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Robert F. Lyerly
ABSTRACT

In recent years there has been a proliferation of parallel and heterogeneous architectures. As
chip designers have hit fundamental limits in traditional processor scaling, they have begun
rethinking processor architecture from the ground up. In addition to creating new classes of
processors, chip designers have revisited CPU microarchitecture in order to target different
computing contexts. CPUs have been optimized for low-power smartphones and extended
for high-performance computing in order to achieve better performance and energy efficiency
for heavy computational tasks. Although heterogeneity adds significant complexity to both
hardware and software, recent works have shown tremendous power and performance benefits
obtainable through specialization. It is clear that emerging systems will be increasingly
heterogeneous.

Many of these emerging systems couple together cores of different instruction set architec-
tures (ISA), due to both market forces and the potential performance and power benefits
in optimizing application execution. However, differently from symmetric multiprocessors
or even asymmetric single-ISA multiprocessors, natively compiled applications cannot freely
migrate between heterogeneous-ISA processors. This is due to the fact that applications are
compiled to an instruction set architecture-specific format which is incompatible on other
instruction set architectures. This creates serious limitations, as execution migration is a
fundamental mechanism used by schedulers to reach performance or fairness goals, allows
applications to migrate between heterogeneous-ISA CPUs in order to accelerate parallel
applications or even leverage ISA-heterogeneity for security benefits.

This dissertation describes system software for automatically migrating natively compiled
applications across heterogeneous-ISA processors. This dissertation describes the implemen-
tation and evaluation of a complete software stack on commodity scale heterogeneous-ISA
CPUs, emulating datacenters with heterogeneous-ISA systems or future systems that tightly
integrate heterogeneous-ISA CPUs via point-to-point interconnect. This dissertation de-
scribes a compiler which builds applications for heterogeneous-ISA execution migration. The
compiler generates machine code for every architecture in the system and lays out the appli-
cation’s code and data in a common format. In addition, the compiler generates metadata
used by a state transformation runtime to dynamically transform thread execution state be-
tween ISA-specific formats, allowing application threads to migrate between different ISAs.

The compiler and runtime is evaluated in conjunction with a replicated-kernel operating
system, which provides thread migration and distributed shared virtual memory across
heterogeneous-ISA processors. This redesigned software stack is evaluated on a setup con-
taining and ARM and an x86 processor interconnected via point-to-point interconnect over
PCle. This dissertation shows that sub-millisecond state transformation is achievable. Ad-



ditionally, it shows that for a datacenter-like workload using benchmarks from the NAS
Parallel Benchmark suite, the system can trade some performance for up to a 66% reduction
in energy and up to an 11% reduction in energy-delay product.

This dissertation then describes an exploration into using hardware transactional memory
(HTM) to maximize scheduling flexibility. Because applications can only migrate between
ISAs at program locations with specific properties, there may be a significant delay between
when the scheduler wishes to migrate an application and when the application can respond
to the migration request. In order to reduce this migration response time, this dissertation
describes compiler instrumentation which uses HI'M to allow the scheduler to force applica-
tions to roll back to the most recently encountered program location suitable for migration.
This is evaluated both in terms of overhead and responsiveness to migration requests.

In addition to showing the viability of the infrastructure for optimizing workload placement
in a heterogeneous-ISA datacenter, this dissertation also demonstrates utilizing the infras-
tructure to accelerate multithreaded applications. This dissertation describes a new OpenMP
runtime named libopenpop that is optimized for executing applications in heterogeneous-
ISA systems with distributed shared virtual memory. The runtime utilizes synchronization
primitives that enable scale-out execution across rack-scale systems and new work distri-
bution mechanisms that predict the best partitioning of parallel work across CPUs with
diverse architectural characteristics. libopenpop demonstrates sizable improvements over
a naive OpenMP implementation — a 38x improvement in multi-server barrier latency, a
5.4x improvement in multi-server data reductions and a geometric mean speedup of 4.04x
for scalable applications in an 8-node x86-64 cluster. For a heterogeneous system composed
of a highly-clocked x86 server and a highly-parallel ARM server, libopenpop delivers up
to a 4.7x speedup and a geometric mean speedup of 41% across benchmarks from several
benchmark suites versus the best single-node homogeneous execution.

Finally, this dissertation describes leveraging the compiler and state transformation runtime
to provide enhanced security for applications. Because the compiler provides detailed infor-
mation about the stack layout of applications, it can be leveraged to defend against exploits
such as stack smashing attacks and return-oriented programming attacks. This dissertation
describes Chameleon, a runtime which uses the compiler and state transformation infras-
tructure to continuously re-randomize the stack layout and code of vulnerable applications
to thwart attackers. Chameleon attaches to applications using existing operating system
interfaces and periodically switches the application to new randomized stack layouts and
code by rewriting the stack. Chameleon enhances security with little overhead — it disrupts
a geometric mean 76.32% of code gadgets in benchmark binaries, randomizes stack element
locations with geometric mean 3 potential randomized locations, and has 1.1% overhead
when re-randomizing every 50 milliseconds, making it extremely difficult for attackers to
exploit target applications.

This work is supported in part by ONR under grants N00014-13-1-0317, N00014-16-1-2711, and N00014-18-
1-2022, and NAVSEA /NEEC under grants 3003279297 and N00174-16-C-0018.
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GENERAL AUDIENCE ABSTRACT

Computer processors have experienced unprecedented performance improvements over the
past 50 years. However, due to physical limitations of how processors execute, in recent years
this performance growth has started to slow. In order to continue scaling performance, chip
designers have begun diversifying processor designs to meet different performance and power
consumption targets. Processors specialized for different contexts use various instruction set
architectures (ISAs), the operations made available for use by the hardware. Programs built
for one instruction set architecture are not compatible with others, requiring developers to
build complex applications to manually bridge the gap. This leads to brittle applications and
prevents the system software managing the processors from adapting workloads to match
processor characteristics.

This dissertation presents the Popcorn Linux system software which provides transparent
support for running applications across computers composed of processors of multiple ISAs.
Popcorn Linux provides the ability to migrate applications between these processors without
requiring developers to add any application instrumentation — the system software manages
all the details of building and migrating applications. An evaluation of Popcorn Linux
shows that transparently migrating applications between diverse processors provides power
and performance benefits in a variety of scenarios. Additionally, this dissertation describes
leveraging the Popcorn Linux software infrastructure to harden applications against attackers
seeking to hijack applications for malicious purposes.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been a shift towards increasing parallelism and heterogeneity in
processor design [188, 189]. As traditional uniprocessors have hit the clock speed, power,
instruction-level parallelism and complexity walls, chip designers have been forced to re-
think computer architecture from the ground up. This has led to an explosion in new
architectures such as graphics processing units (GPUs), digital signal processors (DSPs)
and field-programmable gate arrays (FPGAs). Additionally, general-purpose CPUs have
been re-architected in order to meet energy and performance goals for varying form fac-
tors [107, 59, 15, 74, 17, 16]. It is clear that emerging computer systems will be increasingly
heterogeneous in order to achieve better energy efficiency and higher performance.

Recently there has been a tremendous amount of change in CPU microarchitecture in order
to reach different power and performance targets. With the advent of smartphones, CPU
designers have built processors that strike a balance between low power and reasonable
performance [107, 47]. The high-performance computing (HPC) community has embraced
CPU heterogeneity, with several of the top supercomputers in the Top500 list [193] mixing
symmetric chip-multiprocessors (CMP) with general-purpose and OS-capable [149] many-
core accelerators. Additionally, the HPC community has begun to include energy efficiency
as a primary design goal as they realized they could not continue scaling the number of
cores at current power consumption levels [75]. Chip designers have even begun to include
heterogeneous CPU cores together on a single die in order to achieve high performance and
energy efficiency for a variety of workloads [95, 141, 107, 15].

Due to the history of how different CPUs were created and the technology limitations of their
time, many commodity scale CPUs utilize different instruction set architectures (ISA) [157].
The ISA defines the hardware-software interface and provides a fundamental definition of
how software can execute on a given processor. This definition includes how data is encoded
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into binary representations, how memory is arranged for execution and what instructions are
available, among other aspects. The ISA is fixed for a particular CPU and thus the job of a
compiler is to map an application written in a source code language like C onto a processor’s
ISA. ISAs are not interoperable and therefore it is impossible for applications compiled for
one ISA to be run on another ISA with today’s compilers, operating systems and runtimes.

However, because CPUs that target different power and performance goals often use different
ISAs, systems composed of such heterogeneous-ISA CPUs provide an attractive means for
optimizing a variety of workloads. For example, application migration is desirable in such
systems in order to achieve higher performance and improved energy efficiency [155, 123,
204, 197, 127, 27]. Application migration allows the system software to optimize how a
given workload executes in the system to best utilize the available compute resources, e.g.,
placing applications in consideration of architectural characteristics or multiprogrammed
environments. Without application migration across heterogeneous-ISA CPUs, the system
has limited ability to adapt to application or workload characteristics and may miss out
on significant benefits. Thus, it is imperative that new techniques are developed to enable
execution migration across heterogeneous-ISA CPUs as they become increasingly interwoven
into the same systems, i.e., racks, servers or even systems-on-chips.

1.1.1 Heterogeneous Datacenters

The x86 instruction set architecture is the most widely used processor in datacenters to-
day [136, 166, 106]. Recently, however, there has been a push to introduce the ARM ISA
into the server space. Multiple chip vendors including AMD [11], Qualcomm [148], Am-
pere [74] and Cavium [48] are producing ARM processors for datacenters and the cloud.
Additionally, there is increasing vendor support behind the POWER ISA, with IBM form-
ing the OpenPOWER foundation by partnering with companies such as Google, NVIDIA,
Mellanox and others [80]. Interest in alternative processor architectures is driven by in-
creasing availability of ARM and POWER cloud offerings [137, 126, 55, 56] in addition to
traditional x86 services. These new processor architectures promise higher energy propor-
tionality [28], meaning more performance per watt and increased computing power per rack
(i.e., compute density).

Reducing electricity costs has become one of the most important concerns for datacenter
operators today [209]. Datacenter hardware and software designers have proposed many
techniques for improving energy efficiency while maintaining acceptable computational ca-
pacity [192, 209, 204, 198]. There are several software-based approaches that are effective for
conserving energy, including load balancing and consolidation. Load balancing spreads ap-
plications evenly across nodes so that no nodes are over-saturated and each server consumes
a reduced amount of power. Consolidation instead groups tasks on the minimal number
of nodes required so that service-level agreements (e.g., latency requirements) can be met.
The remaining servers are subsequently placed in a low-power state. Both solutions require
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migrating applications between nodes to dynamically adjust the computational capacity of
the datacenter with time-varying workloads. How can datacenter operators leverage these
techniques in datacenters with increasing ISA diversity?

1.1.2 Heterogeneous-ISA CMPs and Tightly-Coupled Systems

Recent works have demonstrated significant advantages for execution migration between
tightly-coupled cores that utilize the same ISA but with heterogeneous microarchitectures [95,
141, 187, 107, 123, 158, 108, 163, 179]. Existing mechanisms for execution migration in sym-
metric multiprocessors (SMP) work without modification for these new processors because all
cores share the same ISA and are interconnected via cache-coherent shared memory. In asym-
metric chip multiprocessors (ACMP), execution migration can be used to accelerate both
serial and parallel portions of applications with higher energy efficiency [158, 108, 163, 179].

More recent works by DeVuyst et al. [70] and Venkat et al. [197, 195] show that there are
further performance and energy benefits obtained by migrating between heterogeneous-ISA
cores versus ACMPs. Applications may exhibit affinities for certain ISAs based on character-
istics of code generated by the compiler, such as register pressure, memory addressing modes,
floating-point and SIMD computation, etc. Additionally, because emerging heterogeneous-
ISA CPUs have vastly different macro- and micro-architectures [74, 159, 97, 59, 100], they
also provide different levels of performance, energy efficiency and parallelism to acceler-
ate applications with diverse execution profiles — tightly coupling such processors together
can provide significant performance benefits [27]. Finally, migrating execution between
heterogeneous-ISA cores can provide a defense against security exploits such as return-
oriented programming attacks [196]. However, past works simulate a cache-coherent shared
memory processor with heterogeneous-ISA cores [70, 196] or couple together overlapping-ISA
CPUs [27]. How are applications built and migrated between fully-diverse heterogeneous-ISA
processors in commodity scale systems?

