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ABSTRACT

In recent years there has been a proliferation of parallel and heterogeneous architectures. As
chip designers have hit fundamental limits in traditional processor scaling, they have begun
rethinking processor architecture from the ground up. In addition to creating new classes of
processors, chip designers have revisited CPU microarchitecture in order to target different
computing contexts. CPUs have been optimized for low-power smartphones and extended
for high-performance computing in order to achieve better performance and energy efficiency
for heavy computational tasks. Although heterogeneity adds significant complexity to both
hardware and software, recent works have shown tremendous power and performance benefits
obtainable through specialization. It is clear that emerging systems will be increasingly
heterogeneous.

Many of these emerging systems couple together cores of different instruction set architec-
tures (ISA), due to both market forces and the potential performance and power benefits
in optimizing application execution. However, differently from symmetric multiprocessors
or even asymmetric single-ISA multiprocessors, natively compiled applications cannot freely
migrate between heterogeneous-ISA processors. This is due to the fact that applications are
compiled to an instruction set architecture-specific format which is incompatible on other
instruction set architectures. This creates serious limitations, as execution migration is a
fundamental mechanism used by schedulers to reach performance or fairness goals, allows
applications to migrate between heterogeneous-ISA CPUs in order to accelerate parallel
applications or even leverage ISA-heterogeneity for security benefits.

This dissertation describes system software for automatically migrating natively compiled
applications across heterogeneous-ISA processors. This dissertation describes the implemen-
tation and evaluation of a complete software stack on commodity scale heterogeneous-ISA
CPUs, emulating datacenters with heterogeneous-ISA systems or future systems that tightly
integrate heterogeneous-ISA CPUs via point-to-point interconnect. This dissertation de-
scribes a compiler which builds applications for heterogeneous-ISA execution migration. The
compiler generates machine code for every architecture in the system and lays out the appli-
cation’s code and data in a common format. In addition, the compiler generates metadata
used by a state transformation runtime to dynamically transform thread execution state be-
tween ISA-specific formats, allowing application threads to migrate between different ISAs.

The compiler and runtime is evaluated in conjunction with a replicated-kernel operating
system, which provides thread migration and distributed shared virtual memory across
heterogeneous-ISA processors. This redesigned software stack is evaluated on a setup con-
taining and ARM and an x86 processor interconnected via point-to-point interconnect over
PCIe. This dissertation shows that sub-millisecond state transformation is achievable. Ad-



ditionally, it shows that for a datacenter-like workload using benchmarks from the NAS
Parallel Benchmark suite, the system can trade some performance for up to a 66% reduction
in energy and up to an 11% reduction in energy-delay product.

This dissertation then describes an exploration into using hardware transactional memory
(HTM) to maximize scheduling flexibility. Because applications can only migrate between
ISAs at program locations with specific properties, there may be a significant delay between
when the scheduler wishes to migrate an application and when the application can respond
to the migration request. In order to reduce this migration response time, this dissertation
describes compiler instrumentation which uses HTM to allow the scheduler to force applica-
tions to roll back to the most recently encountered program location suitable for migration.
This is evaluated both in terms of overhead and responsiveness to migration requests.

In addition to showing the viability of the infrastructure for optimizing workload placement
in a heterogeneous-ISA datacenter, this dissertation also demonstrates utilizing the infras-
tructure to accelerate multithreaded applications. This dissertation describes a new OpenMP
runtime named libopenpop that is optimized for executing applications in heterogeneous-
ISA systems with distributed shared virtual memory. The runtime utilizes synchronization
primitives that enable scale-out execution across rack-scale systems and new work distri-
bution mechanisms that predict the best partitioning of parallel work across CPUs with
diverse architectural characteristics. libopenpop demonstrates sizable improvements over
a näıve OpenMP implementation – a 38x improvement in multi-server barrier latency, a
5.4x improvement in multi-server data reductions and a geometric mean speedup of 4.04x
for scalable applications in an 8-node x86-64 cluster. For a heterogeneous system composed
of a highly-clocked x86 server and a highly-parallel ARM server, libopenpop delivers up
to a 4.7x speedup and a geometric mean speedup of 41% across benchmarks from several
benchmark suites versus the best single-node homogeneous execution.

Finally, this dissertation describes leveraging the compiler and state transformation runtime
to provide enhanced security for applications. Because the compiler provides detailed infor-
mation about the stack layout of applications, it can be leveraged to defend against exploits
such as stack smashing attacks and return-oriented programming attacks. This dissertation
describes Chameleon, a runtime which uses the compiler and state transformation infras-
tructure to continuously re-randomize the stack layout and code of vulnerable applications
to thwart attackers. Chameleon attaches to applications using existing operating system
interfaces and periodically switches the application to new randomized stack layouts and
code by rewriting the stack. Chameleon enhances security with little overhead – it disrupts
a geometric mean 76.32% of code gadgets in benchmark binaries, randomizes stack element
locations with geometric mean 3 potential randomized locations, and has 1.1% overhead
when re-randomizing every 50 milliseconds, making it extremely difficult for attackers to
exploit target applications.

This work is supported in part by ONR under grants N00014-13-1-0317, N00014-16-1-2711, and N00014-18-

1-2022, and NAVSEA/NEEC under grants 3003279297 and N00174-16-C-0018.
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GENERAL AUDIENCE ABSTRACT

Computer processors have experienced unprecedented performance improvements over the
past 50 years. However, due to physical limitations of how processors execute, in recent years
this performance growth has started to slow. In order to continue scaling performance, chip
designers have begun diversifying processor designs to meet different performance and power
consumption targets. Processors specialized for different contexts use various instruction set
architectures (ISAs), the operations made available for use by the hardware. Programs built
for one instruction set architecture are not compatible with others, requiring developers to
build complex applications to manually bridge the gap. This leads to brittle applications and
prevents the system software managing the processors from adapting workloads to match
processor characteristics.

This dissertation presents the Popcorn Linux system software which provides transparent
support for running applications across computers composed of processors of multiple ISAs.
Popcorn Linux provides the ability to migrate applications between these processors without
requiring developers to add any application instrumentation – the system software manages
all the details of building and migrating applications. An evaluation of Popcorn Linux
shows that transparently migrating applications between diverse processors provides power
and performance benefits in a variety of scenarios. Additionally, this dissertation describes
leveraging the Popcorn Linux software infrastructure to harden applications against attackers
seeking to hijack applications for malicious purposes.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been a shift towards increasing parallelism and heterogeneity in
processor design [188, 189]. As traditional uniprocessors have hit the clock speed, power,
instruction-level parallelism and complexity walls, chip designers have been forced to re-
think computer architecture from the ground up. This has led to an explosion in new
architectures such as graphics processing units (GPUs), digital signal processors (DSPs)
and field-programmable gate arrays (FPGAs). Additionally, general-purpose CPUs have
been re-architected in order to meet energy and performance goals for varying form fac-
tors [107, 59, 15, 74, 17, 16]. It is clear that emerging computer systems will be increasingly
heterogeneous in order to achieve better energy efficiency and higher performance.

Recently there has been a tremendous amount of change in CPU microarchitecture in order
to reach different power and performance targets. With the advent of smartphones, CPU
designers have built processors that strike a balance between low power and reasonable
performance [107, 47]. The high-performance computing (HPC) community has embraced
CPU heterogeneity, with several of the top supercomputers in the Top500 list [193] mixing
symmetric chip-multiprocessors (CMP) with general-purpose and OS-capable [149] many-
core accelerators. Additionally, the HPC community has begun to include energy efficiency
as a primary design goal as they realized they could not continue scaling the number of
cores at current power consumption levels [75]. Chip designers have even begun to include
heterogeneous CPU cores together on a single die in order to achieve high performance and
energy efficiency for a variety of workloads [95, 141, 107, 15].

Due to the history of how different CPUs were created and the technology limitations of their
time, many commodity scale CPUs utilize different instruction set architectures (ISA) [157].
The ISA defines the hardware-software interface and provides a fundamental definition of
how software can execute on a given processor. This definition includes how data is encoded
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into binary representations, how memory is arranged for execution and what instructions are
available, among other aspects. The ISA is fixed for a particular CPU and thus the job of a
compiler is to map an application written in a source code language like C onto a processor’s
ISA. ISAs are not interoperable and therefore it is impossible for applications compiled for
one ISA to be run on another ISA with today’s compilers, operating systems and runtimes.

However, because CPUs that target different power and performance goals often use different
ISAs, systems composed of such heterogeneous-ISA CPUs provide an attractive means for
optimizing a variety of workloads. For example, application migration is desirable in such
systems in order to achieve higher performance and improved energy efficiency [155, 123,
204, 197, 127, 27]. Application migration allows the system software to optimize how a
given workload executes in the system to best utilize the available compute resources, e.g.,
placing applications in consideration of architectural characteristics or multiprogrammed
environments. Without application migration across heterogeneous-ISA CPUs, the system
has limited ability to adapt to application or workload characteristics and may miss out
on significant benefits. Thus, it is imperative that new techniques are developed to enable
execution migration across heterogeneous-ISA CPUs as they become increasingly interwoven
into the same systems, i.e., racks, servers or even systems-on-chips.

1.1.1 Heterogeneous Datacenters

The x86 instruction set architecture is the most widely used processor in datacenters to-
day [136, 166, 106]. Recently, however, there has been a push to introduce the ARM ISA
into the server space. Multiple chip vendors including AMD [11], Qualcomm [148], Am-
pere [74] and Cavium [48] are producing ARM processors for datacenters and the cloud.
Additionally, there is increasing vendor support behind the POWER ISA, with IBM form-
ing the OpenPOWER foundation by partnering with companies such as Google, NVIDIA,
Mellanox and others [80]. Interest in alternative processor architectures is driven by in-
creasing availability of ARM and POWER cloud offerings [137, 126, 55, 56] in addition to
traditional x86 services. These new processor architectures promise higher energy propor-
tionality [28], meaning more performance per watt and increased computing power per rack
(i.e., compute density).

Reducing electricity costs has become one of the most important concerns for datacenter
operators today [209]. Datacenter hardware and software designers have proposed many
techniques for improving energy efficiency while maintaining acceptable computational ca-
pacity [192, 209, 204, 198]. There are several software-based approaches that are effective for
conserving energy, including load balancing and consolidation. Load balancing spreads ap-
plications evenly across nodes so that no nodes are over-saturated and each server consumes
a reduced amount of power. Consolidation instead groups tasks on the minimal number
of nodes required so that service-level agreements (e.g., latency requirements) can be met.
The remaining servers are subsequently placed in a low-power state. Both solutions require
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migrating applications between nodes to dynamically adjust the computational capacity of
the datacenter with time-varying workloads. How can datacenter operators leverage these
techniques in datacenters with increasing ISA diversity?

1.1.2 Heterogeneous-ISA CMPs and Tightly-Coupled Systems

Recent works have demonstrated significant advantages for execution migration between
tightly-coupled cores that utilize the same ISA but with heterogeneous microarchitectures [95,
141, 187, 107, 123, 158, 108, 163, 179]. Existing mechanisms for execution migration in sym-
metric multiprocessors (SMP) work without modification for these new processors because all
cores share the same ISA and are interconnected via cache-coherent shared memory. In asym-
metric chip multiprocessors (ACMP), execution migration can be used to accelerate both
serial and parallel portions of applications with higher energy efficiency [158, 108, 163, 179].

More recent works by DeVuyst et al. [70] and Venkat et al. [197, 195] show that there are
further performance and energy benefits obtained by migrating between heterogeneous-ISA
cores versus ACMPs. Applications may exhibit affinities for certain ISAs based on character-
istics of code generated by the compiler, such as register pressure, memory addressing modes,
floating-point and SIMD computation, etc. Additionally, because emerging heterogeneous-
ISA CPUs have vastly different macro- and micro-architectures [74, 159, 97, 59, 100], they
also provide different levels of performance, energy efficiency and parallelism to acceler-
ate applications with diverse execution profiles – tightly coupling such processors together
can provide significant performance benefits [27]. Finally, migrating execution between
heterogeneous-ISA cores can provide a defense against security exploits such as return-
oriented programming attacks [196]. However, past works simulate a cache-coherent shared
memory processor with heterogeneous-ISA cores [70, 196] or couple together overlapping-ISA
CPUs [27]. How are applications built and migrated between fully-diverse heterogeneous-ISA
processors in commodity scale systems?

1.1.3 Challenges

These fundamental changes in processor design have forced developers to rethink how emerg-
ing heterogeneous systems are programmed. Utilizing heterogeneous-ISA CPUs places a
large burden on developers because they can no longer use a shared-memory programming
model [8]. Instead, developers must reason about application structure and memory layout
in order to obtain maximum performance [150, 92, 91]. Because these processors have dis-
tinct ISAs, source code compiled for one processor is not able to be run on another. This
harms programmability because developers must manually partition applications into pieces
and coordinate computation and data movement across architectures. It also hinders sys-
tem adaptability because the system software cannot freely schedule applications to meet
performance or fairness goals [155, 209].
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One solution for heterogeneous-ISA execution is to use a language-level virtual machine,
e.g., a Java virtual machine [128]. When using language VMs, the application is maintained
in an architecture-independent intermediate format which the VM interprets to execute the
application. Because the VM has complete knowledge of the application’s execution, includ-
ing code and data format, it can migrate applications between architectures [83, 84, 88, 54].
However, using these approaches requires applications be rewritten in the interpreted lan-
guage. Many datacenter applications, e.g., Redis [164], are written using natively-compiled
languages such as C and C++ in order to apply aggressive optimizations. Re-writing the
application in an interpreted language is a non-starter due to the loss of control – for ex-
ample, Java applications are required to use garbage collection for memory management.
Additionally, many VM-level techniques for migration rely on language-level mechanisms
(e.g., object serialization [154]), which are demonstrated to have high overheads.

Therefore, as heterogeneity becomes ubiquitous in all computing contexts it becomes in-
creasingly important to develop new techniques for seamless execution migration across
heterogeneous-ISA processors for natively-compiled applications.

1.2 Thesis Contributions

This dissertation presents a full software stack for enabling execution migration across
heterogeneous-ISA architectures. The prototype, named Popcorn Linux, includes an operat-
ing system, compiler and runtime which seamlessly migrates applications between an ARM
and an x86 processor interconnected over a high speed network. This work describes the de-
sign and implementation of the compiler and runtime components of Popcorn Linux, named
the Popcorn compiler toolchain and state transformation runtime. These components are
presented, which build applications and enable migration between heterogeneous-ISA CPUs
using capabilities provided by Popcorn Linux’s OS. In addition to the core infrastructure,
this dissertation describes leveraging Popcorn Linux for accelerating multithreaded applica-
tions and for hardening applications against security exploits. This dissertation makes the
following contributions:

� The design and implementation of the Popcorn compiler toolchain. The toolchain
builds applications suitable for migration by adjusting data and code layout, and by
automatically inserting migration points into the generated machine code. Addition-
ally, the compiler performs offline analysis to provide metadata for dynamic state
transformation. The toolchain builds multi-ISA binaries which the OS uses to recreate
an application’s virtual address space across heterogeneous-ISA CPUs.

� The design and implementation of the state transformation runtime. The state trans-
formation runtime transforms execution state between ISA-specific formats so that
threads of an application can migrate between architectures. It additionally provides
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a mechanism for initiating migration and for bootstrapping execution after the ap-
plication has migrated to the destination architecture. The runtime provides sub-
millisecond transformation latencies for benchmarks from the NAS Parallel Benchmark
(NPB) suite on an x86 and an ARMv8 CPU. Using Popcorn Linux (compiler, runtime,
OS), the dissertation demonstrates a 30% reduction in energy and an 11% reduction
in energy-delay product when load-balancing a multiprogrammed workload on top of
server-class x86-64 and ARMv8 CPUs.

� An exploration of using hardware transactional memory (HTM) to improve scheduler
responsiveness. Because applications cannot migrate at arbitrary locations, extensions
to the Popcorn compiler instrument generated code with transactional execution. This
allows the scheduler to abort speculative execution and roll back to the most recently
encountered migration point, enabling high responsiveness to scheduling requests. This
dissertation shows that using HTM reduces migration response time to 1.9 microsec-
onds but adds a geometric mean 13.45% overhead for benchmarks from NPB.

� The design and implementation of libopenpop, an OpenMP runtime optimized for
running multithreaded applications parallelized using OpenMP across systems running
Popcorn Linux. libopenpop optimizes multithreaded synchronization for distributed
shared virtual memory systems like Popcorn Linux and utilizes new workload distribu-
tion mechanisms to ideally leverage the compute capabilities of heterogeneous CPUs.
Using OpenMP benchmarks from NPB, Rodinia and PARSEC, libopenpop achieves
a geometric mean 4.04x speedup for scalable application on a small homogeneous clus-
ter. For a heterogeneous system composed of an x86-64 server and a high core count
ARMv8 server connected via InfiniBand, libopenpop achieves up to a 4.7x speedup
and a 41% geometric mean speedup.

� The design an implementation of Chameleon, a runtime re-randomization framework
for preventing stack smashing and return-oriented programming attacks. Chameleon
leverages the Popcorn compiler infrastructure to continuously randomize the stack
layout and code of target applications, transforming a thread’s execution state to match
the new randomization. Using Chameleon on benchmarks from SPEC CPU 2017 and
NPB, Chameleon disrupts a geometric mean 76.32% of code gadgets, randomizes stack
elements to on average one of three possible locations, and randomizes with an overhead
of 1.1% for a 50 millisecond re-randomization period.

Previous works present compiler and runtime systems for cross-ISA execution migration
in order to perform a design space exploration for heterogeneous-ISA chip multiproces-
sors [70, 196]. These works simulate a heterogeneous-ISA CMP with cache-coherent shared
memory, allowing the authors to demonstrate power and performance benefits of leveraging
multiple ISAs. However, no such CMP exists at the commodity-scale at the time of writing
this dissertation. Many ISAs are proprietary [13, 14] and even for open-license ISAs, their
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cache implementations have compatibility issues due to ISA-specific memory consistency se-
mantics [176, 10]. This dissertation instead proposes system software for cross-ISA execution
migration in systems composed of commodity scale hardware. While some of the Popcorn
compiler and run-time system components have similarities with DeVuyst et al. [70] and
Venkat and Tullsen [197], there are significant differences. In particular, the Popcorn com-
piler and state transformation runtime are co-designed with the Popcorn Linux OS to imple-
ment thread migration and memory consistency across non-cache-coherence heterogeneous-
ISA CPUs. This requires new low-level mechanisms for interacting with the OS, including
insertion of migration points, performing state transformation, initiating thread migration
and bootstrapping execution post-migration. The compiler also differs in that it does not
attempt to create a common stack layout but instead fixes up references to stack elements
at runtime. Additionally, the Popcorn compiler toolchain and state transformation handles
runtime migration for multithreaded applications, which are not explored by previous works
including [197]. A detailed discussion of the differences between the dissertation and [70, 197]
is presented in Chapter 2. Thus, to the best of our knowledge Popcorn Linux (OS, compiler,
runtime) is the first complete software architecture providing the ability to transparently
migrate threads of execution between commodity scale heterogeneous-ISA CPUs at runtime
without any application changes.

Using Popcorn Linux allows developers to more easily target future heterogeneous-ISA CPU
systems. In particular, because Popcorn Linux extends the shared memory abstraction
across non-cache-coherent CPUs, developers can re-use existing parallel programming mod-
els (e.g,. OpenMP [38] or Cilk [37]) and easily gain the benefits of heterogeneity. Existing
multithreaded applications work as-is on Popcorn Linux; developers do not have to rewrite
applications in a new programming model or environment to target new architectures. How-
ever, tuning applications to best take advantage of heterogeneous CPU systems poses a sub-
stantial challenge, as applications (and phases within applications) map differently to each
architecture and cause different amounts of memory consistency communication over the net-
work. libopenpop helps developers overcome these challenges by both minimizing cross-node
synchronization traffic and by automatically distributing parallel work in consideration of
system characteristics. Thus, Popcorn Linux helps developers regain programmability while
simultaneously allowing them to easily benefit from advances in computer architecture.

Finally, the prevalence of security exploits is leading to new ideas on how to thwart attackers.
In particular, security experts have begun devising new methods to prevent attackers from
gaining control over applications or leaking sensitive information. One successful approach
is to use randomization [34, 66, 203] to prevent the attacker from utilizing program structure
to attack vulnerable applications. Because the Popcorn Linux compiler generates rich stack
layout metadata and the state transformation runtime is proven to rewrite thread execution
state with small latencies, this infrastructure can be repurposed into a security context to
implement efficient and robust randomization.
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1.2.1 Popcorn Compiler Toolchain

This dissertation presents the Popcorn compiler toolchain, which builds multi-ISA binaries
suitable for migration across heterogeneous-ISA boundaries. The toolchain natively compiles
applications written in C and C++ for all ISAs in the system using a common frontend
and ISA-specific backends. The compiler automatically inserts migration points into the
source code at function call sites. The compiler runs several analyses over an intermediate
representation of the application to gather live data that must be transformed between ISA-
specific formats. The compiler generates metadata (added as extra sections in the multi-ISA
binary) describing the code and live data locations emitted for each architecture. The linker
aligns global data in a common format (including thread-local storage), and a final post-
processing step optimizes the application for efficient state transformation. The compiler
is built using clang and LLVM [160] for compilation and GNU gold [86] for linking. The
Popcorn compiler builds multi-ISA binaries with minimal changes to the core data layout
mechanisms of the compiler, which allows our implementation to be more easily ported to
new architectures unlike previous works [70, 197].

1.2.2 State Transformation Runtime

This dissertation presents a state transformation runtime for efficiently translating execution
state of threads between ISA-specific formats. The runtime cooperates with the operating
system scheduler to decide at which points to migrate. After the scheduler requests a mi-
gration, the runtime attaches to a thread’s stack and begins state transformation. Using
the metadata generated by the compiler, the state transformation runtime efficiently recon-
structs the thread’s current live function activations in the format expected by the destina-
tion ISA, including transforming a thread’s register state, call frames and pointers to other
stack objects. After reconstructing the stack, the runtime invokes the OS’s thread migration
mechanism and bootstraps on the destination architecture to resume normal execution. This
dissertation also develops a methodology for invoking migration for multi-threaded applica-
tions in a real system. This dissertation describe how threads cooperate with the OS both
before and after migration for seamless migration. It describes how the state transformation
runtime attaches to and transforms an individual thread’s state. Using this setup, this dis-
sertation demonstrates that state transformation can be performed in under a millisecond,
and oftentimes under several hundred microseconds, for real applications from the NAS Par-
allel Benchmarks suite [23]. Additionally, this dissertation presents an evaluation of Popcorn
Linux that demonstrates up to a 66% reduction in energy and up to an 11% reduction in
energy-delay product [119] for a multiprogrammed, datacenter-like workload.
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1.2.3 Scale-Out and Heterogeneous OpenMP

This dissertation presents the design of an OpenMP [38] runtime named libopenpop opti-
mized for systems composed of non-cache-coherent CPUs connected via distributed shared
memory. In particular, libopenpop rebuilds many of the core components of OpenMP to
prevent excessive overheads when running across multiple non-cache-coherent CPUs, where
each CPU is designated as its own domain. libopenpop establishes a hierarchy of threads
across CPUs and breaks OpenMP functionality down into local and global components. Us-
ing the hierarchy allows libopenpop to minimize the number of threads synchronizing on
global data and therefore minimizes the amount of data movement required for synchro-
nization. Using this thread hierarchy, libopenpop optimizes synchronization primitives like
barriers, reductions and work distribution mechanisms. On a small cluster, libopenpop
demonstrates a 38x speedup in multi-server barrier latency, a 5.4x speedup in multi-server
reduction latency, and a geometric mean speedup of 4.04x for scalable applications.

In addition to refactoring the OpenMP runtime for scalability across non-cache-coherent
CPUs, libopenpop introduces new parallel work distribution primitives that allow the
OpenMP runtime to adapt parallel execution to best leverage the heterogeneous CPUs com-
prising the system. libopenpop monitors data movement (i.e., page transfers in distributed
shared memory systems) and execution characteristics during parallel execution. Using this
information, libopenpop determines whether to execute parallel computation across multiple
CPUs or distribute work to only a single CPU. In the former case, libopenpop determines
how much work to give each CPU to balance performance and minimize execution time.
In the latter case, libopenpop automatically determines which CPU is best suited for a
given computation. For an x86 machine and ARM machine interconnected via Infiniband,
libopenpop demonstrates up to a 4.7x speedup and a geometric mean speedup of 41% over
the best single-node homogeneous execution.

1.2.4 State Transformation for Runtime Re-randomization

This dissertation presents Chameleon, a runtime re-randomization framework that utilizes
the Popcorn compiler to continuously re-randomize the stack layout and code of applica-
tions. Chameleon is an out-of-band framework, meaning that it executes in an entirely
separate context from the target application and attaches to it via existing operating system
interfaces. Chameleon’s goal is continuously change the application’s state so as to thwart
exploits such as stack smashing attacks [152] and return-oriented programming (ROP) ex-
ploits [177]. Chameleon continuously generates new sets of randomized application code for
target applications. Periodically, Chameleon pauses the target application and atomically
switches it to the newly randomized code, transforming the target application’s execution
state from the previously randomized layout to the newly randomized layout. In this way,
would-be attackers have a diminishing window of time in which to discover how Chameleon
has laid out the application’s state, craft an exploit and launch the attack. Chameleon dis-
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rupts a geometric mean 76.32% of gadgets discovered by a gadget finding tool in benchmark
binaries. Additionally, Chameleon can randomize the locations of stack elements to an av-
erage of 3 different locations per stack element, forcing the attacker guess where buffers are
located with low probability. Finally, Chameleon provides these security benefits with low
overhead – a geometric mean 1.1% overhead when re-randomizing the target application ev-
ery 50 milliseconds. This is significantly better than other dynamic binary instrumentation
(DBI) solutions, which add 14.9% or greater overhead [66, 203, 196].

1.3 Thesis Organization

This dissertation is organized as follows. The dissertation first describes the core Popcorn
compiler infrastructure, including compiler and state transformation runtime. Next, the dis-
sertation describes how the infrastructure is leveraged for accelerating multithreaded applica-
tions. The dissertation finally describes how the infrastructure is leveraged for enhancing the
security of applications. Chapter 2 summarizes related work in each of the aforementioned
areas, including execution migration in heterogeneous-ISA systems, scale-out/heterogeneous
parallel execution and security. Chapter 3 describes Popcorn Linux, the replicated kernel op-
erating system used to provide execution migration across ISA boundaries. It also formalizes
the state of an application and describes the requirements for the compiler and state transfor-
mation runtime. Chapter 4 describes the Popcorn compiler toolchain which is used to analyze
and build applications for cross-ISA migration. Chapter 5 describes the state transforma-
tion runtime and how threads migrate between architectures. Chapter 6 evaluates overheads
associated with the state transformation runtime and energy benefits obtained when using
execution migration in a datacenter context. Chapter 7 describes an exploration into using
HTM to reduce migration response time. Chapter 8 describes libopenpop, including how
it restructures OpenMP execution for cross-node execution. Chapter 9 evaluates scaling out
OpenMP execution on a cluster. Chapter 10 describes how libopenpop makes workload
distribution decisions in heterogeneous CPU systems. Chapter 11 evaluates libopenpop’s
ability to leverage diverse CPU architectures. Chapter 12 describes Chameleon and how it
uses the Popcorn compiler infrastructure to implement continuous re-randomization. Chap-
ter 13 evaluates the security and performance properties of Chameleon. Finally, Chapter 14
concludes and describes future work in each of these areas.



Chapter 2

Related Work

2.1 Compiler and Runtime Support for Heterogeneous

Architectures

Traditionally, developers have programmed heterogeneous architectures using a variety of
programming models and languages. NVIDIA’s CUDA [150] provides a programming lan-
guage for NVIDIA GPUs. Using CUDA, developers partition their application into host
(CPU) and device (GPU) code. Device code is offloaded to the GPU, and users must pro-
vide memory consistency by manually moving data between host and device memory spaces.
More recently, CUDA offers managed shared memory between the host and device, but
provides limited consistency guarantees. Thus, execution is offloaded to devices only at
predefined locations and cannot be adapted in the face of changing workload conditions.
OpenCL [92], OpenMP 4.0 [38] and OpenACC [153] offload computation to different target
processors, but suffer from the same limitations as CUDA. Popcorn Linux provides strong
memory consistency guarantees using distributed shared virtual memory and does not re-
quire applications to be partitioned between devices.

Saha et al. [170] describe an OS mechanism for shared memory between single-ISA hetero-
geneous cores interconnected over PCIe. Their programming model allows developers to
open shared memory windows between the interconnected processors. These windows have
a relaxed consistency, requiring developers to insert synchronization points to make memory
writes visible across the PCIe bus. However, this programming model does not enable ex-
ecution migration between interconnected processors, but rather uses a similar partitioning
approach to CUDA. Popcorn Linux provides stronger consistency guarantees and flexible
execution migration.

The Message Passing Interface (MPI) [91] provides a portable API for parallel processing
using message passing for communication between processes. Processes execute in sepa-
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rate address spaces but can share memory by manually sending and receiving data. The
OpenMPI implementation [81] of the MPI standard supports serializing and de-serializing
memory into ISA-specific formats, hiding cross-architecture data representation issues be-
hind the interface. However MPI does not support execution migration at arbitrary points
– developers manually insert data transfers and coordinate execution across processes on
different machines within the application source code. Similarly to the programming mod-
els listed above, this hinders programmability and the flexibility of the system to adapt to
changing workload conditions. PC3 [76] uses a modified C/MPI compiler to instrument MPI
applications for execution migration in a cluster and uses checkpointing to transfer state.
However developers must manually annotate checkpointing locations and the compiler only
accepts MPI applications that have well-typed code. Furthermore, the checkpointing system
requires annotating data with descriptors as the data comes into and goes out of scope,
adding significant runtime overhead for metadata collection in addition to checkpointing
costs. Popcorn Linux allows efficient and flexible execution migration between processors
and distributed shared virtual memory.

The Lime programming language [21] and the Liquid Metal runtime [20] together implement
a language system for seamless execution across heterogeneous architectures. Developers
build data-flow applications in a Java-based language. The runtime distributes computa-
tion nodes of the data-flow graph across architectures and uses serialization coupled with
message passing to automatically send data between architectures. The system is limited in
that developers must use a data-flow programming model (they cannot use traditional SMP
semantics) and they must manually annotate properties of data types so that the runtime
can transfer state. The Dandelion compiler [168] and PTask runtime [167] are similar in that
programmers develop data-parallel applications in a high-level language (e.g., C#) which is
decomposed into a data-flow execution model. The runtime then distributes computation
nodes to devices in a cluster, automatically managing communication between the differ-
ent contexts. Like Lime and Liquid Metal, developers must use a restrictive programming
language, and the system is designed solely for data-parallel applications. Popcorn Linux
lets programmers develop applications using a shared memory programming model across
heterogeneous-ISA architectures.

2.2 State Transformation

Various techniques have been developed to translate state between machine-specific formats.
Dubach and Shub [73] and Shub [180] describe a user-space mechanism for single-threaded
processes to migrate themselves between heterogeneous machines. They describe modifica-
tions to executables needed for migration, including multiple code sections, data padding
(using the greatest common denominator of data sizes and alignments), and how to trans-
late data types between architecture-specific formats. However this approach is completely
user-controlled, and furthermore incurs large overheads for state transformation. Work by
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Zayas [208] shows that state transformation can also be applied as pages are migrated be-
tween machines, rather than in bulk at migration time. Theimer and Hayes [191] describe an
alternative translation approach where a program’s execution state is lifted into a machine-
independent format and recompiled to recreate the state on the target machine. All of
these approaches were designed assuming the main bottleneck in process migration was
communication and not state translation. With newer high-bandwidth networking technolo-
gies such as PCIe point-to-point connections [183] or Infiniband [18], this is no longer the
case. The Popcorn compiler toolchain and state transformation runtime avoid most state
transformation overheads by construction – applications runs on architectures which use the
same primitive data sizes and alignments. Additionally, the compiler and runtime minimize
overheads through alignment and by only transforming a small portion of application state.

Attardi et al. [19] describe a number of user-space techniques for heterogeneous-ISA execu-
tion migration. They describe running the program in a machine-independent format via
interpretation, re-compiling the application on the fly for a different target ISA, and trans-
lating runtime state between machine-specific formats. The TUI system [181] implements
a combination of these approaches – it lifts the application’s state into an intermediate
format and then lowers it to the target machine’s format. Additionally, TUI implements
migration of I/O descriptors using a custom standard C library and an external remote
server. These approaches incur significant translation overheads, however. As mentioned
previously, Popcorn elides much of this overhead through careful data layout and minimal
runtime transformations. Popcorn Linux also pushes cross-ISA I/O functionality into the
kernel.

More recently, Ferrari et al. [77] propose a mechanism for state checkpointing and recovery
using introspection. They implement a source-to-source compiler which modifies applications
to periodically save stack data in an architecture-independent format. The compiler also
refactors functions to be able to restore this state after a migration. This technique is very
invasive in terms of source code modifications, and incurs significant overhead for periodic
state saving procedures which record information for all functions on the stack. The Popcorn
compiler toolchain makes minimal transformation to code, other than inserting migration
points.

Makris and Bazzi [135] present a mechanism for stack transformation to be used for in-place
software updates. A compiler performs source-to-source transformation so that threads
recursively save their stack (including all variables within call frames) before migrating. The
threads then reconstruct their stack with the new version of the application. Their approach
attempts to solve a harder problem of reconstructing state for a different version of the
application, and thus requires user-driven help. The state transformation runtime focuses
on transforming state between machine-specific versions of the same application, rather than
a modified application for the same ISA.
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2.3 Heterogeneous-ISA Execution Migration

von Bank et al. [200] formalize a model of procedural applications executing in a system.
They identify the various components of an application, including program data and machine
code, that must be equivalent in order for execution to be migrated between architectures at
points of equivalence. They define these locations as program points where a transformation
exists between different representations of an application, i.e., compilations for different
targets. The Popcorn compiler toolchain builds upon their definition of points of equivalence.

Many works use language-level virtual machines to perform heterogeneous-ISA migration.
Heterogeneous Emerald [184] implements a TUI-like heterogeneous migration system for the
Emerald language. PadMig [83] and JnJVM [84] migrate threads of execution between Java
virtual machines (JVM), using Java’s reflection capabilities to serialize/de-serialize objects
between architecture-specific formats. COMET [88] and CloneCloud [54] also use the JVM
to transparently offload portions of applications from mobile devices to the cloud over the
network. COMET additionally uses a DSM system to ship data between the device and
the cloud. Neither approach implements full execution migration, but only offloads a por-
tion of the application to the cloud. The drawbacks with all language-level approaches is
that applications must be implemented using the specified language. A significant amount
of legacy code is therefore not suitable for migration in these systems. For languages like
Java, applications may experience severe performance degradation versus being written in
a compiled language like C. Finally, language introspection mechanisms have high latency,
meaning translation costs may dominate execution migration overheads. Virtual machines
like QEMU [31] also enable heterogeneous-ISA migration, but experience unacceptably high
performance losses. Popcorn Linux provides cross-ISA execution migration for natively com-
piled applications, allowing native-execution speeds and low migration overheads.

More recent works explore process migration in heterogeneous-ISA systems for native appli-
cations. Lee et al. [121] propose a compiler and runtime for refactoring applications to offload
computation from ARM smartphone CPUs to x86 server CPUs. Their work is restricted to
only offloading portions of smartphone applications and requires expensive runtime transla-
tion between ISA-specific data layouts. Barbalace et al. [27] describe an operating system and
compiler for offloading application computation from an x86-64 Xeon to an overlapping-ISA
Xeon Phi processor. The compiler prepares applications for execution on both architectures,
but there is no mechanism to perform state transformation – migrated threads must return
to the host after executing the offloaded computation. DeVuyst et al. [70] and Venkat and
Tullsen [197, 196] implement process migration in simulated heterogeneous-ISA CMPs in
order to perform a design space exploration. All three works use a custom compiler and
runtime to migrate threads between heterogeneous-ISA cores which shared cache-coherent
shared memory. The compiler generates metadata describing a state transformation function
for individual call frames. The runtime performs dynamic binary translation (DBT) when a
migration is requested until the application reaches a location where state can be translated
and native execution can resume. Popcorn Linux, the Popcorn compiler toolchain and the
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state transformation runtime differ in several ways:

1. [70, 197, 196]’s prototype uses a simulated heterogeneous-ISA CMP with cache-coherent
shared memory. Furthermore, [70, 197, 196]’s prototype does not incorporate an op-
erating system. Popcorn Linux demonstrates execution migration on real hardware
using an ARM and an x86 processor interconnected via high-speed networking using
a complete software stack.

2. [70, 197, 196]’s prototype does not support multi-threaded applications. [70, 197,
196]’s compiler does not support aligning thread local storage, and [70, 197, 196]’s
runtime does not provide a solution for performing state transformation in a multi-
threaded environment. The Popcorn compiler toolchain includes a linker which lays
out thread local storage in a common format for all ISAs in the system, and the state
transformation runtime is designed to be thread safe so that threads in multi-threaded
applications can migrate between architectures without blocking.

3. In order to perform stack transformation between ISA-specific formats, [70, 197, 196]’s
compiler modifies each function’s call frame layout to adjust the size, layout of individ-
ual sections of the call frame, and layout of objects within the call frame. [70, 197, 196]’s
compiler generates a mostly-identical call frame layout across different compilations of
the application. This adds complexity to the compiler including changing the flow of
the compilation pipeline, making porting [70, 197, 196]’s toolchain to new architectures
difficult. The Popcorn compiler toolchain instead minimizes changes to the compilation
pipeline and pushes handling of pointers to stack elements into the state transforma-
tion runtime. The evaluation demonstrates that even with handling pointers to stack
elements at runtime, state transformation latencies are low.

4. [70, 197, 196]’s work does not describe how machine code is loaded into memory,
and in particular how after migrating to another ISA, a thread is able to locate its
ISA-specific code without rewriting function pointers. Popcorn Linux provides this
mechanism transparently to application threads.

5. [70, 197, 196] do not describe how a migration or state transformation is invoked, but
rather only mention that a migration is triggered through some external event. In our
system, the Popcorn compiler toolchain inserts migration points into the source code,
trigger migrations using the operating system, and use a library which lets threads
transform their own stack.

