer” steps 

1 
which is | — | *100% = 3.125% of the initial range. In this case Ay = 0.03125*352 = 11 is permitted. 

2 

“True” answer to this problem. Figure 4.12a shows the expected simulation response surface, based on 

three replications, whereas, Figure 4.12b illustrates the variance of the response surface under the same 

conditions. The true optimal solution is: 

Q = 194 

R = -130. 

TC = $2.58 per day. 

Initialization. The procedure begins with three replications of simulation runs at each of the three vertices 

of the user-defined feasible region (call it R. ,)» as indicated in Figure 4.13a by the open circles. Note that 
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the initial inter-gridpoint spacing is A° nin = A? min = Amin = 352. The list & becomes & = 

while the list D = {9}. 

{Ri}, 

Best-first search. (1). The first (and only) region on £, namely R_,. is removed from E and is divided as 

shown in Figure 4.13b. The results of the best-first search steps are E = {Ri Ry Rip}, D= {9}, 

A” nin = A? nin = Amin = 176, and R* = Rix 
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4.12a. The mean of the response 

(cont.) 
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(2). The first region on E, Rix» is removed from € and is divided as shown in Figure 4.13c. The results 

of the best-first search stepsare EL={R,,,,R,,R,,},D= {R139 R33}, Amin = A? min = Amin 

= 88, and R*= K,,,. 

(3). The first region on E, Rap is removed from & and is divided as shown in Figure 4.13d. The 

results of the best-first search steps are E = {Ria Rise Ry} D = {R313 Rip Ris» 

R433} AO nin = A? min = Amin = 44, and R = Ris: 
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4.12b. The variance of the response 

Figure 4.12 Some response surface characteristics for the model of Example 2 
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4.13b. The first pass through the best-first search loop 

(cont.) 
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4.13c. The second pass through the best-first search loop 
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4.13d. The third pass through the best-first search loop 

(cont.) 
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(4). The first region on £, R_,,,,, is removed from & and is divided as shown in Figure 4.13e. The 

results of the best-first search steps are = {Ri3,.9 Rigi p Rise Ruy Rh P = (Riss 

Ry Ryzy Rygs}s AM min = AP min = Amin = 22, and RE = Riy41 19. 

(5). The first region on €, Rai is removed from & and is determined to meet the stopping condition 

specified in rule 3 above, 1.e., the plane fit through region Ra 12 18 horizontal. As such, this region is 

removed from the list £, giving £ = {R_13,5, Riaiys Risziy Ry} Next the new first element on 

E, Risup is removed and is divided as shown in Figure 4.13f. The results of the best-first search steps 

are E = {Risse Risuiv Risiix Risiiy Riisih D = (Ry R313 Rip Rizy R133) 

(6). The first region on £, R_,,,,,5, is removed from € and is also determined to meet the stopping 

condition specified in rule 2 above. As this region is “RSM-able,” it is marked as such and is removed 

from the list £, giving E = {Ryaiiiyp Rasyiy Ryayiy Riya}: Next the new first element on £, R, 

ip iS removed. But subdividing this region gives a Amin = 5.5 < Ay = 11, therefore, R. ii #8 

removed from £. The same is true for R ,,,,,3- This leaves £ = {R_,,,,4, KR 13,5}. Therefore, region 

Ris is removed from & and subdivided as shown in Figure 4.13g. The results of the best-first search 

- _ Qo 
steps are E = {R31432 Ryaiyarh P= {Rise Risiray Riv Risiy Riv Risy Rigs} AP min = 

A® min = Amin = 11, and R* = Rasiy 
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4.13f. The fifth pass through the best-first search loop 

(cont.) 
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4.13g. The sixth pass through the best-first search loop 

Figure 4.13. The BES Starter solution to Example 2. 

Since further dividing either region on & results in Ajin < Ay, the list becomes empty, and the best-first 

search portion of the Starter ends. 

The results obtained from the Starter without the safety net are as follows; start search at 

Starting point: Q=268 

R=-176 

TC = $2.73/day. 

We have expended 63 computer runs at 21 different points thus far. Figure 4.14a shows a plot of these 21 

points in the feasible region. The (Q, R) values found so far compare with the known optimal solution of 

(Q*, R*) = (194, -130) at a total cost of $2.58/day. 
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4.14a. Gridpoints where simulation runs are made (X) during the best-first search portion of the 
search. 
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4.14b. Gridpoints where simulation runs are made (O) during the first pass of the safety net. 

Figure 4.14. The location of simulation runs in Example 2 
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One pass of the safety-net procedure (our recommended final step of the Starter algorithm), costing an 

additional 54 runs, yields a new best starting point of: 

Q= 191 

R= -132 

TC = $2.72/day. 

These additional 18 points are shown in Figure 4.14b. 

To be totally cautious and entirely empty the lists & and M, the safety-net must be invoked three times 

more for a total of 113 points (and 339 runs); the same (Q, R) point is obtained as after the first safety 

net. The 113 total points run under this very cautious Starter strategy is still less than one-third of the 

1683 runs at 561 points required if the starter algorithm is abandoned and an exhaustive covering of the 

region at an inter-gridpoint spacing of A = 11 is made. 

Example 3: A Multimodal Response Surface 

To illustrate that the BFS Starter works even under quite unfavorable conditions, one further example will 

now be provided. This example shows how the Starter handles a multimodal response surface. 

The response employed in this example is based on Crouch et al. (1995) and is a mathematical function 

with random error added to form the response surface. The particular function and error term used here 

are 

(0. Sexp(-2.7r° Joos(3zr) +0.5+€ rs05 
ylX1,X5]= , 

| pe | ossexp(-2.7.2)eos(nrdens(a6) 405-46 r>0.5 

4 5 ” 0.8 Xy 

where € follows N(0.0,0.057 ) ,t= (x: + x} , and 0 = arctan| — 
“ X45 
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A picture of this response over the assumed-to-be user-supplied domain is given in Figure 4.15. Note that 

this is a very difficult surface to optimize as (1) it has five peaks and one annular depression around the 

largest peak, and (2) and it has large flat regions (e.g., in the region x, < -0.75). However, the response 

surface has relatively low variance. The true optimum of this surface is x, = -0.17, x, = 0.29, which 

yields a maximum of y = 1.00. 
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Figure 4.15. The response surface to be optimized in Example 3 
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The best-first search portion of the Starter yields x, = -0.875, x, = -0.25, with y = 0.5546. This requires 

99 runs at a total of 33 points. One pass of the safety net gives x, = -0.125, x, = 0.25, with y = 0.9378; 

this required an additional 87 runs. Observe that this result is very close to the true optimal solution. 

Clearing £ and D of all regions requires another 39 runs for a total of 225 runs at 75 points and does not 

change the solution. 

CONCLUSIONS AND FUTURE RESEARCH 

This research has defined a Starter for use in those simulation optimization cases where either the starting 

point or the granularity of the problem are not known in advance. The Starter combines the artificial- 

intelligence based best-first search with a divide-and-conquer strategy and a safety net. 

Three examples have illustrated the Starter procedure. The first example showed that the Starter worked 

on a “simple” simulation-optimization problem, while the second illustrated the process on a more 

involved surface with twenty times the variance of the first. The final example represented a very difficult 

surface to optimize, with multimodal behavior and large flat regions. The Starter worked quite well even 

without the safety net in all cases, and obtained an optimal solution within 7% after one pass of the safety 

net in all three cases. 

A lower-bound estimate of the number of simulation runs N required by the Starter may be determined 

based on the original user-specified region and inter-gridpoint minimal spacing. If a best case of the 
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minimal subdivisions in the divide-and-conquer step occurs, and if no ties occur among the most preferred 

region at any point in the algorithm and the other regions, then for a square region, 

N= 12+ 15m 

range 
  where m = log, and [+ | is the ceiling function. 

For example, if A= 11 and the user specifies 48 < x < 400, then 

range = 400 - 48 = 352 

352 
m= log, TL = log| 32 |=5, and 

N= 8&7 simulation runs. 

Conversely, the maximum number of runs required over the specified range to completely cover a square 

feasible region at a granularity of A, ifthe Starter approach is ignored is 

  

2 

range 
= +1 

A u 

In the example above, 

2 
352 

N= 3) | —— /+1)] =3,267 simulation runs. 

11 

The potential savings using the Starter algorithm is great. 
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Future work on the Starter involves testing it on more surfaces. The results from these runs can be used to 

ascertain how aggressiveness may be incorporated dynamically into the Starter process and also to 

determine which metamodel should be used in estimating the performance of each region, as discussed 

above. 
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Chapter Five: Building a Knowledge-Based Simulation 

Optimization System With Discovery Learning 

BACKGROUND 

Knowledge-based Simulation Optimization 

A simulation model can be thought of as a “black box,” with controllable inputs feeding into the box, and 

the simulation model's responses leaving the box as outputs. The simulation model provides an 

approximation of how the true system it represents would respond to the given inputs. Each response can 

be considered to be a function of the inputs with a random error term added. 

Figure 5.1] depicts the simulation-model box together with another black box in a feedback loop around it. 

This second box represents the simulation optimizer. The optimizer takes outputs of the simulation model 

and uses them to suggest new values for the inputs to the simulation model. The objective of the 

optimizer is to find inputs that will result in optimal or satisficing responses from the simulation model. 
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Figure 5.1. The simulation-optimization process 

The need for simulation optimization and the costs involved in it have motivated the development of 

different strategies to search for optimal-response-producing input levels. These strategies range from 

random and single-factor searches to response surface methodology (RSM) to simulated annealing and 

genetic algorithms. Meketon (1987) divides simulation optimization strategies into three general 

categories: nonlinear programming techniques, RSM, and stochastic approximation. 

