
Active control of sound radiation from a fluid-loaded rectangular 
uniform plate 

Yi Gu and Chris R. Fuller 

Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 
Blacksburg, Virginia 24061-0238 

(Received 2 October 1991; revised 22 April 1992; accepted 4 August 1992 ) 

Active control of sound radiation from a simply supported rectangular fluid-loaded plate is 
analytically studied. The plate is assumed to be excited by a point force at subsonic frequencies. 
The solution to the plate motion is based on the admissible functions for an in vacuo 
homogeneous plate, which is also the basis for Fourier decomposition of the fluid loading 
[B. E. Sandman, J. Acoust. Soc. Am. 61, 1502-1510 (1977) ]. Feed-forward control is carried 
out by using point forces applied to the plate. The amplitudes of the control forces are 
determined by the optimal solution of a quadratic cost function that integrates the far-field 
radiated acoustic pressure over a hemisphere in the radiation half-space. The results show that 
for subsonic disturbances, a high global reduction in radiated pressure is possible. For on- 
resonant excitations, a reasonable sound reduction can be achieved with up to two properly 
located active control forces, and for off-resonant excitations, up to four control forces may be 
necessary. The results thus indicate that the active structural acoustic control approach will 
provide large attenuations in radiated sound when edge mode coupling induced by heavy fluid 
loading is present. The number and location of the control forces are determined so as to 
suppress the efficiently radiating modes. The far-field directivity pattern, the plate velocity 
autospectrum in the two-dimensional wave number domain, and the near-field pressure 
distribution are studied. 

PACS numbers: 43.40.Vn, 43.40.Dx, 43.40.Rj 

INTRODUCTION 

There are many cases of practical interest to the indus- 
try and marine engineering in which the control of sound 
radiation from fluid-loaded plates is important. Much re- 
search has been done on the plate vibration response, the 
modal coupling effects due to the fluid loading, the radiation 
efficiency, etc. of fluid-loaded plates (Davies, 1977; Sand- 
man, 1977; Lomas and Hayek, 1977; Fahy, 1985; Junger and 
Feit, 1986). All of the previous work is important in terms of 
understanding the behavior of sound radiation and dynamic 
structural response of fluid-loaded plates. On the other 
hand, active structural acoustic control (ASAC) has been 
applied recently to many structures such as plates (Fuller, 
1988; Fuller et al., 1990a, 1991 ) and cylinders (Fuller and 
Jones, 1987; Fuller et al., 1990b) with light fluid loading 
(i.e., no radiation coupling) as well as to an infinite fluid- 
loaded plate with discontinuities (Gu and Fuller, 1991, 
1992). 

The present study is focused on ASAC applied to a sim- 
ply supported rectangular plate located in an infinite baffle 
with heavy fluid loading on one side, as shown in Fig. 1. The 
disturbance is a point force operating at a steady single fre- 
quency while control is achieved by point forces applied to 
the plate. The control objective is to minimize the total radi- 
ated power that is a quadratic function of the control force 
amplitudes. The study focuses on the behavior of the near- 
and far-field sound radiation as well as the wave-number 

distribution of the uncontrolled and controlled plate. The 
investigation is novel because it introduces for the first time 
the influence of edge mode coupling due to the heavy fluid 
loading into the ASAC technique. It was not known or un- 

derstood prior to this work how the modal coupling will 
affect control performance. 

I. ANALYSIS 

A. Plate motion analysis 

In thin plate theory, the governing' equation for the 
transverse deflection of the plate is 

•2 w 
D•74w -+- pph • = - q(x,y,t) -po(x,y,t) ( 1 ) o• t 2 , 

where D -- Eh 3/12 ( 1 -- v 2) is the flexural rigidity of the 
plate, with v denoting the Poisson ratio, E is the plate mate- 
rial modulus of elasticity, h is the thickness, pp is the mass 
density, w(x,y,t) is the displacement of point (x,y) at time t, 
q(x,y,t) is the directly applied external force, which in this 
case includes the point disturbance force and the control 
forces, and Po (x,y,t) is the fluid loading pressure. Combining 
the wave equation, the Euler equation, and the boundary 
conditions on the plate and off the plate (Sandman, 1977), 
the modal amplitudes of the plate vibration can be solved 
from a complex nondiagonal matrix equation that reveals 
the coupled fluid-loading effects. The solution of Eq. (1) 
yields the fluid-loaded plate response w(x,y,t) and the corre- 
sponding pressure field p(x,y,z,t). The detailed procedure 
was described by previous researchers (Davies, 1971; Sand- 
man, 1977; Lomas and Hayek, 1977), and the results are 
summarized here. The steady-state acoustic pressure is 
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water (z > O) 