6. [70, 197, 196]’s prototype allows migration at arbitrary points by performing dynamic
binary translation (DBT) up until an equivalence point. Popcorn Linux does not
have this ability, but rather the OS and application cooperate to migrate threads.
Although this hinders the scheduler’s flexibility, it significantly reduces migration costs
and runtime complexity. [70, 197, 196]’s results show that DBT can cause up to a
several millisecond delay when migrating.
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2.4 Scaling Applications to Rack-Scale Systems

Traditionally, developers have used the message passing interface (MPI) to distribute exe-
cution across domains [91]. Deemed the “assembly language of parallel processing” [118],
MPI forces developers to orchestrate parallel computation and manually keep memory con-
sistent across domains through low-level send/receive APIs, which leads to complex appli-
cations [27]. Partitioned global address space (PGAS) languages like Unified Parallel C [57]
and X10 [49] provide language, compiler and runtime features for a shared memory-esque
abstraction on clusters. How threads access global memory on remote domains is specific
to each language, but usually relies on a combination of compiler transformations, runtime
APIs, and user-specified memory consistency semantics. Additionally, PGAS languages re-
quire users to define thread and data affinities, i.e., which threads access what data. This
hinders system flexibility in adapting to multiprogrammed workloads. More recently, many
works have re-examined distributed shared memory abstractions in the context of new high-
bandwidth interconnects. Grappa [145] provides a PGAS programming model with many
runtime optimizations to efficiently distribute computation across a cluster with high-speed
interconnects. Grappa relies on a tasking abstraction to hide the high costs of remote mem-
ory accesses through massive parallelism, meaning many types of applications may not fit
into their framework.

Previous works evaluate OpenMP on software distributed shared memory systems [140,
29, 96]. These approaches require complex compiler analyses (e.g., inter-procedural variable
reachability) and transformations (software DSM consistency boilerplate, data privatization)
in order to translate OpenMP to DSM abstractions, which limit their applicability. OpenMP-
D [118] is another approach whereby the compiler converts OpenMP directives into MPI calls.
This process requires sophisticated data-flow analyses and runtime profiling/adaptation to
precisely determine data transfers between domains. Additionally, OpenMP-D limits its
scope to applications that repeat an identical computation multiple times. OmpCloud [207]
spans OpenMP execution across cloud instances using OpenMP 4.5’s offloading capabili-
ties [38]. However, computation must fit into a map-reduce model and developers must
manually keep memory coherent by specifying data movement between domains.

All of these previous works have limitations in that either the developer must rewrite ap-
plications in a new programming model or have limitations when extending existing shared
memory parallel programming models (e.g., OpenMP) into multi-domain settings. Popcorn
Linux instead provides the ability to run existing shared memory applications across multi-
ple domains. However, näıvely executing multithreaded applications across multiple domains
can cause excessive traffic in software distributed shared memory systems.
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2.5 Work Distribution in Heterogeneous Systems

Currently, developers have limited options in terms of programming models to support ex-
ecution across heterogeneous-ISA systems. Shared-memory parallel programming models
like OpenMP [38] and Cilk [37] provide source code annotations to automate parallel com-
putation, but do not support execution across cache-incoherent, heterogeneous-ISA CPUs.
MPI [91] gives developers low-level primitives to distribute execution, manage separate phys-
ical memories and marshal memory between heterogeneous-ISA CPUs. However for asym-
metric CPUs, developers must manually assign parallel work and transfer the required data
to maximize performance, leading to complex and verbose applications with static, non-
portable workload distribution decisions. PGAS frameworks like UPC [57], X10 [49] and
Grappa [145] support cross-node execution and memory accesses, but do not support sharing
data between heterogeneous-ISA CPUs. Even if heterogeneous-ISA execution was possible,
changing workload distribution decisions in light of system characteristics is cumbersome –
data is not migrated between nodes for locality, meaning re-balancing work distribution de-
cisions can cause additional network transfers and thus more overhead. Cluster frameworks
like SnuCL-D [112] and OmpSs [44] provide coarse-grained work distribution in clusters by
assigning multiple independent parallel computations to individual heterogeneous processors.
They do not consider fine-grained work-sharing of a single parallel computation or automatic
workload placement, and require developers to specify data movement (device data transfer
commands for SnuCL-D, in/out/inout clauses for OmpSs). In comparison to these works,
libopenpop automatically distributes work in consideration of platform characteristics and
leverages transparent and on-demand DSM to manage memory consistency for flexibility
and programmability.

Several works explore fine-grained work distribution in CPU/GPU systems. Qilin [133] is
a compiler and runtime that enables CPU/GPU workload partitioning but requires devel-
opers to rewrite computation using a new API. Unlike libopenpop, Qilin does not make
distribution decisions online but must profile multiple full executions before determining the
optimal workload split. Kofler et al. [114] present a machine learning approach to determin-
ing workload distribution, but require sophisticated analyses with a custom compiler and
the machine learning model must be retrained for each new hardware configuration. Simi-
larly, Grewe and O’Boyle [90] present a machine learning approach that requires per-system
retraining. Scogland et al. [174] present CPU/GPU workload distribution approaches for
accelerated OpenMP. However their approach only works for dense array-based computa-
tions and developers must manually specify data movement between devices. All of these
approaches only explore CPU/GPU systems. Additionally, these approaches are limited by
the visible split in CPU and GPU memory and require developer intervention to help marshal
data. Additionally, none of these approaches provide optimized cross-node synchronization
primitives and none consider situations where cross-node execution may not be beneficial.

There are a number of schedulers designed to improve task-parallel workloads (as opposed
to data-parallel workloads targeted by libopenpop) on single-ISA heterogeneous systems,
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e.g., ARM big.LITTLE [89]. The Lucky scheduler [158] measures the energy efficiency of
multiprogrammed workloads via performance counters and uses lottery scheduling to time
multiplex applications across big and little cores. The WASH AMP scheduler [108] classifies
threads in applications written in managed languages (e.g., Java) using performance counters
and schedules threads to remove bottlenecks (e.g., critical sections). Other works like meeting
point thread characterization [163] and X10Ergy [179] propose other means for characterizing
and accelerating individual threads on single-ISA heterogeneous platforms. All of these works
focus on determining the “critical” task in task-parallel workloads and placing it on the most
performant core. Additionally, none deal with cache-incoherent heterogeneous-ISA CPUs,
meaning they do not consider data marshaling and cross-node memory access costs.

None of these works fully automate workload distribution for multithreaded applications
across heterogeneous-ISA CPUs. This dissertation describes how libopenpop is extended to
analyze execution characteristics and automatically distribute work to leverage the compute
capabilities of diverse CPUs.

2.6 Runtime Re-randomization

In recent years there has been a large amount of security research focused on analyzing
and defending against return-oriented programming attacks [177]. These attacks stitch to-
gether small “gadgets” from existing code inside the application to build arbitrary function-
ality. This obviates the need for injecting malicious code into the target application and has
spawned a whole field of security research.

There are two classes of defenses that have emerged to disrupt ROP-style attacks: control-
flow integrity [7] and code diversity [120]. In the former, the compiler or runtime system
instruments the application to only allow control flow transfers that were originally en-
coded in the application, e.g., no jumps to arbitrary instructions as used by ROP attacks.
However, CFI defenses must make sacrifices in both performance and completeness, as in-
strumentation can add significant overhead (Abadi et al. report 16% overhead on average
for SPEC CPU 2000 [7]) and new types of attacks build exploits out of correct control flow
transitions [172]. Instead, many defenses propose using code diversity (i.e., utilize multiple
semantically-equivalent code variants) such as code randomization to disrupt gadgets and
gadget chains used by ROP attacks. Address space layout randomization (ASLR) [178] uses
position-independent code to randomize the locations of application sections (code, data,
heap, etc.). Unfortunately, ASLR only provides coarse-grained randomization – memory
leaks allow attackers to discover the base addresses of sections and de-randomize an applica-
tion’s layout. Newer forms of code diversity apply ASLR-like principles at a finer granularity,
e.g., randomizing the locations of functions (ASLP [111] and Oxymoron [22]) or basic blocks
within a function (binary stirring [202]). Readactor [64] uses a custom hypervisor to map
code pages (including specially-generated function trampolines) with read-only permissions
and mitigates memory disclosures by forcing all control flow to go through the trampolines.
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This leads to an average overhead of 6.4%, but uses a complex software architecture and
is specific to x86-64. Other defenses instead randomize the code in-place, re-arranging in-
structions within a single basic block (i.e., sequence of instructions ending in control flow),
replacing sequences with semantically equivalent but different instructions and re-assigning
registers and changing the location of stack slots [156, 115]. All of these approaches only
perform one randomization at target application load time.

With the advent of attacks such as JIT-ROP [182] that dynamically discover gadgets (i.e.,
post-randomization), new defenses were proposed that provide other forms of randomization
during runtime. RuntimeASLR [131] tracks code pointers and randomizes the code layouts
of forked children (rewriting the pointers to reflect the new code locations) to thwart Blind-
ROP attacks on web servers. However, RuntimeASLR is only applicable to server-style
applications with a master/worker model such as web servers. Additionally, RuntimeASLR
adds significant overhead in the master process for tracking pointers. Isomeron [66] creates
two copies of each function that are semantically equivalent but implement functionality
using different sets of instructions and dynamically selects between them at runtime, forcing
gadget compilers to guess which version of each function is being used with decreasing odds
of success. HIPStR [196] uses a similar idea but also adds the ability to switch between het-
erogeneous ISAs to add extra entropy to the randomization. Both works require the use of
a dynamic binary instrumentation (DBI) or dynamic binary translation (DBT) framework,
and thus add significant overheads to normal execution. TASR [34] and Shuffler [203] con-
tinuously re-randomize the locations of code; TASR uses compiler and kernel modifications
to add code pointer tracking, whereas Shuffler uses a layer of indirection to capture all code
pointer references. Again, however, these approaches create significant performance over-
head – TASR requires complete and correct debugging information, limiting which compiler
optimizations can be applied, and Shuffler’s code transformations add significant normal
overhead. These works add 30%-40% and 14.9% overhead, respectively, to normal baseline
execution. Smokestack [9] continually randomizes the layout of stack frames by permut-
ing stack slot elements for every invocation of a function. While it incurs low overheads
for less predictable permutation selection algorithms, Smokestack only targets data-oriented
programming attacks and hence is susceptible to other forms of code-reuse attack. Addition-
ally, it utilizes Intel-specific AES instruction extensions (although other vendor-specific AES
instructions could potentially be used). CodeArmor [52] decouples the code address space
into virtual and concrete instances. Code is instrumented at compile time to use a linear
translation to convert virtual code references to concrete addresses which are continuously
randomized; addresses simply use the updated linear translation to switch between ran-
domizations. However, CodeArmor incurs a 6.9% average overhead for compute-intensive
applications or a 14.5% overhead for server applications and uses x86-64-specific segment
registers.

The large number of randomization frameworks suggest that diversity-based defenses are
more popular than control flow integrity defenses. However, previous randomization ap-
proaches either only perform an initial randomization [202, 111, 156, 115] and are thus
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susceptible to dynamically constructed exploits or require invasive, complex and slow instru-
mentation frameworks [66, 196, 34, 203]. Instead, Chameleon uses in-place code randomiza-
tion (similarly to Pappas et al. [156] and Koo et al. [115]) and performs re-randomization
outside the context of the target, providing both code diversity and low overhead.



Chapter 3

Background

This work presents compiler and runtime support for seamlessly running applications across
heterogeneous-ISA CPUs in emerging systems. There are many benefits to exploiting these
systems, including higher performance, better energy efficiency, increased scalability, and
stronger security mechanisms [70, 197, 196, 27, 127, 151]. All of these benefits require
thread migration between processors in the system. Thread migration is the act of moving
a thread’s execution context (including live register state, runtime stack, page mappings,
etc.) between different processor cores in a system [186]. Current monolithic kernel OSs like
Linux provide thread migration in SMP systems through hardware and OS mechanisms [155].
However, thread migration across heterogeneous-ISA processors requires additional compiler
and runtime support due to the fact that the compiler builds the application specifically for
a processor’s ISA.

This work provides several important components for Popcorn Linux, a replicated-kernel
operating system designed to provide OS support across diverse processors. This work
describes the design of the Popcorn compiler toolchain and state transformation runtime for
Popcorn Linux, all of which work together to replicate an application’s execution environment
across a tightly coupled heterogeneous-ISA system.

Section 3.1 describes the design of Popcorn Linux’s OS and the facilities it provides for
execution migration. Section 3.2 provides a formal definition of application state and how
the compiler, runtime and OS cooperate to ensure it accessible across processors of different
ISAs. Finally, Section 3.3 describes the expectations of the compiler and runtime when
constructing an application’s execution state.

20



Robert F. Lyerly Chapter 3. Background 21

3.1 Replicated-Kernel Operating Systems

Traditional process-model monolithic operating systems such as Linux maintain all operating
system services and state in a single kernel instance, which operates as a single process in
the system. The kernel is responsible for managing all devices in the system, many of which
require interacting with system- or architecture-specific interfaces. The kernel provides a
series of abstractions which hide low-level hardware details from applications executing in
the system. The kernel must handle virtual memory management, disk access, networking,
etc., which require ISA-specific implementations. Because of this, the kernel is heavily tied
to and must be compiled specifically for the underlying architecture.

Recent work has begun to question traditional OS architecture due to increasing core counts
and heterogeneity. The multikernel [30] is a new OS design which treats a high core count
shared memory machine as a distributed system. The multikernel is designed to address
scalability and heterogeneity barriers by distributing pieces of the system across multiple
kernels. The multikernel boots several instances of the kernel, each of which owns a partition
of the physical memory and a subset of available devices. Kernels communicate via message
passing to share access to devices, but applications execute in a distributed fashion across
the kernel instances. Because of this, shared-memory applications must be rewritten to
take advantage of the multikernel. Unlike microkernels [124] which move kernel services
into separate processes that communicate via message passing, each kernel instance in a
multikernel is a full-fledged monolithic kernel capable of moderating all devices which it
owns.

The replicated-kernel OS [27] is an extension of the multikernel which expands shared-
memory programming support to a multiple-kernel OS. Figure 3.1 shows the architecture
of a replicated-kernel OS, including the interface presented to applications. The replicated-
kernel OS is similar to the multikernel in that multiple kernel instances run simultaneously
and system resources are distributed among them. However rather than exposing the dis-
tributed nature of the OS, the kernel instances work together to present a single system image
to applications executing in the system. Threads of an application can migrate between ker-
nels, and the application’s address space and OS state are replicated so that threads execute
in an identical operating environment. Because the OS mediates all access to devices (re-
quiring applications to use the system call interface), applications can use traditional POSIX
interfaces for disk, networking, process control, etc. The kernels coordinate access to devices
in order to provide services regardless of where the application executes. This architecture
allows applications to continue to use a shared-memory programming model, while the OS
architecture can be adapted to suit different levels of parallelism and heterogeneity.
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Figure 3.1: Replicated-kernel OS architecture and application interface

3.1.1 Thread Migration

In a replicated-kernel OS, each kernel owns and is run on a subset of the available processors
in the system. Because kernels have a number of ISA-specific components, in heterogeneous-
ISA systems a kernel instance is run on each set of same-ISA processors (called a processor
island). For example, in a heterogeneous-ISA platform containing an x86 CMP intercon-
nected to an ARM CMP, the replicated kernel OS would run one kernel instance on the
x86 processor island and another instance on the ARM processor island. The scheduler can
migrate application threads between processors of different kernels, or threads can migrate
themselves by setting their CPU affinity to a processor owned by a specific kernel.

The replicated-kernel OS enables thread migration between kernels through the use of shadow
threads. When a thread migrates from a source to a destination kernel, the destination
kernel spawns a new thread and the original thread is put to sleep on the source kernel.
In this scenario, the original thread that is put to sleep is known as a shadow thread.
The newly spawned thread is populated with the original thread’s execution context and
resumes execution on the destination kernel. The replicated-kernel OS keeps track of which
shadow threads correspond to which new threads executing on the kernels in the system.
All thread contexts are kept alive until the application exits, at which time the kernels
broadcast teardown messages that trigger a cleanup of all thread contexts associated with
the application [109].

At which program locations threads are able to migrate depends on which ISAs are available
in the system. If all processors use the same ISA, then threads can migrate between kernels
at arbitrary locations due to the fact that all threads execute using the same implementa-
tion of the application, i.e., the same data layout and machine code. From the application’s
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point of view, this is equivalent to migrating between cores in an SMP multiprocessor. If
kernels execute on processor islands of different ISAs, then threads can only migrate at
pointwise-equivalent program locations [200], known as equivalence points, in the appli-
cation. Equivalence points are matching program locations in two separate implementations
of an application (i.e., two compilations of the application for different ISAs) that satisfy
three properties:

1. At the specified program location, the set of live variables for both implementations
are equivalent. This means that there are the same number and types of live variables
at the program location.

2. All variables have been stored to memory, i.e., no variables are stored in registers.
While seemingly very strict, the ISA’s calling convention satisfies this requirement.
Any values required to be saved will have been saved as part of the register save/restore
procedure except for the outermost frame. At an equivalence point, a runtime can take
a snapshot of current registers, thereby placing all live values into memory.

3. The structure of the two computations must be similar, i.e., the result of a set of
computations must be equivalent. The granularity of this sub-computation equivalence
can be adjusted from a single instruction up to the entire application’s execution. A
finer granularity reduces possible compiler optimizations, while a coarser granularity
limits the number of equivalence points.

At equivalence points, there exists a state transformation function between ISA-specific
versions of the application’s state. The compiler, OS and runtime cooperate to perform this
translation, after which the thread can resume execution post-migration.

3.1.2 Distributed Shared Virtual Memory

Although several efforts have explored cache-coherent shared memory for simulated heteroge-
neous processors [70, 197, 98], no commodity scale heterogeneous-ISA CMPs currently exist
that support cache-coherent shared memory. In order to sidestep this issue, the replicated-
kernel OS provides distributed shared virtual memory (DSVM or DSM). In DSVM systems,
a runtime or operating system provides a single view of addressable memory to applications
executing across multiple computing nodes, each of which has its own physical memory.
The DSVM system mediates access to memory objects which are either stored in a node’s
local memory or in a remote node’s memory. The DSVM system provides access to remote
memory objects either by direct reads and writes to remote physical memory regions [57, 49]
or by migrating memory objects between memory regions to increase data access local-
ity [12, 127, 25]. The DSVM system provides the illusion of a single shared memory region
overlaid across multiple physical memory regions, allowing applications to be developed using
a shared-memory programming model [162].
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Figure 3.2: Page coherency protocol. Pages permissions are maintained similarly to a cache-
coherency protocol to provide consistent views of memory across processor islands. Multiple
nodes may map a page as readable, but only a single node may map the page as writable.

The replicated-kernel OS provides DSVM for threads of an application executing on different
kernels. As threads migrate between different kernels (and therefore, different processor
islands) in the system, the kernels communicate to migrate pages on-demand so that threads
are able to access code and data. After a thread migrates, it resumes execution at an
equivalence point in user-space. However there are no pages mapped into the application’s
address space on the destination kernel – the thread causes a page fault as soon as it accesses
any code or data. The destination kernel sends a message to the source kernel requesting the
page and any mapping information for the faulting address. The page is transferred from the
source to the destination kernel, which maps the page into the application’s address space
and returns from the page fault. The thread continues execution as normal, most likely
causing more page faults which get resolved in a similar fashion. This mechanism allows the
kernels to reconstruct the application’s address space regardless of where threads execute.

The DSVM system provides coherency at the granularity of a page of memory. The replicated-
kernel OS uses a page coherency protocol [169] across kernels that acts like a multiple-reader,
single-writer lock on pages – Figure 3.2 shows the state transition diagram for page access
permissions. When application threads executing on a single kernel access a page, there is
no coherency required, hence the page is mapped with Local permissions. When threads
executing on different kernels access a page with read-only permissions, the page is mapped
with Shared permissions and replicated across both kernels. This allows both concurrent
across multiple processor islands (and hence improved scalability) and data access locality.
However, when a thread writes to a page and thus has both read and write permissions, only
one kernel may own the page at a time. When a thread migrates to a new node and writes
to a page, the source kernel unmaps the page from the application’s address space (only on
the source kernel) and migrates it to the destination kernel, where it is subsequently mapped
into memory. If a thread on the source kernel tries to access the same page, the process is
reversed – the page is unmapped from the application’s address space on destination kernel
and migrated to the source kernel. This prevents consistency issues from multiple writes to
the same page of memory and supports ISA-specific locking mechanisms across architectures
(e.g., compare-and-swap instructions in x86 versus load-link/store-conditional instructions
in ARM). However it can lead to pathological behavior and poor performance when threads
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spread across multiple processor islands access the same pages [169].

Using these mechanisms, the replicated-kernel OS allows threads to migrate between proces-
sors of different ISAs while executing in a replicated working environment. Popcorn Linux
implements thread migration and DSVM through a series of distributed kernel services be-
tween kernels on different processors.

3.2 Application State

As mentioned in Section 3.1.1, there exists a state transformation function at equivalence
points that can convert between ISA-specific formats of an application’s state. In order
to understand how application state can be transformed by the compiler and runtime in a
replicated-kernel OS, a formal model of application state is defined. A model allows us to
understand which parts of the application can be laid out in a common format across ISAs,
and which parts of the application should be transformed at runtime between ISA-specific
formats. For application state laid out in a common format, no transformation is required
and the replicated-kernel OS can simply migrate the state between kernels. Special handling
is required for state that must be transformed, however.

3.2.1 Formalization

We consider a model in which applications execute as a single process in a replicated-kernel
operating system, and may utilize several threads of execution. We do not consider multi-
process applications, although the model can be extended to support them. Additionally we
do not support self-modifying applications, or applications which generate or modify their
machine instructions. Applications executing using a traditional von Neumann architecture
are comprised of data and code, both of which are stored in the same region of addressable
memory1. In process-model monolithic operating systems, the OS creates a virtual address
space VA for each application A. An application’s virtual address space VA is composed of
per-process state P and per-thread state Ti, where 1 ≤ i ≤ k for an application which has
k threads of execution. The compiler, linker and OS work together to construct VA so that
threads of execution are able to access required code and data.

The application’s per-process state P consists of code memory PC , statically-allocated data
memory PD, and dynamically-allocated data memory PH . Code memory PC includes all
machine code generated by the compiler for a target ISA, and is included as the .text section
in ELF binaries. Statically allocated global data memory PD is created by the compiler
and linker, and is included as .data, .rodata and .bss sections in ELF binaries (which

1Popcorn Linux’s DSVM blurs the notion of a single region of memory, but it provides the abstraction
that threads executing on different kernels are able to address code and data in the same address space.
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correspond to initialized data, read-only initialized data, and uninitialized/zero-initialized
data, respectively). Code memory PC and statically-allocated data memory PD are laid
out in the binary by the compiler and linker, which may optimize placement for cache
locality [46, 138, 85]. Dynamically-allocated global memory PH is created on-demand by
standard memory allocation routines, e.g., malloc, in the process’ heap.

The per-thread state Ti is composed of a set of registers Ri, a thread’s execution stack Si,
and a block of thread-local storage (TLS) Li. The compiler is responsible for laying out all
components of Ti. The compiler allocates storage for function-local data across Ri and Si,
aggressively optimizing the layout to take advantage of the ISA’s resources and capabilities.
The compiler also lays out Li by optimizing placement of variables declared with a thread-
local qualifier (such as thread in GCC) for cache locality, similarly to PC and PD. All
TLS variables for a single instance of Li are collected into ELF sections such as .tdata,
.trodata and .tbss to create an initialization image. Li is instantiated by creating a copy
of the initialization image for every thread in the application.

Each application also has associated kernel state maintained by the replicated-kernel OS,
e.g., open files, network sockets, IPC handles, etc. In this model we omit definitions for
kernel-specific application state – the kernels keep the state consistent via message passing,
but from the application’s point of view, the kernel reproduces a single system image. Thus,
the application does not need to know about how kernel-side state is organized.

In order to achieve seamless execution migration, an application’s virtual address space
VA = {P,< T1, T2, ..., Tk >} (where P = PC , PD, PH and Ti = {Ri, Si, Li} for 1 ≤ i ≤ k) must
be constructed so that threads executing on any ISA in the system can locate code and data.
To create VA, the compiler and linker can either align code and data in a common format
so that no transformation is required, or the compiler can extract application metadata so
that a runtime dynamically translates state between architecture-specific layouts. In this
context, translating program data refers to both changing the content of the data between
ISA-specific formats (reification) and changing the location of the data (relocation). In
practice a combination of common layout and transformation is applied in order to minimize
translation costs caused by application migration while simultaneously allowing applications
to achieve highly optimized execution [70, 197].

3.2.2 Laying Out Application State

Attardi et al. [19] and Smith and Hutchison [181] describe mechanisms that enable heterogeneous-
ISA execution migration by either maintaining program state in a target-agnostic intermedi-
ate format, such as Java bytecode, or by directly translating the application’s entire address
space VA between target-specific formats during migration. Whole-program interpretation
and translation are suitable for highly diverse targets, including targets which have differences
in primitive data type sizes and alignments, differences in pointer sizes, and differences in
endianness. However these mechanisms incur significant overheads, either due to the cost of
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interpreting applications for an ISA-agnostic abstract machine or due to the cost of translat-
ing the entire address space of applications between formats. More recent work by DeVuyst
et al. [70] and Venkat and Tullsen [197] describes techniques for minimizing translation costs
by imposing stricter requirements for all target ISAs in the system, i.e., equivalent data sizes,
alignments, pointer sizes, endianness. Additionally, their modified compiler toolchain aligns
code and data in a common format across all ISAs on which threads execute, side-stepping
translation costs due to relocating data. This work is extended by the Popcorn compiler
toolchain and state transformation runtime.

Because the ISAs used for Popcorn Linux have identical data types and sizes, application
state PD and PH do not need to be reified between ISA-specific formats. Conceptually,
Li is a per-thread “global storage” meaning that it too does not need to have its content
transformed. However, code memory PC is not compatible across architectures, as the ISA
defines the machine code format. Because PC does not change at runtime, its reification
between formats is performed offline by the compiler. Specifically, the compiler generates
multiple versions of PC offline by compiling the application for each target ISA in the system.
Runtime transformation simply becomes a problem of mapping the correct version of PC

into memory depending on which architecture threads are executing. As threads migrate
between processor islands, the kernels map the appropriate version of PC into VA, making
PC an aliased region of memory.

Relocating data to different areas of memory causes all references to that data to be invali-
dated. In order to eliminate relocation costs, including the difficult task of finding all such
references wherever they are stored (e.g., function pointers in C++ vtables), the compiler
and linker lay out symbols in PC and PD at common addresses across all compilations of the
application so that global data and function pointers are valid for all ISAs in the system2.
References to PH are also valid across all architectures – the DSVM system keeps the heap
pages consistent, including all heap object metadata. The page coherency protocol ensures
that accesses to PD and PH are replicated and coherent between kernels, and the OS auto-
matically maps the correct version of PC . Thus, data objects in PC , PD and PH are aligned
across executions on all ISAs.

The remaining parts of the execution state VA are dictated by the ISA (e.g., registers Ri)
or are highly tuned for each architecture (e.g., the stack Si). For these parts of the exe-
cution state, it is either impossible to lay data out in a common format or doing so would
cause severe performance degradation. Instead of using a common format and aligning data
across compilations, runtime state transformation is applied to convert Ri and Si between
architecture-specific formats. Thus, the compiler must generate metadata so that the state
transformation runtime can both reify and relocate Ri and Si.

2Language semantics prevent function pointers into the body of a function, meaning that only the begin-
nings of functions must be aligned.
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3.2.3 ISA-specific State

A thread’s register set Ri and runtime stack Si are partially specified by the architecture-
specific application binary interface (ABI), which describes how applications represent, access
and share data in the system. One component of the ABI is the function call procedure,
which specifies how threads execute functions in an application. The function call procedure
describes how to set up per-function Ri and Si state, how to pass arguments to called
functions using Ri and Si, how to save and restore live registers (i.e., those parts of Ri which
contain live values) in Si, and how to pass return values back to the calling function. Each
instance of a called function creates a function activation that becomes part of a thread’s
execution state. According to the DWARF debugging information standard [58], there are
three pieces of information that define a function activation:

1. A program location within the function, either in a program counter register or saved
in a child function’s activation as a return address. The program location indicates the
machine instruction currently being executed, or the instruction at which execution
will resume after a returning from the child function, respectively.

2. A contiguous block of memory on the thread’s stack Si named the function’s call
frame. The call frame contains a function’s live values and information connecting a
function activation to surrounding activations, including saved registers and arguments
to child functions.

3. A set of active or live registers in Ri. These registers might contain variables, control
flow information, condition codes, etc. Registers are dictated by the ISA and cannot
be changed by the compiler. The compiler does, however, have some flexibility in
specifying what values are stored in which registers.

As functions execute, they modify their register state to read and write memory and to
perform computations on data. When calling functions, some or all of this register state
is saved onto the stack (as dictated by the ABI) – the calling function saves caller-saved
registers, while the called function saves callee-saved registers. Each invoked function
allocates space on a thread’s stack which also adheres to the architecture’s ABI. As functions
return back up the call chain, call frames are removed from the stack and register state is
restored from its saved format. A state transformation runtime must be able to observe
registers and call frames for each activation on a thread’s stack, and in particular must know
how execution state is mapped onto them for each architecture. The compiler generates
metadata describing the register and call frame state at equivalence points within functions.

The state transformation runtime needs to be able to access and understand register state
Ri for each activation. A thread’s register state is dictated by the ISA and can be grouped
into several categories [125, 99]:
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� General-Purpose Registers – These registers are used for integer and boolean logic
operations, as well as addressing memory and control flow. A subset of these may be
used for special purposes, e.g., to maintain a return address.

� Floating-Point/SIMD Registers – These registers are used for floating-point arith-
metic, and are usually combined with ISA-specific SIMD extensions for data parallel
computation.

� Program Counter – The register containing the address of the next machine instruc-
tion to be executed. It usually cannot be accessed like general-purpose registers, but
must be changed using control-flow operations (branches, calls, etc.).

� Stack Pointer (SP) – The register pointing to the current top of the stack (which is
the lowest stack address for architectures that have downward-growing stacks). It can
usually be manipulated like general-purpose registers, and may have special semantics
for other operations, e.g., on x86 a call instruction decrements the stack pointer and
writes a return address to the new top-of-stack.

� Frame Base Pointer (FBP) – The register pointing to the beginning of the current
call frame. It, together with the SP, identifies a function’s call frame3.

The state transformation runtime must be able to traverse call frames on the stack, and thus
must have information regarding how to adjust the stack and frame base pointer in order
to access a given function activation. Additionally, the ABI dictates which portion of the
register state is saved onto the stack (and by whom), meaning the runtime must understand
the register save and restore procedure in order to observe the correct register state for each
activation.

Much of a thread’s execution state is placed in call frames on the stack, in a format created
by the compiler (but adhering to the ABI). Figure 3.3 shows a generalized view of a thread’s
stack of call frames, hereafter referred to as the stack. In this figure, a thread’s call stack
contains call frames for function foo, which has called function bar. Because the stack grows
downward, bar’s call frame is below foo’s. Each function call frame is composed of several
areas:

� Return Address – The machine instruction address at which execution will resume
after the current function has finished execution. Upon entering a function from a call
instruction, the return address is pushed it onto the stack (or it may be pushed auto-
matically by the call instruction). In Figure 3.3, bar’s call frame saves the instruction
address at which execution will resume when returning to foo.

3The FBP register can be used as a general purpose register for call frames which have a statically known
size, e.g., those which do not perform operations like alloca.
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Figure 3.3: Stack frame layout. The stack includes call frames for function foo(..), which
calls function bar(...).

� Saved Frame Base Pointer – The FBP of the calling function. The old FBP is
saved so that the frame of the calling function can be restored after finishing execution
of the current function. This is usually saved after the return address on the stack. In
Figure 3.3, bar’s call frame saves foo’s FBP before setting its own FBP.

� Locals and Spilled Registers – This portion of the stack frame contains the callee-
saved registers, local variables allocated on the stack, and registers that are spilled to
the stack by the register allocator. In Figure 3.3, bar saves a subset of foo’s registers
as dictated by the ABI before allocating local variables and spill slots.

� Argument Area – Storage on the stack to be populated with arguments to be passed
to called functions. foo’s call frame has an area for arguments to bar, which in turn
has an argument area for any functions it may call.

The state transformation runtime must be able to locate call frames for each function ac-
tivation on the stack. It must also be able to find each of these areas of the call frame so
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that they can be transformed between architecture-specific formats. The compiler generates
metadata describing the call frame layout for each function in the application, and how each
function can be unwound from the stack.

3.3 Expectations of the Compiler and Runtime

At equivalence points, a state transformation runtime is given the register set Ri. By reading
the stack pointer register, the runtime can discover the stack Si of a thread. The state
transformation runtime must be able to do the following:

1. Given a program location, i.e., an instruction address in a program counter register,
find the function encapsulating that address.

2. Given a stack pointer, frame base pointer and location within a function, locate each
of the call frame areas identified above.

3. Given a call frame and register set, know which portions of the call frame and register
set contain live values so that the runtime may copy them to the appropriate location
within a transformed call frame and register set.

4. Given a relocated variable in either Ri or Si, reify references to the variable in order
to reflect its new relocation.

5. Given a call frame and register set, be able to unwind the call frame from the stack in
order to access the frame of the calling function.

6. Given a return address in code compiled for one architecture, find the corresponding
return address in the code generated for another architecture.

The compiler is responsible for generating metadata providing all of this information, which
it injects into the binary for the runtime. Note that the compiler does not need to synthesize
this metadata for all instruction addresses in an application, but only at equivalence points.
Our prototype uses function call sites as equivalence points, as they satisfy all requirements
listed in Section 3.1.1. Thus, transformation metadata is only needed at function call sites –
by definition the stack is composed of function activations for functions that are paused at
a call site and will resume when the child function returns. The only activation which is not
paused at a function call site is the outermost activation, i.e., the activation of the currently
executing function. The state transformation runtime implements a special function which
carefully handles bootstrapping and initiating transformation, allowing the runtime to begin
transformation at a specific known function call site. Thus threads only need to call this
special function to begin the process.
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The compiler, described in Chapter 4, generates the state transformation metadata needed
at runtime to convert Ri and Si between ISA-specific formats. Additionally, the linker
is directed to lay out PC , PD and Li in a common format to avoid transformation costs.
Finally, a state transformation runtime (described in Chapter 5) applies the compiler-directed
transformation when threads migrate between processor islands.



Chapter 4

Popcorn Compiler Toolchain

The Popcorn compiler toolchain is responsible for preparing applications for seamless migra-
tion across heterogeneous-ISA architectures. The toolchain generates multi-ISA binaries,
binaries containing modified data and code sections along with state transformation meta-
data, built for migration on Popcorn Linux. Multi-ISA binaries lay out data and code in
a common format, which Popcorn Linux uses to replicate a shared virtual address space
across kernels (and thus, heterogeneous-ISA processors). For execution state that cannot be
laid out in a common format due to ISA or performance reasons, the toolchain generates
metadata so that a transformation runtime can switch state between ISA-specific formats.
Using information from the multi-ISA binary, Popcorn Linux migrates threads of execution
between architectures in a replicated environment so that threads see a single system image
across all kernel instances.

4.1 Building Multi-ISA Binaries

The Popcorn compiler toolchain builds multi-ISA binaries by compiling the application
source for each ISA available for execution in the system. The toolchain uses a modified
LLVM [160] as the compiler and a modified GNU gold [86] as the linker. The toolchain also
uses several custom-built tools for post-processing binaries in preparation for state trans-
formation. Figure 4.1 shows an overview of how application source code flows through the
toolchain to produce a multi-ISA binary. Different phases of compilation are encapsulated
in boxes, with Popcorn-specific additions listed inside.

Application binaries are built through a standard compilation procedure augmented with
several additional steps. The source is first parsed into an ISA-agnostic intermediate rep-
resentation (IR) by Clang, the C-language frontend for LLVM. The IR is analyzed and
optimized, then is compiled once for each ISA in the system using an ISA-specific back-end.
After linking, which generates a binary per ISA, post-processing modifies the binaries by

33
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Figure 4.1: Popcorn compiler toolchain

aligning function and data symbols at identical virtual addresses across all binaries. Addi-
tionally, post-processing adds and organizes state transformation metadata. At this point
the multi-ISA binary has been built and is ready for execution migration across kernels in
Popcorn Linux.

There are many custom analyses and transformations added to the compilation process in
order to build multi-ISA binaries:

� IR Modification (LLVM middle-end) – Clang generates LLVM bitcode, an intermedi-
ate representation of lowered source code in single-static assignment (SSA) form [65].
Popcorn’s compiler modifies the IR by inserting migration points at the beginning
and end of functions (Section 4.2). Several passes adjust data linkage in preparation
for alignment. Finally, an analysis pass and an instrumentation pass find and record
live values at all potential transformation sites throughout the IR in preparation for
runtime state transformation (Section 4.3).

� Back-end Analysis (LLVM back-end) – Several back-end analyses are run which
mark return addresses from function calls, gather live value locations in function acti-
vations, and generate metadata needed for state transformation (Section 4.4).

� Linking – Thread-local storage (TLS) layout is modified to conform to a single layout
across all generated binaries. The current implementation forces all TLS to be identical
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to the ARMv8 layout.

� Alignment (post-processing) – After generating a binary per ISA, a linking tool gath-
ers symbol location and size information in order to align data and function symbols
at identical addresses across all binaries. Symbols are placed in an identical order in
all binaries (space is added for symbols that only exist in one binary). Data symbols
do not need to be padded, because the architectures used in our prototype have iden-
tical data sizes and alignments for primitive data types. Function symbols do require
padding, however, because the machine code implementing a function may be different
sizes for different ISAs [24].

� State Transformation Metadata (post-processing) The binaries are post-processed
to set up the state transformation metadata needed to transform execution state at
runtime (Section 4.5).

The Popcorn compiler currently supports applications written in C and C++. The toolchain
builds multi-ISA binaries for POSIX- and Popcorn-compliant programs, meaning that all tra-
ditional POSIX interfaces supported by Popcorn Linux, such as the standard C library and
pthreads, are supported by the compiler. Additionally, the compiler has almost no restric-
tions on program optimization, meaning applications can be aggressively optimized for each
architecture in the system (see Section 4.3). There are currently several limitations – the
current prototype only supports 64-bit architectures whose primitive data types have both
the same sizes and alignments. The toolchain does not support applications that use inline
assembly, as analyses in the middle-end do not understand machine-code level semantics.
Architecture-specific features such as SIMD extensions or language level features that have
architecture-specific implementations such as setjmp/longjmp and variable-argument func-
tions are not supported. Functions that have dynamically sized frames (e.g., functions that
use alloca or variable-length arrays [101]) are not supported. Finally, applications cannot
migrate during library code execution (e.g., during calls to the C standard library).