An important decision that must be made in simulation optimization is which search strategy to employ. 

Some work has been done to aid this decision, although Meketon concludes that "optimization for 

simulation, to date, remains an art, not a science.” He considers the information available (or assumed) 

about the simulation, and groups optimization methods accordingly to help narrow the choices. Safizadeh 

(1990) discusses a variety of strategies and their application and concludes that generally RSM approaches 

are most effective, although some new developments look promising. Smith (1973) performed an 

empirical study of the effectiveness of several search strategies (random search, single factor search, and 

four variations of RSM) on a variety of surfaces. He found that the relative effectiveness of each of the 
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Strategies varied depending on the characteristics of the response surface (presence of local optima, 

random error, number of controllable inputs, etc.). 

Surveys of simulation optimization lead to the conclusion that organized guidance is needed to help users 

choose appropriate search strategies. Safizadeh (1990) explains that: "for successful design and analysis 

of simulation, one should be well versed in several disciplines." Because of this, users are inhibited from 

using simulation optimization (and thereby simulation). He concludes that there is, therefore, a need to 

"develop interactive programs which direct a user to an appropriate optimization technique." 

In an earlier paper regarding selection of appropriate optimization technique, Greenwood, Rees, and 

Crouch (1993) pointed out that there is both art and science in simulation optimization. They further 

suggested that the art and science should be "separated" in a simulation optimizer, and, in particular, that 

procedural (e.g., third generation) languages should be used to model the science part, whereas 

knowledge-based approaches should be used to encapsulate the heuristics that make up the art portion. 

The particular architecture suggested consists of an inference engine, a knowledge kernel, and processing 

support modules (see Figure 5.2). The knowledge kernel, in turn, contains three parts: a database to store 

results, a methodology base to store procedures, and a rule base to store heuristics and to provide control. 

Note that with this architecture, the fact that optimizer contro] is resident in the rule base implies that 

there is no set algorithm for simulation optimization; rather the inference engine (using, for example, 

backward chaining) can pursue a goal using whatever rules are in the knowledge base. This implies that 

if the rules are or can be changed, then, in essence, the optimization algorithm itself can change. 

Exploiting this notion, Greenwood et al. suggested that if results are stored in a database, and if " the 

algorithm" can be changed by changing rules, then the potential for "doing better" next time, Le., 

1 

“learning,” exists. This notion of a learner is shown in Figure 5.3. The basic idea is that historical 

observations are taken from the database in the knowledge kernel of the optimizer, processed by the 

learner, and then rules are either added, deleted, or changed back in the optimizer rule base. In this 

manner, not only can heuristics be modified and improved, but so can control of the entire system. 
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Figure 5.2. Greenwood-Rees-Crouch simulation-optimization architecture 

Learning: Definitions, Advantages, and What There is to Learn 

Crouch (1992) states that definitions by Simon and Michalski are closest to what she means when she says 

she will let her optimizer learn. Simon (1983) concludes: “Learning denotes changes in the system that 

are adaptive in the sense that they enable the system to do the same or different tasks drawn from the same 

population more effectively the next ume.” Michalski (1986) points out that knowledge acquisition seems 
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Figure 5.3. Visualization of the Learner and its environs 

to be the essence of most learning acts. He adds that in order to acquire knowledge, one has to represent 

this knowledge in some form. Consequently, he characterizes learning as "constructing or modifying 

representations of what is being experienced.” Thus the optimizer should be able to adapt its performance 

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 169



so that it improves its optimization on scenarios "close" to what it has already seen. In addition, an 

optimizer or satisfier with a learning capability should have the capacity to modify or to construct 

representations of its knowledge, be it knowledge of how to reset certain parameters, knowledge that is 

domain specific, or knowledge that is more widely applicable as general principles. 

Crouch (1992) builds upon a taxonomy developed by Carbonell et al. (1983) to suggest the types of 

knowledge acquisition a learner should include. The four basic types of learning are (1) rule modification 

or creation, (2) specialization, (3) parameter modification, and (4) generalization. According to 

Carbonell, specialization means adding conditions to the "if" part of a rule (the antecedent) so the rule 

applies to a narrower set of circumstances, and generalization means dropping restrictive conditions in the 

antecedent to make the rule apply in a wider variety of contexts. By parameter modification is meant the 

changing of a numerical value in a rule; for example, the antecedent "IF number of runs > 12" could be 

changed to "IF number of runs > 10." Rule modification results in changing the consequent of a rule. For 

instance, a current rule may conclude that RSM is the preferred search strategy ("... THEN strategy = 

RSM"); however, learning may suggest that simulated annealing is preferred. Thus, the modified rule 

would have the consequent "THEN strategy = simulated annealing. 

In this research, we will limit ourselves to the four types of learning just elaborated, noting that additional 

types of learning can be added to the Learner later if desired as plug-in modules. 

What it is that can be learned in a simulation optimization system with these four types of learning has 

been pointed out in Crouch (1992). In order to understand these ideas, however, it is first necessary to 

present a quick overview of CGR’s (1995) "Classifier KBSOS." CGR called their system a "Classifier 

KBSOS" because its simulation output surfaces are classified according to the search strategy most likely 

to render success. 
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In the Classifier KBSOS, input sufficient to define the problem is obtained from the user in the User 

module (see Figure 5.4). This input is then fed to the Classifier module, where three steps occur. First, 

the "shotgun" suggests an initial set of simulation runs to be made at various input combinations across 

the surface. The results from these computer runs are then input to the “synthesizer,” which attempts to 

develop a fitted or synthesized surface through those points. (A neural network can be and was 

successfully used for this by Crouch et al. The reason for this synthesis is that it hopefully will save 

computer runs by characterizing the synthesized or estimated surface rather than depending entirely on 

actual runs.) Then the synthesized surface is analyzed by several procedural programs and heuristics in 

the "characterize" module in order to classify or characterize the response surface. The idea of classifying 

a surface is based on a study reported by Smith (1973) in Operations Research in 1973, which found that 

optimal search technique varies by type of surface. Crouch et al. used the same explanatory variables 

Smith used in his study to classify their surfaces with the Classifier KBSOS. 

Once a surface has been classified, rules in the KBSOS knowledge kernel invoke the Strategy Selector. 

This module is a collection of rules that choose a search strategy (e.g., RSM, random search) depending 

on the surface characteristics identified by the Classifier. Note that as the whole classify-and-select- 

Strategy process is iterative, additional search may result in reclassification of the surface and hence 

specification of a different strategy as the optimization proceeds. After a search strategy has been chosen, 

the Strategy Detailer (another set of rules) is fired, and implementation particulars are set whereby the 

Search may be conducted. 

As Crouch points out, it should be clearly stated what is not meant when one suggests that a KBSOS will 

learn. The learner is not expected automatically to derive or infer a never-before-seen search technique 

whenever a previously unanalyzed surface in encountered. Rather, the learner is expected to perform such 

tasks as to modify parameters in the shotgun, to suggest that a new antecedent be included in a set of rules 

in the Strategy Selector, or to respecify the number of runs to be made at the center point of a given search 
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Figure 5.4. An overview of the Classifier KBSOS 
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being implemented. Learning is to be incremental as opposed to far reaching, and it will only be 

successful as its databases of surfaces and experiments grow large. 

In order to indicate how learning will take place in a KBSOS, Crouch (1992) lists some examples of each 

of the four kinds of learning; see that reference and Crouch, Greenwood, and Rees (1995) for further 

details: 

parameter modification: - in the Classifier: re-specifying the number of runs to be made randomly and 

at regular grid points in the shotgun module; re-setting a variance threshold, above which additional 

replications of data points used to fit the synthesized surface will be collected; re-stipulating the vertical 

distance delta from the true optimum, within which non-adjacent portions of the response surface indicate 

multiple, optimal solutions. And in the Strategy Detailer, re-adjusting the step size for a given search 

technique. 

specialization: - adding new concepts as antecedents to the rules in the Strategy Selector (e.g., adding "IF 

variance is not high" to a current rule specifying RSM as the search procedure); adding a similar clause 

again to the IF part of an existing rule in the Strategy Detailer (e.g., adding "IF lack of fit is significant” to 

arule specifying a shift from a first-to a second-order RSM design). 

rule modification: - in the Strategy Selector, if some cases concluding in "THEN Strategy = S$," achieve 

different levels of success than others, then separate these cases and respecify "THEN Suategy = S9," a 

new strategy whereby there is some evidence that Sj will work better on the poorer cases than S did. 

generalization: - deleting existing concepts from the antecedents of rules when there is evidence that such 

concepts are irrelevant to the Strategy Selection being made (e.g., removing "IF distance to optimum = 
far" from a rule concluding in "THEN Search = random search.") Generalization is also helpful in a 

housecleaning sense in that rules can at times be combined, thereby reducing the number of rules in the 

rule base. 

It is easily noted from the above lists that there are a plethora of details to be learned; this is because, 

fundamentally, so much of simulation optimization is heuristic, or “art.”. The approach taken in Crouch 

(1992) and that we have taken here is to prioritize what we want to learn with our KBSOS. We have 

placed the Strategy Selector as our top learning objective, with its specialization, rule modification, and 

generalization. At second priority is the Classifier, which calls primarily for parameter modification 

learning. 
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Having examined the Classifier KBSOS, definitions of learning, and what it is that may be learned in a 

knowledge-based simulation optimization system, we now direct our attention to the Crouch (1992) 

Learner. This will provide the final building block needed to explain the Learner we have actually 

constructed ourselves. 

