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(ABSTRACT) 

“Smart” surveillance systems require a visual tracking system that is able to detect and 

follow a moving target in the field of view of a camera. Visual tracking systems have 

been traditionally developed either as application specific hardware or as software written 

for parallel architectures because of the large number of computations that have to be 

performed at very high speeds. This thesis describes the implementations of two visual 

tracking systems on a custom computing machine based on Field Programmable Gate 

Arrays (FPGAs). The implementations apply a coarse-to-fine search on Gaussian 

pyramids constructed from the images generated by a camera. One system tracks a target 

of size 16x16 in an image sequence with output images of size 256x256. This system is 

capable of operating at 30 pyramids per second. The second system tracks a target of size 

16x16 in an image sequence with output images of size 512x512. This system is capable 

of operating at 15 pyramids per second. Both systems are designed with pipelined 

architectures and numerical computations are handled using a SIMD approach.
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

Visual tracking systems detect and follow a moving target in a sequence of images 

produced by a camera. Many applications of visual tracking exist, including autonomous 

vehicle navigation, missile tracking in military applications and autonomous surveillance 

systems. A problem faced in the design of a tracking system is the large number of 

computations that are needed. Common methods involve matching a part of one image 

with another image repeatedly. To achieve real-time operation, image matching needs to 

be performed at the rate that images are produced by the video camera, typically 30 

images/second. To reduce the number of computations and to avoid false matches, some 

methods employ image pyramids as an efficient way to represent images [7]. But even 

these methods demand high computation rates that are not possible using conventional 

general purpose computers. The traditional solution for these problems is to use parallel 

computers [11] or application specific integrated circuits (ASICs) [9]. Applications that 

are implemented on parallel machines enjoy flexibility and low design costs but the high 

prices of these computers are not well suited for the users. ASICs, on the other hand, 

provide a relatively low-cost alternative when produced in large quantities, but 

specialized hardware solutions are rigid and they become obsolete in time when better 

solutions for the same application are discovered. 

Recently, custom computing machines (CCMs) have emerged as a viable alternative to 

traditional methods of general-purpose computing. CCMs are designed with 

reconfigurable hardware that can be customized at a low level according to the needs of 

an application. The same hardware resources can be used for different applications, 

providing a general-purpose nature to these systems. Users who need hardware solutions 

to a wide range of problems can easily afford a CCM as compared with an ASIC for each 
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application. The major advantages of CCMs are low design costs, short design cycles 

(applications can often be developed within weeks), flexibility (applications can be 

redesigned and implemented on the same system) and a very high performance/price ratio 

over a wide range of applications. 

This thesis describes the use of a CCM to implement a real-time visual tracking system. 

The system computes Gaussian image pyramids [7] at real-time rates and performs a 

coarse-to-fine search to track the movement of an object in the field of view. The CCM 

used for this purpose is Splash II [3], a system developed by the Center for Computing 

Sciences, formerly the Supercomputing Research Center in Bowie, Maryland. 

1.2. Splash II, A Custom Computing Machine 

Splash II [3] is a custom computing machine based on field programmable gate arrays 

(FPGAs) that operates as an attached processor for a host workstation. Splash II is a 

general purpose system that can be tailored to deal with problems that would otherwise 

require custom hardware solutions. It is a multi-board system, using an array of Xilinx 

4010 FPGAs [18] as the reconfigurable hardware devices. 

Figure 1.1 shows the architecture of the Splash II system. It consists of up to 15 processor 

boards, each containing 17 FPGAs connected in a linear array. These FPGAs are denoted 

by XO through X17 as shown in the figure. Each FPGA has a 256K by 16-bit (static 

RAM) local memory. A 16x16 crossbar allows 16 FPGAs at any time to communicate 

with each other directly. Two of the 17 FPGAs of a board share access to the crossbar of 

that board. One of them is X0, otherwise called the control processing element, and the 

other is X16, the last FPGA on the board. Each of the FPGAs, X2 to X15, have a 36-bit 

data path bus connected to the FPGAs on its left and right. An interface board allows a 

Sun SPARC 2 workstation to control the loading of the configurations into the FPGAs 

and to communicate with the processor boards.



The Splash II System 

Interface Board 

  

    

    

  

  

  
        

          

Input XL SIMD Bus 

Host DMA SBus 
Computer i 

Output 
“— xr 

DMA RBus   
  

      
  

  

  

  

        
(a) 

SIMD Bus 

SBus 

RBus   
(b) 

Figure 1.1. The Splash II system. (a) System architecture, showing the fifteen Splash 

processor boards, the interface board and the host computer. (b) The 

structure of a Splash processor board showing the seventeen FPGAs 

connected as a linear array.



The Splash II system is attached to the host computer through the Sun SBus. Through this 

bus, the Sun workstation can directly access the memories of the each of FPGAs. The 

Splash II system also has a 36-bit input data path bus, called the SIMD bus, which is 

used for driving the input data stream and a 36-bit output data path bus, called the RBus, 

which is used for driving the output data stream. The interface board uses three bi- 

directional DMA channels to transfer data to and from the host computer through 256- 

word FIFOs. Two FPGAs, XL and XR, are used to handle incoming and outgoing data 

streams. XL is responsible for reading the data the input FIFOs and driving the SIMD bus 

with the input data stream. XR is placed between the output FIFOs and the RBus and it is 

responsible for reading data from the output FIFOs and driving the RBus with the output 
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Figure 1.2. A processing element of the Splash II system. The SBus is an extension of 

the 64-bit Sun SPARC Sbus through a cable to the Splash II system. The 

processing element is a Xilinx 4010 FPGA.



Each of the FPGAs X2 to X15 has a 36-bit bi-directional data path bus connected on its 

left and right as shown in Figure 1.2. The other three FPGAs have a similar structure 

except that XO and X1 have the SIMD bus as the input bus and X16 drives its output onto 

the RBus. Each FPGA has an 18-bit memory address path and a 16-bit bi-directional 

memory data path. The Sun workstation can access the local memories of the processing 

elements directly through the 64-bit SBus. The memories are not dual-ported so 

interlocks prevent simultaneous access by the host computer and the FPGAs. 

1.3. The VTSplash System 

The VTSplash system [4] uses the Splash II system and integrates it with a camera, a 

monitor and a video-interface component for implementation of real-time video 

applications. The system is shown in Figure 1.3. 

Host Computer    
  

  

      

Display Monitor 

  
  

Splash I! cabinet 

      

  

      

  

Camera 
  

      
Video Interface Cabinet   

Figure 1.3. The VTSplash system with a camera, a video monitor, a video interface 

cabinet, a host computer and a Splash II system.



The video camera sends an RS-170 video signal to a frame-grabber card in the video- 

interface cabinet. The frame-grabber card uses an A/D chip to convert this to 8-bit gray 

scale pixel values with vertical and horizontal sync signals for control information. 

Images, typically of size 512x512, are transferred to the Splash II system in raster order at 

rates up to 30 frames per second. After appropriate configuration, Splash IT processes this 

data and sends output images to a display card in the video-interface cabinet. The display 

card converts the output data stream to produce RS-170 signals for display on the video 

monitor. 

1.4. Configuring a Xilinx 4010 FPGA 

The 84-pin Xilinx 4010 FPGA [18] has 400 Configurable Logic Blocks (CLBs) and 160 

Input/Output blocks (IOBs). Functional logic can be configured on the CLBs while the 

IOBs can be configured to provide an interface between the external world and the 

internal input/output signal lines. The CLBs and the IOBs can be interconnected with the 

help of the routing resources provided in the FPGA. The partitioning and the placement 

of logic among the CLBs and the routing between the blocks is automatically performed 

by arich set of design tools provided by Xilinx Corporation. 

The VHSIC hardware description language (VHDL) [2] can be used to model the design 

of the FPGA. VHDL is a powerful hardware description language that comes with a wide 

range of design constructs which can be used to describe complicated behavioral logic 

simply and accurately. VHDL supports both behavioral (finite state machine logic) and 

structural (component logic) modeling. The Synopsys VHDL tools [7] (VHDL analyzer, 

simulator, FPGA compiler) are used in this research to model the designs of the FPGAs. 

A VHDL model is written and synthesized using the Synopsys FPGA compiler. The 

synthesis produces a netlist file that can be used by the Xilinx tools, after a format 

conversion, for partitioning, placement and routing of the logic on the CLBs and the



IOBs of the FPGAs. The Xilinx tools provide a bitstream file that can be used to 

configure the FPGA from the host computer. 

1.5. Contributions of this Research 

This research achieves the following goals: 

Implementation of a real-time visual tracking system for 256x256 images at 30 

frames/second on a custom computing machine with an input image size of 512x512 

and a target window size of 16x16. 

Implementation of a real-time visual tracking system for 512x512 images at 15 

frames/second on a custom computing machine with an input image size of 512x512 

and a target window size of 16x16. 

Design of a SIMD architecture for the tracking systems that is synchronous and easily 

scaleable. 

Demonstration that a custom computing machine like Splash II is capable of 

supporting computationally intensive and speed-critical applications like object 

tracking. 

1.6. Organization of this Thesis 

This thesis has been organized with six chapters, a bibliography and appendices. A brief 

overview of the remaining five chapters is given here. 

Chapter 2 introduces a tracking algorithm that will be used for the two tracking systems 

developed in this thesis. Results of a C implementation of the tracking algorithm will be 

shown in this chapter.



Chapter 3 describes the architecture of the 256x256 tracking system and its design on 

Splash II. A theoretical validation for the system performance is also given in this 

chapter. 

Chapter 4 gives a brief overview of the changes that are made to the 256x256 tracking 

system to yield the 512x512 tracking system. A theoretical validation for the 512x512 

system performance is also provided in this chapter. 

Chapter 5 looks at the steps taken during the implementation of the system, specifically in 

modeling in Synopsys VHDL, simulation, synthesis, testing and configuration on Splash 

I. 

Chapter 6 provides the results of the two tracking systems, configured on Splash II. 

Performance of the two systems is presented in this chapter. 

Finally, Chapter 7 describes conclusions and possible future work based on this research.



CHAPTER 2 

A TRACKING ALGORITHM USING COARSE-TO-FINE SEARCH 

2.1 Introduction 

A major problem in the design of a “smart” surveillance system is to determine an 

effective and efficient algorithm for automatic tracking of a moving object in a sequence 

of images. One approach employs a “coarse-to-fine search” [14] using image pyramids. 

An image pyramid is constructed from an image by generating a set of lower resolutions 

of the image. The lowest level of the pyramid corresponds to the highest resolution of the 

pyramid. Conversely, the highest level of the pyramid corresponds to the lowest 

resolution of the image. 

In a coarse-to-fine search, motion is initially estimated in the highest level of the pyramid 

and this estimate is successively refined at each lower level of the pyramid. By restricting 

the search area in the lower levels of the pyramid (i.e., at higher resolution), a great deal 

of processing in the original image, as well as a tendency to fall victim to false matches, 

is avoided in this method. This method is akin to the human eye trying to locate a distant 

object in a scene. It first scans the scene cursorily, trying to detect a region that coarsely 

relates to the object. Then it uses higher resolution vision to examine that region more 

closely. This process is repeated until the object is fixated at the highest resolution 

available. 

In the next section, one type of image pyramid, known as the Gaussian pyramid, is 

discussed briefly. Section 2.3 looks at a coarse-to-fine tracking algorithm which uses 

Gaussian pyramids. This chapter ends with a brief overview of some research conducted 

in the area of multiresolutional motion analysis.



2.2 The Gaussian pyramid 

Burt and Adelson [7] introduced the Gaussian pyramid as an efficient data structure for 

multiresolution and multirate image coding. A Gaussian pyramid is constructed by 

computing a weighted sum of neighboring pixels in an image, and simultaneously down- 

sampling. By applying the same procedure to every new level, a complete pyramid can be 

constructed. 

The weighted sum of neighboring pixels is calculated to obtain a single pixel at the next 

coarser pyramid level. Common weighting functions resemble the Gaussian function and 

they are half-band, low-pass filters applied over a 5x5 neighborhood of pixels by the use 

of a two-dimensional 5x5 convolution operator. 

To simplify computations, the 5x5 convolution operator can be broken into two one- 

dimensional convolutions by operators w, and w,. The operator w, is applied along the X- 

direction (columns) and the operator w, is applied along the Y-direction (rows) of the 

image. The mathematical equations used are as follows: 

P’i.D= Lw.r) PG 27-m) (2.1a) 

P’GA= YL w,O PP’ @i-2/) (2.1b) 

where the symbol pt represents level & of the pyramid and p** represents an intermediate 

image obtained by a one-dimensional convolution of P*" in the X-direction. 

Figure 2.1 illustrates convolution of the Gaussian pyramid generation in one-dimension. 

Because of down-sampling, every level of the Gaussian pyramid has half the number of 

rows and half the number of columns of the preceding lower level. 

10



Pp} 

eee eee P?® 

Figure 2.1. Representation of Gaussian pyramid generation in one-dimension. Five 

pixels of a pyramid level determine one pixel of the next pyramid level. 

Figure 2.2 illustrates a Gaussian pyramid of four levels, 256x256, 128x128, 64x64 and 

32x32. The pyramid is constructed from a standard image of a taxi turning around the 

comer of a street, using a C implementation of Eq. 2.1 on a Sun SPARC 2 workstation. 

The algorithm used for the C implementation uses two functions: one function convolves 

an image in the X-direction (using Eq. 2.1(a)) while the other function convolves an 

image in the Y-direction (using Eq. 2.1(b)). The two one-dimensional convolution masks 

used for the implementation are, 

Wy = Wy = F 13d | (2.2) 
16’4°8°4'16 

A description of the algorithm is given in Figure 2.3. 
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level 3 (32x32) 

level 2 (64x64) 

  

   

level 1 (128x128)     

   level 0 (256x256) 

Figure 2.2. A Gaussian pyramid of four levels. The pyramid is constructed from the original 

256x256 image which is the lowest level of the pyramid. This image is the first 
frame of an image sequence of a white taxi turning around the corner of a street 

[20]. 
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Algorithm Generate_Gaussian_Pyramid 

Input: A square image / of size NxN, where N is a power of 2. 

is the desired number of pyramid levels. 