.•• T J---F. J rigid baffle • 

in vacuo (z < o) 

FIG. 1. System arrangement of a simply supported fluid-loaded plate. 

p(x,y,z) 12 pfCf /_•_) 3 ik = (io) 
pvcv 2•r 

X E n• Wrn n sin m•xl m=l =l a 

- ikR 

• sin n•Yl • dx 1 dYl, ( 2 ) 
b R 

where p• and c• are the fluid density and the sound speed, 
respectively, cv is the flexural wave speed, a and b are the 
plate dimension in the x and y direction, 

R = • (X -- Xl ) 2 + (y __ Y l ) 2 + •, • is the nondimensional 
excitation frequency, and k is the acoustic wave number. 
Here, W• are the modal coe•cients that can be solved from 
the coupled matrix equation of 

r• --Mr•)W• =ar•, (3) 
m=l n=l 

P rsmn where K rs• is the plate stiffness matrix, (R v 
ß a•f+ p + •wm rs• ) is the fluid radiation resistance and combined 

mass matrix, and ars are the modal components of the forc- 
ing function q (x,y,t), respectively. The detailed definitions 
of these terms are given by Sandman (1977). To solve Eq. 
(3), the authors used a truncation of modes of m = 6, n = 6 
for numerical estimation, since the difference is within 1% 
compared to that achieved by using a truncation of m = 10, 
n=10. 

For estimating the radiation pressure, the far-field pres- 
sure can be evaluated with the Rayleigh-Ritz method 
(Sandman, 1977) as given by 

6Da• 3 • 
•far(R,0,•) • •R•ph3 • • WmnTmn(O,•), (4) m=l n=l 

in which 

[1 - t - [ 1 - - 
• , 

- ] [ - 
(5) 

where K• = ka sin 0 cos $ and Ky = kb sin 0 sin $ are the 
definitions of the far-field radiation position, and 0 and $ are 
defined in Fig. 2. 

FIG. 2. Spatial coordinate definition. 

B. Sound radiation 

The total far-field radiated pressure due to the distur- 
bance input and control forces is 

Pfar (R,0,•b) = Pfar (R,0,•b) + Pfar ( R,O,•b ) 

• E Biqi-•- E AjPj 
i=1 j=l 

= (B]. r(q]. + (A ]. r(p]., (6) 

in which the total far-field pressure Pier is the sum ofp•r due 
to N• disturbance forces and P•r due to N½ control forces, 
while (q) is the disturbance force amplitude vector, (p) is 
the control force amplitude vector, (B) is the distribution 
function for the disturbance, and (A) is the distribution 
function for the control force, respectively. Note that both 
(A} and (B} are functions of •Vmn , which are the modal 
amplitudes of the solution to Eq. ( 1 ). Combining Eq. (4) 
and Eq. (6) results in the following equations' 

6a4pfco2 o• o• •rrn n 
AJ = Ir--••ph 5 E n• Tmn ( O'q• ) (7) m=l =1 pj 

and 

6a4pfco2 oo oo Win,, 
Bi = 7T-••R• • E n • Tmn ( O,• ), (8) m=l =1 qi 

where A• and Bi are the jth element and the ith element of 
vectors {A} and {B}, respectively, and p• and qi are the jth 
element and the ith element of the control force vector 
and the disturbance forcing vector {q}, respectively. 