The Crouch Learner 

Overview 

Each of the four learning types to be included in Crouch's learner requires both procedural and heuristic 

computation. That is, each learning type consists of both procedural decisions such as hypothesis testing 

that can best be performed by algorithmic means, as well as heuristic processing best done in, for 

example, knowledge-based systems. A major design decision made by Crouch was to separate the “art” 

and "science" in the learner, just as Crouch, Greenwood, and Rees (1995) did in the KBSOS. 

Figure 5.3 shows Crouch's learner sitting above the KBSOS and deriving input from the KBSOS database; 

changes are passed back to the KBSOS rule base. Figure 5.3 explicitly illustrates the implementation of 

the separation of art and science in the learner in terms of its three modules, the Learner Data Base, the 

Learner Methodology Base, and the Learner Rule Base. In addition, Figure 5.3 shows some of the 

functions to be carried out by each of the three modules. 

According to Crouch (1992), a knowledge-based simulation optimization system contains many concepts 

that may be stored in a variety of representation formats, including tables, rules, and neural networks. In 

order to be able to manipulate this information in a learner, the Learner Data Base must keep a registry of 

concepts and their interrelationships. Crouch’s mechanism for doing this is a concept bank and a 

Relationships Among Concepts (RAC) table. The RAC table stores which concepts are used in which 
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tules. As indicated in Figure 5.3, both the concept bank and RAC table are (important) components of the 

Learner Data Base, as is the strategy mapping, which will be described later in this chapter. An 

additional] item included in Crouch’s Learner Data Base is a collection of "old" simulation programs. 

That is, she suggested that whenever a simulation program was run and its results were stored in the 

database, it would be advantageous if the program (i.e., the code) itself were left in a library in the Learner 

Data Base, in case the Learner decided later to do further exploration with the program. Obviously, this is 

not necessarily practical in all cases. But the more the Learner has access to in the way of history, the 

more likely it is to be successful. Finally note that Crouch’s Learner Data Base may share or coincide or 

differ from the knowledge kernel data base. 

The Learner Methodology Base consists of whatever procedural aspects are necessary to implement the 

four types of learning. For example, if the Learner were investigating the advantages of changing a 

troublesome parameter, it might decide to conduct an experiment to test the proposed change. In such a 

case, the Learner would call the experimental design submodule, which would specify where computer 

runs should be made to carry out (say) a fractional factorial design. Then a second submodule in the 

methodology base, a hypotheses testing procedure, would evaluate the results of these experiments to 

determine statistically the worth of the change. Crouch admits that these submodules may be complex, 

but add that they can be implemented using ideas well-established in the literature. A third submodule in 

the learner methodology base deals with searching for common features or concepts for a given set of 

rules. 

Crouch's Learner Rule Base contains all the rules or heuristics needed to do specialization, rule 

modification, parameter modification, and generalization. Moreover, it also possesses a set of controller 

rules, which decide when to invoke each of the four learning types. All of these rules, under the direction 

of an inference engine, drive the Learner in its search for an improved simulation optimization process, 

and call the Learner Data Base and Methodology Base when needed. 
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Crouch Process Flow 

A brief overview is now given of the Crouch learning process flow; details may be found in Crouch 

(1992). This process is based on Slade’s work on case-based reasoning (1991). Slade never examined the 

simulation optimization context; rather Crouch adapted some of the basic concepts in case-based 

reasoning and learning and modified them for this application. 

Figure 5.5 indicates the flow of Crouch‘s learning process. The shaded boxes indicate the major 

operations in the process needed for all four learning types. (The only exception is that Repair is not 

needed in Generalization learning.) The learning process for any of the types begins with Retrieve, where 

learner rules are used to extract relevant data from either the learner or knowledge kernel databases. 

Upon retrieval, learner modification rules are invoked to suggest changes in some aspect of knowledge 

kernel rules. This occurs in the Modify block. For example, in parameter-modification learning, a 

particular parameter is suggested for change; whereas in specialization learning, retrieved data cases are 

first segmented by performance, and concepts in the antecedents are then sought that can explain the 

performance differences. Once a modification is proposed that hopefully improves KBSOS performance, 

the Test block in called. Basically, the Test block determines whether the proposed modification results in 

an improved solution (i.e., a new set of rules), or rather in no improvement or possibly failure. In the first 

case, control passes to the Assign and Store blocks, where the proposed modifications are actually made 

and put back in the KBSOS rule base. In the case of failure or no improvement, the Explain and Repair 

blocks are called, where either abandonment of learning for this case occurs due to unsuccessful 

explanation and repair, or further modification leads to a successful solution. This latter case leads back 

to assignment and storage, as Figure 5.5 indicates. 

Although Crouch’s research has suggested an architecture and a learner flow, details were not specified 

as to how ali modules would work for the four types of learning. Moreover, since a Learner has never 
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been built, it is not known whether such a Learner is truly practical. The research described in this 

chapter specifically addresses these issues, making three contributions. First of all, we build a Learner 

and test it on a simulation example. Second, having successfully constructed a Learner, we are able to 

specify an architecture and process flow; in particular, it will be seen that a clear explanation of how 

discovery takes place was not provided in the Crouch paper. And finally, an analysis of what must be 

done next to extend the Learner to larger-scale, more complex scenarios is described. 

The remainder of this chapter is organized as follows. The next section describes a general model of 

t "discovery," and the following segment details the modified general learning flow of our discovery 

learning system. It will be found that the Crouch (1992) architecture of Figure 5.3 contains most of the 

components necessary in a Learner, but is lacking in clear explanation of how discovery will take place -- 

in particular how domain knowledge and search will be used in this process. This discussion is followed 

in turn by a detailed inventory simulation example invoking the Learner illustrating parameter 

modification. The chapter concludes with a summary and a description of future steps. 

KNOWLEDGE DISCOVERY 

The use of knowledge discovery concepts in a knowledge-base simulation optimization system (KBSOS) 

is new. The previous work in KBSOS did outline and define four kinds of learning which required 

storing some items in the form of a database. It is a simple extension then to use knowledge extraction 

techniques for databases in an attempt to learn something from the data being stored. 
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The essence of learning as we use it here is knowledge discovery. Frawley, Piatetsky-Shapiro, and 

Matheus (1992) present a prototypical framework for knowledge discovery under a different setting than 

simulation optimization, namely databases. This framework is redrawn in Figure 5.6; it contains five 

components (besides the discovered knowledge itself). Since our research builds a Learner based upon 

both the Frawley et al. paradigm and the Crouch (1992) architecture and flow, we now discuss the former 

in some detail. 

The Frawley discovery system has as its core the discovery method, which computes and evaluates 

patterns on their way to becoming knowledge. Note in Figure 5.6 that the discovery method has two 

principle components: search and evaluation. Inputs to the discovery method include the database itself, 

its data dictionary (which defines field names, the allowable data types for field values, various constraints 

on field values, etc.), additional domain or background knowledge, and a set of user-defined biases that 

provide high-level focus. The output of the discovery method, of course, is discovered knowledge that can 

be directed to the user and/or fed back into the system as new domain knowledge. Frawley et al. note that 

both the user bias and the domain knowledge assist discovery by focusing search; 1.e., these sources guide 

and constrain search by, for example, telling a system what to look for and where to look for it. These 

constraining influences are both desirable and undesirable: the former in that discovery is made easier, 

and the latter in that valuable discovery may be ruled out by the constraints. 

Frawley et al. (1992) point out that discovery algorithms inherently contain two processes: identifying 

interesting patterns and then describing them in a concise and meaningful manner. They note that the 

identification problem is essentially a problem of pattern idenufication or clustering, which in essence is 

the problem of finding classes such that the similarity within classes is maximized while the similarity   

among classes is minimized. For example, it might be important for a firm to discover that the major 

purchasers of its product is a particular set of individuals, whereas other individuals tend to have very 

little interest. Concept description involves the summarization of relevant qualities of the pattern classes 
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rather than just enumerating them. For example, it would help the firm described above to know that the 

particular set of individuals is the class of white males between the ages of 15 and 20. According to 

Frawley, well-known approaches to concept description include decision-tree inducers (Quinlan, (1986)), 

neural networks (Rumelhart and McClelland, (1986)), and genetic algorithms (Holland et al., (1986)). 

KNOWLEDGE DISCOVERY IN THE SIMULATION 
OPTIMIZATION DOMAIN 

Figure 5.7 illustrates the architecture of our Discovery Learner for simulation optimization and its 

interaction with the Classifier knowledge-based simulation optimization system. The Classifier KBSOS, 

shown at the right in that figure, contains three principle modules: an inference engine; a knowledge 

kernel, which contains the rules and algorithms necessary for simulation optimization, as well as a record 

(a database) of the optimization session; and processing support, including interfaces to users, the 

simulation program, etc. Crouch, Greenwood, and Rees (1995) may be seen for further details on the 

Classifier KBSOS. 

The Learner, shown as an "L"-shape at the left of Figure 5.7, contains the same modules as the Frawley et 

al. paradigm, but is adapted to fit the purposes of the simulation-optimization environment. These 

modules are the sessions history database, the data dictionary, a domain-knowledge module, and (at its 

heart), the discovery-methods module. As in Frawley, bias is provided to the Learner from a 

user/developer. 
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Note that the key information/knowledge flows between the Classifier KBSOS and the Learner consist of 

one primary flow from the KBSOS to the Learner, and two flows from the discovery-methods module: 

one back to the KBSOS, and another internal to the Learner, back to the domain-knowledge module. 