—
 . Set P® equal to J /* this is the lowest level of the Gaussian pyramid */ 

2. Fork=1to/- 1/* from level 1 to level /- 1 of the Gaussian pyramid */ 

/* apply horizontal operator w, */ 

3. Fori=0to 3A - 1 /* each row of level (k - 1) level of the pyramid */ 

, N oe . 
4, For j = 1 to x 2 /* each interior column of level & of the pyramid */ 

2 

5, Compute P** (i, )= > w,(m) PX" G, 2j - m) 
m=-2 

6. End for /. 

kx 7: k-1y. x, N -1. NV 
7. P°" G,0)=P (Gi, 0); p* (i, a 1)=P* (i, oe 1) /* edge control */ 

8. End for i. 

/* apply vertical operator w, */ 

9. Forj=Oto = - 1 /* each row of level k of the pyramid */ 

10. For i= 1 to > -2 /* each interior column of level & of the pyramid */ 

2 

11. Compute P* (i, /) = >w,(”) P** Qi-n,/) 
n=—2 

12. End for i. 

k . x - N . kk, xX N . 13. P0,j)=P* (0,5 PY (Se -1,/)=P* (Sa - 1,7) /* edge control */ 

14. End for /. 

15. End for k. 

15. Return pyramid levels P’P',..., PY 

16. End algorithm. 

Figure 2.3. An algorithm for generating a Gaussian pyramid of / levels from an input 

image of size NxN. 
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Chen [10] implemented this algorithm with the same two masks (Eq. 2.2) on Splash II. 

Her system takes as input a sequence of 512x512 images. For a given image, it generates 

pyramid levels 256x256, 128x128, 64x64 and 32x32. She has developed two 

configurations for the pyramid generator. In one configuration, four chips of a Splash II 

board are used to generate pyramids for every alternate frame coming from a camera. In 

the other configuration, nine chips are used to produce a complete pyramid for every 

frame coming from the camera. Her implementation has been used to generate the input 

for the two tracking systems developed in this thesis. 

2.3 Description of a coarse-to-fine tracking algorithm 

Common approaches for tracking in an image sequence involve extracting a window 

from one image (this window represents the target) to be used as a reference to match 

with the next image in the sequence. Matching is a computationally intensive task 

because of the large number of blocks of the size of the reference window in the new 

image. By applying a coarse-to-fine search on a pyramid constructed from the image, the 

number of computations required for tracking is reduced significantly. 

In a coarse-to-fine search, a reference window is extracted from every pyramid level of 

one image such that the reference window of the lowest level of the pyramid is the object 

that is being tracked while the other reference windows contain the target as well as some 

of its neighborhood. As illustrated in Figure 2.4, this is achieved by choosing a constant 

size for the reference windows. The size of the reference window increases at higher 

pyramid levels relative to the image size. Search is initially conducted on the highest 

pyramid level. This search will cover a large portion of the image because of the small 

size of this pyramid level. The result of this search is used to estimate the region of search 

(henceforth called the search window) for the next pyramid level. The reference window 

of the next pyramid level is matched with every block of the search window of this level 

and the position of the best match is again used to find the search window for the next 

14



lower pyramid level. This process is repeated for all levels of the pyramid until the best 

match for the reference window of the lowest pyramid level is found in that level. As 

seen from the figure, the size of the search window of a level decreases with respect to 

the resolution of that level as the levels increase. 

target location in the lowest 

level of the pyramid   

block that gives the best match 
with the reference window 

  

ow 
~~ - 

- ~-7 
Ln om    

   

  

    
      

  

  

level /- 1 ” 
level /-2 

search windows level 0 

Legend 

@ target Mi region of search 

neighborhood of target considered O discarded portion of the image 

in the search. in the search 

Figure 2.4. A coarse to fine search process. The pyramid levels decrease from left to 

right. 

The following notation is used in the description of the algorithm. An image sequence is 

denoted by /. The nth image in this image sequence is denoted by J,. A pyramid 

constructed from the image J, is denoted by the symbol P,,. The Ath level of the pyramid 

P,, is denoted by Pe The reference window for the pyramid level Pi is denoted by RS 

The set of all reference windows for the pyramid P, is denoted by R,. The search 

window of the pyramid level PS is denoted by Si. In the implementation described here, 

the highest level search window is the entire highest level of the pyramid, and therefore 

sit is the same as Po The upper left hand coordinates of search window in a level are 
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denoted by (x, y) where x represents the row coordinate and y represents the column 

coordinate. 

A block is defined as a section in a search window of the size of a reference window. The 

upper left-hand coordinates of a block (or a reference window) in a search window are 

denoted by (7, c). 

The description of the algorithm is given in Figure 2.5. For simplicity, the initial target 

has been chosen as the central 16x16 window of the first image of the image sequence /. 

Hence the initial set of reference windows will be the central 16x16 windows of each 

level of the Gaussian pyramid of the first image. Since the highest level search window is 

the entire highest level, its size will be 32x32. For the all the other levels, the search 

windows have twice as many rows and twice as many columns as a block of the previous 

level search window. Since the block size is 16x16, all the search windows of a pyramid 

have the same size of 32x32. 

The results of the algorithm for one example, as implemented in the C programming 

language and executed a Sun SPARC 2 workstation, are shown in Figure 2.6. The 

chosen image sequence is a taxi turning around the corner of a street. The images are of 

size 256x256 and the Gaussian pyramid has four levels of resolution (/ = 4), 256x256, 

128x128, 64x64 and 32x32. Pyramids, constructed for each image in an image sequence 

of five images, are given as inputs to the C program. The last four images are generated 

as outputs with the target highlighted in each image by superimposing a white rectangle 

of side 16 on the original image. The pyramid generated from each image is used by the 

program to determine the set of reference windows for each successive image. 
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Algorithm Coarse_to_Fine_Search 

Input: Gaussian pyramids, with / levels, constructed from each image of an image 

10. 

11. 

12, 

13. 

sequence / of p images. 

Extract the initial set of reference windows, Ro, from the first pyramid, Po, as the 

central 16x16 windows of each level of the pyramid. 

Forn=1top-1 

/* from the second pyramid to the last pyramid of the sequence */ 

Set x and y to zero. 

/* row and column of the upper left corner of the search window */ 

For k= 1-1 to 0 

/* from the highest level to the lowest level of the current pyramid */ 

Extract the search window st from location (x, y) within PK 

Perform correlation on each block of Si with Ri) and determine the 

location (7, c) within R,." that represents the best match at this level. 

Extract the block from the location (7, c) within R,1 and store it as the 

reference window Ri for the next pyramid. 

/* the upper left corner coordinates of the block in R,.1* are (7, c) */ 

Set x to 2x + 2r and y to 2y + 2c. These are the coordinates of the search 

window of the next level of the pyramid. 

End for k. 

The coordinates of the target in the lowest level of the pyramid, P,, 

are (x + r, y + c). Highlight the target in Pp. and display that as the output 

image. 

End for n. 

Return the lowest levels of the Gaussian pyramids for the last (p - 1) images of the 

image sequence /, displayed as output images with the target highlighted. 

End algorithm. 

Figure 2.5. A coarse-to-fine tracking algorithm using Gaussian pyramids of / levels. 
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(a) (b) 

   
(d) 

Figure 2.6. These four frames are the results of the coarse-to-fine search process applied 

to a sequence of five images (images 0 to 5) of a taxi turning a corner [19]. 

The first frame (not shown) has been used to generate the initial set of 

reference windows. White rectangles of size 16x16 in images (a) to (d) 

represent the best match in images 1 through 4, respectively, to the target 

found in the previous image. 
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The first step of the algorithm extracts the reference windows for the second pyramid 

from the first pyramid. No other processing is done on the first pyramid. Steps three to 

ten of the algorithm are applied over each pyramid starting from the second pyramid in 

the pyramid sequence, as specified by the second step (the variable n indicates the 

position of the current pyramid in the input pyramid stream). In the third step, two 

variables x and y are introduced which specify the position of the search window of the 

current level of the current pyramid. The current level is the highest level of the pyramid 

at this step and hence x and y are set to zero. The fifth step to the eighth step of the 

algorithm are executed from the highest level to the lowest level of the current pyramid. 

The variable k, introduced in the fourth step, indicates the current level of the pyramid 

being processed. 

The fifth step requires a comparison on each block of the search window with the 

reference window. For a 32x32 search window and a 16x16 reference window, there will 

be 17 blocks in each row and 17 blocks in each column of the search window i.e., a total 

of 289 blocks. The sum of absolute differences is used to measure the dissimilarity 

between a search block and the reference window. This is loosely referred to as 

correlation and results in 289 sums for all the blocks of the search window. The block 

that gives the minimum of these sums or errors is the new reference window and its upper 

left-hand coordinates will determine the next search window. 

The equation for this is as follows: 

15 15 

E,@y=2% 
r=0c=0 

  Si(x+r.y+e)—Rialr.c) (2.2a) 

The best match is chosen by selecting (x, y) to minimize E, (x, y) as follows: 

Evin = MINE, @y) (2.2b) 
0<x<16 
Osysl6 
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E Mx, y) denotes the error obtained by correlation of a block with upper left-hand 

coordinates (x, y) in the search window st and E,\ nin) denotes the minimum of the errors 

obtained for each block in the search window. The minimum error position is the position 

of the block whose minimum error is En‘ cniny This block is defined as the reference 

window of the current level, k, for the next pyramid. In this way, both translation as well 

as rotation of the target are taken into consideration. 

Since every level has twice as many rows and twice as many columns as its preceding 

higher level, the seventh step of the algorithm defines the upper left-hand coordinates of 

the new search window by doubling each of the upper left-hand coordinates of the 

absolute minimum error position in the preceding higher level. The absolute minimum 

error position is the sum of the search window position of that level and the minimum 

error position in the search window obtained through correlation. 

Finally the ninth step of the algorithm highlights the target by drawing a white rectangle 

around the target in the lowest level of the pyramid. The target position is the absolute 

minimum error position in this level. 

The execution time for the algorithm as measured on a Sun SPARC 2 workstation for 

generating the results shown in Figure 2.3 is 13.59 seconds of CPU time. The CPU time 

required to process one pyramid of the input sequence is 3.25 sec. These numbers do not 

include the time required to construct the pyramids. Since input pyramids arrive at the 

rate of 30 pyramids/sec, the workstation-based implementation is not capable of real-time 

operation. The next two chapters explain how the algorithm is partitioned and 

implemented on Splash IT for the two real-time tracking systems developed in this thesis. 
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2.4 Previous work on multiresolutional object tracking 

A good deal of research has been conducted on motion detection and object tracking. 

Song et al. [14] developed a motion vision system in which motion is detected and 

estimated using a multiresolutional search process, not unlike the approach used in this 

thesis. They obtain a primary mask using temporal gradient (which is the gradient 

difference between successive images to distinguish stationary objects and a moving 

object) and dynamic thresholding for detection of motion. Then they use a region- 

growing algorithm which improves the search area after each iteration. Finally they use a 

hierarchical search to identify the position of the moving target. 

Burt and van der Waal [8] designed a segmented pipeline architecture for 

multiresolutional focal processing. They present an example in which motion analysis is 

performed on Gaussian pyramids in real-time. The pipeline they use is not a standard 

“lattice” pipeline in which the data flow rate is uniform. The segmented pipeline is 

formed by breaking a standard pipeline into segments and introducing buffers between 

those segments so that for a certain period of time, data flow rate in different segments of 

the pipeline can have different data rates. This structure allows faster processing of down- 

sampling, up-sampling and windowing operations. Motion analysis is partly performed 

on two image frames A and B by the segmented pipeline using a prior motion estimate 

vector V. Initially the earlier image frame A is warped towards the image frame B by 

using the vector V so that some of the displacement computation is reduced. Then the 

second levels of the Gaussian pyramids of both the frames are taken and cross- 

correlation is performed on them. An external microprocessor accesses these values and 

estimates the motion. 

Cremonesi et al. [11] provide a case study on motion detection and tracking using 

pyramidal algorithms on MIMD architectures. They describe a coarse-to-fine search for 

tracking and suggest possible approaches for parallel implementation of a pyramid 
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generator and a motion detector and tracking system. They make interesting conclusions 

on the best strategy for parallelization. They also discuss the implementation of one 

parallel approach for motion detection and tracking on a 32-node Meiko Computing 

surface, a Transputer-based parallel machine, using C code for a 512x512 image. 

But all these tracking systems have been developed either as special purpose hardware or 

as applications that run on parallel machines. This research demonstrates that the same 

systems can be implemented on a custom computing machine, thereby making the 

systems less expensive. 
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CHAPTER 3 

DESIGN OF A TRACKING SYSTEM FOR 256x256 IMAGE ON 

SPLASH I 

3.1. System Overview 

This chapter describes the design of a tracking system using the tracking algorithm given 

in Figure 2.5 of Chapter 2 on Splash II for a 256x256 image with a target window size of 

16x16 and a search window size of 32x32. The system accepts pyramids that are 

produced by the Gaussian pyramid generator developed by Chen [10] as input. A pyramid 

of four levels, 256x256 (level 0), 128x128 (level 1), 64x64 (level 2) and 32x32 (level 3) 

is generated for each 512x512 image coming from a camera. The system performs 

tracking and displays the 256x256 level with the target highlighted on a video monitor as 

the output image. For this tracking system, the 256x256 level is considered as the lowest 

level of the pyramid since the process of searching for the target ends at this level. The 

initial set of reference windows are the central 16x16 sections of the each level of the first 

pyramid. 

The algorithm developed in Chapter 2 cannot be implemented on one Xilinx device due 

to the requirements of real-time performance. In order to achieve real-time performance, 

the hardware design is divided into four basic parts as illustrated in Figure 3.1. 

Part 1 of the design receives each incoming pyramid and simultaneously forwards it to 

Part 2 and at the same time, forwards the lowest level of each pyramid (which is the 

256x256 image) to Part 4. Part 2 stores the pyramids in its memory and furnishes the 

reference windows and the search windows to Part 3 which performs correlation. Part 4 

stores each 256x256 image coming from the first part in its memory, computes the final 
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minimum error position from the correlation results, highlights the target in the 256x256 

image, and finally sends that image as output. 

  

  

Figure 3.1. Block diagram of the tracking system. This four-part decomposition of the 

tracking algorithm, given in Figure 2.5 of Chapter 2, is capable of real-time 

operation for 256x256 image. 

Part 1 is relatively simple and has been designed using one Xilinx chip. Since pyramids 

are generated continuously and they need to be stored in memory for processing, 

information will be lost if only one chip is used for Part 2. Hence Part 2 has been 

designed using two Xilinx chips. Using the convention that image frames are numbered 

beginning with zero since system initialization, the first chip stores all odd-numbered 

pyramids while the second one stores all the even-numbered pyramids. Part 4 has been 

designed using two Xilinx chips as it too depends on the completion of the operations of 

Part 2. 

