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CHAPTER  4

STRENGTH AND STIFFNESS PREDICTIONS OF

COMPOSITE SLABS BY FINITE ELEMENT MODEL

4.1. General

Successful use of the finite element method in many studies involving complex

structures or interactions among structural members has been one of the motivations for applying

the method in this study.  To compare with simple mechanical models discussed in the previous

chapter, finite element models may offer more accurate analyses because of the ability to model

the material and interaction of each part of the system in more detail.  Further, the response

history of virtually any part of the model can be obtained.  In this method, element and material

model types play an important role for the entire analysis.  Selection of element and material

model types for the analysis is based on the structural system and any specific need or emphasis

of the study.

In this study, because the main concern is behavior of one-way composite slabs with a

large ratio of length to the cross sectional dimensions in a typical width of the slab, then the

choice of beam and spring elements for a finite element model is the most effective one.  The

model is similar to the one proposed by An (1993) with modifications such as the inclusion of

end anchorages and a concrete fracture model for concrete in tension.  With this concrete fracture

model, the mesh sensitivity problem in finite element analysis involving concrete (brittle)

material can be removed (Fracture 1992; Karihaloo 1995).  Descending curves of end anchorages

and shear bond interaction are also included.  ABAQUS is used to conduct the analyses.
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4.2. Review of Finite Element Method for Composite Slabs

Due to the complex nature of interactions within composite slab systems, finite element

modeling has become a powerful tool in predicting the slab strength and stiffness.  The power

rests in the ability to locally model each different part or interaction of the system and

systematically integrate contributions of those parts or interactions to represent the whole system.

For composite slabs, various models have been proposed.  The selection of model types depends

on the physical system of the slabs and specific need of the study.

Daniels et al. (1989, 1990), Ren and Crisinel (1992) and Ren et al. (1993) used plane-

beam elements to model one-way composite slabs.  Special ten-degree of freedom beam elements

that can take into account nonlinear slip behavior between the steel deck and concrete slab was

used.  For this purpose, a special finite element code was developed.

By using ABAQUS, a commercial general-purpose finite element code, two-node plane

Timoshenko beam elements were used by An (1993) for one-way slab systems.  Two series of

beam elements were generated, one for the concrete slab and the other for the steel deck.  Shear

bond interaction was modeled by using series of spring elements and additional set of equations

to the stiffness equations to prescribe imposed relations among the degree of freedoms of the

spring, concrete beam and steel deck beam nodes.

Three dimensional brick elements were used for a two-way composite slab system.

Some difficulties concerning numerical convergence was reported in the 3D model (An 1993).

The problem was thought to be due to mesh sensitivity in relation to the tension-stiffening model

of the concrete material.  Because of this problem, the concrete material model was replaced by

two different J2  (metal) plasticity models, each of which is representing the tension and

compression parts of the concrete separately.

Other 3D models using brick elements were proposed by Veljkovic (1993, 1994, 1996)

and Oloffsson et al. (1994).  In their study, DIANA, a general-purpose finite element code was

used.  It was reported that some trials for concrete tension stiffening functions were needed in

some cases before a stable numerical result can be obtained.
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4.3. Finite Element Model

4.3.1. Structure Model

A simply supported beam configuration is chosen as a typical model of the system.  In

the case with continuous deck over an interior support, a rotational spring element is added to the

continuous end.  The stiffness of this spring represents an elastic rotational stiffness of the

adjacent span at the common support.  This type of configuration (simply supported beam) is

based on observations during experimental tests.  Because of the absence of negative

reinforcement over interior supports, negative cracks along these supports were developed at a

relatively low load level.  Therefore, the assumption that the concrete slab is discontinuous over

the interior support will not have any significant effect to the analysis.

Two series of Euler-Bernoulli beam elements with 12 in. typical length were generated.

One series is for the concrete slab and the other is for the steel deck.  Only a single typical

longitudinal slice of the slab is considered in the model.  Vertical nodal displacements of these

two series of beam elements are forced to be the same.  This is based on previous study (An and

Cederwall 1994) which concluded that the effect of vertical separation between the two parts is

minor.