These three flows are emphasized in Figure 5.7 by the heavier lines and arrows. The key notion is that 

information from optimization sessions (stored in the database of the knowledge kernel) flows to the 

Learner as input where it is recorded in the Sessions History Database. Similarly, what is learned by the 

Learner flows back as output to the rule base of the KBSOS, so that rules are modified; consequently, 

simulations conducted in the future by the KBSOS will (hopefully) be improved. What is learned by the 

Learner also flows back to the domain-knowledge module in the Learner, as a means of keeping the 

Learner up-to-date. These flows constitute the primary activity of the Learner, with all other activities 

conducted in support of that activity. We now detail this support, proceeding module-by-module through 

the Learner. 

Data Dictionary 

The data dictionary maintains the concept bank, namely a list of concepts or constructs utilized in the 

sessions history database. For example, some of the concepts in out sessions base are number of 

controllable factors, distance from the optimum, level of factor activity, and presence of local optima. The 

concept bank also contains, as mentioned, allowable data types for field values as well as any constraints 

on field values. The data dictionary employed in our Learner is not significantly different from data 

dictionaries employed in other applications. 
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Sessions History Database 

The Learner database is called a Sessions History database because it records the history of sessions 

carried out by the KBSOS. There are three kinds of information regarding any session maintained in the 

database, each carried to meet a different need for the Learner. The first is the concepts and the values 

that each can take. The second is a description of session characteristics which includes a session trace, 

the search method and results, surface characteristics, and the activating rule, among others. The third 

kind is a detailing of the rules including parameters and associated levels. Figure 5.8 is a lattice that 

shows some of the relationships between the three kinds of information. 
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Figure 5.8. A lattice showing the interconnections of the Sessions History Database frames 
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All three kinds of information are represented as frames. The concept frame (see Figure 5.9a) contains 

the name of the concept and the possible values that the concept can take. The concept frame can be a 

child frame of an antecedent or consequent frame. The session frame (Figure 5.9b) contains session 

specific information such as the session number, the goal (min/max), performance, number of searches 

performed, a rating of effectiveness, total number of runs, number of inputs, and the best solution found. 

It has one child frame called the search frame. The search frame contains search specific information 

such as number of runs used, search method, best point found and the surface characteristics as estimated 

at that point (the selector parameter in Figure 5.8). The search frame has three child frames, (1) the 

activating rule frame, (2) the trace frame, and (3) another search frame if an additional search had been 

performed (the value is null if no additional searches were performed). The rule frame (Figure 5.9c) 

contains the rule name, the rule base it belongs to and two child frames; antecedent and consequent. The 

antecedent and consequent frames have pointers to concept frames and logical operator slot. A trace 

frame contains the points visited. 

Domain-Knowledge Module 

The third component of our Discovery Learner is the Domain-Knowledge module. As mentioned, 

discovery must often be focused if the knowledge discovered is to be useful, and sometimes it must be so if 

there is to be any discovery at all. The general purpose of the Domain-Knowledge module is to enable the 

discovery that occurs in our Learner to be relevant and useful to the Classifier KBSOS. In particular, the 

function of the domain-knowledge component is to provide guidance to the search portion of the 

Discovery Methods module in four particular ways, one for each type of learning: (1) what parameters 

can/should be considered for modification (this is for parameter-modification learning), (2) which rules 

are candidates for specialization, (3) which rules should be modified in their conclusions (e.g., 

recommending different search strategies for rule-modification learning), and (4) when to attempt 

generalization. 
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Of course, there is a danger in providing domain knowledge to our system in that specifying such 

knowledge can rule out potentially valuable discovery. Frawley et al. (1992) point out the case in logistics 

planning where the search space is so large that it is impossible to find solutions without using constraints 

such as "trucks don't drive on top of water (without bridges)." But adding this constraint eliminates 

potentially interesting solutions such as those in which trucks drive over frozen lakes in winter. So the 

key, they say, is to provide as general as possible constraints, while still maintaining enough specificity to 

provide useful discoveries. We have tried to walk this "fine line" in our Domain-Knowledge module. 

There are four primary components in the Domain-Knowledge module; these may be modified or 

enhanced in the future. They are 

» the performance measures component 

» — the low-confidence parameter list 

» the link-of-influence submodule, and 

» — the classifier-methodology-to-search-space (CM/SS) component. 

We now describe each of these components. 

The performance-measures component contains the currently recommended measures for evaluating 

success in the KBSOS. At this point, we are utilizing the same performance measures as Crouch (1992), 

not because we have studied them and found them acceptable, but rather because we have focused our 

efforts elsewhere and have assumed them by default. (We believe this whole area to be a topic worthy of 

further study.) There are two Crouch performance levels, weak and strong, and both are defined in terms 

of what Crouch called “interesting” optimization sessions or cases. Two of Crouch’s three “interesting” 

cases are oriented toward the efficiency of the optimization, which Crouch measured according to the total 

number of runs used to find the optimal response. Those optimization sessions requiring relatively many 
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runs are marked "Bad" or "B,” whereas those requiring relatively few runs are marked "Good" or "G." 

The other Crouch “interesting” case is based upon effectiveness, which she measured by observing the 

variance of the surface and whether multiple optima exist. If there is high variance or if multiple optima 

exist, Crouch labels the case "Ugly" or "U." We refer to Crouch's three interesting cases as "BUG." 

As mentioned, Crouch then defined performance in terms of the BUG cases. Performance is judged as 

"strong" or "weak" according to the following two (Crouch) rules: 

IF marked = G AND 

marked < > U 

THEN performance = strong; 

IF marked = B 

THEN performance = poor. 

The performance measures "strong" and "weak" are used in the Discovery Methods module as will be 

explained shortly. With the modular structure of the domain-knowledge module, it is relatively easy to 

modify performance measures as desired. 

Again, it is the purpose of the first of the four Domain-Knowledge module components, namely the 

performance-measures component, to provide the criteria whereby the success and failure of the KBSOS 

may be judged. 

The second component in the Domain-Knowledge module is the Low-Confidence Parameter List. This 

list is simply a developer-supplied tabulation of the "important" parameters utilized in the rules. They are 

ranked according to the lack of confidence the developer has in their values, with least-confidence 

parameters at the top of the stack. When the Learner decides to attempt parameter modification, it will do 

so by popping the low-confidence-parameter-list stack, and considering the modification of the parameter 
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at the top of that list using the parameter modification process flow outlined in Crouch (1992). Figure 

5.10 shows where the KBSOS parameters that can be modified are located within the Classifier KBSOS. 

The third aspect of the Domain-Knowledge module is the link-of-influence (LOI) submodule. The basic 

purpose of this component is to establish the link between any parameters to be modified and the effect on 

rules “downstream” in the knowledge base. For example, assume a given parameter in the "characterize" 

component in the classifier module in the KBSOS is presently set to a value of 0.5. If a change to 0.7 for 

this parameter is under consideration, then those cases (i.e., sessions) for which the parameter took on 

values between 0.5 and 0.7 must be re-examined. Now if the parameter being set at 0.7 in the 

“characterizer” caused a particular rule in the Strategy Selector to be fired and another rule in the Detailer 

subsequently to be fired, then the effect of the change to 0.7 must be considered to the extent that the 

downstream rules in the Selector and Detailer that would be fired instead of the initial set must be 

examined. For instance, the change from 0.5 to 0.7 might result in a whole new search strategy being 

chosen in the Selector. 

The determination of the downstream rules affected by a parameter shift is not difficult conceptually, as 

one merely needs to forward chain through the rules. Figure 5.11a shows how this works with a few rules 

and five sessions. The parameter o affects the parameter 3 which in turn affects the parameters y. The 

parameter y affects the number of replications but only for one search method. By forward chaining 

through the rules the parameters that are affected can be found. We have written such a domain-specific 

forward chainer and placed it in what we call the “link-of-influence” submodule, since the chaining 

establishes the influential links in the connection between any parameter and the rules impacted. The 

threshold for parameter & is set at 0.5 and the rules that are affected by @ are shown in Figure 5.1la. The 

effect of changing the threshold from 0.5 to 0.7 is shown in Figure 5.11b. Note that only two sessions (3 

and 4) are impacted by the change. The particular modules in the Classifier KBSOS affected by the LOI 

submodule are also shown in Figure 5.10 by the dashed lines leading from that submodule. 