Other works focus on aligning global state to replicate the same virtual address space across
kernel instances [27, 24, 134, 26]. This dissertation analyzes and solves the problem of trans-
forming execution state between ISA-specific formats to enable seamless thread migration
at runtime. Section 4.3 describes analyses and transformation over the application’s IR
needed to capture state transformation metadata. Section 4.4 describes back-end changes
for converting IR-level metadata into machine code metadata. Section 4.5 describes the final
post-processing step which adds state transformation metadata to the multi-ISA binary for
a state transformation runtime.
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4.2 Inserting Migration Points

Because threads cannot migrate between heterogeneous-ISA architectures at arbitrary lo-
cations, threads must check to see if the scheduler has requested a migration. Migration
points are inserted by the compiler at the beginning and end of functions, which corresponds
to the equivalence point at the call site of the function. Recall from Section 3.1.1 that there
are three properties that must be satisfied for a program location to be an equivalence point.
Function call sites satisfy all three properties:

1. Identical number and type of live variables – this is satisfied by construc-
tion. LLVM compiles the application for each ISA using the same LLVM bitcode.
Architecture-specific back-ends are tasked with allocating storage for the live values
described by the IR. The individual back-ends can introduce new per-architecture live
values, although higher optimization levels tend to remove these.

2. Live values must be in memory – this requirement is satisfied by the function call
procedure. In order for a live value in a register to be preserved across a function call,
it must be stored in a callee-saved register. This means that if the calling function
uses the register, it is required by the ABI to spill the register into the callee-saved
register section of its call frame. Otherwise, the live value remains untouched in the
register while the called function executes. Therefore, all live values are either stored
in memory or are live in the register set of the outermost function activation. To
bootstrap transformation, the state transformation runtime stores a snapshot of the
current register set, thus capturing all live values in memory.

3. Semantically-equivalent computation – this is again satisfied by construction. The
back-ends generate machine-specific code which corresponds to a single set of IR. The
back-ends may perform architecture-specific optimization, including both basic-block
level and function-level code movement. However, code movement is prevented across
function call sites as described in Section 4.3, meaning that computation completed up
until a function call site is semantically-equivalent across all versions of the machine
code.

Migration points are implemented as a call-out to a migration library. The library contains
APIs for querying information about nodes participating in the Popcorn single system image
such as architecture and number of CPUs, APIs for querying information about the current
thread such as the node on which it is currently executing and whether a migration has
been requested, and APIs to perform thread migration. At application startup, the main
thread reads information about all nodes participating in the single system image. When the
scheduler requests that a thread migrate, it writes the node ID of the requested destination
node inside the thread’s descriptor in kernel space via a migration request system call. At
migration points, threads check whether a node ID has been set via a query system call.
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If it has been set, the thread queries the ISA of the destination node and begins the state
transformation and migration process described in Chapter 5.

4.3 Instrumenting the IR of the Application

The Popcorn compiler toolchain is responsible for capturing execution state information at
rewriting sites, i.e., function call sites at which stack transformation may occur, during
the compilation process. The toolchain must generate metadata describing the makeup of
generated function activations, including instruction addresses and locations of live values at
rewriting sites. The toolchain collects this information while the application is in an inter-
mediate representation in order to determine program locations and liveness information in
an architecture-agnostic fashion. Additionally, recording liveness information in the middle-
end captures IR-level semantic information (such as data type, size, etc.), which is stripped
away when lowering the IR to machine code. An LLVM pass was built that implemented the
algorithm presented by Brandner et al. [39], an optimized version of the standard data-flow
analysis algorithm for SSA-form programs, for the Popcorn compiler toolchain. Another pass
was built which instruments the application IR to capture program and live value locations
using the results from this liveness analysis.

The transformation pass instruments the IR with stack map intrinsics [161]. Stack map
intrinsics appear as function calls in the application IR with a set of live values as function
arguments. As the IR is lowered to machine code, stack maps record function activation
information at the stack map instruction’s location. Stack maps are inserted into the IR
at rewriting sites – in our prototype, at function call sites. As they are lowered by the
back-end, stack maps are converted into metadata stored in an extra ELF section in the
generated object code. Each stack map intrinsic generates a record in the ELF section and
is composed of several fields:

� ID – Each stack map has a unique 64-bit ID, allowing the state transformation runtime
to find matching stack map records for each ISA-specific version of the generated
machine code.

� Function Record Index – Stack maps mark specific program locations inside of
functions. Multiple stack maps may map to the same function, thus the function’s
metadata can be shared among them. Each stack map contains an index into the
function record metadata referencing the function containing the stack map.

� Program Location – The stack map record contains a machine instruction offset
from the beginning of the function, which denotes the stack map’s program location.
This is used to locate the return address for function calls when transforming the stack.
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� Location Records – The record encodes the locations of live values specified in the
stack map intrinsic in the IR. Values can be stored on the stack (as an offset from the
frame base pointer), in a register (encoded using architecture-specific DWARF register
numbers), or they may be a constant not stored anywhere. The record also contains
information about the live value’s type, described in more detail in Section 4.4.

Stack maps prevent frame pointer elimination optimization because they use offsets from the
frame pointer to locate stack-allocated variables. This is only an implementation artifact,
however, and not a design requirement. Additionally, stack maps prevent code movement
around the intrinsic’s location in the LLVM back-end, which ensures that all three properties
of equivalence points are satisfied.

Figure 4.2 shows an example of LLVM bitcode for a simple basic block:

Figure 4.2: Uninstrumented LLVM bitcode

In this basic block, integer mydata is allocated on the stack and is initialized to 5. Sometime
later in the basic block, the function do compute is called. At the end of the block, mydata
is loaded into integer res and returned as the result of the function. Figure 4.3 shows the
result of running Popcorn’s liveness analysis and instrumentation pass over the basic block:

Figure 4.3: Instrumented LLVM bitcode

The transformation pass places a stack map intrinsic directly after the call to do compute to
capture transformation metadata at the rewriting site. The stack map has an ID of 0 (the first
argument), which uniquely identifies this function call site across all per-ISA versions of the
application. Liveness analysis determines that mydata is live across the call to do compute,
so the transformation pass adds the value as an argument to the stack map. Stack map 0’s
instruction address and mydata’s storage location will be recorded after the basic block has
been lowered to machine code, after instruction scheduling and register allocation.
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4.4 Augmenting Compiler Backend Analyses

The application IR is lowered to machine code for each target ISA in the system on which
Popcorn Linux runs. As the IR is transformed, special handling converts stack map intrin-
sics into records which contain concrete details about the rewriting site, such as program
location and live value locations within function activations. Several additional analyses
were integrated into the LLVM back-end to add pieces of information not visible in the mid-
dle end. LLVM implements IR lowering to machine code using a set of target-independent
analyses and transforms, meaning the Popcorn compiler’s modifications are available for all
targets supported by LLVM. Unlike previous works [196, 197, 70], the Popcorn compiler
toolchain does not change the size or layout of call frames to be compatible across architec-
tures. The toolchain minimizes the number of changes to the architecture-specific portions
of the back-end so that applications can take advantage of extensive architecture-specific
compiler optimizations and be easily ported to any architecture that LLVM supports.

4.4.1 Program Location

Stack maps are inserted into the IR directly after function calls to record return addresses
from those function calls. LLVM IR encapsulates the entire function call procedure into a
single IR instruction, which is expanded during instruction selection and register allocation
to adhere to the ISA’s function call procedure defined in the ABI. Because this procedure
is not visible in the middle-end, it is not possible to directly capture a call’s return address
by adding stack map intrinsics. Instead, in the back-end stack map intrinsics are matched
to the appropriate function call site. This allows the stack map machinery to encode the
return address irrespective of the architecture-specific function call procedure.

4.4.2 Live Value Locations

Stack map intrinsics were designed for online compilers, and as such were designed so that
a set of values could be captured at the intrinsic call site and execution could be transferred
to an optimized version of the function (i.e., moving from an interpreter to compiled ma-
chine code). Stack maps capture the function activation state specified as arguments to the
intrinsic – they do not capture the entire function activation itself. An artifact of this design
is that a value may be live in several locations (e.g., in a register and backed by a slot in the
call frame) but the stack map mechanism only records one of these locations. For example,
consider the AArch64 assembly in Listing 4.1:
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0x410000 : l d r x20 , [ sp ,#32] ; s tack s l o t 4
0x410004 : add x0 , xz , x20
0x410008 : mul x0 , x0 , 2
0x41000c : b l do compute

<s tack map reco rds metadata here>
0x410010 : add x20 , x0 , x21

Listing 4.1: Live values across call to do compute in AArch64 machine code. The value is
live in stack slot 4 and register x20.

In this assembly, a live value is loaded from stack slot 4 into register x20, which is a callee-
saved register for AArch64. The value is then used to compute an argument for the call to
do compute. After returning from the function call, x20 is overwritten using the return value
from do compute and another callee-saved register x21. The stack map intrinsic inserted after
the call requests that the back-end record the location of this live value at do compute’s
return address. The back-end only records that the value is stored in register x20, although
it is also stored in stack slot 4. Without additional analysis, the metadata at this rewriting
site is incomplete, meaning that the transformation runtime will not be able to fully rewrite
the activation and the application will likely fail after migration. Note that in addition to live
values being in both a register and call frame slot, values may also be live in multiple registers
depending on the types of optimizations applied. Live values stored in multiple locations are
more prevalent on RISC architectures because live values must be loaded from and stored
to memory in order to do computation on them. The compiler tries to keep as many values
as possible in registers so that it does not have to continually re-materialize them. However,
this re-materialization behavior also arises on CISC architectures, depending on the results
of register allocation.

The Popcorn compiler back-end implements liveness range checking for live values in stack
maps to determine if they are stored in multiple locations. This analysis uses liveness ranges
for registers and stack slots which are already calculated by LLVM for register allocation.
At this point in the compilation, the application has been lowered to another form of IR
which is close to machine code. The IR is still in pseudo-SSA form, however, and values
have use-def chains which point to instructions where the value is defined and used.

After register allocation, the definitions of all live values stored in registers are checked1.
If the register is defined by a copy (e.g., a load from a stack slot or a copy from another
register), the liveness range of the source of the copy is searched. If the source value’s live
range overlaps with the stack map, then the source is determined to be a duplicate location
for the live value and extra metadata is added to account for the duplicate. Similarly, if

1It is not necessary to check live values stored in stack slots, because if they are marked as stored in the
call frame by the stack map machinery then they are never also in a register – either they are required to
be on the stack or the register allocator decided that they are to be spilled to the stack. Duplicate locations
only arise when promoting values from stack slots to registers or when copying values between registers.
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the register in the stack map is used as the source of a copy and the copy location is live
across the stack map, metadata is added to account for the duplicate location. This process
is repeated exhaustively up and down the use-def chain to find all duplicate locations of the
live value.

4.4.3 Live Value Semantic Information

Stack maps were designed so that execution could be transferred to an optimized version of
a function on the same architecture. Because of this, the live value information needed to
jump to optimized execution is simpler than what is required by the state transformation
runtime for Popcorn Linux. Stack maps encode the following information about live values
and their locations:

� Storage Type – where the value is stored, i.e., a register, a stack slot or if it is a
constant, nowhere.

� Register Number – if the value is stored in a register, which register it is stored in.
Stack maps use DWARF register numbers as specified by each ISA’s ABI.

� Offset from frame base pointer – if the value is stored on the stack, the offset
from the frame base pointer where the value is stored. The frame base pointer is
ISA-specific, e.g., rbp on x86-64 or x29 on AArch64.

� Constant – if the value is a constant, the stack map will directly encode the value.
Note that our implementation of liveness analysis ignores constant values because they
are, in general, materialized right before use in the machine code rather than being
held in storage.

The following fields were added to location records using extra semantic information gathered
from the LLVM IR for the live value in order to provide a complete state transformation:

� Pointer – flag indicating if the value is a pointer. The state transformation runtime
requires special handling for pointers to the stack (Section 5.2.3), although pointers to
global data and functions are valid because of symbol alignment.

� Alloca – variables allocated to the stack are instantiated using the alloca IR intrinsic
in LLVM bitcode2. This flag indicates that the live value is allocated to the stack.

2LLVM’s alloca is semantically different from the C language alloca API, although the latter is imple-
mented using the former in LLVM bitcode.
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� Size of Stack Variables – the stack map fields described above only indicate how to
locate the beginning of a stack-allocated variable, but do not specify their size. If the
value is allocated to the stack, this field encodes how large the allocated data is in the
call frame.

� Duplicate – flag indicating if this location record is a duplicate, meaning that it
describes another location for the same live variable (as determined by the analysis
described in Section 4.4.2).

� Temporary – some IR-level live values may be either re-materialized when needed or
held in a register (e.g., reference to a stack slot) depending on the register allocator’s
decisions for each ISA. This flag is set if the back-end materialized a value only to
satisfy the stack map.

The application IR is converted to machine code, which is emitted into object files. Stack
maps records are added to a special section within the object file, but are not yet in a suitable
format for state transformation.

4.4.4 Architecture-Specific Live Values

Depending on the results of the register allocator, the back-end may create extra architecture-
specific live values, e.g., references to global symbols or constant data. These decisions are
specific to each ISA – for example, materializing references to global symbols may take
multiple instructions on AArch64 and therefore the back-end may save a reference in a
register, in contrast to x86-64 which can encode large addresses into instructions. Rather
than prevent this behavior, the Popcorn compiler captures these values in order to allow
the back-end to optimize the generated machine code as much as possible. The compiler
produces metadata describing both the location of the architecture-specific live values and
how to re-generate them, e.g., constant data, addresses or simple math operations. It is
important to note that architecture-specific live values are statically calculable, i.e., the
compiler knows how to produce the values at compile time. This allows the compiler to
capture constants, references to global data and even references to stack data – although the
particular address of a given stack slot is not known until runtime, the method of calculating
the address (e.g., add offset to frame base pointer) is known at compile time and thus the
compiler can emit metadata describing how to recreate the value at runtime.

4.5 Generating State Transformation Metadata

At this point, the LLVM back-end has generated object code and added stack map metadata
to the binaries. Additionally, the alignment tool has aligned code and data symbols across
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uint64_t addr

uint32_t code_size

uint32_t frame_size

uint16_t num_unwind

uint64_t unwind_start

uint16_t num_stack_slot

uint64_t stack_slot_start

struct function_record

uint16_t cs_reg

int16_t offset

struct unwind_loc

uint16_t base_reg

int16_t offset

uint32_t size

uint16_t alignment

struct stack_slot

uint64_t id

uint32_t function

uint64_t addr

uint16_t num_live

uint64_t live_start

uint16_t num_arch_live

uint64_t arch_live_start

struct call_site

uint8_t type_and_flags

uint8_t size

uint16_t reg

int32_t offset_or_constant

uint32_t alloca_size

struct live_value

uint8_t type_and_flags

uint8_t size

uint16_t reg

uint32_t offset

uint8_t op_type_and_flags

uint8_t op_size

uint16_t op_regnum

struct arch_live_value

int64_t op_offset_or_constant

Figure 4.4: Metadata emitted by the compiler. Each type of structure (e.g., call site,
function record) is contained in its own section.

each of the generated versions of the binary. The final step in the toolchain is to convert the
emitted stack map records into the format the state transformation runtime uses to rewrite
the stack. There are several downsides to the default format emitted by LLVM:

� Stack map records are variable-sized – there are a variable number of live value
location records per stack map record. This means searching through stack map records
is a sequential process because it requires jumping across differing numbers of location
records per stack map.

� There are multiple stack map sections per binary – LLVM generates a stack
map section per source file. Stack map records are not combined during linking, but
are rather appended one after another into a larger ELF section. This compounds the
problem of searching for records, as searching for a stack map from a particular source
file requires first finding the beginning of the stack map records for that file and then
searching sequentially through the records.

A final post-processing step reorganizes stack map records into a format amenable for efficient
lookups of stack maps and location records of live values at the rewriting site. A post-
processing tool parses the LLVM-generated stack map sections and breaks the metadata
out into multiple extra sections added to the multi-ISA binary. Each of the extra sections
contains equal-sized records, meaning the transformation runtime can directly jump to a
record given an offset or can use a binary search for efficient look-ups. Figure 4.4 illustrates
all of the metadata emitted by the compiler.
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The first two sections added to the binary contain stack map/call site records (struct
call site). The first two sections provide stack map records sorted by ID and program
location, respectively. These sections provide a dictionary lookup between stack map IDs
and program locations, which is used by the state transformation runtime to look up and
correlate call stack map records for the source and destination versions of the activation.
The call site records contain the following fields:

1. ID of the the stack map/rewriting site.

2. Index into the function record section referencing the metadata for the function en-
closing the call site.

3. Program location, i.e., return address of the function call defining the rewriting site.

4. Number of live values at the rewriting site.

5. Offset into the live value location record section

6. Number of architecture-specific live values

7. Offset into the architecture-specific live value record sections

In order to correlate stack map records between metadata generated for each ISA, the trans-
formation runtime uses a return address on the source stack to look up its stack map record,
which is tagged with a unique ID. The transformation runtime next looks up the destination
stack map record using the unique ID. The runtime then uses the source and destination
stack map records to locate live variables and to correlate return addresses found on the
source stack to the appropriate return addresses for the destination ISA.

The function field references a function record (struct function record) which contains
the following information:

1. Address of the function

2. Size of the code comprising the function’s body

3. Size of the function’s on-stack activation size

4. Number of locations storing callee-saved registers that must be restored during stack
unwinding

5. Locations of callee-saved register locations, including the offset from the frame-base
pointer and the register stored at that location

6. Number of stack slots1

1Only used by Chameleon to update references to stack slots in the code – see Chapter 12
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7. Stack slot records, each of which is denoted by its location (base register plus offset),
size and alignment1

The live values section added to the multi-ISA binary (containing struct live value and
struct arch live value entries) contains live value location records for all stack maps.
The transformation runtime finds live variables at a call site by reading the offset and the
number of location records from the stack map record and pulling the records from relevant
sections. Figure 4.4 shows the location record fields:

1. Type of live value and the aforementioned flags providing extra semantic information

2. Size of the value

3. The register either containing the value or the register used as the base to form a
reference to the containing stack slot

4. A displacement if the value is in a stack slot

5. Size of on-stack slot if the value is an alloca

Finally, the architecture-specific live value metadata contains the same fields as normal live
values, but contains extra fields describing how the value must be created:

1. Type of materialized value and extra semantic flags

2. Size of materialized value

3. Register used in materializing value (for slot reference types)

4. Offset or constant used in materialization operation

At this point, the compiler has finished building the multi-ISA binary, which is ready for
execution on Popcorn Linux.

1Only used by Chameleon to update references to stack slots in the code – see Chapter 12



Chapter 5

State Transformation Runtime

At runtime, applications compiled by the Popcorn compiler toolchain execute as normal on
a single architecture until the Popcorn Linux scheduler requests a migration. At that point,
a state transformation runtime built into the multi-ISA binary (hereafter referred to as
the runtime) co-opts execution in user-space and transforms thread state into the format
required by the destination ISA. After transformation, threads invoke a Popcorn Linux-
specific system call which migrates the threads to the destination ISA. Special handling is
required to set up for migration and to bootstrap execution on the new architecture after
migration.

The runtime is built to minimize end-to-end state transformation latency as a primary design
goal so that the scheduler can react to changing workload conditions without significant
delay. The runtime is implemented in a standalone library linked into multi-ISA binaries.
The compiler hooks applications into the library by inserting migration points, which check
for migration requests and perform state transformation. The runtime is written in C in order
to aggressively optimize its performance and so that it does not drag external dependencies
(e.g., the C++ standard library) into applications.

The runtime operates at the granularity of threads of execution, which enables the OS sched-
uler to migrate individual threads of an application. Threads execute normally, checking at
migration points to see if the scheduler has requested a migration. When the scheduler
requests a migration, the thread takes a snapshot of its register state Ri and calls into the
runtime. The runtime uses the stack pointer from Ri to attach to the thread’s stack Si

and convert all live function activations from the source ISA format to the destination ISA
format. After transformation, the thread makes a system call into the Popcorn Linux kernel
which migrates it to the new architecture using the thread migration service. One of the
arguments to the system call is the transformed register state for the outermost activation,
which the destination kernel uses to set the destination thread’s initial register state. The
kernel sets the transformed register state and the thread returns back into user-space inside
of the runtime. The runtime performs a few housekeeping steps, and the thread resumes

46
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normal application execution.

When transforming the thread’s execution state, the runtime divides the thread’s stack into
two halves – one half which the thread is currently using, and another half for transforma-
tion1. The runtime transforms the thread’s execution state in its entirety – the entire stack
is rewritten from the current ISA’s format to the destination ISA’s format. Register state,
including state for the current function activation and all state saved on the stack as part
of the register save procedure, is transformed along the way. In the current implementation,
threads transform their own stacks before migrations. Threads takes a snapshot of their own
registers and call the stack transformation runtime, which allows the runtime to attach to
and traverse the thread’s stack. Then, the runtime rebuilds the stack in the other half of
rewriting memory.

The runtime operates in user-space to provide a cleaner separation of responsibilities. Push-
ing state transformation into the kernel requires integrating application-specific logic into
kernel space (including parsing application-specific transformation metadata), even though
the kernel should only be an arbiter of resources. By keeping state transformation in user-
space, applications are responsible for their own state and there is less complexity in the
kernel, which ultimately makes the kernel more robust to faulty or malicious applications.
The downside of transformation in user-space is that rewriting is not opaque to the appli-
cation – state transformation is visible to application threads. Nevertheless, the runtime
performs state transformation in user-space due to the aforementioned benefits. The state
transformation runtime differs from previous works [70, 197] in that the runtime reconstructs
the destination stack from the source stack in a separate region of memory, whereas their
implementation does in-place modification. This is an artifact of the design decision not to
unify call frame layout in the compiler. Because of this design decision, the runtime must
handle reifying references to stack elements during transformation.

Section 5.1 describes how the runtime prepares for transformation at application startup
by loading in metadata and preparing stack pages. Section 5.2 describes the state trans-
formation process, which rewrites the thread’s registers and stack in their entirety. Finally,
Section 5.3 describes how a thread invokes and resumes execution after the OS migrates it to
another ISA. Section 5.4 describes how developers can debug applications in a heterogeneous-
ISA environment.

5.1 Preparing for Transformation at Application Startup

In order to reduce state transformation latency, the runtime loads rewriting metadata into
memory when the application begins execution. At startup, the main thread creates state
transformation descriptors for all ISAs in the system. These descriptors contain the
following ISA-specific metadata needed for transformation:

1The default stack size on Linux systems is 8MB, meaning the runtime divides it into two 4MB regions.
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� ISA ID – a numeric ID uniquely identifying the architecture, as defined by the ELF
standard.

� Pointer Size – size of pointers as defined by the ISA’s ABI. This is always 8 bytes
(64-bit) in the current prototype.

� Register Operations – a set of function pointers which implement register access
operations for the ISA. All register access operations in the runtime use an architecture-
agnostic interface, and architectures provide ISA-specific implementations via function
pointers2.

� ISA Properties – a set of properties which describe ISA-specific register behav-
ior (register size, which registers are callee-saved) and stack properties (stack pointer
alignment).

� State Transformation Metadata – all of the metadata emitted by the compiler as
described in Section 4.5 required for converting the stack between ISA-specific formats.
This includes function records, unwinding location records, call site records (sorted by
call site ID and address, respectively), live value location records and architecture-
specific live value location records for call sites.

At startup, the application creates descriptors for all ISAs in the platform by reading the
metadata added to the multi-ISA binary by the Popcorn compiler toolchain. This infor-
mation is subsequently available for threads to perform transformation when the scheduler
requests migrations. All of the metadata contained in the binary read into memory as read-
only, meaning threads can concurrently access the information and transform their stacks in
parallel.

For implementation on Linux, the runtime must also prepare the main thread’s stack for
transformation due to how Linux handles stack memory growth. In Linux, the main thread
is given a system-defined stack size on application startup (usually 8MB). However, this
memory is allocated on demand by observing page faults as the stack grows. When stack
growth causes a page fault, Linux checks to see if the access is on the same page as or a
page adjacent to the current stack pointer. If so, Linux maps the new stack page into the
application’s page table and returns to user-space to continue normal execution. However, if
the stack access is not close to the stack pointer, Linux raises a segmentation fault and ends
the application. Because the runtime may be rewriting to a part of the stack not adjacent
to the current stack pages (due to splitting the stack in half), the runtime forces Linux to
pre-allocate the entire stack area by moving the stack pointer to the bottom of the stack
region, performing a memory access at the stack pointer, and resetting the stack pointer to
its original value. The runtime does not need to force Linux to pre-allocate stack pages for

2Essentially, a C version of object-oriented programming where a base class defines the register access
API and child classes implement the API for each ISA.
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threads forked by the threading library, as the library allocates stack memory by using mmap

or malloc, both of which sidestep this issue.

5.2 Transformation

Application threads execute normally, checking to see if the scheduler has requested a mi-
gration at compiler-inserted migration points (Section 4.2). When a thread sees that the
scheduler has requested a migration, the thread stores a copy of all of its register state into
memory and calls into the transformation runtime, operating on a snapshot of the thread’s
registers at the migration point and therefore its stack state up until the migration point.

First, the thread determines which half of the stack it is currently using and computes the
bounds for the other half. It then passes the snapshot of the register set, the stack bounds
for the two halves of the stack, and the rewriting handles for the current and destination
ISAs to the core of the runtime. The runtime begins by allocating rewriting contexts
for the thread’s execution state on the current and destination ISA. Rewriting context store
information about the thread’s current execution, including the following:

� Stack Bounds – the beginning and end of the stack.

� Register Set – register set for the outermost activation, i.e., the current activation.
For the thread’s current execution state, this is the snapshot taken at the migration
point. Another register set will be populated for the transformed execution state,
which will be used by the kernel to initialize the thread when it resumes execution on
the destination architecture.

� Function Activations – metadata about the function activations in the execution
state, including call site information, call frame bounds, current register state and
frame unwinding information.

� Stack Pointers – a list of pointers to the stack that have yet to be resolved (Sec-
tion 5.2.3).

� Memory Pools – pools of memory needed for per-activation data, an optimization
to reduce the number of memory allocation calls in the runtime similar to a slab
allocator. Because the runtime does not know for which ISA the context will be
used, it does not know which registers require unwinding per activation. Rather than
dynamically allocating a buffer for this information as activations are discovered, the
runtime allocates a single chunk of memory and sets a pointer into it for each activation.

� State Transformation Descriptor – ISA-specific version of the state transformation
descriptor which contains transformation metadata.
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After initializing contexts for the current and transformed execution state, the runtime begins
rewriting activations. There are three components in the transformation process:

1. Find activations on the current stack in order to determine the size of the
transformed stack (Section 5.2.1) – the thread’s current stack is unwound to find
which activations are currently active. This information is used to locate call site
records for the rewritten stack, which allow the runtime to calculate the size of the
rewritten stack.

2. Transform activations from the current ISA’s format to the destination ISA
format (Section 5.2.2) – the runtime transforms one function activation at a time
from the source to the destination context, for all live activations.

3. Fix up pointers to the stack (Section 5.2.3) – pointers to the stack require special
handling, and may not be resolved within a single activation. The runtime keeps
track of and fixes up pointers as the pointed-to data is discovered. This component is
intertwined with function activation transformation, but is a separate mechanism.

5.2.1 Finding Activations on the Current Stack

Using the call frame unwinding metadata contained in the current ISA’s state transformation
handle, the runtime unwinds all call frames from the source stack. This lets the runtime
cache metadata about the current live activations for the source and destination execution
state, but more importantly it lets the runtime calculate the size of the rewritten stack.
Algorithm 1 shows pseudo-code for the unwinding procedure.

The runtime begins by initializing the sets of live activations for both the source (i.e., current)
and destination (i.e., rewritten) execution state. The outermost activation for the source is
added to the set of live activations. The runtime checks if the current activation is the first
live activation for the thread, i.e., if it is the activation for the first function executed by the
thread. If not, a matching empty activation is created for the destination. The runtime then
uses the program counter from the source activation to look up the rewriting site record in
the rewriting metadata for the source (Section 4.5). The runtime then uses the ID of the
record to find the corresponding rewriting site record for the destination. Note that the
runtime cannot simply use the call site address to look up the destination call site record,
as the call site may be at a different address in the destination binary due to the size of the
machine code generated for each ISA. The rewriting site records are cached in the source and
destination rewriting contexts as they are needed when transforming individual activations.
The destination stack size is updated using the destination record, which contains the size
of the call frame for the function in which it is contained. Finally, the source activation is
unwound from the source stack, which sets the source activation to its caller.
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Algorithm 1: Algorithm to unwind current stack and calculate size of rewritten stack

Data: Handle for source rewriting metadata HS, handle for destination rewriting
metadata HD, outermost activation for source aS

Result: Set of activations for source AS, set of empty activations for destination AD,
stack size for destination stack SD

SD = 0;
AS = {aS};
AD = {};
while !FirstActivation(aS) do

aD = CreateEmptyActivation();
AD = AD ∪ aD;

CallSiteaS = GetSiteByAddress(HS , GetPC(aS));
CallSiteaD = GetSiteByID(HD, GetID(CallSiteaS ));

SetCallSite(aS , CallSiteaS );
SetCallSite(aD, CallSiteaD);
SD = SD + GetCallFrameSize(CallSiteAD

);

aS = UnwindActivationToCaller(aS);
AS = AS ∪ aS;

end
return AS, AD, SD

This process is repeated until reaching the initial activation for the source, which is either
a starter function in the standard C library for the main thread, or a thread start function
in a threading library such as pthreads. The algorithm returns a set of activations for the
source execution state, a set of empty activations for the destination state (which will be
filled as described in Sections 5.2.2 and 5.2.3), and the stack size of the destination stack.
The runtime then moves on to transforming live function activations.

5.2.2 Transforming Activations

After discovering live activations, the runtime resets to the outermost activation and works
up the stack, transforming activations as it goes. In order to fully transform an activation,
the runtime must populate a destination activation with the following information:

� Call Frame Bounds – the runtime must determine the beginning and end bounds of
the activation’s call frame on the stack. This consists of setting the canonical frame
address (i.e., highest address of a frame for stacks that grow downwards) and stack
pointer, which denote the beginning and end of the call frame, respectively.
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� Live Values – the runtime must copy live values, as gathered by IR and back-end
analyses (Sections 4.3 and 4.4) from the source to the destination activation.

� On-Stack Arguments – similarly, the runtime must set up arguments that were
passed on the stack.

� Saved FBP – the runtime must set the saved frame base pointer from the calling
activation in the called activation’s call frame.

� Return Address – the runtime must also set the return address in the current acti-
vation’s call frame to the rewriting site in the calling function.

In addition to the above pieces of information, the runtime must adhere to the register save
procedure by forward propagating values in callee-saved registers to the activations where
they have been saved onto the stack. The runtime only needs to handle callee-saved registers
– the stack map mechanism automatically handles caller-saved registers as it records where
LLVM’s register allocator spills them around call sites.

The runtime begins with the outermost activations and works inwards. It steps through all
live value location records in the stack map record to find where live values are stored in
both the source and destination activations. Figure 5.1 shows an example of the runtime
copying live values from the AArch64 to the x86-64 version of a function activation.

The runtime uses stack map records to locate live value location records in the transformation
metadata for each binary. The runtime parses a live value’s location record for both the
source and destination format to find its location, e.g., an offset into the call frame or a
particular register. The location record also provides the size of the data, which the runtime
uses to copy the value from the source to the destination activation. The runtime also applies
the same procedure for any duplicate location records that may exist. The runtime repeats
this process for all live values at the rewriting site.

The runtime must take special care to adhere to the ISA-specific register save procedure.
Because of this, the runtime keeps track of which callee-saved registers are stored in each
function’s call frame as frames are unwound from the stack. When the runtime finds a live
value in a callee-saved register, it searches down the call chain (i.e., towards the most recently
called function) to find the nearest activation which saves the register onto the stack. If the
runtime finds an activation that saves the register, it stores the value in the appropriate call
frame slot. If none of the called functions save the register, then the value is still live in the
thread’s register set in the outermost activation and the runtime stores the value in that
activation’s register set.

It is important to note that it does not matter that each ISA defines a different number
of registers (and different numbers of different classes of registers, e.g., general-purpose or
floating-point). The Popcorn compiler determines the live values at a given rewriting site in
the architecture-agnostic IR. Each architecture-specific back-end is handed the same version
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Figure 5.1: An example of the state transformation runtime copying live values between
source (AArch64) and destination (x86-64) activations.

of the IR, and therefore the register allocator is responsible for allocating storage for the same
set of live values regardless of the ISA. The register allocator is handed a set of parameters
describing the numbers and types of registers for each target and makes allocation decisions
for each live value. Therefore it is only necessary for the runtime to copy data between
these different storage locations in order to rewrite the live values for a function activation.
The runtime may copy values between call frames, between registers, from a call frame to
a register, or from a register to a call frame. Where values are stored only depends on the
register allocator’s decisions.

After rewriting the live values, the runtime must set the saved frame base pointer and return
address before it can move to the caller’s activation. However in order to set this information
it must unwind to the caller’s frame to read its call frame size and program location. The
runtime restores callee-saved registers from the destination activation (they have already
been restored on the source as described in Section 5.2.1) to access the caller’s activation. It
then sets the saved frame base pointer and return address from the caller’s stack map record
into the callee activation, and sets the current activation to the caller activation.

The runtime repeatedly transforms activations until it reaches the thread’s starting func-
tion. At this point transformation has finished and the runtime copies out the transformed
execution state (including register state and stack pointer) in preparation for migration.
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5.2.3 Handling Pointers to the Stack

While transforming activations, the runtime must also take care to transform pointers to
stack-allocated data. Pointers to global data do not need to be transformed – symbol align-
ment and a replicated virtual address space ensure that pointers to global data and heap
memory remain valid before and after migration. However, pointers to the stack require
special handling. Note that in previous work [70, 197], because they align pointed-to data
in call frames across all ISAs, they do not have to reify pointers to the stack. However, Pop-
corn’s state transformation runtime must be able to rewrite pointers to stack-allocated data
to instead refer to the data’s location post-transformation. This process is named reifying
or fixing up pointers to the stack.

The runtime does not have a-priori knowledge about pointers to stack memory, and must
discover where these pointers exist during transformation. When copying live values between
the source and destination activations, the runtime checks the rewriting metadata to see if
the live value is a pointer (which is encoded by the back-end as described in Section 4.4).
If the live value is a pointer, the runtime checks to see if it points to stack memory. The
runtime then records a fix-up memo which is resolved when it finds the pointed-to data.

Figure 5.2 shows an example of the runtime transforming pointers to the stack from a source
activation to a destination activation. As the runtime copies live values from call frame 3 on
the source to the destination stack, it finds live value mydata ptr which points to mydata

in call frame 1. Because the rewriting metadata indicates that mydata ptr is of pointer
type, the runtime does a stack bounds check to see if it points to the stack. It concludes
that the pointed-to address is within the stack bounds, and because it has not yet begun
transforming call frame 1, adds a pointer fix-up memo to the rewriting context. The memo
saves metadata about mydata ptr’s location in destination activation 3 and the address to
which it points in call frame 1 on the source stack.

The runtime continues transforming activations until it reaches activation 1. When copying
mydata from the source to destination activation, the runtime observes that mydata ptr

points to mydata. The runtime first copies mydata to the destination activation. It then
writes mydata’s new address on the transformed stack into the location record stored in the
fix-up memo (e.g., call frame 3, slot 6). The fix-up has been handled, so the runtime deletes
the fix-up memo and continues transforming activation 1.

The runtime must also handle the case where the pointed-to data is not a scalar, e.g., if
mydata were an array of integers and mydata ptr pointed to the middle of the array. In
this case, the runtime calculates the offset from the beginning of the stack storage location
(mydata ptr − &mydata) using the saved source stack address and update mydata ptr on
the destination stack with the appropriate offset into mydata.
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Figure 5.2: Example of the runtime observing and transforming a pointer for the destination
activation.

5.3 Migration and Resuming Execution

After the state transformation runtime has finished converting execution state to the des-
tination ISA format, it copies out the transformed register set for the outermost function.
The final step of state transformation is translating the thread local storage (TLS) pointer.
The TLS pointer is maintained in an ISA-specific register defined by the ABI and points
to an ABI-defined location within a thread’s TLS memory. The runtime converts the TLS
pointer between ABI-specific locations and sets the pointer in the transformed register set.
After translating the TLS pointer, the thread returns to the migration point and initiates
migration. The thread saves a pointer to the transformed register set into a known location
that can be retrieved post-migration, then invokes a Popcorn Linux-specific system call to
migrate to another kernel. The thread passes to the kernel a node describing the destination
processor island, the program counter at which to resume execution, and a pointer to the
transformed register set. The source kernel passes the register set and PC value to the des-
tination kernel, which switches the thread’s stack pointer, frame base pointer, PC, and any
architecture-specific registers (e.g., on AArch64 the kernel must handle setting up the link
register). The destination kernel sets the thread’s register state and returns from the system
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call to the specified PC, resuming execution at a known-good location on the destination
architecture. Before the thread resumes application execution, it initializes any registers that
were not able to be set by the kernel (i.e., callee-saved registers, floating point registers) and
cleans up the migration data. The thread then returns back to application code as normal
on the destination architecture.

5.4 Debugging Cross-ISA Execution

Debugging applications when executing and migrating between heterogeneous-ISA CPUs
proceeds similarly to debugging in cache-coherent shared memory systems. The replicated-
kernel OS is a process-based kernel, meaning processes (i.e., tasks in Linux) are atomic
units of execution. Debuggers use OS interfaces (e.g., ptrace on Linux [4]) to inspect and
modify processes being debugged. Because of this, Popcorn Linux allows existing debuggers
to attach to threads migrating between different CPUs3. As described in Section 3.1.1, the
OS creates a new thread on the destination node when migrating from the source node.
Debuggers can attach to these remote threads on the destination CPUs similarly to their
counterparts on the origin.

When debugging a thread before migration, debugging proceeds as normal – debuggers
either start the application with the debugger tracing or attach to a running application.
When executing the migration system call, the OS puts the thread on the source node to
sleep inside the kernel. To the debugger, it looks like the thread is sleeping inside of a
blocking system call. On the remote node, however, the Popcorn kernel starts a new thread
and returns it to user-space. Developers can attach to the new thread post-migration and
continue debugging on the destination node as normal. To help facilitate attaching post-
migration, Popcorn’s migration library forces the thread to spin indefinitely on a flag before
returning to normal execution. After migrating to the new node, the thread will spin until
the developer attaches a debugger and clears the flag. The thread can then continue back
to normal execution. When the thread migrates back to the original node, the thread on
the remote node exits (the debugger will receive an exit message from the kernel) and the
original thread on the origin returns back to user-space, waking the debugger. This gives
developers a way to follow the thread across nodes to aid in debugging.