End anchorages and shear bond interactions at the interface of the concrete and steel

deck are modeled by using horizontal spring elements.  In the case of the shear bond interaction,

the spring elements are placed along the slab.  One end of each spring element is attached to the

steel deck beam element and the other to the concrete beam element.  Both are at the steel deck

centroid elevation.  This means that the attachment of the spring elements to the concrete beam

element is not at the centroid of concrete beam elements.  In ABAQUS, this can be assigned by

using the EQUATION option in which the magnitude of a certain degree of freedom can be made

equal to scalar multiplications of any other degree of freedoms.  This compatibility condition is

shown schematically in Fig. 4-1 and can be expressed as:

y  =  y  sin   y  c d dθ θ≅ (4-1)

y  =  u u + y  s 1
d

1
c

d− θ (4-2)
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Figure 4-1.  Schematic model of steel deck to concrete relative slip

where yc = horizontal projection of yd , yd = depth of deck c.g. from concrete c.g., θ = rotation

of cross sectional plane, ys= horizontal slip of steel deck relative to the concrete, u1
d = nodal

displacement of steel deck beam element in d.o.f.-1 direction (horizontal), u1
c = nodal

displacement of concrete beam in d.o.f.-1 direction (horizontal).

For end anchorages, spring elements are placed at the supports to produce resistance to

horizontal movements of the concrete slab and steel deck relative to the support.  The spring is

attached to the bottom surface of the deck.  A schematic diagram of the model is shown in Fig. 4-

2.

               

Figure 4-2.  Typical finite element model
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4.3.2. Material Model

Incremental plastic flow theory is applied for the steel and concrete materials whereas

nonlinear elasticity theory is applied for end anchorages and shear bond interaction.  J2 -

plasticity (von Mises) with associative flow rule is used for the steel material of the steel deck.

In this case, the yield surface is independent of the hydrostatic component of the stress vector as

shown in Fig. 4-3.  Although top flange buckling at the maximum positive moment region was

observed in some specimens, no buckling is assumed in the model.

Figure 4-3.  Von Mises yield surface in the principal stress space

The concrete material on the other hand, is pressure dependent.  The general shape of

failure surface for concrete material is illustrated in Fig. 4-4.  ABAQUS uses the Drucker-Prager

failure surface, a two-parameter model, for concrete material (Drucker and Prager 1952).  This

model is valid only for problems with low confining pressures (Hibbitt 1987).  For a high

confining pressure, many finer models of concrete failure surfaces are available, such as the

Ottosen four parameter model (Ottosen 1977), Hsieh-Ting-Chen four parameter model (Hsieh et

al. 1982), Willam-Warnke five parameter model (Chen 1982), etc.  The Drucker-Prager model,

however, is sufficient for one-way composite slabs.  Moreover, because of the conical shape of

the failure surface, singularity is only at the apex.  Multi-vector return stress based on Koiter’s

(1953) approach is a common method to handle such singularity.  Other methods such as a

multiple single vector return (Widjaja 1997b) may improve the accuracy of the former method.

Recent developments in the application of fracture mechanics to concrete, in particular,
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concrete in tension, enabled a fracture mechanics model to be used for the tensile portion of the

concrete.  This model can avoid the mesh sensitivity effect of a tension-stiffening model.

Further, in this study, an associative flow and isotropic work hardening rule is assumed.

Figure 4-4.  Concrete failure surface in principal stress space

The uniaxial stress-strain relation for concrete in compression is modeled using the

Saenz equation up to the peak value (Saenz 1964).  This model has been successfully used by

Razaqpur and Nofal (1990) to model a composite bridge.  The expression of Saenz equation is

given by:
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where σ and ε are the stress and the corresponding strain of the concrete respectively, Eo and

Esc are the initial and the secant modulus of elasticity, respectively, εcu = concrete strain at the

peak compressive stress.  The descending branch of concrete-stress-strain relation is omitted in

this beam model configuration to preserve stability of the system when compressive strength of

concrete is approached.  Figure 4-5 shows the concrete stress strain relation.
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Figure 4-5.  Concrete uniaxial compressive stress-strain relation

The backward Euler integration scheme is used in the plastic analysis.  The scheme

assumes that the return of the stress state to the yield surface is normal to the final yield surface

(note that the yield surface keeps changing to follow the work hardening rule when plastic flow

occurs).