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 189



Joulva’T 
£42A09SI(j 

24) 
JO 

JUZUOdUIOD 
a3 payMOUY 

UlBUIOG 
ay} 

Jo 
S[leyaq 

‘*OT’S 
2ans1y 

    

 
 

   

 
 

s
o
u
b
l
s
e
a
g
 

jejue 
w
u
e
d
x
a
 
|
 

u
o
n
e
n
p
e
a
g
 

| 

 
 

  
B
u
y
u
e
s
s
e
s
n
o
p
y
H
 

-
v
o
H
s
z
y
B
e
u
E
s
D
-
 

S
S
/
N
D
 

+
0
9
8
1
 

+ 
O
N
G
 

o
n
d
 

+1071      [UONBONIPOW 
OINy 

- 

         e
5
8
1
)
 

+ 
O
N
G
 

:voONBezZielsedg 
- 

 
 

[
M
O
N
B
O
I
N
P
O
W
 

10,@ 
W
e
e
 g 

-   
 
 

y
o
r
e
e
s
 

| 
 
 

  

(
a
s
e
g
 

AS 
o
j
p
o
p
o
y
y
a
W
 

1
9
u
I
8
 
8) 

FY 
3
8
8
g
 
O
N
Y
 

A
e
U
I
E
e
7
]
 

UD) 

S
Q
O
H
L
I
W
 

A
Y
H
A
A
O
D
S
I
G
 
 
 

  
 
 

 
 

 
 

 
 
 

L
H
¥
O
d
d
N
S
 
O
N
I
S
S
A
I
I
O
U
d
 

 
 

 
 
 

  
  

 
 

H
O
u
V
A
a
S
 

-o. 
C
 

e
Z
N
E
V
I
B
I
B
Y
D
 

-| 
p
c
 

unfious 
_—_ 

w
a
l
d
I
S
S
v
1
9
 

       

 
 

   

seewaneey 

      

      
 
 
 

Y
3
T
I
V
I
3
0
 

A
D
A
L
V
Y
I
L
S
 

¥
O
1
9
3
7
3
9
S
 

A
D
A
L
V
Y
L
S
 

 
 

  
  

 
 

  
 
 

\ 
$OS@N 

UIAISSYT9 
 
 

 
 

10$7) 
10 

1edojeAeg 

 
 

   

 
 

  

        

  
  

  
  

 
 

A
a
D
0
7
I
M
O
N
Y
N
 
N
I
V
N
O
G
 

 
 

        

 
 

a
s
e
q
 

y
d
a
o
u
0
9
 

 
 

L
a
i
d
 

  
 
 

  e
o
u
e
 
w
i
o
y
i
e
d
s
o
r
e
n
 

Ss 
o
s
e
 

S
O
N
S
W
e
P
O
B
I
B
Y
S
 
S
O
B
I
N
G
 

a5B8q 
J
O
N
Y
s
U
d
I
A
d
e
D
u
O
 

DF 

S
H
E
Q
e
j
y
e
g
 

A
s
O
y
S
I
Y
 
Q
U
d
I
R
S
A
a
S
 

  
  

Y
a
N
H
V
S
 

                            
190 iscovery Learning uilding a Knowledge-Based Simulation Optimization System With D * 

. Chapter Five



  

  
‘Low confidence parameter ; if @>soD 

oe eee ee wt ewe wecece ' Then = Hig 

Iz High 

If@= search_1 > 
Then eps = 

  

  

  

  

  

  
  

  

  

    
  

Sessions History 

Database         

  

      

      
    
    

      

      

      

  

  
  

  

  

      

  

  

  

      

      
  

      

y 

Session_1 Session_1: G=0.9 Session_2 

Session_3 Session 2: o=0.1 Session_5 

Session_4 Session_3: =0.7 

_[Session_4: a=0.6] 

Session_S: 

5.1la. Initial Link-of-Influence 

Low confidence parameter reso 

eee eer eccecccececceees ' Then@ = Hi mT 

I 

Then ( = search 

y 

Session_1: Session_2 

Session_2: Session_3 

Session_3: Session _4 
_[Session_4: a Session_5 

Session_S:       

  

5.11b. Subsequent Link-of-Influence 

Figure 5.11. Link-of-Influence 

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 19]



The final submodule currently present in the domain-knowledge portion of the Learner is the classifier- 

methodology-to-search-space (CM/SS) mapping. Recall that the Classifier KBSOS synthesizes simulation 

runs and then characterizes the resulting optimization surface according to six output measures. These 

output measures have been chosen particularly because they channel surfaces toward the search technique 

most appropriate for the type of surface. 

The purpose of the CM/SS component as used in the Discovery Methods module is to suggest new search 

strategies for appropriate bad and ugly cases. Three current means of doing this in the CM/SS include 

what we call the "primitive method,” whereby Smith's (1973) second and third search choices in his 

experiments are suggested; a taboo-region method, where those strategies deemed terrible in a particular 

region of classifier methodology/search space are listed as "to be avoided"; and a third method that 

calculates the Mahalanobis distance from the currently recommended strategy to the nearest centroid of 

the other strategies. As noted in Figure 5.10, the CM/SS rules impact only the Strategy Selector module 

in the KBSOS. 

Discovery Methods module 

The final Learner module to be discussed is the “work-horse" component, namely the Discovery Methods 

module. Recall that, as Frawley et al.'s (1992) paradigm suggests, discovery methods consist of search 

followed by evaluation. The search itself, they say, also has two parts: pattern identification and concept 

description. As mentioned, the former defines classes that maximize within-class similarity while 

minimizing among-class similarity. Concept description consists of deriving descriptions of the classes. 

Our discovery method module also consists of search and evaluation, the latter of which we have labeled 

our "experimental designer" (in the sense of a "design-of-experiments” expert). The pattern identification 

phase of our search consists of the four tasks, parameter modification, specialization, rule modification, 
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and generalization. The first three tasks are defined procedurally in Crouch (1992), and generalization is 

described in Greenwood et al. (1993). The procedures referenced are modified as explained in the 

example below. These four tasks are conducted instead of a more formal cluster analysis, although, in a 

sense, most of the four tasks pursue their goal through attempts at clustering BUG cases into clearer 

categories. The second portion of search, the concept description effort, utilizes rules as the 

representation scheme in which all new constructs will be expressed. This is both convenient, given that 

the four tasks are designed to operate on rules; and propitious for further discovery, since any rule in the 

KBSOS or Learner can, whether a new or an old construct, in principle, then be re-learned (i.e., modified, 

or even “unlearned,” etc.) by additional search using the four tasks. 

Further particular details of the search and experimental design modules will not be discussed in this 

section. Rather, an example implemented in practice will now be discussed that illustrate discovery 

learning through parameter modification. 

BUILDING A SYSTEM: A PARAMETER MODIFICATION 

EXAMPLE 

This section will show an example of parameter modification. The system will modify the threshold of 

the parameter coefficient of variation (CV) in an attempt to obtain “better” results. The example is based 

on multiple simulation studies actually run previously by us and stored in the sessions base. The rules 
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used in these sessions have been preserved, and relevant portions are shown below as needed in tabular 

form. 

Presented in summary fashion, the example proceeds as follows. First the low-confidence parameter list 

provides the needed bias (Figure 5.7) in the form of those parameters that most need to be checked; we 

assume that the parameter CV is at the top of the list. The link-of-influence (LOI) module, next 

determines those sessions potentially affected by the suggested change. Subsequently the range-of- 

parameter-sensitivity module performs a line search to suggest needed simulation runs (i.e., the 

“experimental points”), while the experimental designer (the evaluation module of the discovery methods) 

runs the affected sessions and evaluates performance. The details of the parameter modification example 

are presented below. 

At the top of the low-confidence parameter list is the parameter coefficient of variation (CV). The 

Learner passes this parameter to the LOI, which proceeds to track the affected rules by forward chaining. 

The classifier is the first knowledge base that is activated in the KBSOS, so forward chaining starts there. 

In general, to forward chain through the knowledge base, the antecedents of the rules must be checked for 

matches with the parameter CV. If the parameter in the antecedent of a rule matches, the variable in the 

consequent is also placed on a list (call it “listl”). Therefore, if after checking all the rules for matches 

there 1s at least one match, then the process of checking and matching proceeds, but with the consequents 

of the rules in list. When there are no more matches, this phase terminates, and the next knowledge base 

is checked using all of the parameters listed to this point. 

Table 5.1 contains relevant portions of the Classifier knowledge base, with each row representing one 

tule. That table contains three columns: the first contains the rule name, the second the rule’s 

antecedent, and the third its consequent. As can be seen in Table 5.1, two rules (named var2 and var3) 

contain CV in the antecedent. So the consequents of rules var2 and var3, namely “random_error,” are 
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placed on listl. Since items were added to listl, another round of checking needs to be done, but this time 

the effort is to match antecedents with the parameter random_error. Table 5.1 shows two rules 

(opt_distl, opt_dist2) that have random_error in the antecedents; therefore, the consequent “dist_to_opt” 

in the rules opt_dist] and opt_dist2 are added to listl. Again, items are added to listl, so another round of 

matching follows, but this time using the parameter dist_to_opt to match with the antecedents of the rules. 

At this point there are no more matches, so this phase can terminate. 

random_error, and dist_to_opt, are passed on to the next phase. 

Table 5.1. A portion of the Classifier Knowledge Base. 

The parameters on listl, CV, 

  

  

  

  

  

  

  

  

  

  

  

Name Antecedent Consequent 

loc_optl synth = done CALL COMBINSS,"" 

CALL RANK,”" 

1_opt_thresh = 0.15 

SHIP locopt, |_opt_thresh 

CALL OPTIMA,"" 

RECEIVE opttot, num_opt 

opt = done, 

loc_opt2 num_opt = 1 local_optima = absent; 

loc_opt3 num_opt > 1 local_optima = present; 

var 1 synth = done RECEIVE avevar, variance 

cvar = done; 

var2 cvar = done AND random_error = small; 

CV < 0.5 

var3 cvar = done AND random_error = large; 

CV >0.5 

opt_distl local_optima = absent AND dist_to_opt = near; 

random_error = small AND 

last_search = RSM 

opt_dist2 local_optima = present OR dist_to_opt = far; 

random_error = large 

fac_actl synth = done CALL factact,”" 

RECEIVE factive, active 

act=done; 

fac_act2 active < (0.5*num_inputs) factor_activity = low; 
    fac_act3   active >= (0.5*num_inputs)   factor_activity = high;     
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The Selector is the next knowledge base activated in typical KBSOS operation so it is searched next. To 

forward chain, antecedents of the Selector rules are checked for matches with the parameters CV, 

random_error, and dist_to_opt. If any rule has an antecedent that matches any of these parameters, the 

variable in the consequent of the rule is placed on another list, called list2. If after checking all the rules 

for matches there is at least one item on list2, then the process of checking and matching repeats with all 

items on list2. When there are no more matches, this phase terminates, and the next knowledge base 

incurred is checked using all of the parameters listed to this point. 