Note that re-using the existing process interfaces in the Linux kernel provides the flexibility to
reuse many existing tools. For example, developers can use kernel-exposed process counters
to profile and tune execution across heterogeneous CPUs.

3The developer must specify the binary to be used as the source of debugging information emitted by
the compiler; the Popcorn compiler emits a binary per ISA, each of which contains that ISA’s debugging
information



Chapter 6

Evaluation

In this chapter the costs associated with runtime state transformation and Popcorn Linux’s
ability to utilize execution migration for different scheduling goals are evaluated. State
transformation costs are analyzed using microbenchmarks and real applications from the
NAS Parallel Benchmark suite [23]. Additionally, Popcorn Linux’s thread migration costs
are compared against a Java-based implementation. Finally, Popcorn Linux’s ability to
use migration execution to achieve higher energy efficiency and energy-delay product is
analyzed using different scheduling policies for a datacenter-like workload. In Section 6.1
the experimental setup used in our evaluation is described. In Section 6.2 the cost of the
state transformation process is analyzed using a set of microbenchmarks. In Section 6.3 state
transformation latencies are analyzed for real applications. In Section 6.4 Popcorn Linux’s
state transformation and execution migration efficiency is compared versus a Java-based
implementation. Finally, in Section 6.5 Popcorn Linux’s efficiency is evaluated using several
different scheduling policies in a datacenter-like environment.

6.1 Experimental Setup

Table 6.1 shows specifications for the processors used in our evaluation. Our experimental
setup consists of an ARM64 machine interconnected to an x86-64 machine via a PCIe bridge.
Our setup used an APM883208 X-Gene 1 processor (referred to as “X-Gene”) which imple-
ments the ARMv8 ISA. The X-Gene was connected to an Intel Xeon E5-1650v2 processor
(referred to as “Xeon”), which implements the x86-64 ISA. Because there are no single-chip
or single-node heterogeneous-ISA system, our setup approximated a cache-coherent shared
memory system by interconnecting the X-Gene and Xeon systems over PCIe. A pair of Dol-
phin PXH810 PCIe adapters were used, which provide a point-to-point connection between
the two machines at 64Gbps bandwidth. Although these adapters do provide transparent
shared memory windows across systems, Popcorn Linux instead uses them for message-

57
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passing between kernels. Popcorn Linux was implemented using Linux kernel version 3.12
for both ARM64 and x86-64. The Popcorn compiler was built using LLVM 3.7.1 and GNU
gold version 2.27.

APM X-Gene 1 Intel Xeon E5-1650 v2
Clock Speed 2.4GHz 3.5GHz (3.9GHz boost)

Number of Cores 8 61

Last-level Cache 8MB 12MB
Process Node 40nm 22nm

Thermal Design Power (TDP) 50W 130W
RAM 32GB 16GB

Table 6.1: Specification of Processors in Experimental Setup
1There are two hardware threads per core, but hyperthreading was disabled for our

experiments.

The on-board sensors and an external system were used to measure instantaneous power
consumption for the two machines. The X-Gene has an on-board power monitor which can
be queried via I2C. This sensor provides instantaneous power for the motherboard’s power
regulator chips. The Xeon implements Intel’s Running Average Power Limit (RAPL) [62],
which exposes a machine-specific register that keeps a running count of energy consumed.
RAPL can be used to measure power for both the core (ALU, FPU, L1 and L2 caches) and
the uncore (L3 cache, cache-coherent interconnect, memory controller). An external power-
monitoring system was built using a National Instruments 6251 PCIe data-acquisition device
(DAQ), which was used to validate the measurements obtained via on-board sensors.

6.2 State Transformation Microbenchmarks

The state transformation runtime described in Chapter 5 is designed to transform a thread’s
register state Ri and stack Si with as low latency as possible. Minimizing state transfor-
mation latency enables more frequent migrations, allowing the system to adapt application
execution to changing system workloads at a finer granularity. The costs associated with
state transformation for a thread’s registers Ri and stack Si were evaluated using a set of
microbenchmarks.

The two main factors on which state transformation latency depends are the number of live
activations for a thread and the number of live values in each of those activations. For each
live activation, the runtime must both unwind it from the source stack and reconstruct it
on the destination stack. For each live value, the runtime must find its storage location in
both the source and destination activation and copy the value between those location. A
microbenchmark was designed which varies both of these dimensions to see how they affect
the transformation cost.
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The microbenchmark recurses to a user-specified depth and then invokes the runtime to
transform the thread’s state Ri and Si. There are three versions of the microbenchmark,
each of which varies the number of live values per activation. The three versions have no live
values per activation, 8 live values per activation, and 32 live values per activation that must
be transformed between source and destination stacks. Each of these live values is a integer
that must be copied between the two versions of the activation. In real applications live
values can range in type from booleans to complex structures. The live value type is limited
to integers in the microbenchmark in order to understand the costs associated with finding
and applying the metadata to copy the live value between locations rather than the costs of
memory copies. We observed that in real applications there were rarely more than 32 live
variables at a call site. Similarly, the number of activations is varied from 1 to 20 in order
to understand how costs increase with the number of open function calls. Although some
applications may recurse into a deeper function call chain, analysis is limited to a maximum
of 20 activations as it illustrates overhead trends associated with increasing stack depth. As
shown in Section 6.3, however, applications in the NPB benchmark suite do not have deep
recursion.

Figure 6.1 shows how state transformation latency rises with increasing numbers of activa-
tions for the three versions of the microbenchmark. The runtime is able to transform thread
state on the Xeon with very low latencies. In all versions of the microbenchmark, threads
are able to completely rewrite their state in under 400µs. As expected, the number of ac-
tivations is directly proportional to the transformation latency, although costs rise slowly.
The number of live variables per activation has a slight impact on performance, meaning
that most of the cost comes from discovering live activations and unwinding frames.

The X-Gene, as expected, has a higher latency versus the Xeon. This is due to both the
lower clock speed, the smaller amount of cache and the relative immaturity of the X-Gene
processor. Because it was built using a 40nm process, it has fewer transistors per chip and
thus has fewer performance optimizations compared to the Xeon. Nevertheless, the runtime
is still able to transform state on the X-Gene with low latency – all except one configuration
of the microbenchmark has a transformation cost of less than 1ms. The effects of increasing
numbers of activations are more exaggerated on the X-Gene, as are the costs for rewriting
more live values.

The runtime was instrumented with fine-grained timing information in order to get a clearer
understanding of which phases of transformation dominate execution time. Figure 6.2 shows
the breakdown of execution time into four phases:

1. Initialization – time required to allocate and initialize rewriting contexts for both the
source and destination thread state.

2. Unwind and size – time required to unwind the source’s stack and allocate space for
the destination stack as described in Section 5.2.1.

3. Rewrite – time required to rewrite the state, as described in Section 5.2.2.
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Figure 6.1: State transformation latency
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Figure 6.3: Percentage of time spent executing different actions during state transformation

4. Cleanup – time required to tear-down and free the rewriting contexts for both the
source and destination contexts.

Figure 6.2 shows the timing breakdown into the four phases for each of the three versions
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of the microbenchmark with 10 live activations. As shown in the figure, initialization and
cleanup take only about a third of the total transformation time. Unwinding and sizing the
destination stack takes about a third of the time and rewriting state takes up the remaining
third. Note that as the number of live variables increases, the amount of time spent rewriting
activations takes up a larger proportion of the time. With larger numbers of variables, theres
a larger metadata lookup and copying cost between frames. This is more evident for the
X-Gene, but is also present on the Xeon.

The transformation timing was broken into different actions required per activation. Fig-
ure 6.3 shows the percentage of the total transformation latency spent performing the fol-
lowing actions:

� Get call site information – given a program location for the thread, how long it
takes the runtime to do a dictionary look up to find the call site record, and then use
the ID from that record to do another dictionary lookup to find the corresponding
program location for the destination.

� Get function information – given a program location obtained from the call site
record, how long it takes the runtime to find DWARF debugging information for the
surrounding function.

� Read unwind rules – given a program location and surrounding function, how long
it takes the runtime to read the call frame unwinding information from the DWARF
metadata.

� Rewrite frames – given a call site record, how long it takes the runtime to parse the
location records for live values in both the source and destination activation, and the
time required to copy the data between them.

� Pop frame – after a frame has been rewritten, how long it takes the runtime to apply
the DWARF frame unwinding procedure to return to the caller frame.

� Other – the time to perform other miscellaneous actions.

Figure 6.3 shows the timing breakdown in percentage of total transformation time for the
aforementioned actions. The breakdowns for both the X-Gene and Xeon are virtually iden-
tical, demonstrating that although the total time required is different between the two pro-
cessors, the costs of the different actions are proportionally similar. The majority of time
required for transformation is spent performing DWARF-related actions. The DWARF li-
brary incurs significant overhead when searching for function information both because it
dynamically allocates function descriptors and it performs a linear search over address ranges
to find the function descriptor for a given program location. Additionally, reading frame un-
winding metadata does significant memory copies between internal DWARF data structures
and buffers allocated by the state transformation runtime.
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Figure 6.4: State transformation latency after removing DWARF debugging information
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As expected, Figure 6.3 shows that rewriting frames becomes a larger source of overhead
as the number of live values per activation increases. There is still a slight overhead for
rewriting even when there are no variables per activation. This is because the runtime must
still populate the saved frame base pointer and the return address in each call frame on the
stack.

In order to further reduce state transformation latencies, the Popcorn compiler was modified
to emit the relevant DWARF information (frame records, unwinding information) in a format
more amenable for state transformation. Refactoring the format of the metadata emitted
by the compiler eliminates all of the aforementioned DWARF-related copying and speeds up
several of the implementation mechanisms, e.g., replacing the linear function record search
with a binary search, faster frame unwinding, etc. Figure 6.4 shows the new execution times
of each of the aforementioned microbenchmarks when using the new metadata format. As
seen from the results, state transformation without DWARF debugging information is 6x
- 10x faster. This is due to removing all of the extraneous metadata parsing, copying and
unoptimized implementation details. Across all stack depths in all microbenchmarks, the
Xeon requires less than 65 microseconds and the X-Gene requires less than 220 microseconds
for the entire state transformation process. These results demonstrate that dynamic state
transformation is feasible for both register state Ri and stack state Si. Furthermore, because
the latencies are in the sub-millisecond range, Popcorn Linux can migrate threads between
architectures at a fine granularity with minimal performance impact.

6.3 Single-Application Costs

In this section the state transformation latencies associated with real applications are ana-
lyzed. Four benchmarks from the NAS Parallel Benchmark (NPB) Suite [23, 175] were run,
which represent computational fluid dynamics problems used by NASA. NPB applications
are compute- and memory-intensive, with a focus on floating-point computation (except for
the Integer Sort benchmark). NPB applications can be compiled with different class sizes,
which scale the amount of computation from single-server workloads to cluster-size com-
putation. The applications are written in C and are parallelized using OpenMP. For this
evaluation, the benchmarks were run on both the X-Gene and the Xeon processors in single-
threaded mode. They were run without any external workload in order to understand the
performance characteristics of each application. The class A versions of the benchmarks, one
of the smaller computation sizes, was used for state transformation analysis. This is because
larger class sizes do not affect the transformation costs for thread state Ri and Si, but only
affect the amount of global computation to be performed (i.e., the number of loop iterations
performed during computation).

Figure 6.5 shows the average and maximum stack depth for each of the applications. For
these benchmarks, threads do not recurse into deep call stacks – the average and max stack
depths are never larger than five call frames. Most the computation is nested in a for-loop
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Figure 6.6: State transformation latency distribution for all migration points in real appli-
cations. Box-and-whisker plots show the minimum, 1st quartile, median, 3rd quartile, and
maximum observed transformation latencies.

in the main function of each application, which call a few helper routines to do the heavy
computation.

Figure 6.6 shows the distributions of state transformation latencies across all migration
points, added to the binaries as discussed in Section 4.2, in each of the applications. The
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plot contains a box-and-whisker plot for each benchmark on each processor, which shows
the minimum, 1st quartile, median, 3rd quartile and maximum latencies observed across
all migration sites. Once again, the Xeon exhibits smaller state transformation latencies
compared to the X-Gene. However, the majority of transformation costs for both processors
is well under one millisecond.

Interestingly, these benchmarks exhibit higher transformation costs than what would be
expected based on the microbenchmark analyzed in Section 6.2. This is due to a larger
amount of machine code being generated for real benchmarks, which leads to increased
DWARF debugging metadata for function address ranges and a larger number of call site
records. Finding a call site record and enclosing function for a given program location
takes longer with more metadata, because the runtime must search through more call site
records and more address ranges. Table 6.2 summarizes the difference in time required for
executing individual actions for the microbenchmark versus FT on the Xeon processor. For
each activation, the runtime must do two call site lookup queries (one to locate the call site
ID on for the source, another to locate the call site record for the destination). It must also
get the function information and read the unwind rules for both the source and destination
activation. A 393% increase in finding function information and a 228% increase in reading
call frame unwinding rules accounts for the significant increase in per-activation latency.
Other benchmarks experience similar behavior to FT.

Get call site information Get function information Read unwind rules
Microbenchark 0.127 µs 5.584 µs 3.384 µs

FT 0.888 µs 21.957 µs 7.701 µs

Table 6.2: Time required for executing individual actions on the Xeon

Even with this increased per-activation latency, state transformation costs are still small
enough to enable fine-grained application migration.

6.4 Alternative Migration Approaches

In this section Popcorn Linux’s state transformation and migration efficiency is compared
to a Java-based approach. The Paderborn Thread Migration and Checkpointing Library
(PadMig) [83] provides a compiler and runtime for migrating threads between Java vir-
tual machines (JVM) running on separate machines. The library provides communication
between JVMs over the network, and can automatically serialize a running application’s
object state for migrating a thread. PadMig does source-to-source transformation to insert
migration points into the source Java source, similarly to the Popcorn compiler. At runtime,
the library uses Java’s reflection to automatically serialize and de-serialize application data,
eliminating the need manually send and receive data like an MPI program.
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Figure 6.7 shows a comparison between Popcorn Linux and PadMig in terms of power con-
sumption and execution migration efficiency. IS class B was run on the Xeon and migrated
the verification phase of the benchmark (full verify) to the X-Gene. The x-axis shows the
total execution time for the benchmark on both systems. The left y-axis shows instantaneous
power consumption, and the right y-axis shows CPU load. The top row of graphs shows the
power consumption of the X-Gene CPU over the course of execution, while the bottom row
shows the same for the Xeon. System power represents the whole-system power as measured
by the external power monitoring setup, while CPU power represents the power measured
by on-board sensors. The load represents the total amount of CPU time spent executing the
application.

Figure 6.7 clearly shows the advantages of Popcorn Linux’s state transformation and exe-
cution design versus a language-level based approach. Popcorn Linux takes approximately
half as much time to execute IS, which translates into significant overall energy savings.
PadMig spends a significant amount of time serializing (seconds 5-7 in Figure 6.7a) and
de-serializing (seconds 9-13) data. Popcorn Linux, instead, benefits from laying out the ma-
jority of application state (PC , PD, PH and Li) in a common format, and only performing
state transformation for a small portion of a thread’s execution state. In general, the power
consumption is roughly equal across the two executions of IS. However, Popcorn Linux incurs
a significant load and power spike between seconds 8-12, as seen in Figure 6.7b. This is due
to significant numbers of page transfers between the two kernels, as the Xeon transfers pages
to the X-Gene so that calculations can be verified. Popcorn Linux’s DSVM service (which
implements the page coherency protocol) is multithreaded, meaning it can support a large
number of in-flight page transfers.

These results clearly show that Popcorn Linux’s design has significant power and performance
advantages over virtual machine-based migration approaches.

6.5 Optimizing Multiprogrammed Workloads

Popcorn Linux’s ability to migrate applications efficiently makes it possible to take advantage
of different ISAs in a datacenter-like system, unlike current heterogeneous-ISA datacenters
which must be partitioned into per-ISA zones. Using Popcorn Linux, applications are able
to migrate at function boundaries between architectures that vary in terms of performance
and power. In this section Popcorn Linux’s ability to adapt changing workloads is evalu-
ated. Previous work by Mars and Tang [136] and DeVuyst et al. [67] examine scheduling
in homogeneous-ISA processors with heterogeneous microarchitectures at the cluster level
and the chip-multiprocessor level, respectively. However to the best of our knowledge, no
previous works have studied scheduling in heterogeneous-ISA datacenters.

Because vanilla Linux (referred to hereafter simply as Linux) cannot migrate applications
between architectures at runtime, the scheduler can only provide an initial placement of
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(b) Popcorn Linux execution time and power
consumption

Figure 6.7: Comparison of Popcorn Linux and PadMig execution time and power consump-
tion for IS class B. The x-axis shows the total execution time for each system. The left
y-axis shows instantaneous power consumption in Watts and the right y-axis shows CPU
load. The top row shows power consumption and CPU load for the X-Gene, while the
bottom row shows the same for the Xeon.

applications across the X-Gene and Xeon processors. After the application has begun ex-
ecuting on one of the processors it cannot be migrated across ISA boundaries. Several
baseline scheduling policies were developed for Linux, on both a homogeneous-ISA and a
heterogeneous-ISA test setup:

� Homogeneous Balanced (homogeneous) – a two-x86 setup is considered where the
scheduler places applications across two identical Xeon E5-1650v2 processors. The
scheduler keeps the number of threads balanced across both processors. Note that
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even though the processors are identical, there is no mechanism in Linux to migrate
applications between kernels.

� Static Balanced (heterogeneous-ISA) – the scheduler balances the number of threads
across X-Gene and Xeon processors. After an application (and its threads) have been
assigned to an architecture, they cannot migrate to another architecture.

� Static Unbalanced (heterogeneous-ISA) – the scheduler assigns threads to the X-
Gene and the Xeon according to some ratio. Because the Xeon has a much higher
computational capacity than the X-Gene, the scheduler assigns twice or three times as
many threads (a 2:1 or 3:1 ratio) to the Xeon.

Popcorn Linux provides unique execution capabilities versus vanilla Linux. Without Popcorn
Linux’s thread migration and DSM support coupled with runtime state transformation,
applications cannot migrate between heterogeneous-ISA architectures. This means that jobs
can be scheduled onto the X-Gene or the Xeon machine, but cannot switch between them
as the system load varies. Popcorn Linux can instead take advantage of execution migration
to adjust the workload of each processor in the system. Several scheduling policies were
developed based on system workload that balance load across the machines:

� Dynamic Balanced – this heuristic keeps the number of threads balanced across
both the X-Gene and the Xeon processor. This is similar to the Static Balanced policy
mentioned above, except that the scheduler can migrate jobs after they have begun
execution.

� Dynamic Unbalanced – this heuristic keeps the number of threads assigned to each
processor equal to a ratio. This is similar to the Static Unbalanced policy mentioned
above, except that the scheduler can migrate jobs after they have begun execution.

The instantaneous power consumption for both the X-Gene and Xeon processors was mea-
sured using the on-board sensors, as the external power monitoring setup also measures
power consumption of hard disks, peripherals (e.g., USB devices), etc., which is not directly
correlated to the computation. Additionally, because the X-Gene is a first-generation pro-
cessor, an optimized version is estimated would consume 1/10th the reported instantaneous
power using McPAT [122]. A shrink in process node to a 22nm FinFET (similar to the Xeon)
was estimated to not only allow the X-Gene to have significantly reduced power consump-
tion, but to allow for aggressive power gating, dynamic voltage frequency scaling, and low
power CPU states.

Figure 6.8 shows the first multiprogrammed workload run using the scheduling policies men-
tioned above. Sets of jobs were generated using the NPB benchmarks at class sizes A, B and
C in a uniform distribution. The Static Balanced and Static Unbalanced policies were first
evaluated against the Dynamic Balanced and Dynamic Unbalanced policies. There were also
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two baselines used where the jobs were either all scheduled onto the X-Gene (All on ARM)
or all onto the Xeon (All on x86).
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Figure 6.8: Static vs. Dynamic scheduling policies in heterogeneous setup

As seen in Figure 6.8, execution migration using the dynamic policies provides enhanced
flexibility which leads to half the energy consumption and half the runtime. With the static
policies, the scheduler is not able to adjust decisions, meaning oftentimes the jobs on the
X-Gene take significantly longer to execute while the Xeon becomes idle. With the dynamic
policies, the scheduler pulls more workload onto the Xeon as it completes jobs while a smaller
fraction continue execution on the X-Gene. This demonstrates that execution migration is
a valuable mechanism for adapting workloads to changing conditions. Because of this, only
the dynamic heterogeneous policies are evaluated in the remaining experiments.

Figure 6.9 shows the total energy consumption and the makespan ratio (i.e., the total time
to completion for all benchmarks in the set) for each of the scheduling policies on each
of the workload sets. Each of the sets consists of 40 jobs that arrive sequentially without
overloading the machines, i.e., there is one application per core in the system. Once a job
finishes, another is scheduled immediately in its place. This continues until all 40 jobs have
finished.

As seen in Figure 6.9, execution migration allows the system to trade off performance versus
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Figure 6.9: Energy consumption and makespan ratio for several single-application arrival
patterns

energy savings. On average, both the Dynamic Balanced and Dynamic Unbalanced policies
have a 22% reduction in energy consumed. The Dynamic Balanced policy has a 49% increase
and the Dynamic Unbalanced policy has a 41% increase in makespan ratio, however.

The X-Gene processor has much less computational capacity versus the Xeon, and therefore
applications scheduled to the X-Gene take a longer time to execute. However, the X-Gene
consumes significantly less power and thus effectively trades off performance for reduced en-
ergy consumption. This experiment shows that Popcorn Linux allows system administrators
to trade off performance for increased energy efficiency. Administrators can tune the system
according to how much energy they want to consume. If, for example a datacenter operator
wanted to reduce the amount of computational capacity in the datacenter in order to con-
serve energy, the administrator could migrate applications to the lower-performing energy-
efficient X-Gene servers. Alternatively, they could migrate applications to Xeon servers when
increased computational capacity is needed.

Figure 6.10 shows the total energy consumption and the energy-delay product (EDP) for a
clustered workload. In this experiment, workload sets are once again generated as described
above. However rather than a single application arriving at a time, 5 waves of 14 applications
arrive every 60 to 240 seconds. Thus, the scheduler must schedule all 14 jobs as the cluster
arrives. Results for the Dynamic Unbalanced Policy are omitted as the results differ from
the Dynamic Balanced policy by less than 1%.

Figure 6.10 shows significant benefits for using execution migration in this workload scenario.
For all workload sets, using a dynamic policy with a heterogeneous-ISA system saves a
significant amount of energy – the Dynamic Balanced policy saves 30% energy on average,
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Figure 6.10: Energy consumption and makespan ratio for several clustered-application arrival
patterns. Results for Dynamic Unbalanced policy are not shown as they differ by less than
1% from the Dynamic Balanced policy.

and up to 66% for set-3. Additionally, there is on average an 11% reduction in EDP versus
a Homogeneous Balanced scheduler.

The reasons for lowered energy consumption and increased EDP are somewhat nuanced. As
clusters of jobs arrive, all jobs are scheduled across the processors in the system. Because
the waves arrive at 60-240 intervals, some applications from a previous wave are still running
when the new wave arrives. Eventually both processors are over-saturated which leads to
frequent context swaps, TLB flushing and cache thrashing. In the homogeneous setup, both
Xeon processors are overloaded, meaning they are executing at full power while applications
are competing for processing resources. In the X-Gene/Xeon setup, the same phenomena
occurs but is handled more gracefully. The X-Gene consumes significantly less power while
still making progress on application execution. The Xeon CPU completes job execution
more quickly, and pulls jobs from the X-Gene when it has spare capacity. In this way the
X-Gene gets computation started and the Xeon pulls jobs over to finish them more quickly.
In essence, the degraded performance is less of an issue because the X-Gene consumes much
less power.

These experiments validate the usefulness of heterogeneous-ISA execution migration in a
datacenter. As datacenters become more heterogeneous, it becomes increasingly important
for system software to be able to adapt workload execution across a pool of machines in
order to meet power and performance goals. Popcorn Linux provides execution migration
across ISA boundaries, enabling enhanced flexibility which leads to better server utilization
and energy efficiency.



Chapter 7

Lower Migration Response Time Via
Hardware Transactional Memory

Popcorn Linux’s compiler transparently inserts migration points into applications during
compilation in order to enable migration between heterogeneous-ISA CPUs. The compiler
requires migration points to be a subset of the application’s equivalence points as described in
Section 3.1.1. This is required as there only exists valid transformations between ISA-specific
variants of the thread’s execution stack at equivalence points. Currently the compiler selects
function call boundaries as migration points, inserting call-outs to the migration library at
the beginning and end of every function in the application.

However depending on the structure of the application, there can be significant delays be-
tween when the scheduler requests a migration and when the application reaches a migration
point. This delay, defined as the migration response time, can lead to sub-optimal schedul-
ing behaviors when trying to place applications to improve performance or power efficiency.
Figure 7.1 shows the distribution of number of instructions between subsequent migration
points for executions of three NPB applications, CG, FT and IS. For all three applications
there are several clusters of instruction distances. While smaller distances (i.e., fewer than
105 = 100, 000 instructions) do not cause significant delays in migration response time,
larger instruction distances between migration points may prevent the application from re-
sponding to migration requests for milliseconds or even seconds at a time. Each application
has instances of both small and large migration response times, highlighting the need for
the compiler infrastructure to increase the granularity at which applications can respond to
migration requests.

Previous works by DeVuyst et al. [70] and Venkat and Tullsen [197] use a dynamic binary
translation (DBT) framework based on QEMU [31] to side-step this issue. When the sched-
uler wishes to migrate an application to a CPU of a different ISA in their framework, the
application’s state is imported into QEMU on the destination CPU and emulated up until
an equivalence point. At the equivalence point, the transformation runtime translates the

73
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Figure 7.1: Distribution of number of instructions between migration points.

stack between ISA-specific formats and returns the application to native execution.

While using a DBT framework allows applications to respond immediately to scheduling
requests (running with reduced performance until the next equivalence point), using such a
complex framework in real systems has several downsides. First, it is not clear how state is
imported into and out of the DBT framework. The emulator must load in all application
state, including preparing registers and memory (data, page tables) for emulation. This can
become an expensive process with large address spaces and multithreaded applications; the
aforementioned works do not discuss these costs. Additionally, most emulators including
QEMU [31] only support multithreaded execution by multiplexing all application threads
onto a single emulator thread. One of the reasons is due to managing the code cache –
attempting to synchronize multiple threads modifying and executing basic blocks from the
code cache is a complex issue and can lead to trade-offs such as duplicating the code cache for
increased performance at the expense of memory bloat. Additionally, cross-ISA emulation
has the added burden of providing correct memory consistency semantics of one ISA on an-
other architecture that may provide completely different semantics. Only recently have there
been efforts to begin tackling semantically correct emulation of memory consistency models
for multithreaded applications on different ISAs [61]. Finally, using a DBT framework to
assist in migration requires integrating the entire DBT framework itself into all applications
that may migrate, again leading to memory bloat and added application complexity.

Instead, this dissertation explores an alternative approach which uses hardware transactional
memory (HTM) to roll back execution to the most recently encountered equivalence point
upon receiving a scheduling request. Section 7.1 provides background information on HTM,
including how it operates and its limitations. Section 7.2 describes how the Popcorn compiler
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is augmented to insert HTM instructions into the application to blanket it in transactional
execution and respond to scheduling requests. Section 7.3 describes how the Popcorn com-
piler was refactored to support this functionality. Section 7.4 evaluates the prototype system
and Section 7.5 discusses findings and future work.

7.1 Background

Hardware transactional memory is an ISA extension used to implement transactional mem-
ory [94], a framework for optimistic concurrency control in multithreaded applications. When
using transactional memory, the developer breaks down execution into transactions which
are atomic units of functionality, e.g., converting a critical section protected by a lock into
a transaction. Transactions execute in parallel by different execution units such as threads
and may overlap in time. When executing transactions, the system providing transactional
support (software or hardware) guarantees that either the entire transaction completes atom-
ically or that none of the transaction takes effect, including reversing any side-effects of the
transaction’s execution. If the transaction completes successfully it is committed by the sys-
tem; otherwise, the transaction is aborted and the system rolls back the application’s state
to before the transaction’s execution. During execution of transactions, the system detects
memory access conflicts, the main source of aborts. The transactional system maintains in-
formation describing which transaction accessed what data and how the data was accessed,
i.e., whether it was read or written. Conflicts occur when multiple concurrent transactions
access the same memory with incompatible access types, e.g., one thread reads from a mem-
ory location in one transaction that another thread writes in a concurrent transaction. In
this situation, the system aborts the transactions and rolls back execution, which can either
retry the transaction or fall back to other forms of concurrency control (e.g., locks).

Hardware transactional memory implements transactional memory by adding new regis-
ters and instructions to the ISA. The two main commodity scale HTM implementations
are IBM’s HTM extensions to the POWER ISA [45] and Intel’s TSX-NI extensions to the
x86-64 ISA [206]1 (IBM’s System z mainframe ISA also has HTM extensions [143]). For
processors implementing HTM, the ISA is augmented with instructions to start and end
transactions2. In HTM implementations, the CPU maintains a buffer that both holds inter-
mediate transaction data and detects conflicts. For example, Intel CPUs use the L1 cache
as the HTM buffer whereas POWER CPUs use the L2 cache to buffer data and a small
content addressable memory (CAM) to detect read/write conflicts. Both of these HTM
implementations detect conflicts at the granularity of a cache line (64 bytes and 128 bytes
for Intel and POWER CPUs, respectively), meaning that false sharing of data in the same

1We use restricted transactional memory (RTM) mode, as hardware lock elision (HLE) mode is intended
as a transparent replacement for locks

2Some implementations additional instructions for more functionality, such as instructions to suspend
and resume transactions in the POWER ISA



Robert F. Lyerly Chapter 7. Improving Migration Response Time With HTM 76

cache line can cause unnecessary aborts. As an implementation artifact of bounded buffer
capacities, transactions may also abort due to buffers running out of space. Transactions
may also abort due to conflict cache line evictions, i.e., cache lines evicted due to filling the
ways of a given set in the cache [143]. Finally, there are a number of other ways transactions
may be aborted such as mode switches or asynchronous traps. When aborting a transaction,
the CPU discards all buffered state and returns to an implementation-defined location. For
TSX-NI, aborted transactions will jump to an abort handler address specified in the trans-
action begin instruction. For POWER8, aborted transactions will return the instruction
immediately after the transaction begin instructions and will set a flag indicating that the
transaction was aborted. From the abort location, developers can specify an action, e.g.,
retry the transaction or fall back to conservative execution paths.

7.2 Design

When the scheduler is placing applications in heterogeneous-ISA systems, the applications
in the workload must be responsive to migration requests in order to better optimize perfor-
mance or power efficiency – long migration response times lead to sub-optimal placements
as the workload dynamically changes. Therefore, applications must be instrumented with
enough migration points to be responsive to scheduling requests. However, reducing the
migration response time requires inserting more migration points, adding overhead from
more frequent checks for migration requests. Thus when deciding where to insert migra-
tion points, the compiler must balance reducing the migration response time with adding
additional overhead.

Previous works use a DBT framework to enable instantaneous migration by emulating up
until a migration point, but using DBT in real systems causes complexity and performance
issues. Instead of using a DBT framework, HTM can be used to instantly return execution
back to the most recently encountered migration point. The compiler inserts transaction
instructions at every migration point in an attempt to cover the entire application in trans-
actional execution. At a migration point, the compiler inserts instrumentation to commit
the current transaction and begin a new transaction. When no migration request is received,
the application proceeds as normal, committing a series of transactions delineated by migra-
tion points. When a migration is requested, the scheduler signals the application, aborting
the current transaction and diverting execution to the abort fallback path. The application
then calls into the migration path from the fallback path, performing the migration proce-
dure described in Chapter 5. Thus, the scheduler can instantaneously divert execution to a
migration point.

Figure 7.2 shows an example of the instrumentation added to migration points to cover the
application in transactional execution on x86-64. The instrumentation first ends the current
transaction. The thread checks if it is inside a transaction using the llvm.x86.xtest()
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Figure 7.2: LLVM bitcode instrumented with transactional execution at a migration point

intrinsic3. If so, it jumps to a basic block that uses the llvm.x86.xend() intrinsic to stop
the current transaction. Note that this check is required on x86-64 because if a thread
tries to end a transaction when not currently under transactional execution, the processor
raises a segmentation fault. Next, the instrumentation starts the next transaction using
llvm.x86.xbegin() – for x86-64, this intrinsic starts a new transaction and sets the abort
handler path to the instruction immediately after the HTM begin instruction. The intrinsic
returns a flag indicating the abort code. When starting a transaction, this flag is set to
-1 to indicate that the thread successfully started a transaction. In this case, the thread
jumps to basic block migpointsucc0 and continues normal execution. At the next migra-
tion point, the thread will commit the current transaction and begin the next, continually
jumping from migration point to migration point through transactions. However when the
scheduler wishes to migrate the thread to another node, it sends a signal to the thread which
causes the thread to abort the current transaction and return to the abort handler, i.e.,
the instruction directly after the HTM begin instruction. In this case, the flag returned by
llvm.x86.xbegin() indicates that an abort occurred, which causes the thread to jump to
basic block migpoint0 and call into the migration library. In this way, applications respond
very quickly to migration requests by immediately returning back to a migration point.
Note that this is an instance of the classic polling mechanisms versus interrupt mechanism
– checking for migration requests is a polling mechanism, whereas signaling migration and
rolling back to a migration point is a way for the scheduler to interrupt execution.

3Intrinsics provide a way to inject architecture-specific functionality in LLVM’s architecture-agnostic
middle-end. Intrinsics look like function calls at the IR level, but get custom-lowered by the ISA’s back-end
to HTM instructions



Robert F. Lyerly Chapter 7. Improving Migration Response Time With HTM 78

7.2.1 Lightweight Instrumentation

At the heart of the approach is a best-effort algorithm which analyzes individual functions
and places instrumentation inside the function’s body. The goal is to place instrumentation
throughout the function (and in general, the application) to both minimize overhead due to
the instrumentation while still enabling the application to react in a timely manner to migra-
tion requests. The analysis algorithm exposes several tuning knobs which allow developers
to adjust the granularity of instrumentation, and in turn the tradeoff between overhead and
migration responsiveness.

The algorithm traverses the control flow graph (CFG) of functions, performing a forward
data-flow analysis (i.e., basic blocks are visited before their successors) in order to understand
the function’s execution behavior. As the algorithm iterates over the basic blocks within a
function, it analyzes individual instructions and keeps track of execution behavior according
to a user-defined “weight”. The algorithm uses this weight metric in addition to a user-
specified weight capacity to make decisions about where to place instrumentation – once an
execution path’s weight becomes too “heavy” (i.e., exceeds the weight capacity) the analysis
inserts instrumentation, which logically resets the weight to zero. Thus, the goal of the
analysis is to understand how execution flows through a function’s body and place migration
points so that the weight of individual execution paths never exceeds the weight capacity.

The notion of a path weight is flexible and allows the algorithm to be tailored to different
types of instrumentation. For example, in the case of HTM instrumentation the path weight
is defined as the number of bytes read from and written to memory. A path is considered
too heavy if the number of bytes read or written since the last instrumentation point (i.e.,
the start of the transaction) overflows the HTM buffers. For this particular type of instru-
mentation, the algorithm’s primary duty is to prevent capacity aborts due to accessing too
much memory within a single transaction.

The weight could also be defined so as to space instrumentation out temporally, e.g., threads
should reach a migration point every 10ms. For this type of instrumentation, the weight is
defined as the latency in cycles per instruction and a path is considered too heavy when there
are too many cycles between subsequent migration points. The instrumentation could be
tailored to hit migration points with some user-specified frequency, allowing the application
to meet system-specific responsiveness goals while minimizing instrumentation overhead.
The same algorithm is thus used for both inserting HTM begin/end instructions to avoid
overflowing transaction buffers and for temporally spacing migration points for responsive-
ness/overhead adjustments.

Basic execution of the algorithm. Algorithm 2 shows the analysis entry point called on
each function in the program. The algorithm takes as inputs the function’s bitcode and a
resource capacity, and produces a set of program locations at which to insert instrumentation
(i.e., migration points). The algorithm works by building up per-basic block and loop exit
weights as part of the forward data flow analysis. This allows the analysis to calculate
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Algorithm 2: Function analysis overview
Input: F , a function to be analyzed and C, a maximum resource capacity
Output: M , a set of migration points
/* Initialize migration points, block exit weights and loop exit weights */

M = ∅;
WBlocks = ∅;
WLoopExit = ∅;

/* Analyze loop nests contained in F */

foreach Loop Nest N ∈ F do
TraverseLoopNest(N , M , WBlocks, WLoopExit, C);

end

/* Analyze rest of the function’s body in reverse postorder */

BBTopo = TopologicalSort(BasicBlocks(F));
foreach Basic block BB ∈ BBTopo do

WBB = IncomingWeight(BB);
WBlocks[BB] = TraverseBlock(BB, WBB , M , C);

end

the incoming weight of a basic block and place instrumentation points at locations inside
arbitrary basic blocks. Before describing how the algorithm analyzes loops (lines 4-6), it
helps to understand how it traverses basic control flow (lines 7-11).

Figure 7.3 shows a simple if-else statement in LLVM IR. The algorithm starts by analyzing
the entry basic block and follows control flow edges through the function body. In the case of
HTM instrumentation, the algorithm is observing bytes loaded and stored by instructions in
each basic block. The algorithm starts by traversing entry and records that it does not load
or store any memory. The algorithm then traverses if.then and if.else in any order, as
their mutual predecessor (entry) has been traversed. Both of these blocks have an incoming
weight of 0 bytes loaded and stored from entry. The algorithm records that if.then has a
weight of 8 bytes loaded and 8 bytes stored, while if.else has a weight of 4 bytes loaded
and 4 bytes stored. Finally, the algorithm analyzes if.end. Because the algorithm cannot
determine statically which path has been taken, it conservatively determines the incoming
weight at the CFG join point to be the maximum weight over all predecessors of the block.
Therefore, if.end has an incoming weight of 8 bytes loaded and 8 bytes stored.