The correlation, performed in Part 3, is a time-consuming task and it requires two chips 

for real-time performance. This is explained in greater detail later on in this chapter. The 

first chip correlates all 16x16 blocks of the search window of each level that begin on 

even columns with the reference window of that level. The second chip correlates all 

16x16 sections of the search window of each level that begin on odd columns with the 

reference window. The best of the two results is then evaluated in the second chip and 

broadcast to Part 2 and Part 4. 
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A total of seven chips are required for this system. This system has SIMD nature because 

the same correlation operation is cast on two chips over different sets of data. 

3.2. Architecture of the tracking system on SPLASH II 

The seven-chip tracking system architecture is shown in Figure 3.2. It is preceded either 

with the five-chip Gaussian pyramid generator which works at 15 frames/sec or the nine- 

chip Gaussian pyramid generator which works at 30 frames/sec [10]. This system is 

capable of processing 30 pyramids/sec. As there are 16 chips on each Splash II board, the 

entire system can be implemented on one processor board . 

   

   

  

§12x512 

images 

  
256x256 

images 

    

Figure 3.2. Seven-chip architecture of the object tracking system on Splash II. The input 

pyramid is produced by a Gaussian pyramid application on Splash II [5]. 

The output image is the 256x256 level of the input pyramid with a white 

rectangle superimposed over the target window. 

Part 1 is implemented with an extra operation on chip X1. The initial set of reference 

windows extracted from the first pyramid (pyramid 0) is also taken care of by this chip. 

After that, it sends all odd-numbered pyramids to chip X2, all even-numbered pyramids 

to chip X3, all odd-numbered 256x256 frames to chip X6 and all even-numbered 
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256x256 frames to chip X7. It uses the 36-bit data bus to the crossbar to send data to 

chips X6 and X7 and uses the 36-bit data bus to its right neighbor to send data to the 

other four chips. 

Chips X2 and X3 implement Part 2 of the system. Chip X2 stores all odd-numbered 

pyramids and chip X3 stores all even-numbered pyramids coming from chip X1. While 

one chip is storing a pyramid, the other chip is transmitting search windows or reference 

windows to chips X4 and X5 in response to requests from chip X5 which arrive through 

the crossbar. 

Initially chip X5 requests the highest level of the Gaussian pyramid. Because of its small 

size (32x32), it represents a complete search window as discussed in Section 2.3. 

Therefore no other information is required for Part 2 at this level. For all other search 

windows, chip X5 sends the appropriate request and the minimum error position in the 

search window of the previous higher level. The request is in the format of a four bit tag, 

in which one bit indicates valid data, two bits indicate the level of the search window 

requested and the last bit identifies the recipient chip (chip X2 or X3). The recipient chip 

of Part 2 computes the absolute search window position within the image at the current 

pyramid level and then sends the data to Part 3. This chip automatically sends the new set 

of reference windows after receiving the minimum error position of the lowest level from 

chip X5. 

Part 3 is implemented on chips X4 and X5. The equations for correlation, Eq. 2.1a and 

Eq. 2.1b, can be partitioned in the following way. The correlation of all 16x16 blocks of 

the search window that begin on even columns can be represented by the equations (using 

the notation introduced in Chapter 2), 

iS 15 

E,(y=h> 
r=0c=0 

Sk(xtr2y+0)- RE ,(r,0) (3. 1a) 
  

Select (x, y) to minimize E, (x, y) as follows: 
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k . 
En (min_even) = min E(x, y) (3.1 b) 

O<x<16 
O<ys8 

The correlation of all 16x16 blocks of the search window that begin on odd columns can 

be represented by the equations, 

15 15 

E,@y=r> 
r=0c=0 

  Sk(xtr2y+1+0)- RE (r,0) (3.2a) 

Select (x, y) to minimize E, y) as follows: 

Ex min. odd) = min E,, y) (3.2b) 
O0<xs16 
O<ys<7 

Finally the best of the two errors is obtained in the following way, 

k . k k 
Ey (min) — min Ey (min_even)> Ey (min_odd) (. 3. 3) 

Eq. 3.1 is implemented on chip X4. The other two equations are implemented on chip X5. 

Upon receiving a search window, both chips process it simultaneously and find their 

_ respective minimum error positions, each using a different portion of the search window. 

Chip X5 finishes processing first as there are fewer odd-position search blocks (17x8) 

compared to the number of even-position search blocks (179). Chip X5 waits for chip 

X4 to send its minimum error and minimum error position which are transmitted by the 

latter as soon as it finishes processing. Then chip X5 determines the final minimum error 

position (using Eq. 3.3) and sends it through the crossbar for chips X2 and X3 and 

through the 36-bit data bus to chip X6. Chip X6 forwards this data to chip X7. 

Chips X6 and X7 constitute Part 4 of the system. Chip X6 has previously stored the 

corresponding odd-numbered 256x256 image and chip X7 has previously stored the 

corresponding even-numbered 256x256 image. While one chip is storing an image 

coming from chip X1, the other chip calculates the absolute minimum error position in 

the 256x256 frame by accumulating the successive minimum error positions of each level 

of the pyramid received from chip X5. This final minimum error position is the upper 

left-hand coordinate of the detected target in the image stored in the memory of the chip. 
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The chip then draws a white rectangle around the target and sends the resulting image 

through the 36-bit bus to its right neighbor as the output. 

For all data transfers between the chips, a four-bit tag is used to send control information. 

For all tags, one bit is used to indicate whether the data is valid or not. In the case of chip 

X5, two bits of the tag are used to indicate the level of the search window requested from 

chip X2 or X3. The last bit of the tag is used to distinguish the recipient (chip X2 or X3). 

For all other chips, three bits of the tag are unused. 

The design involves three distinct configurations. One is strictly for initialization and 

lasts only for the duration of the arrival of the first pyramid. In this configuration, chip 

X1 extracts the initial set of reference windows and sends them to chips X4 and X5. The 

other two are steady-state configurations as illustrated in Figure 3.3 on the next page. The 

first of these two, shown in Figure 3.3(a), is during the arrival of odd-numbered pyramids 

while the other, shown in Figure 3.3(b), is during the arrival of even-numbered pyramids. 

To illustrate communication details, Table 3.1 gives the sequence of events for the 

processing of an odd-numbered pyramid stored in chip X2. The column “Time” indicates 

the order in which the events occur. The column “Event” describes the main events that 

are responsible for communication between the chips. While this processing is taking 

place, chip X3 is receiving the current incoming pyramid from Part 1 of the system. 
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Figure 3.3. The two steady-state configurations of the tracking system. The chips which 

are represented by shaded rectangles forward the data from their left neighbor 

to their right neighbor. 

(a) Configuration for odd-numbered pyramids. Chip X3 stores the incoming 

odd-numbered pyramid and chip X7 stores the incoming odd-numbered 

256x256 image. Concurrently, chips X4 and X5 process the previous 

pyramid that is stored in chip X2, sending the correlation results to chip X6 

which sends the output image using the previous 256x256 image stored in its 

memory. 

(b) Configuration for even-numbered pyramids. Chip X2 stores the incoming 

even-numbered pyramid and chip X6 stores the incoming even-numbered 

256x256 image. Concurrently, chips X4 and X5 process the previous 
pyramid that is stored in chip X2, sending the correlation results to chip X7 

which sends the output image using the previous 256x256 image stored in its 

memory. 
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Table 3.1. 

Communication between the chips for the processing of an odd-numbered pyramid. 

  

  

  

  

  

  

  

  

  

  

    

TIME EVENT 

1 Chip X5 sends request “1110” through the crossbar for highest level search 

window (level “11”) to chip X2. 

2 Chip X2 sends the 32x32 pyramid level from its memory through the 36-bit 

bus to chip X3 and chip X3 forwards this data to chips X4 and XS. 

3 Chips X4 and X5 perform correlation of this search window with the highest 

level reference window. Chip X5 sends the minimum error position and the 

request “1100” (for the level “10” search window) through the crossbar to 

chip X2 and through the 36-bit bus to chip X6 (for using these positions to 

evaluate the final target position). 

4 Chip X2 evaluates the absolute search window position and extracts the 

32x32 search window from the 64x64 level and sends it to chips X4 and X5 

through chip X3. 

5 Chip X5 sends the level “10” minimum error position and the request “1010” 

(for the level “01” search window) to chip X2 and chip X6. 

6 Chip X2 extracts the 32x32 search window from the 128x128 level and 

sends it to chips X4 and X5 through chip X3. 

7 Chip X5 sends the level “01” minimum error position and the request “1000” 

(for the level “00” search window) to chip X2 and chip X6. 

8 Chip X2 extracts the 32x32 search window from the 256x256 level and 

sends it to chips X4 and X5 through chip X3 and through the 36-bit bus to 

chip X6. 

9 Chip X5 sends the level “OO” minimum error position and the tag “1000” (for 

the reference windows) to chip X2 and chip X6. 

10 Chip X2 uses this minimum error position and sends the reference windows   of each of the four levels of the pyramid to chips X4 and X5. Simultaneously, 

chip X6 evaluates the final target position and sends the output image. 
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3.3 Architecture of the Xilinx chips 

This section briefly describes the architecture of the seven chips. Every chip is 

implemented as a finite state machine, where the transitions between states are controlled 

not only by the system clock but also by the inputs. All state transitions occur only at the 

rising edge of the clock and hence the system is synchronous. 

3.3.1 Structure of chip X1 

Figure 3.4 shows the three main states of chip X1. States SO and S1 are used to send the 

initial set of reference windows to chips X4 and X5. State S2 is used for forwarding the 

pyramids to chips X2 and X3 and the 256x256 images to chips X6 and X7. 

  

  

Figure 3.4 State diagram of chip X1. 

In state SO, chip X1 ignores incoming pixels until it detects the first reference window 

pixel which occurs in the 256x256 level of the first pyramid at coordinates (7, c) = (120, 

120). Then it goes to state S1 (transition TO) where the reference window pixels are sent 

to chips X4 and X5. After 16 pixels are sent, it returns to state SO (transition T1). On the 

arrival of the next reference window pixel, which is at (121, 120), a transition occurs 
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again to state $1. This continues until the entire reference window for the 256x256 level 

is transmitted (i.e., after all 16 rows of the reference window are transmitted). 

The same state machine is used for each of the remaining three levels until all the 

reference windows are transmitted. Then control returns to state SO where chip X1 waits 

until the last pixel of the first pyramid arrives. Then a transition to state S2 occurs 

(transition T2) where all pyramids are sent to chips X2 and X3 while all 256x256 images 

are simultaneously sent to chips X6 and X7. No more state transitions will occur after this 

point as the initial set of reference windows has been transmitted. 

The logic complexity of this chip lies primarily in the detection of the initial set of 

reference windows. For this purpose, the following hardware resources are used. 

A 2-bit “level counter” is used to retain the current level of the arriving pyramid. A 16-bit 

“pixel counter” is used to infer the coordinates of the current pixel in the current level. An 

8-bit “row counter” is used which is loaded with the row coordinate of first reference 

window pixel of a level before the arrival of that level. The logic for state SO requires the 

detection of the first pixel of each row of the reference window of each level because 

when such a pixel arrives, control is transferred to state S2 where the entire row of the 

reference window is transmitted. Since the column coordinate of such pixels is a constant 

for a level, the row counter is concatenated with this constant column coordinate of the 

current level (the concatenation is converted to 16 bits for higher levels by padding with 

zeros) and compared with the pixel counter. If a match occurs, the row counter is 

incremented so that the next comparison in this state is for the first pixel of the next row 

of the reference window and control is transferred to state S1. In state S1, this pixel and 

the next fifteen arriving pixels are transmitted, completing the transmission of the first 

row of the reference window. Control returns to state SO where the first pixel of the next 

row is awaited. In this manner, all the reference windows of the first pyramid are sent and 

control is transferred to state S2. In state $2, all incoming pyramids are transmitted to 
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chips X2 and X3 and the 256x256 level of the pyramids are transmitted to chips X6 and 

X7. The combination of the level counter and the pixel counter is used to detect the 

beginning and end of each 256x256 level. 

3.3.2 Structure of chips X2 and X3 

Chips X2 and X3 have almost identical architectures. They both have four main states, 

SO, S1, S2 and S3 as shown in Figure 3.5. In state SO, pyramid pixels coming from chip 

X1 are accepted and stored in the off-chip memory. As soon as a complete pyramid is 

stored, a transition to state S1 occurs (transition T0). State S1 is a waiting state for 

requests from chip X5. The first four requests will be for 32x32 search windows from 

the four levels of the stored pyramid. The first request is just a tag sent from chip X5 for 

the highest level search window. With all other requests, the minimum error position in 

the previous higher level search window is sent by chip X5. This is used to calculate the 

search window position (the upper left-hand coordinates of the search window) in the 

next level and the absolute minimum error position of the previous level for the next 

pyramid. Then control is transferred to state $2 (transition T1). 

  

Figure 3.5. State diagram of chips X2 and X3. 

In state S2, the search window is transmitted to chips X4 and X5. Then control returns to 

state S1 (transition T2) where the next request for a search window is awaited. After the 
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last search window is transmitted, a request for reference windows is awaited in state S1. 

When this request arrives from chip X5 with the minimum error position in the lowest- 

level search window, the lowest-level minimum error position is calculated and a 

transition to state S3 occurs (transition T3). In state S3, the set of reference windows are 

sent to chips X4 and X5 and control returns to state SO (transition T4) where the next 

pyramid is awaited. 

All the pixels of a pyramid are stored in contiguous memory locations and base pointers 

for each level are preserved in separate registers (they are constants since the starting 

address for each level is unchanged). An 18-bit memory address register is used for 

memory accesses. An 18-bit index register works with the base pointers to determine the 

memory addresses of the pixels. The calculation of the search window positions in state 

S1 is graphically depicted in Figure 3.6. 
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me             
Figure 3.6 Graphical representation of search window position in different levels of the 

pyramid. 

In Figure 3.6, minimum error positions in a search window are denoted by (7, c;) where 

the subscript i indicates the level of the search window. As observed from the figure, the 

absolute search window position of the current level i can be calculated using the 

following equation, 
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Xj = 2%; + 75), Vin = 20; + €)) (3.4) 

where x; and y, are the row-coordinate and column-coordinate of the search window in 

level 1. 