1.1.3 Challenges

These fundamental changes in processor design have forced developers to rethink how emerg-
ing heterogeneous systems are programmed. Utilizing heterogeneous-ISA CPUs places a
large burden on developers because they can no longer use a shared-memory programming
model [8]. Instead, developers must reason about application structure and memory layout
in order to obtain maximum performance [150, 92, 91]. Because these processors have dis-
tinct ISAs, source code compiled for one processor is not able to be run on another. This
harms programmability because developers must manually partition applications into pieces
and coordinate computation and data movement across architectures. It also hinders sys-
tem adaptability because the system software cannot freely schedule applications to meet
performance or fairness goals [155, 209].
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One solution for heterogeneous-ISA execution is to use a language-level virtual machine,
e.g., a Java virtual machine [128]. When using language VMs, the application is maintained
in an architecture-independent intermediate format which the VM interprets to execute the
application. Because the VM has complete knowledge of the application’s execution, includ-
ing code and data format, it can migrate applications between architectures [83, 84, 88, 54].
However, using these approaches requires applications be rewritten in the interpreted lan-
guage. Many datacenter applications, e.g., Redis [164], are written using natively-compiled
languages such as C and C++ in order to apply aggressive optimizations. Re-writing the
application in an interpreted language is a non-starter due to the loss of control — for ex-
ample, Java applications are required to use garbage collection for memory management.
Additionally, many VM-level techniques for migration rely on language-level mechanisms
(e.g., object serialization [154]), which are demonstrated to have high overheads.

Therefore, as heterogeneity becomes ubiquitous in all computing contexts it becomes in-
creasingly important to develop new techniques for seamless execution migration across
heterogeneous-ISA processors for natively-compiled applications.

1.2 Thesis Contributions

This dissertation presents a full software stack for enabling execution migration across
heterogeneous-ISA architectures. The prototype, named Popcorn Linux, includes an operat-
ing system, compiler and runtime which seamlessly migrates applications between an ARM
and an x86 processor interconnected over a high speed network. This work describes the de-
sign and implementation of the compiler and runtime components of Popcorn Linux, named
the Popcorn compiler toolchain and state transformation runtime. These components are
presented, which build applications and enable migration between heterogeneous-ISA CPUs
using capabilities provided by Popcorn Linux’s OS. In addition to the core infrastructure,
this dissertation describes leveraging Popcorn Linux for accelerating multithreaded applica-
tions and for hardening applications against security exploits. This dissertation makes the
following contributions:

e The design and implementation of the Popcorn compiler toolchain. The toolchain
builds applications suitable for migration by adjusting data and code layout, and by
automatically inserting migration points into the generated machine code. Addition-
ally, the compiler performs offline analysis to provide metadata for dynamic state
transformation. The toolchain builds multi-ISA binaries which the OS uses to recreate
an application’s virtual address space across heterogeneous-ISA CPUs.

e The design and implementation of the state transformation runtime. The state trans-
formation runtime transforms execution state between ISA-specific formats so that
threads of an application can migrate between architectures. It additionally provides
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a mechanism for initiating migration and for bootstrapping execution after the ap-
plication has migrated to the destination architecture. The runtime provides sub-
millisecond transformation latencies for benchmarks from the NAS Parallel Benchmark
(NPB) suite on an x86 and an ARMv8 CPU. Using Popcorn Linux (compiler, runtime,
OS), the dissertation demonstrates a 30% reduction in energy and an 11% reduction
in energy-delay product when load-balancing a multiprogrammed workload on top of

server-class x86-64 and ARMv8 CPUs.

e An exploration of using hardware transactional memory (HTM) to improve scheduler
responsiveness. Because applications cannot migrate at arbitrary locations, extensions
to the Popcorn compiler instrument generated code with transactional execution. This
allows the scheduler to abort speculative execution and roll back to the most recently
encountered migration point, enabling high responsiveness to scheduling requests. This
dissertation shows that using HTM reduces migration response time to 1.9 microsec-
onds but adds a geometric mean 13.45% overhead for benchmarks from NPB.

e The design and implementation of libopenpop, an OpenMP runtime optimized for
running multithreaded applications parallelized using OpenMP across systems running
Popcorn Linux. libopenpop optimizes multithreaded synchronization for distributed
shared virtual memory systems like Popcorn Linux and utilizes new workload distribu-
tion mechanisms to ideally leverage the compute capabilities of heterogeneous CPUs.
Using OpenMP benchmarks from NPB, Rodinia and PARSEC, libopenpop achieves
a geometric mean 4.04x speedup for scalable application on a small homogeneous clus-
ter. For a heterogeneous system composed of an x86-64 server and a high core count
ARMvS server connected via InfiniBand, libopenpop achieves up to a 4.7x speedup
and a 41% geometric mean speedup.

e The design an implementation of Chameleon, a runtime re-randomization framework
for preventing stack smashing and return-oriented programming attacks. Chameleon
leverages the Popcorn compiler infrastructure to continuously randomize the stack
layout and code of target applications, transforming a thread’s execution state to match
the new randomization. Using Chameleon on benchmarks from SPEC CPU 2017 and
NPB, Chameleon disrupts a geometric mean 76.32% of code gadgets, randomizes stack
elements to on average one of three possible locations, and randomizes with an overhead
of 1.1% for a 50 millisecond re-randomization period.

Previous works present compiler and runtime systems for cross-ISA execution migration
in order to perform a design space exploration for heterogeneous-ISA chip multiproces-
sors [70, 196]. These works simulate a heterogeneous-ISA CMP with cache-coherent shared
memory, allowing the authors to demonstrate power and performance benefits of leveraging
multiple ISAs. However, no such CMP exists at the commodity-scale at the time of writing
this dissertation. Many ISAs are proprietary [13, 14] and even for open-license ISAs, their
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cache implementations have compatibility issues due to ISA-specific memory consistency se-
mantics [176, 10]. This dissertation instead proposes system software for cross-ISA execution
migration in systems composed of commodity scale hardware. While some of the Popcorn
compiler and run-time system components have similarities with DeVuyst et al. [70] and
Venkat and Tullsen [197], there are significant differences. In particular, the Popcorn com-
piler and state transformation runtime are co-designed with the Popcorn Linux OS to imple-
ment thread migration and memory consistency across non-cache-coherence heterogeneous-
ISA CPUs. This requires new low-level mechanisms for interacting with the OS, including
insertion of migration points, performing state transformation, initiating thread migration
and bootstrapping execution post-migration. The compiler also differs in that it does not
attempt to create a common stack layout but instead fixes up references to stack elements
at runtime. Additionally, the Popcorn compiler toolchain and state transformation handles
runtime migration for multithreaded applications, which are not explored by previous works
including [197]. A detailed discussion of the differences between the dissertation and [70, 197]
is presented in Chapter 2. Thus, to the best of our knowledge Popcorn Linux (OS, compiler,
runtime) is the first complete software architecture providing the ability to transparently
migrate threads of execution between commodity scale heterogeneous-ISA CPUs at runtime
without any application changes.

Using Popcorn Linux allows developers to more easily target future heterogeneous-ISA CPU
systems. In particular, because Popcorn Linux extends the shared memory abstraction
across non-cache-coherent CPUs, developers can re-use existing parallel programming mod-
els (e.g,. OpenMP [38] or Cilk [37]) and easily gain the benefits of heterogeneity. Existing
multithreaded applications work as-is on Popcorn Linux; developers do not have to rewrite
applications in a new programming model or environment to target new architectures. How-
ever, tuning applications to best take advantage of heterogeneous CPU systems poses a sub-
stantial challenge, as applications (and phases within applications) map differently to each
architecture and cause different amounts of memory consistency communication over the net-
work. 1ibopenpop helps developers overcome these challenges by both minimizing cross-node
synchronization traffic and by automatically distributing parallel work in consideration of
system characteristics. Thus, Popcorn Linux helps developers regain programmability while
simultaneously allowing them to easily benefit from advances in computer architecture.

Finally, the prevalence of security exploits is leading to new ideas on how to thwart attackers.
In particular, security experts have begun devising new methods to prevent attackers from
gaining control over applications or leaking sensitive information. One successful approach
is to use randomization [34, 66, 203] to prevent the attacker from utilizing program structure
to attack vulnerable applications. Because the Popcorn Linux compiler generates rich stack
layout metadata and the state transformation runtime is proven to rewrite thread execution
state with small latencies, this infrastructure can be repurposed into a security context to
implement efficient and robust randomization.
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1.2.1 Popcorn Compiler Toolchain

This dissertation presents the Popcorn compiler toolchain, which builds multi-ISA binaries
suitable for migration across heterogeneous-ISA boundaries. The toolchain natively compiles
applications written in C and C++ for all ISAs in the system using a common frontend
and ISA-specific backends. The compiler automatically inserts migration points into the
source code at function call sites. The compiler runs several analyses over an intermediate
representation of the application to gather live data that must be transformed between ISA-
specific formats. The compiler generates metadata (added as extra sections in the multi-ISA
binary) describing the code and live data locations emitted for each architecture. The linker
aligns global data in a common format (including thread-local storage), and a final post-
processing step optimizes the application for efficient state transformation. The compiler
is built using clang and LLVM [160] for compilation and GNU gold [86] for linking. The
Popcorn compiler builds multi-ISA binaries with minimal changes to the core data layout
mechanisms of the compiler, which allows our implementation to be more easily ported to
new architectures unlike previous works [70, 197].

1.2.2 State Transformation Runtime

This dissertation presents a state transformation runtime for efficiently translating execution
state of threads between ISA-specific formats. The runtime cooperates with the operating
system scheduler to decide at which points to migrate. After the scheduler requests a mi-
gration, the runtime attaches to a thread’s stack and begins state transformation. Using
the metadata generated by the compiler, the state transformation runtime efficiently recon-
structs the thread’s current live function activations in the format expected by the destina-
tion ISA, including transforming a thread’s register state, call frames and pointers to other
stack objects. After reconstructing the stack, the runtime invokes the OS’s thread migration
mechanism and bootstraps on the destination architecture to resume normal execution. This
dissertation also develops a methodology for invoking migration for multi-threaded applica-
tions in a real system. This dissertation describe how threads cooperate with the OS both
before and after migration for seamless migration. It describes how the state transformation
runtime attaches to and transforms an individual thread’s state. Using this setup, this dis-
sertation demonstrates that state transformation can be performed in under a millisecond,
and oftentimes under several hundred microseconds, for real applications from the NAS Par-
allel Benchmarks suite [23]. Additionally, this dissertation presents an evaluation of Popcorn
Linux that demonstrates up to a 66% reduction in energy and up to an 11% reduction in
energy-delay product [119] for a multiprogrammed, datacenter-like workload.



Robert F. Lyerly Chapter 1. Introduction 8

1.2.3 Scale-Out and Heterogeneous OpenMP

This dissertation presents the design of an OpenMP [38] runtime named libopenpop opti-
mized for systems composed of non-cache-coherent CPUs connected via distributed shared
memory. In particular, 1ibopenpop rebuilds many of the core components of OpenMP to
prevent excessive overheads when running across multiple non-cache-coherent CPUs, where
each CPU is designated as its own domain. libopenpop establishes a hierarchy of threads
across CPUs and breaks OpenMP functionality down into local and global components. Us-
ing the hierarchy allows libopenpop to minimize the number of threads synchronizing on
global data and therefore minimizes the amount of data movement required for synchro-
nization. Using this thread hierarchy, libopenpop optimizes synchronization primitives like
barriers, reductions and work distribution mechanisms. On a small cluster, 1ibopenpop
demonstrates a 38x speedup in multi-server barrier latency, a 5.4x speedup in multi-server
reduction latency, and a geometric mean speedup of 4.04x for scalable applications.