For simple control flow, the algorithm traverses branches and joins in order to conservatively
calculate path weights across all possible paths through the CFG. The algorithm can place
instrumentation at arbitrary points inside of functions if the weight becomes too heavy. For
example, in Figure 7.3 if the algorithm were to place instrumentation on line 13, the weight
would reset and if.then’s final weight would be only 4 bytes loaded and stored. Note
that function call sites inside of basic blocks are required instrumentation points – if the
thread were to migrate inside of the called function, the current function’s activation would
need to be reconstructed at the call site for the destination ISA, meaning the compiler must
emit stack transformation metadata. Thus, function calls are by definition instrumentation
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1 @a = external global i32 , align 4

2 @b = external global i32 , align 4

3

4 define void @simplecfg(i32 %branch) {

5 entry:

6 %tobool = icmp eq i32 %branch , 0

7 br i1 %tobool , label %if.else , label %if.then

8

9 if.then:

10 %0 = load i32 , i32* @a , align 4

11 %add = add nsw i32 %0, 1

12 store i32 %add , i32* @a , align 4

13 %1 = load i32 , i32* @b , align 4

14 %add1 = add nsw i32 %1, 2

15 store i32 %add1 , i32* @b, align 4

16 br label %if.end

17

18 if.else:

19 %2 = load i32 , i32* @b , align 4

20 store i32 %2, i32* @a, align 4

21 br label %if.end

22

23 if.end:

24 ret void

25 }

Figure 7.3: If-else control flow in LLVM bitcode

points.

Handling loops. Loops require more careful consideration, as they are both a source of
uncertainty and can make up the bulk of an application’s execution time. In general, loop
iteration ranges, or the range of values over which a loop executes, are unknown at compile
time. The algorithm is again designed to take a conservative approach and assume that a
loop will execute for a large enough number of iterations as to require instrumentation.

The goals when analyzing loops are twofold – first, to add instrumentation into the loop
body where appropriate, and two, generate correct analyses for basic blocks surrounding the
loop. In particular, loop successors (i.e., successors of loop exiting blocks4) must properly
incorporate loop execution behavior into their incoming weights. The algorithm calculates
loop exit weights, or potential weights at loop exiting blocks based on iteration behavior,
as part of its analysis. This allows the algorithm to incorporate a loop’s behavior into the
surrounding basic blocks. Additionally, this allows the algorithm to conceptually shrink all
basic blocks that comprise the loop body into a single virtual node in the function’s CFG,
removing cycles from the forward data-flow analysis.

4Blocks inside the loop body which may branch to outside the loop’s body
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1 define void @vecadd(i32* %a, i32* %b,

2 i32* %c, i64 %nelem) {

3 entry:

4 %cmp = icmp eq i64 %nelem , 0

5 br i1 %cmp , label %for.end , label %for.body

6

7 for.body:

8 %i = phi i64 [%inc , %if.end], [0, %entry]

9 %and = and i64 %i, 15

10 %cmp1 = icmp eq i64 %and , 0

11 br i1 %cmp1 , label %do.inst , label %if.end

12

13 do.inst:

14 tail call void (...) @do_instrument()

15 br label %if.end

16

17 if.end:

18 %idx = getelementptr i32 , i32* %a, i64 %i

19 %0 = load i32 , i32* %idx , align 4

20 %idx2 = getelementptr i32 , i32* %b, i64 %i

21 %1 = load i32 , i32* %idx2 , align 4

22 %add = add nsw i32 %1, %0

23 %idx3 = getelementptr i32 , i32* %c, i64 %i

24 store i32 %add , i32* %idx3 , align 4

25 %inc = add nuw i64 %i, 1

26 %ec = icmp eq i64 %inc , %nelem

27 br i1 %ec , label %for.end , label %for.body

28

29 for.end:

30 ret void

31 }

Figure 7.4: Transforming loop to hit instrumentation every 16 iterations

Unlike previous work which either places instrumentation outside of loops or in the loop’s
header to be executed every iteration [144], our design can choose to only execute instru-
mentation every N iterations, where N is chosen based on the loop body’s weight and the
capacity threshold. This is useful in cases where instrumentation is heavier than the cost
of simple arithmetic and a branch. Figure 7.4 shows an example of this instrumentation,
where threads execute the instrumentation only every 16 iterations. The header is changed
so that the loop induction variable is compared against the analysis-selected N value of six-
teen, and if zero, execution branches to the instrumentation (if the loop has no induction
variable, one is added). Although this seems costly, simple arithmetic and advanced branch
prediction takes only a few cycles on modern processors – for example, on Intel’s Broadwell
microarchitecture and/cmp instructions take one cycle and correctly predicted conditional
jumps take two cycles [79]. This is minimal compared to the cost of a function call or
TSX’s xbegin/xend pair, which according to our microbenchmarking takes approximately
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18.6 nanoseconds.

Function TraverseLoopNest – analyze a loop nest
Input: Loop nest N , set of migration points M , block weights WBlocks, loop exit weights WLoopExit,

maximum capacity C

Output: Iterations between migration points for each loop, V
/* Analyze loops in nest with decreasing depth */

SortLoopsByDepth(N);
for Loop Li ∈ N do

/* Analyze loop blocks in reverse postorder and with empty loop starting weight */

H = Header(Li);
WH = ZeroWeight();
WBlocks[H ] = TraverseBlock(H, WH , M , C);

BBTopo = TopologicalSort(Blocks(Li));
for Basic block BB ∈ BBTopo do

WBB = IncomingWeight(BB, WBlocks, WLoopExit);
WBlocks[BB] = TraverseBlock(BB, WBB , M , C);

end

/* Get loop’s max divided and spanning path weight, iterations per migration point

*/

WDiv
Li

= max
PDiv∈Li

PathWeight(PDiv);

W
Sp
Li

= max
PSp∈Li

PathWeight(PSp);

V [Li] = ⌊C ÷W
Sp
Li

⌋;

WPrevIter = max
(

WDiv
Li

,W
Sp
Li

∗ (V [Li]− 1)
)

;

/* Calculate loop exit weights by traversing paths through exit blocks */

foreach Exiting basic block BB ∈ Li do
WDiv

BB = max
PBB,Div∈Li

PathWeight(PBB,Div);

W
Sp
BB = max

PBB,Sp∈Li

PathWeight(PBB,Sp);

WLoopExit[BB] = max
(

WDiv
BB ,W

Sp
BB +WPrevIter

)

;

end

end
return V ;

The algorithm traverses each loop nest within a function, analyzing individual loops within
the nest one at a time. The algorithm proceeds from innermost loop outward, e.g., for sub-
loop B inside of loop A, the algorithm analyzes B (removing cycles from A’s body), then
A (removing cycles from the function’s body), and finally the function itself. Function Tra-
verseLoopNest describes how the algorithm handles loop nests. For each loop in the nest
(sorted by decreasing nesting depth), the algorithm calculates weights across control flow
within the loop’s body, identically to the function’s body. This allows the analysis to place
instrumentation inside the loop body, if necessary. After analyzing the loop’s body (and po-
tentially placing instrumentation within), the algorithm calculates loop exit weights so that
successor blocks can incorporate the loop’s execution behavior. In order to calculate loop
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Function TraverseBlock – sequentially traverse instructions in basic block to analyze
weight
Input: Basic block BB, incoming weight W , set of migration points M , maximum capacity C

for Instruction I ∈ BB do
if IsFunctionCall(I) || TooHeavy(W , C) then

M = M ∪ I;
reset(W );

end
Analyze(W , I);

end

Function IncomingWeight –
Input: Basic block BB, block weights WBlocks, loop exit weights WLoopExit

Output: Incoming block weight WStart

WStart = ZeroWeight();
foreach Basic block BBPred ∈Predecessors(BB) do

if BBPred is sub-loop exiting block then
WStart = max (WStart,WLoopExit[BBPred]);

end
else

WStart = max (WStart,WBlocks[BBPred]);
end

end
return WStart

exit weights, the algorithm categorizes individual paths through the loop into two types:

1. Spanning paths – paths that start at the first instruction in the loop header (i.e.,
loop entry point) and end at a loop backedge without any intervening instrumentation
points.

2. Divided paths – paths that start at the loop entry point and end at an instrumen-
tation point, that start at an instrumentation point and end at a loop backedge, or
that begin and end at instrumentation points. In other words, divided paths are paths
through the loop that have instrumentation points.

In order to calculate weights at loop exit points, the analysis first determines weight that
can be accumulated during loop execution due to previous iteration behavior. The analysis
traverses individual paths through the loop, independently maintaining the maximum of
both spanning and divided paths. This allows the analysis to generate a cumulative previous
iteration weight by taking the maximum of the following:

� Divided paths by definition have an instrumentation point along the path, and there-
fore do not carry weight between loop iterations (the weight is reset at instrumentation
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points). The loop’s divided path weight consists of the maximum weight from instru-
mentation points to loop backedges.

� Spanning paths have no instrumentation points, and thus weight is carried between
iterations. The analysis must consider as many iterations as can be executed without
overflowing the capacity threshold, referred to as the number of iterations between
migration points.

Using this previous iteration weight, the analysis can easily calculate loop exit weights at
exiting blocks. For each exiting block, the analysis again calculates the maximum divided
and spanning path weights over paths through the exit block. The loop exit weight for the
block is then calculated as the maximum of the following:

� Maximum weight of divided paths through the exit block. Again, because they by
definition have instrumentation points they do not include weight carried from previous
iterations.

� Maximum weight of spanning paths through the exit block added to the previously
calculated previous iteration weight. Spanning paths do not have instrumentation
points and therefore include previous iteration behavior.

Consider again the vector addition in Figure 7.45. The loop’s body has two paths: one which
flows through do.inst (a divided path due to the call to do instrument()), and one which
does not. The loop’s divided path weight is the weight from the call to do instrument() to
the loop backedge, or 8 bytes loaded, 4 bytes stored. The loop’s spanning path weight is 8
bytes loaded, 4 bytes loaded per-iteration. If, for example barring any cache line conflicts,
an HTM implementation has a storage capacity of 8 kilobytes, the analysis determines that
the loop can execute 2,048 iterations without overflowing the buffer’s capacity. These two
loop weights are then used to calculate the loop’s exit weight at the exit branch in if.end –
it is determined to be the maximum of the divided path’s weight to the exit (8 bytes loaded,
4 bytes stored) and the spanning path’s weight (8 bytes loaded, 4 bytes stored) plus the
previous iteration weight (8 bytes loaded, 4 bytes stored multiplied by 2,047 iterations). The
loop’s exit weight is then used to calculate for.end’s incoming weight – the maximum of
the loop exit weight (16Kb loaded, 8Kb stored) and entry’s exit weight (0 bytes loaded, 0
bytes stored).

Optimizations. There are several optimizations applied to improve analysis and instru-
mentation. First, if the loop trip count is known at compile time and is less than the
number of iterations between migration points, the analysis can elide instrumenting the loop
altogether. This requires re-analyzing the surrounding basic blocks and loop exit weights,

5Although this figure shows an example of how a loop could be instrumented, we also use it to illustrate
loop analysis
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and potentially adding instrumentation points around the boundaries of the loop. Second,
analysis is restricted to only consider powers-of-2 for the number of iterations between mi-
gration points. This is so that a simple bit mask is all that is required in the loop header
to determine whether to execute the instrumentation rather than more expensive remain-
der division for unconstrained values. This latter optimization reduced overhead in every
evaluated benchmark evaluated by up to 11%.

Limitations The analysis is currently constrained to analyze instructions that can be mod-
eled by LLVM IR, meaning it does not consider inline assembly. Additionally, the analysis
currently only supports natural loops with irreducible control flow (i.e., loops with only
header) although it could be extended to support more esoteric control flow.

7.2.2 Automatically Tuning Instrumentation

Because the algorithm statically analyzes applications at the IR level, it does not have
information about an application’s dynamic behavior, e.g., memory access patterns or control
flow. Because the instrumentation is highly affected by dynamic application behavior, the
algorithm exposes several knobs which can be used to fine-tune the instrumentation. For
example, in HTM instrumentation the algorithm knows the transactional buffer sizes for the
microarchitecture (L1 cache size for Intel’s Broadwell microarchitecture) but because HTM
leverages the cache coherency protocol for conflict detection, the amount of memory that
can be buffered also depends on the cache associativity [104]. Thus, the algorithm has the
following tunable parameters:

� Capacity – the overall weight capacity, e.g., memory bytes read and written for HTM
instrumentation, or cycles for temporal-based instrumentation

� Threshold – what percentage of the capacity can be filled before an instrumentation
point should be inserted, e.g., 80%

These parameters, which can be adjusted per function6 allow fine-tuning the placement of
instrumentation points based on an application’s dynamic behavior. Users can adjust these
parameters in order to meet various overhead and responsiveness goals.

Although instrumenting applications to hit migration points every number of cycles can
be adjusted to meet a range of responsiveness versus overhead goals, instrumenting code
with HTM execution has a much more limited design space. In fact, the goal of HTM
instrumentation is simple – add as few HTM begin and end instructions as possible while si-
multaneously minimizing transactional aborts. In particular, the instrumentation should be
tuned to avoid capacity aborts, one of the biggest limiting factors in current HTM implemen-
tations [143, 206, 71]. Because there is a fixed goal for HTM instrumentation, an auto-tuning

6More advanced analyses could tune these for each loop in a loop nest
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framework was developed (hereafter referred to as the auto-tuner) to automatically refine
the instrumentation granularity based on performance profiling.

The auto-tuner uses performance counters to iteratively profile and refine the instrumen-
tation granularity in order to reduce capacity aborts while simultaneously minimizing the
number of transaction begin/end instructions. The auto-tuner begins by setting the capacity
threshold close to the hardware limits – previous studies [93] demonstrate that most HTM
implementations will abort if the transactional capacity is completely filled. The auto-tuner
runs the application several times and collects counters for the number of cycles, the number
of cycles run under transactional execution, the number of cycles in committed transactions,
the number of transactions started and the number of transactions aborted. These counters
give the auto-tuner a general idea of the instrumentation quality – if there are a large number
of transactional aborts or a large number of cycles not run under transactional execution,
then the instrumentation granularity must be reduced (i.e., more transactions must added).
The auto-tuner then reduces the capacity threshold and re-runs the application. Modern
performance monitoring units also provide precise counter event locations [105], which allows
the auto-tuner to pinpoint exactly which functions have a high number of aborts and should
have their instrumentation granularity reduced; alternatively, if there are a large number
of functions with capacity aborts, the auto-tuner can reduce instrumentation granularity
for the entire application. This process is repeated until the auto-tuner finds a suitable
instrumentation configuration, or reaches a maximum number of iterations.

7.3 Implementation

Although intrinsic instructions provide a way to abstract HTM functionality in the middle-
end, the back-end will not accept intrinsics for another architecture. For example, the
AArch64 back-end will throw an error for IR containing llvm.x86.xbegin() because it does
not know how to custom-lower an intrinsic for another architecture. Therefore because the
migration point implementations are ISA-specific, the IR-level passes in the Popcorn compiler
that insert migration points are refactored to split the process into two pieces. The first piece
occurs during the middle-end, similarly to how the compiler was originally structured. This
pass is responsible for selecting but not inserting migration points. In this pass, the compiler
runs all of the aforementioned analyses, estimating when extra migration points should be
inserted to avoid spurious transaction aborts due to capacity or conflict misses in the HTM
buffer. The pass tags selected migration points with IR metadata indicating that a particular
instruction is a migration point and how the instruction should be refactored by the back-end,
i.e., insert call-out, add transaction begin/end.

LLVM structures back-end execution as a series of ISA-specific lowering passes. At the very
beginning of back-end execution, the Popcorn compiler inserts the second half of the migra-
tion point instrumentation passes, allowing them to work on the IR before it gets lowered
to machine code. This pass identifies program locations tagged by the previously described
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selection pass and rewrites the IR to implement ISA-specific migration point instrumenta-
tion (e.g., Figure 7.2). Because at this point the compiler has transitioned to ISA-specific
lowering, the pass is free to insert HTM intrinsics or migration call-outs for ISAs that do
not support HTM. As an implementation artifact of splitting migration point insertion into
two halves, the pass that inserts stack-maps into the IR is also moved from the middle-end
to the back-end because the migration point instrumentation inserts function calls to the
migration library.

7.4 Evaluation

We evaluated instrumenting applications with HTM versus inserting more frequent call-outs
to the migration library. We ran experiments to answer the following questions:

� How much overhead is added to applications when instrumented to run under HTM
versus adding extra call-outs to the migration library? (Section 7.4.1)

� What is the migration response time latency for the different types of instrumentation?
(Section 7.4.2)

Experimental Setup. We ran experiments on an Intel Xeon 2620v4 CPU and an IBM
POWER8 CPU. The Xeon has 8 cores and 16 hardware threads, with a clock speed of 2.1
GHz (3.0 GHz boost). The POWER8 has 8 cores and 64 hardware threads, with a clock
speed of 2.0 GHz (3.0 GHz boost). The Xeon has a 64-byte conflict detection granularity and
uses the L1 cache for store buffering and conflict detection, although past works suggest that
the total load and store capacities are 4MB and 22KB, respectively [143]. The POWER8
has a 128-byte conflict detection granularity and has an 8KB capacity for both loads and
stores due to the use of a CAM attached to the L2 cache [143]. We used the single-threaded
versions of benchmarks from the C version of the NAS Parallel Benchmarks [23, 175] to
evaluate the instrumentation.

7.4.1 Overhead

In order to understand the cost of each of the mechanisms, we first measured how much
overhead is added by the instrumentation at a single migration point. On the Xeon, a call-
out to the migration library takes ˜80 nanoseconds. This includes the cost of the function call
procedure and the cost of the system call to check the flag in the kernel to see if the scheduler
has requested a migration. Call-outs on the POWER8 add a similar amount of overhead. On
the Xeon, the HTM instrumentation at a migration point (i.e., HTM end/HTM begin) takes
˜18.6 nanoseconds, approximately 40 – 55 cycles. The POWER8 shows a similar latency –
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Figure 7.5: Overhead of instrumentation for HTM and inserting extra migration library
call-outs

˜20.1 nanoseconds or approximately 40 – 60 cycles. Thus using HTM for migration point
instrumentation incurs a lower per-migration point latency.

However, the true cost is the number of migration points added into applications. For
HTM instrumentation, the compiler must insert enough migration points so as to avoid
spurious aborts and thus wasted computation. This often leads to much higher overheads
as the migration point granularity must be dramatically increased. Figure 7.5 shows the
overhead for NPB applications for each of the different types of instrumentation on the Xeon.
The y-axis shows the overhead added by instrumentation versus running the application
without any instrumentation. As shown in the figure, HTM instrumentation add a significant
amount of overhead, a geometric mean of 13.45%. In contrast, adding more frequent call-
outs to the migration library adds a geometric mean 4.07% overhead, demonstrating that
call-outs are relatively inexpensive. Several benchmarks experience large overheads with
HTM instrumentation. BT, LU, MG and SP all contain tight loops with memory access
patterns that cause a high rate of conflict and capacity cache misses, meaning the compiler
must instrument the code at a fine granularity in order to avoid spurious HTM aborts. With
a high number of transaction begin and end instructions, these applications each experience
over a 20% slowdown versus uninstrumented execution.

It is also worth noting that the Intel optimization manual [102] states that transactional ex-
ecution incurs some implementation-specific latency throughout the execution of the trans-
action:

“There is an additional implementation-specific overhead associated with execut-
ing a transactional region. This consists of a mostly fixed cost in addition to a
variable dynamic component. The overhead is typically amortized and hidden
behind the out-of-order execution of the microarchitecture. ... The overhead of
commits is reduced with processors based on the Broadwell microarchitecture.”
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Figure 7.6: Median migration request response time

Although it is difficult to quantify the impact of this overhead, it most likely adds additional
latency to the application’s execution

7.4.2 Migration Response Time

Figure 7.6 shows the median migration request response time for the same applications and
the same types of instrumentation (we present the median migration response time due to
noise in results). Although using HTM to implement instantaneous migrations adds signif-
icant overhead, Figure 7.6 shows that it does provide a dramatic improvement in response
time. It takes applications a geometric mean 1.9 microseconds to respond to migration re-
quests when using HTM versus a geometric mean of 11.3 microseconds when inserting extra
call-outs, a 5.92x improvement. This shows the efficacy of using HTM – applications roll-
back immediately to the most previously encountered migration point, giving the scheduler
fine-grained control over application placement.

However, these results bring into question what should be considered an acceptable migration
response time. Although using HTM provides a significantly lower response time, adding
extra migration library call-outs still provides latencies on the order of tens of microseconds
with significantly less overhead. Typically, web servers target quality of service requirements
on the order of milliseconds [139], meaning that migration response times on the order of
microseconds are still several orders of magnitude smaller and give the scheduler enough
control to optimize application placement. Because of these results, we conclude that using
HTM to enable instantaneous migration does not provide enough benefit to outweigh the
cost of instrumentation overhead. Simply inserting additional migration points provides a
high enough granularity for schedulers to place applications in heterogeneous-ISA systems
with low overhead.
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7.5 Discussion

In order for an HTM-based approach for enabling instantaneous migration to become feasible,
HTM implementations must overcome the significant number of transactional aborts due to,
among other reasons, limited buffer capacity. In particular, CPUs must implement larger
store buffers (e.g., use the L2 cache which provides 256KB per core on the Xeon) and avoid
spurious aborts caused by memory access patterns (e.g., filling up the ways of a particular
cache set). In addition, being able to turn off particular aspects ot transactional execution
that are unnecessary may also improve performance. For example, POWER’s rollback-only
transactions only perform store-buffering and do not detect conflicts between threads. This
mechanism is meant for speculative optimization of single-threaded applications [143], but
applies equally to the migration instrumentation use case. The applications targeted by
Popcorn Linux do not use HTM for concurrency control, and therefore do not need to detect
inter-thread conflicts. Using HTM to implement instantaneous migration only requires the
ability to buffer memory writes and roll back execution. These types of implementation
improvements would allow HTM to become more generally useful and significantly reduce
the overhead from large numbers of transaction begin and end instructions required to avoid
spurious aborts.



Chapter 8

Scaling OpenMP Across
Non-Cache-Coherent Domains

One of the main advantages of extending the POSIX shared memory programming model to
non-cache-coherent systems is that developers can leverage existing abstractions and APIs
built upon this programming model. For example, OpenMP [38] is a parallel programming
model built upon shared memory semantics that allows developers to easily write multi-
threaded applications by annotating source code with OpenMP pragmas. The compiler
converts OpenMP annotations into API calls to an OpenMP runtime, which creates teams
of threads to execute and synchronize parallel execution. Popcorn Linux transparently sup-
ports OpenMP execution across systems composed of multiple cache coherence domains, i.e.,
a set of cache-coherent CPUs. Figure 8.1 illustrates such a system, where CPUs inside a do-
main have hardware cache coherency and Popcorn Linux’s OS provides memory consistency
between domains. Because Popcorn Linux’s page consistency protocol provides cross-domain
sequential consistency, developers can utilize OpenMP to take advantage of the processing
power of all domains by distributing threads to all CPUs participating in the single sys-
tem image. However, software-provided memory consistency can cause large overheads due
to page-level false sharing [194], synchronization using atomic operations on shared mem-
ory [105], or even normal cross-domain memory accesses. In this chapter, we describe the
design and implementation libopenpop, an OpenMP runtime optimized for running multi-
threaded applications across multiple incoherent domains. Additionally we identify several
OpenMP anti-patterns that cause excessive overheads in multi-domain systems and how
OpenMP usage can be optimized to remove those overheads.

91
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Figure 8.1: System composed of non-cache-coherent domains. Within a domain, the hard-
ware provides cache coherency and a consistent view of memory. Between domains, how-
ever, software (e.g., user-developed, runtime, OS) must provide memory consistency – for
libopenpop, Popcorn Linux’s page consistency protocol provides sequential consistency be-
tween domains.

8.1 Profiling Software Memory Consistency Overheads

Data pages are migrated on demand between domains and mapped with different access
permissions to optimize for locality similarly to a cache coherence protocol. Popcorn Linux
uses a multiple-reader/single-writer protocol [169], which enforces sequential consistency
between domains. Multiple domains may have read-only copies of a data page and may
access it in parallel, but domains must acquire exclusive access to a page in order to write to
it. Domains must invalidate other copies of the page before they may gain exclusive access,
preserving the single-writer invariant. Cross-domain memory accesses take on the order of
tens of microseconds versus tens or hundreds of nanoseconds for regular DRAM accesses [68],
meaning excessive cross-domain memory accesses can cause large overheads.

Understanding which parts of an application cause significant DSM traffic allows develop-
ers to find and fix sub-optimal cross-domain memory access patterns. Popcorn Linux’s OS
exposes the DSM traffic through the kernel ftrace [3] mechanism to help developers under-
stand how the page coherency protocol is behaving during execution. In particular, for each
page fault (i.e. cross-domain page transfer) caused by the application, the DSM layer will
emit a tuple with the following fields:

1. Time of the page fault

2. ID of the originating domain of the page fault

3. ID of the thread that caused the page fault

4. Type of memory access, i.e., read or write
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5. Address of program instruction that caused the page fault

6. Memory access address that caused the fault

These tuples can be used to correlate page faults back to the application, giving users
insights as to what parts of the application are causing cross-domain DSM traffic. Users
first build the application with debugging information and then execute a profiling run,
saving the ftrace output to a log file. Then, users supply the application binary and the
log to a tool which parses the log and emits information about the application’s behavior.
Using the debugging information contained in the binary, the tool can identify which source
code locations cause the most page faults, accesses to which program data causes the most
faults and page fault frequency over time during the application’s execution. The tool
can also differentiate between read and write faults, helping the developer connect memory
access patterns from different parts of the application, e.g., writes faults in one part of the
application that cause read faults in another. Thus, this tool allows developers to focus on
sub-optimal memory access patterns and optimize them for cross-domain execution. The
tool was heavily used to detect and optimize libopenpop’s execution, including thread team
initialization and synchronization. Additionally it was used to determine OpenMP anti-
patterns within applications that cause excessive overheads.

8.2 Design of a Distributed OpenMP Runtime

libopenpop leverages Popcorn Linux’s transparent thread migration and distributed shared
memory to allow application developers to use a well-studied and simple shared memory par-
allel programming model in multi-domain systems. libopenpop handles migrating threads
between domains inside the OpenMP runtime, giving developers the option of configuring
where to place threads. Because the DSM is implemented transparently by the OS, existing
OpenMP applications can execute across domains unmodified and the OS will migrate data
pages to the accessing domain on demand. Because of the aforementioned page consistency
protocol overheads, care must be taken when placing data across domains in the system in
order to minimize permission update and page transfer traffic. libopenpop is designed to
be domain-aware, organizing execution and data so as to minimize cross-domain communi-
cation by placing threads into a per-domain hierarchy during team startup (Section 8.2.1).
During subsequent execution, libopenpop breaks OpenMP synchronization primitives into
local and global components (Section 8.2.2). Even though this design implements OpenMP
abstractions more efficiently than a domain-unaware runtime, the user can have a significant
impact on performance. Several OpenMP anti-patterns are discussed, including how they
can be refactored to optimize cross-node execution (Section 8.2.3).



Robert F. Lyerly Chapter 8. Scaling OpenMP Across Non-Cache-Coherent Domains 94

int vecsum( const int *vec , s i ze t num) {
s i ze t i ;
int sum = 0 ;

#pragma omp parallel for reduction(+:sum)
for ( i = 0 ; i < num; i++) sum += vec [ i ] ;
return sum ;

}

Listing 8.1: OpenMP vector summation. OpenMP directives instruct the runtime to spawn
threads, distribute loop iterations to threads for execution and combine results from each
thread. Additionally, there is an implicit end of region barrier.

8.2.1 Distributed OpenMP Execution

OpenMP consists of a set of compiler directives and runtime APIs which control creating
teams of threads to execute code in parallel. In particular, the developer annotates source
code with OpenMP pragmas, i.e., #pragma omp, which direct the compiler to generate par-
allel code regions and runtime calls to the OpenMP runtime. Developers spawn teams of
threads for parallel execution by adding parallel directives to structured blocks, which the
compiler outlines and calls through the runtime. Additionally, OpenMP specifies pragmas
for work-sharing between threads in a team (e.g., for, task) and synchronization primi-
tives (e.g., barrier, critical) among other capabilities. Listing 8.1 shows an example of
parallelizing vector sum with OpenMP. The parallel directive instructs the compiler and
runtime to create a team of threads to execute the for-loop. The for directive instructs the
runtime to divide the loop iterations among threads in the team. The reduction clause in-
forms the runtime that threads should sum array elements into thread-local storage (i.e., the
stack) and accumulate the value into the shared sum variable at the end of the work-sharing
region. Finally, the parallel and for directives include an implicit ending barrier.

Internally, OpenMP functionality is implemented by a combination of compiler transforma-
tions and runtime calls. The compiler outlines parallel blocks into separate functions and
inserts calls to a “parallel begin” API to both fork threads for the team and call the outlined
function. Other directives are also implemented as API calls – a for directive is translated
into a runtime call which determines the lower and upper bounds of the loop iteration range
for each thread and synchronization primitives are implemented as calls into the runtime to
wait at a barrier or execute a critical section. While the developer can very easily parallelize
and synchronize team threads using these pragmas, their implementation can drastically
affect performance. OpenMP assumes a homogeneous memory hierarchy, where accesses to
global memory are relatively uniform from all compute elements in terms of latency. However
for multi-domain systems this assumption is broken and accesses to arbitrary global memory
(e.g., reducing data or waiting at barriers) can cause severe performance degradations. In
order to minimize cross-domain traffic, libopenpop refactors the OpenMP runtime to break
functionality down into local (intra-domain) and global (inter-domain) execution.
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Figure 8.2: libopenpop’s thread hierarchy. In this setup, libopenpop has placed 3 threads
(numbered 1-12) on each node. For synchronization, threads on a node elect a leader (green)
to represent the node at the global level. Non-leader threads (red) wait for the leader using
local synchronization to avoid cross-node data accesses.

Initializing thread teams. To begin a parallel region, the OpenMP runtime forks team
threads which call the outlined parallel region to begin execution. During team startup,
libopenpop creates a logical thread hierarchy to break OpenMP functionality into local
and global computation. Threads operate on per-domain data structures whenever possible
to avoid cross-domain data transfers. The first place this is utilized is when the runtime
communicates parallel region startup information to threads. When the main thread starts
a new parallel region, it must communicate both the outlined function and other execution
state (references to shared variables, work sharing data structures, etc.) to all threads
executing the new parallel region. Most OpenMP runtimes copy this information directly
into each thread’s thread local storage. However in a DSM-based system, this incurs two
transfers for each thread – one for the main thread to write the startup data and one for
each thread to read the data. Because this information is common to all threads in the team,
libopenpop instead sets this data once per domain and threads synchronize per-domain to
consume this information (see “Synchronizing Threads” below).

Migrating Team Threads. OpenMP provides facilities for specifying where threads should
execute. In particular, OpenMP v4 [38] describes a method for mapping threads to physical
“places” like sockets, cores and hardware threads. libopenpop extends this capability with
a “domains” keyword that allows users to transparently distribute threads across domains,
while internally initializing the thread hierarchy to match. libopenpop parses the places
specification at application startup. Threads forked at the beginning of a parallel section
enter a generic startup function inside libopenpop where the runtime applies the placement
specification to migrate threads from the origin to remote domains according to the user
specification. libopenpop calls into the kernel’s thread migration service to transparently
migrate to new domains. Threads execute as if they had never left the origin – data is brought
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over on-demand and kept consistent using the DSM layer. Post-migration, threads call into
the outlined parallel region and execute as if on a single shared memory machine. At the end
of execution, threads migrate back to the origin for cleanup. Thus, developers can distribute
threads across domains without changing a single line of code within the application –
libopenpop encapsulates all the machinery necessary for interacting with the OS to migrate
threads between domains. This also gives the runtime flexibility to redistribute threads
between domains if needed; for example, to co-locate threads accessing the same memory.

Synchronizing threads. In order to facilitate optimizations listed in Section 8.2.2, libopenpop
logically organizes threads into local/global hierarchy for synchronization. This enables opti-
mizations that mitigate cross-domain traffic. libopenpop uses a per-domain leader selection
process whereby a leader is selected from all threads executing on a given domain to partic-
ipate in global synchronization (all other non-leader threads synchronize within a domain).
As illustrated in Figure 8.2, this allows libopenpop to reduce contention while providing the
same semantics as a normal synchronization. libopenpop provides two types of selection
processes depending on whether a happens-before ordering is required:

1. Optimistic selection. The first thread on a domain to arrive at the synchronization
point is selected as the domain’s leader. The leader executes global synchronization
while other threads on the domain continue in parallel, allowing all threads to perform
useful work without blocking. After a global synchronization, leaders communicate
results with local threads. This is useful for synchronization which does not require
any ordering, e.g., reduction operations and grabbing batches of loop iterations using
OpenMP’s dynamic loop iteration scheduler.

2. Synchronous selection. The last thread to arrive at the synchronization point is
selected as the leader and the last per-domain leader to arrive at the global synchro-
nization point performs any global work required. This is useful for synchronization
which requires a happens-before ordering, e.g., for barriers all threads must arrive at
the synchronization point before any threads are released.

8.2.2 Optimizing OpenMP Primitives

By controlling thread distribution across domains and organizing threads into a hierar-
chy, libopenpop can reduce several sources of cross-domain overhead. First, accessing re-
mote memory takes two orders of magnitude longer than local DRAM accesses, meaning
libopenpop organizes as much computation as possible to be performed locally. Second,
the DSM layer operates at a page granularity which can cause pages to “ping pong” when
threads on multiple domains access the same or discrete data on the same page, known
as “false sharing”. Logically organizing memory into per-domain partitions can yield large
speedups. In this section we describe compiler and runtime optimizations to reduce these
two sources of overhead.
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struct b a r r i e r t PAGE ALIGN
{ int rem , to ta l , s l e e p k ey ; } ;
struct hyb r i d b a r r i e r t
{ b a r r i e r t l o c a l [NUMNODES] , g l o ba l ; } ;

void ba r r i e r wa i t ( h y b r i d b a r r i e r t *bar ) {
int thr rem = atomic sub(&bar−>l o c a l . rem , 1 ) ;
i f ( thr rem ) {

/* Spin a whi l e be fo r e s l e ep ing ,
r e turn i f a l l threads a r r i v e */

i f ( do sp in ( bar ) ) return ;
/* Sleep un t i l a l l threads a r r i v e */
else s l e e p (&bar−>l o c a l . s l e e p k ey ) ;

} else { /* Per−node l e ad e r */
g l o b a l b a r r i e r ( bar ) ;
bar−>l o c a l . rem = bar−>l o c a l . t o t a l ;
wake(&bar−>l o c a l . s l e e p k ey ) ;

}
}

void g l o b a l b a r r i e r ( h y b r i d b a r r i e r t *bar ) {
int n rem = atomic sub(&bar−>g l o ba l . rem , 1 ) ;
/* Sleep un t i l a l l l e a d e r s a r r i v e */
i f ( n rem ) s l e ep (&bar−>s l e e p k ey ) ;
else { /* Wake up other l e ad e r s */

bar−>rem = bar−>t o t a l ;
wake(&bar−>s l e e p k ey ) ;

}
}

Listing 8.2: Hierarchical barrier pseudocode. Threads call into barrier wait() and check
to see if they are the last thread to arrive for the domain. If not, they wait at the local
barrier, only ever touching data already mapped to the domain. If they are the last thread,
they are elected the domain’s leader and synchronize at the global barrier.

Hierarchical Barriers. OpenMP makes extensive use of barriers for synchronization at
the end of many directives. For many OpenMP runtimes, barriers are implemented using a
combination spin-sleep approach where threads spin until some condition becomes true, or
sleep if it does not within some fixed interval. While suitable for shared memory systems
where there are few threads and cache-line contention is relatively cheap, this form of syn-
chronization causes enormous overheads in multi-domain systems as many threads executing
in different domains spin-wait, causing the DSM layer to thrash. libopenpop avoids this by
using hierarchical local/global barriers. A hierarchical barrier consists of a local spin-wait
barrier for each domain and one top-level global barrier as shown in Listing 8.2. Threads use
a synchronous selection process to pick a per-domain leader; all threads not selected wait at
their respective local barriers. A synchronous selection process is required in order to estab-
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lish a happens-before relationship between all threads arriving at the barrier on all domains
and the global barrier release. Otherwise, threads could be released on individual domains
before all threads executing on all domains had reached the barrier. The per-domain leaders
wait at the global barrier for all domains to arrive. Threads entering the global barrier, as
shown in Listing 8.2, do not spin but instead do a single atomic operation, which reduces
cross-domain contention on the global barrier’s state1. Once all leaders reach the global
barrier, they are released and join the local barriers to release the rest of the threads. Note
that all barriers, both local and global, are placed on separate pages to avoid cross-domain
contention.

Hierarchical reductions. Similarly, reductions can also be broken down into local and
global computation. OpenMP requires that reductions are both associative and commuta-
tive [38], meaning they can be performed in any order and thus do not require a happens-
before relationship. libopenpop uses an optimistic leader selection process to pick per-
domain leaders to reduce data for each domain. The leader waits for threads to produce
data for reducing, allowing threads to execute in parallel while it performs the reduction
operation. Once the leader has reduced all data from its domain, it makes the domain’s data
available for the global leader (which is also selected optimistically). The global leader pulls
data from each domain for reduction, producing the final global result. The hierarchy again
reduces cross-domain traffic as reduction data is only transferred once per domain.

Moving Shared Variables to Global Memory. OpenMP describes a number of data-
sharing attributes which describe how threads executing parallel regions access variables in
enclosing functions. Developers can specify variables as private, meaning all threads get their
own copy of the variable, or shared, meaning all threads read and write the same instance of
the variable. For shared variables, the compiler typically allocates stack space on the main
thread’s stack and passes a reference to this storage to all threads executing the parallel
region. In a multi-domain setting this leads to false sharing as threads reading/writing the
shared variables contend with the main thread as it uses its stack for normal execution. To
avoid this situation we modified clang to copy shared variables to global memory for the
duration of the parallel region so that threads accessing these variables do not access the
main thread’s stack pages. Copying shared variables to and from global memory could cause
high overheads in situations with many and/or large shared variables. However, we did not
find this situation in the benchmarks we evaluated.

Future optimizations. Similar to these primitives, other synchronization and work sharing
primitives such as critical directives and task work-sharing regions can be refactored to
use a leader selection process to reduce inter-domain traffic. We leave these engineering
optimizations as future work.

1Global synchronization could be further optimized with new kernel-level multi-domain primitives
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/* Sub−optimal − s t a r t many p a r a l l e l r e g i o n s */
for ( j = 0 ; j < NUMRUNS; j++) {
#pragma omp parallel for private(i, price, priceDelta)

for ( i = 0 ; i < numOptions ; i++)
. . . ( compute ) . . .