C. Optimal control 

The objective of the optimal control is to minimize the 
far-field sound radiation over a hemisphere above the plate 
in the fluid half-space. The cost function based on the far- 
field acoustic power is expressed as (Fuller, 1988) 

q• = •T IP;ar I = as - P;ar I = sin 0 dO &b, (9) dO 

which can be written in matrix form as 

(I) = (p ) r [ A ].JR}* + .[ q ) r [ B ](p)* + .[p ) r [ B ]n.[q), 

+ .[q}r[Cl.[q}*, (10) 
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where superscript "T" denotes transposition, "*" denotes 
conjugation, and "H" denotes transposition and conjuga- 
tion. Matrices [A ], [B ], and [ C] are the results of substitut- 
ing the vector sum of Eq. (6) into Eq. (9) and can be ex- 
pressed as follows: 

•02•r f•r/2 [,4 ]•VcX•Vc = [{A){A)H]sin OdOdqb, (11) 
d0 

•02w fw/2 [B ]•v•X•Vc = [{B){A)n]sin OdOdqb, (12) 
•/o 

and 

•02•r f•r/2 [C]ssXS s = [{B){B)n]sin OdOdqb. (13) 
Jo 

In order to minimize the acoustic power expressed in Eq. 
(9), the cost function is differentiated with respect to the 
control force amplitude {p) and set to zero, as outlined by 
Nelson et al. (1987) and Lester and Fuller (1990). As the 
optimal solution for the minimization of the cost function 
defined in Eq. (9), the control force amplitude is 

{p) = -- [A ]--I[s IT{q). (14) 
Equation (14) relates the control force amplitude (p) with 
the disturbance amplitude (q). The relationship implies 
that, given the disturbance, the active feedforward control 
can be implemented by proper amplitude and phase adjust- 
ments of the control forces through Eq. (14) to minimize the 
sound radiation in the far field. Here, [A ] is the distribution 
matrix of control forces and [B] is the distribution matrix 
relating the coupling between the control forces and the dis- 
turbance. 

II. RESULTS AND DISCUSSION 

The numerical evaluation is based on an aluminum rec- 

tangular plate of which the material properties and dimen- 
sions are listed in Table I. The center-point-driven response 
of the plate depicted in Fig. 3 illustrates the plate resonances 
with or without heavy fluid loading. For the problem consid- 
ered here, the excitation frequencies are only those that do- 
minantly excite the low-order modes of the plate and are well 
below the coincidence frequency, fc=c•(m•,/D) 1/2 
= 23 966 Hz for the given plate, where c s is the sound veloc- 
ity in the sea water and m e the plate density per area. The 
disturbance force amplitude is taken as 10 N for all the cases 
calculated in the following examples. 

The presence of fluid loading lowers the resonant fre- 
quencies of the plate response but does not significantly 
change the structural mode shapes (Fahy, 1985). The natu- 

TABLE I. Material properties of an aluminum rectangular plate and fluid 
medium. 

Phase 

speed Density Thickness Size 
System (m/s) (kg/m 3 ) (m) (m) 

Aluminum plate 5432 2700 0.009525 0.5588X0.8636 
Seawater 1500 1026 ...... 

o (1,1) . 1 1 fluid-loaded in vacuo I ,!(,) ........ 
LI ,x I 

_ ' ''71 

'[ -4 

• -5 
0 50 1 O0 150 200 250 300 350 400 450 500 550 

Excitation frequency- f (Hz) 

FIG. 3. Frequency response of a rectangular plate. 

ral frequencies of the first several modes were estimated nu- 
merically from the plate displacement response of Fig. 3 and 
compared to those results calculated with the approximate 
expression provided by Fahy (1985). The far-field pressure 
was calculated using Eq. (6) in which the optimal control 
forces were based on Eq. (14) for the controlled case. With a 
harmonic point force applied at the center of the plate as the 
disturbance, the plate is excited at on- and off-resonant fre- 
quencies. The near-field pressure distributions illustrate 
how the control forces modify the sound radiation sources 
and change the nature of structural acoustic coupling near 
the surface of the plate. 

The two-dimensional wave-number domain (k,,,ky) 
analysis demonstrates the change within the supersonic 

2 •<co/c) The wave-number wave-number region (x/k 2 + k y x ø 

spectrum of the plate velocity is given by the Fourier trans- 
form of the plate velocity as follows: 

-• - i(tCxX + top,) g( k,,,ky ) - v(x,y)e dx dy 

rn=l n=l 

mrr [ ( -- 1 )me- ikxa X k2 __ (mrr)/a) 2 x 

(nrr/b) [ ( -- 1 ) "e - ikyb X 2 (nrr/b)2 k.v-- 
(15) 

where v(x,y) = kow(x,y) and w(x,y) is the solution of Eq. 
( 1 ). The velocity autospectrum is used to evaluate the wave- 
number domain energy and its expression is 

It should be noted that the velocity wave-number autospec- 
trum is also a function of the excitation frequency. 
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A. Resonant frequencies 

