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Abstract

The vertebrate microbiome contributes to disease resistance, but few experiments have
examined the link between microbiome community structure and disease resistance func-
tions. Chytridiomycosis, a major cause of amphibian population declines, is a skin disease
caused by the fungus, Batrachochytrium dendrobatidis (Bd). In a factorial experiment, bull-
frog skin microbiota was reduced with antibiotics, augmented with an anti-Bd bacterial iso-
late (Janthinobacterium lividum), or unmanipulated, and individuals were then either
exposed or not exposed to Bd. We found that the microbial community structure of individ-
ual frogs prior to Bd exposure influenced Bd infection intensity one week following expo-
sure, which, in turn, was negatively correlated with proportional growth during the
experiment. Microbial community structure and function differed among unmanipulated,
antibiotic-treated, and augmented frogs only when frogs were exposed to Bd. Bd is a selec-
tive force on microbial community structure and function, and beneficial states of microbial
community structure may serve to limit the impacts of infection.

Introduction

The ecological debate over the relationship between community structure and function has a
long history [1-3]. In general, species richness has a positive effect on most ecosystem services,
such as productivity and stability, but these results are based on work in relatively few systems
and with few functional endpoints [4,5]. Only recently have researchers begun to examine
structure-function relationships in complex microbial communities, including host-associated
symbiotic communities [6,7]. Given their short generation times, relative ease of manipulation,
and advanced molecular tools, these systems may be useful for revealing general patterns and
mechanisms underlying structure-function relationships [8].
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Fig 1. Conceptual model representing potential responses and interpretations of microbial
community structure and function in the presence of a pathogen.

doi:10.1371/journal.pone.0139848.g001

Here, we focus on understanding these structure-function relationships in complex bacterial
symbiont communities in the context of pathogen exposure, as potentially lethal pathogens
should be strong selective forces on disease resistance functions of symbiont communities (Fig
1). One potential outcome is that with pathogen presence, community structure will change as
the pathogen competes with other microbes in the community. In this case, the function of the
community may or may not change depending on whether bacterial symbionts are functionally
redundant or there are key species present. If species are primarily redundant, the loss of one
species can be offset by another, and the structure of the community may change with patho-
gen presence without altering the function. If, however, species make unique contributions to
function, the loss or gain of a key species when a pathogen is present will alter community
function. Alternatively, community structure could remain unchanged, but community func-
tion could exhibit a shift towards increased disease resistance, indicating plasticity in the func-
tional response. Lastly, both community structure and function could remain unchanged with
pathogen presence, suggesting that the pathogen is not a strong selective force on community
function.

Chytridiomycosis is an amphibian skin disease caused by the fungus, Batrachochytrium
dendrobatidis (Bd), and is a major contributor to global amphibian population declines [9].
The skin of amphibians is host to a diverse resident bacterial community, and some of these
bacteria inhibit Bd [10-13]. A supplemented, protective cutaneous microbiota can reduce mor-
bidity and mortality in amphibians infected with Bd [14], and reduction of the cutaneous
microbiota can alter disease outcome [15]. The protective function of the microbiota is likely
due to bacterial metabolites inhibiting zoospore colonization or development [16].

To assess the role of bacterial community structure on host health, the potential for patho-
gens to act as selective forces on microbiota function, and the link between the structure and
disease resistance function of the skin microbiota, we manipulated (reduced or augmented) the
skin microbiota of bullfrogs (Lithobates catesbieanus), exposed them to Bd and tracked host
and skin bacterial community responses. Bullfrogs were used because they are generally not
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considered susceptible to chytridiomycosis ([17,18], but see [19]). Therefore, skin microbiome
responses were not likely to be confounded by host mortality.

Materials and Methods
Experimental design

Sixty juvenile bullfrogs (6.7-13.2g, mean = 8.8g) were collected on two separate days in August
2010 from a pond in Giles County, VA (USA), where Bd has been previously detected [20,21].
In the field, collected bullfrogs had low levels of Bd infection, both in terms of prevalence (50%,
30 of the 60 frogs were infected) and intensity (mean+/-SE = 0.61+/-0.25 zoospore equivalents,
range = 0-14 zoospore equivalents). Individual frogs were swabbed in the field to assess initial
microbiota and Bd using a single swab. Each individual was handled with fresh gloves, rinsed
twice with sterile water to remove transient microbes [22], and swabbed ten strokes along the
ventral side and five strokes along each thigh and rear foot using sterile rayon swabs (MW113,
Medical Wire & Equipment). We swabbed these regions because Bd infection is generally con-
centrated there [23]. Swabs were placed in sterile 1.5ml microcentrifuge tubes and frozen at
-20C. Frogs were then returned to the laboratory and randomly assigned to one of six treat-
ment groups in a factorial design with microbiota treatment (three levels: unmanipulated,
reduced, augmented) and Bd treatment (two levels: exposed, not exposed). Frogs were housed
individually at 17C on a 12h light cycle in autoclaved 15 x 33 x 23 cm containers that were
slanted and contained 500ml sterile water and two sterile moist paper towels. Cages were
changed and frogs were fed crickets ad lib twice per week throughout the experiment.