The equation for absolute reference window position in level i can be found according to 

the equation, 

1X; =X; 7; , VY; = Vit C; (3.5) 

where rx; and ry; are the row-coordinate and column-coordinate of the reference window 

in level 7. 

Unfortunately, the relationship between the two equations is not as trivial as it seems to 

be. When a minimum error position of a level arrives from chip X5, the position of the 

search window of the next lower level is calculated by Eq. 3.4 whereas Eq. 3.5 determines 

the position of the reference window of the current level. But the total coordinate space 

occupied by each level differs and therefore the number of bits used to represent the 

coordinate space is different for each level. For example, y3, the column coordinate of the 

position of the search window in the 32x32 level can only be represented by five bits 

whereas yo, the column coordinate of the search window in the 256x256 level can only be 

represented by eight bits. To use the same resources for evaluating both equations, a 

mapping controller should be used which maps the resultant positions to the appropriate 

level. 

A block diagram of the implementation of the two equations is shown in Figure 3.7. A 

16-bit adder is used to calculate the reference window position of each level. The 

minimum error position of a level, arriving from chip X5, passes through an initial 

mapping controller which enhances the number of bits in the column coordinate 

according to the level before feeding it to the adder. The other input to the adder comes 

from the search window position register. For the 64x64 level, it adds one zero, for the 

128x128 level, it adds two zeros and for the 256x256 level, it adds three zeros. The 

35



32x32 level minimum error position is passed to the adder unchanged. This has to be 

done because chip X5 sends a minimum error position consisting of a 5-bit row 

coordinate and 5-bit column coordinate relative to a 32x32 search window. For this row 

coordinate to correspond to the row coordinate of a lower level window, the column 

coordinate has to be enhanced appropriately. 

The output of the adder is stored in one of the four reference window position registers, 

selected according to the level. The contents of the adder are also fed to a second 

mapping controller which calculates the next lower level search window position. Since 

the adder contents correspond to the current level, the column coordinate should be 

enhanced by one zero bit for the next lower level. But from Eqs. 3.4 and 3.5, the search 

window position of the next level should be twice the reference window position of the 

current level. Hence the zero bit is added as the least significant bit (doubling the column 

coordinate) and the row coordinate is shifted left with the padding to yield the final 

search window position. 
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Figure 3.7 Block diagram of the logic for calculating the search window position of the 

next lower level (level /-7) and the reference window position of the current 
level (level /). 
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3.3.3 Structure of chips X4 and X5 

Chips X4 and X5 constitute the processing hub of the system. Together, they find the 

minimum error correlation matching of a 16x16 reference window over all the 16x16 

search blocks of a 32x32 search window. They have very similar architectures though 

chip X5 is slightly more complicated. As discussed in Chapter 2, correlation is a 

computationally intensive task requiring 256 subtractions and 256 additions for each 

block. 

If pixels are stored serially in memory, this would require a minimum of 512 clock cycles 

since each memory access takes one clock cycle. Since this would prevent real-time 

operation (Section 3.5 discusses real-time operation in greater detail), two pixels are 

stored in each memory location (the memory data width is 16 bits) so that only 256 

memory accesses are required to read 256 reference window pixels and 256 pixels of a 

block of the search window. But this means two subtractions and two additions should be 

performed in sequence. Since this could limit the clock frequency, the four operations are 

pipelined. 

At any point of time during the actual correlation process, each chip has all the reference 

windows of the pyramid that is being processed and the search window of the current 

level. The memory is organized so that all the search window pixels are in one part of the 

memory and the four reference windows are in the other part of the memory as shown in 

Figure 3.8. 

To avoid 18-bit address manipulations, the memory address register is divided into two 

parts, a base (the most significant part) and an offset. The base can take five values, four 

for each of the reference windows and one for the search window. The bases for the 

reference windows are 11 bits and the base for the search window is 9 bits. The offset can 
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either be the contents of 7-bit counter called the reference pointer or the contents of a 9- 

bit counter called the search pointer. 

This organization is graphically depicted in Figure. 3.8. The base registers for the 

reference windows for each level are denoted by the word “base” followed by the 

resolution of the level. The reference pointer is denoted by “ref ptr”. A two-bit level 

register is used to select the appropriate base register for the each level. 
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Figure 3.8 A block diagram of the division of the address space used by chips X4 and 

X5. The unused memory is not shown here. “ref ptr” stands for the reference 

pointer register. 

base search| search ptr 

9 bits 9 bits 
                

8 bits 8 bits 

Two pixels are stored in each memory address. For each reference window, all odd- 

numbered pixels are stored in the most significant 8 bits of the memory and all even- 

numbered pixels are stored in the other 8 bits in both the chips. Search windows are 

organized in the memory of chip X4 in the same way as the reference windows but for 

chip X5, all the odd-numbered pixels are stored in the least significant 8 bits and all the 
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even-numbered pixels are stored in the other 8 bits. Chip X5 also drops the first (pixel 0) 

and last (pixel 1023) pixels of the search window since it does not use them. Figure 3.9 

shows how the windows are organized in the memory. 

This organization makes the access of corresponding reference window pixels and search 

window pixels very simple. For instance, in chip X4, since blocks begin on even 

columns, the first pixel of a block of a search window of a level is always in the least 

significant eight bits of the memory location. This means that the corresponding pixel of 

the reference window of that level is also in the least significant eight bits. Hence only 

128 accesses are necessary to read the 256 pixels of a block from the memory instead of 

129 accesses if the corresponding pixels of the reference window and a block beginning 

on an even column of the search window are not stored in the same part of a memory 

location. The same is the case for chip X5 too. 
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Figure 3.9. Organization of a reference window and the search window in the occupied 

memory space for chips X4 and X5. 
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The five main states for the correlation process is shown in the state transition diagram in 

Figure 3.10. In state SO, reference window pixels are accepted and stored in memory. 

Initially they come from chip X1. After all the reference windows are received, a 

transition to state S1 occurs (transition TO). 

In state S1, a request for the lowest level search window is sent through the crossbar to 

chips X2 and X3 by chip X5. The request is a four bit tag. One bit is for valid data, one 

bit is for distinguishing chips X2 and X3 and two bits indicate the level of the search 

window requested. The first request is for the highest level search window. When the 

search window pixels arrive, they are stored in the search window address space. After 

the search window is completely received, a transition to state S2 occurs (transition T1). 

  

Figure 3.10 State diagram of chips X4 and X5. The transitions are numbered in the order 

they occur. 

In state $2, the first two reference window pixels are read from the memory. Then a 

transition to state S3 occurs (transition T2) where two search window pixels are read 

from the memory. Then the four pixels are sent to an subtractor-adder-accumulator block 

which computes the absolute differences of the corresponding pixels, adds the two results 

and accumulates the net result. This block will be described later in this section. Control 

returns to state S2 (transition T3) and the next two reference window pixels are read from 
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the memory. This continues until an entire block is read from the search window 

memory. Then a transition to state S4 occurs (transition T4). 

In state S4, a minimum generator is used to calculate the minimum error and the 

minimum error position. Initially, a 16-bit minimum register is loaded with all ones. In 

state S4, the minimum register is compared with the 16-bit accumulator from the 

subtractor-adder-accumulator block and the lower of the two values is loaded into the 

minimum register. A ten-bit block pointer register is used to indicate the position of the 

current block of the search window that is being processed. Initially this block pointer is 

0 in chip X4 and 1 in chip X5 (since correlation in chip X4 begins with block 0, the first 

even-numbered column, and correlation in chip X5 begins with block 1, the first odd- 

numbered column). 

The minimum generator is modeled using behavioral VHDL code. Figure 3.11 shows a 

section of the pseudo-code used to model the minimum generator. A 10-bit minimum 

etror position register is used to record the minimum error position. This register 1s 

loaded with the block pointer when the accumulator contents are less than the minimum 

register contents. The block pointer is incremented by two if there are still unprocessed 

blocks left in the current row of the search window. If the last five bits of the block 

pointer equal 16 in chip X4 and 15 in chip X5, the last block in the current row of the 

search window has been processed for each chip. In such cases, the block pointer will be 

incremented by 16 in chip X4 and 18 in chip X5 to point to the first block in the next row 

of the search window. and the search pointer is loaded with the most significant nine bits 

of the block pointer (since two pixels are stored in every memory location). 

Al
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Figure 3.11 Behavioral description of the minimum generator. Minimum is a 16-bit 

register that contains the minimum error. Min Error Position is a 10-bit 

register that contains the position of the block that has the minimum error 

with respect to the current reference window. Block Pointer is a 10-bit 

register which holds the position of the current block being processed. 

        

A transition to state S2 occurs (transition T5) if there are still unprocessed blocks in the 

search window and the next block is processed. If all the blocks of the search window are 

exhausted, control is transferred to state S1 (transition T6) where the minimum error 

position contents is sent with a request for the next lower level search window to chips 

X2 and X3 and the base for the reference window address access is changed to the next 

lower level reference window base pointer. Once the lowest level search window is 

processed, a request for reference windows is transmitted to chips X2 and X3 with the 

minimum error position of the lowest level search window from state S1. The end of all 

search windows is detected by a two-bit level counter. Then control is transferred to state 

SO (transition T7) where the new set of reference windows are awaited. 

The subtractor-adder-accumulator block is shown in Figure 3.12. The absolute subtractors 

give the absolute difference of the two inputs. An absolute subtraction is formed by 

comparing the two inputs and sending them in an order to the subtractor so that the 
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smaller input is always subtracted from the larger input. The accumulator is 16 bits so 

that 256 8-bit values can be accumulated in it without overflow. Since the adder output is 

9 bits, it is padded with 7 zeros before going to the accumulator. Pipeline registers are 

used to preserve intermediate results for use in the next clock cycle. The latency of the 

pipeline is three clock cycles as seen from the figure. 
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Figure 3.12 Block diagram of the subtractor-adder-accumulator block. 

After chip X5 has finished processing its part of the search window, it goes into a wait 

state where it waits for chip X4 to finish its processing. After chip X4 finishes, it sends its 

minimum error and minimum error position to chip X5. Chip X5 loads the minimum 

error of chip X4 in the accumulator and the minimum error position of chip X4 in the 

block pointer. Then it compares the two minimums and selects the best of the two 

positions using the same minimum generator block. This will be transmitted to chips X2, 

X3, X6 and X7 with the appropriate request. 

3.3.4 Structure of chips X6 and X7 

These two chips have to store 256x256 images coming from chip X1, compute the final 

target locations using information received from chip X5, highlight the detected target 
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and send the resulting image as output. Highlighting is done by drawing a white rectangle 

of size 16x16, enclosing the target area, on the original frame. The method that is used 

for highlighting the target is similar to the method used in chip X1 for determining the 

initial set of reference windows from the input pyramid stream. The computation of the 

final minimum error position is similar to the method used to determine the search 

window positions in chips X2 and X3. 

There are four main states for chips X6 and X7 as depicted in the state diagram in Figure 

3.13. Initially, in state SO, incoming pixels are accepted until a complete frame is 

received. Then a transition to state S1 occurs (transition TO). In state S1, the relative 

minimum error positions of each level are received from chip X5 and they are 

accumulated and the final minimum error position is computed very similar to the method 

used in chips X2 and X3. In fact, the only change is the slight modification of Eq. (3.5) 

using Eq. (3.4) to obtain the new equation, 

1X, = 2rXja) +7; (3.6a) 

rY; = 2rVin1 + C; (3.66) 

  

Figure 3.13. State diagram of chips X6 and X7. 
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When the highest-level minimum error position arrives, it is stored in a 16-bit “target 

register”. This register represents the absolute minimum error position of the current level 

(which is (rx; ry;) in Eq. 3.6). When the minimum error position of the next level arrives, 

the contents of the target register are mapped to the coordinate space of that level using a 

mapping controller block, similar to the one used in chips X2 and X3. The new row and 

column coordinates are each shifted left once by the mapping controller and the result is 

added to the minimum error position (to account for the multiplication by two of the 

previous absolute minimum error position (7x;4;, ry;+;) in Eq. 3.6). The result of the 

addition is stored back in the target register. This continues until the lowest-level 

minimum error position, arriving from chip X5, is added to the shifted contents of the 

target register. The target register will hold the final target position now. A transition to 

state S2 occurs at this point (transition T1). 

In state S2, the pixels in the memory are read and transmitted until the first pixel of the 

target is encountered (the position of this pixel is the final target position). Then a 

transition to state S3 occurs (transition T2) where sixteen white pixels are transmitted. 

These pixels form the upper horizontal side of the white box. Then the system returns to 

state S2 (transition T3) and in this state, the two white pixels of the next fourteen rows 

are transmitted, completing the vertical sides of the white box. When the first pixel of the 

last row of the target arrives, state S3 is again entered where sixteen white pixels 

(completing the white box) are transmitted and the system is returned to state S2. The 

remainder of the image is transmitted in state S2 and control returns to state SO (transition 

T4) where the arrival of a new frame is awaited. 

A similar mechanism to the one used in chip X1 for detecting reference window pixels is 

used here to detect the location to place a white box pixel. A 16-bit pixel counter is used 

to infer the coordinates of the pixel currently being read from the memory. An 8-bit row 

counter, two 8-bit row registers and two 8-bit column registers work with the pixel 

counter to detect a white box pixel. The first row register and the first column register are 
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loaded the row coordinate and the column coordinate of the upper left-hand position of 

the white box (which is the target position, held by the target register) while the second 

row register and the second column register are loaded with the coordinates of the lower 

right-hand column coordinate of the white box (this value is obtained by adding 15 to 

each of the coordinates of the target position). The row counter is initially loaded with the 

row coordinate of the target position. 

The first row register is concatenated with the first column register and compared with 

the pixel counter. When a match occurs, the row counter is incremented and control is 

transferred to state S2 where the top side of the white box is transmitted. The row counter 

is now setup for detecting the next row of the target. For the next fourteen rows, it is 

concatenated first with the first column register and if a match with the pixel counter 

occurs, a white pixel is transmitted, and then it is concatenated with the second column 

register and if a match with the pixel counter occurs, another white pixel is transmitted. 

After the second white pixel in a row is transmitted, the row counter is incremented. After 

the row counter is incremented fourteen times, it is reset to zero. Finally, for the last row 

of the target, the second row register is concatenated with the first column register (this 

will detect the lower left-hand coordinate of the white box) and if a match with the pixel 

counter occurs, control is transferred to state S2 where the bottom side of the white box 

is transmitted. 