For a simply supported rectangular plate in vacuo, the 
natural frequencies are estimated as 

O)rn n = + , (17) 

where rn•, =p•,h. For a rectangular plate submerged in 
heavy fluid, it is assumed that the natural frequencies fall 
below their in vacuo values in proportion to the square root 
of the ratio of the loaded to unloaded modal masses (Fahy, 
1985 ). According to Fahy, the analysis of reactive loading 
on structural waves having wave numbers much greater 
than an acoustic wave number has shown that the effective 

added mass per unit area is t3f/kmn, where ,of is the fluid 
density and kmn is the primary effective wave-number com- 
ponent of the vibration. The approximate expression of the 
fluid-loaded structure natural frequency is (Fahy, 1985) 

CO •n n •,• CO m n [1 'if- ( p f / m p k m n ) ] -1/2, (18) 
where O.)rn n is the corresponding in vacuo natural frequency 
defined by Eq. (17) and kmn = • ( rn•r/a ) : + ( n•r/b ) 2. 

Hence, there are two approximate methods to deter- 
mine fluid-loaded plate natural frequencies: one is to observe 
the peak values from the frequency response magnitudes 
such as from Fig. 3,, since the nonlinearity of Eq. ( 3 ) makes 
an explicit solution of eigenvalues unavailable. The other is 
to use Eq. (18). In the following discussion, the results ob- 
tained with these two different methods are compared and 
found to be very consistent in most cases. 

Figure 3 illustrates the center-point displacement mag- 
nitude of the plate for center-point excitation. The results are 
very similar to those previously estimated by Sandman 
(1977). Because of the location of the drive point, it is seen 
that even numbered modes can not be excited, so that only 
odd-odd modes appear on the response diagram. The 
in vacuo resonances are well predicted by Eq. (17). The nat- 
ural frequencies of the fluid-loaded case evaluated by two 
different approaches also converge well (referring to Tables 
II and III). The relative errors between the results are rea- 

sonable (8.0% for co,3, 9.1% for co3,, 4.6% for co•5, and 
4.3% for co•3 ) except for the first mode (30% for co• ). The 
comparison of these results suggests that in general Eq. (18) 
is a fairly good estimate for fluid-loaded plate lower-order 
modal natural frequencies when kmn >• k and the discrepancy 
in estimating the first mode is noted. 

B. Fundamental mode excitation 

When the disturbance frequency coincides with the first 
mode (1,1) resonance, a relatively high sound radiation 
arises. Because of the location and the frequency of the exci- 

TABLE II. Natural frequencies (Hz) of the fluid-loaded plate estimated 
with Fahy's approximate formula (Fahy, 1985). 

Mode (rn,n) 1 3 5 

1 40.41 173.8 489.7 
3 388.9 555.2 905.7 

TABLE III. Natural frequencies (Hz) of the fluid-loaded plate estimated 
from numerical frequency response evaluation. 

Mode (m,n) 1 3 5 

1 30.94 160.9 467.8 
3 356.4 532.2 ... 

tation, the fundamental mode dominates the plate vibration 
and the sound radiation. Since the plate is vibrating in a 
single efficiently radiating monopole mode, the task is to try 
to suppress this mode by secondary forces in order to reduce 
the sound radiation. With one control force located at 

(x•,y•) = (a/4,b/4), the controlled plate is seen to radiate 
like a dipole (referring to Fig. 4) and the sound radiation is 
attenuated in the far field by around 65 to 85 dB. From the 
near-field pressure distribution shown in Fig. 5 (a) and (b) it 
is illustrated that the overall pressure level decreases about 
44 dB near the surface of the plate. This indicates that the 
suppression of the ( 1,1 ) mode leads to a global sound reduc- 
tion. With two control forces located at (x 1,Y 1 ) -- ( a/4,b/4 ) 
and (x2,Y2) = ( 3a/4,3b/4), a further 25 to 30 dB of far-field 
pressure attenuation is achieved as observed in Fig. 4. Com- 
paring Fig. 5 (b) and Fig. 5 ( c ) reveals that not only a further 
15 to 20 dB reduction of pressure level is achieved in the near 
field, but the pattern of the radiation source is also changed 
from a two-lobe type to a three-lobe type. This implies that 
not only the dominant (1,1) mode is suppressed, but the 
relations between the residual modes are re-adjusted so as to 
make their overall contribution to sound radiation less effi- 

cient. This phenomenon is known as "modal restructuring". 
When four control forces are located at one-sixth of the 

lengths away from 'the plate edges, even further sound at- 
tenuation is observed in the far field (the residual pressure 
directivity is localized around the origin in Fig. 4). The force 
amplitudes and locations are listed in Table IV. 