Treatments started after frogs were acclimated to the laboratory environment for one week.
Frogs had their skin microbiota experimentally unmanipulated (U), reduced with antibiotics
(AB), or augmented with Janthinobacterium lividum (JL; a bacterial culture isolated from a
four-toed salamander, Hemidactylium scutatum, in Virginia and used in prior studies to limit
Bd impacts; e.g. [14]), and were then either exposed or unexposed to Bd. We used an unbal-
anced design, with more frogs in the Bd exposure treatments (N = 13) than in the unexposed
treatments (N = 7), because we were mainly interested in bacterial treatment effects on micro-
biota structure and function in the presence of Bd. To reduce the skin microbiota, frogs were
housed in autoclaved containers with 500ml broad-spectrum antibiotic solution every day for 2
weeks, alternating among maracyn (5ml/L), enrofloxacin (30mg/L), and cephalexin (12mg/L),
similar to Becker & Harris [15]. To augment the skin microbiota, frogs were placed in auto-
claved 400ml containers with 100ml of J. lividum cells in sterile water for six hours [as in 14].
Frogs were exposed at 11 (1.8x10% cells/ml) and 4 (3.8x10 cells/ml) days before exposure to
Bd, which occurred on experiment day 0. Frogs in the unmanipulated microbiota treatment
were placed in 100ml of sterile water for the same time period to control for handling effects.

To maximize the potential impact of Bd on the skin microbiota, a Panamanian Bd strain
(JEL310) was used. This strain was lethal to another North American amphibian species [24]
that did not experience mortality from a North American Bd isolate [15]. While we did not
want mortality to confound impacts of Bd on the microbiota, we did want to optimize the
potential effects of Bd exposure on bullfrogs’ microbiota. Frogs (N = 13/microbiota manipula-
tion) were exposed to Bd at day 0 by placing them in 100ml solutions of 7x10° zoospores for 24
hours in autoclaved 400ml containers. Unexposed frogs (N = 7/pre-treatment) were placed in
sterile water. To ensure successful infection, a second Bd exposure (4.8x10 zoospores) was per-
formed at day 4.

Frogs were swabbed for bacterial community analysis and Bd infection intensity initially in
the field (as described above, day -21), after microbiota manipulations and prior to Bd expo-
sure (day 0), and one week after exposure to Bd (day 7). A second swab for metabolite profiles
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was also taken in the same manner at days 0 and 7. Metabolite analysis was performed on day
7 samples. The same sterile rayon swabs (MW113, Medical Wire & Equipment) were used for
DNA and metabolite collection. Frog mass was also recorded at days 0, 7, and 42, as mass loss
is a common sublethal effect of Bd exposure (e.g. [25]). No frogs died during the experiment,
which lasted 42 days.

Microbial community analysis

Ten randomly chosen frogs of the 13 in each Bd exposed treatment and all 7 frogs in each no
Bd treatment were used for microbial community analysis. DNA from bacterial swabs was
extracted using the Qiagen DNeasy Blood & Tissue Kit (Valencia, CA) with lysozyme pretreat-
ment. The V4 region of the 16S rRNA gene was amplified using the primers 515F and barcoded
806R [26,27]. For each sample, triplicate reactions and a control without template were run.
PCR conditions followed the procedure in Caporaso et al. [27]. Equimolar amplified samples
were pooled, cleaned using Qiagen QIAquick PCR Clean Up Kit (Valencia, CA), and
sequenced on the MiSeq Illumina platform with a 250bp paired-end approach [26] at the Dana
Farber Cancer Institute’s Molecular Biology Core Facilities (Boston, MA). Sequences are avail-
able in the NCBI Sequence Read Archive (SRA) under study accession number SRP062876.

Paired reads were assembled with Fastq-join [28] and processed with QIIME (v. 1.7.0) [29].
Sequences were de-multiplexed and quality-filtered (based on [30], with sequences between
252-255bp maintained). After quality filtering, there were 18,299,242 reads (number of
sequences per sample: 27,693-176,285). Quality-filtered sequences were clustered into opera-
tional taxonomic units (OTUs) at a sequence similarity threshold of 97% with the UCLUST
method [31] and a minimum cluster size of 0.001% of the total reads [30]. Sequences were clus-
tered against the 12_10 Greengenes database (October 2012 release) [32], and those that did
not match the database were clustered de novo at 97% sequence similarity. The most abundant
sequence for a given cluster was assigned as the representative sequence for that OTU. Taxon-
omy was assigned with RDP classifier [33] using the Greengenes database [32]. Representative
sequences were aligned to the Greengenes database with PyNAST [34] and a phylogenetic tree
was constructed with FastTree [35]. After the 0.001% OTU threshold was implemented, 2023
OTUs remained and the number of sequences per sample ranged from 25,669 to 161,652. All
samples were rarefied to 25,000 sequences to standardize sampling effort prior to subsequent
analyses.