As can be seen in Table 5.2 the rule simplex_1 has matches on random_error and dist_to_opt. So the 

consequent of the rule is added to list2, namely the variable “search_strategy.”” Since search_strategy does 

not match any other antecedents in Table 5.2, this phase terminates, but passes on the variables on list2, 

namely CV, random_error, dist_to_opt, and search_strategy. 

Table 5.2. A portion of the Selector Knowledge Base 

  

  

  

Name Antecedent Consequent 

random_1 num_factors = small AND search_strateg y= random_search; 

num_sim_runs = petite 

full_factorial_1 num_factors = small AND search_strategy = RSM_II; 

num_sim_runs = large AND 

local_optima = absent AND 

random_error = large AND 

factor_activity = high 
  

  
Simplex_1 num_sim_runs = medium AND search_strategy = RSM_I; 

local_optima = absent AND 

dist_to_opt = near AND 

random_error = small AND 

factor_activity = high       
  

The next knowledge base to be activated is the Detailer. (See Table 5.3.) To forward chain through that 

knowledge base, the antecedents of the Detailer rules are checked for matches with the items CV, 

random_error, dist_to_opt and search_strategy. Table 5.3 shows that there are three rules (rand_srch, 

simplex, full_factorial) that match the variable search_strategy in the list passed from the previous phase. 
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No other parameters are a match. So the rules rand_srch, simplex, and full_factorial are put on a new list, 

list3. Since there were matches another round of matching follows, but now using the consequent 

variables starting_point, region_of_fit, step_size, and design. There are no matches so this phase and the 

link-of-influence module terminates. In summary so far, the items in the lists constitute the link-of- 

influence, which indicates the potential impact of a change in the parameter under consideration for 

modification. A change in CV can affect the factors random_error, dist_to_opt, search_strategy, 

Starting point, region_of_fit, step_size, and design. 

Table 5.3. A portion of the Detailer Knowledge Base 

  

  

Name Antecedent Consequent 

rand_srch search_strategy=random_search starting _point=none 

CALL REGION,"" 

region_of_fit = found 

step_size = none 

design = none; 
  

simplex search_strategy = RSM_I Starting point = Start 

CALL REGION,"" 

step_size = (0.10 * (ub - Ib)) 

design = simplex; 
  

  full_factorial search_strategy = RSM_II starting point = start 

CALL REGION,"" 

step_size = (0.10 * (ub - Ib)) 

design = full_factorial;       
  

Note that if the parameter to be modified had been in the consequent of a rule rather than in its 

antecedent, then the scanning process would have proceeded as above except that scanning would have 

been done on consequents and antecedents would have been posted to the lists. This is analogous to 

backchaining. 

Note that the primary interest at this point is in finding sessions that are affected by the change in the 

parameter threshold. In the Detailer KBSOS there are only five variables that can affect a session: (1) 
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search_strategy, (2) region_of_fit, (3) starting point, (4) step-size, and (5) design. If none of these factors 

shows up on the list generated above of affected parameters, then there is no reason to pursue parameter 

modification any further; if, however, at least one of the previously mentioned five factors is affected, then 

the range-of-parameter-sensitivity module must be called. Since all five factors are affected, further effort 

is necessary. Continuing to follow the same logic as illustrated in Figure 5.11, the Sessions Base is 

examined to see which of the many sessions there are affected by a change in CV. Five sessions are 

identified, and we call them session | to session 5 here for simplicity. 

Some of the infonnation stored in the Sessions Base regarding these sessions is included in Table 5.4. 

Note that each row entry in that table consists of an entire simulation optimization session actually 

conducted in the past. As can be seen in Table 5.4, past sessions were conducted using different model 

conditions (e.g., different demand distributions), each taking a different number of runs to reach 

optimality, which itself varied from case to case. Note that all optimizations in Table 5.4 were performed 

using a “Simplex” experimental design; this is not surprising because all CV’s are below CV = 0.05. 

Table 5.1, rule var2, indicates that consequently random_error = small; Table 5.2 , rule simplex_l, 

informs that search_strategy = RSM_I, which is the Simplex search. Also note from Table 5.4 that the 

range-of-parameter-sensitivity = (0.0021, 0.0216) 

Table 5.4. Some Sessions Base Data 

  

Session Demand Search Response Optimal Runs 

Name Distribution Strategy CV Cost/Day Made 

l Unif(0.19, 0.21) Simplex 0.0021 $2.82 65 

2 Exp(0.20) Simplex 0.0085 $2.86 55 
3 Gamma(0.25, 0.80) Simplex 0.0105 $2.81 39 

4 Gamma(0.1111, 1.80) Simplex 0.0200 $3.79 28 
5 Gamma(0.05, 4.0) Simplex 0.0216 $4.08 30 

The experimental-design module is invoked next to perform a line search using the value of the parameter 

taken from the low-confidence parameter list (CV = 0.5) and the range-of-parameter-sensitivity (0.0021, 
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0.0216). Note that the situation we have is that of Figure 5.12b; we will be examining parameter changes 

39 

“from above.” This situation is redrawn in Figure 5.12d, where the CVs of the five sessions are shown 
o 

explicitly within the range-of-parameter-sensitivity. 

The experimental designer first tries moving the parameter CV = 0.5 to that of session 5. It does this by 

scheduling an entire simulation optimization under the same conditions as before, except that now rule 

var2 in Table 5.1 will be IF CV < 0.0216. This results in the search strategy shifting from RSM_I 

(Simplex) to RSM_II (Full Factorial). 

The results obtained constitute an improvement in that there is a tie on cost (i.e., costs are within 10% of 

each other), but the number of runs is reduced from 30 to 25. 

Since session 5 resulted in an improvement with the change in CV from 0.5 to 0.0216, a further shift in 

CV from 0.0216 to 0.0200 (session 4) is considered. Therefore, another entire simulation optimization is 

conducted on session 4’s condition, this time using a Full Factorial design. As there is a significant 

improvement in cost from $3.79/day to $2.69/day (a 41% improvement), another shift in CV, to that of 

session 3 is considered. Since performance deteriorates (tie on cost, but runs more costly), the process 

terminates. As the recommendation from the Discovery Learner is to change the CV, rules var2 and var3 

in the classifier knowledge base are modified. The factor CV 1s left on the Low-Confidence Parameter 

List for further investigation by the Learner after new sessions are accumulated. 

Chapter Five: Building a Knowledge-Based Simulation Optimization System With Discovery Learning 199



Range-of-Parameter-Sensitivity 

9? ¢— ——* 
§.12a. From below 

  

Range-of-Parameter-Sensitivity 

ee e% 
5.12b. From above 

  

Range-of-Parameter-Sensitivity 

o— 9 © fe Pee 
  

§.12c. From within 

Range-of-Parameter-Sensitivity 

are 9 Session 1 2 3 

  

5.12d. The case involving the five relevant sessions in the Sessions Base. 

Figure 5.12. Examples of Line Search 
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CONCLUSIONS AND FUTURE WORK 

Previous research has emphasized the advantages of building a knowledge-based simulation optimization 

system and of the potential for an embedded learner. Whereas earlier work describes the architecture of 

such a learner, this research reports on a learner (or portions thereof) we have actually built and its 

experiences in adapting itself to a history of simulation runs of inventory problems. The Learner itself 

was Changed to include the concept of discovery learning, whereby the optimizer develops its own agenda 

of problems to pursue. 

The example described in this research successfully experimented in changing a parameter in the 

knowledge base of the simulation optimizer, one of four types of learning (parameter modification) 

described in the literature. Although the other three types of learning (specialization, rule modification, 

and generalization) are in most ways easier than the learning shown here, it is not recommended that 

these types of learning be pursued next. Rather it is believed that a study be made of incorporating 

domain knowledge to see if the number of confounding factors in the experimental-design portion of the 

Learner can be reduced. 

What is meant by reducing the confounding factors is that there are often too many factors involved in 

each simulation optimization session to identify which are important. For example, there is starting point, 

inter-gridpoint spacing, and step size as well as CV, search method, etc. For the experimental designer to 

hope to be able to attribute change to the proper factor, the other influences must be properly controlled. 

This will result in huge experimental designs unless domain knowledge can be brought to bear to 

eliminate possible confounding factors or to rule out the wisdom of testing on a factor by factor basis. 

Further work is needed to identify more specifically which factors can be learned practically speaking, and 

how domain knowledge can be included to reduce the complexity of the task. We believe this is the next 
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critical topic which must be pursued in the development of a Learner for a knowledge-based simulation 

optimization system. 
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Chapter Six: Conclusions 

Surface Study 

In Chapter three a simple, inventory-simulation model was studied under four different experimental 

design conditions. These conditions varied the coefficient of variance of demand and of lead time and 

also examined two different levels of design conditions, i.e., the number of replications and the simulation 

run length. A simple model was studied because it was believed that even a naive modeler intent on 

finding the system optimum would be able to safely and properly use a technique such as RSM, a widely 

used and respected approach. 