In addition to refactoring the OpenMP runtime for scalability across non-cache-coherent
CPUs, libopenpop introduces new parallel work distribution primitives that allow the
OpenMP runtime to adapt parallel execution to best leverage the heterogeneous CPUs com-
prising the system. libopenpop monitors data movement (i.e., page transfers in distributed
shared memory systems) and execution characteristics during parallel execution. Using this
information, 1ibopenpop determines whether to execute parallel computation across multiple
CPUs or distribute work to only a single CPU. In the former case, libopenpop determines
how much work to give each CPU to balance performance and minimize execution time.
In the latter case, libopenpop automatically determines which CPU is best suited for a
given computation. For an x86 machine and ARM machine interconnected via Infiniband,
libopenpop demonstrates up to a 4.7x speedup and a geometric mean speedup of 41% over
the best single-node homogeneous execution.

1.2.4 State Transformation for Runtime Re-randomization

This dissertation presents Chameleon, a runtime re-randomization framework that utilizes
the Popcorn compiler to continuously re-randomize the stack layout and code of applica-
tions. Chameleon is an out-of-band framework, meaning that it executes in an entirely
separate context from the target application and attaches to it via existing operating system
interfaces. Chameleon’s goal is continuously change the application’s state so as to thwart
exploits such as stack smashing attacks [152] and return-oriented programming (ROP) ex-
ploits [177]. Chameleon continuously generates new sets of randomized application code for
target applications. Periodically, Chameleon pauses the target application and atomically
switches it to the newly randomized code, transforming the target application’s execution
state from the previously randomized layout to the newly randomized layout. In this way,
would-be attackers have a diminishing window of time in which to discover how Chameleon
has laid out the application’s state, craft an exploit and launch the attack. Chameleon dis-
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rupts a geometric mean 76.32% of gadgets discovered by a gadget finding tool in benchmark
binaries. Additionally, Chameleon can randomize the locations of stack elements to an av-
erage of 3 different locations per stack element, forcing the attacker guess where buffers are
located with low probability. Finally, Chameleon provides these security benefits with low
overhead — a geometric mean 1.1% overhead when re-randomizing the target application ev-
ery 50 milliseconds. This is significantly better than other dynamic binary instrumentation
(DBI) solutions, which add 14.9% or greater overhead [66, 203, 196].

1.3 Thesis Organization

This dissertation is organized as follows. The dissertation first describes the core Popcorn
compiler infrastructure, including compiler and state transformation runtime. Next, the dis-
sertation describes how the infrastructure is leveraged for accelerating multithreaded applica-
tions. The dissertation finally describes how the infrastructure is leveraged for enhancing the
security of applications. Chapter 2 summarizes related work in each of the aforementioned
areas, including execution migration in heterogeneous-ISA systems, scale-out/heterogeneous
parallel execution and security. Chapter 3 describes Popcorn Linux, the replicated kernel op-
erating system used to provide execution migration across ISA boundaries. It also formalizes
the state of an application and describes the requirements for the compiler and state transfor-
mation runtime. Chapter 4 describes the Popcorn compiler toolchain which is used to analyze
and build applications for cross-ISA migration. Chapter 5 describes the state transforma-
tion runtime and how threads migrate between architectures. Chapter 6 evaluates overheads
associated with the state transformation runtime and energy benefits obtained when using
execution migration in a datacenter context. Chapter 7 describes an exploration into using
HTM to reduce migration response time. Chapter 8 describes 1ibopenpop, including how
it restructures OpenMP execution for cross-node execution. Chapter 9 evaluates scaling out
OpenMP execution on a cluster. Chapter 10 describes how libopenpop makes workload
distribution decisions in heterogeneous CPU systems. Chapter 11 evaluates 1ibopenpop’s
ability to leverage diverse CPU architectures. Chapter 12 describes Chameleon and how it
uses the Popcorn compiler infrastructure to implement continuous re-randomization. Chap-
ter 13 evaluates the security and performance properties of Chameleon. Finally, Chapter 14
concludes and describes future work in each of these areas.



Chapter 2

Related Work

2.1 Compiler and Runtime Support for Heterogeneous
Architectures

Traditionally, developers have programmed heterogeneous architectures using a variety of
programming models and languages. NVIDIA’s CUDA [150] provides a programming lan-
guage for NVIDIA GPUs. Using CUDA, developers partition their application into host
(CPU) and device (GPU) code. Device code is offloaded to the GPU, and users must pro-
vide memory consistency by manually moving data between host and device memory spaces.
More recently, CUDA offers managed shared memory between the host and device, but
provides limited consistency guarantees. Thus, execution is offloaded to devices only at
predefined locations and cannot be adapted in the face of changing workload conditions.
OpenCL [92], OpenMP 4.0 [38] and OpenACC [153] offload computation to different target
processors, but suffer from the same limitations as CUDA. Popcorn Linux provides strong
memory consistency guarantees using distributed shared virtual memory and does not re-
quire applications to be partitioned between devices.

Saha et al. [170] describe an OS mechanism for shared memory between single-ISA hetero-
geneous cores interconnected over PCle. Their programming model allows developers to
open shared memory windows between the interconnected processors. These windows have
a relaxed consistency, requiring developers to insert synchronization points to make memory
writes visible across the PCle bus. However, this programming model does not enable ex-
ecution migration between interconnected processors, but rather uses a similar partitioning
approach to CUDA. Popcorn Linux provides stronger consistency guarantees and flexible
execution migration.

The Message Passing Interface (MPI) [91] provides a portable API for parallel processing
using message passing for communication between processes. Processes execute in sepa-

10



Robert F. Lyerly Chapter 2. Related Work 11

rate address spaces but can share memory by manually sending and receiving data. The
OpenMPT implementation [81] of the MPI standard supports serializing and de-serializing
memory into ISA-specific formats, hiding cross-architecture data representation issues be-
hind the interface. However MPI does not support execution migration at arbitrary points
— developers manually insert data transfers and coordinate execution across processes on
different machines within the application source code. Similarly to the programming mod-
els listed above, this hinders programmability and the flexibility of the system to adapt to
changing workload conditions. PC? [76] uses a modified C/MPI compiler to instrument MPI
applications for execution migration in a cluster and uses checkpointing to transfer state.
However developers must manually annotate checkpointing locations and the compiler only
accepts MPI applications that have well-typed code. Furthermore, the checkpointing system
requires annotating data with descriptors as the data comes into and goes out of scope,
adding significant runtime overhead for metadata collection in addition to checkpointing
costs. Popcorn Linux allows efficient and flexible execution migration between processors
and distributed shared virtual memory.

The Lime programming language [21] and the Liquid Metal runtime [20] together implement
a language system for seamless execution across heterogeneous architectures. Developers
build data-flow applications in a Java-based language. The runtime distributes computa-
tion nodes of the data-flow graph across architectures and uses serialization coupled with
message passing to automatically send data between architectures. The system is limited in
that developers must use a data-flow programming model (they cannot use traditional SMP
semantics) and they must manually annotate properties of data types so that the runtime
can transfer state. The Dandelion compiler [168] and PTask runtime [167] are similar in that
programmers develop data-parallel applications in a high-level language (e.g., C#) which is
decomposed into a data-flow execution model. The runtime then distributes computation
nodes to devices in a cluster, automatically managing communication between the differ-
ent contexts. Like Lime and Liquid Metal, developers must use a restrictive programming
language, and the system is designed solely for data-parallel applications. Popcorn Linux
lets programmers develop applications using a shared memory programming model across
heterogeneous-ISA architectures.

2.2 State Transformation

Various techniques have been developed to translate state between machine-specific formats.
Dubach and Shub [73] and Shub [180] describe a user-space mechanism for single-threaded
processes to migrate themselves between heterogeneous machines. They describe modifica-
tions to executables needed for migration, including multiple code sections, data padding
(using the greatest common denominator of data sizes and alignments), and how to trans-
late data types between architecture-specific formats. However this approach is completely
user-controlled, and furthermore incurs large overheads for state transformation. Work by
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Zayas [208] shows that state transformation can also be applied as pages are migrated be-
tween machines, rather than in bulk at migration time. Theimer and Hayes [191] describe an
alternative translation approach where a program’s execution state is lifted into a machine-
independent format and recompiled to recreate the state on the target machine. All of
these approaches were designed assuming the main bottleneck in process migration was
communication and not state translation. With newer high-bandwidth networking technolo-
gies such as PCle point-to-point connections [183] or Infiniband [18], this is no longer the
case. The Popcorn compiler toolchain and state transformation runtime avoid most state
transformation overheads by construction — applications runs on architectures which use the
same primitive data sizes and alignments. Additionally, the compiler and runtime minimize
overheads through alignment and by only transforming a small portion of application state.

Attardi et al. [19] describe a number of user-space techniques for heterogeneous-ISA execu-
tion migration. They describe running the program in a machine-independent format via
interpretation, re-compiling the application on the fly for a different target ISA, and trans-
lating runtime state between machine-specific formats. The TUI system [181] implements
a combination of these approaches — it lifts the application’s state into an intermediate
format and then lowers it to the target machine’s format. Additionally, TUI implements
migration of I/O descriptors using a custom standard C library and an external remote
server. These approaches incur significant translation overheads, however. As mentioned
previously, Popcorn elides much of this overhead through careful data layout and minimal
runtime transformations. Popcorn Linux also pushes cross-ISA 1/O functionality into the
kernel.

More recently, Ferrari et al. [77] propose a mechanism for state checkpointing and recovery
using introspection. They implement a source-to-source compiler which modifies applications
to periodically save stack data in an architecture-independent format. The compiler also
refactors functions to be able to restore this state after a migration. This technique is very
invasive in terms of source code modifications, and incurs significant overhead for periodic
state saving procedures which record information for all functions on the stack. The Popcorn
compiler toolchain makes minimal transformation to code, other than inserting migration
points.

Makris and Bazzi [135] present a mechanism for stack transformation to be used for in-place
software updates. A compiler performs source-to-source transformation so that threads
recursively save their stack (including all variables within call frames) before migrating. The
threads then reconstruct their stack with the new version of the application. Their approach
attempts to solve a harder problem of reconstructing state for a different version of the
application, and thus requires user-driven help. The state transformation runtime focuses
on transforming state between machine-specific versions of the same application, rather than
a modified application for the same ISA.
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2.3 Heterogeneous-ISA Execution Migration

von Bank et al. [200] formalize a model of procedural applications executing in a system.
They identify the various components of an application, including program data and machine
code, that must be equivalent in order for execution to be migrated between architectures at
points of equivalence. They define these locations as program points where a transformation
exists between different representations of an application, i.e., compilations for different
targets. The Popcorn compiler toolchain builds upon their definition of points of equivalence.

Many works use language-level virtual machines to perform heterogeneous-ISA migration.
Heterogeneous Emerald [184] implements a TUI-like heterogeneous migration system for the
Emerald language. PadMig [83] and JnJVM [84] migrate threads of execution between Java
virtual machines (JVM), using Java’s reflection capabilities to serialize/de-serialize objects
between architecture-specific formats. COMET [88] and CloneCloud [54] also use the JVM
to transparently offload portions of applications from mobile devices to the cloud over the
network. COMET additionally uses a DSM system to ship data between the device and
the cloud. Neither approach implements full execution migration, but only offloads a por-
tion of the application to the cloud. The drawbacks with all language-level approaches is
that applications must be implemented using the specified language. A significant amount
of legacy code is therefore not suitable for migration in these systems. For languages like
Java, applications may experience severe performance degradation versus being written in
a compiled language like C. Finally, language introspection mechanisms have high latency,
meaning translation costs may dominate execution migration overheads. Virtual machines
like QEMU [31] also enable heterogeneous-ISA migration, but experience unacceptably high
performance losses. Popcorn Linux provides cross-ISA execution migration for natively com-
piled applications, allowing native-execution speeds and low migration overheads.