Finally, a nonlinear elastic model is used to model end anchorages (welds or shear studs)

and shear bond interaction.  The force-displacement relation of these end anchorages and shear

bond interactions were obtained from elemental tests as presented in Chapter 2.  Typical shear

bond interaction is shown in Fig. 4-6 and typical shear stud to steel deck and puddle weld to steel

deck interactions, respectively, are shown in Figs. 4-7(a) and (b).
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Figure 4-7.  (a) Shear stud to steel deck interaction,
and (b) puddle weld to steel deck interaction

4.4. Method of Analysis

Among the three sources of nonlinearity: material, geometrical and boundary, only the

first two are applicable to composite slab problems in this study.  Both the material and

geometrical nonlinearity were applied in the analyses.  The integration scheme used to trace the

equilibrium path was the arclength method with a cylindrical constraint surface as suggested by

Crisfield (1981).  The cylindrical constraint surface converges much faster than the general

spherical one.  Despite the problem with inconsistency in the physical units used in its constraint

equations (Yang and McGuire 1985; Chen and Blandford 1993), no serious problem related to

this inconsistency was reported.  However, Widjaja (1997a) shows that the method is sensitive to

the selection of physical units used.  A choice of units that make the order of magnitude of each

d.o.f. type (rotation, translational, etc.) comparable may improve the performance of the method.

Other problems were indicated by Carrera (1994), such as no convergence due to a relatively

large load step, very slow or no convergence due to oscillation near the equilibrium path, or no

real root that satisfies the constraint surface.  These later problems can be overcome by avoiding

the use of large step sizes.  Figure 4-8 illustrates the method with a general constraint surface.

(a) (b)
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Figure 4-8.  General arclength method

4.5. Results of Analysis and Discussion

Finite element analyses have been performed to simulate composite slab tests and results

are listed in Table 4-1.  Parameters of each slab specimens are listed in Table 3-1.  Among the

analysis results, load vs. mid-span deflection and load vs. end-slip response histories of slab-4

(studded slab with trapezoidal deck profile), slab-15 (studded slab with re-entrant deck profile)

and slab-21 (welded slab, shored during the construction) are shown in Figs. 4-9, 4-10 and 4-11,

respectively.

Table 4-1. Ultimate slab capacity: finite element vs. test results

SLAB FEM TEST RATIO SLAB FEM TEST RATIO

# TEST/ # TEST/
 psf psf FEM  psf psf FEM
1 627 730 1.16 15 985 1017 1.03
2 617 700 1.13 16 1037 1185 1.14
3 577 600 1.04 17 506 565 1.12
4 543 600 1.10 18 264 368 1.40

5 480 490 1.02 19 537 523 0.97
6 565 590 1.04 20 496 523 1.05
7 293 375 1.28 21 456 467 1.03
8 480 490 1.02 22 441 494 1.12
9 775 900 1.16 23 408 507 1.24

10 790 900 1.14 24 534 621 1.16
11 733 750 1.02 25 534 559 1.05
12 799 870 1.09 26 353 498 1.41
13 409 480 1.17 27 353 455 1.29
14 364 500 1.37

equilibrium path

λ = load proportionality factor

displacement, u

load, F

Fnλ
F1λ

nu

1u

∆L
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Figure 4-9. Slab-4: (a) Load vs. mid-span deflection. (b) Load vs. end-slip
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Figure 4-10. Slab-15: (a) Load vs. mid-span deflection. (b) Load vs. end-slip
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Figure 4-11. Slab-21: (a) Load vs. mid-span deflection. (b) Load vs. end-slip

Figure 4-12 shows graphical comparison of predicted vs. test values of slab strength.  It

can be seen from the figure, the predicted values for studded slabs fall within ±15%  margin.

For non-studded slabs, predicted values tend to be more conservative.  This fact may be caused

by the exclusion of clamping force to the steel deck and friction at steel deck-concrete interface

at the supports.
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4.6. Concluding Remarks

Comparison of the finite element results to those of the tests for a relatively wide range

of parameters demonstrates the ability of the method in predicting composite slab strength and

behavior.  This ability may reduce the number of expensive full-scale experimental tests for

composite slabs.  Further, the stress-strain response history of virtually any point in the system

can be obtained.

In comparison to the iterative method, the nonlinear finite element method offers some

advantages, such as the possibility to obtain stresses and strains at virtually any location of the

slab.  The method, however, requires more advanced user’s knowledge than the iterative method.

Therefore, the iterative method is more suitable for design purposes.