In the behavioral VHDL implementation, all the comparisons mentioned above are made 

simultaneously but the actions are prioritized such that a control transfer to state S2 has 

the highest priority and a no-action comparison result (1.e., not sending a white pixel) has 

the lowest priority. 
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3.4 Theoretical validation of the architecture for real-time performance 

The system has been designed, but it does it really work for real-time data? Before actual 

implementation, this system has been validated for real-time performance. The following 

three factors are considered for the analysis, 

1. Data transfers to chips X4 and X5, 

2. Arithmetic operations and memory accesses for correlation, and 

3. Sending output image by chips X6 and X7. 

At any point during steady-state operation, one chip has an entire pyramid stored in its 

memory, which is being processed, and another chip is receiving a new pyramid. To 

validate the architecture, it should be proved that the entire processing time for the stored 

pyramid is less than time needed for the arrival of the current incoming pyramid. If this 

constraint is violated, the next incoming pyramid cannot be stored in the chip which has 

the pyramid that is being currently processed. Pyramids arrive at the rate of one pixel per 

clock cycle. 

Because there are four pyramid levels, the number of the data transfers required for 

correlation is equivalent to four reference windows and four search windows of pixels. 

This is equal to 4x(16x16 + 32x32) because the size of the reference window is 16x16 

and the size of the search window is 32x32. In chip X4, (17x9) blocks of a search 

window are correlated with a reference window in each level. Correlation of each block 

requires 256 memory accesses (128 each for the block of the search window and the 

corresponding reference window) and 256 arithmetic operations (the 256 subtractions and 

256 additions happen simultaneously because of pipelining). Therefore chip X4 requires 

approximately 4x(256x160) clock cycles including overhead. This is greater than the 

processing time of chip X5 (only 17x8 blocks) and since they happen almost 

simultaneously, processing time for correlation in chip X5 is not considered. 
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Because images have to be transmitted at the rate of one pixel/second, sending the output 

image requires at least 256x256 cycles. Until then, the chip which is sending the output 

image is not ready to accept a new image. Therefore the total number of processing 

cycles is approximately 4x(256 + 1024) + 4x(256x160) + (256x256) which is less than 

460x512. However, taking overhead into account, a ceiling of 480x512 cycles can be 

taken as a conservative estimate of the total processing time. 

But a pyramid generation requires at least 512x512 cycles because the original input to 

the pyramid generation system is a 512x512 image. Therefore this system can work under 

real-time conditions. 
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CHAPTER 4 

DESIGN OF A TRACKING SYSTEM FOR 512x512 IMAGES ON 

SPLASH II 

4.1. System Overview 

The four-chip Gaussian pyramid application on Splash II [5] generates a pyramid of four 

levels, which are 256x256, 128x128, 64x64 and 32x32, for every alternate image of size 

512x512 coming from a video camera. In the tracking system described in Chapter 2, 

these four levels are designated as levels 0, 1, 2 and 3 respectively. The 256x256 tracking 

system applies the tracking algorithm, described in Chapter 2, on these four levels to 

detect the location of the moving target in the lowest level of the pyramid. However, for 

the detection of the location of the target in the 512x512 original image coming from the 

camera, the search has to be extended to the 512x512 original image. This can be 

achieved by storing the 512x512 image in the memory as the lowest level of the pyramid, 

level 0, and the four levels of the pyramid generator as levels 1, 2, 3 and 4, so that the 

same tracking algorithm can be applied on the resulting five levels of the pyramid to 

detect the location of the target in the lowest level of the pyramid. 

The four part tracking system, described in Section 3.1, has been modified to 

accommodate the processing of a five-level pyramid as shown in Figure 4.1. Part 1 

extracts the initial set of reference windows from the highest four pyramid levels (coming 

from the Gaussian pyramid application) and sends them to Part 3 and forwards every 

other pyramid to Part 2. Part 2 stores the highest four pyramid levels in its memory and 

sends the reference windows and search windows of each level to Part 3. Part 3 performs 

correlation of a reference window over a search window and sends the minimum error 

position to Parts 2 and 4 for computing the locations of the reference windows, search 

windows and the target. Part 4 stores alternate 512x512 images coming from a camera, 

sends the reference window and search window of each image to Part 3 for correlation, 
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computes the location of the target in the 512x512 image and displays image with the 

target highlighted by drawing a white rectangle of size 16x16 enclosing the target. Part 4 

also provides the initial level 0 reference window for Part 3 by extracting the central 

16x16 block from the first image. 

output images 

(512X512) 

  

   

  

pyramid levels 1, 2, 3, 4 

of every alternate image 

  

pyramid level 0 (alternate 

512X512 images from camera) 

Figure 4.1. Four-part tracking system for 512x512 output image. The input to Part 1 is 

the four levels of the pyramid, 256x256, 128x128, 64x64 and 32x32, for 

every alternate 512x512 image from a camera, generated by a Gaussian 

pyramid application on Splash II. The original 512x512 image from the 

camera is directly stored by Part 4. The output image is the original image 

stored in Part 4 with the target highlighted. 

The first three parts of this system are very similar to the first three parts of the 256x256 

tracking system. One chip is required for Part 1 and two chips each are required for Parts 

2 and 3 as explained in Section 3.1. Part 4 requires two chips for processing, the first chip 

processes all even-numbered images and the second chip processes all odd-numbered 

images, and one chip for receiving data from Part 3 and from the camera and forwarding 

the data to the other two chips. Hence, a total number of eight chips are required for this 

system. The control chip of the Splash II system is used to generate alternate images for 

the four-chip Gaussian pyramid generator and the tracking system. 

This system is incapable of processing every image coming from the camera. This is 

because 512x512 images are transmitted continuously from the camera and each image 

has to be stored, processed and transmitted out. Since an output image can be transmitted 

only at the rate of one pixel per clock cycle, for the system to work for every image, 
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processing time becomes zero. If simultaneous memory reads and writes were possible or 

a large FIFO becomes available, this system can be modified to work for every image 

coming from the camera. 

The next section describes the architecture of the overall system on Splash II. Since there 

are no major changes in Parts 1 and 2 from the 256x256 system, the next Section 4.3 

briefly describes the modifications made in Parts 3 and 4. 

4.2. Architecture of the 512x512 tracking system on Splash I] 

The eight-chip design of the tracking system is shown in Figure 4.2. The control chip 

receives 512x512 images coming from a camera and forwards alternate images to the 

four-chip Gaussian pyramid generator [10] and the four-part tracking system. Since only 

twelve chips are required for the entire system, it can fit on one Splash II processor board. 

    

   

    

input 
512X512 
images 

    

output 
512X512 
images 

Figure 4.2. Architecture of the eight-chip tracking system on Splash II for a 512x512 

output image. The control chip sends every alternate 512x512 image coming 

from the camera to the pyramid generator and chip X6 of Part 4 of the 

tracking system. 

The Gaussian pyramid generator produces the four levels 256x256, 128x128, 64x64 and 

32x32 for every image and these levels are stored as levels 1, 2, 3 and 4 in Part 2 of the 

51



tracking system. Simultaneously, the original 512x512 image is stored as level 0 in Part 4 

of the tracking system. 

Chip X1 constitutes Part 1 of the tracking system. It extracts the initial set of reference 

windows from the four levels produced by the Gaussian pyramid generator for the first 

image received from the control chip. Chip X1 forwards the four levels produced by the 

Gaussian pyramid generator for every other image to Part 2 of the system. 

Chips X2 and X3 constitute Part 2 of the tracking system. Chip X2 stores the highest four 

pyramid levels (produced by the Gaussian pyramid generator) for every odd-numbered 

image that the pyramid generator receives from the control chip and chip X3 stores the 

highest four pyramid levels of every even-numbered image. While one chip is storing 

data, the other chip extracts the search windows and reference windows of the four 

pyramid levels in its memory in response to requests from chip X5 and sends them to 

chips X4 and X5. The request is in the format of a five-bit tag. The first bit is the valid 

bit, the next three bits indicate the level of the search window requested and the last bit is 

identifies the recipient chip. 

The third part is implemented on chips X4 and X5. Initially the reference windows of the 

highest four pyramid levels are received from Part 2. The lowest level reference window 

is received from Part 4. The correlation of all 16x16 blocks of the search window of a 

level that begin on even columns with the reference window of that level is implemented 

on chip X4 (using Eq. 3.1) and the correlation of all 16x16 blocks that begin on odd 

columns of the search window is implemented on chip X5 (using Eq. 3.2), just like in the 

256x256 tracking system. However, in this case, correlation is performed on five pyramid 

levels for every image. After the minimum error position in the 256x256 level search 

window is evaluated, chip X5 requests for the search window in the 512x512 level stored 

in Part 4. Every block of this search window is correlated with the lowest level reference 

window and the result is transmitted to Part 4 for generating the output. 
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Chips X6, X7 and X8 constitute Part 4 of the system. Chip X6 receives incoming images 

from the control chip on its crossbar bus and data from chip X5. Chip X6 combines the 

two sets of data in a proper order and transmits them to chips X7 and X8. Chip X7 stores 

all even-numbered images received from chip X6 and chip X8 stores all odd-numbered 

images received from chip X6. While one chip is storing image data, the other chip 

accumulates the minimum error positions of the highest four levels received from chip 

X5 and evaluates the search window position in the lowest level of the pyramid stored in 

its memory. It then transmits the lowest level search window to chips X4 and X5 through 

the crossbar. Finally, it receives the lowest level minimum error position from chip X5. 

This is used for evaluating the absolute position of the target in the stored image, for 

transmitting the new reference window of this level and for transmitting the output 

image. The new reference window of this level is the 16x16 block beginning at the target 

location. The output image is formed by drawing a white rectangle of size 16x16 

enclosing the target in the original 512x512 image (the stored image). 

Table 4.1 shows the communication between the chips for the processing of an odd- 

numbered pyramid stored in chips X2 and X7. During the processing of this pyramid, the 

incoming pyramid is being stored in chips X3 and X8. 

The system is designed to be completely synchronous. The structures of chips X1, X2 

and X3 are the same as the corresponding chips in the 256x256 tracking system. The next 

section describes briefly the changes made to the structures of the chips of Parts 3 and 4 

of this system as compared to Parts 3 and 4 of the 256x256 tracking system. 
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Table 4.1. 

Communication between the chips of the tracking system for the processing of an 

odd-numbered pyramid. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

TIME EVENT 

1 Chip X5 sends request “11000” through the crossbar for highest level search 

window (level “100”) to chip X2. 

2 Chip X2 sends the 32x32 pyramid level from its memory through the 36-bit 

bus to chip X3 and chip X3 forwards this data to chips X4 and XS. 

3 Chips X4 and X5 perform correlation of this search window with the highest 

level reference window. Chip X5 sends the minimum error position and the 

request “10110” (for the level “011” search window) through the crossbar to 

chip X2 and to chip X7 through chip X6 (for using these positions to evaluate 

the lowest level search window position and the final target position). 

4 Chip X2 evaluates the absolute search window position and extracts the 

32x32 search window from the 64x64 level and sends it to chips X4 and X5 

through chip X3. 

5 Chip X5 sends the level “011” minimum error position and the request 

10100” (for the level “010” search window) to chip X2 and chip X7. 

6 Chip X2_ extracts the 32x32 search window from the 128x128 level and 

sends it to chips X4 and X5 through chip X3. 

7 Chip X5 sends the level “010” minimum error position and the request 

“10010” (for the level “O01” search window) to chip X2 and chip X6. 

8 Chip X2 extracts the 32x32 search window from the 256x256 level and 

sends it to chips X4 and X5 through chip X3. 

9 Chip X5 sends the level “001” minimum error position and the request 

“10000” (for the level “O00” search window) to chip X2 (for evaluating 

reference window positions) and chip X7 (for level “O00” search window). 

10 Chip X7 extracts the 32x32 search window from the 512x512 level and sends 

it to chip X4 through the crossbar. Chip X4 forwards it to chip X5. 

11 Chip X5 sends the request “10000” (for the reference windows) to chip X2. 

12 Chip X2 sends the reference windows of the highest four levels of the 

pyramid to chips X4 and X5. 
13 Chip X5 sends the level “000” minimum error position and the request 

“10000” for the lowest level reference window to chip X7. 

14 Chip X7 sends the lowest level reference window to chips X4 and X5. After   this, chip X7 sends the output image through the 36-bit bus to its right 

neighbor. 
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4.3.1. Structure of Chips X4 and X5 

The state machine used for chips X4 and X5 in Part 3 of the 256x256 tracking system is 

modified with two additional states. Figure 4.3 shows the state machine for the two chips. 

Notice that this figure shows two additional states, SO) and Sly as compared with Figure 

3.10, the state diagram for chips X4 and X5 of the 256x256 tracking system. Initially, 

chip X4 receives the reference windows of the highest four pyramid levels from chip X3 

(these windows are extracted by chip X1) in state SO. Then a request for the reference 

window of the lowest level is transmitted by chip X5 to Part 4 of the system and control 

is transferred to state SO, (transition T0,). In this state, the reference window of the lowest 

pyramid level is received from Part 4 by chip X4 on its crossbar bus. Chip X4 forwards 

this data to chip X5. Control is then transferred to state S1 (transition T0,) where the 

highest level search window is requested, as in the 256x256 tracking system. This search 

window is received by chip X4 from Part 2 of the system and chip X4 forwards it to chip 

X5. 

  
Figure 4.3. State diagram of chips X4 and X5. 
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The system then steps through the states S2, $3, S4 and S1 for processing each of the 

search windows of the highest four levels as it does in the 256x256 tracking system. 

When control returns to state S1 after processing the search window of the 256x256 

pyramid level (transition T6), a request for the 512x512 level search window is 

transmitted by chip X5 to Part 4 of the system and control is transferred to state Sl, 

(transition T1,).. In this state, the lowest level search window is received by chip X4 from 

Part 4 through the crossbar and the system processes this search window by stepping 

through the states S2, S3 and S4. Finally, control returns to SO (transition T1,) where the 

reference windows for processing the next pyramid are awaited. 

4.3.2. Structure of Chips X7 and X8 

  

Figure 4.4, State diagram of chips X7 and X8. 