More recent works explore process migration in heterogeneous-ISA systems for native appli-
cations. Lee et al. [121] propose a compiler and runtime for refactoring applications to offload
computation from ARM smartphone CPUs to x86 server CPUs. Their work is restricted to
only offloading portions of smartphone applications and requires expensive runtime transla-
tion between ISA-specific data layouts. Barbalace et al. [27] describe an operating system and
compiler for offloading application computation from an x86-64 Xeon to an overlapping-ISA
Xeon Phi processor. The compiler prepares applications for execution on both architectures,
but there is no mechanism to perform state transformation — migrated threads must return
to the host after executing the offloaded computation. DeVuyst et al. [70] and Venkat and
Tullsen [197, 196] implement process migration in simulated heterogeneous-ISA CMPs in
order to perform a design space exploration. All three works use a custom compiler and
runtime to migrate threads between heterogeneous-ISA cores which shared cache-coherent
shared memory. The compiler generates metadata describing a state transformation function
for individual call frames. The runtime performs dynamic binary translation (DBT) when a
migration is requested until the application reaches a location where state can be translated
and native execution can resume. Popcorn Linux, the Popcorn compiler toolchain and the
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state transformation runtime differ in several ways:

1. [70, 197, 196]’s prototype uses a simulated heterogeneous-ISA CMP with cache-coherent
shared memory. Furthermore, [70, 197, 196]’s prototype does not incorporate an op-
erating system. Popcorn Linux demonstrates execution migration on real hardware
using an ARM and an x86 processor interconnected via high-speed networking using
a complete software stack.

2. [70, 197, 196]’s prototype does not support multi-threaded applications. [70, 197,
196]’s compiler does not support aligning thread local storage, and [70, 197, 196]’s
runtime does not provide a solution for performing state transformation in a multi-
threaded environment. The Popcorn compiler toolchain includes a linker which lays
out thread local storage in a common format for all ISAs in the system, and the state
transformation runtime is designed to be thread safe so that threads in multi-threaded
applications can migrate between architectures without blocking.

3. In order to perform stack transformation between ISA-specific formats, [70, 197, 196]’s
compiler modifies each function’s call frame layout to adjust the size, layout of individ-
ual sections of the call frame, and layout of objects within the call frame. [70, 197, 196]’s
compiler generates a mostly-identical call frame layout across different compilations of
the application. This adds complexity to the compiler including changing the flow of
the compilation pipeline, making porting [70, 197, 196]’s toolchain to new architectures
difficult. The Popcorn compiler toolchain instead minimizes changes to the compilation
pipeline and pushes handling of pointers to stack elements into the state transforma-
tion runtime. The evaluation demonstrates that even with handling pointers to stack
elements at runtime, state transformation latencies are low.

4. [70, 197, 196]’s work does not describe how machine code is loaded into memory,
and in particular how after migrating to another ISA, a thread is able to locate its
ISA-specific code without rewriting function pointers. Popcorn Linux provides this
mechanism transparently to application threads.

5. [70, 197, 196] do not describe how a migration or state transformation is invoked, but
rather only mention that a migration is triggered through some external event. In our
system, the Popcorn compiler toolchain inserts migration points into the source code,
trigger migrations using the operating system, and use a library which lets threads
transform their own stack.

6. [70, 197, 196)’s prototype allows migration at arbitrary points by performing dynamic
binary translation (DBT) up until an equivalence point. Popcorn Linux does not
have this ability, but rather the OS and application cooperate to migrate threads.
Although this hinders the scheduler’s flexibility, it significantly reduces migration costs
and runtime complexity. [70, 197, 196)’s results show that DBT can cause up to a
several millisecond delay when migrating.
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2.4 Scaling Applications to Rack-Scale Systems

Traditionally, developers have used the message passing interface (MPI) to distribute exe-
cution across domains [91]. Deemed the “assembly language of parallel processing” [118],
MPI forces developers to orchestrate parallel computation and manually keep memory con-
sistent across domains through low-level send/receive APIs, which leads to complex appli-
cations [27]. Partitioned global address space (PGAS) languages like Unified Parallel C [57]
and X10 [49] provide language, compiler and runtime features for a shared memory-esque
abstraction on clusters. How threads access global memory on remote domains is specific
to each language, but usually relies on a combination of compiler transformations, runtime
APIs, and user-specified memory consistency semantics. Additionally, PGAS languages re-
quire users to define thread and data affinities, i.e., which threads access what data. This
hinders system flexibility in adapting to multiprogrammed workloads. More recently, many
works have re-examined distributed shared memory abstractions in the context of new high-
bandwidth interconnects. Grappa [145] provides a PGAS programming model with many
runtime optimizations to efficiently distribute computation across a cluster with high-speed
interconnects. Grappa relies on a tasking abstraction to hide the high costs of remote mem-
ory accesses through massive parallelism, meaning many types of applications may not fit
into their framework.

Previous works evaluate OpenMP on software distributed shared memory systems [140,
29, 96]. These approaches require complex compiler analyses (e.g., inter-procedural variable
reachability) and transformations (software DSM consistency boilerplate, data privatization)
in order to translate OpenMP to DSM abstractions, which limit their applicability. OpenMP-
D [118] is another approach whereby the compiler converts OpenMP directives into MPI calls.
This process requires sophisticated data-flow analyses and runtime profiling/adaptation to
precisely determine data transfers between domains. Additionally, OpenMP-D limits its
scope to applications that repeat an identical computation multiple times. OmpCloud [207]
spans OpenMP execution across cloud instances using OpenMP 4.5’s offloading capabili-
ties [38]. However, computation must fit into a map-reduce model and developers must
manually keep memory coherent by specifying data movement between domains.

All of these previous works have limitations in that either the developer must rewrite ap-
plications in a new programming model or have limitations when extending existing shared
memory parallel programming models (e.g., OpenMP) into multi-domain settings. Popcorn
Linux instead provides the ability to run existing shared memory applications across multi-
ple domains. However, naively executing multithreaded applications across multiple domains
can cause excessive traffic in software distributed shared memory systems.
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2.5 Work Distribution in Heterogeneous Systems

Currently, developers have limited options in terms of programming models to support ex-
ecution across heterogeneous-ISA systems. Shared-memory parallel programming models
like OpenMP [38] and Cilk [37] provide source code annotations to automate parallel com-
putation, but do not support execution across cache-incoherent, heterogeneous-ISA CPUs.
MPI [91] gives developers low-level primitives to distribute execution, manage separate phys-
ical memories and marshal memory between heterogeneous-ISA CPUs. However for asym-
metric CPUs, developers must manually assign parallel work and transfer the required data
to maximize performance, leading to complex and verbose applications with static, non-
portable workload distribution decisions. PGAS frameworks like UPC [57], X10 [49] and
Grappa [145] support cross-node execution and memory accesses, but do not support sharing
data between heterogeneous-ISA CPUs. Even if heterogeneous-ISA execution was possible,
changing workload distribution decisions in light of system characteristics is cumbersome —
data is not migrated between nodes for locality, meaning re-balancing work distribution de-
cisions can cause additional network transfers and thus more overhead. Cluster frameworks
like SnuCL-D [112] and OmpSs [44] provide coarse-grained work distribution in clusters by
assigning multiple independent parallel computations to individual heterogeneous processors.
They do not consider fine-grained work-sharing of a single parallel computation or automatic
workload placement, and require developers to specify data movement (device data transfer
commands for SnuCL-D, in/out/inout clauses for OmpSs). In comparison to these works,
libopenpop automatically distributes work in consideration of platform characteristics and
leverages transparent and on-demand DSM to manage memory consistency for flexibility
and programmability.

Several works explore fine-grained work distribution in CPU/GPU systems. Qilin [133] is
a compiler and runtime that enables CPU/GPU workload partitioning but requires devel-
opers to rewrite computation using a new API. Unlike 1ibopenpop, Qilin does not make
distribution decisions online but must profile multiple full executions before determining the
optimal workload split. Kofler et al. [114] present a machine learning approach to determin-
ing workload distribution, but require sophisticated analyses with a custom compiler and
the machine learning model must be retrained for each new hardware configuration. Simi-
larly, Grewe and O’Boyle [90] present a machine learning approach that requires per-system
retraining. Scogland et al. [174] present CPU/GPU workload distribution approaches for
accelerated OpenMP. However their approach only works for dense array-based computa-
tions and developers must manually specify data movement between devices. All of these
approaches only explore CPU/GPU systems. Additionally, these approaches are limited by
the visible split in CPU and GPU memory and require developer intervention to help marshal
data. Additionally, none of these approaches provide optimized cross-node synchronization
primitives and none consider situations where cross-node execution may not be beneficial.

There are a number of schedulers designed to improve task-parallel workloads (as opposed
to data-parallel workloads targeted by libopenpop) on single-ISA heterogeneous systems,
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e.g., ARM big.LITTLE [89]. The Lucky scheduler [158] measures the energy efficiency of
multiprogrammed workloads via performance counters and uses lottery scheduling to time
multiplex applications across big and little cores. The WASH AMP scheduler [108] classifies
threads in applications written in managed languages (e.g., Java) using performance counters
and schedules threads to remove bottlenecks (e.g., critical sections). Other works like meeting
point thread characterization [163] and X10Ergy [179] propose other means for characterizing
and accelerating individual threads on single-ISA heterogeneous platforms. All of these works
focus on determining the “critical” task in task-parallel workloads and placing it on the most
performant core. Additionally, none deal with cache-incoherent heterogeneous-ISA CPUs,
meaning they do not consider data marshaling and cross-node memory access costs.

None of these works fully automate workload distribution for multithreaded applications
across heterogeneous-ISA CPUs. This dissertation describes how 1ibopenpop is extended to
analyze execution characteristics and automatically distribute work to leverage the compute
capabilities of diverse CPUs.

2.6 Runtime Re-randomization

In recent years there has been a large amount of security research focused on analyzing
and defending against return-oriented programming attacks [177]. These attacks stitch to-
gether small “gadgets” from existing code inside the application to build arbitrary function-
ality. This obviates the need for injecting malicious code into the target application and has
spawned a whole field of security research.

There are two classes of defenses that have emerged to disrupt ROP-style attacks: control-
flow integrity [7] and code diversity [120]. In the former, the compiler or runtime system
instruments the application to only allow control flow transfers that were originally en-
coded in the application, e.g., no jumps to arbitrary instructions as used by ROP attacks.
However, CFI defenses must make sacrifices in both performance and completeness, as in-
strumentation can add significant overhead (Abadi et al. report 16% overhead on average
for SPEC CPU 2000 [7]) and new types of attacks build exploits out of correct control flow
transitions [172]. Instead, many defenses propose using code diversity (i.e., utilize multiple
semantically-equivalent code variants) such as code randomization to disrupt gadgets and
gadget chains used by ROP attacks. Address space layout randomization (ASLR) [178] uses
position-independent code to randomize the locations of application sections (code, data,
heap, etc.). Unfortunately, ASLR only provides coarse-grained randomization — memory
leaks allow attackers to discover the base addresses of sections and de-randomize an applica-
tion’s layout. Newer forms of code diversity apply ASLR-like principles at a finer granularity,
e.g., randomizing the locations of functions (ASLP [111] and Oxymoron [22]) or basic blocks
within a function (binary stirring [202]). Readactor [64] uses a custom hypervisor to map
code pages (including specially-generated function trampolines) with read-only permissions
and mitigates memory disclosures by forcing all control flow to go through the trampolines.
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This leads to an average overhead of 6.4%, but uses a complex software architecture and
is specific to x86-64. Other defenses instead randomize the code in-place, re-arranging in-
structions within a single basic block (i.e., sequence of instructions ending in control flow),
replacing sequences with semantically equivalent but different instructions and re-assigning
registers and changing the location of stack slots [156, 115]. All of these approaches only
perform one randomization at target application load time.