Metabolite analysis

To examine skin community function, we characterized the metabolite profiles of individual
skin swabs using high performance liquid chromatography/mass spectroscopy (LC/MS) with
quadrupole, time-of-flight (QTOF) mass detection and Agilent MassProfiler software. Our
method focused on small (<600 m/z), non-polar metabolites, which are likely produced by
bacteria as opposed to the host (e.g. anti-microbial peptides). To extract the metabolites, 125uL
of HPLC grade methanol was added to each tube containing a swab, vortexed for 3sec and left
for 10min. Methanolic extracts were evaporated to dryness in vacuo. Crude, recovered material
was reconstituted in 50pL of 30% LC/MS grade acetonitrile and 70% LC/MS grade water. The
tube was then vortexed for 3sec and left for 5min.

A 6530 Accurate-Mass qTOF mass spectrometer coupled to a 1290 Infinity UHPLC pump
(Agilent Technologies, Santa Clara, CA) was used for sample analysis. Each sample was run in
triplicate with blank runs between samples. Five uL of sample was injected into the HPLC
equipped with an EclipsePlusC18 column (2.1 x 100 mm) that was held at 50C. Compounds
were eluted at a flow rate of 0.3 mL/min with mobile phases of water with 0.1% formic acid (A)

PLOS ONE | DOI:10.1371/journal.pone.0139848 October 7, 2015 4/18



@’PLOS ‘ ONE

Structure and Function of Bullfrogs’ Microbiome

and acetonitrile with 0.1% formic acid (B). Mobile phase A decreased from 95% to 5% in
4.5min, after which the mobile phase composition returned to the initial conditions and held
until 5min. A 1.5min post-run (95% A) ensured the column was flushed and equilibrated for
the next injection. After separation, compounds were jonized for mass spectrometric detection
by negative ion ESI at -3000V. Agilent MassProfiler software was used to compare the samples
to a blank. Compounds found in the blank were subtracted from the bullfrog samples.

The initial metabolite dataset contained 18,603 distinct compounds. To focus on the most
dominant metabolites and reduce the high dimensionality of the dataset for analysis, several fil-
tering steps were performed. As a first filter, a metabolite was included if it appeared in all
three replicates of a sample and was present on at least five of the 180 samples across all sam-
ples and time points. In addition, as our antibiotic treatment was effective at significantly
decreasing bacterial diversity at day 0, we used that as a set point for the metabolite analysis,
and focused on the metabolites that were absent on all three replicates of antibiotic-treated
frogs immediately following antibiotic treatment (day 0). These filtering steps resulted in a
final day 7 dataset that consisted of 176 metabolites.

Bd infection analysis

To quantify Bd infection, we used a quantitative, real-time PCR (qPCR) assay developed by
Boyle et al. [36]. Each run included a series of five dilution standards ranging in concentration
by an order of magnitude from 0.1 to 1000 zoospore equivalents, as well as a negative control.
Bd strain JEL310 was used to create the standards, which were run in triplicate. Samples were
initially run in singlicate; however, positive samples were rerun 1-2 more times to confirm the
results and more accurately estimate infection intensity. Samples with <0.1 zoospore estimates
were considered negative for the presence of Bd because accuracy outside the range of the stan-
dards is unknown, and low intensities are especially susceptible to indeterminate results [37].
To confirm that inhibition was not affecting amplification, an internal positive control (Tag-
man Exogenous Internal Positive Control reagents, Applied Biosystems, Foster City, CA, USA)
[38] was added to one of the three triplicate reactions for several randomly selected samples.

Statistics

We examined the effects of the microbiota manipulations and Bd treatments on Bd infection
intensity, microbial community structure (beta and alpha diversity, J. lividum abundance), and
function (frog growth, metabolite profiles). Using individual-based models, we tested for rela-
tionships between microbial community structure and Bd infection intensity, microbial com-
munity structure and frog growth, Bd infection intensity and frog growth, and microbial
community structure and function. Below are the specific statistical methods we used to
address each of these relationships.

Bd infection was characterized by prevalence (proportion of individuals infected) and inten-
sity (number of Bd zoospore equivalents). Treatment effects on Bd infection intensity at day 7
were analyzed with a generalized linear model (GLM) using a normal distribution. Bd infection
intensity at day 7 was log transformed to obtain a normal distribution. Transformation of Bd
infection intensity at day 42 did not result in a normal distribution; therefore, treatment effects
on Bd infection intensity at day 42 were analyzed with a Wilcoxon nonparametric ANOVA.

To examine treatment effects on frog growth, proportional growth between the beginning
(Day 0) and end (Day 42) of the experiment was calculated and used as the response variable
in a mixed model ANOVA with frog as a random effect. Day 0 was used as a baseline in this
analysis because there was no difference in mass among the six treatment groups at the start of
the experiment (ANOVA: df =5, F = 0.797, P = 0.557). Contrasts were used to compare growth
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between unmanipulated and antibiotic- or J. lividum-treated frogs in different Bd environ-
ments. To determine if individuals’ Bd infection intensity predicted frog growth at the end of
the experiment, linear regression was used to investigate proportional growth at Day 42 in
response to day 7 log-transformed Bd infection intensity.