Figure 4.4 shows the state diagram of chips X7 and X8. In state SO, a 512x512 image is 

received from chip X6 and control is transferred to state $1 (transition TO). In state S1, 

minimum error positions of the highest four levels are received one at a time from chip 

X6 (originally transmitted by chip X5 and forwarded by chip X6). These minimum error 

positions are accumulated using Eq. 3.4 to yield the search window position in the lowest 

level of the pyramid. The search window is extracted from the stored image (which 

corresponds to the lowest level of the pyramid) and transmitted to chip X4 through the 
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crossbar. A transition to state S2 occurs at this point (transition T1). In state $2, the 

minimum error position of the lowest level search window is received from chip X5 and 

this position is used together with the lowest level search window position to evaluate the 

location of the target in the 512x512 image using Eq 3.5. Control is transferred to state 

S3 (transition T2) where a request for the lowest level reference window is received from 

chip X5 (this reference window is the 16x16 block beginning at the target position in the 

stored image). This window is transmitted and a transition to state S4 occurs (transition 

T3). The system steps through the states S4 and S5 to send the output image (these states 

correspond to states S2 and S3 for chips X6 and X7 in the 256x256 tracking system). 

Finally, after the last pixel of the output image is transferred, control returns to state SO 

(transition T6) where the next 512x512 image is awaited. 

4.4. Theoretical Validation of the Architecture for Real-Time Performance 

This following factors are considered for analysis of the architecture, 

1. Data transfers to Part 3 (chips X4 and X5 which perform correlation), 

2. Arithmetic operations and memory accesses for correlation, and 

3. Sending output image by Part 4 of the system. 

At any point during steady-state operation, one chip has the highest four levels of the 

pyramid stored in its memory (Part 2 of the system) and another chip has the lowest level 

of the pyramid stored in its memory (Part 4 of the system). While this pyramid is being 

processed by the system, the current incoming pyramid is being stored in two other chips 

of the system. To validate the architecture, it has to be proved that the entire processing 

time for the stored pyramid is less than the time needed for the arrival of the incoming 

pyramid. 
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Since the 512x512 image, which is the lowest level of the pyramid, arrives 

simultaneously with the other four levels of the pyramid, the time needed for arrival of a 

pyramid can be conservatively estimated as 512x512 clock cycles (images arrive at the 

rate of one pixel per clock cycle). Since the system is designed to process only alternate 

pyramids, the total time for the processing of a pyramid has to be less than 2x512x512. 

Because there are five pyramid levels, the number of data transfers to chips X4 and X5 is 

equivalent to five reference windows and five search windows. This is equal to 5x(16x16 

+ 32x32). The time required for correlation in chip X4 is 5x(17x9x256) (see Section 3.4). 

Because images have to be transmitted at the rate of one pixel per clock cycle, sending 

the output image by Part 4 of the system requires 512x512 clock cycles. 

Adding all these figures and accounting for overhead, the total number of processing 

cycles required is approximately 950x512 clock cycles which is less than 2x512x512 

clock cycles. Therefore the system is capable of processing every alternate image 

generated by a camera. 
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CHAPTER 5 

IMPLEMENTATION ON SPLASH II 

5.1. Implementation Procedure 

The visual tracking systems developed in this thesis are designed in VHDL behavioral 

code. A VHDL model for each chip of the two tracking systems is designed using special 

libraries for Splash II developed by the Center for Computing Sciences, formerly the 

Supercomputing Research Center in Bowie, Maryland. The Synopsys VHDL design tools 

are used for compiling, simulating and synthesizing the VHDL code. The synthesis 

produces a netlist file in EDIF format. This is converted into the Xilinx Netlist Format 

(XNF) using a shell script. The XNF file is used as input by the Xilinx tool ppr for 

partitioning, placement and routing of the design on an FPGA and generates a Logic Cell 

Array (LCA) file as the output file. The timing extraction is performed by the Xilinx tool 

xdelay using the LCA file. The software makebits converts the LCA file into a bitstream 

file that can be used to configure the Xilinx chips on Splash II. 

Simulation is performed for functional verification. Since the VHDL models requires a 

large amount of data, a “test” VHDL model is developed for each chip. This VHDL 

model is designed to work for small images (of the size 32x32). This test VHDL model is 

simulated for functional testing. If any bugs are discovered, the test VHDL model is 

refined to remove the bugs. This process is repeated until the test VHDL model 

simulation produces expected results. Then this VHDL model is modified to work for the 

real input data (for images of the size 512x512) and synthesized with the Synopsys and 

Xilinx tools. 

Figure 5.1 shows a flow diagram of the implementation process. The design is described 

in a natural language like English and then converted to a VHDL behavioral model which 

works for test inputs. This model is simulated for functional verification. After the 

simulation shows that the model is logically correct, the next step is synthesis of the 
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VHDL model which works for real inputs. A timing extraction is performed after 

synthesis to check if the design can function at the desired clock frequency. The VHDL 

design is modified and synthesized until it is able to function at the desired frequency of 

operation. 

Natural language description 
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  Refine | 
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y 
Splash II system integration 

Figure 5.1. Flow diagram of the process of implementation of a chip design on a Xilinx 

chip of Splash II. The design is originally described in natural language and 

the following steps are taken to realize its implementation on Splash II. 
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5.2. Integration of the Tracking Systems on Splash II 

After all the chip designs are synthesized successfully, the bitstream files of each chip are 

configured on the Splash II FPGAs using a C control program. Highly versatile C 

libraries and macros are available with the Splash II system. These can be used for 

loading the configurations of the Splash II FPGAs, for direct access to the memories of 

the chips, for running the system with a software clock (single-stepping), for using data 

files to provide the inputs and store the outputs of the system, and for many other 

purposes. 

A crossbar configuration file is used to set the configuration of the crossbar. The crossbar 

can have eight different settings during the course of operation of the system. Each 

setting specifies the input ports and output ports of the crossbar. The 36-bit data path bus 

to the crossbar of each chip can be divided into five sections: a four-bit tag and four 

bytes. Each of these sections can be connected to a different port. For instance, in the 

512x512 tracking system, chip X4 receives 16 bits of data on the crossbar from chip X7 

and 16 bits of data on the crossbar from chip X8. In the crossbar configuration file, the 

input port for the most significant two bytes of the crossbar bus of chip X4 has been 

specified as chip X7 while the input port for the least significant two bytes of the crossbar 

bus has been specified as chip X8. 

A C control program is used for configuring the Splash II system and running it with a 

software clock to generate the results for this thesis. For real-time operation, the system is 

run with the hardware clock for the data coming from the VTSplash camera. 
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CHAPTER 6 

RESULTS 

6.1. Results of the 256x256 Tracking System 

The 256x256 tracking system (as described in Chapter 3) has been tested with a sequence 

of five images of a taxi turning a corner. The same sequence has been used for the C 

based software model explained in Chapter 2. The results generated by the 256x256 

tracking system are displayed in Figure 6.1 (on the next page). The first image in the 

sequence has been used to produce the initial set of reference windows. A comparison of 

Figure 6.1 and Figure 2.6 (the results of the C based software model) shows that the 

resulting image sequences produced by the tracking system and the software model are 

identical. 

The upper-left corner coordinates of the target image are given under each image. The 

positions indicate that the target has been both horizontally and vertically displaced in the 

later images of the sequence. A slight rotation of the target can also be observed from the 

images. 

6.2. Timing Analysis of the 256x256 tracking system 

The system has been designed to work at 30 frames (of size 512x512) per second. 

Therefore the tracking system needs to function at a minimum rate of 7.87 MHz. The 

speed of the system has been measured by finding the individual speeds of the FPGA 

chips that are used in the tracking system. The Xilinx xdelay software has been used to 

analyze the critical path delays of each chip of the tracking system. The Xilinx XACT 

schematic design editor can also used to perform a timing analysis of a chip design. Table 

6.1 summarizes the critical speeds of the seven chips of the tracking system. 
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(a) (120, 120) (b) (117, 119) 

   
(c) (115, 113) (d) (109, 108) 

Figure 6.1. Five images of taxi sequence [20] have been processed to produce these four 

images. The upper left corners of the target in each image has been shown 

under the image. The same input sequence has been used to produce the 

software results given in Figure 2.6. A comparison between the two figures 

shows a perfect match. The target has been displaced by approximately 10 

units each in the horizontal and vertical directions from the first image to the 

fourth image. 
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Table 6.1. 

Maximum operating clock frequencies of the seven chips of the 256x256 tracking system 
  

Chip X!_ | ChipX2 | Chip X3 | ChipX4 | ChipX5 | ChipX6 | Chip X7 
  

  
12.0 MHz | 10.2 MHz | 10.0 MHz | 8.7MHz |8.8MHz_ | 13.2 MHz | 12.7 MHz 

              

Since the speed of the tracking system is only as good as the speed of the slowest chip of 

the system, the maximum operating clock frequency of the tracking system is 8.70 MHz. 

But this speed is above the calculated minimum rate of 7.87 MHz required for processing 

30 pyramids per second. Therefore the system can operate at 30 pyramids per second. 

The A/D board in the video interface cabinet of the VTSplash system transmits images at 

the pixel rate of 10.0 Mhz. Therefore the system cannot be guaranteed to work with this 

camera. However, the design of the seven chips of the system can be improved, as 

explained later in the next chapter, to enable the system to operate at 10.0 MHz. 

6.3. Results of the 512x512 tracking system 

The 512x512 tracking system has been tested with a sequence of four images of a coat on 

a chair. The four images are actually a stereo image pair that is repeated as follows: Left, 

Right, Left, Right. The results generated by the tracking system are displayed in Figure 

6.2 (on the next page). The first image in the original sequence has been used to produce 

the initial set of reference windows. These images are identical to the results produced by 

a software model for the same input image sequence. 
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Figure 6.2. Results of 512x512 tracking system. (a) Image orginally captured by the left 

camera of a stereo pair. The original image has been used as the first and third images of 

the sequence. The first image has been used to produce the initial set of reference 

windows. The third image has been processed to generate the above image. The upper- 
left corner of the target image is (248, 248). 
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Figure 6.2. (continued) (b) Image orginally captured by the right camera of a stereo pair. 

The original image has been used as the second and fourth images of the sequence. The 

second image has been processed to produce the above image. The fourth image has been 

discarded. The upper-left corner of the target image is (245, 106). A comparison between 

images (a) and (b) indicates a lot of translation in the horizontal direction but very little in 

the vertical direction. 
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Table 6.2. 

Maximum operating clock frequencies of the eight chips of the 512x512 tracking system. 
  

Chip X1 Chip X2 Chip X3 Chip X4 Chip X5 Chip X6 Chip X7 Chip X8 
  

  
12.0 MHz 

  
10.2 MHz 

  
10.0 MHz 

  
8.6 MHz 

  
8.7 MHz 

  
20.0 MHz 

  
8.9 MHz 

  
8.9 MHz 

  

The maximum operating clock frequency of the tracking system is 8.60 MHz. This speed 

is above the minimum rate of 6.6 MHz. But the system can not be guaranteed to work 

with the VTSplash camera which operates at 10 MHz. As explained in the next chapter, 

slight improvements in the designs of the chips can enable this system to operate at 10 

MHz. 
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CHAPTER 7 

FUTURE WORK AND CONCLUSIONS 

7.1. Enhancements to the Tracking Systems and Suggested Future Work 

Counters, adders and other arithmetic hardware resources have been modeled in 

behavioral VHDL code in the design of the tracking systems. In certain cases, these 

resources lie on a critical path. By using hard macros for these resources, the routing of 

the CLBs in an FPGA can be improved and thereby the operational speed can be 

increased as long delay lines will be minimized. Hard macros represent structures that 

are already partitioned, placed and pre-routed on the FPGAs. 

There are many other ways to improve the speed of the system. Critical paths in the 

design can be broken into smaller paths by using buffers and wait states. The Xilinx tool 

XACT is a schematic design editor. The /ca files produced by the Xilinx tool ppr is used 

by XACT to produce a schematic of the routing of the CLBs in the FPGA. By using this 

tool, small timing problems can be cleared by editing the schematic to obtain a slightly 

better routing of the CLBs and IOBs of the FPGAs. 

Without great difficulty, the tracking system can be scaled to work for pyramids 

constructed from images of very large sizes. For larger images, the number of chips used 

for correlation can be increased to reduce the number of processing cycles for this 

operation. For instance, correlation has been partitioned such that all search blocks 

beginning on even columns of the search window are processed by one chip while 

simultaneously, all the search blocks beginning on odd columns are processed by another 

pyramid. This can be extended to four chips by letting a pair of chips process all search 

blocks that begin on even rows and another pair of chips process all search blocks that 

begin on odd rows so that the time taken for performing correlation will be reduced by 

half. 
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A motion detection system can be used to produce the target images for the tracking 

system. This motion detection system can detect motion by constructing a difference 

image from two successive image frames. Thresholding is applied to this difference 

image to detect a moving target in the image. This target image is extracted and 

transmitted to the tracking system as an initial reference window. The combination of 

these two systems will form a complete automatic surveillance system. 

A velocity-estimation system can be developed which can run on top of the tracking 

system. The vertical and horizontal positions of the target in successive images is sent by 

the tracking system to the velocity-estimator. The velocity-estimator uses appropriate 

scaling of these positions and the time difference between these images to find the 

horizontal and vertical speeds of the target. By implementing mathematical functions, the 

magnitude and the direction of the tangential velocity can also be evaluated. 

7.2. Conclusions 

This thesis has described the implementation of two real-time visual tracking systems on 

Splash II. The tracking systems have a pipelined architecture with a SIMD approach to 

numerical computations. The systems have been designed for a custom computing 

machine, demonstrating the abilities of CCMs to handle speed-critical applications. It has 

also been shown that the algorithm successfully used for these tracking systems on Splash 

II is incapable of real-time operation when implemented on a Sun SPARC workstation. 