With the advent of attacks such as JIT-ROP [182] that dynamically discover gadgets (i.e.,
post-randomization), new defenses were proposed that provide other forms of randomization
during runtime. RuntimeASLR [131] tracks code pointers and randomizes the code layouts
of forked children (rewriting the pointers to reflect the new code locations) to thwart Blind-
ROP attacks on web servers. However, RuntimeASLR is only applicable to server-style
applications with a master/worker model such as web servers. Additionally, RuntimeASLR
adds significant overhead in the master process for tracking pointers. Isomeron [66] creates
two copies of each function that are semantically equivalent but implement functionality
using different sets of instructions and dynamically selects between them at runtime, forcing
gadget compilers to guess which version of each function is being used with decreasing odds
of success. HIPStR [196] uses a similar idea but also adds the ability to switch between het-
erogeneous ISAs to add extra entropy to the randomization. Both works require the use of
a dynamic binary instrumentation (DBI) or dynamic binary translation (DBT) framework,
and thus add significant overheads to normal execution. TASR [34] and Shuffler [203] con-
tinuously re-randomize the locations of code; TASR uses compiler and kernel modifications
to add code pointer tracking, whereas Shuffler uses a layer of indirection to capture all code
pointer references. Again, however, these approaches create significant performance over-
head — TASR requires complete and correct debugging information, limiting which compiler
optimizations can be applied, and Shuffler’s code transformations add significant normal
overhead. These works add 30%-40% and 14.9% overhead, respectively, to normal baseline
execution. Smokestack [9] continually randomizes the layout of stack frames by permut-
ing stack slot elements for every invocation of a function. While it incurs low overheads
for less predictable permutation selection algorithms, Smokestack only targets data-oriented
programming attacks and hence is susceptible to other forms of code-reuse attack. Addition-
ally, it utilizes Intel-specific AES instruction extensions (although other vendor-specific AES
instructions could potentially be used). CodeArmor [52] decouples the code address space
into virtual and concrete instances. Code is instrumented at compile time to use a linear
translation to convert virtual code references to concrete addresses which are continuously
randomized; addresses simply use the updated linear translation to switch between ran-
domizations. However, CodeArmor incurs a 6.9% average overhead for compute-intensive
applications or a 14.5% overhead for server applications and uses x86-64-specific segment
registers.

The large number of randomization frameworks suggest that diversity-based defenses are
more popular than control flow integrity defenses. However, previous randomization ap-
proaches either only perform an initial randomization [202, 111, 156, 115] and are thus
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susceptible to dynamically constructed exploits or require invasive, complex and slow instru-
mentation frameworks [66, 196, 34, 203]. Instead, Chameleon uses in-place code randomiza-
tion (similarly to Pappas et al. [156] and Koo et al. [115]) and performs re-randomization
outside the context of the target, providing both code diversity and low overhead.



Chapter 3

Background

This work presents compiler and runtime support for seamlessly running applications across
heterogeneous-ISA CPUs in emerging systems. There are many benefits to exploiting these
systems, including higher performance, better energy efficiency, increased scalability, and
stronger security mechanisms [70, 197, 196, 27, 127, 151]. All of these benefits require
thread migration between processors in the system. Thread migration is the act of moving
a thread’s execution context (including live register state, runtime stack, page mappings,
etc.) between different processor cores in a system [186]. Current monolithic kernel OSs like
Linux provide thread migration in SMP systems through hardware and OS mechanisms [155].
However, thread migration across heterogeneous-ISA processors requires additional compiler
and runtime support due to the fact that the compiler builds the application specifically for
a processor’s ISA.

This work provides several important components for Popcorn Linux, a replicated-kernel
operating system designed to provide OS support across diverse processors. This work
describes the design of the Popcorn compiler toolchain and state transformation runtime for
Popcorn Linux, all of which work together to replicate an application’s execution environment
across a tightly coupled heterogeneous-ISA system.

Section 3.1 describes the design of Popcorn Linux’s OS and the facilities it provides for
execution migration. Section 3.2 provides a formal definition of application state and how
the compiler, runtime and OS cooperate to ensure it accessible across processors of different
[SAs. Finally, Section 3.3 describes the expectations of the compiler and runtime when
constructing an application’s execution state.

20
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3.1 Replicated-Kernel Operating Systems

Traditional process-model monolithic operating systems such as Linux maintain all operating
system services and state in a single kernel instance, which operates as a single process in
the system. The kernel is responsible for managing all devices in the system, many of which
require interacting with system- or architecture-specific interfaces. The kernel provides a
series of abstractions which hide low-level hardware details from applications executing in
the system. The kernel must handle virtual memory management, disk access, networking,
etc., which require ISA-specific implementations. Because of this, the kernel is heavily tied
to and must be compiled specifically for the underlying architecture.

Recent work has begun to question traditional OS architecture due to increasing core counts
and heterogeneity. The multikernel [30] is a new OS design which treats a high core count
shared memory machine as a distributed system. The multikernel is designed to address
scalability and heterogeneity barriers by distributing pieces of the system across multiple
kernels. The multikernel boots several instances of the kernel, each of which owns a partition
of the physical memory and a subset of available devices. Kernels communicate via message
passing to share access to devices, but applications execute in a distributed fashion across
the kernel instances. Because of this, shared-memory applications must be rewritten to
take advantage of the multikernel. Unlike microkernels [124] which move kernel services
into separate processes that communicate via message passing, each kernel instance in a
multikernel is a full-fledged monolithic kernel capable of moderating all devices which it
owns.

The replicated-kernel OS [27] is an extension of the multikernel which expands shared-
memory programming support to a multiple-kernel OS. Figure 3.1 shows the architecture
of a replicated-kernel OS, including the interface presented to applications. The replicated-
kernel OS is similar to the multikernel in that multiple kernel instances run simultaneously
and system resources are distributed among them. However rather than exposing the dis-
tributed nature of the OS, the kernel instances work together to present a single system image
to applications executing in the system. Threads of an application can migrate between ker-
nels, and the application’s address space and OS state are replicated so that threads execute
in an identical operating environment. Because the OS mediates all access to devices (re-
quiring applications to use the system call interface), applications can use traditional POSIX
interfaces for disk, networking, process control, etc. The kernels coordinate access to devices
in order to provide services regardless of where the application executes. This architecture
allows applications to continue to use a shared-memory programming model, while the OS
architecture can be adapted to suit different levels of parallelism and heterogeneity.
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Figure 3.1: Replicated-kernel OS architecture and application interface

3.1.1 Thread Migration

In a replicated-kernel OS, each kernel owns and is run on a subset of the available processors
in the system. Because kernels have a number of ISA-specific components, in heterogeneous-
ISA systems a kernel instance is run on each set of same-ISA processors (called a processor
island). For example, in a heterogeneous-ISA platform containing an x86 CMP intercon-
nected to an ARM CMP, the replicated kernel OS would run one kernel instance on the
x86 processor island and another instance on the ARM processor island. The scheduler can
migrate application threads between processors of different kernels, or threads can migrate
themselves by setting their CPU affinity to a processor owned by a specific kernel.

The replicated-kernel OS enables thread migration between kernels through the use of shadow
threads. When a thread migrates from a source to a destination kernel, the destination
kernel spawns a new thread and the original thread is put to sleep on the source kernel.
In this scenario, the original thread that is put to sleep is known as a shadow thread.
The newly spawned thread is populated with the original thread’s execution context and
resumes execution on the destination kernel. The replicated-kernel OS keeps track of which
shadow threads correspond to which new threads executing on the kernels in the system.
All thread contexts are kept alive until the application exits, at which time the kernels
broadcast teardown messages that trigger a cleanup of all thread contexts associated with
the application [109].

At which program locations threads are able to migrate depends on which ISAs are available
in the system. If all processors use the same ISA, then threads can migrate between kernels
at arbitrary locations due to the fact that all threads execute using the same implementa-
tion of the application, i.e., the same data layout and machine code. From the application’s
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point of view, this is equivalent to migrating between cores in an SMP multiprocessor. If
kernels execute on processor islands of different ISAs, then threads can only migrate at
pointwise-equivalent program locations [200], known as equivalence points, in the appli-
cation. Equivalence points are matching program locations in two separate implementations
of an application (i.e., two compilations of the application for different ISAs) that satisfy
three properties:

1. At the specified program location, the set of live variables for both implementations
are equivalent. This means that there are the same number and types of live variables
at the program location.

2. All variables have been stored to memory, i.e., no variables are stored in registers.
While seemingly very strict, the ISA’s calling convention satisfies this requirement.
Any values required to be saved will have been saved as part of the register save/restore
procedure except for the outermost frame. At an equivalence point, a runtime can take
a snapshot of current registers, thereby placing all live values into memory.

3. The structure of the two computations must be similar, i.e., the result of a set of
computations must be equivalent. The granularity of this sub-computation equivalence
can be adjusted from a single instruction up to the entire application’s execution. A
finer granularity reduces possible compiler optimizations, while a coarser granularity
limits the number of equivalence points.

At equivalence points, there exists a state transformation function between ISA-specific
versions of the application’s state. The compiler, OS and runtime cooperate to perform this
translation, after which the thread can resume execution post-migration.

3.1.2 Distributed Shared Virtual Memory

Although several efforts have explored cache-coherent shared memory for simulated heteroge-
neous processors [70, 197, 98], no commodity scale heterogeneous-ISA CMPs currently exist
that support cache-coherent shared memory. In order to sidestep this issue, the replicated-
kernel OS provides distributed shared virtual memory (DSVM or DSM). In DSVM systems,
a runtime or operating system provides a single view of addressable memory to applications
executing across multiple computing nodes, each of which has its own physical memory.
The DSVM system mediates access to memory objects which are either stored in a node’s
local memory or in a remote node’s memory. The DSVM system provides access to remote
memory objects either by direct reads and writes to remote physical memory regions [57, 49]
or by migrating memory objects between memory regions to increase data access local-
ity [12, 127, 25]. The DSVM system provides the illusion of a single shared memory region
overlaid across multiple physical memory regions, allowing applications to be developed using
a shared-memory programming model [162].
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Figure 3.2: Page coherency protocol. Pages permissions are maintained similarly to a cache-
coherency protocol to provide consistent views of memory across processor islands. Multiple
nodes may map a page as readable, but only a single node may map the page as writable.

The replicated-kernel OS provides DSVM for threads of an application executing on different
kernels. As threads migrate between different kernels (and therefore, different processor
islands) in the system, the kernels communicate to migrate pages on-demand so that threads
are able to access code and data. After a thread migrates, it resumes execution at an
equivalence point in user-space. However there are no pages mapped into the application’s
address space on the destination kernel — the thread causes a page fault as soon as it accesses
any code or data. The destination kernel sends a message to the source kernel requesting the
page and any mapping information for the faulting address. The page is transferred from the
source to the destination kernel, which maps the page into the application’s address space
and returns from the page fault. The thread continues execution as normal, most likely
causing more page faults which get resolved in a similar fashion. This mechanism allows the
kernels to reconstruct the application’s address space regardless of where threads execute.

The DSVM system provides coherency at the granularity of a page of memory. The replicated-
kernel OS uses a page coherency protocol [169] across kernels that acts like a multiple-reader,
single-writer lock on pages — Figure 3.2 shows the state transition diagram for page access
permissions. When application threads executing on a single kernel access a page, there is
no coherency required, hence the page is mapped with Local permissions. When threads
executing on different kernels access a page with read-only permissions, the page is mapped
with Shared permissions and replicated across both kernels. This allows both concurrent
across multiple processor islands (and hence improved scalability) and data access locality.
However, when a thread writes to a page and thus has both read and write permissions, only
one kernel may own the page at a time. When a thread migrates to a new node and writes
to a page, the source kernel unmaps the page from the application’s address space (only on
the source kernel) and migrates it to the destination kernel, where it is subsequently mapped
into memory. If a thread on the source kernel tries to access the same page, the process is
reversed — the page is unmapped from the application’s address space on destination kernel
and migrated to the source kernel. This prevents consistency issues from multiple writes to
the same page of memory and supports ISA-specific locking mechanisms across architectures
(e.g., compare-and-swap instructions in x86 versus load-link/store-conditional instructions
in ARM). However it can lead to pathological behavior and poor performance when threads
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spread across multiple processor islands access the same pages [169].

Using these mechanisms, the replicated-kernel OS allows threads to migrate between proces-
sors of different ISAs while executing in a replicated working environment. Popcorn Linux
implements thread migration and DSVM through a series of distributed kernel services be-
tween kernels on different processors.