Differences in microbial community structure (beta diversity of OTUs) across treatments
were examined statistically by PERMANOVA on the relative abundance- and phylogenetic-
based weighted UniFrac distance matrices. Differences in microbial community function
(metabolite profiles) were also analyzed by PERMANOVA on the incidence-based Sorensen
dissimilarity matrix generated from day 7 metabolite profiles. Pair-wise tests between treat-
ments were performed on the matrices. For both structure and function matrices, non-metric
multidimensional scaling (NMDS) was used to visualize differences among individual frogs.
Primer6 v. 6.1.15 and Permanova+ v. 1.0.5 [39] were used for these analyses. To test for a rela-
tionship between individuals’ microbial community structure prior to Bd exposure (day 0) and
Bd infection intensity one week following exposure (day 7), a Mantel test was performed using
the day 0 weighted UniFrac distance matrix and the day 7 Bd infection intensity Euclidean dis-
tance matrix. To test for a relationship between individuals’ microbial community structure
and function at day 7, one week following Bd exposure, a Mantel test was performed using the
day 7 weighted UniFrac distance matrix and the day 7 metabolite Sorensen matrix.

To test for treatment effects (microbiota manipulation, Bd exposure, and their interaction)
on alpha diversity (OTU richness and phylogenetic diversity) one week after exposure to Bd,
generalized linear models using a normal error distribution were used. Pair-wise contrasts were
conducted for each analysis. To determine if individuals’ alpha diversity was correlated with
Bd infection intensity or frog growth at the end of the experiment, linear regression was used
to evaluate Bd infection intensity at day 7 or proportional growth at day 42 in response to day
7 OTU richness or phylogenetic diversity. The alpha diversity metrics of OTU richness and
phylogenetic diversity were computed on rarefied data with MacQIIME.

The relative abundance of J. lividum OTUs was compared across bacterial treatments using
a nonparametric Wilcoxon ANOVA followed by Steel-Dwass multiple comparisons. This was
done using the Illumina dataset, with the relative abundances combined for two J. lividum
OTUs that had >99.6% sequence similarity to the isolate used in the experiment.

To identify OTUs driving differences in microbial communities over time and across treat-
ments, the relative abundances of each OTU were compared with Kruskal-Wallis tests with
Bonferroni corrected p-values. Lastly, to test for a relationship between OTU relative abun-
dance and Bd infection intensity or growth, linear regression was used.

Ethics Statement

All procedures were approved by Virginia Tech’s Institutional Animal Care and Use Commit-
tee (Protocol 08-042-BIOL). All frogs were euthanized in 0.1% buffered MS-222, which is a
humane form of euthanasia for amphibians to minimize animal suffering.

Results
Efficacy of microbiota treatments

The two weeks of antibiotics effectively reduced bacterial diversity relative to the unmanipu-
lated controls, both in terms of OTU richness (AB mean+SE = 303+8, U mean+SE = 425+20;
ANOVA, F = 31.76, P<0.01) and phylogenetic diversity (AB mean+SE = 28+0.6, U mean
+SE = 33+1; ANOVA, F=16.93, P<0.01).

Initial field swabs indicated J. lividum was present on 55% (28 of 51) of bullfrogs in the field,
with a mean relative abundance of 0.02% (SE = 0.005). However, our J. lividum treatment still
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did increase J. lividum relative abundance at day 0 (Wilcoxon X* = 36.6, P<0.01); frogs inocu-
lated with J. lividum had a higher mean relative abundance of J. lividum (2.7+0.8%) than unma-
nipulated (0.03+£0.02%) or antibiotic-treated (0.04+0.01%) individuals (Steel-Dwass—JL-U: Z
=-4.90, P<0.01; JL-AB: Z = 4.93, P<0.01).

Bd infection intensity

Bd-exposed frogs had significantly higher infection intensity at day 7 than unexposed frogs
(Fig 2a; Mean+/-SE zoospore equivalents, Bd: 82.6+/-16, NoBd: 8.9+/-3.6; Bd exposure: X* =
37.64, P<0.001), demonstrating successful laboratory infection with Bd. However, manipulat-
ing the microbiota did not affect Bd infection intensity, and there was no interaction between
Bd exposure and microbiota manipulation on Bd infection intensity at day 7 (Fig 2a; Micro-
biota manipulation: X? =1.48, P = 0.5; Microbiota manipulation*Bd exposure: X% =0.57,
P=0.8).