The near-field sound pressure magnitude distribution 
shown in Fig. 5 (d) indicates that further modal restructur- 

Without control One-force control Two-force control Four-force control 

O= 0 ø 

-90 I , , ; ,'• •"• ', • , I 90 
150 1 O0 50 0 50 1 O0 150 

Sound Pressure Level (rib re 20 # Pa) 

FIG. 4. Far-field directivity pattern: on-resonance excitation, f-- 31 Hz, 
•-0. 
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(a) Disturbance only 

ß 

•o) With one control force 

o • •'r "• 
(c) With two control forces (d) With four control forces 

FIG. 5. Near-field sound pressure level at z = 0.01 m, f= 31 Hz. 

ing is performed since the overall pressure level does not 
seem to be lower than that shown in Fig. 5 (c), but different 
higher-order source patterns are observed in these two con- 
trolled cases. Comparing the controlled residual pressure 
distributions shown in Fig. 5 (b), (c), and (d), to the uncon- 

TABLE IV. Disturbance and control force amplitudes and locations, aM 
plate length in the x direction, b--plate length in the y direction. 

Excitation 

frequency f= 31 (Hz) 
Amplitude (N) Location (x,y) 

Disturbance force 10 q- 0X i (0.5a, 0.5b) 
One control force -- 19.465 -- 8.526 X 10-5X i (0.25a, 0.25b) 
Two control forces -- 9.7325 -- 4.198 X 10-5Xi (0.25a, 0.25b) 

-- 9.7325 -- 4.328 X 10-5Xi (0.75a, 0.75b) 
Four control forces -- 9.5444-- 3.1253X 10-2Xi (0.1667a, 0.1667b) 

-- 9.5444-- 3.1273X 10-2Xi (0.8333a, 0.8333b) 
-- 9.5448 q- 3.1131X 10-2Xi (0.1667a, 0.8333b) 
-- 9.5448 q- 3.1149X 10-2Xi (0.1667a, 0.8333b) 

Disturbance force 

One control force 

Two control forces 

Four control forces 

f-- 434 (Hz) 
10 q- 0X i (0.5a, 0.5b) 
5.7973 -- 2.8288X 10-3Xi (0.25a, 0.25b) 

12.981 -- 1.3601X 10-2Xi (0.5a, 0.25b) 
12.981 -- 1.3601X 10-2Xi (0.5a, 0.75b) 
4.7092 -- 3.514 X 10-3Xi (0.3333a, 0.3333b) 
4.7092 -- 3.514 X 10-3Xi (0.6667a, 0.6667b) 
4.7092 -- 3.514 X 10-3Xi (0.6667a, 0.3333b) 
4.7092 -- 3.514 X 10-3Xi (0.3333a, 0.6667b) 

trolled pressure distribution shown in Fig. 5 (a), it is noted 
that the modal suppression, i.e., the suppression of the effi- 
cient ( 1,1 ) mode, is the dominant cause of the sound reduc- 
tion. This observation is extendible to those cases when only 
one efficient mode is dominantly excited to radiate sound. 

To better explain the sound power reduction, the plate 
velocity autospectrum in a two-dimensional wave-number 
domain is calculated and the results are shown in Fig. 6. 
(The reference value in Figs. 6 and 9 is arbitrarily taken as 
6.36 X 10 -9 m2/s 2 so that the autospectrum represents rela- 
tive values. ) It is observed that the supersonic region of the 
wave-number spectrum, illustrated by the area within the 