3.2 Application State

As mentioned in Section 3.1.1, there exists a state transformation function at equivalence
points that can convert between ISA-specific formats of an application’s state. In order
to understand how application state can be transformed by the compiler and runtime in a
replicated-kernel OS, a formal model of application state is defined. A model allows us to
understand which parts of the application can be laid out in a common format across ISAs,
and which parts of the application should be transformed at runtime between ISA-specific
formats. For application state laid out in a common format, no transformation is required
and the replicated-kernel OS can simply migrate the state between kernels. Special handling
is required for state that must be transformed, however.

3.2.1 Formalization

We consider a model in which applications execute as a single process in a replicated-kernel
operating system, and may utilize several threads of execution. We do not consider multi-
process applications, although the model can be extended to support them. Additionally we
do not support self-modifying applications, or applications which generate or modify their
machine instructions. Applications executing using a traditional von Neumann architecture
are comprised of data and code, both of which are stored in the same region of addressable
memory'. In process-model monolithic operating systems, the OS creates a virtual address
space V, for each application A. An application’s virtual address space V), is composed of
per-process state P and per-thread state T;, where 1 < ¢ < k for an application which has
k threads of execution. The compiler, linker and OS work together to construct V4 so that
threads of execution are able to access required code and data.

The application’s per-process state P consists of code memory P, statically-allocated data
memory Pp, and dynamically-allocated data memory Py. Code memory FPc includes all
machine code generated by the compiler for a target ISA, and is included as the .text section
in ELF binaries. Statically allocated global data memory Pp is created by the compiler
and linker, and is included as .data, .rodata and .bss sections in ELF binaries (which

Popcorn Linux’s DSVM blurs the notion of a single region of memory, but it provides the abstraction
that threads executing on different kernels are able to address code and data in the same address space.
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correspond to initialized data, read-only initialized data, and uninitialized /zero-initialized
data, respectively). Code memory Pr and statically-allocated data memory Pp are laid
out in the binary by the compiler and linker, which may optimize placement for cache
locality [46, 138, 85]. Dynamically-allocated global memory Py is created on-demand by
standard memory allocation routines, e.g., malloc, in the process’ heap.

The per-thread state T; is composed of a set of registers R;, a thread’s execution stack S;,
and a block of thread-local storage (TLS) L;. The compiler is responsible for laying out all
components of T;. The compiler allocates storage for function-local data across R; and S;,
aggressively optimizing the layout to take advantage of the ISA’s resources and capabilities.
The compiler also lays out L; by optimizing placement of variables declared with a thread-
local qualifier (such as __thread in GCC) for cache locality, similarly to Po and Pp. All
TLS variables for a single instance of L; are collected into ELF sections such as .tdata,
.trodata and .tbss to create an initialization image. L; is instantiated by creating a copy
of the initialization image for every thread in the application.

Each application also has associated kernel state maintained by the replicated-kernel OS,
e.g., open files, network sockets, IPC handles, etc. In this model we omit definitions for
kernel-specific application state — the kernels keep the state consistent via message passing,
but from the application’s point of view, the kernel reproduces a single system image. Thus,
the application does not need to know about how kernel-side state is organized.

In order to achieve seamless execution migration, an application’s virtual address space
Va=A{P,<Ty,Ts,.., T >} (where P = Pg, Pp, Pg and T; = {R;, S;, L;} for 1 <i < k) must
be constructed so that threads executing on any ISA in the system can locate code and data.
To create V4, the compiler and linker can either align code and data in a common format
so that no transformation is required, or the compiler can extract application metadata so
that a runtime dynamically translates state between architecture-specific layouts. In this
context, translating program data refers to both changing the content of the data between
ISA-specific formats (reification) and changing the location of the data (relocation). In
practice a combination of common layout and transformation is applied in order to minimize
translation costs caused by application migration while simultaneously allowing applications
to achieve highly optimized execution [70, 197].

3.2.2 Laying Out Application State

Attardi et al. [19] and Smith and Hutchison [181] describe mechanisms that enable heterogeneous-
ISA execution migration by either maintaining program state in a target-agnostic intermedi-
ate format, such as Java bytecode, or by directly translating the application’s entire address
space V4 between target-specific formats during migration. Whole-program interpretation
and translation are suitable for highly diverse targets, including targets which have differences
in primitive data type sizes and alignments, differences in pointer sizes, and differences in
endianness. However these mechanisms incur significant overheads, either due to the cost of



Robert F. Lyerly Chapter 3. Background 27

interpreting applications for an ISA-agnostic abstract machine or due to the cost of translat-
ing the entire address space of applications between formats. More recent work by DeVuyst
et al. [70] and Venkat and Tullsen [197] describes techniques for minimizing translation costs
by imposing stricter requirements for all target ISAs in the system, i.e., equivalent data sizes,
alignments, pointer sizes, endianness. Additionally, their modified compiler toolchain aligns
code and data in a common format across all ISAs on which threads execute, side-stepping
translation costs due to relocating data. This work is extended by the Popcorn compiler
toolchain and state transformation runtime.

Because the ISAs used for Popcorn Linux have identical data types and sizes, application
state Pp and Py do not need to be reified between ISA-specific formats. Conceptually,
L; is a per-thread “global storage” meaning that it too does not need to have its content
transformed. However, code memory P¢ is not compatible across architectures, as the ISA
defines the machine code format. Because Po does not change at runtime, its reification
between formats is performed offline by the compiler. Specifically, the compiler generates
multiple versions of Py offline by compiling the application for each target ISA in the system.
Runtime transformation simply becomes a problem of mapping the correct version of Po
into memory depending on which architecture threads are executing. As threads migrate
between processor islands, the kernels map the appropriate version of Po into V4, making
Py an aliased region of memory.

Relocating data to different areas of memory causes all references to that data to be invali-
dated. In order to eliminate relocation costs, including the difficult task of finding all such
references wherever they are stored (e.g., function pointers in C++ vtables), the compiler
and linker lay out symbols in Po and Pp at common addresses across all compilations of the
application so that global data and function pointers are valid for all ISAs in the system?.
References to Py are also valid across all architectures — the DSVM system keeps the heap
pages consistent, including all heap object metadata. The page coherency protocol ensures
that accesses to Pp and Py are replicated and coherent between kernels, and the OS auto-
matically maps the correct version of Pr. Thus, data objects in Po, Pp and Py are aligned
across executions on all ISAs.

The remaining parts of the execution state V4 are dictated by the ISA (e.g., registers R;)
or are highly tuned for each architecture (e.g., the stack S;). For these parts of the exe-
cution state, it is either impossible to lay data out in a common format or doing so would
cause severe performance degradation. Instead of using a common format and aligning data
across compilations, runtime state transformation is applied to convert R; and S; between
architecture-specific formats. Thus, the compiler must generate metadata so that the state
transformation runtime can both reify and relocate R; and 5;.

2Language semantics prevent function pointers into the body of a function, meaning that only the begin-
nings of functions must be aligned.
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3.2.3 ISA-specific State

A thread’s register set R; and runtime stack S; are partially specified by the architecture-
specific application binary interface (ABI), which describes how applications represent, access
and share data in the system. One component of the ABI is the function call procedure,
which specifies how threads execute functions in an application. The function call procedure
describes how to set up per-function R; and S; state, how to pass arguments to called
functions using R; and S;, how to save and restore live registers (i.e., those parts of R; which
contain live values) in S;, and how to pass return values back to the calling function. Each
instance of a called function creates a function activation that becomes part of a thread’s
execution state. According to the DWARF debugging information standard [58], there are
three pieces of information that define a function activation:

1. A program location within the function, either in a program counter register or saved
in a child function’s activation as a return address. The program location indicates the
machine instruction currently being executed, or the instruction at which execution
will resume after a returning from the child function, respectively.

2. A contiguous block of memory on the thread’s stack S; named the function’s call
frame. The call frame contains a function’s live values and information connecting a
function activation to surrounding activations, including saved registers and arguments
to child functions.

3. A set of active or live registers in R;. These registers might contain variables, control
flow information, condition codes, etc. Registers are dictated by the ISA and cannot
be changed by the compiler. The compiler does, however, have some flexibility in
specifying what values are stored in which registers.

As functions execute, they modify their register state to read and write memory and to
perform computations on data. When calling functions, some or all of this register state
is saved onto the stack (as dictated by the ABI) — the calling function saves caller-saved
registers, while the called function saves callee-saved registers. Each invoked function
allocates space on a thread’s stack which also adheres to the architecture’s ABI. As functions
return back up the call chain, call frames are removed from the stack and register state is
restored from its saved format. A state transformation runtime must be able to observe
registers and call frames for each activation on a thread’s stack, and in particular must know
how execution state is mapped onto them for each architecture. The compiler generates
metadata describing the register and call frame state at equivalence points within functions.

The state transformation runtime needs to be able to access and understand register state
R; for each activation. A thread’s register state is dictated by the ISA and can be grouped
into several categories [125, 99]:
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e General-Purpose Registers — These registers are used for integer and boolean logic
operations, as well as addressing memory and control flow. A subset of these may be
used for special purposes, e.g., to maintain a return address.

e Floating-Point/SIMD Registers — These registers are used for floating-point arith-
metic, and are usually combined with ISA-specific SIMD extensions for data parallel
computation.

e Program Counter — The register containing the address of the next machine instruc-
tion to be executed. It usually cannot be accessed like general-purpose registers, but
must be changed using control-flow operations (branches, calls, etc.).

e Stack Pointer (SP) — The register pointing to the current top of the stack (which is
the lowest stack address for architectures that have downward-growing stacks). It can
usually be manipulated like general-purpose registers, and may have special semantics
for other operations, e.g., on x86 a call instruction decrements the stack pointer and
writes a return address to the new top-of-stack.

e Frame Base Pointer (FBP) — The register pointing to the beginning of the current

call frame. It, together with the SP, identifies a function’s call frame?.

The state transformation runtime must be able to traverse call frames on the stack, and thus
must have information regarding how to adjust the stack and frame base pointer in order
to access a given function activation. Additionally, the ABI dictates which portion of the
register state is saved onto the stack (and by whom), meaning the runtime must understand
the register save and restore procedure in order to observe the correct register state for each
activation.

Much of a thread’s execution state is placed in call frames on the stack, in a format created
by the compiler (but adhering to the ABI). Figure 3.3 shows a generalized view of a thread’s
stack of call frames, hereafter referred to as the stack. In this figure, a thread’s call stack
contains call frames for function foo, which has called function bar. Because the stack grows
downward, bar’s call frame is below foo’s. Each function call frame is composed of several
areas:

e Return Address — The machine instruction address at which execution will resume
after the current function has finished execution. Upon entering a function from a call
instruction, the return address is pushed it onto the stack (or it may be pushed auto-
matically by the call instruction). In Figure 3.3, bar’s call frame saves the instruction
address at which execution will resume when returning to foo.

3The FBP register can be used as a general purpose register for call frames which have a statically known
size, e.g., those which do not perform operations like alloca.
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Figure 3.3: Stack frame layout. The stack includes call frames for function foo(..), which
calls function bar(...).

e Saved Frame Base Pointer — The FBP of the calling function. The old FBP is
saved so that the frame of the calling function can be restored after finishing execution
of the current function. This is usually saved after the return address on the stack. In
Figure 3.3, bar’s call frame saves foo’s FBP before setting its own FBP.

e Locals and Spilled Registers — This portion of the stack frame contains the callee-
saved registers, local variables allocated on the stack, and registers that are spilled to
the stack by the register allocator. In Figure 3.3, bar saves a subset of foo’s registers
as dictated by the ABI before allocating local variables and spill slots.

e Argument Area — Storage on the stack to be populated with arguments to be passed
to called functions. foo’s call frame has an area for arguments to bar, which in turn
has an argument area for any functions it may call.

The state transformation runtime must be able to locate call frames for each function ac-
tivation on the stack. It must also be able to find each of these areas of the call frame so
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that they can be transformed between architecture-specific formats. The compiler generates
metadata describing the call frame layout for each function in the application, and how each
function can be unwound from the stack.