The advantages of the Splash II architecture are clearly demonstrated by these tracking 

systems. The Splash II architecture allows easy implementation of parallel and pipelined 

structures making it ideal for applications like visual tracking systems. A wide range of 

applications on Splash II have explored the versatility of the architecture. A real-time 

Gaussian pyramid and Laplacian pyramid generation system has been implemented on 

Splash II [10]. The Hough transform has also been implemented on this system [1] as 

well as floating point arithmetic [13]. All this work has proven that custom computing 
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machines are capable of handling high-speed tasks and therefore they can play in 

important role in the world of computer vision. 
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APPENDIX A 

Xilinx Processing Part Entity 

74



library IEEE,SPLASH2; 

use IEEE.std_logic_1164.all; 

use SPLASH2.TYPES.all; 

use SPLASH2.SPLASH2.all; 

use SPLASH2.COMPONENTS.all; 

use SPLASH2.ARITHMETIC.all; 

use SPLASH2.HMacros.all; 

-- Begin Entity Comment 
  

-- Splash 2 Simulator v1.5 Xilinx Processing Part Entity Declaration 
  

entity Xilinx Processing Part is 

Generic( 

BD_ID 
PE ID 

); 
Port ( 

XP_Left 

XP_Right 

XP_Xbar 

XP Xbar EN _L 
XP_Clk 
XP_Int 

XP_Mem_A 
XP_Mem _D 
XP_Mem_ RD L 
XP Mem_WR_L 
XP_Mem_Disable 
XP_Broadcast 

XP_Reset 

XP_HSO 
XP_HS1 
XP_GOR _ Result 

XP_GOR_Valid 
XP_LED 

); 

: Integer := 0; 

: Integer := 0 

: inout DataPath; 

: inout DataPath; 

: inout DataPath; 

-- Splash Board ID 

-- Processing Element ID 

-- Left Data Bus 

-- Right Data Bus 

-- Crossbar Data Bus 

: out Bit_ Vector(4 downto 0); -- Crossbar Enable (low-true) 

:in~—s-— Bit; 

:out Bit; 

: inout MemAddr; 

: inout MemData; 

: inout RBit3; 

: inout RBit3; 

in ~—s-— Bit; 

:in ~—— Bit; 

‘in ~=>s- Bit; 

: inout RBit3; 

‘in Bit; 

: Inout RBit3; 

:inout RBit3; 

:out Bit 

end Xilinx Processing Part; 

-- End Entity Comment 

-- Splash System Clock 

-- Interrupt Signal 

-- Splash Memory Address Bus 

-- Splash Memory Data Bus 

-- Splash Memory Read Signal (low-true) 

-- Splash Memory Write Signal (low-true) 

-- Splash Memory Disable Signal 

-- Broadcast Signal 

-- Reset Signal 

-- Handshake Signal Zero 

-- Handshake Signal One 

-- Global OR Result Signal 

-- Global OR Valid Signal 
-- LED Signal 
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APPENDIX B 

CODE LISTING FOR 256x256 TRACKING SYSTEM 

1. Code for Chip X2 of Part 2 of the System 

2. Code for Chip X4 of Part 3 of the System 

3. Code for Chip X6 of Part 4 of the System 
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Chip X2: Stores pyramids 

architecture Store_Even_Pyr of Xilinx Processing Part is 

type STATE_TYPE is (invalid, store, get _con_inf, idle0, idle1, idle2, idle3, idle4, send_data, send_srch, 

idle5, srch_st); 

SIGNAL Right 

SIGNAL Left 

SIGNAL XBAR_in 

SIGNAL maddr, newmemaddr : UNSIGNED(17 downto 0); 

SIGNAL incmemaddr, offset : UNSIGNED(17 downto 0); 

SIGNAL R, Cl, C2, Reg 

SIGNAL tl, Trg 

: Bit_Vector(DATAPATH_WIDTH-1 downto 0); 

: Bit_Vector(DATAPATH_WIDTH-1 downto 0); 

: Bit_Vector(DATAPATH_WIDTH-1! downto 0); 

: UNSIGNED(15 downto 0); 

: UNSIGNED(15 downto 0); 
SIGNAL trg128 : UNSIGNED(13 downto 0); 

SIGNAL trg64 : UNSIGNED(11 downto 0); 
SIGNAL trg32 : UNSIGNED(9 downto 0); 

SIGNAL mdata_out, dmout : Bit_ Vector(oMEM_WIDTH-1 downto 0); 

SIGNAL mdata_in, dmin : Bit_Vector(MEM_WIDTH-1 downto 0); 

SIGNAL Rout : Bit_ Vector(7 downto 0); 

SIGNAL cnt, incent : UNSIGNED(9 downto 0); 

SIGNAL skip : UNSIGNED(7 downto 0); 

SIGNAL RValid : UNSIGNED(3 downto 0); 

SIGNAL Rtemp : Bit_Vector(11 downto 0); 

SIGNAL lev : Bit_Vector(1 downto 0); 
SIGNAL mwrite, mread 

SIGNAL get pyr, snd_srch,i0 —_: BIT; 
SIGNAL cur_st 

constant one_18 : 

constant one_ 10 : 

constant one 8 

begin 

process 

: BIT; 

: STATE_TYPE: 
UNSIGNED(17 downto 0) := "000000000000000001"; 
UNSIGNED(9 downto 0) := "0000000001"; 

: UNSIGNED(7 downto 0) := "00000001"; 

XP_Left <= Tristate(XP_Left); 

XP_Right <= Tristate(XP_ Right); 

XP_XBAR <= Tristate(XP_XBAR); 

XP_Xbar_ EN_L <= "00000"; 

Pad_InOut (XP_Mem_D, dmout, dmin, not(mwrite)); 

Right <= RValid&Rout&"000000000000"&Rtemp; 

constant pt256 

constant pt128 

constant pt64 

constant pt32 

constant set_18 

constant pyrend 

constant zero_16 : 

constant lev32 

constant lev64 

: UNSIGNED(17 downto 0) := "000000000000000000"; 

: UNSIGNED(17 downto 0) := "010000000000000000"; 

: UNSIGNED(17 downto 0) := "010100000000000000"; 

: UNSIGNED(17 downto 0) := "010101000000000000"; 

: UNSIGNED(17 downto 0) := "11111111 2111111111"5 

: UNSIGNED(17 downto 0) := "010101001111111110"; 

UNSIGNED(15 downto 0) := "0000000000000000"; 

: BIT_VECTOR(3 downto 0):= "1000"; 

: BIT _VECTOR(@G downto 0):= "1001"; 
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constant lev128 : BIT_VECTOR(3 downto 0):= "1010"; 

constant lev256 : BIT_VECTOR(3 downto 0):= "1011"; 

constant zero_10 : UNSIGNED(9 downto 0) := "0000000000"; 

constant thirone : UNSIGNED(4 downto 0) := "11111"; 

constant fift : UNSIGNED(3 downto 0) := "1111"; 

variable LValid : BIT _VECTOR(3 downto 0); 

variable XValid : BIT _VECTOR(3 downto 0); 

begin 

wait until XP_Clk'Event and XP_Clk ='1'; 

Pad_Input (XP_Left, Left); 

Pad_Input (XP_XBar, XBar_In); 
Pad_Output (XP_Right, Right); 

Pad_ Output (XP_Mem_A, maddr); 

Pad_Output (XP_Mem_RD_L, mread); 
Pad_Output (XP_Mem_WR_L, mwrite); 

LValid := Left(1 1 downto 8); 

XValid := XBAR_In(13 downto 10); 

Rtemp <= Left(11 downto 0); 

Rout <= Bit_Vector'("00000000"); 
RValid <= Bit_Vector'("0000"); 

dmout <= mdata_out; 
mdata_in <= dmin; 

Reg <=R; 

case cur_st is 

WHEN invalid => 
mwrite <='1'; 

mread <= '1'; 

maddr <= set_18; 
snd_srch <= '0'; 

lev <= B"00"; 

cur_st <= store; 

WHEN store => 

mwrite <= '0'; 

mread <='1'; 

if (LValid = BIT_VECTOR'("1000")) then 

maddr <= incmemaddr; 
mdata_out <= "00000000"&Left(7 downto 0); 

end if; 
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if (maddr = pyrend) then 

get_pyr <= '0'; 

cur_st <= get_con_inf; 

end if; 

WHEN get_con_inf => 

mread <='1'; 

mwrite <= '1'; 

if (X Valid = lev32) then 

skip <= UNSIGNED'(00000001"); 
Cl <= zero_ 16; --setting it to all zeros 

C2 <= zero_16; --setting it to all zeros 

maddr <= pt32; 
cur_st <= idlel; 

end if; 

if (X Valid = lev64) then 

skip <= UNSIGNED'("00 100001"); 
Cl <= zero_16; --setting C1 to all zeros 

C2 <= "0000"&XBar_ In(9 downto 5)&'0'& XBar_In(4 downto 0)&'0'; 
trg32 <= XBar_In(9 downto 0); 

maddr <= pt64; 
cur_st <= idlel; 

end if; 

if (X Valid = lev128) then 

skip <= UNSIGNED '("01 100001"); 

Cl <= "00"&Reg(11 downto 6)&'0'&Reg(5 downto 0)&'0'; 

C2 <= "000"&XBar_In(9 downto 5)&"00"&XBar_In(4 downto 0)&'0'; 

tl <= "00000"&XBar_In(9 downto 5)&'0'&XBar_In(4 downto 0); 

maddr <= pt128; 
cur_st <= idle0; 

end if; 

if (XValid = lev256) then 

skip <= UNSIGNED ("11100001"); 

Cl <= Reg(13 downto 7)&'0'& Reg(6 downto 0) & '0'; 

C2 <= "00"&XBar_In(9 downto 5)&"000"&XBar_In(4 downto 0)&'0'; 

tl <= "0000"&XBar_In(9 downto 5)&"00"&XBar_In(4 downto 0); 

maddr <= pt256; 
cur_st <= idle0; 

end if; 

WHEN idle0 => 

if (XValid = lev128) then 

trg64 <= Trg(11 downto 0); 

cur_st <= idlel; 

end if; 
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if (X Valid = lev256) then 

trg128 <= Trg(13 downto 0); 

i0 <='I'; 

cur_st <= idlel; 

end if; 

if (X Valid = lev32) then 

tl <= "000"&XBar_In(9 downto 5)&"000"&XBar_In(4 downto 0); 

cur_st <= srch_st; 
end if; 

WHEN idlel => 

offset <= "00" &R; 

cur_st <= idle2; 

WHEN idle2 => 

mwrite <= '1'; 

mread <= '0'; 

cnt <= zero 10; 

maddr <= newmemaddr; 

cur_st <= idle3; 

WHEN idle3 => 

cnt <= incent; 

maddr <= incmemaddr; 

offset <= UNSIGNED'("0000000000" &skip); 

cur_st <= idle4; 

WHEN idle4 => 

cnt <= incent; 

maddr <= incmemaddr; 

if (snd_srch = '1') then 

cur_st <= send_srch; 

else 

cur_st <= send_data; 

end if; 

WHEN send_data => 

cnt <= incent; 

RValid <= BIT_VECTOR'("1000"); 

Rout <= mdata_in(7 downto 0); 

if (cnt(4 downto 0) = thirone) then 

maddr <= newmemaddr; 

else 

maddr <= incmemaddr; 

end if; 

if (cnt = one_1!0) then 

cur_st <= idle5; 

end if; 

WHEN send_srch => 
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cnt <= incent; 

RValid <= BIT_VECTOR‘("1111"); 

Rout <= mdata_in(7 downto 0); 
if (cnt(3 downto 0) = fift) then 

maddr <= newmemaddr; 

else 

maddr <= incmemaddr; 

end if; 

if (cnt(7 downto 0) = one_8) then 

cur_st <= idleS; 

end if; 

WHEN idle5 => 
offset <= pt256; --setting it to all zeros 
mwrite <='1'; 

mread <='1'; 

if G0 = '1') then 

i0 <= '0'; 
cur_st <= idle0; 

elsif (snd_srch ='1') then 
cur_st <= srch_st; 

else 

cur_st <= get_con_inf; 

end if; 

WHEN srch_st => 

snd_srch <='1'; 

if (lev = Bit_Vector'("00")) then 

offset <= "00"&Trg; 

maddr <= pt256; 

skip <= UNSIGNED‘("11110001"); 

lev <= "01"; 

elsif (lev = Bit_Vector'("01")) then 

offset <= "0000" &trg128; 
maddr <= pt128; 

skip <= UNSIGNED'("01110001"); 

lev <= "11" 

elsif (lev = Bit_Vector'("11")) then 

offset <= "000000" &trg64; 

maddr <= pt64; 
skip <= UNSIGNED'("00110001"); 

lev <= "10"; 

else 

offset <= "00000000" &trg32; 

maddr <= pt32; 

skip <= UNSIGNED'("00010001"); 

lev <= "00"; 

get_pyr <='1'; 
end if; 

if (get_pyr ='1') then 

RValid <= "1110"; 
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cur_st <= invalid; 

else 

cur_st <= idle2; 

end if; 

end case; 

end process; 

incmemaddr <= maddr + one_ 18; 
newmemaddr <= maddr + offset; 

R<=C1+C2; 

Trg <= tl + Reg; 

incent <= cnt + one_ 10; 

end Store _Even_Pyr; 
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Chip X4: Correlation 

architecture Correlate_Even of Xilinx_Processing Part is 

type STATE_TYPE is (invalid, srch_st, get_data, idle0, idle1, idle2, stsrch, sttrg, idle, idle3, idle4, idle5, 

idle6, set_lev); 

SIGNAL Right 

SIGNAL Left 

SIGNAL maddr 

SIGNAL mdata_out, dmout 
SIGNAL mdata_in, dmin 
SIGNAL Awl, Bwl, Cwl 

SIGNAL tA1, tB1, tCl 

SIGNAL tA16, tB16, tC 16 

SIGNAL trgpos 

SIGNAL temp, reg1, sreg 

SIGNAL sA1, sB1, sCl 

SIGNAL mwrite, mread, RS 

SIGNAL sw, pix, odd 

SIGNAL addv, add1 

SIGNAL cur_st 

SIGNAL cnt 

SIGNAL trg_pt 

SIGNAL srch_pt 

SIGNAL diff1, diff2 

SIGNAL diff 

SIGNAL min, sum 

SIGNAL winl 

SIGNAL lev 

SIGNAL RValid 

SIGNAL Rout 

SIGNAL Rtemp 

SIGNAL srch 

-- SIGNAL cs], cs2, ctl, ct2 

begin 

: Bit_Vector(DATAPATH_ WIDTH-1 downto 0); 

: Bit_Vector(DATAPATH_WIDTH-1 downto 0); 
: Bit_Vector(17 downto 0); 

: Bit_ Vector((MEM_WIDTH-1 downto 0); 

: Bit_Vector(MEM_WIDTH-1 downto 0); 

: UNSIGNED(9 downto 0); 

: UNSIGNED(8 downto 0); 

: UNSIGNED(8 downto 0); 

: Bit_Vector(9 downto 0); 

: Bit_Vector(7 downto 0); 

: UNSIGNED(6 downto 0); 

: Bit ; 

: Bit; 

: Bit; 

: STATE_TYPE; 
: UNSIGNED(3 downto 0); 

: UNSIGNED(8 downto 0); 

: UNSIGNED(6 downto 0); 

: UNSIGNED(7 downto 0); 

: UNSIGNED(8 downto 0); 

: UNSIGNED(15 downto 0); 

: UNSIGNED(9 downto 0); 