Frog Growth

All frogs survived and gained weight over time, but those exposed to Bd tended to grow less
over the course of the experiment than those not exposed to Bd (Fig 2b; F = 3.63, P = 0.06).
Microbiota manipulation treatment did not affect growth (F = 2.15, P = 0.1), and there was no
interaction between microbiota manipulation and Bd (F = 0.09, P = 0.9). However, when
exposed to Bd, antibiotic-treated frogs grew significantly less than frogs with their microbiota
unmanipulated (Fig 2b; AB,Bd-U,Bd: t = -1.98, P = 0.05). Without exposure to Bd, there was
no difference in growth between unmanipulated and antibiotic-treated frogs (AB,NoBd-U,
NoBd: t = -1.05, P = 0.3). Augmentation with J. lividum did not significantly affect growth
either with (JL,Bd-U,Bd: t = -1.14, P = 0.26) or without exposure to Bd (JL,NoBd-U,NoBd:
t=0.13, P = 0.89). There was a significant relationship between individual frogs’ Bd infection
intensity at day 7 and their growth at day 42 (F = 8.27, P = 0.006, R* = 0.12), such that frogs
with higher infection tended to grow less (Fig 2c).

Microbial Community Structure—Beta diversity

Bringing bullfrogs into the laboratory changed their microbial communities (U,NoBd frogs
only, initial-day0: t = 2.57, P = 0.002), but the communities were relatively stable between days
0 and 7 (U,NoBd frogs only, day0-day7: t = 1.21, P = 0.15). Despite the laboratory housing
effect, microbiota manipulation resulted in differences in microbial community structure at
day 0, immediately following microbiota manipulation and prior to Bd exposure (PERMA-
NOVA: Pseudo-F = 15.21, P<0.001). Antibiotic treatment (AB-U: t = 4.30, P<0.001) and addi-
tion of J. lividum (JL-U: t = 1.62, P = 0.01) altered the normal microbial community. Different
microbial community structures (weighted UniFrac) at day 0 were significantly associated with
variation in Bd infection intensity at day 7 (Bd-exposed frogs only, Mantel r statistic = 0.15,

P =0.03).

Exposure to Bd significantly affected microbial community structure one week post-expo-
sure (day 7; PERMANOVA: Pseudo-F = 3.34, P = 0.008). Interestingly, there was an interaction
between microbiota manipulation and Bd exposure treatments, such that J. lividum and antibi-
otic treatment significantly altered the normal microbiota only when individuals were also
exposed to Bd (Fig 3a and 3b; Table 1; Bd exposed: Pseudo-F = 9.66, P<0.001; Not Bd exposed:
Pseudo-F = 1.58, P = 0.06). To determine if particular OTUs were driving these differences in
community structure among Bd exposed individuals, we compared relative abundances of
each OTU across microbiota manipulation treatments and identified 37 OTUs that differed
significantly across microbiota manipulation treatments at day 7, including Janthinobacterium
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manipulation only with Bd exposure.

doi:10.1371/journal.pone.0139848.9003

OTUs (Table 2; sequence data in S1 Text). Among these 37 OTUs, a Comamonadaceae OTU
(Table 2; OTU ID: denovo138967) exhibited the highest overall relative abundance, and was
highest in the unmanipulated treatment (20.7% mean relative abundance +/- 3.2% SE),
medium in the J. lividum treatment (5.9% mean relative abundance +/- 2.0% SE), and very low
in the antibiotic treatment (0.06% mean relative abundance +/- 0.008% SE). Other significantly
different OTUs typically had low mean relative abundance (<0.6%). Additionally, the relative
abundance of the Comamonadaceae OTU on Bd exposed frogs at day 7 was positively

Table 1. Summary of PERMANOVA results comparing microbial community structure (beta diversity of OTUs, UniFrac distance matrices) and
function (Metabolite profiles, Sorensen dissimilarity matrices) across microbiota manipulations of frogs exposed and not exposed to Bd. Visuali-

zations of these comparisons can be seen in Fig 3.

OTUs Metabolites
Bd Treatment Pseudo-F P value Pseudo-F P value
Exposed to Bd 9.66 <0.001 1.72 0.01
Not exposed to Bd 1.58 0.06 1.16 0.3
doi:10.1371/journal.pone.0139848.1001
PLOS ONE | DOI:10.1371/journal.pone.0139848 October 7, 2015 9/18
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Table 2. List of 37 OTUs that differed significantly in relative abundance among microbiota manipulation treatments (antibiotics, augmented with
J. lividum, and unmanipulated) 7 days after exposure to Bd, based on a Kruskal-Wallis test with Bonferroni corrected P values. Taxonomy includes
the phylum and the lowest classification that could be defined for each OTU. Phyla are abbreviated as follows: Act = Actinobacteria, Bac = Bacteroidetes,

Pro = Proteobacteria. OTUs are ranked in order of relative abundance in the unmanipulated treatment. The Comamonadaceae OTU that was positively corre-
lated with frog growth among Bd-exposed frogs is bolded. Representative 16S rRNA gene sequences for these 37 OTUs can be found in S1 Text.