3.3 Expectations of the Compiler and Runtime

At equivalence points, a state transformation runtime is given the register set R;. By reading
the stack pointer register, the runtime can discover the stack S; of a thread. The state
transformation runtime must be able to do the following:

1. Given a program location, i.e., an instruction address in a program counter register,
find the function encapsulating that address.

2. Given a stack pointer, frame base pointer and location within a function, locate each
of the call frame areas identified above.

3. Given a call frame and register set, know which portions of the call frame and register
set contain live values so that the runtime may copy them to the appropriate location
within a transformed call frame and register set.

4. Given a relocated variable in either R; or S;, reify references to the variable in order
to reflect its new relocation.

5. Given a call frame and register set, be able to unwind the call frame from the stack in
order to access the frame of the calling function.

6. Given a return address in code compiled for one architecture, find the corresponding
return address in the code generated for another architecture.

The compiler is responsible for generating metadata providing all of this information, which
it injects into the binary for the runtime. Note that the compiler does not need to synthesize
this metadata for all instruction addresses in an application, but only at equivalence points.
Our prototype uses function call sites as equivalence points, as they satisfy all requirements
listed in Section 3.1.1. Thus, transformation metadata is only needed at function call sites —
by definition the stack is composed of function activations for functions that are paused at
a call site and will resume when the child function returns. The only activation which is not
paused at a function call site is the outermost activation, i.e., the activation of the currently
executing function. The state transformation runtime implements a special function which
carefully handles bootstrapping and initiating transformation, allowing the runtime to begin
transformation at a specific known function call site. Thus threads only need to call this
special function to begin the process.
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The compiler, described in Chapter 4, generates the state transformation metadata needed
at runtime to convert R; and S; between ISA-specific formats. Additionally, the linker
is directed to lay out Po, Pp and L; in a common format to avoid transformation costs.
Finally, a state transformation runtime (described in Chapter 5) applies the compiler-directed
transformation when threads migrate between processor islands.



Chapter 4

Popcorn Compiler Toolchain

The Popcorn compiler toolchain is responsible for preparing applications for seamless migra-
tion across heterogeneous-ISA architectures. The toolchain generates multi-ISA binaries,
binaries containing modified data and code sections along with state transformation meta-
data, built for migration on Popcorn Linux. Multi-ISA binaries lay out data and code in
a common format, which Popcorn Linux uses to replicate a shared virtual address space
across kernels (and thus, heterogeneous-ISA processors). For execution state that cannot be
laid out in a common format due to ISA or performance reasons, the toolchain generates
metadata so that a transformation runtime can switch state between ISA-specific formats.
Using information from the multi-ISA binary, Popcorn Linux migrates threads of execution
between architectures in a replicated environment so that threads see a single system image
across all kernel instances.

4.1 Building Multi-ISA Binaries

The Popcorn compiler toolchain builds multi-ISA binaries by compiling the application
source for each ISA available for execution in the system. The toolchain uses a modified
LLVM [160] as the compiler and a modified GNU gold [86] as the linker. The toolchain also
uses several custom-built tools for post-processing binaries in preparation for state trans-
formation. Figure 4.1 shows an overview of how application source code flows through the
toolchain to produce a multi-ISA binary. Different phases of compilation are encapsulated
in boxes, with Popcorn-specific additions listed inside.

Application binaries are built through a standard compilation procedure augmented with
several additional steps. The source is first parsed into an ISA-agnostic intermediate rep-
resentation (IR) by Clang, the C-language frontend for LLVM. The IR is analyzed and
optimized, then is compiled once for each ISA in the system using an ISA-specific back-end.
After linking, which generates a binary per ISA, post-processing modifies the binaries by

33
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Figure 4.1: Popcorn compiler toolchain

aligning function and data symbols at identical virtual addresses across all binaries. Addi-
tionally, post-processing adds and organizes state transformation metadata. At this point
the multi-ISA binary has been built and is ready for execution migration across kernels in
Popcorn Linux.

There are many custom analyses and transformations added to the compilation process in
order to build multi-ISA binaries:

e IR Modification (LLVM middle-end) — Clang generates LLVM bitcode, an intermedi-
ate representation of lowered source code in single-static assignment (SSA) form [65].
Popcorn’s compiler modifies the IR by inserting migration points at the beginning
and end of functions (Section 4.2). Several passes adjust data linkage in preparation
for alignment. Finally, an analysis pass and an instrumentation pass find and record
live values at all potential transformation sites throughout the IR in preparation for
runtime state transformation (Section 4.3).

e Back-end Analysis (LLVM back-end) — Several back-end analyses are run which
mark return addresses from function calls, gather live value locations in function acti-
vations, and generate metadata needed for state transformation (Section 4.4).

e Linking — Thread-local storage (TLS) layout is modified to conform to a single layout
across all generated binaries. The current implementation forces all TLS to be identical
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to the ARMvS8 layout.

e Alignment (post-processing) — After generating a binary per ISA, a linking tool gath-
ers symbol location and size information in order to align data and function symbols
at identical addresses across all binaries. Symbols are placed in an identical order in
all binaries (space is added for symbols that only exist in one binary). Data symbols
do not need to be padded, because the architectures used in our prototype have iden-
tical data sizes and alignments for primitive data types. Function symbols do require
padding, however, because the machine code implementing a function may be different
sizes for different ISAs [24].

e State Transformation Metadata (post-processing) The binaries are post-processed
to set up the state transformation metadata needed to transform execution state at
runtime (Section 4.5).

The Popcorn compiler currently supports applications written in C and C+4. The toolchain
builds multi-ISA binaries for POSIX- and Popcorn-compliant programs, meaning that all tra-
ditional POSIX interfaces supported by Popcorn Linux, such as the standard C library and
pthreads, are supported by the compiler. Additionally, the compiler has almost no restric-
tions on program optimization, meaning applications can be aggressively optimized for each
architecture in the system (see Section 4.3). There are currently several limitations — the
current prototype only supports 64-bit architectures whose primitive data types have both
the same sizes and alignments. The toolchain does not support applications that use inline
assembly, as analyses in the middle-end do not understand machine-code level semantics.
Architecture-specific features such as SIMD extensions or language level features that have
architecture-specific implementations such as setjmp/longjmp and variable-argument func-
tions are not supported. Functions that have dynamically sized frames (e.g., functions that
use alloca or variable-length arrays [101]) are not supported. Finally, applications cannot
migrate during library code execution (e.g., during calls to the C standard library).

Other works focus on aligning global state to replicate the same virtual address space across
kernel instances [27, 24, 134, 26]. This dissertation analyzes and solves the problem of trans-
forming execution state between ISA-specific formats to enable seamless thread migration
at runtime. Section 4.3 describes analyses and transformation over the application’s IR
needed to capture state transformation metadata. Section 4.4 describes back-end changes
for converting IR-level metadata into machine code metadata. Section 4.5 describes the final
post-processing step which adds state transformation metadata to the multi-ISA binary for
a state transformation runtime.
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4.2 Inserting Migration Points

Because threads cannot migrate between heterogeneous-ISA architectures at arbitrary lo-
cations, threads must check to see if the scheduler has requested a migration. Migration
points are inserted by the compiler at the beginning and end of functions, which corresponds
to the equivalence point at the call site of the function. Recall from Section 3.1.1 that there
are three properties that must be satisfied for a program location to be an equivalence point.
Function call sites satisfy all three properties:

1. Identical number and type of live variables — this is satisfied by construc-
tion. LLVM compiles the application for each ISA using the same LLVM bitcode.
Architecture-specific back-ends are tasked with allocating storage for the live values
described by the IR. The individual back-ends can introduce new per-architecture live
values, although higher optimization levels tend to remove these.

2. Live values must be in memory — this requirement is satisfied by the function call
procedure. In order for a live value in a register to be preserved across a function call,
it must be stored in a callee-saved register. This means that if the calling function
uses the register, it is required by the ABI to spill the register into the callee-saved
register section of its call frame. Otherwise, the live value remains untouched in the
register while the called function executes. Therefore, all live values are either stored
in memory or are live in the register set of the outermost function activation. To
bootstrap transformation, the state transformation runtime stores a snapshot of the
current register set, thus capturing all live values in memory.

3. Semantically-equivalent computation — this is again satisfied by construction. The
back-ends generate machine-specific code which corresponds to a single set of IR. The
back-ends may perform architecture-specific optimization, including both basic-block
level and function-level code movement. However, code movement is prevented across
function call sites as described in Section 4.3, meaning that computation completed up
until a function call site is semantically-equivalent across all versions of the machine
code.

Migration points are implemented as a call-out to a migration library. The library contains
APIs for querying information about nodes participating in the Popcorn single system image
such as architecture and number of CPUs, APIs for querying information about the current
thread such as the node on which it is currently executing and whether a migration has
been requested, and APIs to perform thread migration. At application startup, the main
thread reads information about all nodes participating in the single system image. When the
scheduler requests that a thread migrate, it writes the node ID of the requested destination
node inside the thread’s descriptor in kernel space via a migration request system call. At
migration points, threads check whether a node ID has been set via a query system call.
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If it has been set, the thread queries the ISA of the destination node and begins the state
transformation and migration process described in Chapter 5.

4.3 Instrumenting the IR of the Application

The Popcorn compiler toolchain is responsible for capturing execution state information at
rewriting sites, i.e., function call sites at which stack transformation may occur, during
the compilation process. The toolchain must generate metadata describing the makeup of
generated function activations, including instruction addresses and locations of live values at
rewriting sites. The toolchain collects this information while the application is in an inter-
mediate representation in order to determine program locations and liveness information in
an architecture-agnostic fashion. Additionally, recording liveness information in the middle-
end captures IR-level semantic information (such as data type, size, etc.), which is stripped
away when lowering the IR to machine code. An LLVM pass was built that implemented the
algorithm presented by Brandner et al. [39], an optimized version of the standard data-flow
analysis algorithm for SSA-form programs, for the Popcorn compiler toolchain. Another pass
was built which instruments the application IR to capture program and live value locations
using the results from this liveness analysis.

The transformation pass instruments the IR with stack map intrinsics [161]. Stack map
intrinsics appear as function calls in the application IR with a set of live values as function
arguments. As the IR is lowered to machine code, stack maps record function activation
information at the stack map instruction’s location. Stack maps are inserted into the IR
at rewriting sites — in our prototype, at function call sites. As they are lowered by the
back-end, stack maps are converted into metadata stored in an extra ELF section in the
generated object code. Each stack map intrinsic generates a record in the ELF section and
is composed of several fields:

e ID — Each stack map has a unique 64-bit ID, allowing the state transformation runtime
to find matching stack map records for each ISA-specific version of the generated
machine code.

e Function Record Index — Stack maps mark specific program locations inside of
functions. Multiple stack maps may map to the same function, thus the function’s
metadata can be shared among them. KEach stack map contains an index into the
function record metadata referencing the function containing the stack map.

e Program Location — The stack map record contains a machine instruction offset
from the beginning of the function, which denotes the stack map’s program location.
This is used to locate the return address for function calls when transforming the stack.
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e Location Records — The record encodes the locations of live values specified in the
stack map intrinsic in the IR. Values can be stored on the stack (as an offset from the
frame base pointer), in a register (encoded using architecture-specific DWARF register
numbers), or they may be a constant not stored anywhere. The record also contains
information about the live value’s type, described in more detail in Section 4.4.

Stack maps prevent frame pointer elimination optimization because they use offsets from the
frame pointer to locate stack-allocated variables. This is only an implementation artifact,
however, and not a design requirement. Additionally, stack maps prevent code movement
around the intrinsic’s location in the LLVM back-end, which ensures that all three properties
of equivalence points are satisfied.