2 <k, decreases with the in- small circle where x/k •- + k y 
crease of number of control forces. This clearly explains that 
the active control reduces the sound radiation energy 
through reducing the radiated power in the supersonic re- 
gion. In addition, it is observed that the reduction in sound 
radiation is not necessarily accompanied by reduction in 
plate vibration. For example, the area outside the supersonic 
region remains almost the same level in Fig. 6(c) and (d), 
while the supersonic region is reduced. The corresponding 
far-field pressures demonstrate a fall in magnitude (refer to 
Fig. 4). The results illustrate the important observation that 
only the wave-number spectrum within the supersonic re- 
gion is relevant to the far-field sound radiation and hence 
reduction. On the other hand, the modal suppression is also 
confirmed by comparing Fig. 6 (b), (c), and (d) with Fig. 
6(a), respectively, the velocity autospectrum is reduced 
within and outside the supersonic region. This indicates that 
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(a) Disturbance only 
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(b) With one control force 

ky 

0.4 

0.2 

-0.0 

-0.2 

-0.4 

-0.6 k x 
-0.6 -0.4-0.2-0.0 0.2 0.4 0.6 

(c) With two control forces 

ky 

0.4 

0.2 

-0.0 

-0.2 

-O.4 

-0.6 k x 
-0.6 -0.4-0.2-0.0 0.2 0.4 0.6 

(d) With four control forces 

FIG. 6. Wave-number domain plate velocity autospectrum, f-- 31 Hz. 
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there is not only a reduction in sound radiation level, but a 
reduction in plate vibration magnitude level as well. 

It is also interesting to examine the optimal control force 
values that are given in Table IV. For the on-resonant case of 
f= 31 Hz, it is apparent that the control forces are always 
nearly purely real and 180 ø out-of-phase with the distur- 
bance force. For a single control force, a much larger magni- 
tude of optimal control force than disturbance is required, 
although this will depend upon location of the forces. When 
multiple control forces are used, the control force magni- 
tudes are of the same order as the disturbance and largely 
independent of location. The results indicate that for the on- 
resonant case, although multiple control inputs do not sig- 
nificantly increase the sound reduction, they have the advan- 
tage of keeping the control force magnitudes lower. This 
effect, however, needs further investigation before definite 
conclusions can be made. 

C. Off-resonant excitation 

The off-resonant example is illustrated with the plate 
centrally driven at frequency f= 434 Hz. From Fig. 3 it can 
be seen that this frequency is higher than the resonance of 
mode (3,1) so that more modes are involved in the plate 
response. The results show that, although the sound radi- 
ation level due to the disturbance is relatively lower than that 
of the on-resonant excitation example, reasonable sound re- 
duction is much harder to obtain. In this case, the (3,1), 
(1,5), and (3,3) modes combine to contribute to the plate 

vibration and sound radiation. It is thus difficult to position 
one control force to couple into all three modes, in such a 
way as to reduce their respective sound radition properly to 
achieve a global sound reduction. This is illustrated by the 
results of Fig. 7 where one control force only reduces the far- 
field radiation by around 2 to 4 dB. When two or more con- 
trol forces are employed, reasonable sound reduction is 
achieved. Figure 7 shows that about 15 to 30 dB of attenu- 
ation is obtained in the far field with two control forces and 

Without control One-force control Two-force control Four-force control 

•)= 0 ø 

.90 ø 90 ø 
150 100 50 0 50 100 150 

Sound Pressure Level (dB re 20 • Pa) 

FIG. 7. Far-field directivity pattern: off-resonant excitation, f--434 Hz, 
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(a) Disturbance only (b) With one control force 

(c) With two control forces (d) With four control forces 

FIG. 8. Near-field sound pressure level at z -- 0.01 m,f= 434 Hz. 

the directivity patterns suggest that the radiation source is of 
multipole type. Four control forces provide a further sound 
reduction in a global extent of about 10 to 20 dB although in 
the region from 0 = -- 25 ø to 0 = 25 ø the radiation increases 
by about 10 to 15 dB over the two-control-force case. 

An examination of near-field pressure distribution from 
Fig. 8 (a) to (d) implies that the off-resonant plate source is 
far more complicated than the on-resonant case and a far- 
field sound reduction does not always accompany a signifi- 
cant overall pressure level reduction in the near field due to 
the "modal restructuring" phenomena discussed previously. 
The near-field pressure distribution in Fig. 8 (a) is the result 
of radiation of the (3,1 ), ( 1,5 ) and (3,3) modes. When one 
control force is applied, there is no apparent reduction of the 
pressure level, as shown in Fig. 8(b), but there is some 
change in the shapes of the source pattern. Meanwhile it is 
seen in Fig. 9 (b) that there is some minor radiation reduc- 
tion, as illustrated by a decrease of the velocity autospectrum 
in the upper right area in the supersonic circle. This indicates 
that ASAC provides some attenuation, although the result is 
not as good as the on-resonant case when one control force is 
used. Another interesting phenomenon is that by observing 
the subsonic regions in Fig. 9 (a) and (b), respectively, it is 
shown that the subsonic region in Fig. 9 (b) has a higher level 
than that in Fig. 9(a), which indicates that the plate vibra- 
tion level may be higher, when control is applied (this can 
only be confirmed when the velocity autospectrum is plotted 
in the full range of -- oo < kx < oo, - oo < ky < oo ). This 
indicates two points: ( 1 ) ASAC does not always reduce the 