}

/* Better − s epa ra te p a r a l l e l and work−sha r ing d i r e c t i v e s */
#pragma omp parallel private(i, price, priceDelta)
for ( j = 0 ; j < NUMRUNS; j++) {
#pragma omp for

for ( i = 0 ; i < numOptions ; i++)
. . . ( compute ) . . .

}

Listing 8.3: blackscholes parallel region optimization. Rather than starting many parallel
regions, users should start fewer regions with multiple work sharing regions.

8.2.3 Using OpenMP Efficiently

When developing libopenpop we discovered several OpenMP usage patterns that cause sub-
optimal behavior in multi-domain settings. Many of these sources of overhead can be rectified
by small code modifications. Here we detail how developers can avoid these overheads.

Remove excessive parallel region begins. Each parallel directive causes the compiler
to generate a new outlined function and the runtime to start a new thread team to execute the
parallel region. While most OpenMP runtimes maintain a thread pool to avoid overheads of
re-spawning threads, each encountered parallel region causes communication with the main
thread, e.g., passing function and argument pointers to team threads in order to execute the
region. Even with the previously described per-domain team start optimization, this can
cause high overheads for applications that start large numbers of parallel regions. As shown
in Listing 8.3 for the blackscholes benchmark, users should lift parallel directives out of
loops to avoid these initialization overheads wherever possible.

Access memory consistently across parallel regions. Cross-domain execution over-
heads are dominated by the DSM layer, and thus data placement in the system. In order to
minimize data movement, threads should use the same data access patterns when possible to
avoid shuffling pages between domains. Listing 8.4 shows an example from cfd where a copy
operation accesses memory in a different pattern from the compute kernel. The optimized
version (copy distributed()) instead copies data using the same access pattern.

Use master instead of single directives. OpenMP provides a number of easy-to-use syn-
chronization primitives, include master directives which specify only the main thread should
execute a block of code, and single directives, which specify only a single thread should
execute a block of code (not necessarily the main thread). Users should substitute single
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void compute s t ep fa c to r ( . . . ) {
#pragma omp parallel for

for ( int blk=0; blk < ne l r / b length ; ++blk ) {
int b s t a r t = blk * blength ,

b end = ( blk + 1) * blength ;
for ( int i = b s t a r t ; i < b end ; i++) {

f loat dens i ty = va r i a b l e s [ i + . . . ] ;
. . . ( compute ) . . .

}
}

}

/* Sub−optimal − does not a c c e s s a r r ay s in same way as compute s t ep fa c to r ( ) */
void copy ( . . . ) {
#pragma omp parallel for

for ( int i = 0 ; i < N; i++)
o ld va r [ i ] = v a r i a b l e s [ i ] ;

}

/* Better − use same memory a c c e s s pattern */
void c opy d i s t r i bu t ed ( . . . ) {
#pragma omp parallel for

for ( int blk=0; blk < ne l r / b length ; ++blk ) {
int b s t a r t = blk * blength ,

b end = ( blk + 1) * blength ;
for ( int i = b s t a r t ; i < b end ; i++) {

o ld va r [ i + . . . ] = v a r i a b l e s [ i + . . . ] ;
. . . ( o ther copying ) . . .

}
}

Listing 8.4: cfd memory access optimization. Threads should access memory consistently
across all parallel regions where possible.

for master directives when possible. single directives require two levels of synchronization
– the first thread to encounter the single block executes the contained code while other
threads skip the block and wait at an implicit barrier. This functionality is implemented by
atomically checking if a thread is the first to arrive. However this synchronization operation
requires cross-domain traffic, leading to significant overheads. Users should utilize master

and barrier directives together to implement the same semantics. The master directive
specifies that only the main thread should execute a code block and requires no synchro-
nization (threads maintain their own IDs). Thus, users get the same functionality with less
overhead.
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8.3 Implementation

libopenpop extends and optimizes GNU’s libgomp [87] v7.2, an OpenMP implementa-
tion packaged with gcc. For the optimizations that require compiler-level code genera-
tion changes, we modified clang/LLVM v3.7.1 due to its cleaner implementation versus gcc.
However, clang emits OpenMP runtime calls to LLVM’s libiomp [190], a complex cross-
OS and cross-architecture OpenMP implementation with 3 times more lines of code versus
libgomp. We opted for simplicity and added a small translation layer (∼400 lines of code)
to libopenpop to convert between the two. Note that libopenpop’s design is not tied to the
choice of either compiler or OpenMP runtime – we chose this particular combination simply
for ease of implementation.

In addition to the runtime changes, we added a small memory allocation wrapper around
malloc inside of musl that organizes memory allocations into per-domain heaps, similar in
spirit to arena or region-based memory allocators [82]. During a call to malloc, the wrapper
identifies in which region the thread is currently executing and steers the memory allocation
request to the corresponding heap. This allows libopenpop to remove another source of
false sharing – when threads on separate domains allocate data on the same page they can
cause a large amount of contention and unintentionally bottleneck execution. The wrapper
also supports moving the allocation another domain-specific heap through the realloc call.



Chapter 9

Scale-out OpenMP Evaluation

In this chapter we evaluate libopenpop as described in Chapter 8 on a small cluster as a
representative multi-domain setup (the term “node” is used interchangeably with domain to
indicate a server in the cluster). The evaluation investigates where libopenpop currently
provides good performance and areas of improvement for future research. In particular the
evaluation answers the following questions:

� How do the OpenMP runtime optimizations described in Sections 8.2.1 and 8.2.2 scale
to multiple domains? (Section 9.1)

� How do applications perform both with and without the optimizations described in
Section 8.2.3 when scaled to multiple domains? (Section 9.2)

� What types of applications currently run well when using libopenpop and what types
could benefit from future optimizations? (Section 9.3)

Experimental Setup. libopenpop is evaluated on a cluster of 8 Xeon servers, each of
which contains 2 Intel Xeon Silver 4110 processors (max 2.1GHz clock) and 96 GB of DDR4-
2667 MHz RAM. Each Xeon processor has 8 cores with 2-way hyperthreading for a total of
16 threads per processor, or 32 threads per server. libopenpop was evaluated with up to
16 threads per server due to implementation limitations in Popcorn Linux. Each server is
equipped with a Mellanox ConnextX-4 Infiniband adapter supporting bandwidth up to 56
Gbps.

Applications. libopenpop was evaluated using OpenMP benchmarks from PARSEC [33],
Rodinia [50] and NASA Parallel Benchmark [23, 175] suites. We selected a subset of bench-
marks that 1) had enough parallel work to scale across multiple domains and 2) had represen-
tative performance characteristics from which we could draw conclusions about libopenpop’s
effectiveness. Of note, we were able to survey cross-domain performance for 26 benchmarks
by only re-compiling and re-linking using the Popcorn Linux infrastructure. We performed
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(a) Latency to execute a single barrier for dif-
ferent numbers of domains with and without hi-
erarchical barriers, in microseconds.

(b) Latency to execute a global reduction for
different numbers of domains with and without
hierarchical reductions, in microseconds.

Figure 9.1: Evaluation of OpenMP primitives with and without the thread hierarchy

an initial evaluation of benchmarks to determine scalability and contention points, then op-
timized applications as described in Section 8.2.3. We consider execution on a single server
as the baseline, as comparing to other cluster programming solutions would require either
significant application refactoring or complex compiler/runtime extensions to support the
applications (one of the major benefits of Popcorn Linux and libopenpop).

9.1 Microbenchmarks

First we evaluated the effectiveness of the hierarchy in scaling multi-domain synchronization
for several OpenMP primitives. The first microbenchmark we ran spawns 16 threads on each
domain from 1 to 8 domains (no cross-domain execution for 1 domain) and executes 5000
barriers in a loop. Figure 9.1a shows the average barrier latency with and without hierarchy
optimizations. Clearly libopenpop’s hierarchy provides much better scalability – a näıve
implementation where all threads on all domains wait at a single global barrier leads to tens
of millisecond latencies that drastically increase with domain count (up to 72.4 milliseconds
for 8 domains). Meanwhile the hierarchical barrier leads to much better scalability with up
to a 1.9 millisecond latency for 8 domains, a 38x speedup.

We next ran a microbenchmark that sums all the elements in an array to stress cross-domain
parallel reductions. We again spawned 16 threads per domain and allocated 50 pages of data
for each thread to accumulate – each thread received the same amount of work to remove load
imbalance effects on reduction latencies. Figure 9.1b shows the latency when performing a
näıve reduction (all threads use atomic operations on a global counter) versus a hierarchical
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reduction (leaders first reduce locally and then globally). Similarly to barriers, hierarchical
reductions have much better scalability than normal global reductions, taking 11 and 58
milliseconds on 8 domains, respectively. Interestingly, the performance gap on 8 domains
between the normal and hierarchical reductions is only 5.4x. This is due to how the compiler
implements reductions – the compiler allocates a thread-local copy of data to be reduced
on each thread’s stack and passes a pointer to that data to the runtime. Each per-domain
leader passes that pointer to the global leader for reduction, which causes contention on the
per-domain leader’s stack page (global leader reads reduction data, per-domain leader uses
stack for normal execution). Nevertheless, the hierarchy provides large performance benefits.

9.2 Benchmark Performance

Next, we ran benchmarks to evaluate the effectiveness of optimizations listed in Section 8.2.3.
All benchmarks were run with hierarchical barriers and reductions enabled. Figures 9.2-
9.7 show application performance when run with varying numbers of domains (x-axis) and
threads per domain (trend lines). For example, when using 8 threads per node and 8 nodes,
the benchmark was run with a total of 64 threads. The y-axis shows runtime of each
configuration in seconds; lower numbers mean better performance. Dotted red lines indicate
application performance before optimization while solid blue lines indicate running time after
optimization.

Application performance falls into three categories: applications that scale with more do-
mains (blackscholes, EP, kmeans and lavaMD), applications that exhibit some scalability
but have non-trivial cross-domain communication (CG) and applications that do not scale
(cfd). For applications that scale, running with the highest thread count on 8 domains
led to a geometric mean speedup of 3.27x versus the fastest time on a single machine, or
4.04x not including blackscholes which has a significant sequential region. For CG, the
fastest multi-domain configuration achieved a slowdown of 5.4%, meaning there is plenty of
room for performance optimization. The optimizations described in Sections 8.2.3 help for
every multi-domain configuration in every single application, although its effects are limited
in those that do not scale. The scalable applications experience further performance gains
by lifting shared variables into global memory and applying lightweight code modifications.
lavaMD and kmeans experienced the largest benefits from optimizations, in particular lifting
shared variables into global memory and using per-domain memory allocations.

9.3 Performance Characterization

Here we describe application characteristics that have a significant impact on performance
and future directions for further optimization in Popcorn Linux and libopenpop.
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Figure 9.2: blackscholes Figure 9.3: cfd

Figure 9.4: CG class C Figure 9.5: EP class C

Figure 9.6: kmeans Figure 9.7: lavaMD
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Scalable applications. These applications have little-to-no communication between threads
on different domains and thus once the initial data exchange between domains has been
completed, threads run at full speed without inter-domain communication. This is the ideal
scaling scenario, but requires problems with large datasets that can be processed completely
independently. Scalability is only limited by benchmark data size (EP-C, kmeans, lavaMD)
or serial portions within the application (blackscholes).

Mildly-scaling applications. These applications share non-trivial amounts of data be-
tween threads during execution. For example, CG-C uses arrays of pointers to access sparse
matrices through indirection, meaning there is little data locality when accessing matrix
elements. We believe that prefetching up-to-date copies of data across domains could signif-
icantly improve performance for these types of applications.

Non-scalable applications. These applications have many small parallel regions, low
compute-to-memory access ratios and continually shuffle pages between domains. cfd itera-
tively scans one variables array and writes to a second node-local array. In the next iteration,
these two array are swapped, leading to huge DSM layer overheads as writes must be prop-
agated among domains and reads that were replicated across domains must be invalidated.
There is not enough computation to amortize the cost of shuffling data. Instead, application
developers would need to find alternate sources of parallelism, i.e., performing several of the
computations in parallel. This could be achieved through nested OpenMP parallel regions;
we leave implementing this functionality within the thread hierarchy as future work.

From the previously described characteristics, the main performance limitation was at-
tributed to cross-domain data shuffling in and between work-sharing regions. In order to
further investigate system bottlenecks, we evaluated how much network bandwidth the DSM
layer was able to utilize by running cfd on 2 domains with 32 threads and capturing the
number of pages transmitted in one second intervals to determine time varying bandwidth
usage. Throughout the parallel portion of the application the messaging layer used on aver-
age 85.2 MB/s of bandwidth, close to two orders of magnitude less than 56 Gbps Infiniband
can provide. This leads us to believe that future efforts should focus on how to use the am-
ple available cross-domain network bandwidth in order to better hide cross-domain memory
access latencies.

9.4 Future Work

There are numerous opportunities for future research with libopenpop. As previously men-
tioned, cross-domain memory access latencies cause severe overheads for applications that
shuffle large amounts of data between domains. This can be attributed to two main factors:
1) distributed shared memory consistency overheads, and 2) on-demand data migration. In
terms of DSM overheads, enforcing sequential consistency across domains can block memory
operations even when there is no data transfer involved. For example, in order to write to
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a page on a domain, Popcorn Linux’s DSM protocol first must invalidate permissions on all
other domains and then acquire write permissions (along with page data). Even when the
domain has the most recent page data (for example, after reading the page), a domain must
first invalidate permissions on other domains before allowing threads write access due to
sequential consistency semantics. However, OpenMP uses a release consistency model [38],
meaning that Popcorn Linux’s protocol provides stricter guarantees than is necessary for
correct OpenMP semantics. Relaxing the DSM layer’s consistency would eliminate much of
the memory consistency maintenance overheads.

The second source of latency is due to the use of on-demand data migration. The DSM
implementation observes memory accesses through the page fault handler and migrates data
at the last possible moment. While this avoids migrating unused data, it places the data
transfer latency directly in the critical path of execution. As mentioned previously, the
interconnect provides ample unused cross-domain bandwidth; techniques which leverage this
bandwidth to preemptively place data can better hide cross-domain latencies. For example,
the compiler could place data “push” hints that inform the DSM when a thread has finished
writing a page so that it can be proactively pushed to other domains (similar in spirit to
prefetching). Because OpenMP work sharing regions often structure memory accesses affine
to loop iterations, the compiler could analyze memory access patterns in work sharing regions
and inject data placement hints into the application.



Chapter 10

Heterogeneous OpenMP

Chapter 8 described how libopenpop optimizes OpenMP execution for non-cache-coherent
systems, including how the OpenMP runtime is refactored to minimize cross-domain co-
herency traffic while maintaining a shared memory parallel programming model for develop-
ers. However, new mechanisms must be added to libopenpop in order to more efficiently uti-
lize heterogeneous-ISA systems where CPUs exhibit different architectural designs and there-
fore diverse computational abilities. In this chapter we describe extensions to libopenpop

that allow it to tailor parallel execution to the compute capabilities of heterogeneous-ISA
systems.

In the context of such heterogeneous-ISA systems, libopenpop’s goal is to automatically
determine where to place parallel computation across heterogeneous CPUs to maximize
total system performance. libopenpop incorporates two new components into the OpenMP
runtime to achieve this goal. First, it provides the mechanisms necessary to adjust how
parallel work is distributed to CPUs in order to balance the workload across heterogeneous
CPU cores; in OpenMP work-shared for loops, this involves adjusting how loop iterations
are assigned to threads. Second, libopenpop automates work distribution decisions (i.e.,
assigning loop iterations to threads) by measuring communication and execution performance
metrics and using those metrics to drive workload distribution decisions. In addition to
extending existing schedulers for heterogeneous-ISA systems, libopenpop implements a new
loop iteration scheduler, called the HetProbe scheduler, that uses performance metrics to
decide whether to utilize cross-node execution or to only execute on a single node. By
measuring and automating workload distribution decisions, libopenpop alleviates developers
from having to manually configure applications for each new hardware setup, e.g., new CPUs
or different types of interconnects.
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10.1 Mechanisms for Heterogeneous-ISA Execution

Before deciding how much work should be given to each CPU in the system, libopenpop
must first be able to configure how loop iterations are distributed to threads in work-shared
for loops. In order to work with existing OpenMP applications, libopenpop must be com-
patible with existing semantics and therefore must abstract all mechanisms behind OpenMP
runtime entry points. OpenMP already provides this capability by allowing developers to
specify loop iteration schedulers, which define how loop iterations are assigned to threads ex-
ecuting a work-sharing region. The OpenMP standard defines several default schedulers [38],
meaning the OpenMP compiler and runtime already provide the abstractions necessary to
define alternate loop schedulers. libopenpop extends the default schedulers to provide new
capabilities for heterogeneous-ISA systems and adds a new scheduler called the HetProbe
scheduler for automating workload distribution decisions.

All of the features described in Chapter 8 are also used for heterogeneous-ISA systems.
libopenpop migrates threads between domains when starting thread teams in order to exe-
cute OpenMP parallel regions across nodes. After thread migration, libopenpop internally
separates runtime chores (work distribution, synchronization, performance monitoring) into
per-node and global operations in order to minimize DSM traffic generated by the runtime
itself. After team initialization, the runtime executes the parallel region. When encounter-
ing a work-shared for-loop, libopenpop must distribute loop iterations, including measuring
application performance across and within nodes to adjust distribution decisions.

10.1.1 Cross-node Execution

When starting a parallel region, libopenpop organizes threads into the previously de-
scribed thread hierarchy. At application startup in heterogeneous systems, however, libopenpop
queries the system to determine each node’s characteristics, such as type and number of CPUs
available, and uses this information to initialize the thread hierarchy. For heterogeneous sys-
tems, the hierarchy may be unbalanced – for example, in a system containing a 16-core Xeon
and a 96-core ThunderX, libopenpop spawns and places 16 and 96 threads, respectively, in
each domain for a total of 112 threads. Internally, libopenpop initializes the same per-node
data structures (barriers, reduction variables, etc.) but additionally creates per-domain loop
iteration scheduler metadata structures. Because the runtime may wish to change workload
distribution decisions after analyzing execution behavior, libopenpop allows re-configuring
the thread hierarchy between parallel regions (but not within a parallel region). This allows
the runtime to, for example, join the threads on an unused domain and only execute on a
single domain if cross-node execution is determined to not be beneficial.

libopenpop uses the thread hierarchy for many types of synchronization, including barriers
and reductions as previously described. Additionally, libopenpop uses the thread hierar-
chy for work distribution metadata. Figure 8.2 illustrates using the thread hierarchy for
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synchronization, where green threads are elected as leaders to synchronize globally and non-
leader threads synchronize locally. The leader/non-leader designation significantly reduces
cross-node communication as most threads do not touch global data (in the Xeon/ThunderX
setup, only 2 threads touch global data instead 112).

10.1.2 Workload Distribution

OpenMP defines several loop iteration schedulers that affect how iterations of a work-shared
parallel loop are mapped to threads. The default loop iteration schedulers (e.g., static,
dynamic) implement several strategies with the goal of evenly partitioning work to avoid
overloaded straggler threads from harming performance. libopenpop provides the ability to
distribute iterations across nodes by extending these schedulers to account for heterogeneity
and to efficiently synchronize how threads grab iterations. Due to limitations in each (see
below), libopenpop introduces the HetProbe scheduler for automatic iteration distribution
in consideration of CPU and interconnect.

libopenpop assumes each node in the system contains a set of homogeneous CPU cores
with identical micro-architecture and cache coherence. To quantify performance differences
between nodes, libopenpop defines a core speed ratio (CSR) to rank the relative compute
capabilities of individual CPU cores on one node versus another. For example, a Xeon
core with a core speed ratio of 3:1 compared to a ThunderX core means the Xeon core is
considered 3x faster than a ThunderX core and threads running on the Xeon will get 3x as
many loop iterations as threads on the ThunderX. libopenpop assigns CSRs to each work
sharing region, as applications may have multiple work sharing regions that each exhibit
different performance characteristics on the same CPUs.

10.1.3 Cross-node static scheduler

OpenMP’s static scheduler evenly partitions loop iterations among threads, assigning each
thread the same number of iterations. The scheduler implicitly assumes all CPUs are equal
and all loop iterations perform the same amount of work. Rather than considering all threads
equal, libopenpop allows developers to specify per-node CSRs to skew the work distribution
for threads on different nodes. The challenge, however, is that developers must manually
discover the ideal CSR for each work sharing region and hardware configuration through
extensive profiling and therefore limits its portability.

10.1.4 Cross-node dynamic scheduler

OpenMP’s dynamic scheduler instructs threads to repeatedly grab user-defined batches of
iterations from a global work pool, implemented by issuing atomic operations on a global
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counter. This scheduler targets work sharing regions where individual loop iterations per-
form varying amounts of work. libopenpop optimizes grabbing batches using an optimistic
leader selection through the thread hierarchy – threads first attempt to grab iterations from
the node-local work pool instantiated during team setup. If the local pool is empty, the
thread currently grabbing iterations is elected leader and transfers iterations from the global
pool to the per-node pool. Because the leader represents the entire node, it grabs a batch
of iterations for each thread executing on the node. This reduces the number of threads
accessing the global pool and thus the amount of global synchronization required for work
distribution. Note that while one thread is grabbing iterations from the global pool, other
threads executing in the same node continue unblocked if they still have remaining work
because no happens-before ordering is required when distributing loop iterations.

While not traditionally meant for load balancing on heterogeneous systems, the dynamic
scheduler can load balance work distribution based on the compute capacity of CPUs in
the system. However, continuous synchronization both at the local and global level to grab
batches of work can negatively impact performance, especially with small batch sizes. Users
must once again profile to determine the ideal per-region and per-hardware batch size. Non-
deterministic mapping of loop iterations to threads can also cause “churn” in the DSM
layer for applications that execute the same work sharing region multiple times. With a
deterministic mapping of iterations to threads, data may settle after the first invocation
of the work-sharing region as nodes acquire the appropriate pages and permissions. With
the dynamic scheduler, however, loop iterations are assigned to different threads for each
invocation and thus the data cannot settling on nodes.

The main problem with the default static and dynamic schedulers is that users must
extensively profile to find the best workload distribution configuration in a large state space,
i.e., determine CSRs or batch sizes for each individual work sharing region on every new
heterogeneous platform. Additionally, if cross-node execution is not beneficial for a work
sharing region due to large DSM overheads, users must profile to determine the best CPU
for single-node execution and manually reconfigure the thread team (including the thread
hierarchy) to only execute work-sharing regions on the selected CPU.

10.1.5 HetProbe scheduler

In order to avoid the tuning complexity of the previously mentioned schedulers, libopenpop
introduces a new scheduler, called the heterogeneous probing or HetProbe scheduler, for
automatically configuring execution of parallel computation. The HetProbe scheduler ex-
ecutes a small number of iterations across both nodes, called the probing period, during
which it measures per-core execution time, cross-node page faults and performance coun-
ters to analyze a work sharing region’s behavior (while still making forward progress on the
computation). For work sharing regions with regular loops, i.e., all loop iterations perform
constant amounts of work and have consistent memory access patterns, the scheduler uses
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this information to distribute the remaining iterations as described in Section 10.2.

The HetProbe scheduler must be precise when distributing iterations for the probing period
in order to accurately evaluate system performance. First, the scheduler issues a constant
number of loop iterations to each thread, regardless of node, in order to compare the execu-
tion time of equal amounts of work on each CPU. Second, the scheduler must deterministi-
cally issue iterations, so that threads executing a work sharing region multiple times receive
the same batch of iterations across invocations to account for the previously-mentioned data
settling effect. If the HetProbe scheduler non-deterministically distributes probe iterations,
data might unintentionally churn and cause falsely higher DSM overheads.

The probing period is configurable in order to tune its behavior to individual parallel re-
gions. If too few iterations are used for probing, the probe measurements will be small and
noisy (i.e., high variance). In particular, the network/DSM layer can add large and variable
latencies, meaning the calculated core speed ratios will be inaccurate. Alternatively if too
many loop iterations are used for probing, threads executing on faster cores will finish the
probe early and waste time waiting for the slower cores to complete, leading to a load imbal-
ance. Currently the HetProbe scheduler defaults to using 10% of the loop iteration range for
probing, which we found to provide consistent measurement results while minimizing load
imbalance effects.

libopenpop also implements a probe cache for applications which execute a work sharing
region multiple times. This has two benefits – first, it allows the runtime to reuse results
from previous probing periods to avoid probing overheads. The runtime simply reuses pre-
viously calculated statistics and workload distribution decisions. Second, libopenpop uses
multiple probing results to smooth out measurement variations for shorter-running work
sharing regions. libopenpop uses an exponential weighted moving average for measurement
statistics, which favors more recent measurements and quickly converges on accurate values.
libopenpop uses this type of average because initial probing values for regions may be in-
accurate due to the DSM layer initially replicating data across nodes, whereas subsequent
executions may incur fewer DSM costs.

10.2 Workload Distribution Decisions

The HetProbe scheduler uses the execution time, page faults and performance counters
measured during the probing period to determine where to execute parallel work. Specifically,
the HetProbe scheduler makes three decisions after executing the probing period:

1. Should the runtime leverage multiple nodes for parallel execution? While
coupling together multiple CPUs provides more theoretical computational power, not all
applications benefit from cross-node execution. As mentioned in Chapter 8 there is a signif-
icant cost for on-demand data marshaling and page coherency across nodes. To understand
DSM overheads, we ran a microbenchmark that varies the number of compute operations
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Description Xeon 2620v4 ThunderX

Vendor Intel Cavium
Cores 8 (16 HT) 96 (2 x 48)

Clock (GHz) 2.1 (3.0 boost) 2.0
LLC Cache L3 - 16MB L2 - 32MB

RAM (Channels) 32 GB (2) 128 GB (4)
Interconnect Mellanox ConnectX-4 56Gbps

Table 10.1: Experimental setup.

executed per byte of data transferred over the interconnect. The microbenchmark fills all
cores in the system with threads and initializes data so that threads access separate pages
and always cause a fault when first touching a page. Once the page has been transferred,
threads perform differing numbers of floating point operations on the page. We use the
experimental setup shown in Table 10.1 and evaluated the DSM layer using two different
network protocols supported by Popcorn Linux’s messaging layer, TCP/IP and RDMA.

Figure 10.1a shows the compute throughput in millions of floating point operations per
second when varying the number of compute operations per byte of data transferred over
the interconnect. Figure 10.1b shows the average page fault period, i.e., elapsed time be-
tween consecutive page faults. Intuitively, as threads perform more computation per byte
transferred, the computation is able to amortize the DSM costs and reach peak compute
throughput – the application spends more time performing useful computation versus wait-
ing for the DSM to map data pages. Another takeaway from Figure 10.1a is that there are
significant latency differences when using RDMA versus TCP/IP. Page faults using RDMA
cost around 30 microseconds, whereas they cost 90 and 120 microseconds for the Xeon and
Cavium servers, respectively, with TCP/IP. Thus, the amount of computation needed to
amortize DSM costs when using TCP/IP is significantly higher than RDMA. This leads to
another conclusion – as cross-node page fault latency decreases, the amount of computation
needed to amortize data transfer costs decreases. Thus we can expect as heterogeneous-ISA
CPUs become more tightly coupled, cross-node execution will become more beneficial for a
wider variety of applications.

To determine if cross-node execution is beneficial, the HetProbe scheduler calculates the
page fault period by measuring execution times and number of faults. The break-even
point when cross-node execution becomes beneficial can be seen in Figure 10.1a when the
microbenchmark is close to maximum throughput: above 512 operations/byte for RDMA,
32768 operations/byte for TCP/IP. Correlating these values to Figure 10.1b, the runtime uses
a threshold of 100 µs/fault for RDMA and 7600 µs/fault for TCP/IP to determine whether
there is enough computation to amortize DSM costs and benefit from executing across mul-
tiple CPUs. As faulting latency drops (e.g., if CPUs share physical memory), fewer compute
operations are needed to amortize cross-node memory access latencies. When the intercon-
nect between CPUs changes, this microbenchmark can be re-used as a tool to automatically
determine the threshold value of when cross-node execution becomes beneficial.
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(a) Floating point operations per second

(b) Page fault period, i.e., microseconds between faults

Figure 10.1: Performance metrics observed when varying the number of compute operations
per byte of data transferred over the interconnect. For example, a 16 on the x-axis means
16 math operations were executed per transferred byte or 65536 operations per page.

2. If utilizing cross-node execution, how much work should be distributed to
each node? As mentioned previously, during the probe period the runtime measures the
execution time of a constant number of iterations on each core in the system. The HetProbe
scheduler uses this information to directly calculate the core speed ratios of each node and
skew the workload distribution of the remaining loop iterations.

3. If not utilizing cross-node execution, on which node should the work be
run? Determining on which node an application executes best involves understanding how
the application stresses the architectural properties of each CPU. Performance counters
provide insights into how applications execute and what parts of the architecture bottleneck
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Probe

Iterations

Probe: 100 iterations/thread

  Node A:  500 us -> CSR: 3.0

  Node B: 1500 us -> CSR: 1.0

  150 page faults

Node A Node B

Node A Work Distribution Node B Work Distribution

Figure 10.2: HetProbe scheduler. A small number of probe iterations are distributed at the
beginning of the work-sharing region to determine core speed ratios of nodes in the system.
Using the results, the runtime decides either to run all iterations on one of the nodes or
distribute work across nodes according to the calculated core speed ratio (shown here).

performance. For our setup, the ThunderX has a much higher degree of parallelism versus
the Xeon, meaning it has a much higher theoretical throughput for parallel computation.
However, the biggest challenge in utilizing all 96 cores is being able to supply data from
the memory hierarchy. Although the ThunderX uses quad-channel RAM (with twice the
bandwidth of the Xeon), it only has a simple two level cache hierarchy versus the Xeon’s
much more advanced (and larger per-core) three level hierarchy. If an application exhibits
many cache misses, it is unlikely to fully utilize the 96 available cores and would be better
run on the Xeon. The HetProbe scheduler measures cache misses per thousand instructions
during the probing period to determine how much the work-sharing region stresses the cache
hierarchy (users can specify any performance counters prudent for their hardware). We
experimentally determined a threshold value of three cache misses per thousand instructions
– below the threshold and the application can take advantage of the ThunderX’s parallelism,
but above the threshold the ThunderX’s CPUs will continuously stall waiting on the cache
hierarchy and thus the computation should be run on the Xeon. Note that the HetProbe
scheduler must use performance counters and cannot simply use execution times from the
probing period to decide on a node; the probing period measures execution times with DSM
overheads that are not present when executing only on a single node.

Once a node has been chosen, the HetProbe scheduler falls back to existing OpenMP sched-
ulers for single-node work distribution. Currently it defaults to the static scheduler, but
this is configurable by the user. Additionally, libopenpop joins threads on the unused node
to avoid unnecessary cross-node synchronization overheads. For example, if not using the
ThunderX there is no reason to keep 96 threads alive simply to join at end-of-region barriers.
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Figure 10.2 shows an example of a work sharing region with 20000 loop iterations executing
using the HetProbe scheduler. The first 2000 iterations are used for the probing period and
each of the 20 cores across both nodes is given an equal share of 100 iterations. Importantly,
the probing period is performing useful work, albeit in a potentially unbalanced way. After
the probing period, libopenpop measures that Node A’s cores executed 100 iterations in
500µs whereas Node B’s cores executed 100 iterations in 1500µs. The HetProbe scheduler
determines that Node A’s cores are 3x faster than Node B’s cores for this work sharing region,
meaning threads on Node A should get 3x more iterations than threads on Node B to evenly
distribute work (the CSR is set to 3:1 for Nodes A and B, respectively). In this example, the
HetProbe scheduler determined that cross-node execution was beneficial (see Section 10.2).
For the remaining 18000 iterations, each thread on Node A receives 1929 iterations and
each thread on Node B receives 643. Thus the HetProbe scheduler automatically determines
the relative performance of heterogeneous CPUs through online profiling and distributes
the remaining work accordingly. Note that if cross-node communication was deemed too
costly, the remaining 18000 iterations would all be distributed to either Node A or Node B
depending on performance counters.

10.3 Implementation

libopenpop is built on top of GNU libgomp, the OpenMP runtime used by gcc. It adds
5,145 lines of code, primarily to implement the thread hierarchy (and all associated ma-
chinery), runtime measurement and dynamic work distribution. As previously mentioned,
because Popcorn Linux’s compiler is built on clang which emits API calls the libiomp run-
time, libopenpop includes a small shim layer to forward libiomp function calls to libgomp.
Because page faults are transparent to the application, libopenpop reads page fault counters
from a proc file exposed by Popcorn Linux. Currently Popcorn Linux’s compiler does not
support runtime performance counter collection (although it could be supported through
an interface such as PAPI [142]); to work around this, we collected performance counter
data offline and fed it to libopenpop to make node selection decisions. For applications
with multiple work-sharing regions, we currently manually specify which region should be
probed to make distribution decisions by evaluating which region executes the longest. This
could be automated by libopenpop by running the application for a small period of time
and querying the probe cache to select region(s). We leave these engineering tasks as future
work.
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Heterogeneous OpenMP Evaluation

When evaluating libopenpop and the HetProbe scheduler on heterogeneous-ISA systems,
we asked the following questions:

1. Is libopenpop able to efficiently leverage the compute capabilities of asymmetric
server-grade heterogeneous CPUs for OpenMP-parallelized applications?

2. Is libopenpop’s HetProbe scheduler able to accurately measure runtime behavior and
make sound workload distribution decisions? Specifically, can the HetProbe sched-
uler accurately determine if cross-node execution is beneficial, distribute appropriate
amounts of work to each node, and select the best CPU for single-node execution?

3. Which schedulers are best suited for which types of runtime behaviors and applications?

11.1 Experimental Setup

We evaluated libopenpop using the experimental setup shown in Table 10.1 which ap-
proximates our envisioned tightly-coupled platform; because no existing systems integrate
heterogeneous-ISA CPUs via point-to-point connections, we approximate such a system by
connecting two servers with high-speed networking. Our setup includes an Intel Xeon server
with a modest number of high-powered cores and a Cavium ThunderX server with a large
number of lower-performance cores. These servers represent two ends of the CPU design
space and are therefore useful for targeting a variety of workloads. The machines are inter-
connected via 56Gbps InfiniBand adapters which provide low latency and high throughput.
We use the RDMA protocol for all experiments except where explicitly mentioned due to
its significantly lower latency. Both machines run the latest version of Popcorn Linux; the
Xeon server uses Debian 8.9 while the ThunderX server uses Ubuntu 16.04. Popcorn Linux’s
compiler is built on clang/LLVM 3.7.1, and libopenpop is built on libgomp 7.2.0.

117
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Benchmark Core speed ratio – Xeon : ThunderX

blackscholes 3 : 1
EP-C 2.5 : 1
kmeans 1 : 1
lavaMD 3.666 : 1

Table 11.1: Core speed ratios calculated by HetProbe scheduler. Used by Ideal CSR and Het-
Probe configurations. Without the HetProbe scheduler, developers would have to manually
determine these values via extensive profiling.

Benchmark Time Benchmark Time

blackscholes 85.76 kmeans 989.77
BT-C 310.08 lavaMD 104.52
cfd 76.47 lud 258.75

CG-C 71.36 SP-C 210.57
EP-C 32.00 streamcluster 67.86

Table 11.2: Baseline execution times in seconds when run on Xeon with 16 threads using
the static scheduler

Benchmarks. We selected 10 benchmarks from three popular benchmarking suites – The
Seoul National University [175] C/OpenMP versions of the NAS Parallel Benchmarks [23],
PARSEC [33] and Rodinia [50]. These benchmarks represent HPC and data mining bench-
marks from a variety of areas and therefore represent a number of potential use cases for
libopenpop. In addition to their applicability, these benchmarks exhibit a wide variety of
computational patterns on which to evaluate libopenpop. All benchmark results are the
average of 3 runs using each configuration (execution times were stable across runs).

Work Distribution Configurations. We evaluated running the benchmarks using the
following workload configurations:

� Xeon – represents running the benchmark entirely on the Xeon. Serial phases run on
a single Xeon core and work-sharing regions use the Xeon’s 16 threads.

� ThunderX – similar to Xeon except on the ThunderX CPU. Serial phases run on a
single ThunderX core and work-sharing regions use the ThunderX’s 96 cores.

� Ideal CSR – executes work-sharing across both CPUs. Serial phases run on a Xeon
core and work-sharing regions always split loop iterations across the Xeon and Thun-
derX (112 total threads) using the cross-node static scheduler and skew distribution
using the CSRs in Table 11.1. The CSRs were gathered from runs with the HetProbe
scheduler and manually supplied via environment variables.

� Cross-Node Dynamic – identical to Ideal CSR except that it uses the cross-node
dynamic scheduler described in Section 10.1 for work-sharing regions. We experimen-
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tally determined the best chunk size for each benchmark; most benchmarks performed
better with smaller sizes, i.e., finer-grained load balancing.

� HetProbe – executes work-sharing regions using the HetProbe scheduler. HetProbe
uses both CPUs during the probing period and then decides whether cross-node exe-
cution is beneficial. If so, it uses measured execution times on each CPU to calculate
CSRs (Table 11.1) to skew loop iteration distribution for the remaining iterations sim-
ilarly to Ideal CSR. If not, it selects the best CPU and falls back to OpenMP’s original
static scheduler on a single node; threads on the not-selected node are joined to avoid
unnecessary synchronization. The probe period was configured to use 10% of available
loop iterations. The HetProbe scheduler probed for up to 10 invocations of a given
work-sharing region (using an exponential weighted moving average to smooth out
measurements), after which it re-used existing measurements from the probe cache.
For several benchmarks, the HetProbe scheduler chose single-node execution on the
ThunderX. As a comparison point, “HetProbe (force Xeon)” shows the same results
except forcing the HetProbe scheduler to use single-node execution on the Xeon; these
results are explained below.