The purpose of the study was to investigate common statistical measures over the search region. Both 

point estimates (mean, standard deviation, coefficient of variation, signal-to-noise ratio) and region 

measures and tests (normality of residuals, homogeneity of variance, significance-of-regression and lack- 

of-fit) were examined. 
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Point-estimate measures exhibited considerable sensitivity to experimental design conditions. This gave 

rise to concerns that perhaps the simple inventory model might not be simple enough to conduct 

simulation-optimization searches using methods requiring some parametric statistical tests. Regional 

measures added some additional concerns. 

That the appropriateness of various optimization approaches should be questioned was portrayed in a final 

set of plots indicating which points of the overall search area were amenable to first-order RSM and which 

were not. It was found that an important determinant of amenability was the inter-gridpoint spacing of 

the gridpoints. The gridpoint spacing is a very important practical issue, as one conducting optimization 

on a simulation model must be able to specify, e.g., in RSM, the (uncoded) size of the region of the first- 

order designs and the step size to be taken along the path of steepest ascent/descent. It was found for a 

spacing of A = 40 that in no case were more than 10% of the total number of regions appropriate for first- 

order RSM. For A = 20, the range of appropriate percentages varied from about 25% to 78%. 

Again, this is a relevant, practical finding. Individuals conducting optimization must be very careful not 

to make experimental-region size too large, since then first-order parametric metamodels may only be 

appropriate 10% of the time, whereas setting even a smaller region size will still lead to considerable 

variability in achieving a properly executed search. 

There are three implications of these findings. The first is that there is a need to develop a simulation- 

optimization “pre-processor” or “starter” that suggests both a starting point for the optimization and the 

granularity of the problem, i.e., the inter-gridpoint spacing or some surrogate (chapter four addresses 

this). Many times it is appropriate to assume that a “good-enough” starting point is known by an expert, 

but even if so, it is not as clear that such an expert would have sufficient knowledge to specify an inter- 

gridpoint spacing that is not too big, given the particular model variabilities (exogenous and endogenous) 

and design conditions (run length and replications). Too small a spacing may be costly. 
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The second implication of the findings of this research is that nonparametric metamodeling should be 

examined. This is necessary not only because of the potential of violating parametric assumptions, but 

also for another reason implied in this research: the benefits of global, nonparametric metamodeling. 

Recall that in Figure 3.5 with two replications, multi-modal response surfaces were indicated (which was 

incorrect). If RSM were attempted starting on the wrong “side” of such a simulation response surface, the 

wrong optimum might be found. A possible alternative to parametric metamodeling such as RSM is 

global nonparametric metamodeling, whereby the whole surface is modeled using a nonparametric 

technique such as kernel smoothing or spline smoothing. In fact, some preliminary investigation (Keys, 

Rees, Greenwood, (1995)) suggests that global, nonparametric metamodeling is very effective, seems 

safer, and requires relatively few computer runs to obtain the optimum. 

The third implication of this research is that a multi-strategy approach to simulation optimization be 

explored. Since a response surface may vary considerably over the entire region in terms of both point 

and region characteristics/measures, it stands to reason that different search techniques might be 

appropriate and thus more successful in different areas of the search space. For example, RSM might be 

appropriate in one area and random search in another. Initial studies on this have already been done 

(Crouch, Greenwood, Rees, (1995), Greenwood, Rees, Crouch (1993)). 
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Best First Search Approach 

Chapter four defined a Starter for use in those simulation optimization cases where either the starting 

point or the granularity of the problem are not known in advance. The Starter combines the artificial- 

intelligence based best-first search with a divide-and-conquer strategy and a safety net. 

Three examples have illustrated the Starter procedure. The first example showed that the Starter worked 

on a “simple” simulation-optimization problem, while the second illustrated the process on a more 

involved surface with twenty times the variance of the first. The final example represented a very difficult 

surface to optimize, with multimodal behavior and large flat regions. The Starter worked quite well even 

without the safety net in all cases, and obtained an optimal solution within 7% after one pass of the safety 

net in all three cases. 

A lower-bound estimate of the number of simulation runs N required by the Starter may be determined 

based on the original user-specified region and inter-gridpoint minimal spacing. If a best case of the 

minimal subdivisions in the divide-and-conquer step occurs, and if no ties occur among the most preferred 

region at any point in the algorithm and the other regions, then for a square region with a granularity A,, 

N= 12+ 15m 

range 
  where m= log, and [+ | is the ceiling function. 

A 
u 

For example, if A = 11 and the user specifies 48 < x < 400, then 

range = 400 - 48 = 352 
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N= 87 simulation runs. 

Conversely, the maximum number of runs required over the specified range to completely cover a square 

feasible region at a granularity of A) ifthe Starter approach is ignored is 

  

2 

range 
N=3 +1 

A, 

In the example above, 

2 
352 

N= 3) | —— |4+1] = 3,267 simulation runs. 

11 

The potential savings using the Starter algorithm is great. 

Future work on the Starter involves testing it on more surfaces. The results from these runs can be used to 

ascertain how aggressiveness may be incorporated dynamically into the Starter process and also to 

determine which metamodel should be used in estimating the performance of each region, as discussed in 

chapter four. 
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Building A KBSOS With Discovery Learning 

Previous research has emphasized the advantages of building a knowledge-based simulation optimization 

system and of the potential for an embedded learner. Whereas earlier work describes the architecture of 

such a learner, this research reports on a learner (or portions thereof) we have actually built and its 

experiences in adapting itself to a history of simulation runs of inventory problems. The Learner itself 

was changed to include the concept of discovery learning, whereby the optimizer develops its own agenda 

of problems to pursue. 

The example described in this research successfully experimented in changing a parameter in the 

knowledge base of the simulation optimizer, one of four types of learning (parameter modification) 

described in the literature. Although the other three types of learning (specialization, rule modification, 

and generalization) are in most ways easier than the learning shown here, it is not recommended that 

these types of learning be pursued next. Rather it is believed that a study be made of incorporating 

domain knowledge to see if the number of confounding factors in the experimental-design portion of the 

Learner can be reduced. 

What is meant by reducing the confounding factors is that there are often too many factors involved in 

each simulation optimization session to identify which are important. For example, there is starting point, 

inter-gridpoint spacing, and step size as well as CV, search method, etc. For the experimental designer to 

hope to be able to attribute change to the proper factor, the other influences must be properly controlled. 

This will result in huge experimental designs unless domain knowledge can be brought to bear to 

eliminate possible confounding factors or to rule out the wisdom of testing on a factor by factor basis. 

Further work is needed to identify more specifically which factors can be learned practically speaking, and 

how domain knowledge can be included to reduce the complexity of the task. We believe this is the next 
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critical topic which must be pursued in the development of a Learner for a knowledge-based simulation 

optimization system. 
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APPENDIX A 

In the simulation used in Examples 1 and 2 of chapter three, the implicit time unit is assumed to be one 

day. Demand for both examples comes from a gamma distribution, I'(a, §), where is the shape 

parameter and B is the scale parameter. Demand for both examples has a mean of 0.2 days. Example 1, 

however, has a shape parameter of 1.0, indicating an exponential distribution, whereas Example 2 has an 

a of 0.05. Example 1 also has a deterministic lead time of zero, whereas Example 2 has a lead time 

following a truncated normal distribution. The simulation is designed to start at the beginning of a cycle 

and to terminate on the completion of a cycle. A cycle (T) is defined to exist from the moment just after 

an order arrives until the time the next order arrives (see Figure 3.1). 

The simulation model has four main events: 

Initialization 

Arrival-of-Demand 

e =6. Arrival-of-Order 

e Termination 

Initialization specifies the values of several system parameters and variables. A sequence of arrival-of- 

demand and arrival-of-order events follows initialization, thereby starting the actual simulation. The 

simulation consists of a warm-up period followed by a study period. After the warm-up period all 
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Statistics are reset to zero, and statistics collection for the study period begins. At termination, the 

performance measure is calculated. 

The four main events can be broken down into activities. 

  

  

The Initialization event has the following activities: 

e Set decision variables Q and R (They do not change during the simulation run.) 

e Set Inventory and Inventory Position to Q 

e Set Number of Back Orders and Number of Orders to zero 

e Set the minimum time for warm-up (250 days) and statistics collection (1000 days) 
  

  

  

The Arrival-of-Demand event has two activities: 

e Check Order 

If Inventory Position is less than or equal to R then 

Place Order 

Increment Inventory position by Q 

Schedule Arrival-of-order 

e Process Demand 

If demand can be met from inventory then 

decrement Inventory and Inventory Position 

If demand cannot be met then 

Satisfy whatever can be satisfied from Inventory 

Set number of backorders to the portion of demand that cannot be satisfied 

If this is the first time in the cycle that Inventory cannot satisfy demand then 

Set Inventory and Inventory Position to zero (0) 

If this is not the first time in the cycle that Inventory cannot satisfy demand then 

Subtract demand from Inventory Position 
  

  

  

The Arrival-of-Order event has three activities: 

e Process Order 

Satisfy backorders as possible 

Increment Inventory Position by Q 

If Inventory Position is greater than zero then 

Set Inventory to Inventory Position 
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e Check Order 

If Inventory Position is less than or equal to R then 

Place Order 

Increment Inventory position by Q 

Schedule Arrival-of-order 

e Check-for-End-of-Cycle 

If current time is > warm-up time (250) and it is still the warm-up period then 

Set the period to statistics collection 

Set simulation termination time to current time plus statistics collection time (1000) 

Set total warm-up time to current time 

Set number of orders to zero (0) 

Start statistics collection 

If current time > simulation termination time then 

Terminate Simulation 
  

  

  

The Termination event has one activity 

e Generate Report 

Calculate Statistics 

Average Daily Inventory 

Average Daily Backorder 

Total number of orders 

Tota! Cost for run normalized to Average Daily Cost 

Print Q, R, Average Daily Cost 
  

The four events occur during four separate stages, an initialization stage, a warm-up stage, a Statistics- 

collection (study) stage, and a reporting stage. The four stages are sequential as shown in the following 

diagram. 