structural response; (2) modal restructuring sometimes can 
play an important role in reducing the sound radiation, par- 
ticularly for off-resonant cases. When two control forces are 
applied, it is observed that the overall near-field pressure 
level is only slight reduced [Fig. 8(c) ], but a much better 
sound reduction is observed in the far field (Fig. 7) as well as 
in the supersonic region of velocity autospectrum [Fig. 
9(c)]. From the near-field pressure distribution shown in 
Fig. 8(c) it can be concluded that the increase of source 
order leads to the sound reduction. Finally when four con- 
trol forces are applied on the plate, the overall near-field 
pressure level is reduced by about 10 dB and the source order 
is further modified [Fig. 8 (d) ]. A further reduction of ve- 
locity autospectrum in supersonic is also observed in Fig. 
9(d) corresponding to the far-field pressure reduction in 
Fig. 7. In this four-force-control case, it can thus be conclud- 
ed that modal suppression as well as modal restructuring is 
the mechanism of modifying the panel source and reducing 
the sound radiation. The drop in plate response for the case 
of Fig. 8(d) is due to the number of control forces being of 
the order of significant plate modes in terms of sound radi- 
ation. 

Table IV provides the optimal control force magnitudes 
for the off-resonant case off= 434 Hz. The control forces 
are again nearly purely real but are now in phase with the 
disturbance in contrast to the on-resonant case. When one 

control force is used, the force magnitude is of the order of 
the disturbance, but corresponding sound power reduction 
is small. Using two control forces leads to better sound re- 
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(d) With four control forces 

FIG. 9. Wave-number domain plate velocity autospectrum, f= 434 Hz. 
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duction (see Fig. 7) and the control magnitudes are also of 
the order of the disturbance. Four control forces leads to 

high sound power reduction and the control magnitudes are 
now reduced, in line with the on-resonant case. 

III. CONCLUDING REMARKS 

Active control of sound radiation from a fluid-loaded 

rectangular plate excited by a centrally located point force at 
subsonic frequencies has been analytically studied. The con- 
trol forces are chosen so as to minimize the total acoustic 

power radiated into a hemisphere in the fluid-loaded half- 
space. The reduction in sound radiation has been shown to 
depend on the excitation frequency that determines which 
modes will contribute dominantly to the total radiation. In 
general, off-resonant excitations are more difficult to control 
than on-resonant ones since more modes are involved. In the 

cases studied in this paper, up to two control forces are need- 
ed to control radiation for on-resonant excitation and up to 
four control forces for off-resonant excitation. 

A two-dimensional wave-number domain analysis of 
the plate response illustrates how the wave-number compo- 
nents in the supersonic region decrease when active control 
is applied. This approach reveals the cause of sound reduc- 
tion from the point of view of plate vibration radiating com- 
ponents. It is demonstrated that for plates with heavy fluid 
loading, sound radiation control occurs by two major mech- 
anisms viz. ( 1 ) modal suppression in which dominantly ra- 
diating modes are controlled in magnitude and (2) modal 

restructuring in which the plate averaged response is little 
changed but has a lower radiation efficiency due to a more 
complex residual shape. The sound reduction achieved in 
on-resonant case is mainly through modal suppression, and 
the sound reduction achieved in off-resonant case is achieved 

primarily through modal restructuring. 
This study adds new understanding to research in con- 

trolling the sound radiation from finite fluid-loaded plates. 
The results indicate that the ASAC feedforward control ap- 
proach will provide high sound attenuation for vibrating 
structures submerged in heavy fluids including edge radi- 
ation coupling phenomena. Future work will study the effect 
of localized structural discontinuities as well as experimen- 
tally confirm the above conclusions. 
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