Mean relative abundance (%)

OTU ID Taxonomy Antibiotics J. lividum Unmanipulated Test-Statistic Bonferroni P
denovo138967 Pro: Comamonadaceae 0.06 5.89 20.68 23.29 0.02
denovo7503 Pro: Burkholderiales 0 0.16 0.43 21.47 0.04
denovo15797 Pro: Acinetobacter 0 0.11 0.3 23.05 0.02
denovo101948 Pro: Comamonadaceae 0 0.06 0.17 24.78 0.01
denovo26623 Pro: Comamonadaceae 0 0.04 0.12 23.11 0.02
95469 Pro: Burkholderiales 0 0.02 0.11 23.77 0.01
denovo142751 Pro: Comamonadaceae 0 0.04 0.1 23.23 0.02
denovo172928 Pro: Acinetobacter 0 0.39 0.09 26.79 0
denovo146080 Pro 0 0.03 0.07 22.41 0.03
denovo20210 Pro: Comamonadaceae 0 0.01 0.06 225 0.03
denovo120482 Pro: Comamonadaceae 0 0.01 0.06 22.87 0.02
denovo83658 Pro: Burkholderiales 0 0.01 0.05 21.83 0.04
denovo17986 Pro: Betaproteobacteria 0 0 0.03 21.98 0.03
104023 Pro: Janthinobacterium 0 0.62 0.02 24.36 0.01
denovo155383 Pro: Pseudomonas 0 0 0.02 22.26 0.03
denovo165786 Pro: Burkholderiales 0 0.32 0.01 23.93 0.01
denovo60162 Pro: Janthinobacterium 0 0.16 0.01 24.54 0.01
denovo136414 Pro: Moraxellaceae 0 0.02 0.01 22.31 0.03
denovo73976 Pro: Comamonadaceae 0 0 0.01 21.9 0.04
4425629 Pro: Oxalobacteraceae 0 0.2 0.01 22.89 0.02
denovo76188 Pro: Betaproteobacteria 0 0.03 0 22.81 0.02
denovo2839 Pro: Janthinobacterium 0 0.1 0 24.33 0.01
denovo140152 Pro: Burkholderiales 0 0.03 0 22.93 0.02
denovo34254 Pro: Burkholderiales 0 0.03 0 22.69 0.02
4393701 Pro: Janthinobacterium 0 0.05 0 23.78 0.01
denovo117711 Pro: Betaproteobacteria 0 0.07 0 26.05 0
2279387 Pro: Janthinobacterium 0 0.02 0 25.19 0.01
denovo101210 Pro: Betaproteobacteria 0 0.01 0 25.11 0.01
denovo106079 Pro: Burkholderiales 0 0.01 0 225 0.03
denovo143492 Act: Actinomycetales 0.08 0 0 25.03 0.01
denovo134685 Pro: Burkholderiales 0 0.02 0 26.11 0
denovo95632 Pro 0.08 0 0 25.78 0.01
denovo47581 Bac: Chryseobacterium 0.02 0 0 21.69 0.04
denovo76057 Pro: Pseudomonadaceae 0 0.02 0 23.89 0.01
denovo43925 Pro: Comamonadaceae 0.06 0 0 22.13 0.03
denovo145740 Pro: Xanthomonadaceae 0.05 0 0 23.88 0.01
denovo163457 Bac: Chryseobacterium 0.01 0 0 23.94 0.01

doi:10.1371/journal.pone.0139848.t002

correlated with day 42 growth, but not Bd infection intensity (growth: F = 5.79, P = 0.02, R* =
0.17; Bd infection intensity: F = 0.21, P = 0.6, R* = 0.007). Among frogs not exposed to Bd,
however, relative abundance of the Comamonadaceae OTU was not associated with frog
growth (F = 0.016, P = 0.9, R* = 0.0008).
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Microbial Community Function—Metabolite Profiles

Similar to the effects of Bd on microbial community structure, the metabolite profiles of Bd
exposed frogs were significantly different than the profiles of unexposed frogs at day 7 (PER-
MANOVA: Pseudo-F = 2.78, P<0.01). Also consistent with the community structure data,
there was an interaction between microbiota manipulation and Bd exposure treatments, such
that microbiota manipulation affected metabolite profiles only on individuals also exposed to
Bd (Fig 3c and 3d; Table 1; Bd exposure: Pseudo-F = 1.72, P = 0.01; No Bd exposure: Pseudo-
F =1.16, P = 0.3). Furthermore, day 7 microbial community structure correlated with day 7
metabolite profiles (Mantel r statistic = 0.15, P = 0.02).