Figure 4.2 shows an example of LLVM bitcode for a simple basic block:

bbl:
$mydata = alloca i32, align 4
store i32 5, i32* $mydata, align 4

$call = call void (...) @do_compute ()

$res = load i32, i32* $mydata, align 4
ret i32 %res

Figure 4.2: Uninstrumented LLVM bitcode

In this basic block, integer mydata is allocated on the stack and is initialized to 5. Sometime
later in the basic block, the function do_compute is called. At the end of the block, mydata
is loaded into integer res and returned as the result of the function. Figure 4.3 shows the
result of running Popcorn’s liveness analysis and instrumentation pass over the basic block:

bbl:
$mydata = alloca i32, align 4
store i32 5, i32* $mydata, align 4

$call = call void (...) @do_compute ()
call void (i64, i32, ...) @llvm.experimental.stackmap(ié4 0, i32 0, i32* $mydata)

$res = load i32, i32* $mydata, align 4
ret 132 %res

Figure 4.3: Instrumented LLVM bitcode

The transformation pass places a stack map intrinsic directly after the call to do_compute to
capture transformation metadata at the rewriting site. The stack map has an ID of 0 (the first
argument ), which uniquely identifies this function call site across all per-ISA versions of the
application. Liveness analysis determines that mydata is live across the call to do_compute,
so the transformation pass adds the value as an argument to the stack map. Stack map 0’s
instruction address and mydata’s storage location will be recorded after the basic block has
been lowered to machine code, after instruction scheduling and register allocation.
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4.4 Augmenting Compiler Backend Analyses

The application IR is lowered to machine code for each target ISA in the system on which
Popcorn Linux runs. As the IR is transformed, special handling converts stack map intrin-
sics into records which contain concrete details about the rewriting site, such as program
location and live value locations within function activations. Several additional analyses
were integrated into the LLVM back-end to add pieces of information not visible in the mid-
dle end. LLVM implements IR lowering to machine code using a set of target-independent
analyses and transforms, meaning the Popcorn compiler’s modifications are available for all
targets supported by LLVM. Unlike previous works [196, 197, 70], the Popcorn compiler
toolchain does not change the size or layout of call frames to be compatible across architec-
tures. The toolchain minimizes the number of changes to the architecture-specific portions
of the back-end so that applications can take advantage of extensive architecture-specific
compiler optimizations and be easily ported to any architecture that LLVM supports.

4.4.1 Program Location

Stack maps are inserted into the IR directly after function calls to record return addresses
from those function calls. LLVM IR encapsulates the entire function call procedure into a
single IR instruction, which is expanded during instruction selection and register allocation
to adhere to the ISA’s function call procedure defined in the ABI. Because this procedure
is not visible in the middle-end, it is not possible to directly capture a call’s return address
by adding stack map intrinsics. Instead, in the back-end stack map intrinsics are matched
to the appropriate function call site. This allows the stack map machinery to encode the
return address irrespective of the architecture-specific function call procedure.

4.4.2 Live Value Locations

Stack map intrinsics were designed for online compilers, and as such were designed so that
a set of values could be captured at the intrinsic call site and execution could be transferred
to an optimized version of the function (i.e., moving from an interpreter to compiled ma-
chine code). Stack maps capture the function activation state specified as arguments to the
intrinsic — they do not capture the entire function activation itself. An artifact of this design
is that a value may be live in several locations (e.g., in a register and backed by a slot in the
call frame) but the stack map mechanism only records one of these locations. For example,
consider the AArch64 assembly in Listing 4.1:
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0x410000: ldr x20, [sp,#32] ; stack slot 4
0x410004: add x0, xz, x20
0x410008: mul x0, x0, 2
0x41000c: bl do_compute

<stack map records metadata here>
0x410010: add x20, x0, x21

Listing 4.1: Live values across call to do_compute in AArch64 machine code. The value is
live in stack slot 4 and register x20.

In this assembly, a live value is loaded from stack slot 4 into register x20, which is a callee-
saved register for AArch64. The value is then used to compute an argument for the call to
do_compute. After returning from the function call, x20 is overwritten using the return value
from do_compute and another callee-saved register x21. The stack map intrinsic inserted after
the call requests that the back-end record the location of this live value at do_compute’s
return address. The back-end only records that the value is stored in register x20, although
it is also stored in stack slot 4. Without additional analysis, the metadata at this rewriting
site is incomplete, meaning that the transformation runtime will not be able to fully rewrite
the activation and the application will likely fail after migration. Note that in addition to live
values being in both a register and call frame slot, values may also be live in multiple registers
depending on the types of optimizations applied. Live values stored in multiple locations are
more prevalent on RISC architectures because live values must be loaded from and stored
to memory in order to do computation on them. The compiler tries to keep as many values
as possible in registers so that it does not have to continually re-materialize them. However,
this re-materialization behavior also arises on CISC architectures, depending on the results
of register allocation.

The Popcorn compiler back-end implements liveness range checking for live values in stack
maps to determine if they are stored in multiple locations. This analysis uses liveness ranges
for registers and stack slots which are already calculated by LLVM for register allocation.
At this point in the compilation, the application has been lowered to another form of IR
which is close to machine code. The IR is still in pseudo-SSA form, however, and values
have use-def chains which point to instructions where the value is defined and used.

After register allocation, the definitions of all live values stored in registers are checked!.
If the register is defined by a copy (e.g., a load from a stack slot or a copy from another
register), the liveness range of the source of the copy is searched. If the source value’s live
range overlaps with the stack map, then the source is determined to be a duplicate location
for the live value and extra metadata is added to account for the duplicate. Similarly, if

Tt is not necessary to check live values stored in stack slots, because if they are marked as stored in the
call frame by the stack map machinery then they are never also in a register — either they are required to
be on the stack or the register allocator decided that they are to be spilled to the stack. Duplicate locations
only arise when promoting values from stack slots to registers or when copying values between registers.
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the register in the stack map is used as the source of a copy and the copy location is live
across the stack map, metadata is added to account for the duplicate location. This process
is repeated exhaustively up and down the use-def chain to find all duplicate locations of the
live value.

4.4.3 Live Value Semantic Information

Stack maps were designed so that execution could be transferred to an optimized version of
a function on the same architecture. Because of this, the live value information needed to
jump to optimized execution is simpler than what is required by the state transformation
runtime for Popcorn Linux. Stack maps encode the following information about live values
and their locations:

e Storage Type — where the value is stored, i.e., a register, a stack slot or if it is a
constant, nowhere.

e Register Number — if the value is stored in a register, which register it is stored in.
Stack maps use DWARF register numbers as specified by each ISA’s ABI.

e Offset from frame base pointer — if the value is stored on the stack, the offset
from the frame base pointer where the value is stored. The frame base pointer is
[SA-specific, e.g., rbp on x86-64 or x29 on AArch64.

e Constant — if the value is a constant, the stack map will directly encode the value.
Note that our implementation of liveness analysis ignores constant values because they
are, in general, materialized right before use in the machine code rather than being
held in storage.

The following fields were added to location records using extra semantic information gathered
from the LLVM IR for the live value in order to provide a complete state transformation:

e Pointer — flag indicating if the value is a pointer. The state transformation runtime
requires special handling for pointers to the stack (Section 5.2.3), although pointers to
global data and functions are valid because of symbol alignment.

e Alloca — variables allocated to the stack are instantiated using the alloca IR intrinsic
in LLVM bitcode?. This flag indicates that the live value is allocated to the stack.

2LLVM'’s alloca is semantically different from the C language alloca API, although the latter is imple-
mented using the former in LLVM bitcode.
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e Size of Stack Variables — the stack map fields described above only indicate how to
locate the beginning of a stack-allocated variable, but do not specify their size. If the
value is allocated to the stack, this field encodes how large the allocated data is in the
call frame.

e Duplicate — flag indicating if this location record is a duplicate, meaning that it
describes another location for the same live variable (as determined by the analysis
described in Section 4.4.2).

e Temporary — some IR-level live values may be either re-materialized when needed or
held in a register (e.g., reference to a stack slot) depending on the register allocator’s
decisions for each ISA. This flag is set if the back-end materialized a value only to
satisfy the stack map.

The application IR is converted to machine code, which is emitted into object files. Stack
maps records are added to a special section within the object file, but are not yet in a suitable
format for state transformation.

4.4.4 Architecture-Specific Live Values

Depending on the results of the register allocator, the back-end may create extra architecture-
specific live values, e.g., references to global symbols or constant data. These decisions are
specific to each ISA — for example, materializing references to global symbols may take
multiple instructions on AArch64 and therefore the back-end may save a reference in a
register, in contrast to x86-64 which can encode large addresses into instructions. Rather
than prevent this behavior, the Popcorn compiler captures these values in order to allow
the back-end to optimize the generated machine code as much as possible. The compiler
produces metadata describing both the location of the architecture-specific live values and
how to re-generate them, e.g., constant data, addresses or simple math operations. It is
important to note that architecture-specific live values are statically calculable, i.e., the
compiler knows how to produce the values at compile time. This allows the compiler to
capture constants, references to global data and even references to stack data — although the
particular address of a given stack slot is not known until runtime, the method of calculating
the address (e.g., add offset to frame base pointer) is known at compile time and thus the
compiler can emit metadata describing how to recreate the value at runtime.

4.5 Generating State Transformation Metadata

At this point, the LLVM back-end has generated object code and added stack map metadata
to the binaries. Additionally, the alignment tool has aligned code and data symbols across
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uint64_t addr

uint32_t code size struct stack_slot
uint32_t frame size uintl6_t base_reg
uintl6é_t num unwind int167; offsez
uint64_t unwind_start uint32_t size
uintl6_t num_stack_slot uint167t alignment
uint64_t stack_slot_start

struct call_site

uint64_t id

uint32 t function struct live value struct arch live value

uint64_t addr

uint8 t type_and flags uint8 t type and flags

uint8_t size

uintl6_t num live uint8_t size

uintl6e_t reg uintl6_t reg

uint32_t offset

uint64_t live_ start

i 2 ff
Gintle © num arch live int32_t offset_or_ constant

uint32_t alloca_size

uint64_t arch_live_start uint8_t op_type_and_flags

uint8_t op_size

uintl6é_t op regnum

int64_t op offset or constant

Figure 4.4: Metadata emitted by the compiler. Each type of structure (e.g., call site,
function record) is contained in its own section.

each of the generated versions of the binary. The final step in the toolchain is to convert the
emitted stack map records into the format the state transformation runtime uses to rewrite
the stack. There are several downsides to the default format emitted by LLVM:

e Stack map records are variable-sized — there are a variable number of live value
location records per stack map record. This means searching through stack map records
is a sequential process because it requires jumping across differing numbers of location
records per stack map.

e There are multiple stack map sections per binary — LLVM generates a stack
map section per source file. Stack map records are not combined during linking, but
are rather appended one after another into a larger ELF section. This compounds the
problem of searching for records, as searching for a stack map from a particular source
file requires first finding the beginning of the stack map records for that file and then
searching sequentially through the records.

A final post-processing step reorganizes stack map records into a format amenable for efficient
lookups of stack maps and location records of live values at the rewriting site. A post-
processing tool parses the LLVM-generated stack map sections and breaks the metadata
out into multiple extra sections added to the multi-ISA binary. Each of the extra sections
contains equal-sized records, meaning the transformation runtime can directly jump to a
record given an offset or can use a binary search for efficient look-ups. Figure 4.4 illustrates
all of the metadata emitted by the compiler.
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The first two sections added to the binary contain stack map/call site records (struct
call site). The first two sections provide stack map records sorted by ID and program
location, respectively. These sections provide a dictionary lookup between stack map IDs
and program locations, which is used by the state transformation runtime to look up and
correlate call stack map records for the source and destination versions of the activation.
The call site records contain the following fields:

1. ID of the the stack map/rewriting site.

2. Index into the function record section referencing the metadata for the function en-
closing the call site.

3. Program location, i.e., return address of the function call defining the rewriting site.

4. Number of live values at the rewriting site.

5. Offset into the live value location record section

6. Number of architecture-specific live values

7. Offset into the architecture-specific live value record sections
In order to correlate stack map records between metadata generated for each ISA, the trans-
formation runtime uses a return address on the source stack to look up its stack map record,
which is tagged with a unique ID. The transformation runtime next looks up the destination
stack map record using the unique ID. The runtime then uses the source and destination

stack map records to locate live variables and to correlate return addresses found on the
source stack to the appropriate return addresses for the destination ISA.

The function field refere