11.2 Results

Table 11.2 shows the total benchmark execution times, including both serial and parallel
phases, on the Xeon; this is considered the baseline configuration. Figure 11.1 shows the
speedup normalized to homogeneous Xeon execution for each of the aforementioned config-
urations. The benchmarks can broadly be classified into two categories: those that benefit
from cross-node execution and those that do not. blackscholes, EP-C, kmeans and lavaMD
fall into the former category whereas the others fall into the latter. Across benchmarks
that benefit from multi-node execution, all but blackscholes achieve the highest speedup
under Cross-Node Dynamic. This is due to the fact that with a granular chunk size, work is
distributed across nodes in an almost perfect balance. Additionally, due to the thread hier-
archy, there is significantly reduced global synchronization for loop iteration distribution as
threads grab work from a local work pool the majority of the time. Across these four bench-
marks, Cross-Node Dynamic yields a geometric mean speedup of 2.68x. Ideal CSR is 12.5%
faster for blackscholes and close behind Cross-Node Dynamic for the other three, achieving
a geometric mean speedup of 2.55x. Finally, HetProbe is slightly slower than the other two
configurations for cross-node execution, achieving a geometric mean speedup of 2.4x. This
is due to probing overheads – the probe period runs a constant number of iterations for all
cores leading to an initial workload imbalance. Additionally, measurement machinery (times-
tamps, parsing the proc file for DSM counters) and probe cache synchronization add extra
overheads. For these four benchmarks, probing overhead is equal to the difference between
Ideal CSR and HetProbe, as they are functionally equivalent after probing. HetProbe adds
5.2%, 5.3%, 11.5% and 2.8% overhead for blackscholes, EP-C, kmeans and lavaMD, respec-
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Figure 11.1: Speedup of benchmarks versus running homogeneously on Xeon (values less than
one indicate slowdowns). Asterisks mark the best workload distribution configuration for
each benchmark. “Cross-Node Dynamic” provides the best performance across applications
that benefit from leveraging both CPUs (blackscholes, EP-C, kmeans, lavaMD), but causes
significant slowdowns for those that do not. “HetProbe” achieves similar performance to
Ideal CSR and Cross-Node Dynamic for the four scalable applications but falls back to a
single CPU for applications that cause significant DSM communication and hence have worse
cross-node performance. For geometric mean, “Oracle” is the average of the configurations
marked by asterisks, i.e., what a developer who had explored all such possible workload
distribution configurations through extensive profiling would choose.

tively, for a geometric mean overhead of 5.5%. This demonstrates the HetProbe scheduler
provides competitive performance with minimal overheads for benchmarks that benefit from
cross-node execution.

For benchmarks that do not scale across nodes, however, the Ideal CSR and Cross-Node
Dynamic configurations significantly degrade performance with geometric mean slowdowns
of 3.63x and 5.89x, respectively. This is due to DSM – threads spend significant time
waiting for pages from other nodes, which also forces application threads on other nodes to
be time-multiplexed with DSM workers. There is not enough computation to amortize DSM
page fault costs over the network. The Cross-Node Dynamic scheduler is exclusively worse
than the Ideal CSR scheduler due to additional work distribution synchronization caused
by threads repeatedly grabbing batches of iterations. The HetProbe scheduler, however,
successfully avoids cross-node execution for these benchmarks by measuring the page fault
period and determining cross-node execution to not be beneficial (geometric mean slowdown
of 39%, or 2.4% without cfd). Figure 11.2 shows measured page fault periods for each
application; applications with a period below 100µs were considered not profitable for cross-
node execution.
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Figure 11.2: Page fault periods used to determine
whether cross-node execution is beneficial. Red bars
(cross-node execution not profitable) are below the
RDMA threshold indicated in Section 10.2, blue are
above.

Figure 11.3: Cache misses for
applications not executed across
nodes. Green bars (including
lud) indicate the application was
run on the ThunderX, blue were
run on the Xeon.

Figure 11.4: Execution time (lines, left axis) and page fault period (bars, right axis) when
varying the number of iterations of blackscholes. “Homogeneous” refers to Xeon configura-
tion, “TCP/IP” refers to using HetProbe over TCP/IP.
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For applications deemed not beneficial to execute across nodes due to high DSM overheads,
the HetProbe scheduler utilized cache misses per 1000 instructions to determine whether to
execute work-sharing regions on the Xeon or ThunderX. As shown in Figure 11.3, there is
a clear separation between applications that benefit from the ThunderX’s high parallelism
(BT-C, cfd, lud) and those that are bottlenecked by memory accesses (CG-C, SP-C, stream-
cluster). It is worth noting that although cfd’s parallel region runs faster on the ThunderX,
it has a long serial file I/O phase that runs slowly on ThunderX, leading the benchmark’s
overall execution time to be faster on the Xeon (hence why homogeneous ThunderX is ac-
tually slower than Xeon). When selecting a node, the HetProbe scheduler used a threshold
value of three misses per thousand instructions, placing BT-C, cfd and lud on the ThunderX
and the others on Xeon. For the three benchmarks placed on Xeon, probing overhead is
equivalent to the difference between Xeon and HetProbe since HetProbe degrades to Xeon
after probing. The probing period adds 4.8%, 6.6% and 7.1% for CG-C, SP-C and stream-
cluster, respectively, for a geometric mean overhead of 6.1%. This shows performance close
to single-node execution on the Xeon, meaning the probing period has minimal impact on
performance.

Interestingly for BT-C, cfd and lud, executing parallel regions on the ThunderX achieved
worse than expected performance due OS limitations. Popcorn Linux’s kernel currently only
supports spawning threads on the node on which the application started, meaning one thread
must remain on the Xeon even when work-sharing regions execute on the ThunderX. Each
of these benchmarks executes hundreds to thousands of work-sharing regions (and their as-
sociated implicit barriers), causing significant cross-node synchronization. As a comparison
point for BT-C and cfd, we ran an additional experiment to force the HetProbe scheduler to
select the Xeon for single-node execution; it added 3.2% and 4.2% probing overhead, respec-
tively. lud is an interesting case – the HetProbe scheduler decides cross-node execution is
not profitable and runs work sharing regions on the ThunderX. The aforementioned OS limi-
tation impacts HetProbe’s performance enough that Ideal CSR actually achieves 20% better
performance than HetProbe (although still worse than running solely on the ThunderX). We
expect that when Popcorn Linux allows spawning threads on remote nodes, libopenpop will
be able to more efficiently leverage both machines.

It is important to note that none of Xeon, ThunderX, Ideal CSR or Cross-Node Dynamic
perform best in all situations, clearly illustrating the need for the HetProbe scheduler. As
shown in Figure 11.1, HetProbe provides the best performance out of all evaluated con-
figurations across all benchmarks with a geometric mean performance improvement of 41%
(ThunderX provides an 11% improvement). In contrast, Ideal CSR causes a slowdown of 49%
and Cross-Node Dynamic causes a 96% slowdown, highlighting the importance of communi-
cation traffic when deciding whether to distribute computation across multiple nodes. As a
comparison point, “Oracle” shows that developers could obtain a geometric mean speedup
of 60% if they had extensively profiled all configurations and selected the best for all bench-
marks. As Popcorn Linux matures, HetProbe will be able to more closely match the Oracle,
as the aforementioned thread spawning limitation has a significant impact on HetProbe’s
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performance.

What types of applications benefit from cross-node execution? The four appli-
cations that benefit from cross-node execution have a high enough compute to cross-node
communication ratio to leverage the compute resources of multiple CPUs. blackscholes
has an initial data transfer period but repeats computation on the same data, allowing it
to settle on nodes (blackscholes also has a lengthy file I/O phase that benefits from the
Xeon’s strong single-threaded performance). EP-C performs completely local computation
(including heavy use of thread-local storage) with a single final reduction stage. lavaMD
computes particle potentials through interactions of neighbors within a radius, meaning
multiple threads re-use the same data brought across the interconnect. Similarly, kmeans
alternatively updates cluster centers and cluster members – all threads on a node alternate
between scanning the cluster member and cluster center arrays, re-using pages brought over
the interconnect.

Benchmarks that do not benefit cannot amortize data transfer costs. For example, BT-C
and SP-C access multidimensional arrays along different dimensions in consecutive work
sharing regions, causing the DSM to shuffle large amounts of data between nodes. Other
benchmarks have little data locality – CG-C and streamcluster calculate a set of results
and then access them in irregular patterns using an indirection array. This behavior causes
extensive latencies for local cache hierarchies, let alone DSM. lud’s work-sharing region
sequentially accesses an array, but does not perform enough computation per byte to amortize
DSM costs. Additionally, there is a large amount of “false sharing” where threads on different
nodes write to independent parts of the same page. False sharing can be avoided by the use
of a multiple-writer protocol such as lazy-release consistency [12].

What applications benefit from Ideal CSR versus Cross-Node Dynamic? Three
of the four benchmarks that benefit from cross-node execution achieve the best performance
with Cross-Node Dynamic due to fine-grained load balancing. For blackscholes, however,
Ideal CSR achieves better performance. This is due to pages settling into a steady state
after the initial work sharing region. Threads receiving the same loop iterations across
multiple invocations of the work sharing region access the same data, thus all data pages
required by threads are already mapped to the appropriate node. With Cross-Node Dynamic,
however, threads receive different loop iterations across separate executions, meaning pages
containing results must be continually shuffled across nodes. This settling behavior is why
the HetProbe scheduler deterministically distributes iterations for the probing period.

Case Study: TCP/IP. In order to evaluate whether our approach for determining the
profitability of cross-node execution is valid for different types of interconnects, we ran
blackscholes with varying number of iterations (more iterations means more compute oper-
ations per byte since blackscholes’ data settles after the first iteration) using the TCP/IP
protocol described in Section 10.2. Figure 11.4 shows the execution time when running ho-
mogeneously on the Xeon versus cross-node execution (lines) and the page fault period of
each cross-node run (bars). As mentioned in Section 10.2, we use a page fault period of
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7600µs to determine whether cross-node execution will be beneficial when using TCP/IP.
The results are somewhat noisy (TCP/IP tends to have more variable latencies) but consis-
tent with expectations – only after the page fault period climbs above 8000µs does cross-node
execution pay off. Thus we conclude using page fault periods as the determining factor for
cross-node execution is applicable for different types of interconnects.

Optimization opportunities. As mentioned previously there are several limitations in
Popcorn Linux’s current implementation which hinder performance. Popcorn Linux does
not currently support spawning threads on remote nodes, meaning the thread which starts
the parallel must reside on the origin node (the Xeon in our setup). Many libc-specific
functions are not well optimized for Popcorn Linux – common operations like file I/O are
protected via global locks, which incur large overheads when threads perform synchronization
across nodes (threads parse the proc file containing page fault information using standard
file I/O).

11.3 Discussion

There are number of ways in which libopenpop can be extended and evaluated. First, the
HetProbe scheduler is designed for work sharing regions with loops where each loop iteration
performs a constant and equal amount of work. This assumption allows the HetProbe sched-
uler to make workload distribution decisions by monitoring the behavior of a small number
of probe iterations. For irregular applications such as graph traversal algorithms [117], how-
ever, this assumption is no longer valid. For these applications, predicting cross-node DSM
traffic becomes significantly more difficult and potentially requires co-designing DSM and
parallel programming runtimes to minimize communication.

Due to limitations in Popcorn Linux we are currently only able to evaluate libopenpop

on Xeon and first-generation ThunderX CPUs. Evaluation using other CPU architectures
such as the next generation ThunderX2 or POWER9 would allow us to better evaluate
libopenpop’s ability to determine the optimal node using performance counters. We believe
that as architectures become more diverse in terms of cache hierarchy, hardware threading
and microarchitecture, libopenpop will need to incorporate new analyses to more accurately
determine node affinity.

libopenpop also currently focuses on achieving maximum performance but not energy ef-
ficiency. The first-generation ThunderX CPUs consume large amounts of power, meaning
that even though cross-node execution may provide the best performance oftentimes the
heterogeneous setup consumes more energy than running solely on one node. Optimizing
OpenMP execution for different efficiency metrics may yield different workload distributions,
especially as the system architecture (CPUs, interconnect) changes.

libopenpop currently assumes exclusive access to the machine for runtime measurement.
Some of the performance metrics measured by libopenpop (in particular execution time)
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may be affected in multiprogramming scenarios when applications must time-share resources.
Taking into account not only how the current application but all applications in the system
utilize system resources (interconnect, cache hierarchy, hardware threads) will affect work-
load distribution decisions made by libopenpop.



Chapter 12

Chameleon – Runtime
Re-randomization

The Popcorn Compiler generates stack layout information in order to reconstruct a thread’s
execution state at equivalence points within an application. While this process was de-
signed for execution migration between heterogeneous-ISA CPUs, it can be leveraged in
other contexts such as hardening applications against security vulnerabilities. In particular,
we leverage the Popcorn compiler’s abilities in order to continuously randomize the layout
of a thread’s execution state (stack, registers) in order to thwart attacks that target buffers
allocated on the stack [63] and return-oriented programming (ROP) attacks which string
together existing code into arbitrary functionality [177]. Chameleon is a re-randomization
runtime that utilizes the state transformation information produced by the Popcorn compiler
to periodically and transparently randomize the code and stack layout of target applications.

12.1 Background

Buffer overflow attacks are one of most common forms of memory errors plaguing C and C++
applications. Because there is no bounds checking in these languages, logic errors present
in applications may unknowingly allow malicious attackers to read or write outside of the
buffer’s bounds, leaking sensitive information or overwriting execution state. Stack overflow
attacks exploit buffer overflows for stack-allocated variables to modify the thread’s runtime
stack [152]. These exploits, called “stack smashing” attacks, overwrite the stack with ma-
chine code for an exploit and modify the return address on the stack so that upon returning
from the vulnerable function, the application jumps to the exploit. However, these types of
exploits and other code injection attacks have fallen by the wayside as new techniques such as
avoiding mapping the stack or any data region as executable (e.g., data execution prevention
in Windows [6]) and the use of stack canaries (StackGuard [63]) have become widespread.

126
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Additionally, modern compilers and operating systems implement address space layout ran-
domization [178] to randomize the base addresses of various application components such as
code, data and heap regions, preventing attackers from bootstrapping exploits using known
code or data locations.

With the ability to inject code into vulnerable applications becoming more difficult, attack-
ers have instead turned to reusing existing code in applications to construct and execute
exploits. One form of attack, dubbed “return-to-libc” [69], overwrites the return address on
the stack and populates registers with arguments to jump into functions in the standard C
library (which is linked into almost every application). These attacks can be used to, for ex-
ample, spawn a shell – the system standard C library API allows executing a shell command.
A more general form of attack known as return-oriented programming (ROP) [177], strings
together small snippets of existing code in the target application to execute arbitrary func-
tionality. The attacker must discover “gadgets” in the machine code of the application that
implement primitive operations such populating a register with a value, performing some
math operation, or storing data onto the stack. The attacker then constructs a “gadget
chain” by stringing together gadgets through careful construction of stack data. Using these
gadget chains, ROP attacks have been shown to provide Turing-complete functionality and
can be constructed using widely available ROP compilers [173]. While initially targeting x86
due to the prevalence of unaligned ret instructions (the return instruction, opcode 0xc3,
appears frequently inside other instructions), ROP attacks have been extended to work in
the absence of return instructions [51] and attack other architectures such as SPARC [43],
ARM [116] and PowerPC [129]. Additionally, many new variants of ROP attacks such as
jump-oriented programming (JOP) [36], Blind-ROP [35] and JIT-ROP [182] extend the same
basic idea with new forms of gadgets, allowing attackers to bypass defenses built into ap-
plications hardened against unintentional ret instructions, web servers with pathological
behavior that can be abused to de-anonymize layouts and dynamic gadget discovery in the
presence of fine-grained load-time ASLR.

Chameleon is designed to disrupt these kinds of attacks by continuously randomizing the
stack layout and code. By changing the stack layout, Chameleon makes it more difficult
for attackers to corrupt specific stack elements such as return addresses. Additionally, the
locations of payloads injected by attackers changes, making it more difficult to bootstrap
exploit execution. Chameleon forces attackers to guess the locations of stack elements, risking
causing a crash or triggering intrusion detection systems. Chameleon must also rewrite the
application’s code in order to match the randomized stack layout. Rewriting the code has the
secondary benefit of disrupting gadgets used by the attacker. Gadgets are used to provide
a very specific functionality (e.g., load a value from a specific stack slot into register rax);
any deviation from this expected behavior breaks gadget chain functionality. By rewriting
the code section, Chameleon changes the instructions inside of gadgets and alters their
semantics, disrupting these carefully constructed ROP chains. Because exploits such as JIT-
ROP discover gadgets and construct payloads at runtime by following dynamically-discovered
code pages, Chameleon must continually re-randomize the target to prevent attackers from
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discovering gadgets after an initial randomization.

12.2 Threat Model

In Chameleon’s threat model, the attacker can interact with the target application through
typical I/O interfaces such as sockets or files (including standard in/out/err). The attacker
does not have the ability to directly read or write memory, but does have the ability to
invoke a memory error (e.g., buffer overflow or memory disclosure) to both read and write
application memory indirectly. Thus the attacker can discover the layout of the application
and overwrite code pointers (e.g., return addresses) to alter the application’s control flow.
The application is running using standard memory protection mechanisms such that no page
has both write and execute permissions; this means the attacker cannot directly inject code
but must instead rely on constructing gadget chains. However, the gadget chains crafted by
the attacker can invoke system APIs such as mprotect to create such regions if needed. The
attacker knows that the target is running under Chameleon’s control and therefore knows
of its randomization capabilities. We assume the system software infrastructure (compiler,
kernel) is trusted and therefore the capabilities provided by these systems are correct and
sound. However, the attacker may be running a malicious process on the same machine
as the target, giving the attacker the ability to launch side-channel attacks such as cache
timing attacks [205, 130, 113]. Using side-channel attacks gives the attacker the ability to
leak information such as Chameleon’s randomization metadata, albeit at a much slower pace
than normal memory reads and writes.

12.3 System Architecture

Chameleon’s goal is to continuously re-randomize the code section and stack layout of an ap-
plication (named the target or child) in order to harden it against memory disclosures, stack
smashing/stack buffer overflows and ROP attacks. As a result of running under Chameleon,
gadget addresses or stack buffer locations that are leaked by memory disclosures and that
help facilitate other attacks (buffer overflows, construction of gadgets) are only useful un-
til the next randomization, after which the attacker must re-discover the new layout and
locations of sensitive data. Thus Chameleon aims to continuously randomize the applica-
tion quickly enough so it becomes probabilistically impossible for attackers to construct and
execute attacks against the target. Currently Chameleon supports x86-64 but can be eas-
ily extended to ARM64 or other architectures, unlike some previous works which rely on
x86-specific features to hide performance overheads [203].

Chameleon has several design goals. First, Chameleon is designed to re-randomize the tar-
get transparently – the target application has no knowledge of running under Chameleon’s
control. In addition to transparency, Chameleon is designed to provide strong isolation
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guarantees between itself and the target by executing in a separate process and therefore
separate virtual address space. This provides security benefits by minimizing the interface
between Chameleon and the target. Chameleon is also designed to have limited contact
with the outside world. After initializing the target, Chameleon only ever interacts with
the kernel and with the target through kernel-mediated interfaces. Separating Chameleon
into a separate process exposes optimization opportunities by allowing Chameleon to asyn-
chronously perform any chores in the background (e.g., generate the next set of randomized
code) while the application executes. This separation of duties into separate processes allows
for a cleaner implementation versus previous DBI-based frameworks [66, 196, 203], which
require complex self-hosting and bootstrapping mechanisms because they operate within the
same process as the target. Additionally, this allows code randomization to be performed
completely asynchronously versus DBI-based frameworks, which not only place generating
re-randomized code in the critical path of applications, but also add unavoidable DBI over-
heads (e.g., virtualizing indirect branches via trapping into an interpreter [41]).

In order to implement re-randomization, Chameleon needs the following capabilities:

1. Disassemble, randomize and re-assemble code (Section 12.4). For all functions
in the target application, Chameleon must be able to randomize the locations of stack
elements. Therefore, Chameleon must know how the compiler has laid out the stack
and must be able to find references to stack elements. After randomizing the layout,
Chameleon must rewrite code emitted by the compiler in order to update references
to stack elements to instead refer to their randomized locations.

2. Served randomized code pages to the target (Section 12.5). After rewriting
the code, Chameleon must be able to transparently serve the randomized code to the
target in place of the on-disk code emitted by the compiler. Chameleon accomplishes
this through Linux’s userfaultfd mechanism [110], which allows a user-level process
to handle page faults. Chameleon must prepare the target’s code region for attaching
via userfaultfd and then serve requests on-demand for randomized code pages.

3. Re-randomize the target (Section 12.6). After an initial randomization, Chameleon
must be able to stop a running application (executing using the previous randomiza-
tion) and atomically switch it to another randomization. In addition to exercising the
previously mentioned capabilities, Chameleon must also transform the stack from its
current layout to the newly randomized layout.

Chameleon uses two kernel interfaces, ptrace and userfaultfd, to monitor and transform
the target application. ptrace [4], or process trace, is an interface widely used by debuggers
to inspect and control the execution of tracees. In particular, ptrace allows tracers (e.g.,
Chameleon) to read and modify per-thread register sets, signal masks and virtual memory
in the tracee. ptrace also allows intercepting events in the tracee such as signals and
system calls, depending on how the tracer configures tracee execution. Finally, ptrace
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Figure 12.1: Chameleon runtime system. An event handler thread waits for events in a
target application thread (e.g., signals), interrupts the target thread, and reads/writes the
target thread’s execution state (registers, stack) using ptrace. A scrambler thread con-
currently prepares the next set of randomized code for the next re-randomization. A fault
handler thread responds to page faults in the target by passing pages from the current code
randomization to the kernel through userfaultfd.

allows tracers to forcibly interrupt tracee threads in order to gain control of their execution.
userfaultfd [110] is a Linux kernel mechanism which allows delegating handling of page
faults to user-space. When accesses to a region of memory attached to the userfaultfd

file descriptor cause a page fault, the kernel sends a request to a process reading from the
descriptor. The process can then respond with the data for the page by writing to the
file descriptor. Using these two mechanisms together, Chameleon can transparently and
continuously re-randomize target applications with little overhead.

Figure 12.1 shows the runtime system architecture for Chameleon. Users launch the target
application by passing the command line arguments to Chameleon. After reading the code
and state transformation metadata from the target application binary, Chameleon forks
the target application and attaches to it via ptrace and userfaultfd. From this point
on, Chameleon starts target execution and enters the re-randomization loop. At the start
of a new randomization cycle, a scrambler thread iterates through every function in the
target’s code, randomizing the stack layout as described in Section 12.4. At some point,
a re-randomization event is triggered within Chameleon according to a user-defined policy;
currently Chameleon uses a timer trigger which periodically initiates a re-randomization.
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When the re-randomization event fires, the event handler thread interrupts the target and
atomically switches the target to the newly randomized code as described in Section 12.6.
The event handler reads the target thread’s current execution state (stack, registers) and
transforms it to adhere to the newly randomized layout produced by the scrambler thread.
After transformation, the event handler writes the transformed state back into the context
of the target and drops the stale code pages. The event handler then resumes the child
and waits for the next re-randomization event. As the child begins executing, it causes
code page faults by fetching instructions from dropped code pages. A fault handler thread
handles these page faults and serves the newly randomized code on demand as described in
Section 12.5. In this way the entire re-randomization procedure is transparent to the target
and Chameleon can atomically switch to new randomized code.

Chameleon creates a one-to-one mapping of event handler to target application threads,
which allows more easily handling events in each child thread. Events are passed to Chameleon
through the blocking wait system call, which makes multiplexing target threads onto event
handlers complicated. Additionally, this simplifies executing a re-randomization, i.e., inter-
rupting the target thread and transforming the thread’s stack. However, there is only one
scrambler and fault handler thread per target process as all threads share the same random-
ized code. Chameleon can detect when the target application spawns new threads, as wait
will return information indicating the target thread issued a clone system call (the API
used by standard C libraries to create new threads).

Chameleon also supports more complicated applications that fork entirely separate processes
such as web servers. When the target forks a new child, wait informs Chameleon through a
fork event. At this point, Chameleon instantiates a new scrambler, fault handler and event
handler for the newly forked child. However, ptrace only allows one process to be the tracer
of any given tracee. By default, the tracer of a given process is also the tracer of any forked
child processes. Chameleon must therefore hand-off tracer privileges between event handler
threads. In order to do this, Chameleon first redirects the new child to a blocking read on
a socket through code installed via a parasite (see Section 12.5). The original event handler
thread then detaches from the new child, allowing the new event handler thread to become
the tracer for the new child while it is blocked on the socket read. After attaching, the new
event handler performs some remaining initialization tasks and restores the new child to the
fork location. In this way, Chameleon always maintains complete control of applications
even when they fork new processes.

12.4 Code Randomization

Chameleon’s first task is to rewrite code emitted by the compiler to randomize the loca-
tions of stack elements. This hardens applications against exploits which use logic errors in
conjunction with locations of known stack elements to corrupt the stack [152] and ROP-like
exploits which string together gadgets to execute arbitrary functionality [177]. Chameleon’s
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randomization moves the location of stack elements and rewrites code to update references
to those stack elements, thus disrupting both of the aforementioned attacks. Chameleon
uses DynamoRIO [40], a dynamic binary instrumentation framework, as its machine code
disassembler and re-assembler1.

When rewriting code, re-randomization frameworks must handle limitations of the code
emitted by the compiler. When emitting machine code, the compiler directly encodes target
addresses (or offsets from the program counter in the case of position-independent code [32])
in order to transfer control between different code blocks. If the re-randomization frame-
work wishes to change the size of code, either by adding/removing instructions or changing
the encodings of existing instructions, the framework must be able to find and update all
code references to reflect the changed size. This problem is known to not be statically solv-
able [201]. Re-randomization must not only handle directly encoded code targets, but must
reify all code pointers within the application (which can be stored in arbitrary locations)
that were created and stored during a previous randomization cycle.

Previous works leverage dynamic binary instrumentation (DBI) frameworks like Pin [132]
and DynamoRIO to continuously re-randomize code. DBI frameworks rewrite code on-
demand by maintaining a code cache of dynamically discovered basic blocks, or sequences of
instructions that end in a control flow instruction. At application startup, the DBI framework
loads the application’s first basic block, rewrites the ending control flow instruction to instead
return control to the DBI framework and adds the block to the DBI’s code cache. Upon
executing the basic block and returning to the DBI framework, the DBI interpreter loads
the next basic block starting at the target of the control flow instruction, again changing
the final instruction to return control and placing the basic block in the code cache. This
process occurs repeatedly, allowing the DBI framework to discover and translate all code
targets, i.e., all instructions to which execution can transfer via control flow. Because of this
capability, DBI frameworks can dynamically change the sizes of an application’s code to add
instrumentation or change the layout of stack elements for re-randomization. However this
abstraction and instrumentation has performance costs such as added branch mispredictions
and new mechanisms for handling indirect branches – for example, DynamoRIO adds on
average 13% overhead for SPEC CPU 2006 on x86-64 as the minimal DBI cost [41].

However, executing under a DBI framework is not enough to handle changing code sizes
during re-randomization. Previous works [203] use a layer of indirection similarly to the
procedure linkage table [32] to force all code references to flow through a known location,
adding even more overhead to applications. Chameleon, in contrast, does not attempt to find
and rewrite control flow targets to enable arbitrary instrumentation, but instead randomizes
by rewriting existing code in place. All code references as emitted by the compiler and linker
remain valid when executing under Chameleon, as the size of code blocks is not changed.
However by not allowing changing code sizes, Chameleon trades off some randomization

1DynamoRIO provides a full runtime instrumentation framework but Chameleon only uses it as a stan-
dalone disassembler/re-assembler.
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flexibility for improved performance.

Chameleon targets randomizing on-stack elements or stack slots and thus must transform
stack memory references to point to the slots’ randomized locations. Chameleon uses the
stack slot metadata emitted by the compiler, i.e., offset, size and alignment of slots, to
detect and rewrite references to stack slots to instead reference their randomized location
(see Section 4.5 for a description of the metadata). As shown in Figure 3.3 Chapter 3,
there are a number of stack regions in a function activation and many can be randomized.
Due to the previously-mentioned in-place requirement, however, there are restrictions on
how each region can be randomized, which are specific for each ISA. We denote a region as
immutable if the locations of slots in the region cannot be randomized, permutable if the
ordering of elements in the region can be randomized but no extra padding can be added
between elements, and fully-randomizable if slots can be placed at arbitrary locations. Stack
frames for x86-64 have the following restrictions:

� Return address – immovable. The return address is pushed implicitly by a call instruc-
tion and thus cannot be moved without extra compiler instrumentation.

� Callee-saved registers – permutable. Compilers usually save and restore registers
through a series of push and pop instructions, respectively. In order to save and
restore registers from arbitrary locations, push and pop instructions would have to
be replaced with mov instructions. However, this increases the size of the function
prologue and epilogue – push/pop instructions are encoded in 1-2 bytes whereas mov
instructions with a memory operand require at least 4 bytes. Therefore, Chameleon
is restricted to solely randomizing the order in which callee-save registers are pushed
and popped.

� Local variables – permutable or fully randomizable depending on offset. Compilers
emit references to local stack-allocated variables as offsets from either the frame base
pointer (FBP) or stack pointer (SP). For x86-64, these offsets are encoded in different
numbers of bytes depending on the required range. For example, in the stack slot
reference -0x10(%rbp), i.e., the value at the memory address created by subtracting
16 from the pointer stored in register %rbp, the offset -0x10 can be encoded in a
single byte, which has a range of −128 ↔ 127. In contrast, the offset for memory
reference -0x100(%rbp) (offset of −256) falls outside this range and must instead use
a 4-byte encoding (range of -2GiB ↔ 2GiB). Therefore, slots whose offsets from the
FBP or SP are within the 1-byte range are permutable – Chameleon can randomize
their ordering but cannot add any padding as it may force a larger offset encoding and
therefore change the code size. Slots whose offsets use a 4-byte encoding, however, are
fully randomizable and can be placed at arbitrary locations with extra padding added
between slots2.

2Fully-randomizable slots must not be moved into the 1-byte offset range either, as this will decrease the
code size. nop instructions could be added to pad to the required length, however.
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Figure 12.2: Frame randomization. Chameleon cannot randomize the locations of the return
address, saved frame base pointer and call arguments. Chameleon can permute the ordering
of callee-save register locations and stack slots whose offsets can be encoded in a single byte.
Chameleon can place the remaining slots at arbitrary locations, including adding padding
between slots.

� Argument region – immutable. Randomizing the layout of the call region means rewrit-
ing all call sites to adhere to the new argument passing convention. As previously
mentioned, finding all such call sites is not solvable through static analysis.

Chameleon analyzes code emitted by the compiler and organizes detected slots into the afore-
mentioned regions. During target application startup, Chameleon loads the code section of
the binary and the state transformation metadata emitted from the Popcorn Compiler. The
metadata describes the functions in the code section, including starting and ending ad-
dress, frame size, callee-save register locations and stack slots (offsets, sizes and alignments).
Chameleon disassembles the code and performs a one-time analysis by iterating through
all instructions, detecting call slot references and additional randomization restrictions (for
example, slots which cross the fully-randomizable and permutable region). After analysis,
Chameleon performs an initial code randomization before the application begins execution,
similar in spirit to load-time ASLR [178]. Because the application has not yet begun execu-
tion, there is no state that must be transformed. Chameleon walks through the function’s
instructions and rewrites stack slot references from the original to their randomized locations.

For each function, Chameleon randomizes each stack region and creates a mapping between
the original and randomized offset of the stack slot. This mapping is required both for
rewriting the code for the next re-randomization cycle and for state transformation from the
current randomized code to the next. For permutable regions, Chameleon simply randomizes
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the ordering of slots. For fully-randomizable regions, Chameleon randomizes the ordering of
slots and additionally places a (user-definable) random amount of padding between the slots.
To generate random numbers, Chameleon seeds a per-function pseudo-random number gen-
erator with a true random number in order to get non-determinism with high performance.
The randomized code is stored in an in-memory buffer in Chameleon and is used to serve
page faults for the target application.

It is worth mentioning that with extra compiler implementation, many of the previously
mentioned randomization restrictions can be lifted. For example, the compiler could pad the
function prologue and epilogue with nop instructions, giving Chameleon extra space to sub-
stitute push/pop instructions with longer mov instructions for callee-saved registeers. Addi-
tionally, the compiler could relax offset encodings to always use 4 bytes, allowing Chameleon
more flexibility in adding padding between local variable stack slots. We leave this engineer-
ing effort as future work.

12.5 Serving Code Pages

After randomizing the code, Chameleon needs a method to serve code pages to the child.
While Chameleon could use ptrace to write the randomized code into the address space
of the child application, this could cause large re-randomization delays (i.e., switching from
the current to the next set of randomized code) for applications with large code sections as
Chameleon would have to bulk write the entire code section at once. Instead Chameleon uses
an on-demand mechanism which allows quicker atomic switches between code sections upon
re-randomization and avoids writing unused code pages into the target application’s address
space. In older versions of Linux, users could emulate handling page faults in user-space by
mapping a region of memory with no permissions (PROT NONE) and updating the permissions
and memory contents on demand by catching segmentation faults when the application tried
to access the region. This rudimentary mechanism causes large overheads as applications
both create and catch SIGSEGV signals and constantly change memory permissions; with
re-randomization, these faults become more burdensome as the randomization framework
continually forces new faults. Newer versions of Linux instead implement userfaultfd,
a mechanism to delegate page fault handling to user-space. Users create a file descriptor
and register regions of memory with the descriptor. Page faults are handled by reading
page fault events from the descriptor and writing responses containing the data to be served.
This avoids the signaling and permissions maintenance overheads of the PROT NONE+SIGSEGV

approach.

userfaultfd descriptors must be opened in the context of the application in which they will
be attached. Thus, Chameleon cannot directly open a userfaultfd descriptor attached to
the target. However, open descriptors can be passed between processes via sockets. There-
fore, Chameleon induces the target application to create a userfaultfd descriptor and pass
it to Chameleon before the target application begins normal execution. Chameleon uses
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compel [1], a support library built for CRIU [2], which facilitates implanting parasites into
applications controlled via ptrace. Parasites are small binary blobs which execute arbitrary
functionality in the context of the target application – for Chameleon, the parasite opens a
userfaultfd descriptor and passes it to Chameleon through a socket. To execute the par-
asite, compel takes a snapshot of the target process’ main thread (registers, signal masks).
Then, it finds an executable region of memory in the target and writes the parasite code into
the target. Because ptrace allows writing a thread’s registers, compel redirects the target
thread’s program counter to the binary blob and begins execution. The parasite opens a con-
trol socket, initializes a userfaultfd descriptor, passes the descriptor to compel/Chameleon,
and finishes at a well-known exit point. After pausing the thread at the exit point, compel
restores the thread’s registers and signal mask and returns the userfaultfd file descriptor
to Chameleon.

After receiving the userfaultfd descriptor, Chameleon must prepare the target’s code region
for attaching (userfaultfd descriptors can only attach to virtual memory areas not backed
by files on disk). Chameleon again uses compel to execute a system call in the context of the
target – compel takes a snapshot of the execution state, writes the system call instruction
into the target, executes the system call, restores the snapshot and returns to Chameleon.
Chameleon uses mmap to remap the code section as anonymous (i.e., not file-backed) and then
registers the code section with the userfaultfd descriptor. After registering the code section
with userfaultfd, Chameleon starts the fault handler thread which is solely responsible for
serving page faults to the target application. The fault handler performs blocking reads on
the descriptor until the target fetches an instruction from an unmapped page. The kernel
sends a page fault message to the fault handler, which replies with a pointer to the relevant
page in the randomized code buffer (Section 12.4). The kernel copies the randomized code
to the target application’s address space, thus allowing Chameleon to transparently serve
code pages to the target.

12.6 Re-randomizing the Target

At startup, Chameleon sets a periodic alarm which triggers re-randomizations in the tar-
get. The alarm signal wakes a dedicated alarm thread, which in turn interrupts the event
handler threads blocked waiting for target application events. When the event handlers are
interrupted, they issue a ptrace interrupt request to the kernel to forcibly grab control of
threads in the target. At this point Chameleon begins the process of atomically switching
the target to the new set of randomized code.

The first challenge in re-randomizing target threads is advancing target threads to trans-
formation points. As described in Chapter 4, Section 4.2, the Popcorn Compiler generates
state transformation metadata at migration points. Because Chameleon must transform
each target thread’s current stack to match the newly randomized code, Chameleon must
advance the target application thread to a transformation point (i.e., function boundary) in
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Figure 12.3: Re-randomizing the stack layout. Chameleon (1) reads the target’s current
execution state, (2) transforms the state from the previous randomization to the new ran-
domization, including reifying pointers to the stack in the target’s address space to reference
the newly randomized locations, and (3) write the execution state back into the target’s
context and drop the previous code pages.

order to bootstrap the transformation.

During the initial code analysis, Chameleon records all suitable transformation locations
in each function, including function entry, function return and all call instructions. After
interrupting a thread, Chameleon looks up the analysis information for the function in which
the thread was interrupted. At each transformation point, Chameleon uses ptrace to write
trap instructions into the code – for x86-64, Chameleon uses the int3 instruction which is
also used by debuggers to insert breakpoints. After spraying all transformation points in
the function with trap instructions, Chameleon resumes the thread and waits for the next
event. When the thread reaches a transformation point, it executes the trap instruction
and the kernel passes the event back to Chameleon’s event handler through wait, allowing
Chameleon to advance the thread to a program location suitable for bootstrapping state
transformation. After reaching a transformation point, Chameleon restores the original
instructions and begins state transformation.

Because Chameleon executes in a separate virtual address space from the target application,
Chameleon cannot access a thread’s stack data through regular loads and stores. The state



Robert F. Lyerly Chapter 12. Chameleon – Runtime Re-randomization 138

transformation runtime could instead use ptrace to read and write stack data, but would
require significant modification (the runtime was written assuming access to stack data
through normal memory loads and stores). This would also incur significant overhead as
ptrace only allows reading/writing eight bytes per ptrace system call. Instead, Chameleon
bulk reads a thread’s stack from the mem file exposed by Linux in the proc filesystem.
This file allows Chameleon to seek to arbitrary addresses in the target’s address space and
bulk read/write data. After reaching a transformation point, Chameleon reads the thread’s
entire stack into a buffer from the target’s address space using the thread’s stack pointer.
Chameleon passes the stack pointer, register set and buffer containing stack data to the state
transformation runtime.

State transformation proceeds largely the same as described in Chapter 5 – the runtime
unwinds the current stack to find live function activations and transforms the stack to adhere
to the new code (in Chameleon’s case, the randomized layout created by the scrambler
thread). There are several changes to the procedure, however. While unwinding the current
stack to find live activations, the runtime also uses a callback provided by Chameleon to get
randomization metadata for functions encapsulating each of the discovered call sites. This
information contains slot remapping information and randomized frame sizes for both the
current and newly randomized code. This allows the runtime to correctly unwind the stack
in accordance to the current randomized layout and to calculate the size of the transformed
stack for the next randomization. The other change to the runtime involves remapping offsets
from the transformation metadata generated by the Popcorn compiler. Stack slots, including
callee-save register locations, are encoded in the metadata as offsets from either the FBP
or SP. For Chameleon, the runtime must use the slot remapping information, generated as
described in Section 12.4, to find the randomized location of a given stack slot. Additionally,
if storing or loading a value from the stack slot, a final level of translation is applied to
convert the stack address in the target’s virtual address space to the buffer in Chameleon’s
virtual address space into which the stack was read. This complicates handling fixups for
pointers to the stack, as the runtime must check pointers to randomized slot locations in
the target’s address space and then write reified pointers into the buffer in Chameleon’s
address space. Nevertheless, this conversion is fairly inexpensive and only involves a few
math operations.