: UNSIGNED(2 downto 0); 

: Bit_Vector(3 downto 0); 
: Bit_Vector(25 downto 0); 

: Bit_Vector(5 downto 0); 

: Bit_ Vector(10 downto 0); 
: UNSIGNED(7 downto 0); 

Pad InOut (XP_Mem_D, dmout, dmin, not(mwrite)); 

process 

constant trg 

constant two 

constant zero 

constant sixt 

constant max 

constant srezer 

constant szero 

constant srchend 

constant winend 

constant endlin 

constant frt 

constant trgend 

: Bit_Vector(8 downto 0) :="000000100"; 

: UNSIGNED(9 downto 0) :="0000000010"; 

: UNSIGNED(8 downto 0) :="000000000"; 

: UNSIGNED(Q9 downto 0) :="0000010000"; 

: UNSIGNED(15 downto 0) :="11111111111 11111"; 

: UNSIGNED(6 downto 0) := "0000000"; 

: UNSIGNED(15 downto 0) := "0000000000000000"; 

: UNSIGNED(6 downto 0) := "1111111"; 

: UNSIGNED(9 downto 0) := "1000100000"; 

: UNSIGNED(4 downto 0) := "10000"; 

: UNSIGNED@G downto 0) := "1110"; 

: UNSIGNED(8 downto 0) := "111111111"; 
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begin 

variable LValid, LSrch _—_: Bit_Vector(3 downto 0); 

variable stl, ssl : UNSIGNED(7 downto 0); 

variable st2, ss2 : UNSIGNED(7 downto 0); 

variable temp1, temp2 : UNSIGNED(8 downto 0); 

variable temp3 : UNSIGNED(15 downto 0); 

wait until XP_Clk'Event and XP_Clk ='1'; 

dmout <= mdata_out; 

mdata_in <= dmin; 
Pad_Input (XP_Left, Left); 

Pad_Output (XP_Right, Right); 

Pad_Output (XP_Mem_A, maddr); 

Pad_Output (XP_Mem_RD L, mread); 

Pad Output (XP_Mem_WR_L, mwrite); 

LValid := Left(35 downto 32); 

LSrch := Left(11 downto 8); 

Rtemp <= Left(35 downto 30); 
RValid <= Left(29 downto 26); 

Rout <= Left(25 downto 0); 

if (sw = '0') then 

maddr <= srch&srch_pt; 

else 

maddr <= trg&trg_pt; 

end if; 

case cur_st is 

WHEN invalid => 

mwvrite <='1'; 

mread <='l1'; 

lev <= "010"; 

sw <= '0'; 

srch_pt <= srezer; 

srch <= "0000000001 1"; 

Bwl <= two; 

cur_st <= srch_st; 

WHEN srch_st => 

mwrite <= '0'; 

mread <='l'; 

if (LSrch = BIT_VECTOR'("1111")) then 

if (pix = '0') then 

reg! <= Left(7 downto 0); 

pix <='1 

else 
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mdata_ out <= Left(7 downto 0)&reg 1; 

srch_pt <= sCl; 

pix <= '0'; 

if (srch_pt = srchend) then 

srch <= "00000000"&lev; 

lev <= lev - UNSIGNED ("001"); 

end if; 

end if; 

end if; 

if (Lsrch = Bit_Vector'("1110")) then 

lev <= "000"; 

trg_pt <= zero; 

sw <='1'; 

cur_st <= get_data; 

end if; 

WHEN get_data => 

srch <= "00000000" &lev; 

if (LValid = BIT_VECTOR'("1000")) then 

if (pix = '0') then 

reg] <= Left(31 downto 24); 

pix <='1'; 

else 
mwrite <= '0'; 

mread <='l1'; 

mdata_out <= Left(31 downto 24)&reg1; 

trg pt <=tCl; 

if (trg_pt = trgend) then 

trg_pt <= zero; 

winl <= zero&'0'; 

trgpos <= zero&'0'; 

min <= max; 

cur_st <= idle0; 

end if; 

pix <= '0'; 
end if; 

end if; 

WHEN idle0 => 

mwrite <= '1'; 

mread <= '0'; 

sum <= szero; 

srch_pt <= srezer; 

sw <='0'; 

cur_st <= idlel; 

WHEN idle] => 

cnt <= UNSIGNED'("0010"); 

trg pt <=tCl; 

sw <='1'; 
cur_st <= idle2; 
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WHEN idle2 => 

srch_pt <= sCl; 

sw <= '0'; 
add1 <= '0'; 

cur_st <= stsrch; 

WHEN stsrch => 

stl := mdata_in(7 downto 0); 

st2 := mdata_in(15 downto 8); 
addv <= add1; 

if (cnt = frt) then 

trg pt <=tCl6; 

else 

trg_pt <=tCl; 

end if; 

cnt <= ent + UNSIGNED‘("10"); 

sw <='1'; 

cur_st <= sttrg; 

WHEN sttrg => 

ss1 := mdata_in(7 downto 0); 

ss2 := mdata_in(15 downto 8); 

srch_pt <= sCl; 
addv <= '0'; 

add <='1'; 
sw <= '0'; 
if (srch_pt = UNSIGNED'("0000000")) then 

cur_st <= idle; 

else 
cur_st <= stsrch; 

end if; 

WHEN idle => 

addv <='T'; 
cur_st <= idle3; 

WHEN idle3 => 
addv <= '0'; 

cur_st <= idle4; 

WHEN idle4 => 

mread <='I'; 

mwrite <='1'; 

if (sum < min) then 

min <= sum; 

trgpos <= winl; 
end if; 

srch_pt <= srezer; 
winl <= Cwl; 

cur_st <= idle5; 
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WHEN idle5 => 
if (winl = winend) then 

RValid <= "1111"; 
Rout <= min&trgpos; 

lev <= lev + UNSIGNED'("001"); 
cur_st <= set_lev; 

else 

cur_st <= idle6; 
end if; 

WHEN idle6 => 

trg_pt <= winl(9 downto 1); 

if (winl(4 downto 0) = endlin) then 

Bwl <= sixt; 

else 

Bwl <= two; 

end if; 

sw <='1'; 

cur_st <= idle0; 

WHEN set_lev => 

if (lev = UNSIGNED'("100")) then 
sw <= '0'; 

cur_st <= invalid; 
else 

sw <='1'; 

cur_st <= get data; 

end if; 

trg pt <= zero; 

end case; 

--csl <=ssl; 

--cs2 <= ss2; 

--ctl <= stl; 

--ct2 <= st2; 

if (ss] > st1) then 

diffl <= ss1 - stl; 

else 

diffl <= stl - ssl; 

end if; 

if (ss2 > st2) then 

diff2 <= ss2 - st2; 

else 

diff2 <= st2 - ss2; 

end if; 

temp! := UNSIGNED'(0'&diff1); 
temp2 := UNSIGNED '(‘0'&diff2); 

diff <= temp1 + temp2; 
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temp3 := UNSIGNED'("0000000"& diff); 

if (addv = '1') then 

sum <= sum + temp3; 

end if; 

end process; 

XP_XBAR < Tristate(XP_XBAR); 

Right <= Rtemp&RValid&Rout; 

tA16 <= "000001001"; 

tAl <= "000000001"; 

sAl <= "0000001"; 

sB1 <= srch_pt; 
tBl <=trg_pt; 

tB16 <= trg_pt; 

Awl <= winl; 

tC] <=tAl + tBl; 

tC16 <= tA16 + tB16; 

Cwl <= Awl + Bwl; 

sC1 <=sAl1+sBl; 

end Correlate_Even;



Chip X6: Displays output image 

architecture Display_Trg Even of Xilinx_Processing Part is 

type STATE_TYPE is (invalid, store, get_pos, idlel, idle2, idle3, out_pix, display); 

SIGNAL Right 

SIGNAL Left 

SIGNAL XBar_In 

SIGNAL Rout 

SIGNAL maddr, incmaddr 

SIGNAL mdata_out, dmout 

SIGNAL mdata_in, dmin 

SIGNAL mwrite, mread 

SIGNAL RValid 

SIGNAL Rtemp 

SIGNAL whitecnt, incwhcent 

SIGNAL Lx, Ly, Rx, Ry 

SIGNAL BRx, BRy, BLx 

SIGNAL inLx, incLx 

SIGNAL cnt, inccnt 

SIGNAL cur_st 

SIGNAL R, Cl, C2, Reg 

constant one_18 

constant one_16 

constant one_8 

constant one_4 

constant fift 

begin 

: Bit_Vector(DATAPATH_WIDTH-1I downto 0); 

: Bit_Vector(DATAPATH_WIDTH-1 downto 0); 

: Bit_Vector(DATAPATH_WIDTH-! downto 0); 

: Bit_Vector(7 downto 0); 

: UNSIGNED(17 downto 0); 

: Bit_Vector(MEM_ WIDTH-1 downto 0); 

: Bit_Vector(MEM_WIDTH-1 downto 0); 

: Bit ; 

: Bit_Vector(3 downto 0); 

: Bit_Vector(13 downto 0); 

: UNSIGNED(3 downto 0); 

: UNSIGNED(7 downto 0); 

: UNSIGNED(7 downto 0); 

: UNSIGNED(7 downto 0); 

: UNSIGNED(15 downto 0); 

: STATE_TYPE; 

: UNSIGNED(15 downto 0); 

: UNSIGNED(17 downto 0) := "000000000000000001"; 

: UNSIGNED(15 downto 0) := "0000000000000001"; 

: UNSIGNED(7 downto 0) := "00000001"; 

: UNSIGNED(3 downto 0) := "0001"; 

: UNSIGNED(7 downto 0) := "00001111"; 

Pad_InOut (XP_Mem_D, dmout, dmin, not(mwrite)); 

Right <= RValid&"0000000000"&Rtemp&Rout; 

XP_XBar_ EN_L <= "00000"; 

process 
variable XValid, LValid : Bit_Vector(3 downto 0); 

constant frend 

constant zero_16 

constant zero_8 

constant set 18 

constant white 

begin 

: UNSIGNED(15 downto 0) :="1111111111111111"; 
: UNSIGNED(15 downto 0) :="0000000000000000"; 
: UNSIGNED( 7 downto 0) :="00000000"; 
: UNSIGNED(17 downto 0) :="1111112111111111111"5 
: Bit_Vector(7 downto 0) := "11111111"; 

wait until XP_Clk'Event and XP_Clk ='1'; 

Pad_Input (XP_Left, Left); 

Pad_Output (XP_Right, Right); 
Pad_Input (XP_XBar, XBar_In); 

Pad_ Output (XP_Mem_RD L, mread); 

Pad Output (XP_Mem_WR_L, mwrite); 
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Pad_Output (XP_Mem_A, maddr); 

RValid <= Bit_Vector'("0000"); 
Rtemp <= Left(21 downto 8); 
Reg <= R; 

Rx <= BRx; 

Ry <= BRy; 
incLx <= BLx; 

XValid := XBAR_in(11 downto 8); 

LValid := Left(21 downto 18); 

dmout <= mdata_out; 

mdata_in <= dmin; 

case cur_st is 

WHEN invalid => 

mwrite <='L'; 

mread <='l'; 

cnt <= zero_16; 

maddr <= set_18; 
cur_st <= store; 

WHEN store => 

if (XValid = BIT_VECTOR'("1000")) then 

cnt <= inccnt; 

mwrite <= '0'; 

mread <='1'; 

mdata_out <= "00000000"&XBar_In(7 downto 0); 
maddr <= incmaddr; 

end if; 

if (cnt = frend) then 

cur_st <= get_pos; 

end if: 

WHEN get_pos => 

if (LValid = Bit_Vector'("1000")) then 

C1 <= "000000" &Left(17 downto 8); 

C2 <= zero_ 16; 

end if; 

if (LValid = Bit_ Vector'("1001")) then 

C1 <= "00000" &Left(17 downto 13)&'0'&Left(12 downto 8); 

C2 <= "0000"&Reg(9 downto 5)&'0'&Reg(4 downto 0)&'0'; 

end if; 

if (LValid = Bit_Vector'("1010")) then 

Cl <= "0000"&Left(17 downto 13)&"00"&Left(12 downto 8); 
C2 <= "00"&Reg(11 downto 6)&'0'&Reg(5 downto 0)&'0'; 

end if; 
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if (LValid = Bit_Vector'("1011")) then 
C1 <= "000"&Left(17 downto 13)&"000"&Left(12 downto 8); 

C2 <= Reg(13 downto 7)&'0'&Reg(6 downto 0)&'0'; 

cur_st <= idle]; 

end if; 

WHEN idlel => 

mwrite <='1'; 

mread <= '0'; 

maddr <= "00"&zero_16; 

Lx = R(15 downto 8); 

Ly <= R(7 downto 0); 

cur_st <= idle2; 

WHEN idle2 => 

inLx <= Lx; 

maddr <= incmaddr; 

cur_st <= idle3; 

WHEN idle3 => 

inLx <= BLx; 

whitecnt <= "0000"; 

maddr <= incmaddr; 

cnt <= zero_16; 

cur_st <= out_pix; 

WHEN out_pix => 

RValid <= BIT_VECTOR'("1000"); 
Rout <= mdata_in(7 downto 0); 
maddr <= incmaddr; 

cnt <= incent; 

if (cnt = Rx&Ly) then 

Rout <= white; 

cur_st <= display; 

end if; 

if (cnt = inLx&Ly) then 
Rout <= white; 

end if; 

if (cnt = inLx&Ry) then 

inLx <= incLx; 

Rout <= white; 

end if; 

if (cnt = Lx&Ly) then 

Rout <= white; 

cur_st <= display; 

end if; 

if (cnt = frend) then 

cur_st <= invalid; 

end if; 
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WHEN display => 

RValid <= BIT_VECTOR'("1000"); 

maddr <= incmaddr; 

Rout <= white; 

cnt <= inccnt; 

whitecnt <= incwhcnt; 

if (whitecnt = 14) then 

whitecnt <= "0000"; 

cur_st <= out_pix; 

end if; 

if (cnt = frend) then 

cur_st <= invalid; 

end if; 

end case; 

if (inLx > Rx) then 

inLx <= zero 8; 

end if; 

end process; 

R <= Cl + C2; 

BRx <= Lx + fift; 

BRy < Ly + fift; 

incmaddr <= maddr + one_ 18; 

inccnt <= cnt + one_ 16; 

incwhcnt <= whitecnt + one_4; 

BLx <= inLx + one 8; 

end Display_Trg_ Even; 
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