Microbial Community Structure—Alpha Diversity

One week after exposure to Bd (day 7), OTU richness was significantly affected by microbiota
manipulation, and by an interaction between microbiota manipulation and Bd exposure; how-
ever, overall exposure to Bd did not significantly affect OTU richness (Fig 4a; GLM—Micro-
biota manipulation: X* = 18.52, df = 2, P<0.01; Bd exposure: X* = 2.76, df = 1, P = 0.1;
Microbiota manipulation*Bd exposure: X* = 6.33, df = 2, P = 0.04). Frogs treated with antibiot-
ics continued to harbor fewer OTUs than unmanipulated frogs (X? =18.25, P<0.01). Interest-
ingly, J. lividum-treated frogs that were exposed to Bd had greater OTU richness than those
not exposed to Bd (Fig 4a; X* = 7.65, P<0.01). However, within the unmanipulated or antibi-
otic treatments, there was no effect of Bd on OTU richness (U,Bd-U,NoBd: X*> = 0.69, P = 0.4;
AB,Bd-AB,NoBd: X* = 0.62, P = 0.4). Phylogenetic diversity at day 7 was significantly affected
by microbiota manipulation, but not Bd treatment or their interaction (Fig 4b; GLM—Micro-
biota manipulation: X* = 18.5, P<0.01; Bd exposure: X* = 1.23, P = 0.3; Microbiota manipula-
tion* Bd exposure: X> = 4.02, P = 0.1). Frogs treated with antibiotics had lower phylogenetic
diversity than unmanipulated frogs (X* = 18.29, P<0.01), and J. lividum-treated frogs that
were exposed to Bd had greater phylogenetic diversity than those not exposed to Bd (Fig 4b; X*
=4.18,P =0.04).

OTU richness and phylogenetic diversity at day 7 were, in turn, positively correlated with
growth of Bd exposed frogs (Fig 5a and 5¢; OTU richness: F = 8.11, P<0.01; Phylogenetic
diversity: F = 6.38, P = 0.02), but there was no correlation between diversity and growth of
unexposed frogs (Fig 5b and 5d; OTU richness: F = 0.59, P = 0.45; Phylogenetic diversity:

F =0.44, P = 0.52). Diversity of bacteria prior to Bd exposure on day 0, however, did not predict
growth (day 42) or Bd infection intensity (day 7) regardless of Bd exposure (all tests P>0.05).

Microbial Community Structure—J. lividum relative abundance

Atday 7, J. lividum-treated frogs exposed to Bd had higher levels of J. lividum than unexposed
frogs (Fig 4c; Wilcoxon: X =30.5, df = 5, P<0.01; Steel-Dwass—JL,Bd-JL,NoBd: Z = -3.37,

P =0.01), while Bd exposure did not significantly affect J. lividum abundance within the antibi-
otic or unmanipulated treatments (Steel-Dwass—AB,Bd-AB,NoBd: Z = -0.82, P = 0.96; U,Bd-
U,NoBd: Z = 0.59, P = 0.99). Providing further support for an interaction between Bd and J.
lividum, within the Bd exposed group, J. lividum-treated individuals had significantly higher
relative abundance of J. lividum than individuals with an unmanipulated microbiota (Steel-
Dwass—]JL,Bd-U,Bd: Z = -3.76, P<0.01); however, without exposure to Bd, J. lividum relative
abundance did not differ between J. lividum and control treatments (Steel-Dwass—JL,NoBd-U,
NoBd: Z = -2.63, P = 0.09).
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Fig 4. Effects of Bd exposure (white bars = No exposure to Bd; grey bars = Exposure to Bd) and
bacterial treatment (normal, antibiotics, and augmented with J. lividum) on OTU richness (a),
phylogenetic diversity (b), and relative abundance of the probiotic J. lividum (c) on bullfrog skin one
week following exposure to Bd (day 7). Error bars represent standard error. * represent significant
differences among treatments.

doi:10.1371/journal.pone.0139848.g004
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doi:10.1371/journal.pone.0139848.g005

Discussion

We have experimentally demonstrated that Bd is likely a selective force on amphibian skin bac-
terial community structure and function. There were differences in community structure and
function between unmanipulated, antibiotic-treated, and J. lividum-treated frogs only when
individuals were exposed to Bd. Without the pressure of the pathogen, there were no significant
differences in microbial community structure or function among microbiota manipulation
treatments. These differences in microbial community structure and function may explain
reduced growth of antibiotic-treated frogs only when they were exposed to Bd. Jani and Briggs
[40] also recently demonstrated that Bd can alter the composition of the skin microbiome of
Rana sierrae in both field and laboratory settings. However, Becker et al. [41] found that Bd
exposure did not affect the skin microbiome of Atelopus zeteki. In our study, we found that Bd
can affect the structure and function of bullfrogs’ skin microbiome, but also that the micro-
biome can affect Bd infection. As noted by Jani and Briggs [40], these responses (“Bd-induced
disturbance” and “bacteria-induced resistance”) are not mutually exclusive.

We found that microbial community structure prior to Bd exposure was correlated with Bd
infection intensity one week post Bd exposure. One possible explanation for this is that bacte-
rial symbiont communities can limit infection, but that the extent of that defense is likely
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dependent on community structure, and subsequent function (metabolite production).
Another recent study found similar associations with skin microbial communities in a species
that, unlike bullfrogs, is highly susceptible to Bd; Atelopus zeteki survival following exposure to
Bd was correlated with the initial composition of the skin bacterial communities [41]. This
relationship between host-associated microbiota and disease outcomes has been observed in
other systems as well (e.g. [42-44]).