After state transformation, Chameleon writes the transformed stack back into the target
application’s address space and updates the target thread’s register set to point to the new
stack. Here, Chameleon can provide enhanced security with some performance overhead.
While the Popcorn compiler’s runtime rewrites from one half of the currently mapped stack
to the other, Chameleon can map in a completely new region of memory and unmap the old
stack region. In this way, attackers trying to manipulate or smash the stack will not know
a-priori where the stack is located or will lose any exploit data currently placed on the stack.

The final step in re-randomization is to force the child process to bring in the newly
randomized code. Chameleon uses compel to execute an madvise system call with the
MADV DONTNEED flag for the code section in the context of the target, which instructs the ker-
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nel to drop all existing code pages and cause fresh page faults upon subsequent instruction
fetches. The fault handler thread is switched to pull pages from the next set of randomized
code and the target is released to continue normal execution; the target is now executing
under a new set of randomized code. At this point, the event handler thread signals the
scrambler thread to begin generating a new set of randomized code and the event handler
blocks until the next event. In this way, Chameleon blocks the target only so that it can
transform the target thread’s stack and drop the existing code pages; the most expensive
work of generating newly randomized code happens concurrently with the target applica-
tion’s execution. This highlights one of the benefits of cleanly separating re-randomization
machinery into a separate process from the target application.



Chapter 13

Evaluation – Chameleon

In this chapter we evaluate Chameleon’s capabilities both in terms of security benefits and
overheads. In particular, we analyze the following:

� What kinds of security benefits does Chameleon provide? In particular, how many
ROP-style gadgets in application binaries does Chameleon disrupt? How much ran-
domization does Chameleon inject into frame layouts? Finally, how can users know
that Chameleon itself is secure? (Section 13.1)

� How much overhead does Chameleon impose for these security guarantees, including
how expensive are the individual components of Chameleon and how much overhead
does it add to the total execution time? (Section 13.2)

� A real-world case study of how Chameleon disrupts a real ROP attack on nginx, an
open-source and widely used web server. (Section 13.3)

Experimental Setup. Chameleon was evaluated on an x86-64 server containing an Intel
Xeon 2620v4 with a clock speed of 2.1GHz (max boost clock of 3.0GHz). The Xeon 2620v4
contains 8 physical cores and has 2 hardware threads per core for a total of 16 hardware
threads. The server contains 32GB of DDR4 RAM. Chameleon is run on Debian 8.11 “Jessie”
using Linux kernel 4.9. Chameleon was configured to add a maximum padding of 128 bytes
between stack slots in the fully randomizable region.

Benchmarks. Chameleon was evaluated using benchmarks from the SNU C version of the
NASA parallel benchmarks (NPB) [23, 175] and SPEC CPU 2017 [42]. All NPB benchmarks
were run using the single-threaded version of the benchmarks and were compiled using the
Popcorn Linux compiler, built on clang/LLVM v3.7.1.

140
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13.1 Security Analysis

The most important aspect of Chameleon to be evaluated is the security benefits provided
to target applications. Because Chameleon, like other approaches (e.g., [66, 203, 196]), relies
on layout randomization to disrupt attackers, it cannot make any guarantees that attacks
will not succeed. There is always the possibility that the attacker is lucky and guesses the
exact randomization (both stack layout and randomized code) and is able to construct a
payload to exploit the application and force it into a malicious execution. However, with
sufficient randomization, the probability that such an attack will succeed is so low as to
be probabilistically impossible. Thus Chameleon must dynamically and repeatedly change
the target application so that attackers cannot discover the target application’s layout and
construct attacks. In this section we evaluate both the quality of Chameleon’s runtime
re-randomization in the target and describe the security of the Chameleon framework itself.

13.1.1 Target Randomization

First, we evaluated Chameleon’s randomization quality for target applications. Chameleon
randomizes the target in two dimensions: randomizing the layout of stack elements in a
function’s frame and rewriting the code to match the randomized layout.

We first evaluated how rewriting the code affects gadgets in the binary. Recall that gadgets
are a small chain of instructions that end in a control flow instruction. Gadgets usually
implement some small functionality such as populating a register or writing memory. At-
tackers construct malicious executions by chaining together gadgets, and therefore rely on
the fact that gadgets only perform a very basic and low-level operation (e.g., writing register
rax to the memory location pointed to by rdi). Additionally, gadgets may have unintended
side effects that the attacker must handle – for example, a “stray” instruction in the gadget
may clobber the rax register, meaning that the attacker cannot place sensitive information
in rax when using that gadget. Thus gadgets, and therefore gadget chains, are very frail.
Slight disruptions to the gadget’s behavior can disrupt the entire intended functionality of
the chain.

As part of the re-randomization process, Chameleon rewrites the application’s code to match
the randomized stack layout. A side effect of this process is that gadgets may be disrupted
– Chameleon may overwrite part or all of a gadget, changing its functionality and therefore
disrupting the gadget chain. To analyze Chameleon’s impact on disrupting gadgets, we
searched for gadgets in the benchmark binaries and cross-referenced gadget addresses with
instructions rewritten by Chameleon. We used Ropper [171], a python-based gadget finder
tool, to find all ROP gadgets (those that end in a return) and JOP gadgets (those that
end in a call or jump) in the application binaries. We configured Ropper to only find
gadgets of 6 instructions or less, as longer gadgets become increasingly hard to use due to
the aforementioned stray instructions. We then dumped the addresses of all instructions
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Figure 13.1: Number of gadgets found. Non-trivial gadgets are gadgets that include more
than just one instruction, i.e., more than just the control flow instruction.

Figure 13.2: Percent of gadgets disrupted by Chameleon’s code randomization

rewritten by Chameleon as part of the randomization process in order to determine which
gadgets were rewritten by Chameleon and therefore disrupted.

Figure 13.1 shows the number of gadgets found by Ropper in each of the 14 benchmarks
evaluated. The x-axis lists the benchmark name (benchmarks prefixed with numbers are
from SPEC CPU 2017, the others are from NPB) and the y-axis lists the number of gadgets
found. There are two bars for each benchmark – total gadgets found and non-trivial gadgets
found. A trivial gadget is a single-instruction gadget, i.e., one that only contains control
flow. While these may potentially be useful for attackers, they do not perform any useful
computation and thus we expect them to be used sparingly. Additionally, every trivial gadget
is double-counted as they are contained as part of a non-trivial gadget.

The number of gadgets found directly correlates with the application’s code size – nab (code
size of 375KB) and xz (code size of 201KB)) both have the largest code sections of all
evaluated benchmarks. However, even benchmarks with small amounts of code contain a
significant number of gadgets – for example, EP only has 11KB of generated machine code
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Figure 13.3: Average number of bits of entropy for a stack element across all functions within
each binary. Bits of entropy quantify in how many possible locations a stack element may
be post-randomization – for example, 2 bits of entropy mean the stack element could be in
22 = 4 possible locations with a 1

4
= 25% chance of guessing the location.

but Ropper managed to 1429 gadgets (1102 non-trivial). However, the C standard library
adds another 26KB of machine code to every application, giving attackers a larger code
base from which to draw gadgets. Ropper was able to find a geometric mean average of
2731.91 gadgets from each application. Some of these may be redundant or slight variations
of others, but all are available for attackers to use.

Figure 13.2 shows the percent of gadgets disrupted as part of Chameleon’s stack random-
ization process. Chameleon disrupted a geometric mean of 55.81% or 76.32% of non-trivial
gadgets. While Chameleon did not disrupt all gadgets, it disrupted enough that attackers
will have a hard time chaining together functionality without having to use one of the gad-
gets altered by Chameleon. To better understand the attacker’s dilemma, previous work by
Cheng et al. [53] mentions that the shortest useful ROP attack produced by the Q ROP
compiler [173] consisted of 13 gadgets. Assuming gadgets are chosen with a uniform ran-
dom possible from the set of all available gadgets, attackers would have a probability of
(1 − 0.5582)13 = 2.44 × 10−5 of being able to construct an unaltered gadget chain, or a
(1− 0.7632)13 = 7.36× 10−9 probability if using non-trivial gadgets. Therefore, probabilisti-
cally speaking it is very likely that the attacker will be forced to contend with Chameleon’s
re-randomizations interfering with gadgets in the binary when constructing gadget chains.

Next, we evaluated how well randomizing the stack disrupts attacks that utilize known lo-
cations of stack elements. When quantifying the randomization quality of a given system,
many works use entropy or the number of randomizable states as a measure of randomness.
For Chameleon, entropy refers to the number of potential locations a stack element could
be placed, i.e., the number of randomizable locations. As previously mentioned in Chap-
ter 12, Section 12.4, x86-64 machine code emitted by the compiler is subject to a number of
limitations. Nevertheless, Chameleon still has some freedom to re-arrange stack elements to
disrupt attackers from abusing known locations of stack data.
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Figure 13.3 shows the average entropy created by Chameleon for each benchmark. Entropy
is quantified in terms of bits, i.e., the number of bits required to encode all possible random-
ization states for a given stack element. For example, if Chameleon could place a given slot
in one of 4 locations, the stack slot would have 2 bits of entropy (log2(# locations)). For
each application, the y-axis indicates the average number of bits of entropy across all stack
slots in all functions. In addition to “All Frames” bar which illustrate average entropy for
all functions, we additionally break out “Non-trivial Frames“ as a separate bar. Functions
with trivial frames are defined as functions that do not use the stack except for saving the
return address. The standard C library contains many small functions that do not set up
a stack and therefore have zero entropy. Because Chameleon cannot currently randomize
these functions, we removed their skew and plotted the results in the second set of bars.

Across all benchmarks, Chameleon provides a geometric mean 0.84 bits of entropy or 1.59 bits
of entropy for non-trivial frames. While the amount of entropy is low for guessing the location
of a single stack element, again consider that the attacker must chain together knowledge
of multiple stack locations to make a successful attack. For example, when overflowing a
buffer on the stack, the attacker must know the offsets of the buffer relative to the frame
and/or stack pointer and any other data the attacker wishes to corrupt, e.g., callee-saved
registers. Not only will the buffer be placed at a randomized position, the other stack
elements’ locations are randomized. Consider an attack that must corrupt 3 stack elements
in a given frame. With 1.59 bits of entropy, a given stack element can be placed in on average
21.59 = 3.01 locations, meaning the probability of guessing the correct location is 1

3.01
= 0.33.

For corrupting three such locations, the attacker has a 0.333 = 0.037 probability of correctly
guessing the stack locations, therefore making successful attacks hard to achieve. It is also
important to note that these numbers are heavily impacted by the non-randomizable and
permutable stack regions. For elements in the fully randomizable region, Chameleon can
randomize their location with on average 5.87 bits of entropy, making guessing even a single
stack element’s location difficult (this number can be increased arbitrarily by increasing
the padding added between slots). Nevertheless, this highlights one of the trade-offs of
Chameleon – because it cannot change the size of code, there are limitations to the amount
of entropy it can inject into target applications because it must work within the constraints
of what is emitted by the compiler. However, with some compiler enhancements this number
could be boosted significantly – see Section 13.4.

13.1.2 Chameleon

As part of the evaluation, we also analyzed how secure Chameleon is itself from attackers.
Because Chameleon has a large amount of control over the target, it is imperative that
attackers not gain control, otherwise they would be able to inject arbitrary functionality
into the target. However, one of Chameleon’s design principles is limited interaction with
the outside world – Chameleon’s interface with other applications is intentionally limited
as much as possible so as to avoid the possibility of other attackers exploiting flaws in
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accept* access arch prctl bind* brk clock gettime

clone close execve exit group fcntl fstat

ftruncate futex getpid getsockname* ioctl† listen*

lseek mmap mprotect munmap openat pread

prlimit64 ptrace read readlink recvfrom* recvmsg*

rt sigaction rt sigprocmask rt sigreturn sendmsg* sendto* setns*

set robust list set tid address socket* socketpair* tgkill timer create

timer delete timer settime uname wait4 write

Table 13.1: Complete list of system calls invoked by Chameleon. Calls marked with * are
only used by compel only to communicate with the target when initializing. Calls marked
with † are only used for userfaultfd.

Chameleon to gain control of the target.

Table 13.1 lists the complete set of system calls invoked by Chameleon when running and re-
randomizing the target application. Chameleon only uses 47 system calls and only 9 (ioctl,
mmap, pread, ptrace, read, recvfrom, recvmsg, sendmsg, sendto) can potentially interface
with other applications. We discuss how Chameleon uses each.

� ioctl: only used to register the target’s code region with userfaultfd

� mmap: used for large memory allocations and by libelf/state transformation runtime
to map the target binary in for reading the code and state transformation metadata
sections. compel briefly maps in shared memory with the target during target initial-
ization, but unmaps the region after cleaning up the parasite.

� pread: used by libelf to read ELF metadata, i.e., magic start bytes, section table, etc.

� ptrace: used by Chameleon to control the target process, including reading and writing
target registers and memory.

� read: used by Chameleon to read information from the proc filesystem, i.e., reading
target’s memory map and reading target’s stack

� recvfrom, recvmsg, sendmsg, sendto: used by compel to initialize, communicate
with and clean up the parasite. Not used after target application is initialized.

There is very little interaction with the outside world which is directly controllable by would-
be attackers. The only avenue that attackers could potentially use to hijack Chameleon would
be through corrupting state in the target application which is then subsequently read during
one of the re-randomization periods. Although it is conceivable that attackers could corrupt
memory in such a way in the triggers a flaw in Chameleon, it is unlikely that they would be
able to gain enough control to perform useful functionality; the most likely outcomes of such
an attack are null pointers exceptions caused by Chameleon following erroneous pointers
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505.mcf 461.79 EP 75.63
519.lbm 270.3 FT 57.93

531.deepsjeng 482.85 IS 22.24
544.nab 635.84 LU 162.69
557.xz 211.2 MG 8.06
BT 228.29 SP 144.59
CG 105.14 UA 337.71

Table 13.2: Original execution times of benchmarks, in seconds, without Chameleon

when transforming the target’s stack. Additionally, because Chameleon is small (5526 lines
of code), it would be easy to instrument with safeguards potentially even formally verify
its behavior. This is a large benefit of placing the re-randomization machinery outside the
context of the target application itself – verifying correctness becomes a much simpler task
as the randomization machinery itself is small. Thus, we argue that Chameleon provides a
compelling system architecture for enhancing the security of target applications.

13.2 Performance

We next evaluated the performance of target applications executing under Chameleon’s
control. As mentioned in Chapter 12, Sections 12.5 and 12.6, Chameleon must perform a
number of duties to continuously re-randomize applications. In particular, Chameleon runs
a scrambler thread to generate a new set of randomized code, runs a fault handler to respond
to code page faults with the current set of randomized code, and periodically switches the
target application between randomizations.

Table 13.2 shows the execution times of benchmarks without Chameleon, i.e., normal non-
randomized performance. Figure 13.4 shows the slowdown of each benchmark versus the
times listed in Table 13.2 with Chameleon re-randomizing the application with different
periods. Chameleon was run with randomization periods of 100ms, 50ms and 10ms in order to
understand how increasingly frequent re-randomizations impacts performance; lower periods
mean more frequent re-randomizations and thus less of a chance for attackers to discover
and exploit the current target application’s layout.

Figure 13.4 highlights the benefits of lifting the re-randomization machinery out of the crit-
ical path of the application. Chameleon re-randomizes target applications with a geometric
mean 0.7% overhead with a 100ms period and 1.1% overhead with a 50ms period. Re-
randomizing with a 10ms period raises the overhead to a geometric mean of 9.1% due to
reasons explained below. However, this is still significantly better than related works – for ex-
ample, Shuffler [203], which uses a DBI framework to instrument the code inside the address
space of the application, demonstrates an average of 14.9% overhead when re-randomizing
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Figure 13.4: Overhead when running applications under Chameleon compared to unsuper-
vised execution. Overheads rise with smaller re-randomization periods, but are negligible
in most cases. With 10 millisecond re-randomization period, some benchmarks exhibit high
overheads due to waiting for the scrambler to finish generating the next set of randomized
code.

every 50ms. This demonstrates how asynchronous code re-randomization provides significant
performance boosts compared to DBI or other in-application solutions.

In order to better evaluate the performance costs of Chameleon’s mechanisms, we added
timers throughout the code to break out the cost of individual components. Figure 13.5
shows how long it takes the scrambler to generate a complete set of randomized code for
each application for each of the re-randomization periods. This latency directly correlates
to the size of the code section – as previously mentioned, nab and xz have the biggest code
sections and thus the longest code rewriting time. Interestingly, as the re-randomization
period drops the code randomization time drops as well. This is due to DVFS effects – as
the re-randomization period drops, the scrambler is awoken more frequently to generate new
code and thus keeps the processor clocked at a higher frequency. Conversely, with longer
re-randomization periods, the scrambler spends more time sleeping and thus the processor
clocks down. In general, however, on the Xeon 2620v4, the scrambler randomizes code at
about 10KB of instructions per millisecond. Rewriting the code section is fairly efficient, but
there are a number of optimizations that could be applied. First, Chameleon internally main-
tains a function’s instructions as a linked list of DynamoRIO instr t structs. This could be
refactored to instead use a vector to improve cache locality. Additionally, Chameleon cur-
rently maintains all of the instructions contained inside the function, even those that are not
randomized (e.g., moving values between registers). During randomization Chameleon must
traverse this list, leading to parsing unchanged instructions. Chameleon could instead be
changed to only maintain those instructions that must be rewritten during re-randomization.
Finally, randomizing code could be trivially parallelized, as all randomization and rewriting
metadata is maintained per-function and thus can be randomized independently.

Next we analyzed how long it took Chameleon to switch from the current randomization to
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Figure 13.5: Average time to complete a single code randomization. Randomization time
is correlated with the code size of each application. As the re-randomization period gets
shorter, the scrambler thread spends less time sleeping and therefore maintains a higher
clock frequency, hence a smaller time to randomize code.

the next randomization for each of the benchmarks. Figure 13.6 shows the individual cost
to switch randomizations for each benchmark, including:

1. Interrupting the target, spraying the current function with transformation points and
restoring the original instructions,

2. Waiting for the scrambler to finish randomizing code,

3. Reading the target’s stack, transforming the stack from the current randomization to
the next randomization and writing the transformed stack back into the target,

4. Setting the newly randomized code for the fault handler,

5. Dropping the existing code pages

As shown in Figure 13.6, atomically switching between randomizations is an inexpensive
process. The benchmarks take a geometric mean of 280µs to perform the entire procedure
for a 100ms period and 276µs for a 50ms period. For these two randomization periods,
only deepsjeng and LU take longer than 600µs. This is due to large stack buffers that
must be copied to their newly randomized location – for example, LU allocates a 400KB
buffer on the stack that must be copied to its newly randomized location. Nevertheless, as
a percentage of the re-randomization period, transformations are inexpensive: 0.2% of the
100ms re-randomization period and 0.5% of the 50ms period.

There are several performance outliers when analyzing transformation overhead for the 10ms
period. deepsjeng, nab and UA’s overheads increase drastically. This is directly correlated to
the code randomization overhead. When the event handler thread receives a signal to start
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Figure 13.6: Time to atomically switch the target from the previous randomization to the
next randomization, including transforming the stack and dropp the existing code pages.
As the randomization period gets smaller, transformation balloon in several case (deepsjeng,
nab, UA) as the transformation thread blocks waiting for the scrambler to finish randomizing
the code and generating slot remapping information.

a re-randomization, it advances the target to a transformation point and blocks until the
scrambler thread signals it has finished re-randomizing the code. Because these applications
have higher code randomization costs, the event handler thread is blocked waiting for a
significant amount of time. Interestingly, one would expect the same phenomena to occur
for xz, which has a long code re-randomization period. However, recall from Section 12.6 that
Chameleon can only transform the stack at function boundaries. xz contains long stretches of
pure compute without function boundaries, meaning that the excessive code transformation
latency is hidden by the time it takes to advance the target to the transformation point. With
the aforementioned code randomization optimizations, however, we expect these overheads
to drop further.

Finally, the last potential source of overhead from Chameleon is the continuous page faults.
On the Xeon 2620v4, it took on average 5.06µs to serve a single page fault. This value
fluctuated by several microseconds depending on how close in time page faults occurred and
thus their impact on the fault handler’s ability to sleep and clock down the CPU. However,
serving code page faults added negligible overhead in all applications, usually less than 0.1%.

13.3 Case Study: nginx

In order to better understand how Chameleon’s runtime re-randomization can help protect
target applications from attackers, we evaluated how it can be used to disrupt a flaw found
in a real application. nginx [165] is a lightweight and fast open-source webserver used by a
large number of popular websites such as Buzzfeed, Adobe and Cloudflare [5]. nginx uses
a multi-process architecture to aid in stability and leverage the available compute capacity
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in multicore CPUs. Unlike traditional webservers which dedicate a process or thread to
handling the entire lifetime of a given connection [78], nginx instead spawns a set of worker
processes which are decoupled from connections. Worker processes continually iterate over
open connections, servicing any outstanding requests asynchronously. Thus when interacting
with nginx, would-be attackers must exploit flaws in the connection handling code in worker
processes.

CVE-2013-2028 [72] is a security vulnerability affecting nginx v1.3.9/1.4.0 in which a carefully
crafted set of requests can lead to a stack buffer overflow. When parsing an HTTP request,
the worker process allocates a page-sized buffer on the stack and calls recv to read the
request body. By using a “chunked” transfer encoding [146] and triggering a certain sequence
of HTTP parse operations through specifically-sized messages, the attacker can underflow
the size variable used in the recv operation on the stack buffer and allow the attacker to
send an arbitrarily large payload. Because the attacker subsequently controls the stack, they
can, for example, clobber the return address and inject payload data for the attack itself.
Additionally, the attacker can exploit nginx’s error handling behavior to even avoid other
stack protection techniques such as stack canaries [63]. The attacker must not clobber the
stack canary, otherwise the worker process will detect a stack corruption and safely exit.
However, because nginx respawns worker process upon errors or crashes, the attacker can
guess the canary bytes and reconstruct the canary value in the payload to avoid triggering
the error (this is also the behavior exploited by Blind-ROP [35]).

As a demonstration of the severity of the exploit, VNSecurity [199] published a proof-of-
concept attack that uses the overflowed buffer to inject an attack payload onto the stack.
The attack builds a ROP gadget chain that begins by remapping a piece of memory with
read, write and execute permissions. After creating a buffer for injecting code, the ROP
chain copies instruction bytes from the payload to the buffer and “returns” to the payload
by placing the address of the buffer as the final return address on the stack. The instructions
copied into the buffer set up arguments and use the system standard C library API to spawn
a shell on the server. The attacker can then remotely connect to the shell and gain privileged
access to the machine.

The stack buffer targeted by the attack is randomizable by Chameleon and is located in
the fully-randomizable region of the stack frame (i.e., references to the slot emitted by the
compiler use four bytes). For this particular function, there are four slots in the fully-
randomizable region meaning this particular stack slot can be in one of four locations in the
final ordering of slots. Using a maximum slot padding size of 512, Chameleon will insert
anywhere between 0 and 512 bytes of padding between slots. The slot has an alignment
restriction of 16, meaning there are 512/16 = 32 possible amounts of padding that can be
added between the vulnerable buffer and the preceding stack slot. Therefore, Chameleon can
place the buffer at 4∗32 = 128 possible locations within the frame for 7 bits of entropy. Thus,
an attacker has a probability of 1

27
= 0.0078 of guessing the correct buffer location. System

administrators can further diminish this probability to extremely small levels by increasing
the maximum padding size, which is configurable within Chameleon. For example, using
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a maximum padding size of 4096 bytes (1 page) creates 10 bits of entropy and leads to a
probability of 1

210
= 0.00098. Because the attacker must know the location of the buffer

relative to the start of the stack frame in order to overwrite the return address and start the
ROP chain, the attacker will have a difficult time starting the attack.

This is not the only way Chameleon disrupts the attack. As part of the randomization
process, Chameleon rewrites the code to match the randomized stack layout, thus potentially
disrupting ROP chains constructed by attackers. As an example, as part of the function
epilogue in one of nginx’s functions, there is an addition instruction used to clean up the
stack frame:

0x438b75 : 48 83 c4 58 add $0x58 ,%rsp
0x438b79 : 5b pop %rbx
0x438b7a : 5d pop %rbp
0x438b7b : c3 r e tq

Listing 13.1: nginx assembly generated by compiler

However, the ROP chain constructed by the attacker uses an unaligned instruction at code
address 0x438b78 to instead issue several stack pop instructions to populate registers with
values from the stack:

0x438b78 : 58 pop %rax
0x438b79 : 5b pop %rbx
0x438b7a : 5d pop %rbp
0x438b7b : c3 r e tq

Listing 13.2: Gadget assembly found by Ropper

The attack only uses the first instruction to pop a value off the stack into register rax (rbx
and rbp are unused). However, as part of the randomization process, Chameleon overwrites
the 0x58 byte (which contains the size of the stack frame) with a new value, therefore
removing the pop %rax instruction and disrupting the gadget. There is also another gadget
in the chain disrupted in a similar fashion, showing the difficulty faced by attackers in
constructing exploits composed of several gadgets – tshere is a high likelihood of Chameleon
disrupting a carefully constructed gadget chain and thwarting attackers.

13.4 Discussion

As previously mentioned, many of Chameleon’s randomization limitations arise from its
inability to change the code size and therefore it must randomize within the limitations of
the generated code. This has an impact most notably on Chameleon’s inability to randomize
the return address location and the inability to add padding between slots in offset-limited
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stack regions. However, both of these restrictions arise due to the x86-64 ISA and are non-
existent in RISC-style architectures with fixed-width instructions. For example, a branch-
and-link instruction on AArch64 (the equivalent of a call instruction) places the return
address in the x30 general-purpose register. During the function prologue, the compiler
emits instructions to both allocate callee-saved register space and store the return address
on the stack. Therefore, an AArch64 version of Chameleon would not be restricted by
implicitly pushed return addresses. Similarly, when referencing stack slots on AArch64, the
compiler has a fixed offset range which is common across all memory references – there is no
variable length encoding, meaning different slots within the same stack frame are all subject
to the same randomization range.

However, with several compiler modifications these x86-64-specific limitations could be re-
moved. For the return address location, the compiler could be modified to pad the function
prologue and epilogue with nop instructions that do not affect execution in normal runs of
the application and unlikely have a significant effect on performance. However Chameleon
could recognize these nop “buffers” and replace them with data movement instructions to
place the return address at a different location in the stack frame. Applied equally to the
saved frame-base pointer, this would remove two of the last fixed stack elements, drasti-
cally complicating the attacker’s ability to construct ROP attacks. Additionally, in order
to add extra entropy to stack element locations the compiler could be modified to always
relax immediate encodings, i.e., always use four bytes to encode displacement operands in
memory references even if the displacement can fit within one byte. This would dramatically
improve frame randomization flexibility and further reduce the probability that an attacker
could correctly guess the locations of stack elements. Finally, Chameleon currently makes
no attempt to randomize register usage. Chameleon could be extended to randomize which
live values are placed in which registers (similarly to [156, 115]), further disrupting gadgets
in the binary.



Chapter 14

Conclusions and Future Work

In this dissertation, a full software stack was presented for execution migration across
heterogeneous-ISA processors in real systems. This dissertation presented a compiler which
builds multi-ISA binaries capable of execution migration across ISA boundaries. It addi-
tionally presented a runtime which dynamically translates thread execution state between
ISA-specific formats in under a millisecond.

The Popcorn compiler toolchain builds multi-ISA binaries containing a code section for
every ISA in the system. The middle-end automatically inserts migration points into the
application at function call sites and performs a liveness analysis to gather the sets of live
values at those call sites. The back-end generates metadata describing where those live
values are placed in each ISA-specific version of function activations. The linker aligns code
and data symbols across all binaries and a final post-processing tool optimizes the multi-ISA
binary for efficient state transformation.

The state transformation runtime works with the operating system to transform a thread’s
register set and stack between ISA-specific formats. When the OS requests a migration, the
runtime attaches to the thread’s stack and reconstructs it in the destination ISA’s format in a
separate region of stack memory. After transformation, the runtime invokes the OS’s thread
migration service and passes it the reconstructed destination register set. After migration,
the runtime bootstraps the thread on the destination architecture and then resumes normal
execution transparently to the application.

The entire Popcorn Linux system software stack was evaluated on an APM X-Gene 1 pro-
cessor interconnected to an Intel Xeon E5-1650v2 processor using a Dolphin PXH810 point-
to-point connection over PCIe. State transformation costs were evaluated for a microbench-
mark and several real applications from the NAS Parallel Benchmark suite and showed that
sub-millisecond translation overheads are achievable on both processors. Additionally, the
evaluation showed that for a datacenter-like workload, Popcorn Linux is able to achieve up
to a 66% reduction in energy and up to an 11% reduction in energy-delay product.

153



Robert F. Lyerly Chapter 14. Conclusions and Future Work 154

This dissertation also described how the Popcorn Linux infrastructure could be used to ac-
celerate applications parallelized using OpenMP. It described the design and implementation
of libopenpop and how it refactors OpenMP execution for systems composed of non-cache-
coherent domains. libopenpop organizes application threads into a hierarchy in order to
separate local and global computation. Using the thread hierarchy, leaders are elected to
perform synchronization at the global level on behalf of each domain, minimizing the amount
of cross-domain page traffic caused by synchronization. Using this hierarchy, libopenpop
demonstrated a 38x decrease in multi-domain barrier latency and a 5.4x decrease in data
reduction latency. This dissertation also described compiler and C library modifications
that further reduce unnecessary page transfers for OpenMP-parallelized applications. Fi-
nally, this dissertation identified OpenMP anti-patterns that cause excessive page faults and
that can be remedied by developers. After applying all of these optimizations, libopenpop
demonstrated a geometric mean speedup of 4.04x for scalable applications on an 8-node rack.

This dissertation next described how libopenpop distributes parallel work across heteroge-
neous CPU systems in consideration of CPU capabilities and application execution charac-
teristics. libopenpop uses the thread hierarchy to optimize existing OpenMP loop iteration
schedulers for multi-domain systems. Additionally, libopenpop utilizes a new scheduler,
called the HetProbe scheduler, which measures execution behavior and makes workload dis-
tribution decisions. If deciding to use multiple CPUs for an OpenMP work-sharing region,
the HetProbe scheduler automatically determines the workload partition to minimize execu-
tion time. If only using a single CPU due to the computation’s communication overheads,
the HetProbe scheduler picks the best CPU using performance counters. libopenpop was
demonstrated to achieve up to a 4.7x speedup and a geometric mean speedup of 41% across
10 benchmarks versus the best homogeneous OpenMP execution.

This dissertation finally described Chameleon, a runtime re-randomization framework which
builds on top of the Popcorn compiler and state transformation runtime to harden appli-
cations against attackers. Chameleon uses existing operating system interfaces to attach to
applications and serve randomized code in place of the code emitted by the compiler. At
runtime, Chameleon continuously generates new stack layouts and sets of randomized code.
Periodically, Chameleon interrupts the target application and switches from the previous
to the next randomization, using the state transformation runtime to remap application
execution state. Because Chameleon executes in a completely separate context and per-
forms re-randomization chores asynchronously, the target application executes with minimal
overhead – for example, Chameleon adds 1.1% overhead when re-randomizing the target ev-
ery 50 milliseconds. Additionally, Chameleon disrupts a geometric mean 76.32% of gadgets
found by a gadget finder tool. Finally, Chameleon provides a geometric mean 1.59 bits of
entropy across all stack elements in the evaluated benchmarks, or 5.87 bits of entropy for
stack elements not subject to randomization limitations from the compiler.

This dissertation described the design and implementation of a full software system for
migrating threads of execution between heterogeneous-ISA architectures on real hardware.
This dissertation has shown that not only is it possible to migrate threads between these
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architectures, but that migration between architectures can be achieved with low overheads
and allow system software to adapt application execution to varying goals. The Popcorn
Linux compiler and state transformation runtime can help achieve higher energy efficiency
versus a system without execution migration, accelerate multithreaded applications across
non-cache-coherent domains and harden applications against would-be attackers through
continuous re-randomization.

14.1 Future Work

There are many future research directions for each of the aforementioned components. Here
we describe several future research directions.

14.1.1 Heterogeneous-ISA State Transformation and Execution
Migration

There are currently a number of language-level features that are not supported by the com-
piler and state transformation runtime, e.g., setjmp/longjmp, variable-argument data struc-
tures, etc. Additionally, the compiler and runtime do not support ISA-specific features such
as x86 encryption extensions [103] or ARM scalable vector extensions [185]. The compiler
and runtime could be extended to fully utilize such extensions and use software fallbacks
when not available. The compiler and runtime could even be extended to proactively migrate
applications between architectures when they detect that an application uses such features
and would benefit from accelerated functionality built into the ISA.

The current Popcorn Linux compiler and state transformation prototype is limited to ARMv8
and x86-64 processors. However, there are numerous other processors that use different ISAs
such as POWER, SPARC, RISCV, etc., which target different form factors. The compiler and
state transformation runtime could be extended to each of these ISAs, allowing exploration
of execution migration in new contexts (e.g., internet-of-things devices). Additionally, the
compiler and runtime could be re-designed to be completely future proof, such that they
could be fed an ISA description (registers, data layout, ABI, etc.) and automatically produce
the required machinery for state transformation and execution migration without manual
intervention.

14.1.2 OpenMP for Non-Cache-Coherent Domains

This dissertation described how OpenMP execution can be refactored to reduce page faults
and how libopenpop determines if cross-node execution will be beneficial by observing
page fault behavior. These system properties were evaluated on a specific set of hardware,
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meaning that as the interconnect or CPUs comprising the system change these properties
may need to be re-analyzed. One future direction would be to mathematically model how
performance properties of the system change when varying the interconnect and CPUs in the
system. For example, in Section 10.2 a threshold for deciding whether cross-node execution
is profitable was experimentally determined through a microbenchmark varying the amount
of compute operations per byte of transferred data. Instead, a model would be able to take as
input interconnect properties (e.g., latency per page fault, bandwidth) and CPU properties
(number of cores, frequency, page fault handling latency) and automatically determine that
threshold. Similarly, a model could be developed that takes as input program execution
behavior, e.g., page fault period, parallel work, etc., and determine how well the application
would scale as the number of cache coherence domains increases. Modeling performance
and bottlenecks in the system as a function of Popcorn Linux’s DSM behavior would allow
developers more insights as to what types of applications scale and how they scale across
different types of architectures.

One of the biggest current limitations of OpenMP on Popcorn Linux is on-demand data
movement triggered by intercepting page faults in the kernel. Although this mechanism
provides great flexibility and allows applications to execute transparently across multiple
machines, it places data movement overheads directly in the critical path of application ex-
ecution. As previously mentioned, network bandwidth continues to rise with future network
interface cards promising hundreds of gigabits of bandwidth. Unfortunately network laten-
cies are not improving nearly as fast, necessitating the need to better utilize the available
bandwidth to hide latencies. For OpenMP applications, this means prefetching the results
of one thread’s computation across all the nodes in the system so that as threads access the
produced data, they do not have to wait for network communication latencies. OpenMP’s
for work sharing regions often structure computation around loop iterations; iterations are
assigned to threads, which use the iteration number to access the relevant information in
buffers. With more sophisticated compiler analyses, OpenMP applications could be instru-
mented with push operations to push updated data other nodes in the system, obviating the
need for an on-demand data transfer at some point during the application’s future execution.
Because of the ample available network bandwidth and increasing core counts in CPUs, nodes
should be able to aggressively push out updates. Recent hardware trends in programmable
NICs [147] also point to new possibilities in accelerating Popcorn Linux’s messaging layer.
It is possible that much of the page coherency protocol’s logic could be offloaded to the
network infrastructure, accelerating page fault overheads to wire-speed latencies. Thus, in
order to better scale multithreaded applications across rack-scale systems using distributed
shared memory, the system software must be optimized to better take advantage of emerging
networking trends.
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14.1.3 Runtime Re-randomization

Chameleon could be extended with extra compile-time enhancements to allow more flexible
re-randomization (e.g., adding nops and forcing relaxed displacement encodings as previously
mentioned). Currently Chameleon only supports x86-64. However, Chameleon could be ex-
tended to support other ISAs, especially ARM as it is already supported by the state trans-
formation runtime. Chameleon could be even further extended to utilize Popcorn Linux’s mi-
gration mechanisms to transparently migrate applications between heterogeneous-ISA CPUs,
even to the point where the migration is completely hidden from the target application. The
system software would have to be extended to instantiate Chameleon instances on remote
nodes and hand off target processes between them. This would add an extra level of random-
ization that would be difficult for attackers to overcome, even with emerging side-channel
attacks that exploit microarchitectural implementation details to leak information. By trans-
parently migrating target applications between different nodes, Chameleon would physically
remove all forms of sharing with would-be attackers.

Chameleon can also be extended with new defenses. For example, Chameleon already has
the ability to reconstruct the stack, which requires unwinding the current stack to determine
live function activations. Chameleon could be extended to perform on-demand control flow
integrity checks to detect when the target application’s control flow has been hijacked (e.g.,
ROP chains). Additionally because Chameleon can serve page faults for the target applica-
tion, it can easily implement page table-based protection mechanisms. For example, a secure
region of memory could be registered with Chameleon by the target. When accessing the
memory, Chameleon would transparently populate the memory for the application. After
a certain delay, Chameleon would then wipe the memory from RAM and store it on disk,
preventing leakage via side-channel attacks. These sorts of protections would be especially
useful for systems which may not have hardware-based secure enclaves [60], such as legacy
servers, internet-of-things devices or even microcontrollers.
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Fabrice Rastello. Computing Liveness Sets for SSA-Form Programs. PhD thesis,
INRIA, 2011.

[40] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In International Symposium on Code Generation and Optimization,
2003. CGO 2003., pages 265–275, March 2003.

[41] D. Bruening and Q. Zhao. Tutorial: Building Dynamic Tools with DynamoRIO on
x86 and ARM, March 2016. http://dynamorio.org/tutorial-cgo16.html.

[42] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec cpu2017: Next-
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