  

Initialization Stage Warm-up Stage Statistics Collections Stage Reporting Stage 

The initialization stage corresponds to the initialization event. Both the warm-up stage and statistics- 

collection stage are a series of arrival-of-demand and arrival-of-order events. The reporting stage 

corresponds to the termination event. 
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The following diagrams show how the arrival-of-demand and arrival-of-order events interact in the warm- 

up stage. 

Process Demand     

    

Demand Arrives 

        

  

  if inventory position = R__{cchedule Order Arrival 

  

Check Order 
  

Check for End of Cycle] 

  

   

  

    

Order Arrives 
    

  

If inventory position < R {sche dule Order Arrival 
  

  

Check Order 
  

The statistics collection stage has the same basic events. The check-for-end-of-cycle activity is shown in 

greater detail below showing the termination of warm-up and the beginning of statistics collection. The 

difference between the warm-up and the statistics-collection stages is that the statistics that are collected 

in the warm-up Stage are discarded. 

  

Terminate Warm-up 

and start Statistics 

Collection 

If current time > Minimum warm-up time 

and it is stuull wann-up penod              

  

Check for End of Cycle 
  

  

Terminate Simulation 
  

The reporting stage essentially starts at the end of the simulation. The measure of performance is the total 

cost of the simulation run normalized to a daily cost. Total cost is composed of holding cost, backorder 

cost, and order cost. The holding cost and backorder cost are based on inventory and backorder levels, 

which are maintained by the simulation program as time-persistent variables. The daily order cost for the 

duration of the statistics-collection stage is calculated as the cost per order times the number of orders 

placed during the study period, divided by the duration of the statistics-collection stage (expressed in 
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days). Summing the holding cost, backorder cost, and order cost gives the daily cost for the simulation 

run. The output of the reporting stage is the (Q, R) pair and its associated daily cost. 
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APPENDIX B 

Psuedocode for the best-search algorithm of chapter four is as follows: 

MAIN 

User 
  

  

The user specifies the dimensionality (k) of the simulation-optimization problem. 

The user specifies whether optimization is minimization or maximization. 

The user specifies the region to be optimized. 

The user specifies the minimum inter-gridpoint spacing, A). 
  

Initialize 
  

  

If the user-specified region is not convex, create the minimum number of polygons 

(each of which is convex, by definition). 

Define each polygon as a “promising region” or as a “region,” for short. 

Initially define € = list of promising regions to be explored = {9}. 

Initially define D = list of regions to be discarded = {9}. 

Define each vertex of each polygon as a “gridpoint.” 

Define A; as the inter-gridpoint spacing along dimension i. 

If unspecified by user above, set A, = 3.125% of initial range in direction 1 

(Halving 100% five times (50; 25; 12.5; 6.25; 3.125) so that the search is limited to five levels). 

Run replications (e.g., 3 - depending on aggressiveness) at each gridpoint of all regions. 

Place all regions on the list €. 

SORT the list £, with the most preferred region on the front of the list. 
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Best-first search with safety net 
  

Repeat 

While the list € is not empty 

Take the first region off list €. 

Initialize stop_criteria(® ) = false. 

While not(stop_criteria(R )) 

SUBDIVIDE region X 

Perform multiple comparison test on list £ 

Sort list £ with the most promising region at the front of the list 

End while 

End while 

SORT list D with the most promising region at the front of the list 

While the list D is not empty 

Perform SAFETY NET on list D. 

End while 

Until list € and list D are empty       
STOP 

END MAIN 

LOGICAL FUNCTION STOP_CRITERIA(R) 

  

  

/* User specified stopping criterion */ 

If user-supplied A,, is reached then 

stop_criteria = true 

annotate the region Ras having reached A, . 

RETURN 

endif. 

If assumptions_are_met(R) then 

/* gradient search looks promising */ 

If FREGR iS Significant and Fy op is not significant for this R then 

stop_criteria = true 

annotate the region Ras being good for RSM. 

RETURN 

endif. 

/* Region is flat */ 

If FREGR and FLOF are both not significant for this ® then 

stop_criteria = true 

annotate the region ®.as not being good for RSM. 

RETURN 

endif. 

endif. 
  

RETURN 

END STOP_CRITERIA() 
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LOGICAL FUNCTION ASSUMPTIONS_ARE_MET() 

  

/* If errors are not normal */ 

If Shapiro- Wilk test is significant then 

assumptions_are_met = false; 

  
  

else 

/* If errors are normal but do not have homogeneous variance */ 

if Bartlett-Box test is significant then 

assumptions_are_met = false; 

else 

/* If errors are normal and have homogeneous variance */ 

assumptions_are_met = true. 

RETURN 

END ASSUMPTIONS_ARE_MET() 

PROCEDURE SUBDIVIDE(&) 

  

Define the list T as a temporary list. 

/* Take the parent off the list */ 

Remove & from list £ 

For each dimension t in the problem space /* 1 <1 <k */ 

bisect each region R boundary along the uth axis 

create a new gridpoint at each bisected boundary if one does not already exist 

Nextt. 

Without straying outside the region, 

form the Cartesian product of each new gridpoint, thereby creating more new gridpoints. 

Run replications (e.g., 3) at each of the new gridpoints that do not already have runs. 

Create up to 2k new, non-overlapping, smaller regions completely covering &, 

Place each new region on the list T. 

Perform MULTIPLE_COMPARISON_TEST on list 

/* Testing the new regions only */ 

RETURN 

END SUBDIVIDE(R) 
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PROCEDURE MULTIPLE_COMPARISON_TEST(X ) 

/* This tests whether the regions ® on the list X differ statistically with respect to their means. */ 
  

  

If R* is not in X then add R* to X and call the new list X‘ 

If homogeneity_of_variance(X‘) is true then 

Perform Tukey-Kramer multiple comparison test on list X‘ 

else 

Perform Scheffe multiple comparison test on regions on list x‘ 

For each region 8 on X: 

If Ris not different from the most preferred region R* then 

If Ris not on the list € 

Place ®. on the list 

else 

If Ris on the list & then 

Remove & from the list € 

Place ®.on the list D 

Next region & on X: 
  

RETURN 

END MULTIPLE_COMPARISON_TEST(X ) 

LOGICAL FUNCTION HOMOGENEITY_OF_VARIANCE(X) 

  

  

/*Define violation as a logical variable that is set to true if normality assumption is violated */ 
violation = false 

For each Ron X: 

/* If errors are not normal */ 

If Shapiro- Wilk test is significant then 

violation = true; 

Next & on X. 
homogeneity_of_variance = true. 

If violation = false then 

if Bartlett-Box test is significant then 

homogeneity_of_variance = false; 

else 

if Levene’s Median test is significant then 

homogeneity_of_variance = false. 
  

RETURN 

END HOMOGENEITY_OF_VARIANCE(X) 
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PROCEDURE SAFETY_NET(@) 

  

  

Call the smallest A encountered for any region so far Aj in- 

Take region R at the front of D. 

/* Call the A for this region Ap. */ 

If stop_criteria (2) then 

RETURN. 

Get the best region found so far, R*. 

If Ap 2 4A nin then 

If sig_better (R, KR”) then 

Place region ® on the list £ 

  

else 

Perform BUMPINESS on the region ®; 

else 

If sig_better (R, ®”) then 

Place region 8 on the list € 

else 

REMOVE region & trom the list D 

RETURN 

END SAFETY_NET(®2) 

LOGICAL FUNCTION SIG_BETTER(R, &4 

  

  

/* If Ris significantly better than R*, then sig_better is true. */ 

Let X = list comprised (only) of Rand R”. 

If homogeneity_of_variance (X) then 

Perform TUKEY-KRAMER comparison test on X 

else 

Perform SCHEFFE comparison test on X. 

If appropriate test above (R. > R”)is significant then 

sig_better = true 

else 

sig_better = false. 
  

RETURN 

END SIG_BETTER(R, &”) 
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PROCEDURE BUMPINESS( ) 

  

/* To get to this point, R has been shown to be inferior to R* But R still covers a relatively large 
. . . . : * 

area, i.e., it still has a large A relative to Amin: / 

REMOVE region & from the list D. 

Bisect the region R along each axis. 

Make sure all runs for all gridpoints have been recorded. 

For each gridpoint that does not have runs, run replications (e.g., three). 

Calculate bumpiness (an approximation to the second derivative) in the direction of all axes as 

follows: 

a—h) -—2f(a)+f(a+h) 
h2 
  ia) 

If Khas significant bumpiness in the direction of optimization then 

/* if the problem is maximization and the bumpiness indicates a maximum or */ 

/* if the problem is minimization and the bumpiness indicates a minimum, then */ 
For each subregion R, of R 

if not stop_criteria(X ;) then 

PLACE subregion Ron the list €.     next Ri: 

  

RETURN 

END BUMPINESS(_) 
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