The correlation between initial microbial community structure and Bd infection intensity
could also be explained by factors that drive microbial community structure and are also
important in response to Bd. For example, other aspects of the immune system, such as antimi-
crobial peptides, [45-47] or host genetics [48,49] may be the underlying mechanism of this
association. Nonetheless, knowing whether a disease-limiting microbial community structure
exists can inform efforts to manipulate the microbiome to increase host defenses. For instance,
root exudates of plants can be used to modify the rhizosphere microbiome to promote disease
suppression [50], and in humans, entire fecal microbiota transplants can eliminate recurrent
Clostridium difficile infections [51].

We identified a direct link between community structure and function, and both were
altered by pathogen exposure. Therefore, according to our conceptual model (Fig 1), we
hypothesize that one or more key bacteria have a role in driving these patterns, an observation
that has also been made in aquatic microbial communities, where certain metabolic functions
are mediated by individual phylotypes, as opposed to being related to community diversity
[52]. Within Bd exposed frogs, we identified 37 OTUs that differed significantly in mean rela-
tive abundance across microbiota manipulation treatments. One of these OTUs, in the family
Comamonadaceae, may be a key member in these communities, as its relative abundance at
day 7 was significantly correlated with growth of Bd exposed frogs. We think selection for this
OTU is occurring as a response to Bd exposure because: (1) frog growth was associated with
the post-Bd exposure relative abundance of this OTU, but not with the relative abundance
prior to Bd exposure, and (2) this relationship existed only among Bd exposed frogs. Members
of the Comamonadaceae family are abundant on bullfrogs and other amphibians, and some
cultured isolates from this family can inhibit Bd growth in vitro [12,13,53]. It is therefore plau-
sible that this bacterial group may play a key role in limiting Bd infection for amphibian hosts.
Because we did not isolate the OTUs or metabolites characterized in these profiles and test
them for inhibitory capabilities against Bd directly, the differences in structure and function
observed is merely suggestive of selection on the function of the microbial communities in
response to Bd. Additional tests of Bd inhibition by specific OTU and metabolite profiles
would fully test this hypothesis.

Communities with high diversity are often considered more resistant to invasion than com-
munities with low diversity, although there is some debate about this relationship [54,55]. In
diverse microbial systems, including wheat rhizospheres, locust guts, and soil microcosms, spe-
cies-rich microbial communities are more resistant to pathogen invasion than species-poor
microbial communities [56-58]. In our study, there was no correlation between alpha diversity
per se (OTU richness and phylogenetic diversity) and Bd infection intensity. However, among
Bd exposed frogs, diversity per se was positively associated with host growth. This suggests that
more diverse microbial communities may not always limit pathogen growth directly, but may
still reduce host morbidity, and potentially mortality, following pathogen exposure.

In our experiment, microbial community structure appeared to respond to pathogen expo-
sure in a context-specific manner. For instance, within the J. lividum treatment, Bd exposed
frogs had higher OTU richness, phylogenetic diversity, and J. lividum relative abundance than
non-exposed frogs. This suggests an interaction between Bd and J. lividum, such that high J.
lividum abundance and overall diversity is maintained by pathogen exposure. Jani and Briggs
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[40] also found that a Janthinobacterium OTU was more abundant on frogs experimentally
infected with Bd than on uninfected frogs. Interestingly, Bd metabolites can enhance the
growth of J. lividum in vitro [59]. The maintenance of J. lividum in the skin bacterial commu-
nity and its effectiveness against Bd may, in fact, be facilitated by Bd.

We hypothesized that a microbiota augmented with the anti-Bd bacterium J. lividum would
decrease susceptibility of bullfrogs to Bd by decreasing infection intensity. However, there were
no differences in Bd infection intensity among J. lividum-treated frogs and frogs with an unma-
nipulated microbiota that were exposed to Bd. This result was also observed in A. zeteki, where
there were no differences in Bd loads between Bd only and Bd plus J. lividum treatments [60].
In addition, we thought that a reduced microbiota might increase susceptibility of bullfrogs to
Bd. While antibiotic-treated frogs did not have significantly higher Bd infection intensities,
they grew less than frogs with unmanipulated microbiota following Bd exposure. At the indi-
vidual level, the day 0 microbial community structure of bullfrogs predicted Bd infection inten-
sity at day 7, which then predicted growth at day 42. Thus, the normal microbiota of bullfrogs
is important for disease outcome, and potentially host fitness. Results of other amphibian stud-
ies also suggest that the skin microbiota plays a role in host response to Bd infection [15,61].
Therefore, factors that contribute to microbial community assembly and maintenance on
amphibian skin, including host factors [62], habitat [63], diet [64], and the available microbial
species pool [12,65], may ultimately influence disease dynamics.

Taken together, we found that microbial community structure influenced disease-limiting
function in amphibians. Studies such as this, that experimentally manipulate complex host-
associated microbial communities and potential selective forces, are valuable for understanding
structure-function patterns and regulating mechanisms in diverse systems [8].

Supporting Information

S1 Text. Representative 16S rRNA gene sequences for 37 OTUs that differed significantly
in relative abundance among microbiota manipulation treatments (antibiotics, augmented
with J. lividum, and unmanipulated) 7 days after exposure to Bd. The representative
sequence was defined as the sequence that was most abundant in the OTU cluster.

(TXT)
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